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6.1. Introduction

This lecture presents estimation and inference methods for spatial linear
regression (SLR) model with errors being independent but not identically
distributed (inid). In particular, in the SLR model with spatial lag (SL) and
spatial error (SE), studied in Lecture 2:

Yn = λW1nYn + Xnβ + un, un = ρW2nun + εn, (6.1)

the variances of εni are allowed to be different for different spatial units,
leading to the so-called cross-sectional heteroskedasticity (CH).

The CH can be a function (of known form) of, e.g., some regressor
values and some additional parameters.

See e.g., Breusch & Pagan (1979) and Baltagi, Pirotte & Yang (2021).

It can be of an unknown form. This lecture concerns the unknown CH
and assumes that Var(εni) = σ2

0hni , where hni > 0 and 1
n

∑n
i=1 hni = 1.

See, e.g., Baltagi & Yang (2013b) and Liu & Yang (2015).
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While CH is common in regular cross-section studies, it may be more so
for a spatial econometrics model due to aggregation, clustering, etc.

Anselin (1988b) identifies that heteroskedasticity can broadly occur due to
“idiosyncrasies in model specification and affect the statistical validity of the
estimated model”, e.g., the misspecification of model that feeds to the
disturbance term or more naturally the presence of peer interactions.

Data related heteroskedasticity may also occur, e.g., if the model deals with a
mix of aggregate and non aggregate data, the aggregation may cause errors
to be heteroskedastic. See, e.g., Glaeser et al. (1996), LeSage & Pace
(2009), Lin & Lee (2010), Kelejian & Prucha (2010), for more discussions.

As such, the assumption of homoskedastic disturbances is likely to be invalid
in a spatial context in general. However, as Liu & Yang (2015) comment,
much of the present spatial econometrics literature has focused on estimators
developed under the assumption that the errors are homoskedastic.

This is in a clear contrast to the standard cross-section econometrics
literature where the use of CH-robust estimators is a standard practice.
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In the presence of unknown CH, Lin & Lee (2010) show that the QMLE of
SL model can be inconsistent as a ‘necessary’ condition for consistency
can be violated, and thus propose robust GMM estimators for the model.

In this lecture,
1 we first show that this condition may hold in certain situations and

when it does the regular QML estimator can still be consistent.
2 In cases where this condition is violated, we propose modified QML

(MQML) estimation methods, robust against unknown CH.
3 In both cases, asymptotic distributions of the estimators are derived,

and methods for estimating robust variances are given.
4 The proposed MQML methods are extended to SLE model.

GMM-type methods for SL and SLE models are presented.
5 We then present LM-type tests for the existence of spatial effects in

the SLR models, robust against unknown CH.
6 Some Monte Carlo results are presented to show the ‘necessity’ of

using CH-robust methods when unknown CH is present.
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6.2. Robustness of QMLE of SL Model to Unknown CH

To ease the exposition, we study in detail the robustness of QML estimator
of the spatial lag (SL) model presented in Lecture 2:

Yn = λ0WnYn + Xnβ0 + εn. (6.2)

The Gaussian loglikelihood of θ = (β′, σ2, λ)′ as if εni
iid∼ N(0, σ2

0) is

`n(θ) = − n
2 log(2πσ2) + log |An(λ)| − 1

2σ2 ‖εn(β, λ)‖2, (6.3)

where εn(β, λ) = An(λ)Yn − Xnβ and An(λ) = In − λWn.

Maximizing `n(θ) gives the QMLE θ̂n of θ0. It has been shown: θ̂n is
consistent and

√
n(θ̂n − θ0)

D−→ N(0, Σ) as long as εni
iid∼ (0, σ2

0).

However, some important issues need to be further considered:

(i) conditions under which θ̂n remains consistent when εni
inid∼ (0, σ2

0hni),

(ii) methods to modify the QML estimation method so that the modified QMLE
becomes generally consistent under unknown CH, and

(iii) methods for CH-robust estimation of the variance of modified QMLE.
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We now address issue (i). Issues (ii) and (iii) are addressed in Sec. 6.3.

It is well-known that the regular QMLE of the usual linear regression model,

developed under homoskedastic errors, is still consistent when the errors are in

fact heteroskedastic. However, for correct inferences the standard error of the

estimator has to be adjusted to account for this unknown CH (White, 1980).

Suppose now we have an SL model (6.2) with εni
inid∼ (0, σ2

0hni), hni > 0
and 1

n

∑n
i=1 hni = 1. Consider the quasi score function derived from (6.3),

Sn(θ) =
∂`n(θ)

∂θ
=


1
σ2 X ′

nεn(β, λ),

1
2σ4 [ε

′
n(β, λ)εn(β, λ)− nσ2],

1
σ2 Y ′

nW ′
nεn(β, λ)− tr[Fn(λ)],

(6.4)

where Fn(λ) = WnA−1(λ).

Note: σ2 is the average of Var(εn,i). Under homoskedasticity, hni = 1,∀i .
This parameterization, a nonparametric version of Breusch and Pagan
(1979), is useful as it allows the estimation of the average scale parameter.
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For an extremum estimator, such as the QMLE θ̂n given above, to be
consistent, it is necessary that

plimn→∞
1
n Sn(θ0) = 0 at the true parameter θ0

(Amemiya, 1985). This is always the case for the β and σ2 components of
ψn(θ0) whether or not the errors are homoskedastic. However, it may not
be the case for the λ-component of Sn(θ0).

Let hn = (hn,1, . . . ,hn,n)
′, fn = diagv(Fn), and Cov(hn, fn) denote the

sample covariance between the two vectors. Let f̄n = 1
n

∑n
i=1 fn,i and

Hn = diag(hn). We have, similarly to Lin and Lee (2010),

1
n

∂
∂λ`n(θ0) = 1

n tr(HnFn − Fn) + op(1)

= 1
n

∑n
i=1(hn,i − 1)(fn,i − f̄n) + op(1)

= Cov(hn, fn) + op(1).

(6.5)

Therefore, for θ̂n to be consistent, it is necessary that Cov(hn, fn) → 0;
in other words, if limn→∞ Cov(hn, fn) 6= 0, θ̂n cannot be consistent.
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Lin and Lee (2010) noted that this condition is satisfied if almost all
the diagonal elements of the matrix Fn are equal.

Liu & Yang (2015) argued: by Cauchy-Schwartz inequality, this
condition is satisfied if Var(fn) → 0, which boils down to Var(kn) → 0,
where kn is the vector of number of neighbours for each unit.

This is because (i) Fn = Wn + λW 2
n + λ2W 3

n + . . ., if |λ| < 1 and
wn,ij < 1, and (ii) the diagonal elements of W r

n , r ≥ 2 inversely relate
to kn, see Anselin (2003). In fact, when Wn is row-normalized and
symmetric, diag(W 2

n ) = {k−1
n,i }.

Var(kn) = o(1) can be seen to be true for many popular spatial
layouts such as Rook, Queen, group interactions such that variation in
group sizes becomes small when n gets large, etc, see Yang (2010).

Furthermore, if CH occurs due to reasons unrelated to the number of
neighbours, e.g., the nature of the exogenous regressors Xn, then the
required condition will still be satisfied. These suggest that the regular
QMLE of the SL model can still be consistent under CH.
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Recall: a quantity defined at the true parameter is represented with a
suppressed variable notation, e.g., An ≡ An(λ0) and Fn ≡ Fn(λ0).

Assumption 1: The true λ0 is in the interior of a compact parameter set Λ.

Assumption 2: εn ∼ (0, σ2
0Hn), where Hn = diag(hn,1, . . . , hn,n), hn,i > 0, ∀i , and

1
n

Pn
i=1 hn,i = 1. E|εn,i |4+δ < c for some δ > 0 and constant c for all n and i .

Assumption 3: The elements of Xn are uniformly bounded for all n, Xn has the full
rank k, and limn→∞

1
n X ′nXn exists and is nonsingular.

Assumption 4: The spatial weights matrix Wn is uniformly bounded in absolute
value in both row and column sums and its diagonal elements are zero.

