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a b s t r a c t

This paper investigates the asymptotic properties of quasi-maximum likelihood estimators for spatial
dynamic panel data with fixed effects, when both the number of individuals n and the number of time
periods T are large. We consider the case where T is asymptotically large relative to n, the case where
T is asymptotically proportional to n, and the case where n is asymptotically large relative to T . In the
case where T is asymptotically large relative to n, the estimators are

√
nT consistent and asymptotically

normal, with the limit distribution centered around 0. When n is asymptotically proportional to T , the
estimators are

√
nT consistent and asymptotically normal, but the limit distribution is not centered

around 0; and when n is large relative to T , the estimators are T consistent, and have a degenerate limit
distribution. The estimators of the fixed effects are

√
T consistent and asymptotically normal. We also

propose a bias correction for our estimators. We show that when T grows faster than n1/3, the correction
will asymptotically eliminate the bias and yield a centered confidence interval.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Spatial econometrics deals with the spatial interactions of
economic units in cross-sectional and/or panel data. To capture
correlation among cross-sectional units, the spatial autoregressive
(SAR) model by Cliff and Ord (1973) has received the most
attention in economics. It extends autocorrelation in times series
to spatial dimensions, and captures interactions or competition
among spatial units. Early development in estimation and testing
is summarized in Anselin (1988), Cressie (1993), Kelejian and
Robinson (1993), and Anselin and Bera (1998), among others.

Spatial correlation and dynamic settings can be extended
to panel data models (Anselin, 1988; Baltagi et al., 2003).
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Kapoor et al. (2007) provide a rigorous theoretical framework for
analysis of spatial panel methods. The model considered for esti-
mation in Kapoor et al. (2007), is a regression panel model with
SAR and error components disturbances. Baltagi et al. (2007) con-
sider the testing of spatial and serial dependence in an extended
model, where serial correlation on each spatial unit over time, in
addition to spatial dependence across spatial units are allowed
in the disturbances. These panel models do not incorporate time
lagged dependent variables as dynamic structures in the regres-
sion equation. By allowing spatial and dynamic features in a re-
gressionmodel, Anselin (2001) distinguishes spatial dynamicmod-
els into four categories, namely, ‘‘pure space recursive’’ if only a
spatial time lag is included; ‘‘time-space recursive’’ if an individual
time lag and a spatial time lag are included; ‘‘time-space simulta-
neous’’ if an individual time lag and a contemporaneous spatial lag
are specified; and ‘‘time-space dynamic’’ if all forms of dependence
are included.

In this paper, we shall consider the maximum likelihood
(ML) or, more generally, the quasi maximum likelihood (QML)
estimation of the spatial dynamic panel data (SDPD) model in the
general time-space dynamic category. Because the time-space
dynamic category is the general one, our asymptotic analysis and
results are applicable to the other three categories as special
cases. As a panel model, individual effect (error components) is
incorporated in the disturbances. We shall provide a rigorous
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theoretical analysis on the asymptotic properties of the ML
estimator (MLE) and the QML estimator (QMLE). The asymptotics
will be based on both n, the cross sectional units, and T , the time
length, go to infinity, or n being a fixed finite integer, while T goes
to infinity. The case with both n and T going to infinity will be the
main interest.

As our model includes the dynamic panel data model without
spatial dependence as a special case, estimation issues of the
dynamic panel data models in the existing econometric literature
are relevant. When the time dimension T is fixed, we are likely
to encounter the ‘‘incidental parameters’’ problem discussed in
Neyman and Scott (1948). This is because the introduction of fixed
effects increases the number of parameters to be estimated. In a
simple dynamic panel data model with fixed effects, the MLE of
the autoregressive coefficient, which is also known as the within
group estimator, is biased and inconsistentwhen n tends to infinity
but T is fixed (Nickell, 1981; Hsiao, 1986). To avoid the incidental
parameters problem in estimation, alternative estimationmethods
have been introduced. By taking time differences to eliminate the
fixed effects in either the dynamic equation or the construction
of instrumental variables (IV), Anderson and Hsiao (1981) show
that IV methods can provide consistent estimates. Arellano and
Bond (1991) and Arellano and Bover (1995) generalize Anderson
and Hsiao (1981) with many more IV moments, by exploring
all possible time lag values of the dependent variable in each
time period. Blundell and Bond (1998) have considered system
estimators, including moments of both levels and first differences
in Arellano and Bond (1991) and Arellano and Bover (1995). Bun
and Kiviet (2006) derive higher order asymptotic approximation
of the finite sample bias for the system estimator under various
circumstances, as both N and T are small or moderately large.
When T is finite, additional IVs can improve the efficiency of
the estimators, even though finite sample biases remain. When
both n and T go to infinity, the incidental parameters issue in
the MLE becomes less severe as each individual fixed effect can
be consistently estimated. However, Hahn and Kuersteiner (2002)
and Alvarez and Arellano (2003) have found the existence of
asymptotic bias of order O(1/T ) in the MLE of the autoregressive
parameterwhen both n and T tend to infinity at a proportional rate.
In addition to theMLE, Alvarez andArellano (2003) also investigate
the asymptotic properties of the IV estimators in Arellano and
Bond (1991). They have found the presence of asymptotic bias of a
similar order to that of the MLE and the IV estimators, due to the
presence of many moment conditions. The presence of asymptotic
bias is an undesirable feature of these estimates.

Kiviet (1995), Hahn and Kuersteiner (2002), and Bun and
Carree (2005) have constructed bias corrected estimators for
the dynamic panel data model, by analytically modifying the
within estimator. Hahn and Kuersteiner (2002) provide a rigorous
asymptotic theory for thewithin estimator and their bias corrected
estimator, when both n and T go to infinity with a same rate. As
an alternative to the analytical bias correction, Hahn and Newey
(2004) have considered also the Jackknife bias reduction approach.

For the SAR model, Kelejian and Prucha (1998) provide
a theoretical foundation for asymptotic analysis for their IV
estimator. Lee (2004) analyzes the asymptotic properties of the
QMLE. Kapoor et al. (2007) extend their asymptotic analysis of
IV and method of moments estimators to a spatial panel model
with error components, where T is a fixed finite integer. To the
best knowledge of the authors, there is little analytical work
done on estimates of spatial dynamic models, when both n and
T are large, with the exception of Korniotis (2005). The model
considered in Korniotis (2005) is a time-space recursive model
in that only individual time lag and spatial time lag are present,
but not contemporaneous spatial lag. Fixed effects are included
in the model, and this model has an empirical application to US
state consumption growth. As a recursive model, the parameters
including the fixed effects can be estimated by OLS (within
estimator). Korniotis (2005) has also considered a bias adjusted
within estimator, which generalizes that in Hahn and Kuersteiner
(2002). For the dynamic spatial model considered in this paper,
as the contemporaneous spatial lag is presented, the QMLEs of
the parameters are nonlinear. Our asymptotic analysis is more
complex, but our assumptions are more general. The asymptotics
in Hahn and Kuersteiner (2002) is based on the scenario that n
and T diverge at a proportional rate. Our asymptotic analysis can
cover this scenario and also scenarios that n may go to infinity
faster than T , and vice versa. Following the literature on bias
correction, we have also considered a bias-adjusted estimator for
our QMLE and its asymptotic properties. Monte Carlo experiments
are conducted to provide some finite sample properties of the
estimators. This paper is theoretic and does not provide an
empirical application. But it is interesting to note that the empirical
study on interregional tradewith a historical panel data on Chinese
rice price by Keller and Shiue (2007) allows own time and spatial
time lags in addition to a contemporaneous spatial lag in their
spatial model.1

This paper is organized as follows. In Section 2,we introduce the
model, and explain our estimationmethod,which is a concentrated
QML estimation. With the law of large numbers and central limit
theorem for our setting developed in the Appendix, Section 3
establishes the consistency and asymptotic distributions of MLE
and QMLE. We also propose an analytical bias correction for our
estimators. We show that when T grows faster than n1/3, this
correction will eliminate the bias, and yield a centered confidence
interval. Section 4 concludes the paper. Some useful lemmas and
proofs are collected in the Appendix.2

2. The model and concentrated likelihood function

2.1. The model

The model considered in this paper is
Ynt = λ0WnYnt + γ0Yn,t−1 + ρ0WnYn,t−1 + Xntβ0 + cn0 + Vnt ,

t = 1, 2, . . . , T , (1)
where Ynt = (y1t , y2t , . . . , ynt)′ and Vnt = (v1t , v2t , . . . , vnt)

′ are
n × 1 column vectors and vit is i.i.d.. across i and t with zero
mean and variance σ 2

0 , Wn is an n × n spatial weights matrix,
which is predetermined and generates the spatial dependence
between cross sectional units yit , Xnt is an n × kx matrix of
nonstochastic regressors, and cn0 is n × 1 column vector of fixed
effects. Therefore, the total number of parameters in this model
is equal to the number of individuals n plus the dimension of the
common parameters (γ , ρ, β ′, λ, σ 2)′, which is kx + 4.

Define Sn ≡ Sn(λ0) = In − λ0Wn. Then, presuming Sn is
invertible and denoting An = S−1

n (γ0In + ρ0Wn), (1) can be
rewritten as Ynt = AnYn,t−1+S−1

n Xntβ0+S−1
n cn0+S−1

n Vnt . Assuming
that the infinite sums arewell-defined, by continuous substitution,

Ynt =

∞∑
h=0

Ah
nS

−1
n (cn0 + Xn,t−hβ0 + Vn,t−h)

= µn + Xntβ0 + Unt , (2)
where µn ≡

∑
∞

h=0 A
h
nS

−1
n cn0, Xnt ≡

∑
∞

h=0 A
h
nS

−1
n Xn,t−h, and Unt ≡∑

∞

h=0 A
h
nS

−1
n Vn,t−h.

1 However, error components have not been considered in their empirical
models and no theoretic properties of the estimates are investigated in the paper.

2 Due to space limitation, at the request of the editor and referees, some of the
proofs have been condensed and removed. The detailed proofs and intermediate
steps in some derivations can be found in the working paper version of this
paper. The working paper under the same title is available on the web site:
http://economics.sbs.ohio-state.edu/lee/.
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2.2. Concentrated likelihood function

Denote θ = (δ′, λ, σ 2)′ and ζ = (δ′, λ, c′
n)

′ where δ =

(γ , ρ, β ′)′. At the true value, θ0 = (δ′

0, λ0, σ
2
0 )′ and ζ0 =

(δ′

0, λ0, c′

n0)
′ where δ0 = (γ0, ρ0, β

′

0)
′. The likelihood function of

(1) is3

ln Ln,T (θ, cn) = −
nT
2

ln 2π −
nT
2

ln σ 2
+ T ln |Sn(λ)|

−
1

2σ 2

T∑
t=1

V ′

nt(ζ )Vnt(ζ ), (3)

where Vnt(ζ ) = Sn(λ)Ynt −γ Yn,t−1 −ρWnYn,t−1 −Xntβ −cn. Thus,
Vnt = Vnt(ζ0).

