Lecture Materials
for ECON747: Spatial Econometric Models and Methods, Term I 2024-25
Lecture Notes: (Download lecture notes and the linked files into
the same folder)
Lecture 1: Introduction and
Preliminaries (neighborhood crime, readme)
(Fischer & Getis 2010; Baltagi
2005; Anderson 2003, Appendix A; Greene 2022, Appendix
A)
Lecture 2: Spatial
Linear Regression (SLR) Model (Supplement: IV Estimation)
Lecture 3: Tests
of Hypotheses for SLR Model (Updated on 24/10/2024)
Lecture 4: Bias-Corrected
Estimation of SLR Model (deferred to after Lecture 12)
Lecture 5: Bootstrap LM Tests for SLR Model (deferred to after Lecture 12)
Lecture 6: SLR Model with
Heteroskedasticity (deferred to
after Lecture 10)
Lecture 7: Spatial Panel Data Models (for regular panel data models: see Baltagi
Book, Greene
Book)
Lecture 8: SPD Model with Heteroskedasticity (a discussion based on Liu and Yang 2020)
Lecture 9: Tests of Hypothesis for SPD Model (a discussion based on Baltagi and Yang 2013b)
Lecture 10: Dynamic
Spatial Panel Data Models (for regular dynamic panel data models: see Baltagi Book, Greene Book)
Lecture 11: DSPD Model with Heteroskedasticity (a discussion based on Li and Yang 2020)
Lecture 12: Tests of Hypothesis for DSPD Model (based on Yang 2021a and Yang
2021b)
Midterm Test: 8:30
AM – 11:30 PM, Saturday Week 10, October 26, 2024 (Instructions)
Reference Books:
1. Anselin, Luc (1988). Spatial Econometrics: Methods and Models, Dordrecht: Kluwer.
2. Lung-Fei Lee (2023). Spatial Econometrics: Spatial Autoregressive Models, World Scientific.
3. Roger S. Bivand, Edzer Pebesma, and Virgilio Gómez-Rubio (2013). Applied Spatial Data Analysis with R, 2nd ed (pdf), Springer.
4. Elhorst P.J. (2014). Spatial econometrics: from Cross-Sectional Data to Spatial Panels (pdf), Heidelberg: Springer.
5. LeSage, J.P. and R..K. Pace (2009). Introduction to Spatial Econometrics (pdf), Boca Raton: Taylor and Francis.
Recommended
Papers:
(Published versions of some papers are for teaching
use only. Please DO NOT circulate.)
1.
Anselin,
L., Bera, A. K., 1998. Spatial dependence in linear
regression models with an introduction to spatial econometrics. In: Handbook of Applied Economic Statistics,
edited by Aman Ullah and David E. A. Giles}. New York: Marcel Dekker
2.
Anselin,
L., 2001. Spatial Econometrics. In: A Companion to Theoretical Econometrics,
edited by Badi H. Baltagi. Blackwell Publishing.
3.
Lee,
L. F., 2004a. Asymptotic distributions of
quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica
72, 1899-1925.
4.
Kelejian
H. H. and Prucha, I. R. (2001). On the
asymptotic distribution of the Moran I test statistic with applications.
Journal of Econometrics 104, 219-257.
5.
Liu, S. F. and Yang, Z. L. (2015a). Asymptotic distribution and finite-sample bias
correction of QML estimators for spatial error dependence Model. Econometrics, 3, 376-411.
6.
Baltagi,
B. and Yang, Z. L. (2013a). Standardized
LM tests for spatial error dependence in linear or panel regressions. The
Econometrics Journal 16, 103-134.
7.
Baltagi,
B. and Yang, Z. L. (2013b). Heteroskedasticity
and non-normality robust LM tests of spatial dependence. Regional
Science and Urban Economics 43, 725-739.
8.
Yang, Z. L. (2015a). A general method for third-order bias and variance
correction on a nonlinear estimator. Journal
of Econometrics, 186, 178-200.
9.
Yang, Z. L. (2015b). LM tests of spatial dependence based on bootstrap
critical values. Journal
of Econometrics, 185, 33-39.
10.
Liu, S. F. and Yang, Z. L. (2015b). Improved
Inferences for Spatial Regression Models.
Regional Science and Urban Economics, 55, 55-67.
11.
Liu, S. F. and Yang, Z. L. (2015c). Modified
QML estimation of spatial autoregressive models with unknown heteroskedasticity
and normality. Regional Science and Urban Economics, 52, 50-70.
12.
Kelejian
H. H. and Prucha, I. R. (1999). A generalized
moments estimator for the autoregressive parameter in a spatial model. International
Economic Review 40, 509-533.
13.
Lee,
L. F. (2007a). GMM and 2SLS estimation of mixed
regressive, spatial autoregressive models. Journal of Econometrics
137, 489-514.
14.
Lee,
L. F. (2007b). The method of elimination and
substitution in the GMM estimation of mixed regressive, spatial autoregressive
models. Journal of Econometrics 140, 155-189.
15.
Lee,
L. F. and Liu, X. (2010). Efficient GMM estimation of
high order spatial autoregressive models with autoregressive disturbances. Econometric
Theory 26, 187-230.
16.
Kelejian
H. H. and Prucha, I. R. (2010) Specification
and estimation of spatial autoregressive models with autoregressive and
heteroskedastic disturbances. Journal of Econometrics 157,
53-67.
17.
Lin,
X. and Lee, L. F. (2010). GMM estimation of spatial
autoregressive models with unknown heteroskedasticity. Journal of
Econometrics 157, 34-52.
18.
Lee,
L. F., Yu, J. H. (2010). Estimation of spatial
autoregressive panel data models with fixed effects. Journal of Econometrics 154,
165-185.
19.
Lee,
L.-F. and Ju, J. H. (2012). Spatial panels: random
components versus fixed effects. International Economic Review 53, 1369-1412.
20.
Yang, Z. L., Yu, J. H, and Liu, S. F. (2016). Bias
correction and refined inferences for fixed effects spatial panel data models. Regional Science and Urban Economics, 61,
52-72.
21.
Liu, S. F. and Yang, Z. L. (2020). Robust
estimation and inference of spatial panel data models with fixed effects. Japanese
Journal of Statistics and Data Science 3, 257–311.
22.
Yu,
J. H., de Jong, R., Lee, L. F., 2008. Quasi-maximum
likelihood estimators for spatial dynamic panel data with fixed effects when
both n and T are large. Journal of Econometrics 146,
118-134.
23.
Su, L. J. and Yang, Z. L. (2015). QML
estimation of dynamic panel models with spatial errors. Journal of Econometrics, 185, 230-258.
24.
Yang,
Z. L. (2018a). Unified M-estimation of
fixed-effects spatial dynamic panel data models with short panels. Journal of Econometrics, 423-447
25.
Yang,
Z. L. (2018b). Supplement to “Unified M-estimation of fixed-effects
spatial dynamic panel data models with short panels”.