Assumption 5: The matrix An is non-singular and A−1
n is uniformly bounded in

absolute value in both row and column sums. Further, A−1
n (λ) is uniformly

bounded in either row or column sums, uniformly in λ ∈ Λ.

Assumption 6: The limit limn→∞
1
n (FnXnβ0)

′Mn(FnXnβ0) = k, where either k > 0,

or k = 0 but limn→∞
1
n ln |σ2

0A−1
n A

′−1
n | − 1

n ln |σ2
n(λ)A−1

n (λ)A
′−1
n (λ)| 6= 0, whenever

λ 6= λ0, where σ2
n(λ) = 1

n σ2
0 tr(HnA

′−1
n A

′−1
n (λ)A−1

n (λ)A−1
n ).
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Parameter space: Λ must be such that An(λ) is non-singular ∀λ ∈ Λ.

Since |An(λ)| =
Qn

i=1(1− λωi), where ωi are the eigenvalues of Wn (Ord, 1975),

if the eigenvalues of Wn are all real, then Λ = (ω−1
min, ω−1

max), where ωmin and
ωmax are, respectively, the smallest and the largest eigenvalues of Wn.

If Wn is row normalized, then ωmax = 1 and ω−1
min < −1, and the parameter

space becomes Λ = (w−1
min , 1) (Anselin, 1988b, p. 78-79).

In general, the eigenvalues of Wn may not be all real as Wn can be
asymmetric. LeSage and Pace (2009, p. 88-89) argue that only the purely
real eigenvalues can affect the singularity of An(λ). Consequently,

the interval of λ that guarantees non-singular An(λ) is Λ = (w−1
s , 1) where ws

is the most negative real eigenvalue of Wn.

Kelejian and Prucha (2010) suggest Λ be (−τ−1
n , τ−1

n ) where τn is the spectral
radius of Wn, or (−1, 1) after normalization.

Assumptions 2-5 are standard for the SL model (Lin & Lee, 2010; Kelejian
& Prucha, 1999). Assumption 6 is the heteroskedastic version of the
identification condition by Lee (2004) for the homoskedastic SL model.
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From the quasi score function Sn(θ) given in (6.4), define

Γn = −E[ ∂
∂θ′ Sn(θ0)] and Ωn = E[Sn(θ0)S′n(θ0)],

w.r.t. Assumption 2. Let qn = diagv(F ′nFn)). We have the following results.

Theorem 6.1: Under Assumptions 1-6, Cov(fn,hn) = o(1) and Cov(qn,hn)

= o(1), we have as n →∞, θ̂n
p−→ θ0; under Assumptions 1-6 and

Cov(fn,hn) = o(n−1/2), we have as n →∞,
√

n(θ̂n − θ0)
D−→ N

(
0, limn→∞ nΓ−1

n ΩnΓ
−1
n
)
, (6.6)

where the limits of 1
nΓn and 1

nΩn are assumed to exist and 1
nΓn is assumed

to be nonsingular for large enough n.

Γn can be estimated by plug-in estimator or by sample analogue.

However, plug-in estimation of Ωn runs into a problem, as its σ2
0-σ2

0

component, 1
4nσ4

0

∑n
i=1(κni + 2h2

ni), cannot be consistently estimated.
The method of M.D. decomposition does not work either.
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Remark 6.1. Under unknown CH, joint inference for β, λ and σ2 does not
seem possible, but joint inference for ϑ = (β′, λ)′ can be made. This is
important as ϑ is the parameter set that is of main interest.

Remark 6.2. This approach is in line with the GMM approach, where it is
typical that the estimation proceeds without σ2 (e.g., Lin and Lee, 2010).

To do so, we concentrate out σ2 from (6.4) and work with the concentrated
QS (CQS) function of ϑ:

Sc
n(ϑ) =

σ̃−2
n (ϑ)X ′

nεn(ϑ),

σ̃−2
n (ϑ)Y ′

nW ′
nεn(ϑ)− tr[Fn(λ)],

(6.7)

where σ̃2
n(ϑ) = 1

n ε
′
n(ϑ)εn(ϑ), the constrained estimate of σ2

0 given ϑ.

When Cov(fn,hn) = o(n−
1
2 ), plim 1

n Sc
n(ϑ) = 0. Theorem 6.1 implies:

√
n(ϑ̂n − ϑ0)

D−→ N
(
0, limn→∞ nΓc−1

n Ωc
nΓ

c−1
n
)
, (6.8)

where Γc
n = −E[ ∂

∂ϑ′ Sc
n(ϑ0)] and Ωc

n = E[Sc
n(ϑ0)Sc

n(ϑ0)
′].
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For joint inference for ϑ under CH, Γc
n is estimated by its sample analogue,

Γ̂c
n = − ∂

∂ϑ′ Sc
n(ϑ0)|ϑ0=ϑ̂n

. (6.9)

Ωn is estimated by an OPMD estimator, based on the asymptotic M.D.
representation (noting that 1√

n

∑n
i=1 fn,ii(e2

ni − 1) = op(1)):

1√
n

Sc
n(ϑ0)

a
=

1√
n

n∑
i=1

sc
ni(ϑ0) ≡

1√
n

n∑
i=1

(
znieni ;

eniµni + eniξni

)
,

where, z ′ni , eni , µni , and ξni are, respectively, the rows of

zn ≡ zn(ϑ0) = σ̃−1
n (ϑ0)Xn, en ≡ en(ϑ0) = σ̃−1

n (ϑ0)εn,
µn ≡ µn(ϑ0) = σ̃−1

n (ϑ0)FnXnβ0, ξn ≡ ξn(ϑ0) = (F u′
n + F l

n)en,

with F u
n and F l

n being the strict upper and lower triangular matrices of Fn.

Under the conditions in Theorem 6.1, it is easy to see that {sc
ni(ϑ0)} are

asymptotically uncorrelated with means zero. Thus, Ωc
n

a
= Var[Sc

n(ϑ0)]
a
=∑n

i=1 Var[sc
ni(ϑ0)], and a consistent estimate of Ωc

n is

Ω̂c
n =

∑n
i=1 sc

ni(ϑ̂n)sc
ni(ϑ̂n)

′. (6.10)
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6.3. Modified QML Estimation of SL Model under CH

In QML estimation, the use of Gaussian likelihood renders the QS
functions being of a linear-quadratic form: ε′nAnεn + b′nεn.

If εn ∼ (0, σ2
0 In), then E(ε′nAnεn + b′nεn) = σ2

0 tr(An). Thus, a valid
moment condition would be ε′nAnεn + b′nεn − σ2

0 tr(An);

If εn ∼ (0, σ2
0Hn), then E(ε′nAnεn + b′nεn) = σ2

0 tr(AnHn). But, the similar
quantity ε′nAnεn + b′nεn − σ2

0 tr(AnHn) would not give a valid moment
condition due to the presence of the unknown Hn,

unless tr(AnHn = 0), which is the case if diag(An) = 0. This presents
the key idea in developing Hn-robust estimation method.

In this spirit, simply modifying the λ-component of Sn(θ) given in (6.4) as:

σ−2
0 [Y ′

nW ′
nεn − ε′ndiag(Fn)εn].

We immediately see: plim 1
nσ2

0
[Y ′

nW ′
nεn − ε′ndiag(Fn)εn] = 0, in light of (6.5).
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6.3.1. Simple modified QML estimation of SL model under CH

The β-component of Sn(θ0) is robust against unknown CH.

Therefore, a set of modified QS functions for ϑ robust against
unknown CH would be: {σ−2

0 X ′
nεn(ϑ0); σ

−2
0 [Y ′

nW ′
nεn − ε′ndiag(Fn)εn]}.

Obviously, σ−2
0 does not play a role here.

As indicated in Remark 6.1, in the presence of unknown CH, joint
inference can only be done for ϑ.