The QMLEs θ̂nT and ĉnT are the extreme estimators derived from
the maximization of (3). When the Vnt ’s are normally distributed,
θ̂nT and ĉnT are the MLEs; when the Vnt ’s are not normally
distributed, θ̂nT and ĉnT are QMLEs. As the number of parameters
goes to infinity when n goes to infinity, it is convenient to
concentrate cn out and focus asymptotic analysis on the estimator
of θ0 via the concentrated likelihood function. For the concentrated
likelihood function, the dimension of parameter space does not
change as n and/or T increase.

For notational purposes, we define Ỹnt = Ynt − ȲnT and Ỹn,t−1 =

Yn,t−1 − ȲnT ,−1 for t = 1, 2, . . . , T where ȲnT =
1
T

∑T
t=1 Ynt and

ȲnT ,−1 =
1
T

∑T
t=1 Yn,t−1. Similarly, we define X̃nt = Xnt − X̄nT and

Ṽnt = Vnt − V̄nT .
Denote Znt = (Yn,t−1,WnYn,t−1, Xnt), then from (3), using

the first order condition that ∂ ln Ln,T (θ,cn)
∂cn

=
1

σ 2

∑T
t=1 Vnt(ζ ),

the concentrated estimators of cn0 given θ are ĉnT (θ) =
1
T

∑T
t=1(Sn(λ)Ynt − Zntδ) and the concentrated likelihood is

ln Ln,T (θ) = −
nT
2

ln 2π −
nT
2

ln σ 2
+ T ln |Sn(λ)|

−
1

2σ 2

T∑
t=1

Ṽ ′

nt(ζ )Ṽnt(ζ ), (4)

where Ṽnt(ζ ) = Sn(λ)Ỹnt − Z̃ntδ and Z̃nt = (Yn,t−1 −

ȲnT ,−1,WnYn,t−1 −WnȲnT ,−1, Xnt − X̄nT ). The QMLE θ̂nT maximizes
the concentrated likelihood function (4), and the QMLE of cn0 is
ĉnT (θ̂nT ). From (4), the first and second order derivatives of the
concentrated likelihood function can be derived; see (36) and
Box II in Appendix C. To analyze the asymptotic properties of (36)
and Box II evaluated at true parameters, we use the law of large
numbers and central limit theorem for double arrays developed in
Appendix A (see Lemma 7 through Lemma 13).

3. Quasi maximum likelihood estimators and their asymptotic
properties

For our analysis of the asymptotic properties of estimators, we
need the following assumptions:

Assumption 1. Wn is a constant spatial weights matrix and its
diagonal elements satisfy wn,ii = 0 for i = 1, 2, . . . , n.

Assumption 2. The disturbances {vit}, i = 1, 2, . . . , n and t =

1, 2, . . . , T , are i.i.d. across i and t with zero mean, variance σ 2
0

and E |vit |
4+η < ∞ for some η > 0.

3 As T is large,we can ignore the influence of the initial condition.When T is fixed,
we need to specify the initial condition if MLE is used; and we may also consider
the estimation by the generalized method of moments where lagged dependent
variables can be used as IVs.
Assumption 3. Sn(λ) is invertible for all λ ∈ Λ. Furthermore, Λ is
compact and λ0 is in the interior of Λ.

Assumption 4. The elements of Xnt are nonstochastic and bound-
ed,4 uniformly in n and t . Also, limT→∞

1
nT

∑T
t=1 X̃

′
nt X̃nt exists and

is nonsingular.

Assumption 5. Wn is uniformly bounded in row and column sums
in absolute value (for short, UB).5 Also S−1

n (λ) is UB, uniformly in
λ ∈ Λ.

Assumption 6.
∑

∞

h=1 abs(A
h
n) is UB,

6 where [abs(An)]ij =
∣∣An,ij

∣∣.
Assumption 7. n is a nondecreasing function of T and T goes to
infinity.

Assumption 1 is a standard normalization assumption in spatial
econometrics, and Assumption 2 provides regularity assumptions
for vit . Invertibility of Sn(λ) in Assumption 3 guarantees that (2)
is valid. Also, compactness is a condition for theoretical analysis.
In empirical applications, where Wn is row normalized, one just
searches over a parameter space on (−1, 1).7 When exogenous
variables Xnt are included in the model, it is convenient to
assume that the exogenous regressors are uniformly bounded,
as in Assumption 4. Assumption 5 is originated by Kelejian and
Prucha (1998, 2001) and is also used in Lee (2004, 2007). In many
empirical applications, each of the rows of Wn sums to 1, which
ensures that all the weights are between 0 and 1. That Wn and
S−1
n (λ) are UB is a condition that limits the spatial correlation
to a manageable degree. Assumption 6 combines the absolute
summability condition and the UB condition of the powers of An,
which will play an important role to derive asymptotic properties
of QMLEs. This assumption is essential for the paper, because it
limits the dependence between time series and between cross
sectional units. In order to justify the absolute summability of An
in (2) and Assumption 6, a sufficient condition is ‖An‖ < 1 where
the matrix norm is the row sum norm or the column sum norm
(see Horn and Johnson (1985, Corollary 5.6.16). When ‖An‖ < 1,∑

∞

h=0 A
h
n exists and can be defined as (In − An)

−1. If Wn is row-
normalized, it seems natural to consider the parameters of spatial
and temporal effects of λ, γ and ρ satisfying the constraint |λ| +

|γ | + |ρ| < 1. This constraint has implications on Assumptions 3
and 6. First of all, it implies that |λ| < 1, and, hence Sn(λ) is
invertiable. This is so, when Wn is row-normalized, it is usually
row-normalized from a symmetric matrix (Ord, 1975). In this
situation, Wn is diagonalizable and all the eigenvalues ωni, i =

1, . . . , n, are real and |ωni| ≤ 1. The eigenvalues of Sn(λ) are
1 − λωni, which are all different from 0 for all λ ∈ (−1, 1). This
implies Assumption 3 that Sn(λ) is invertiable. The constraint |γ0|+

|ρ0| + |λ0| < 1 implies also that
∑

∞

h=1 A
h
n is well-defined. As Wn

is diagonalizable, Wn = RnD∗
nR

−1
n where D∗

n = diag{ωn1, . . . , ωnn}

and the columns of Rn consist of all the normalized eigenvectors of
Wn. Because An = S−1

n (γ0In +ρ0Wn), it follows that An = RnDnR−1
n

4 If Xnt is allowed to be stochastic and unbounded, appropriate moment
conditions can be imposed instead.

5 We say a (sequence of n × n) matrix Pn is uniformly bounded in row and
column sums if supn≥1 ‖Pn‖∞ < ∞ and supn≥1 ‖Pn‖1 < ∞, where ‖Pn‖∞ ≡

sup1≤i,j≤n
∑n

j=1

∣∣pij,n∣∣ is the row sum norm and ‖Pn‖1 = sup1≤i,j≤n
∑n

i=1

∣∣pij,n ∣∣ is
the column sum norm.

6 This assumption has effectively ruled out some cases, and, hence, imposed
limited dependence across units or time series. For example, if λ0n = 1−1/n under
n → ∞, it is a near unit root case for a cross sectional spatial autoregressive model
and S−1

n will not be UB. For spatial dynamic panel model, if λ0 + ρ0 + γ0 = 1, Ynt
might have deterministic trends as well as a nonstationary stochastic component
(see Yu et al. (2007) for detail).

7 For the case Wn is not row normalized but its eigenvalues are real, Λ can be a
closed interval contained in (−1/

∣∣ωn,min
∣∣ , 1/ωn,max) where ωn,min and ωn,max are

the minimum and maximum eigenvalues ofWn (Anselin, 1988).
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where Dn = diag{ γ0+ρ0ωn1
1−λ0ωn1

, . . . ,
γ0+ρ0ωnn
1−λ0ωnn

} is the eigenvalue matrix
of An. When |λ0| + |γ0| + |ρ0| < 1, it is easy to show
that |

γ0+ρ0ωni
1−λ0ωni

| < 1 for all i = 1, . . . , n. Thus,
∑

∞

h=0 A
h
n =∑

∞

h=0 RnDh
nR

−1
n = Rn(In − Dn)

−1R−1
n is a well defined matrix.

Assumption 6 imposes stronger convergence of this series in term
of absolute values and assumes UB as n → ∞. Assumption 7
allows two cases: (i) n → ∞ as T → ∞; (ii) n is fixed as T → ∞.
Because (ii) is similar to a vector autoregressive (VAR) model with
restricted coefficients, our main interest is in (i); but our analysis
is applicable to both cases. If Assumption 7 holds, then we say that
n, T → ∞ simultaneously.

3.1. Consistency of the concentrated estimator θ̂nT

For the concentrated log likelihood function (4) divided by
the sample size nT , the corresponding expected value function is
Qn,T (θ) = E maxcn

1
nT ln Ln,T (θ, cn), which is

Qn,T (θ) =
1
nT

E ln Ln,T (θ) = −
1
2
ln 2π −

1
2
ln σ 2

+
1
n
ln |Sn(λ)|

−
1

2σ 2
E

1
nT

T∑
t=1

Ṽ ′

nt(ζ )Ṽnt(ζ ). (5)

To show the consistency of θ̂nT , we need the following uniform
convergence result.

Claim 1. Let Θ be any compact parameter space. Then under
Assumptions 1–7, 1

nT ln Ln,T (θ) − Qn,T (θ)
p

→ 0 uniformly in θ ∈ Θ
and Qn,T (θ) is uniformly equicontinuous for θ ∈ Θ .

For local identification, a sufficient condition (but not nec-
essary) is that the information matrix Σθ0,nT , where Σθ0,nT =

−E
(

1
nT

∂2 ln Ln,T (θ0)

∂θ∂θ ′

)
, is nonsingular and −E

(
1
nT

∂2 ln Ln,T (θ)

∂θ∂θ ′

)
has

full rank for any θ in some neighborhood N(θ0) of θ0 (see
Rothenberg (1971)). Denote Gn ≡ WnS−1

n and HnT =

1
nT

∑T
t=1(Z̃nt ,GnZ̃ntδ0)′(Z̃nt ,GnZ̃ntδ0) which is (kx + 3) × (kx + 3),

Σθ0,nT is derived in Appendix C as

Σθ0,nT =
1
σ 2
0

(
EHnT ∗

01×(kx+3) 0

)

+


0(kx+2)×(kx+2) ∗ ∗

01×(kx+2)
1
n

[
tr(G′

nGn) + tr(G2
n)
]

∗

01×(kx+2)
1

σ 2
0 n

tr(Gn)
1

2σ 4
0

+ O
(
1
T

)
, (6)

which is nonsingular for large enough T if EHnT is nonsingular in
the limit or 1

n (trG
′
nGn+ trG2

n−
2(trGn)2

n ) is nonzero (see Appendix D
for proof). Also, its rank does not change in a small neighborhood
of θ0 (see (41))). When limT→∞ EHnT is nonsingular, the global
identification of the parameters is shown in Theorem 1. When
limT→∞ EHnT is singular, global identification can still be obtained
from Theorem 2 via a condition on the variance structure of the
model. Denote σ 2

n (λ) =
σ 2
0
n tr(S ′−1

n S ′
n(λ)Sn(λ)S−1

n ).