A set of modified quasi score (MQS) of ϑ = (β′, λ)′ is thus,

S◦n (ϑ) =

X ′
nεn(ϑ),

Y ′
nW ′

nεn(ϑ)− ε′n(ϑ)diag(Fn(λ))εn(ϑ).
(6.11)

Solving S◦n (ϑ) = 0 gives the modified QML (MQML) estimator ϑ̂◦n of ϑ0,
fully robust against unknown CH.
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It is easy to see that E[S◦n (ϑ0)] = 0 and plim 1
n S◦n (ϑ0 = 0. This paves the

way for ϑ̂◦n to achieve the regular asymptotic properties.

Theorem 6.2. Under Assumptions 1-6, we have as n →∞, ϑ̂◦n
p−→ ϑ0 and

√
n(ϑ̂◦n − ϑ0)

D−→ N
(
0, limn→∞ nΓ◦−1

n Ω◦nΓ
◦−1
n
)
. (6.12)

where Γ◦n = −E[ ∂
∂ϑ′ S◦n (ϑ0)] and Ω◦n = E[S◦n (ϑ0)S◦n (ϑ0)

′].

For statistical inference, Γ◦n and Ω◦n are estimated by

Γ̂◦n = − ∂
∂ϑ′ S◦n (ϑ0)|ϑ0=ϑ̂◦

n
,

Ω̂◦n =
∑n

i=1 s◦ni(ϑ̂n)s◦ni(ϑ̂n)
′,

where s◦ni(ϑ0) = (x ′niεni , εniµni + εniξni)
′, with x ′ni being the rows of Xn,

and µni and ξn the elements of µn = FnXnβ0 and ξn = (F u′
n + F l

n)εn.

∂
∂ϑ′ S◦n (ϑ) =???; Ω◦n =??? Does plug-in estimation for Ω◦n work?
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6.3.2. Finite sample improved MQML estimation of SL model under CH

The modified QMLE λ̂◦n does not taken into account the variability from the
estimation of β, and thus it may not perform well in finite sample. Similar
phenomenon holds for the QMLE λ̂n when it is robust against CH.

Liu and Yang (2015) propose to work on the concentrated QS function of
λ, obtained by substituting β̃n(λ) and σ̃2

n(λ) into the last component of
(6.4) for β and σ2 and then dividing by n:

ψ̃n(λ) =
Y ′

nA′n(λ)Mn[Fn(λ)− 1
n tr(Fn(λ))In]An(λ)Yn

Y ′
nA′n(λ)MnAn(λ)Yn

. (6.13)

The average concentrated score ψ̃n(λ) contains the variability coming
from estimating β and σ2, but to account for it modifications are needed.

Clearly, the QMLE λ̂n = arg{ψ̃n(λ) = 0}, which may not be robust against
unknown CH when the conditions in Theorem 6.1 are violated.
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Our idea is to modify the numerator of (6.13) so that its expectation at the
true parameter λ0 is zero even under unknown CH. This is achieved by
replacing Fn(λ)− 1

n tr(Fn(λ))In by,

F ◦n (λ) = Fn(λ)− diag(Mn)
−1diag(MnFn(λ)). (6.14)

This gives a modified concentrated score function,

ψ̃∗n(λ) =
Y ′

nA′n(λ)MnF ◦n (λ)An(λ)Yn

Y ′
nA′n(λ)MnAn(λ)Yn

, (6.15)

and hence a modified QML estimator of λ0 as,

λ̂∗n = arg{ψ̃∗n(λ) = 0}. (6.16)

The resulting CH-robust estimators of β and σ2 are, respectively,

β̂∗n = β̃n(λ̂
∗
n) and σ̂∗2

n = σ̃2
n(λ̂∗n),

as the estimating functions (first two components of Sn(θ) given in (6.4))
leading to β̃n(λ) and σ̃2

n(λ) (also in (2.18)) are robust to unknown CH.

Z. L. Yang, SMU ECON747, Term I 2024-25 18 / 56



Making the expectation of an estimating function to be zero leads potentially
to a finite sample bias corrected estimation.

This is in line with Baltagi and Yang (2013a,b) in constructing standardized or
heteroskedasticity-robust LM tests.

See also Kelejian and Prucha (2001, 2010) and Lin and Lee (2010) for useful
methods on LQ forms of heteroskedastic random vectors.

To ensure that the modified estimation function given in (6.15) uniquely
identifies λ0, Assumption 6 needs to be modified as follows.

Assumption 6∗: Let Ωn(λ) = A′n(λ)[Fn(λ)− diag(Fn(λ))]An(λ).

lim
n→∞

1
n [β′0X ′

nA′−1
n Ωn(λ)A−1

n Xnβ0 + σ2
0 tr(HnA′−1

n Ωn(λ)A−1
n )] 6= 0, ∀λ 6= λ0.

The CLT for LQ forms of Kelejian and Prucha (2001) allows for CH and
can be used to prove the asymptotic normality of λ̂∗n. First,

√
nψ̃∗n ≡

√
nψ̃∗n(λ0) = 1√

nσ2
0

(
ε′nB◦nεn + c′nεn

)
+ op(1), (6.17)

where B◦n = MnF ◦n and cn = MnF ◦n Xnβ0, because σ̂−2
n (λ0) = σ−2

0 + op(1).
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It is important to note that diag(B◦n) = 0, arising from the way that F ◦n (λ) is
defined. This greatly simplifies the expressions and their subsequent
estimation in Liu an Yang (2015, Theorems 2 & 3).

Based on this and the asymptotic representation for
√

nψ̃∗n given in (6.17),

Var(
√

nψ̃∗n) = 1
n tr[HnBn(HnBn + HnB′n)] + 1

nσ2
0
c′nHncn + o(1),

≡ Ωnλ + o(1). (6.18)

Theorem 6.3: Under Assumptions 1-5 and 6∗, the modified QMLE λ̂∗n is
consistent and asymptotically normal, i.e., as n →∞, λ̂∗n

p−→ λ0, and
√

n(λ̂∗n − λ0)
D−→ N

(
0, limn→∞ Γ−2

nλ Ωnλ

)
,

where Γnλ = 1
n tr[Hn(G◦

nFn + F ◦
′

n Fn − Ḟ ◦n )] + 1
nσ2

0
c′nηn, ηn = FnXnβ0, and

Ḟ ◦n = d
dλF ◦n = F 2

n − diag(Mn)
−1diag(MnF 2

n ).
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Now consider the modified QMLEs β̂∗n and σ̂∗2
n of β0 and σ2

0 defined below
(6.16). Using the relation An(λ̃n) = An − (λ̃n − λ0)Wn, we can write,

β̂n = β̃n(λ0)− (λ̃n − λ0)(X ′
nXn)

−1X ′
nFnAnYn, and

σ̂2
n = σ̃2

n(λ0)− 2(λ̃n − λ0)
1
n Y ′

nW ′
nMnAnYn + (λ̃n − λ0)

2 1
n Y ′

nW ′
nMnWnYn.

The asymptotic properties of β̂∗n and σ̂∗2
n are summarized below.

Corollary 6.1: Under the assumptions of Theorem 6.3, we have, as
n →∞, β̂∗n

p−→ β0 and σ̂∗2
n

p−→ σ2
0 , and further,

√
n(β̂∗n − β0)

D−→ N
[
0, limn→∞(X ′

nXn)
−1X ′

nΣnβXn(X ′
nXn)

−1
]
,

where Σnβ = nσ2
0Hn + Ωnληnη

′
n − 2Γ−1

nλ Hncnη
′
n.

For applications of Theorem 6.3 and Corollary 6.1, Γnλ, Ωnλ and Σnβ can
all by estimated by plug-in method, i.e., plugging in (β̂∗n , σ̂

∗2
n , λ̂∗n) for

(β0, σ
2
0 , λ0), and Ĥn = diag(σ̂∗−2

n ε̂2n) for Hn, where ε̂n = An(λ̂
∗
n)Yn − Xnβ̂

∗
n .
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6.4. Modified QML Estimation of SLE Model under CH

The modified QML estimation methods can be easily extended to suit for
more general models (spatial or non-spatial) with few concentrated score
elements that need to be modified to account for the unknown CH.

One of the most needed extensions would be to the SLE model, of which
QML estimation is considered in Lecture 2:

Yn = λW1nYn + Xnβ + un, un = ρW2nun + εn. (6.19)

The quasi Gaussian loglikelihood function of θ = (β′, σ2, δ′)′ with
δ = (λ, ρ)′, as if εn ∼ N(0, σ2

0 In), takes the form:

`n(θ) = − n
2 log(2πσ2) + log |An(λ)|+ log |Bn(ρ)| − 1

2σ2 ‖εn(β, δ)‖2, (6.20)

where An(λ) = In − λW1n, Bn(ρ) = In − ρW2n, εn(β, δ) = Yn(δ)− Xn(ρ)β,
Yn(δ) = Bn(ρ)An(λ)Yn, and Xn(ρ) = Bn(ρ)Xn.

The QMLE θ̂n of θ maximizes `n(θ).
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6.4.1 Simple modified QML estimation of SLE Model under CH

As in Sec. 6.2., under an extended set of conditions, the QMLE θ̂n can be
robust to unknown CH, and when it does, an extended set of inference
methods can be developed in a similar way.

We will skip such a detail, and concentrated on the modified QML
estimators that are fully robust to CH.

Recall the QS function given in Lecture 2, written in slightly different way:

SSLE(θ) =



1
σ2 X′n(ρ)εn(β, δ),

1
2σ4 ε

′
n(β, λ)εn(β, δ)− n

2σ2 ,

1
σ2 ε

′
n(β, δ)Bn(ρ)W1nYn − tr[Fn(λ)],

1
σ2 ε

′
n(β, δ)Gn(ρ)εn(β, δ)− tr[Gn(ρ)],

(6.21)

where Fn(λ) = W1nA−1
n (λ), and Gn(ρ) = W2nB−1

n (ρ).
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As in (6.11) for SL model, the modified quasi score (MQS) function of
ϑ = (β′, δ′)′ has the following form:

S◦SLE(ϑ) =


X′n(ρ)εn(ϑ),

ε′n(ϑ)Bn(ρ)W1nYn − ε′n(ϑ)diag(F̄n(λ))εn(ϑ),

ε′n(ϑ)Gnεn(ϑ)− ε′n(ϑ)diag(Gn(λ))εn(ϑ).

(6.22)

where F̄n(δ) = Bn(ρ)Fn(λ)B−1
n (ρ).

Solving S◦n (ϑ) = 0 gives the modified QML (MQML) estimators ϑ̂◦n of
ϑ0, and σ̂◦2

n = 1
n ε
′
n(ϑ̂

◦
n)εn(ϑ̂

◦
n) of σ2

0 , fully robust against unknown CH.
Inference methods can be developed in a similar manner as for the
SL model, in particular along the line of Theorem 6.2.

Under an extended set of assumptions of Theorem 6.2, we have as
n →∞, σ̂◦2

n
p−→ σ2

0 , ϑ̂◦n
p−→ ϑ0, and

√
n(ϑ̂◦n − ϑ0)

D−→ N
(
0, limn→∞ nΓ◦−1

SLE Ω◦SLEΓ
◦−1
SLE

)
. (6.23)

where Γ◦SLE = −E[ ∂
∂ϑ′ S◦SLE(ϑ0)] and Ω◦SLE = E[S◦SLE(ϑ0)S◦SLE(ϑ0)

′].
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6.4.2 Finite sample improved modified QMLE of SLE Model under CH

Recall from (2.31) the CQS function of δ upon dividing by n:

ψc
SLE(δ) =


−1

n
tr(Fn(λ)) +

Y′n(δ)Mn(ρ)F̄n(δ)Yn(δ)

Y′n(δ)Mn(ρ)Yn(δ)
,

−1
n

tr(Gn(ρ)) +
Y′n(δ)Mn(ρ)Ḡn(ρ)Yn(δ)

Y′n(λ)Mn(ρ)Yn(δ)
,

(6.24)

where Ḡn(ρ) = Gn(ρ)Mn(ρ), and Mn(ρ) = In − Xn(ρ)[X′n(ρ)Xn(ρ)]
−1X′n(ρ).

Using similar arguments as given in Section 6.3, we have, after some
algebraic manipulations, the following modified CQS function,

ψ̃∗SLE(δ) =


Y′n(δ)Mn(ρ)F̄◦n (δ)Yn(δ)

Y′n(δ)Mn(ρ)Yn(δ)
,

Y′n(δ)Mn(ρ)Ḡ◦n (ρ)Yn(δ)

Y′n(δ)Mn(ρ)Yn(δ)
,

(6.25)

where F̄ ◦n (δ) = F̄n(δ)− diag(Mn(ρ))
−1diag[Mn(ρ)F̄n(δ)], and

Ḡ◦
n(ρ) = Ḡn(ρ)− diag(Mn(ρ))

−1diag[Mn(ρ)Ḡn(ρ)].
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The modified QMLE of δ is defined as δ̂∗n = arg{ψ̃∗SLE(δ) = 0}.
The modified QMLEs of β and σ2 are β̂∗n ≡ β̃n(δ̂

∗
n) and σ̂∗2

n ≡ σ̃∗2
n (δ̂∗n),

β̃n(δ) and σ̃2
n(δ): the constrained QMLEs given in (2.28) and (2.29).

The MQMLE δ̂∗n potentially improves over δ̂n and δ̂◦n , and

over the three-step estimator of Kelejian and Prucha (2010).

It would be interesting to give a more detailed theoretical and empirical
(Monte Carlo) study on the topic:

“Heteroskedasticity Robust Estimation of Spatial Linear Regression”

Theorem 6.4: Under Assumptions 1-3 and extended Assumptions 4, 5,
and 6∗ to SLE model, the modified QMLE δ̂∗n is consistent and
asymptotically normal, i.e., as n →∞, δ̂∗n

p−→ λ0, and
√

n(δ̂∗n − δ0)
D−→ N

(
0, limn→∞ Γ−1

nδ ΩnδΓ
−1
nδ

)
,

where Γnδ = −E
[

∂
∂δ′ ψ̃

∗
SLE(δ0)

]
and Ωnδ = Var[

√
nψ̃∗SLE(δ0)].
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Inferences on δ require consistent estimators of Γnλ and Ωnδ.

The negative Hessian, − ∂
∂δ′ ψ̃

∗
SLE(δ), can easily be derived, which

provides a consistent estimator of Γnλ.

It is easy to see that diag[Mn(ρ)F̄ ◦n (δ)] = 0 and diag[Mn(ρ)Ḡ◦
n(ρ)] = 0.

These greatly facilitate the estimation of Ωnδ, as it involves only θ0 and
Hn asymptotically, not the 3rd and 4th moments of the errors.

The above idea is made clear by the following asymptotic representation:

√
nψ̃∗n =


1√
nσ2

0

(
ε′nCnεn + c′nεn

)
+ op(1),

1√
nσ2

0

(
ε′nDnεn + d ′nεn

)
+ op(1),

(6.26)

where Cn = MnF̄ ◦n and cn = MnF̄ ◦n Xnβ0, and Dn and dn are defined
similarly with F̄ ◦n being replaced by Ḡ◦

n .

With (6.26), a first-order approximation to Ωnδ is derived giving a plug-in
estimator of Ωnδ, or an asymptotic M.D. representation for

√
nψ̃∗n is given

leading to an OPMD estimator.
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With the asymptotic distribution of δ̂∗n , one can easily derive the asymptotic
distribution for β̂∗n .

Corollary 6.2: Under the assumptions of Theorem 6.4, we have, as
n →∞, β̂∗n

p−→ β0 and σ̂∗2
n

p−→ σ2
0 , and further,

√
n(β̂∗n − β0)

D−→ N
(
0, limn→∞(X′nXn)

−1X′nAnXnX′nXn)
−1
)
,

where An = nσ2
0Hn + Ωnδ,11ηnη

′
n + 2

√
nHn(cn,dn)Γ

−1
nδ (ηn, 0n)

′,
Ωnδ,11 is the top-left corner of Ωnδ, and ηn = BnFnXnβ0.