Theorem 1. Under Assumptions 1–7, if limT→∞ EHnT is nonsingu-
lar, θ0 is globally identified and θ̂nT

p
→ θ0.

Theorem 2. Under Assumptions 1–7, θ0 is globally identified and
θ̂nT

p
→ θ0 if

limn→∞

( 1
n ln

∣∣σ 2
0 S

−1′
n S−1

n

∣∣− 1
n ln

∣∣σ 2
n (λ)S−1

n (λ)′S−1
n (λ)

∣∣) 6= 0 for
λ 6= λ0.8

8When n is finite, the condition is 1
n ln |σ 2

0 S
′−1
n S−1

n | −

1
n ln |σ 2

n (λ)S ′−1
n (λ)S−1

n (λ)| 6= 0 for λ 6= λ0 .
3.2. Distribution of QMLEs

The asymptotic distribution of the QMLE θ̂nT can be derived

from the Taylor expansion of ∂ ln Ln,T (θ̂nT )

∂θ
around θ0. At θ0, from (35)

and (36), the first order derivative of the concentrated likelihood
function at θ0 is in (37) of Appendix C, which involves both linear
and quadratic functions of Ṽnt . Also, from (2),

Z̃nt = Z̃∗

nt − (ŪnT ,−1, WnŪnT ,−1, 0n×kx), (7)

where Z̃∗
nt = (( ˜̃Xn,t−1 + Un,t−1), (Wn

˜̃Xn,t−1 + WnUn,t−1), X̃nt)

with ˜̃Xn,t−1 = Xn,t−1 − X̄nT ,−1. Hence, Z̃nt has two compo-
nents: one is Z̃∗

nt , which is uncorrelated with Vnt ; the other is
−(ŪnT ,−1, WnŪnT ,−1, 0n×kx), which is correlated with Vnt when
t ≤ T − 1.

Hence, from the first order condition in (37) and the decompo-

sition of Z̃nt in (7), 1
√
nT

∂ ln Ln,T (θ0)

∂θ
=

1
√
nT

∂ ln L∗n,T (θ0)

∂θ
− ∆nT where

1
√
nT

∂ ln L∗

n,T (θ0)

∂θ
=



1
σ 2
0

1
√
nT

T∑
t=1

Z̃∗′

ntVnt

1
σ 2
0

1
√
nT

T∑
t=1

(GnZ̃∗

ntδ0)
′Vnt +

1
σ 2
0

1
√
nT

T∑
t=1

(V ′

ntG
′

nVnt − σ 2
0 trGn)

1
2σ 4

0

1
√
nT

T∑
t=1

(V ′

ntVnt − nσ 2
0 )


, (8)

and

∆nT

=



1
σ 2
0

√
T
n

(ŪnT ,−1, WnŪnT ,−1, 0n×kx )
′V̄nT

1
σ 2
0

√
T
n

(Gn(ŪnT ,−1,WnŪnT ,−1, 0n×kx )δ0)
′V̄nT +

1
σ 2
0

√
T
n
V̄ ′

nTG
′

nV̄nT

1
2σ 4

0

√
T
n
V̄ ′

nT V̄nT


.

(9)

This decomposition is useful, as the second component has isolated
the source of possible asymptotic bias of 1

√
nT

∂ ln Ln,T (θ0)

∂θ
, due to the

estimation of the fixed effects. As is derived in Appendix C, the

variance matrix of 1
√
nT

∂ ln L∗n,T (θ0)

∂θ
is equal to

E
(

1
√
nT

∂ ln L∗

n,T (θ0)

∂θ
·

1
√
nT

∂ ln L∗

n,T (θ0)

∂θ ′

)
= Σθ0,nT + Ωθ0,nT + O

(
1
T

)
, (10)

and Ωθ0,nT =
µ4−3σ 4

0
σ 4
0


0(kx+2)×(kx+2) ∗ ∗

01×(kx+2)
1
n

∑n
i=1 G2

n,ii ∗

01×(kx+2)
1

2σ 2
0 n

trGn
1

4σ 4
0

 is a

symmetric matrix, with µ4 being the fourth moment of vit , where
Gn,ii is the (i, i) entry of Gn. When Vnt are normally distributed,
Ωθ0,nT = 0 becauseµ4−3σ 4

0 = 0 for a normal distribution. Denote
Σθ0 = limT→∞ Σθ0,nT and Ωθ0 = limT→∞ Ωθ0,nT , then,

lim
T→∞

E
(

1
√
nT

∂ ln L∗

n,T (θ0)

∂θ
·

1
√
nT

∂ ln L∗

n,T (θ0)

∂θ ′

)
= Σθ0 + Ωθ0 .

(11)

The asymptotic distribution of 1
√
nT

∂ ln L∗n,T (θ0)

∂θ
can be derived

from the central limit theorem for martingale difference arrays
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ϕn(θ) =



1
n
tr

((
∞∑
h=0

Ah
n(θ)

)
S−1
n (λ)

)
1
n
tr

(
Wn

(
∞∑
h=0

Ah
n(θ)
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S−1
n (λ)

)
0kx×1

1
n
γ tr(Gn(λ)

(
∞∑
h=0

Ah
n(θ)

)
S−1
n (λ)) +

1
n
ρtr(Gn(λ)Wn

(
∞∑
h=0

Ah
n(θ)

)
S−1
n (λ)) +

1
n
trGn(λ)

1
2σ 2


Box I.
(Lemma 13). For the term ∆nT , from Lemma 9 and Lemma 11,
∆nT =

√
n
T ϕn + O(

√
n
T3

) + Op(
1

√
T
) where ϕn = ϕn(θ0) is O(1)

with the equation in Box I.
Whenγ0 = ρ0 = 0,ϕn = ((tr S−1

n )/n, (trGn)/n, 01×kx , (trGn)/n,
1/(2σ 2

0 ))′. When λ0 = ρ0 = 0, we have Sn = In, Gn = Wn

and ϕn = (1/(1 − γ0), (trWn)/n, 01×kx , (trWn)/n, 1/(2σ 2
0 ))′. If

λ0 = ρ0 = 0 is imposed in the estimation so that we estimate
Ynt = γ0Yn,t−1 + cn0 + Vnt , the leading asymptotic bias term will
be the same as that of Hahn and Kuersteiner (2002).

Assumption 8. limT→∞ EHnT is nonsingular or limn→∞
1
n (trG

′
nGn+

trG2
n −

2(trGn)2

n ) 6= 0.

Assumption 8 is a condition for the nonsingularity of the limit-
ing information matrix Σθ0 in addition to the global identification
in Theorems 1 and 2. When limT→∞ EHnT is singular, as long as
we have limn→∞

1
n (trG

′
nGn + trG2

n −
2(trGn)2

n ) 6= 0, the limiting
information matrix Σθ0 is still nonsingular (see Appendix D).

Claim 2. Under Assumptions1–8, 1
√
nT

∂ ln Ln,T (θ0)

∂θ
+∆nT

d
→N(0, Σθ0+

Ωθ0), where ∆nT =

√
n
T ϕn + Op

(
max

(√
n
T3

,

√
1
T

))
from (9) with

ϕn from Box I. When {vit}, i = 1, 2, . . . , n and t = 1, 2, . . . , T , are
normal, 1

√
nT

∂ ln Ln,T (θ0)

∂θ
+ ∆nT

d
→N(0, Σθ0).

Also, under Assumptions 1–8, we have 1
nT

∂2 ln Ln,T (θ)

∂θ∂θ ′ −
1
nT

∂2 ln Ln,T (θ0)

∂θ∂θ ′ = ‖θ − θ0‖ · Op(1) and 1
nT

∂2 ln Ln,T (θ0)

∂θ∂θ ′ −
∂2Qn,T (θ0)

∂θ∂θ ′ =

Op

(
1

√
nT

)
(see (38) and (39)). Hence, for the Taylor expansion

√
nT (θ̂nT − θ0) =

(
−

1
nT

∂2 ln Ln,T (θ̄nT )

∂θ∂θ ′

)−1
·

1
√
nT

∂ ln Ln,T (θ0)

∂θ
, we have

−
1
nT

∂2 ln Ln,T (θ̄nT )

∂θ∂θ ′ = Σθ0,nT + Op

(
max

(√
1
nT , 1

T

))
(see Proof for

Theorem 3 in Appendix D for details). Combined with Claim 2, we
have the following theorem for the distribution of θ̂nT .

Theorem 3. Under Assumptions 1–8,

√
nT
(
θ̂nT −

(
θ0 −

ϕθ0,nT

T

))
+ Op

(
max

(√
n
T 3

,

√
1
T

))
d

→N
(
0, Σ−1

θ0

(
Σθ0 + Ωθ0

)
Σ−1

θ0

)
, (12)

where ϕθ0,nT = Σ−1
θ0,nT

ϕn is O(1).
When n

T → 0,

√
nT (θ̂nT − θ0)

d
→N(0, Σ−1

θ0
(Σθ0 + Ωθ0)Σ

−1
θ0

). (13)
When n
T → k < ∞,

√
nT (θ̂nT − θ0) +

√
kϕθ0,nT

d
→N(0, Σ−1

θ0
(Σθ0 + Ωθ0)Σ

−1
θ0

). (14)

When n
T → ∞,

T (θ̂nT − θ0) + ϕθ0,nT
p

→ 0. (15)

Additionally, if {vit}, i = 1, 2, . . . , n and t = 1, 2, . . . , T , are
normal, (12) becomes

√
nT (θ̂nT − θ0) +

√
n
T

ϕθ0,nT + Op

(
max

(√
n
T 3

,

√
1
T

))
d

→N(0, Σ−1
θ0

). (16)

Hence, θ̂nT is consistent, but has a bias of the order O(T−1).
For the distribution of θ̂nT , when T is relatively large, the QMLEs
are

√
nT consistent and asymptotically properly centered normal;

when n is asymptotically proportional to T , the estimators are
√
nT

consistent and asymptotically normal, but the limit distribution
does not center around the truth; when n is relatively large,
the estimators are T consistent and have a degenerate distribution.