With the methods of estimation for Ωnδ and Γnδ discussed around (6.26),
estimating Hn by Ĥn = diag(ε̂∗2

n ), where ε̂∗n = εn(β̂
∗
n , δ̂

∗
n) are the estimate

residuals, inference about β are made.
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6.5. GMM-Type Estimation of SLR Models under unknown CH

GMM-type methods have been proposed for the estimation of spatial
linear regression models under homoskedasticity or heteroskedasticity.

Kelejian & Prucha (1999) proposed a generalized moment (GM)
estimator for homoskedastic SE model.

Lee (2007a) proposed GMM methods for homoskedastic SL model.

Lee (2007b) proposed modified GMM estimator for homoskedastic SL
model, which reduces the joint maximization to the maximization w.r.t.
SL parameter only.

Lee & Liu (2010) extended the GMM method of Lee (2007a) to
higher-order SLR models.

Lin & Lee (2010) proposed a GMM method for estimating the SL
model with unknown heteroskedasticity.

Kelejian & Prucha (2010) proposed a three-step estimator for the SLE
model with unknown heteroskedasticity.
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6.5.1. GMM estimation of SL model under unknown CH.

Recall: the SL model Yn = λ0WnYn + Xnβ0 + εn in (6.2), its reduced form
Yn = A−1

n Xnβ0 + A−1
n εn, An(λ) = (In − λWn), and Fn(λ) = WnA−1

n (λ).

If ‖λWn‖ < 1 where ‖ · ‖ is a matrix norm, we have

(In − λWn)
−1 = In + λWn + λ2W 2

n + · · · ,

from which the endogenous spatial lag term WnYn can be written as

WnYn = WnXnβ0 + λ0W 2
n Xnβ0 + λ2

0W 3
n Xnβ0 + · · ·+ Fnεn. (6.27)

The n × k∗ matrix Qn, constructed from Xn, WnXn, W 2
n Xn, etc., forms

the IV’s for the deterministic part of WnYn: E(WnYn|Xn).
Clearly, Qn is correlated with WnYn but uncorrelated with εn;

To increase efficiency of estimation, additional IV’s for the stochastic
part of WnYn: Fnεn, are needed. A valid candidate would be Pnεn

IF Corr(Pnεn,Fnεn) 6= 0 but Corr(Pnεn, εn) = 0!
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The condition Corr(Pnεn, εn) = 0 is true when εn ∼ (0, σ2
0 In) and tr(Pn) = 0.

This form the base of GMM estimation of Lee (2007a).

When εn ∼ (0, σ2
0Hn) and Hn 6= In, the condition is true when diag(Pn) = 0.

This forms the base for CH-robust GMM estimation of Lin and Lee (2010).

Assume (i) the elements of Qn are uniformly bounded, and (ii) the
matrices Pjn, j = 1, . . . ,m, are such that diag(Pjn) = 0, and are uniformly
bounded in both row and column sum norms.

The set of moment functions for GMM estimation of ϑ = (β′, σ2)′ is

gn(ϑ) =
(
Qn, P1nεn(ϑ), . . . ,Pmnεn(ϑ)

)′
εn(ϑ)

=
(
ε′n(ϑ)Qn, ε

′
n(ϑ)P1nεn(ϑ), . . . , ε′n(ϑ)Pmnεn(ϑ)

)′
, (6.28)

which is CH-robust as E[gn(ϑ0)] = 0 under unknown heteroskedasticity.

The matrices Pjn can be Wn, W 2
n − diag(W 2

n ), Fn − diag(Fn), etc.
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The CH-robust GMM estimator of ϑ0 minimizes g′n(ϑ)Ωngn(ϑ), i.e.,

ϑ̃n = argmin g′n(ϑ)Ωngn(ϑ),

for a chosen GMM weight matrix Ωn or its feasible version.

Under regularity conditions (Lin and Lee, 2010), ϑ̃n is asymptotically
normal with mean zero and asymptotic variance (AVar):

AVar(ϑ̃n) = (Σ′nΩnΣn)
−1(Σ′nΩnΓnΩnΣn)(Σ

′
nΩnΣn)

−1,

where Σn = −E[ ∂
∂ϑ′ gn(ϑ0)] and Γn = Var[gn(ϑ0)], with

Σn =


Q′

nXn Q′
nFnXnβ0

0 tr(HnPs
1nFn)

...
...

0 tr(HnPs
mnFn)

 , and (6.29)
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Γn =



Q′
nHnQn 0 0 . . .

0 tr[HnP1n(HnP1n)
s] tr[HnP1n(HnP2n)

s] . . .

0 tr[HnP2n(HnP1n)
s] tr[HnP2n(HnP2n)

s] . . .
...

...
...

. . .
0 tr[HnPmn(HnP1n)

s] tr[HnPmn(HnP2n)
s] . . .

 , (6.30)

where Ps
kn = P ′kn + Pkn, k = 1, · · · ,m, and Hn = σ2

0Hn.

In practical applications, Σn and Γn are estimated by replacing ϑ0 by
ϑ̂n and Hn by Ĥn = diag(ε̂2n1, . . . , ε̂

2
nn) and {ε̂ni} are the residuals of the

model with ϑ0 being estimated by ϑ̂n.

When Qn and Pjn contain unknown parameters, e.g.,
Qn = (Xn, FnXnβ0) and Pjn = Fn − diag(Fn), their consistently
estimated versions are used.

“Optimal” RGMM uses Γ−1
n as the weighting matrix. However,

with unknown CH, the best choices of Qn and Pjn are unavailable.
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6.5.2. Three-step estimation of SLE model under unknown CH

Kelejian & Prucha (2010) proposed a three-step estimation of the SLE
model with unknown heteroskedasticity. First, write the model as

Yn = Znϑ+ un (6.31)

un = ρW2nun + εn (6.32)

where Zn = (Xn,W1nYn), and ϑ = (β′, λ)′. Assume εn ∼ (0,Hn).

The three-step estimation is summarized as follows.
1 Run a 2SLS on Model (6.31) using instruments Qn to give ϑ̃2SLS.
2 Compute the 2SLS residuals ũ2SLS = Yn − Znϑ̃2SLS. Using ũ2SLS for un

in Model (6.32), perform a GM estimation of ρ to give ρ̃GM, as
described in Kelejian & Prucha (2010, Sec. 3.1).

3 Transform (6.31) as Bn(ρ)Yn = Bn(ρ)Znϑ+ εn. Run another 2SLS on
this transformed model after replacing ρ by ρ̃GM.
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6.5.3. Monte Carlo Results

Liu & Yang (2015) conduct Monte Carlo experiments to compare the finite
sample performance of available estimators of SL model. They conclude:

(i) MQMLE of λ performs well in all cases considered, and it generally
outperforms all other estimators in terms of bias and rmse. Further, in cases
where QMLE is consistent, MQMLE can be significantly less biased than
QMLE, and is as efficient as QMLE.

(ii) RGMME and ORGMME of λ perform reasonably well when β = (3, 1, 1)′, but
deteriorates significantly when β = (.3, .1, .1)′ and in this case GMME and
2SLSE can be very erratic. In contrast, MQMLE is much less affected by the
magnitude of β, and is less biased and more efficient than RGMME and
ORGMME more significantly when β = (.3, .1, .1)′.

(iii) Root estimator (Jin & Lee, 2012) of λ performs equally well as MQMLE when
|λ| is not big and n is not small, but otherwise tends to give imaginary roots.

(iv) The GMM-type estimators can perform quite differently when the errors are
normal as opposed to non-normal errors, especially when β = (.3, .1, .1)′. It
is interesting to note that RGMME often outperforms the ORGMME.
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(v) The OPG-based estimate of the robust standard errors of MQMLE of λ

performs well in general with their values very close to their Monte Carlo
counter parts.

(vi) Finally, the relative performance of various estimators of β is much less
contrasting than that of various estimators of λ, although it can be seen that
MQMLE of β is slightly more efficient RGMME and ORGMME.

Liu & Yang (2015) also compare the proposed MQMLE with the three-step
estimator of Kelejian and Pruch (2010), and conclude:

the modified QMLE has an excellent finite sample performance, and

it outperforms the three-step estimator of Kelejian and Prucha (2010) from a
combined consideration in terms of bias, consistency and efficiency.

Some results from Liu & Yang (2015) are reproduced in Table 6.1 (SL
model) and Table 6.2 (SLE model) for illustration.
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Table 6.1: Empirical Mean(rmse)[sd]{ŝd} of Estimators of λ for SL Model
Case I of Inconsistent QMLE: Circular Neighbours (REG-1)

λ0 n QMLE MQMLE RGMM ORGMM
DGP 2: β0 = (.3, .1, .1)′

.50 100 .416(.147)[.121] .482(.123)[.121]{.119} .475(.138)[.136] .592(.342)[.329]
250 .438(.101)[.080] .490(.081)[.080]{.079} .487(.090)[.089] .528(.157)[.154]
500 .448(.074)[.053] .496(.053)[.053]{.052} .494(.054)[.053] .511(.068)[.067]

1000 .452(.061)[.038] .499(.038)[.038]{.037} .498(.038)[.038] .508(.047)[.047]
.25 100 .184(.152)[.137] .236(.154)[.154]{.157} .224(.165)[.163] .304(.305)[.301]

250 .203(.100)[.088] .242(.097)[.097]{.091} .236(.099)[.098] .271(.149)[.147]
500 .211(.073)[.062] .246(.067)[.067]{.066} .243(.068)[.068] .264(.109)[.109]

1000 .217(.055)[.044] .250(.048)[.048]{.047} .249(.048)[.048] .258(.058)[.058]
.00 100 -.040(.144)[.139] -.021(.171)[.169]{.164} -.039(.180)[.176] .014(.262)[.262]

250 -.016(.091)[.089] -.010(.107)[.107]{.104} -.016(.109)[.108] .008(.134)[.134]
500 -.007(.063)[.063] -.003(.075)[.075]{.074} -.006(.075)[.075] .008(.090)[.090]

1000 -.003(.046)[.046] -.001(.054)[.054]{.053} -.003(.054)[.054] .006(.066)[.066]
-.25 100 -.232(.133)[.131] -.259(.169)[.169]{.159} -.281(.180)[.177] -.254(.266)[.266]

250 -.216(.090)[.083] -.254(.106)[.106]{.107} -.262(.108)[.107] -.249(.138)[.138]
500 -.210(.073)[.061] -.251(.077)[.077]{.077} -.255(.077)[.077] -.246(.088)[.088]

1000 -.207(.063)[.046] -.249(.057)[.057]{.055} -.251(.057)[.057] -.247(.067)[.067]
-.50 100 -.424(.148)[.127] -.503(.163)[.163]{.160} -.535(.191)[.187] -.549(.246)[.241]

250 -.410(.123)[.084] -.499(.105)[.105]{.099} -.507(.106)[.105] -.513(.151)[.151]
500 -.409(.108)[.058] -.500(.071)[.071]{.072} -.504(.071)[.071] -.507(.086)[.086]

1000 -.409(.100)[.041] -.503(.050)[.050]{.051} -.506(.051)[.050] -.509(.063)[.062]
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Table 6.1: Cont’d
λ0 n QMLE MQMLE RGMM ORGMM

DGP 3: β0 = (.3, .1, .1)′

.50 100 .416(.147)[.120] .480(.118)[.116]{.099} .473(.130)[.128] .652(.453)[.426]
250 .439(.096)[.074] .490(.071)[.070]{.065} .486(.073)[.071] .572(.247)[.236]
500 .449(.074)[.054] .497(.050)[.050]{.048} .495(.051)[.051] .547(.189)[.184]

1000 .453(.060)[.037] .498(.034)[.034]{.035} .497(.035)[.034] .523(.104)[.101]
.25 100 .174(.153)[.133] .224(.147)[.144]{.137} .212(.156)[.152] .335(.387)[.378]

250 .210(.089)[.080] .249(.087)[.087]{.083} .243(.087)[.087] .310(.245)[.237]
500 .211(.072)[.061] .244(.065)[.065]{.061} .242(.066)[.065] .283(.198)[.195]

1000 .214(.057)[.044] .247(.046)[.046]{.044} .246(.047)[.046] .266(.116)[.115]
.00 100 -.027(.135)[.133] -.008(.161)[.160]{.153} -.026(.172)[.170] .077(.422)[.414]

250 -.014(.087)[.086] -.006(.103)[.103]{.099} -.013(.105)[.104] .052(.263)[.258]
500 -.008(.059)[.058] -.004(.070)[.070]{.069} -.008(.071)[.070] .026(.151)[.149]

1000 -.003(.042)[.042] -.001(.050)[.050]{.050} -.003(.050)[.050] .025(.116)[.114]
-.25 100 -.234(.131)[.130] -.262(.172)[.172]{.179} -.288(.184)[.180] -.238(.295)[.295]

250 -.218(.090)[.084] -.254(.105)[.105]{.099} -.262(.107)[.106] -.223(.239)[.238]
500 -.213(.073)[.063] -.252(.076)[.076]{.071} -.256(.077)[.076] -.233(.161)[.160]

1000 -.208(.062)[.046] -.250(.055)[.055]{.053} -.252(.055)[.055] -.238(.128)[.127]
-.50 100 -.418(.151)[.127] -.495(.158)[.158]{.151} -.526(.178)[.176] -.544(.304)[.301]

250 -.411(.126)[.089] -.503(.105)[.105]{.099} -.511(.105)[.104] -.508(.199)[.198]
500 -.408(.113)[.066] -.500(.073)[.073]{.069} -.504(.072)[.072] -.501(.156)[.156]

1000 -.403(.109)[.049] -.496(.051)[.051]{.049} -.498(.051)[.051] -.502(.129)[.129]
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Table 6.2: Empirical Mean(rmse)[sd] of Estimators of λ and ρ for SARAR(1,1) Model
Case I of Inconsistent QMLEs: Circular Neighbours (REG-1)

Par QMLE-λ MQMLE-λ KP-λ QMLE-ρ MQMLE-ρ KP-ρ

DGP 1: β0 = (3, 1, 1)′

1-1 .470(.141)[.138] .472(.197)[.195] .578(.219)[.204] .409(.195)[.172] .446(.237)[.231] .335(.341)[.299]
.484(.080)[.078] .482(.118)[.117] .528(.109)[.105] .445(.116)[.102] .488(.140)[.139] .479(.180)[.179]
.487(.065)[.064] .489(.097)[.097] .515(.093)[.092] .454(.088)[.075] .491(.110)[.109] .512(.156)[.156]
.490(.043)[.042] .495(.060)[.059] .505(.057)[.057] .458(.066)[.051] .497(.070)[.070] .533(.103)[.097]

1-2 .372(.173)[.116] .418(.233)[.218] .494(.143)[.143] -.307(.249)[.158] -.505(.252)[.239] -.507(.244)[.244]
.411(.109)[.063] .488(.095)[.094] .501(.072)[.072] -.324(.202)[.100] -.502(.153)[.153] -.492(.150)[.150]
.400(.112)[.050] .498(.071)[.071] .498(.060)[.060] -.305(.208)[.072] -.504(.126)[.125] -.476(.121)[.119]
.421(.084)[.030] .502(.047)[.047] .499(.035)[.035] -.321(.186)[.051] -.506(.109)[.108] -.470(.083)[.078]

2-1 .280(.144)[.141] .250(.200)[.200] .333(.239)[.224] .374(.208)[.165] .441(.225)[.217] .358(.307)[.272]
.292(.095)[.086] .253(.128)[.127] .297(.133)[.124] .399(.140)[.097] .470(.135)[.131] .464(.176)[.172]
.293(.080)[.067] .252(.106)[.106] .276(.105)[.101] .408(.119)[.075] .491(.109)[.107] .499(.146)[.146]
.287(.057)[.043] .250(.064)[.064] .259(.064)[.064] .421(.093)[.049] .494(.065)[.065] .524(.092)[.089]

2-2 .113(.189)[.130] .233(.188)[.163] .235(.186)[.186] -.330(.231)[.156] -.582(.269)[.249] -.507(.259)[.259]
.156(.120)[.074] .239(.131)[.131] .248(.092)[.092] -.337(.188)[.095] -.503(.209)[.209] -.484(.151)[.150]
.140(.125)[.059] .248(.099)[.099] .247(.079)[.079] -.319(.193)[.069] -.510(.115)[.114] -.484(.117)[.116]
.164(.093)[.036] .250(.052)[.052] .250(.045)[.045] -.332(.175)[.047] -.501(.102)[.101] -.475(.080)[.076]

Note: (i) Par = i-j , where ‘i = 1, 2, 3, 4, 5’ represents ‘λ = .5, .25’; ‘j = 1, 2’ represents ‘ρ = .5,−.5’.
(ii) Under each Par setting, n = 100, 250, 500, 1000, corresponding to the four rows.
(iii) KP denotes Kelejian and Prucha’s (2010) three-step estimator.
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6.6. CH-Robust LM-Type Tests for Spatial Effects

As argued in Lecture 3, for testing the existence of spatial effects in a
linear regression model, the LM test is preferred as it requires only the
estimation of null model, in particular when it is an OLS regression.