The estimators of fixed effects are
√
T consistent and asymptot-

ically centered normal, as shown below.

Theorem 4. Assume that the elements of cn0 are bounded. Then un-
der Assumptions 1–8, for i = 1, 2, . . . , n,

√
T
(
ĉi,nT − ci,0

) d
→N(0,

σ 2
0 ) and they are asymptotically independent with each other.

3.3. Bias reduction

From (12), the QMLE θ̂nT has the bias −
1
T ϕθ0,nT and the

confidence interval is not centered when n
T → k where 0 < k <

∞. Furthermore, when T is small relative to n in the sense that
n
T → ∞, the presence of ϕθ0,nT causes θ̂nT to have the slower rate
T−1 of convergence. An analytical bias reduction procedure is to
correct the bias BnT = −ϕθ0,nT , by constructing an estimator B̂nT
and defining the bias corrected estimator as

θ̂1
nT = θ̂nT −

B̂nT

T
. (17)

From Theorem 3, BnT = −Σ−1
θ0,nT

ϕn where ϕn = ϕn(θ0) from Box I,
and we may choose9

B̂nT =

[(
E
(

1
nT

∂2 ln Ln,T (θ)

∂θ∂θ ′

))−1

ϕn(θ)

]∣∣∣∣∣
θ=θ̂nT

. (18)

9 An asymptotically equivalent alternative way is to replace Σ−1
θ0,nT by the

empirical Hessian matrix of the concentrated log likelihood function.
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Table 1
Performance of estimators before bias correction

T n θ0 γ ρ β λ σ 2

(1) 10 49 θ a
0 Bias −0.0628 −0.0031 −0.0077 −0.0024 −0.1168

SD 0.0322 0.0591 0.0452 0.0477 0.0566
RMSE 0.0733 0.0807 0.0635 0.0667 0.1352
CP 0.5020 0.9430 0.9290 0.9300 0.4530

(2) 10 49 θ b
0 Bias −0.0701 −0.0080 −0.0111 −0.0105 −0.1193

SD 0.0322 0.0570 0.0453 0.0457 0.0567
RMSE 0.0792 0.0779 0.0641 0.0639 0.1372
CP 0.4050 0.9300 0.9230 0.9370 0.4330

(3) 10 196 θ a
0 Bias −0.0625 −0.0036 −0.0076 −0.0024 −0.1105

SD 0.0161 0.0304 0.0226 0.0246 0.0285
RMSE 0.0647 0.0417 0.0320 0.0344 0.1146
CP 0.0310 0.9380 0.9260 0.9260 0.0580

(4) 10 196 θ b
0 Bias −0.0691 −0.0067 −0.0109 −0.0091 −0.1129

SD 0.0160 0.0292 0.0226 0.0236 0.0285
RMSE 0.0710 0.0405 0.0329 0.0322 0.1169
CP 0.0130 0.9300 0.9140 0.9320 0.0530

(5) 50 49 θ a
0 Bias −0.0121 −0.0018 −0.0008 0.0005 −0.0220

SD 0.0141 0.0260 0.0202 0.0213 0.0280
RMSE 0.0221 0.0350 0.0278 0.0288 0.0433
CP 0.8460 0.9460 0.9370 0.9480 0.8590

(6) 50 49 θ b
0 Bias −0.0132 −0.0024 −0.0009 −0.0006 −0.0221

SD 0.0139 0.0243 0.0203 0.0201 0.0281
RMSE 0.0224 0.0327 0.0279 0.0269 0.0435
CP 0.8310 0.9530 0.9340 0.9580 0.8570

(7) 50 196 θ a
0 Bias −0.0122 −0.0002 −0.0004 0.0012 −0.0211

SD 0.0071 0.0134 0.0101 0.0110 0.0140
RMSE 0.0148 0.0182 0.0139 0.0149 0.0271
CP 0.5990 0.9410 0.9450 0.9470 0.6530

(8) 50 196 θ b
0 Bias −0.0133 −0.0008 −0.0005 0.0004 −0.0212

SD 0.0070 0.0125 0.0101 0.0103 0.0141
RMSE 0.0156 0.0171 0.0140 0.0141 0.0273
CP 0.5040 0.9430 0.9480 0.9480 0.6640

θ a
0 = (0.2, 0.2, 1, 0.2, 1) and θ b

0 = (0.3, 0.3, 1, 0.3, 1).
We show that when T/n1/3
→ ∞, θ̂1

nT is
√
nT consistent and

asymptotically centered normal, even when n/T → ∞. For
the bias corrected estimator, we need the following additional
assumption.

Assumption 9.
∑

∞

h=0 A
h
n(θ) and

∑
∞

h=1 hA
h−1
n (θ) are uniformly

bounded in either row sum or column sums, uniformly in a
neighborhood of θ0.

Assumption 9 can be justified by Lemma 14. Our result for the
bias corrected estimator is in Theorem 5.

Theorem 5. If T/n1/3
→ ∞, under Assumptions 1–9,

√
nT (θ̂1

nT −

θ0)
d

→N(0, Σ−1
θ0

(Σθ0 + Ωθ0)Σ
−1
θ0

).

Hence, if T grows faster than n1/3, the analytical bias correction
will give us estimators that are asymptotically normal and
centered around θ0. For the case n

T → k, θ̂1
nT has removed the

asymptotic bias ϕθ0,nT . Note that n
T → k implies T/n1/3

→ ∞. For
the case n

T → ∞, as long as T/n1/3
→ ∞, θ̂1

nT is
√
nT consistent,

which is also an improvement upon the T consistency of θ̂nT .
Thus, θ̂1

nT might have better performance in economic applications,
especially when n is much larger than T .

3.4. Monte Carlo results

We conduct a small Monte Carlo experiment to evaluate the
performance of our MLEs and the bias corrected estimators. We
generate samples from (1) and use θ a

0 = (0.2, 0.2, 1, 0.2, 1)′, θ b
0 =

(0.3, 0.3, 1, 0.3, 1)′ where θ0 = (γ0, ρ0, β
′

0, λ0, σ
2
0 )′, and Xnt , cn0

and Vnt are generated from independent normal distributions10

10We generated the spatial panel data with 20+ T periods and then take the last
T periods as our sample. The initial value is generated as N(0, In) in the simulation.
Wehave also generated the datawith amuch longer history 1000+T and the results
are similar.
and the spatial weights matrix we use is a rook matrix. We use
T = 10 and T = 50, and n = 49 and n = 196. For each set
of generated sample observations, we calculate the MLE θ̂nT and
evaluate the bias θ̂nT − θ0; we then construct the bias corrected
estimator θ̂1

nT and evaluate the bias θ̂1
nT −θ0. We do this 1000 times

to see if the bias is reduced on average by using the analytical bias
correction procedure,11 i.e., to compare 1

1000

∑1000
i=1 (θ̂nT − θ0)i with

1
1000

∑1000
i=1 (θ̂1

nT − θ0)i. With two different values of θ0 for each n
and T , finite sample properties of both estimators are summarized
in Table 1 and Table 2, where Table 1 is for the performance
of the estimators before bias correction and Table 2 is for the
performance after the bias correction. For each case, we report the
bias (Bias), standard deviation (SD), rootmean square error (RMSE)
and coverage probability (CP).

We can see that both estimators have some bias, but the
bias corrected estimators reduce those biases which are originally
larger. This is consistent with our asymptotic analysis, because
the bias corrected estimators will eliminate the bias of order
O(T−1). Also, bias reduction is achievedwhile there is no significant
increase in the variance of the estimators. Before bias correction,
the CPs of the estimators under 95% confidence level have lower
values due to the bias, especially when n is relatively large. After
bias correction, the CPs are close to the specified 95% confidence
level.

For different cases of n and T , we can see that for each given n,
when T is larger, the biases of two sets of estimatorswill be smaller
and the variance will be smaller; for each given T , when n is larger,
the biases of two sets of estimators will be nearly the same, but
the variance will be smaller. This is consistent with our theoretical
prediction, because the bias is of the orderO(T−1) and the variance

11 For n = 196 and T = 50, each iteration takes about 3 s on average using a
desktop with 4G memory and duo 2.66 GHz CPU.
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Table 2
Performance of estimators after bias correction

T n θ0 γ ρ β λ σ 2

(1) 10 49 θ a
0 Bias −0.0039 −0.0005 −0.0001 −0.0008 −0.0287

SD 0.0338 0.0623 0.0474 0.0483 0.0623
RMSE 0.0467 0.0857 0.0650 0.0671 0.0911
CP 0.9270 0.9260 0.9320 0.9360 0.8600

(2) 10 49 θ b
0 Bias −0.0038 0.0036 0.0004 −0.0039 −0.0322

SD 0.0337 0.0606 0.0475 0.0459 0.0623
RMSE 0.0470 0.0855 0.0653 0.0642 0.0921
CP 0.9130 0.8970 0.9340 0.9220 0.8510

(3) 10 196 θ a
0 Bias −0.0040 −0.0011 −0.0000 −0.0009 −0.0217

SD 0.0169 0.0320 0.0237 0.0249 0.0314
RMSE 0.0237 0.0441 0.0322 0.0346 0.0484
CP 0.9120 0.9240 0.9380 0.9270 0.8160

(4) 10 196 θ b
0 Bias −0.0035 0.0027 0.0003 −0.0037 −0.0250

SD 0.0168 0.0310 0.0237 0.0237 0.0314
RMSE 0.0236 0.0436 0.0322 0.0328 0.0497
CP 0.9110 0.9020 0.9390 0.9370 0.7950

(5) 50 49 θ a
0 Bias −0.0001 −0.0018 −0.0005 0.0005 −0.0025

SD 0.0143 0.0263 0.0204 0.0213 0.0286
RMSE 0.0197 0.0355 0.0280 0.0289 0.0393
CP 0.9400 0.9460 0.9370 0.9460 0.9300

(6) 50 49 θ b
0 Bias −0.0002 −0.0019 −0.0004 −0.0002 −0.0026

SD 0.0141 0.0246 0.0205 0.0201 0.0287
RMSE 0.0194 0.0332 0.0280 0.0269 0.0395
CP 0.9410 0.9470 0.9360 0.9570 0.9270

(7) 50 196 θ a
0 Bias −0.0002 −0.0001 −0.0001 0.0013 −0.0015

SD 0.0071 0.0136 0.0102 0.0110 0.0143
RMSE 0.0097 0.0184 0.0140 0.0149 0.0194
CP 0.9430 0.9380 0.9440 0.9470 0.9430

(8) 50 196 θ b
0 Bias −0.0003 −0.0003 −0.0001 0.0007 −0.0017

SD 0.0070 0.0127 0.0102 0.0104 0.0144
RMSE 0.0096 0.0173 0.0140 0.0141 0.0195
CP 0.9420 0.9410 0.9450 0.9440 0.9440

θ a
0 = (0.2, 0.2, 1, 0.2, 1) and θ b

0 = (0.3, 0.3, 1, 0.3, 1).
of the estimators is of the order O( 1
nT ). Also, for different values of

θ0, the biases become larger when θ0 is larger, and the variances do
not change much.

We also run the simulation when Vnt is generated from inde-
pendent exponential distributionwith unit variance (demeaned by
the populationmean). The disturbances are skewed. In order not to
produce more tables unnecessarily, the Monte Carlo simulation is
conducted only for the parameter vector θ a

0 . From Table 3, we can
see that the bias correction can improve the performance of esti-
mators, even for non-gaussian error terms. By comparing the cor-
responding estimates in Table 3 with those in Tables 1 and 2 under
normal disturbances, we see that the biases and SDs are similar
except that the SDs for the estimates of σ 2

0 in Table 3 are relatively
larger.

Finally, we conduct a simulation to compare the performance
of estimators when we use both the SDPD model and VAR model
(n = 9 and T = 200). For the SDPD process without exogenous
variable, Ynt = AnYn,t−1+S−1

n cn0+S−1
n Vnt , which can be considered

as a restricted form of the VAR process Ynt = ΦnYn,t−1 + αn0 + εnt ,
where Φn is n × n coefficient matrix, εnt is N(0, Σε) for each
t and is independent over time. When the true data generating
process (DGP) is SDPD, we use (γ0, ρ0, λ0) = (0.2, 0.2, 0.2),
Wn is a 9 × 9 queen matrix, cn0 and Vnt are generated from
independent normal distributions. When the true DGP is VAR,
the 9 × 9 coefficient matrix Φn is designed to have eigenvalues
smaller than 1 in absolute value,12 αn0 and εnt are generated from
independent normal distributions. Given a DGP, we first use the
SDPDmodel to get the bias corrected estimators (γ̂ 1

nT , ρ
1
nT , λ

1
nT ) and

get Ân = (In − λ̂1
nTWn)

−1(γ̂ 1
nT In + ρ̂1

nTWn), then, we use the VAR

12 Each element of the 9 × 9 coefficient matrix Φn is generated from uniform
distribution (0, 1). We row normalize the coefficient matrix (so that none of the
eigenvalues will be greater than 1 in absolute value) and then multiply it with 0.8
so that all the eigenvalues will be smaller than 1 in absolute value.
model to get Φ̂n. We do this 1000 times to compare the Biases, SDs
and RMSEs of each element in Ân with its corresponding element
in Φ̂n (there are in total 9 × 9 = 81 elements). The results are in
Table 4 where the X axis denotes 81 elements of vectorized An or
Φn and Y axis denotes the corresponding values of Biases, SDs and
RMSEs. We can see that when the true DGP is SDPD, the restricted
SDPD estimators outperform unrestricted VAR estimators, mainly
due to the small SDs of the restricted estimates. When the true
DGP is VAR, the restricted estimates have larger biases for some
parameters, and overall, they have some larger RMSEs than those
of the unrestricted VAR estimates.

4. Conclusion

In this paper, we derived the properties of QMLEs of spatial
dynamic panel data with fixed effects, and with special attention
to the asymptotics when both n and T are large. Estimates of the
fixed effects are

√
T consistent and asymptotically normally dis-

tributed. For distribution of the common parameters, where T is
asymptotically large relative to n, the estimators are

√
nT consis-

tent and asymptotically normal, with the limiting distribution cen-
tered around 0; when n is asymptotically proportional to T , the
estimators are

√
nT consistent and asymptotically normal, but the

limiting distribution is not centered around 0; and when n is large
relative to T , the estimators are T consistent, and have a degen-
erate limiting distribution. We also propose a bias correction for
our estimators. We show that when T grows faster than n1/3, the
correction will eliminate the bias of order O(T−1) and yield a cen-
tered confidence interval. The contribution of this paper is that it
establishes the asymptotic properties of QMLEs and bias-corrected
estimators of the spatial dynamic panel model, when both n and T
are large.
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Table 3
Performance of estimators under non-normality

T n γ ρ β λ σ 2

Before bias correction
(1) 10 49 Bias −0.0606 −0.0065 −0.0064 −0.0032 −0.1162

SD 0.0321 0.0590 0.0451 0.0477 0.1035
RMSE 0.0715 0.0798 0.0637 0.0663 0.1850
CP 0.5230 0.9590 0.9260 0.9330 0.6800

(2) 10 196 Bias −0.0621 −0.0019 −0.0089 −0.0002 −0.1124
SD 0.0161 0.0304 0.0226 0.0246 0.0530
RMSE 0.0644 0.0418 0.0326 0.0349 0.1294
CP 0.0310 0.9400 0.9160 0.9140 0.4390

(3) 50 49 Bias −0.0116 −0.0005 −0.0006 −0.0003 −0.0223
SD 0.0141 0.0260 0.0202 0.0213 0.0561
RMSE 0.0220 0.0351 0.0276 0.0294 0.0798
CP 0.8660 0.9410 0.9480 0.9440 0.9010

(4) 50 196 Bias −0.0121 −0.0009 −0.0001 0.0012 −0.0214
SD 0.0071 0.0134 0.0101 0.0110 0.0282
RMSE 0.0148 0.0182 0.0136 0.0151 0.0427
CP 0.5930 0.9470 0.9540 0.9340 0.8720

After bias correction
(5) 10 49 Bias −0.0019 −0.0042 0.0014 −0.0016 −0.0279

SD 0.0337 0.0622 0.0473 0.0482 0.1018
RMSE 0.0466 0.0846 0.0651 0.0668 0.1548
CP 0.9180 0.9400 0.9350 0.9340 0.8410

(6) 10 196 Bias −0.0035 0.0006 −0.0014 0.0013 −0.0237
SD 0.0169 0.0321 0.0237 0.0249 0.0522
RMSE 0.0235 0.0442 0.0324 0.0351 0.0798
CP 0.9120 0.9240 0.9320 0.9200 0.8570

(7) 50 49 Bias 0.0003 −0.0004 −0.0003 −0.0002 −0.0028
SD 0.0143 0.0263 0.0204 0.0213 0.0560
RMSE 0.0196 0.0355 0.0277 0.0295 0.0774
CP 0.9330 0.9360 0.9510 0.9430 0.9380

(8) 50 196 Bias −0.0002 −0.0008 0.0002 0.0012 −0.0018
SD 0.0071 0.0136 0.0102 0.0110 0.0282
RMSE 0.0098 0.0184 0.0137 0.0152 0.0382
CP 0.9450 0.9450 0.9550 0.9340 0.9400

We use θ a
0 = (0.2, 0.2, 1, 0.2, 1).
Our asymptotic analysis in this paper has focused on the spatial
dynamic model with fixed effects, but the remaining disturbances
are i.i.d. across spatial units. We expect that our asymptotic
analysis canbe easily extended to dynamic panelmodelswith error
components, and spatially and serially correlateddisturbances. The
spatial panel data model in Baltagi et al. (2007) is an example.
Their model is a regression panel model with serial correlation
and spatial dependence in disturbances: Ynt = Xntβ0 + cn0 + εnt
where εnt = λ0Wnεnt + Unt and Unt = γ0Un,t−1 + Vnt . Denote
the n-dimensional vector of total disturbances ηnt = cn0 + εnt .
The disturbance process implies the structure ηnt = λ0Wnηnt +

γ0ηn,t−1 − γ0λ0Wnηn,t−1 + c∗

n0 + Vnt , where c∗

n0 = (1 − γ0)(In −

λ0Wn)cn0. The process of ηnt is in the form of our dynamic model
when c∗

n0 is treated as fixed effects and with nonlinear constraints
on the spatial and dynamic coefficients. Hence, our theory can be
easily adopted to cover the estimation of this model for the case
with T (and n) goes to infinity.

The dynamic panel model analyzed in this paper allows
individual-invariant, time-varying exogenous variables in the
equation, but it does not incorporate cross-section dependence due
to unobserved macroeconomic variables or shocks. Such a cross-
section dependence has been considered in some recent panel time
series models, e.g., Phillips and Sul (2003) and Pesaran (2006),
among others. As an extension of this paper, Lee and Yu (2007)
have considered the ML estimation of the SDPD model with both
(additive) individual and time fixed effects. By estimating both
the individual and time fixed effects, the asymptotic bias problem
becomes more severe. With only individual fixed effects, for the
case that n

T → 0, as shown in this paper, the QMLE of θ is
asymptotically normal centered at 0 (without an asymptotic bias).
However, with both individual and time fixed effects, there exists
an asymptotic bias of order O( 1
n ). So, contrary to the model with

only individual effects, for themodelwith both individual and time
effects, an asymptotic bias of order either O( 1

n ) or O( 1
T ) exists. Lee

and Yu (2007) have also constructed a bias-corrected estimator
which can remove such biases, but will require conditions that
both T/n3 and n/T 3 go to zero. The model in this paper with
only individual effects is of interest in its own as it includes the
scenarios of a fixed finite n or n

T → 0.13 Under such scenarios,
the spatial dynamic model can be regarded as a structural vector
autoregressive model with restricted coefficients.

For future research, it may be of interest to model common and
persistent shocks directly as in Phillips and Moon (1999), Phillips
and Sul (2003) and Pesaran (2006) in a random component or
factor structural framework with the spatial setting. In addition, as
in Korniotis (2007), the model may be extended to accommodate
endogenous control variables. With endogenous control variables,
a possible estimation method is the generalized method of
moments, if proper instrumental variables can be found. The
method ofmaximum likelihoodmay also be possible if themodel is
expanded into a simultaneous equation system. These extensions
are of interest, as those features can be important in many
macroeconomic applications.14 In addition to the above extension,
it may also be of interest to extend the model to incorporate high
order contemporaneous spatial lags and spatial time lags. With
high order spatial lags, the ML approach is not computationally

13 Lee and Yu (2007) have found a data transformation approach, which can avoid
the additional bias caused by the time effects. However, the transformed approach
is valid only for spatial weights matrices with row-normalization.
14 We appreciate referees for pointing out these important features in empirical

macroeconomics models.
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Table 4
Biases (1st row), SDs (2nd row) and RMSEs (3rd row) under different DGPs
practical. A practical approach may be based on the generalized
method of moments. For the cross section model with high
order spatial lags, the generalized method of moments has been
considered in Lee and Liu (2007). A possible generalization to the
estimation of spatial dynamic panel models remains to be seen.