However, the regular LM tests for spatial effects may perform poorly in
finite samples, and may not be robust against nonnormality.

A simple way to improve the regular LM tests is standardization (see
Baltagi and Yang, 2013a, and the references therein).

Furthermore, LM or SLM tests may not be robust against unknown
CH. An outer-product-of-martingale-difference (OPMD) version of the
SLM test can be obtained through a martingale differences (M.D.)
representation, making it robust against unknown heteroskedasticity.

The latter property is extremely useful in the context of spatial models
where unknown heteroskedasticity may be a standard feature (see
Baltagi and Yang 2013b, and the references therein).
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Heteroskedasticity and nonnormality robust LM tests

Consider the three tests associated with three models:

HSL
0 : λ = 0, in the SL model;

HSE
0 : ρ = 0, in the SE model;

HSLE
0 : λ = ρ = 0, in the SLE model.

Various tests for these three hypotheses and others have been presented
in Lecture 3, and extensive discussions are given therein. However, the
studies in Lecture 3 are limited to the case of homoskedasticity.

In this section, we introduce LM-type tests that are robust against both
unknown heteroskedasticity and nonnormality.
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The corresponding LM tests, due to by Anselin (1988a,b) and Burridge
(1980), which are presented in Lecture 3 separately for each model, are
summarized below using unified notation:

LMFI
SL =

ε̃′nW1nYn

σ̃2
n (D̃n + T1n)

1
2
, (6.33)

LMFI
SE =

ε̃′nW2n ε̃n

σ̃2
n T

1
2

2n

, (6.34)

LMFI
SLE =

1
σ̃4

n

(
ε̃′nW1nYn

ε̃′nW2n ε̃n

)′(
T1n + D̃n T3n

T3n T2n

)−1(
ε̃′nW1nYn

ε̃′nW2n ε̃n

)
, (6.35)

ε̃n are the OLS residuals from regressing Yn on Xn,

β̃n and σ̃2
n are the OLS estimators of β and σ2, respectively,

Trn = tr[(Wrn + W ′
rn)Wrn], r = 1,2,

T3n = tr[(W2n + W ′
2n)W1n],

D̃n = σ̃−2
n (WnXnβ̃n)

′MnWnXnβ̃n, Mn = In − Xn(X ′
nXn)

−1X ′
n.
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Born and Breitung (2011) proposed OPMD variants of the above LM tests:

LMMD
SL =

ε̃′nW1nYn

(ε̃2 ′
n ξ̃2

1n)
1
2
, (6.36)

LMMD
SE =

ε̃′nW2n ε̃n

(ε̃2 ′
n ξ̃2

2n)
1
2
, and (6.37)

LMMD
SLE =

 
ε̃′nW1nYn,

ε̃′nW2n ε̃n

!′ 
ε̃2 ′

n ξ̃2
1n ε̃2 ′

n (ξ̃1n � ξ̃2n)

∼ ε̃2 ′
n ξ̃2

2n

!−1 
ε̃′nW1nYn

ε̃′nW2n ε̃n

!
, (6.38)

where � denotes Hadamard product, square of a vector, e.g., ε̃2n = ε̃n � ε̃n,

ξ̃1n = (W u′
1n + W l

1n)ε̃n + MnWnXnβ̃n, (6.39)

ξ̃2n = (W u′
2n + W l

2n)ε̃n, (6.40)

with W u
rn and W l

rn: the upper and lower triangular matrices of Wrn.

The three LMMD statistics are robust against heteroskedasticity and
non-normality, due to fact that the diagonal elements of Wrn are zero
and the use of OPMD variance estimates.

The three LMFI statistics are robust only against nonnormality.
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The OPMD variants of the LM tests considered by Born and Breitung
(2011) (as well as the original LM tests) do not take into account the
estimation of β and σ2, and hence may suffer from the problems of size
distortion due mainly to the lack of centering and rescaling.

Note that the numerators of the two sets of tests above are of the forms:

ε̃′nW1nYn = ε′nMnW1nεn + ε′nMnηn ≡ ε′nA1nεn + ε′nMnηn,

ε̃′nW2n ε̃n = ε′nMnW2nMnεn ≡ ε′nA2nεn.

When the errors are heteroskedastic, i.e., Var(εn,i) = σ2
i , i = 1, . . . ,n,

E(ε̃′nW1nYn) =
∑n

i=1 σ
2
i a1n,i 6= 0 and E(ε̃′nW2n ε̃n) =

∑n
i=1 σ

2
i a2n,i 6= 0,

where {arn,i} are the diagonal elements of Arn, r = 1,2.

While these non-zero means are asymptotically negligible, they may have

significant effect on the finite sample performance of these test statistics — finite

sample null distributions differ from limiting distributions, i.e., N(0, 1) or χ2
2.
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Standardization and OPMD estimate of variance may help (i) improving
the finite sample performance of the LM tests, and (ii) making the tests
robust against unknown heteroskedasticity and nonnormality.

To center the key quantities so that they have zero mean under CH, write

ε̃′nW1nYn = Y ′
nMnW1nYn ≡ Y ′

nMnA1nYn, (6.41)

ε̃′nW2n ε̃n = Y ′
nMnW2nMnYn ≡ Y ′

nMnA2nYn, (6.42)

where A1n = W1n and A2n = W2nMn.

Referring to the transitions from (6.23) to (6.24), define

A◦rn = Arn − diag(Mn)
−1diag(MnArn), r = 1,2.

Replacing Arn in Y ′
nMnArnYn by A◦rn, we obtain the centered quantities:

Y ′
nMnA◦rnYn, r = 1,2,

which form the base for constructing standardized LM tests robust to CH.
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To estimate the variances of Y ′
nMnA◦rnYn for constructing the standardized

LM tests, either the plug-in method or the OPMD method can be followed.

The OPMD method is given below.

Note that diag(MnA◦rn) = 0 and E(Y ′
nMnA◦rnYn) = 0 under the null.

Decompose MnA◦rn ≡ A◦rn = A◦u
rn + A◦l

rn. Let

ξ◦1n = (A◦u′
rn + A◦l

rn)εn + crn, r = 1,2,

where crn = MnA◦rnXnβ0, r = 1,2. Therefore,

Y ′
nMnA◦rnYn =

∑n
i=1 εniξrni , r = 1,2.