Appendix A. Some basic lemmas

LetVnt = (v1t , v2t , . . . , vnt)
′ be n×1 columnvector.We assume

that {vit}, i = 1, 2, . . . , n and t = 1, 2, . . . , T , are i.i.d. across i and
t with zero mean, variance σ 2

0 and E |vit |
4+η < ∞ for some η > 0.
Denote

Unt =

∞∑
h=1

PnhVn,t+1−h, Wnt =

∞∑
h=1

QnhVn,t+1−h, (19)

where {Pnh}∞h=1 and {Qnh}
∞

h=1 are sequences of n × n nonstochastic
square matrices. Denote Ũnt = Unt − ŪnT where ŪnT =(∑T

t=1 Unt

)
/T , and ˜̃Un,t−1 = Un,t−1 − ŪnT ,−1 where ŪnT ,−1 =(∑T−1

t=0 Unt

)
/T . Also W̃nt , ˜̃Wn,t−1 and Ṽnt are similarly defined.

Below,we state the law of large numbers and central limit theorem
useful to derive the asymptotic properties of our estimators. LetDnt
be n × 1 vector of uniformly bounded constants for all n and t and
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let B1n and B2n be n× n nonstochastic square matrices. We first list
the basic assumptions needed for those lemmas.

Assumption A1. The disturbances {vit}, i = 1, 2, . . . , n and t =

1, 2, . . . , T , are i.i.d. across i and t with zero mean, variance σ 2
0

and E |vit |
4+η < ∞ for some η > 0.

Assumption A2. Pnh = B1nPh
n and Qnh = B2nQ h

n where Ph
n and

Q h
n are the Pn and Qn to the power of h. Furthermore, B1n, B2n,∑
∞

h=1 abs(P
h
n ) and

∑
∞

h=1 abs(Q
h
n ) are UB, where [abs(Pn)]ij =∣∣Pn,ij∣∣.

Assumption A3. The elements ofn×1vectorDnt are nonstochastic
and bounded, uniformly in n and t .

Assumption A4. n is a nondecreasing function of T .

Lemma 1. With Unt and Wnt in (19), ŪnT =
∑

∞

h=1 P̈nhVn,T+1−h and
W̄nT =

∑T
h=1 Q̈nhVn,T+1−h where

P̈nh =


1
T

(Pn1 + Pn2 + · · · + Pnh) =
1
T

h∑
g=1

Png for h ≤ T

1
T

T∑
g=1

Pn,h−T+g for h > T ,

(20)

and Q̈nh has the same pattern. Furthermore,
∑

∞

h=1 P̈nh =
∑

∞

h=1 Pnh,
and

∑
∞

h=1 Q̈nh =
∑

∞

h=1 Qnh.

Lemma 2. Under Assumption A1, for t ≥ s, E(UntW′
ns) =

σ 2
0

(∑
∞

h=1 Pn,t−s+hQ ′

nh

)
and E(U′

ntWns) = σ 2
0 tr
(∑

∞

h=1 P
′

n,t−s+hQnh
)
.

Lemma 3. Under Assumption A1, E(V ′
ntB1nVns)(V ′

ngB2nVnh) is equal
to (µ4 − 3σ 4

0 )
∑n

i=1 B1,iiB2,ii + σ 4
0 (tr B1n × tr B2n + tr B1nB2n +

tr B1nB′

2n) for t = s = g = h; σ 4
0 tr B1n × tr B2n for t = s 6= g = h;

σ 4
0 tr(B1nB′

2n) for t = g 6= s = h; σ 4
0 tr(B1nB2n) for t = h 6= s = g;

and 0 otherwise.

Lemma 4. Under Assumption A1, for t ≥ s,

Cov(U′

ntWnt , U′

nsWns) = (µ4 − 3σ 4
0 )

∞∑
h=1

n∑
i=1

(P ′

n,t−s+hQn,t−s+h)ii

× (P ′

nhQnh)ii + σ 4
0 tr

[(
∞∑
h=1

PnhP ′

n,t−s+h

)(
∞∑
h=1

Qn,t−s+hQ ′

nh

)

+

(
∞∑
h=1

QnhP ′

n,t−s+h

)(
∞∑
h=1

Qn,t−s+hP ′

nh

)]
.

Lemma 5. Suppose Bn, Cnh and Dnh are n × n square matrices with
all elements being non-negative, and Bn,

∑
∞

h=1 Cnh and
∑

∞

h=1 Dnh are
UB. Then,

∑
∞

h=1 CnhBnDnh is UB.

Lemma 6. Under AssumptionsA1,A2 andA4, Var(
∑T

t=1 U′
ntWnt) =

O(nT ).

Lemma 7. Under Assumptions A1, A2 and A4,

1
nT

T∑
t=1

U′

ntWnt − E

(
1
nT

T∑
t=1

U′

ntWnt

)
= Op

(
1

√
nT

)
, (21)

1
n

Ū′

nTW̄nT − E
(
1
n

Ū′

nTW̄nT

)
= Op

(
1

√
nT 2

)
, (22)

1
nT

T∑
t=1

Ũ′

ntW̃nt − E

(
1
nT

T∑
t=1

Ũ′

ntW̃nt

)
= Op

(
1

√
nT

)
, (23)
where E( 1
nT

∑T
t=1 U′

ntWnt) =
σ 2
0
n tr

(∑
∞

h=1 P
′

nhQnh
)

= O(1) and

E( 1
n Ū′

nTW̄nT ) =
σ 2
0
n tr

(∑
∞

h=1 P̈
′

nhQ̈nh
)

= O( 1
T ) where P̈nh and Q̈nh are

defined in (20).

Lemma 8. Under Assumptions A1–A4, 1
nT

∑T
t=1 D̃

′
nt Ũnt =

1
nT

∑T
t=1

D̃′
ntUnt = Op

(
1

√
nT

)
, and 1

nT

∑T
t=1 D̄

′
nt Ūnt = Op

(
1

√
nT

)
.

Lemma 9. Under Assumptions A1 and A4, for an n×n nonstochastic
UB matrix Bn,

1
nT

T∑
t=1

V ′

ntBnVnt − E

(
1
nT

T∑
t=1

V ′

ntBnVnt

)
= Op

(
1

√
nT

)
, (24)

1
n
V̄ ′

nTBnV̄nT − E
(
1
n
V̄ ′

nTBnV̄nT

)
= Op

(
1

√
nT 2

)
, (25)

1
nT

T∑
t=1

Ṽ ′

ntBnṼnt − E

(
1
nT

T∑
t=1

Ṽ ′

ntBnṼnt

)
= Op

(
1

√
nT

)
, (26)

where E( 1
nT

∑T
t=1 V

′
ntBnVnt) =

1
nσ

2
0 tr(Bn) = O(1) and

E( 1
n V̄

′

nTBnV̄nT ) =
1
nT σ 2

0 tr(Bn) = O
( 1
T

)
.

Lemma 10. Under Assumption A1, E([(Un,t−1)i]
4) = (µ4 −

3σ 4
0 )
∑

∞

h=1
∑n

j=1[(Pnh)ij]
4
+ 3σ 4

0 [
∑

∞

h=1(PnhP
′

nh)ii]
2.

Lemma 11. Under Assumptions A1, A2 and A4,
√

T
n (Ū′

nT ,−1V̄nT − E(
Ū′

nT ,−1V̄nT
)
) = Op

(
1

√
T

)
where

√
T
n E
(
Ū′

nT ,−1V̄nT
)

=

√
n
T

1
nσ

2
0 tr(∑

∞

h=1 Pnh
)
+ O

(√
n
T3

)
when T → ∞.

Lemma 12. Let B−
n denote the lower diagonal matrix constructed

from a symmetric Bn by deleting the diagonal and the upper triangle
entries. Under Assumptions A1 and A2, if Bn is UB and Kn is an
n-dimensional nonstochastic vector with all its elements uniformly
bounded, then
(a) 1

nT

∑T
t=1
∑n

i=1(
∑i−1

j=1 bnijvjt)
2
−

1
2σ

2
0 [tr(B2

n)−vec′

D(Bn)vecD(Bn)]

=
1
nT

∑T
t=1[V

′
ntB

−
′

n B−
n Vnt − σ 2

0 tr(B
−

′

n B−
n )] = Op

(
1

√
nT

)
.

(b) 1
nT

∑T
t=1
∑n

i=1 kni(
∑i−1

j=1 bnijvjt) =
1
nT

∑T
t=1 K

′
nB

−
n Vnt =

Op

(
1

√
nT

)
.

(c) 1
nT

∑T
t=1
∑n

i=1 un,t−1,i(
∑i−1

j=1 bnijvjt) =
1
nT

∑T
t=1 U′

n,t−1B
−
n Vnt =

Op

(
1

√
nT

)
.

(d) 1
nT

∑T
t=1
∑n

i=1 kniun,t−1,i =
1
nT

∑T
t=1 K

′
nUn,t−1 = Op

(
1

√
nT

)
where vecD(Bn) is the n-dimensional column vector formed by the the
diagonal elements of Bn.

For the central limit theorem that follows, we will consider the
following form:

QnT =

T∑
t=1

(
U′

n,t−1Vnt + D′

ntVnt + V ′

ntBnVnt − σ 2
0 tr Bn

)
=

T∑
t=1

n∑
i=1

znt,i,

where Bn is an arbitrary n × n symmetric UB matrix,15 and znt,i =

(ui,t−1 + dnti)vit + bn,ii(v2
it − σ 2

0 ) + 2(
∑i−1

j=1 bn,ijvjt)vit . Then, the

15 The assumption that Bn is symmetric is maintained w.l.o.g. since V ′
ntBnVnt =

V ′
nt [(Bn + B′

n)/2]Vnt .
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mean and variance of QnT are µQnT = 0 and

σ 2
QnT

= Tσ 4
0 tr

(
∞∑
h=1

P ′

nhPnh

)
+ σ 2

0

T∑
t=1

D′

ntDnt

+ T

((
µ4 − 3σ 4

0

) n∑
i=1

b2n,ii + 2σ 4
0 tr(B

2
n)

)

+ 2µ3

T∑
t=1

n∑
i=1

dntibn,ii,

whereµs = Evs
it for s = 3, 4, bn,ii’s are diagonal elements of Bn and

dnti is the ith element of Dnt .

Lemma 13. Under Assumptions A1–A4 and that Bn is UB, if the
sequence 1

nT σ 2
QnT

is bounded away from zero, then, QnT
σQnT

d
→N(0, 1).

Lemma 14. If supn≥1 ‖An(θ0)‖∞ <1 (resp: supn≥1 ‖An(θ0)‖1<1),
then the row sum (resp: column sum) of

∑
∞

h=0 A
h
n(θ) and∑

∞

h=1 hA
h−1
n (θ) are bounded uniformly in n and in a neighborhood

of θ0.