It is easy to see that {εniξrni} form an M.D. sequence, and hence

Var(Y ′
nMnA◦rnYn) =

∑n
i=1 E(ε2niξ

2
rni), r = 1,2;

and that {εniξ1ni , εniξ2ni} form a vector M.D. sequence, and

Var

(
Y ′

nMnA◦1nYn

Y ′
nMnA◦2nYn

)
=

n∑
i=1

E

(
ε2niξ

2
1ni ε2niξ1niξ2ni

ε2niξ1niξ2ni ε2niξ
2
2ni

)
.
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These lead to the standardized LM tests for testing HSL
0 ,HSE

0 and HSLE
0 ,

robust to both nonnormality and unknown heteroskedasticity:

SLMMDh
SL =

Y ′
nMnA◦1nYn

(ε̃2 ′n ξ̃∗2
1n)

1
2
, (6.43)

SLMMDh
SE =

Y ′
nMnA◦2nYn

(ε̃2 ′n ξ̃∗2
2n)

1
2
, and (6.44)

SLMMDh
SLE = S′n

(
ε̃2 ′n ξ̃◦2

1n ε̃2 ′n (ξ̃◦1n � ξ̃◦2n)

ε̃2 ′n (ξ̃◦1n � ξ̃◦2n) ε̃2 ′n ξ̃◦2
2n

)−1

Sn, (6.45)

where Sn = {Y ′
nMnA◦1nYn; Y ′

nMnA◦2nYn}, and ε̃n and ξ̃◦rn are the OLS
estimates of εn and ξ◦rn, r = 1,2.

These tests are similar to the three SLM tests given in Baltagi & Yang
(2013b); but they further simplify and potentially improve the latter.

Under the assumptions given in Baltagi and Yang (2013b) and H0,
SLMMDh

SL
D−→ N(0,1), SLMMDh

SE
D−→ N(0,1), and SLMMDh

SLE
D−→ χ2

2.

Here ‘MDh’ denotes ‘heteroskedasticity robust M.D.’ form of an SLM test.

Z. L. Yang, SMU ECON747, Term I 2024-25 47 / 56



Monte Carlo results for LM-type tests

Baltagi and Yang (2013b) perform extensive Monte Carlo experiments to
investigate finite sample performance of various LM-type tests. We
replicate here (Table 6.2) some of their results for the case of testing HSLE

0

using two variants of LM tests and the SLM test they proposed.

The results reveal the following:

The SLMMD
SLE test dominates LMFI

SLE and LMMD
SLE, with Monte Carlo

means, sds, and rejection rates being very close to their nominal
values: (2, 2, 10%, 5%, 1%).

The LMFI
SLE test is not robust against unknown CH, which is clearly

shown by the results in Table 6.3.

The LMMD
SLE does not perform well enough even when n is quite large,

although it does seem to be robust against nonnormality and
unknown heteroskedasticity, consistent with what the theory suggests.
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Table 6.3. Mean, sd, and Rejection Frequency: Joint LM Tests for SLE Dependence
W1n=Queen, r = 5; W2n=Group, g = n0.5; XVal-B; Normal Errors

Heteroskedasticity = |X1| Heteroskedasticity = 2|X1|
n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 2.2886 1.4830 .0613 .0180 .0018 2.4416 2.1771 .1081 .0472 .0138

2.6891 1.8687 .1494 .0592 .0051 2.4771 1.8823 .1364 .0517 .0052
2.2328 1.9698 .1201 .0539 .0080 2.2385 1.8381 .1149 .0455 .0037

100 2.3192 2.1102 .1014 .0503 .0116 2.2836 1.8988 .0903 .0378 .0091
2.5021 2.0250 .1450 .0686 .0081 2.5870 2.0651 .1557 .0724 .0091
2.1200 1.8979 .1038 .0478 .0063 2.1832 1.9700 .1117 .0498 .0081

200 2.5567 2.0947 .1286 .0505 .0103 2.8150 2.9793 .1686 .0766 .0185
2.4096 2.0472 .1366 .0683 .0099 2.5063 2.1511 .1528 .0763 .0123
2.2554 2.1731 .1246 .0653 .0140 2.1532 2.0063 .1121 .0540 .0087

500 2.7570 2.8166 .1743 .0934 .0244 2.6424 2.7786 .1593 .0820 .0211
2.3415 2.1658 .1389 .0697 .0130 2.2700 2.1095 .1305 .0636 .0113
2.1228 2.0155 .1130 .0557 .0088 2.1090 2.0027 .1098 .0539 .0089

1000 2.3977 2.3921 .1318 .0676 .0181 2.5871 2.5542 .1605 .0831 .0209
2.2587 2.1948 .1284 .0687 .0137 2.2352 2.1468 .1264 .0657 .0126
2.0670 2.0385 .1059 .0556 .0107 2.0765 2.0116 .1094 .0520 .0102

Three rows under each n: LMFI
SLE, LMMD

SLE and SLMMD
SLE (Baltagi & Yang 2013b).
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Table 6.3, Cont’d, Normal Mixture Errors
Heteroskedasticity = |X1| Heteroskedasticity = 2|X1|

n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 2.1706 1.4789 .0546 .0164 .0018 2.1743 1.8616 .0895 .0394 .0074

2.5894 1.7446 .1265 .0465 .0032 2.3768 1.7502 .1132 .0437 .0023
2.1809 1.8714 .1055 .0479 .0073 2.1529 1.7201 .0939 .0347 .0020

100 2.1496 1.9206 .0894 .0430 .0089 2.1344 1.7725 .0838 .0347 .0056
2.3976 1.8953 .1244 .0555 .0058 2.4772 1.9166 .1339 .0583 .0059
2.1028 1.7966 .0969 .0392 .0049 2.1594 1.8613 .1032 .0430 .0061

200 2.3802 1.9236 .1119 .0439 .0080 2.5839 2.3989 .1525 .0737 .0153
2.3394 1.9379 .1228 .0562 .0071 2.4137 1.9868 .1349 .0622 .0082
2.2335 2.1201 .1207 .0601 .0117 2.1232 1.8890 .1025 .0454 .0064

500 2.6161 2.6828 .1591 .0845 .0209 2.5565 2.4927 .1556 .0791 .0189
2.2481 1.9890 .1179 .0550 .0080 2.2760 2.0051 .1237 .0566 .0097
2.0777 1.9016 .0989 .0467 .0073 2.1270 1.9423 .1064 .0498 .0075

1000 2.3695 2.3712 .1342 .0676 .0158 2.5007 2.5717 .1535 .0831 .0200
2.2267 2.0895 .1216 .0611 .0101 2.1974 2.0589 .1197 .0590 .0098
2.0651 1.9807 .1061 .0500 .0085 2.0582 1.9657 .1044 .0483 .0083

Three rows under each n: LMFI
SLE, LMMD

SLE and SLMMD
SLE (Baltagi & Yang 2013b).
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Table 6.3, Cont’d, Lognormal Errors
Heteroskedasticity = |X1| Heteroskedasticity = 2|X1|

n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 2.1689 1.5147 .0527 .0169 .0017 2.0630 1.8949 .0755 .0330 .0085

2.5160 1.7353 .1234 .0444 .0027 2.3862 1.8016 .1196 .0478 .0028
2.0377 1.7615 .0890 .0343 .0049 2.1161 1.7444 .0926 .0392 .0037

100 2.1353 2.2535 .0821 .0434 .0143 2.1039 1.9902 .0768 .0338 .0086
2.4211 1.9868 .1300 .0642 .0088 2.5107 2.0459 .1426 .0703 .0103
2.1930 1.9544 .1164 .0524 .0083 2.2294 2.0110 .1099 .0545 .0110

200 2.5451 2.5838 .1261 .0561 .0168 2.4693 2.3420 .1321 .0578 .0129
2.5126 2.1653 .1462 .0792 .0143 2.4749 2.1352 .1432 .0683 .0142
2.3739 2.3203 .1383 .0754 .0200 2.2189 2.0168 .1157 .0518 .0102

500 2.5566 2.7368 .1442 .0771 .0241 2.3771 2.5619 .1310 .0631 .0172
2.3736 2.1520 .1340 .0685 .0134 2.3298 2.1134 .1322 .0649 .0122
2.1850 2.0532 .1157 .0558 .0105 2.1413 1.9842 .1070 .0533 .0087

1000 2.2785 2.6453 .1146 .0591 .0167 2.4533 2.8658 .1379 .0706 .0211
2.2545 2.1161 .1254 .0647 .0133 2.3116 2.1562 .1295 .0688 .0133
2.0782 1.9999 .1052 .0534 .0098 2.1387 2.0244 .1103 .0541 .0091

Three rows under each n: LMFI
SLE, LMMD

SLE and SLMMD
SLE (Baltagi & Yang 2013b).
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6.7. Empirical Applications
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