Proof for Lemma 13. 16We are going to use the CLT of the
martingale difference array in Gänsler and Stute (1977, p. 365),
to prove our CLT (see also Pötscher and Prucha (1997), p. 235).
Consider the σ -field

Fn,t,i = σ(v11, v21, . . . , vn1, . . . , v1,t−1, . . . ,

vn,t−1, v1t , . . . , vit), (27)

then E(znt,i|Fn,t,i−1) = 0 and E(znt,i|Fn,t−1,n) = 0. As a convention,
define Fn,t,0 = Fn,t−1,n. Thus, {znt,i, Fn,t,i, 1 ≤ t ≤ T , 1 ≤

i ≤ n} forms a martingale difference array. To see explicitly
that this is a difference array, let j = n(t − 1) + i for 1 ≤

i ≤ n and 1 ≤ t ≤ T . Thus, j takes integer values from 1
to J where J = nT . The σ -field Fn,t,i can be renamed as FJ,j
and zJj = znt,i. As E(zJ,j|FJ,j−1) = 0 because E(znt,i|Fn,t,i−1) =

0 and E(znt,i|Fn,t−1,n) = 0, {znt,i, Fn,t,i} = {zJ,j, FJ,j−1} is a
martingale difference array. Denote z∗

Jj = z∗

nt,i =
znt,i
σQnT

, where

znt,i = (ui,t−1 + dnti)vit + bn,ii(v2
it − σ 2

0 ) + 2(
∑i−1

j=1 bn,ijvjt)vit , we
will apply the martingale CLT to

∑nT
j=1 zJj =

∑T
t=1
∑n

i=1 znt,i. The
sufficient conditions are (i) 1

σ 2+δ
QnT

∑T
t=1
∑n

i=1 E|znt,i|2+δ
→ 0 and

(ii) 1
σ 2
QnT

∑T
t=1
∑n

i=1 E(z2nt,i|Fnt,i−1)
p

→ 1.

To show (i): For any p > 0 and q > 0 such that 1
p +

1
q = 1, as

|znt,i| ≤ (|un,t−1,i| + |dnt,i|)|vit | + |bnii|
1
p |bnii|

1
q

× |v2
it − σ 2

0 | + 2|vit | ·

i−1∑
j=1

|bnij|
1
p |bnij|

1
q |vjt |,

the Holder inequality implies that

|znt,i| ≤

[(
|un,t−1,i| + |dnt,i|

)p
+

i∑
j=1

|bnij|

] 1
p

×

[
|vit |

q
+ |bnii| · |v2

it − σ 2
0 |

q
+ 2q

|vit |
q
·

(
i−1∑
j=1

|bnij||vjt |
q

)] 1
q

.

16 Proofs for other lemmas of this Appendix and those of Appendix B can be
found on the working paper version under the same title via the web site:
http://economics.sbs.ohio-state.edu/lee/.
Hence,

E|znt,i|q ≤ E

[
(|un,t−1,i| + |dnt,i|)p +

i∑
j=1

|bnij|

] q
p

×

[
E|vit |

q
+ |bnii| · E|v2

it − σ 2
0 |

q

+ 2qE|vit |
q
·

(
i−1∑
j=1

|bnij|E|vjt |
q

)]
.

Because the fourth and more moments of vit exist, by taking q =

2 + δ for some small δ, there exists a constant c1 > 0 such
that E|znt,i|q ≤ c1E[(|un,t−1,i| + |dnti|)p +

∑i
j=1 |bn,ij|]

q
p . By the

cr -inequality and because Bn is UB, there exist constants c2 > 0,
c3 > 0 and c4 > 0 such that[
(|un,t−1,i| + |dnti|)p +

i∑
j=1

|bn,ij|

] q
p

≤ 2
q
p −1 [

(|un,t−1,i| + |dnti|)q + c3
]

≤ 2
q
p −1

[2q−1(|un,t−1,i|
q
+ |dnti|q) + c3] ≤ c2|un,t−1,i|

2+δ
+ c4,

as q = 2 + δ implies q
p = 1 + δ. As E|unt,i|

4
= O(1)

uniformly in n, t and i (from Lemma10), it follows that E|znt,i|2+δ
≤

c1c2E|un,t−1,i|
2+δ

+ c1c4 = O(1) uniformly. Because σ 2+δ
QnT =

O[(nT )1+
δ
2 ], one has 1

σ 2+δ
QnT

∑T
t=1
∑n

i=1 E|znt,i|2+δ
= O

(
1

(nT )
δ
2

)
,

which goes to zero. This proves (i).
To show (ii): Because znt,i = (un,t−1,i + dnti + 2

∑i−1
j=1 bnijvjt)vit +

bnii(v2
it − σ 2

0 ), it implies that

E(z2nt,i|Fnt,i−1) = σ 2
0

(
un,t−1,i + dnti + 2

i−1∑
j=1

bnijvjt

)2

+ (µ4 − σ 4
0 )b2nii + 2µ3bnii

(
un,t−1,i + dnti + 2

i−1∑
j=1

bnijvjt

)
,

as E(vit(v
2
it − σ 2

0 )) = µ3 and E(v2
it − σ 2

0 )2 = µ4 − σ 4
0 . Therefore,

T∑
t=1

n∑
i=1

E(z2nt,i|Fnt,i−1) = σ 2
0

T∑
t=1

n∑
i=1

(un,t−1,i + 2
i−1∑
j=1

bnijvjt)
2

+ 2
T∑

t=1

n∑
i=1

[σ 2
0 dnti + µ3bnii]

(
un,t−1,i + 2

i−1∑
j=1

bnijvjt

)

+ (µ4 − σ 4
0 )T

n∑
i=1

b2nii + 2µ3

T∑
t=1

n∑
i=1

bniidnti + σ 2
0

T∑
t=1

n∑
i=1

d2nti.

This can be compared with σ 2
QnT

, which can be rewritten as

σ 2
QnT

= Tσ 4
0 tr

(
∞∑
h=1

P ′

nhPnh

)
+ 2σ 4

0 T

[
tr(B2

n) −

n∑
i=1

b2nii

]

+ T (µ4 − σ 4
0 )

n∑
i=1

b2nii + 2µ3

T∑
t=1

n∑
i=1

dntibnii + σ 2
0

T∑
t=1

D′

ntDnt .

From these, we can see that (ii) follows from the results in
Lemmas 7 and 12. �

http://economics.sbs.ohio-state.edu/lee/
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1
nT

∂2 ln Ln,T (θ)

∂θ∂θ ′
= −

1
nT



1
σ 2

T∑
t=1

Z̃ ′

nt Z̃nt
1
σ 2

T∑
t=1

Z̃ ′

ntWnỸnt
1
σ 4

T∑
t=1

Z̃ ′

nt Ṽnt(ζ )

∗
1
σ 2

T∑
t=1

(
(WnỸnt)

′WnỸnt + tr(G2
n(λ))

) 1
σ 4

T∑
t=1

(WnỸnt)
′Ṽnt(ζ )

∗ ∗ −
nT
2σ 4

+
1
σ 6

T∑
t=1

Ṽ ′

nt(ζ )Ṽnt(ζ )


Box II.
Appendix B. Lemmas for some statistics in the model

Denote Znt = (Yn,t−1,WnYn,t−1, Xnt), we provide some lemmas
related to Z̃nt , Z̄nT and Ṽnt , V̄nT .

Lemma 15. Under Assumptions 1–7, for an n × n nonstochastic UB
matrix Bn,

1
nT

T∑
t=1

Z̃ ′

ntBnZ̃nt − E
1
nT

T∑
t=1

Z̃ ′

ntBnZ̃nt = Op

(
1

√
nT

)
, (28)

1
nT

T∑
t=1

Z̃ ′

ntBnṼnt − E
1
nT

T∑
t=1

Z̃ ′

ntBnṼnt = Op

(
1

√
nT

)
, (29)

1
nT

T∑
t=1

Ṽ ′

ntBnṼnt − E
1
nT

T∑
t=1

Ṽ ′

ntBnṼnt = Op

(
1

√
nT

)
, (30)

where E 1
nT

∑T
t=1 Z̃

′
ntBnZ̃nt is O(1), E 1

nT

∑T
t=1 Z̃

′
ntBnṼnt is O

( 1
T

)
and

E 1
nT

∑T
t=1 Ṽ

′
ntBnṼnt is O(1).

Lemma 16. Under Assumptions 1–7, for an n × n nonstochastic UB
matrix Bn,

1
n
Z̄ ′

nTBnZ̄nT − E
1
n
Z̄ ′

nTBnZ̄nT = Op

(
1

√
nT

)
, (31)

1
n
Z̄ ′

nTBnV̄nT − E
1
n
Z̄ ′

nTBnV̄nT = Op

(
1

√
nT

)
, (32)

1
n
V̄ ′

nTBnV̄nT − E
1
n
V̄ ′

nTBnV̄nT = Op

(
1

√
nT 2

)
, (33)

where E 1
n Z̄

′

nTBnZ̄nT is O(1), E 1
n Z̄

′

nTBnV̄nT is O
( 1
T

)
and E 1

n V̄
′

nTBnV̄nT is
O
( 1
T

)
.

From (7), Z̃nt = Z̃∗
nt − (ŪnT ,−1, WnŪnT ,−1, 0) where

Z̃∗
nt = (( ˜̃Xn,t−1 + Un,t−1), (Wn

˜̃Xn,t−1 + WnUn,t−1), X̃nt) with
˜̃Xn,t−1 = Xn,t−1 − X̄nT ,−1. Hence Znt has two components: one
is Z̃∗

nt , uncorrelated with Vnt ; the other is −(ŪnT ,−1 WnŪnT ,−1 0),
correlated with Vnt when t ≤ T − 1. Following is a lemma related
to Z̃∗

nt and Znt .

Lemma 17. Under Assumptions 1–7, for an n × n nonstochastic UB
matrix Bn, E 1

nT

∑T
t=1 Z̃

′
ntBnZ̃nt − E 1

nT

∑T
t=1 Z̃

∗′
ntBnZ̃∗

nt = O
( 1
T

)
where

E 1
nT

∑T
t=1 Z̃

∗′
ntBnZ̃∗

nt is O(1).

Lemma 18. Under Assumptions 1–7, if the elements of cn0 are uni-
formly bounded, then the elements of 1

T

∑T
t=1((Gncn0 + GnZntδ0)i ,

(Znt)i) are Op(1) uniformly in n and i, where (Gncn0 + GnZntδ0)i is
the ith element of (Gncn0 + GnZntδ0) and (Znt)i is the ith row of Znt .
Appendix C. Concentrated QMLEs

C.1. Reduced form of (1)

As Znt = (Yn,t−1,WnYn,t−1, Xnt), the reduced form of (1) can be
represented as

Ynt = S−1
n Zntδ0 + S−1

n (cn0 + Vnt)

= Zntδ0 + λ0GnZntδ0 + S−1
n (cn0 + Vnt), (34)

for t = 1, 2, . . . , T because S−1
n = In + λ0Gn. This implies that

Ỹnt = S−1
n Z̃ntδ0 + S−1

n Ṽnt = Z̃ntδ0 + λ0GnZ̃ntδ0 + S−1
n Ṽnt . (35)

C.2. The first and second order conditions

For the concentrated likelihood function (4), the first order
derivatives are
1

√
nT

∂ ln Ln,T (θ)

∂θ

=



1
σ 2

1
√
nT

T∑
t=1

Z̃ ′

nt Ṽnt(ζ )

1
σ 2

1
√
nT

T∑
t=1

(
(WnỸnt)

′Ṽnt(ζ ) − trGn(λ)
)

1
2σ 4

1
√
nT

T∑
t=1

(Ṽ ′

nt(ζ )Ṽnt(ζ ) − nσ 2)


, (36)

and the second order derivatives are given in Box II.
Hence,

1
√
nT

∂ ln Ln,T (θ0)
∂θ

=



1
σ 2
0

1
√
nT

T∑
t=1

Z̃ ′

nt Ṽnt

1
σ 2
0

1
√
nT

T∑
t=1

(GnZ̃ntδ0)′Ṽnt +
1
σ 2
0

1
√
nT

T∑
t=1

(Ṽ ′

ntG
′

nṼnt − σ 2
0 trGn)

1
2σ 4

0

1
√
nT

T∑
t=1

(Ṽ ′

nt Ṽnt − nσ 2
0 )


, (37)

and the information matrix is equal to the equation in Box III.
Using Lemma 16, Σ

(2)
θ0,nT

is O
( 1
T

)
. Hence, Σθ0,nT = Σ

(1)
θ0,nT

+

O
( 1
T

)
.

C.3. The variance of the gradient

From (8), as Z̃∗
nt is uncorrelated with Vnt , we have the equation

in Box IV.
For the first matrix, it is equal to Σθ0,nT + O

( 1
T

)
using

Lemma 17. For the second matrix, E
∑T

t=1 Z̃
∗
nt = 0n×(kx+2) and
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Σθ0,nT = −E
(

1
nT

∂2 ln Ln,T (θ0)
∂θ∂θ ′

)
= Σ

(1)
θ0,nT

− Σ
(2)
θ0,nT

where

Σ
(1)
θ0,nT

=



1
σ 2
0 nT

E
T∑

t=1

Z̃ ′

nt Z̃nt ∗ ∗

1
σ 2
0 nT

E
T∑

t=1

(GnZ̃ntδ0)′Z̃nt
1

σ 2
0 nT

E
T∑

t=1

(GnZ̃ntδ0)′GnZ̃ntδ0 +
1
n

[
tr(G′

nGn) + tr(G2
n)
]

∗

01×(kx+2)
1

σ 2
0 n

tr(Gn)
1

2σ 4
0



and Σ
(2)
θ0,nT

=


0(kx+2)×(kx+2) ∗ ∗

1
σ 2
0 n

E(GnV̄nT )
′Z̄nT

2
σ 2
0 n

E
[
(GnZ̄nT δ0)′GnV̄nT

]
+

1
nT

tr(G′

nGn) ∗

1
σ 4
0 n

E
(
Z̄ ′

nT V̄nT
)′ 1

σ 4
0 n

E
[
(GnZ̄nT δ0)′V̄nT

]
+

1
σ 2
0 nT

tr(Gn)
1
T

1
σ 4
0


Box III.
E
(

1
√
nT

∂ ln L∗

n,T (θ0)

∂θ
·

1
√
nT

∂ ln L∗

n,T (θ0)

∂θ ′

)

=



1
σ 2
0 nT

E
T∑

t=1

Z̃∗′

nt Z̃
∗

nt ∗ ∗

1
σ 2
0 nT

E
T∑

t=1

(GnZ̃∗

ntδ0)
′Z̃∗

nt
1

σ 2
0 nT

E
T∑

t=1

(GnZ̃∗

ntδ0)
′GnZ̃∗

ntδ0 +
1
n

[
tr(G′

nGn) + tr(G2
n)
]

∗

01×(kx+2)
1

σ 2
0 n

tr(Gn)
1

2σ 4
0



+


0(kx+2)×(kx+2) ∗ ∗

µ3

σ 4
0 nT

n∑
i=1

Gn,iiE

(
T∑

t=1

Z̃∗

nt

)
i

2µ3

σ 4
0 nT

n∑
i=1

Gn,iiE

(
T∑

t=1

GnZ̃∗

ntδ0

)
i

+
µ4 − 3σ 4

0

σ 4
0 n

n∑
i=1

G2
n,ii ∗

µ3

2σ 6
0 nT

l′nE
T∑

t=1

Z̃∗

nt
1

2σ 6
0 nT

µ3l′nE
T∑

t=1

GnZ̃∗

ntδ0 +
µ4 − 3σ 4

0

2σ 6
0 n

trGn
µ4 − 3σ 4

0

4σ 8
0


Box IV.
E
∑T

t=1 GnZ̃∗
ntδ0 = 0n×1. Hence, E( 1

√
nT

∂ ln L∗n,T (θ0)

∂θ
·

1
√
nT

∂ ln L∗n,T (θ0)

∂θ ′ ) =

Σθ0,nT + Ωθ0,nT + O
( 1
T

)
where

Ωθ0,nT =
µ4 − 3σ 4

0

σ 4
0


0(kx+2)×(kx+2) ∗ ∗

01×(kx+2)
1
n

n∑
i=1

G2
n,ii ∗

01×(kx+2)
1

2σ 2
0 n

trGn
1

4σ 4
0

 .

WhenVnt are normally distributed,Ωθ0,nT = 0(kx+4)×(kx+4) because
µ4 − 3σ 4

0 = 0 for a normal distribution.

C.4. About −
1
nT E

∂2 ln LnT (θ)

∂θ∂θ ′ , −
1
nT

∂2 ln LnT (θ)

∂θ∂θ ′ , −
1
nT E

∂2 ln LnT (θ0)
∂θ∂θ ′ and

−
1
nT

∂2 ln LnT (θ0)
∂θ∂θ ′

Denote ‖θ − θ0‖ as the Euclidean norm of θ − θ0, and Θ1 as a
neighborhood of θ0. We have

−
1
nT

∂2 ln LnT (θ)

∂θ∂θ ′
−

(
−

1
nT

∂2 ln LnT (θ0)
∂θ∂θ ′

)
= ‖θ − θ0‖ · Op(1), (38)(
−

1
nT

∂2 ln LnT (θ0)
∂θ∂θ ′

)
− Σθ0,nT = Op

(
1

√
nT

)
, (39)
sup
θ∈Θ

∣∣∣∣− 1
nT

∂2 ln LnT (θ)

∂θ∂θ ′
−

(
−

1
nT

E
∂2 ln LnT (θ)

∂θ∂θ ′

)∣∣∣∣
ij

= Op

(
1

√
nT

)
, (40)

and

sup
θ∈Θ1

∣∣∣∣− 1
nT

E
∂2 ln LnT (θ)

∂θ∂θ ′
− Σθ0,nT

∣∣∣∣
ij

= sup
θ∈Θ1

‖θ − θ0‖ · O(1), (41)

for all i, j = 1, 2, . . . , kx + 4.

Proof for (38). The detailed expressions of each entry of the
difference −

1
nT

∂2 ln LnT (θ)

∂θ∂θ ′ − (− 1
nT

∂2 ln LnT (θ0)
∂θ∂θ ′ ) are straightforward

from Box II. First, 1
n tr(G

2
n(λ) − G2

n) =
1
n tr[(Gn(λ̄))3](λ − λ0) where

λ̄ lies between λ and λ0. As 1
n tr[(Gn(λ))3] is UB by Lemma A.7

in Lee (2004), 1
n tr(G

2
n(λ) − G2

n) is of the order |λ − λ0| · O(1).
Second, as Ṽnt(ζ ) = Ṽnt − (λ − λ0)WnỸnt − Z̃nt(δ − δ0) and
WnỸnt = GnZ̃ntδ0 + GnṼnt , using Lemma 15, all the entries in
the above matrices difference are of the same order as ‖θ − θ0‖,
multiplied by stochastic terms of orders not larger than Op(1).

Hence, − 1
nT

∂2 ln LnT (θ)

∂θ∂θ ′ − (− 1
nT

∂2 ln LnT (θ0)
∂θ∂θ ′ ) = ‖θ − θ0‖ · Op(1). �

Proof for (39). As Σθ0,nT = −E 1
nT

∂2 ln LnT (θ0)
∂θ∂θ ′ , all the entries of the

difference (− 1
nT

∂2 ln LnT (θ0)
∂θ∂θ ′ )−Σθ0,nT have zeromeans. The detailed
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expressions of the entries are immediate from Box II evaluated at
θ0. Using Lemma 15, all the entries in above difference are of the
order Op

(
1

√
nT

)
. �

Proof for (40). Again, all the detailed expressions of entries of the
difference −

1
nT

∂2 ln LnT (θ)

∂θ∂θ ′ − (− 1
nT E

∂2 ln LnT (θ)

∂θ∂θ ′ ) follow from Box II. As
Ṽnt(ζ ) = Ṽnt −(λ−λ0)WnỸnt − Z̃nt(δ−δ0) andWnỸnt = GnZ̃ntδ0+

GnṼnt , by Lemma 15, we have supθ∈Θ

∣∣∣− 1
nT

∂2 ln LnT (θ)

∂θ∂θ ′ − Σθ0,nT

∣∣∣
ij

=

Op

(
1

√
nT

)
because Θ is bounded. �

Proof for (41). The entries of− 1
nT E

∂2 ln LnT (θ)

∂θ∂θ ′ −Σθ0,nT are all differ-
ences in expectations, which are of orders no larger than O(1) by
Lemma 15; hence, we have supθ∈Θ1

∣∣∣− 1
nT E

∂2 ln LnT (θ)

∂θ∂θ ′ − Σθ,nT

∣∣∣
ij

=

supθ∈Θ1
‖θ − θ0‖ · O(1) because Θ1 is bounded. �

Appendix D. Proofs for claims and theorems

Proof of Claim 1. To prove 1
nT ln Ln,T (θ) − Qn,T (θ)

p
→ 0 uniformly

in θ in any compact parameter space Θ:
From Ṽnt(ζ ) = Ỹnt − λWnỸnt − Z̃ntδ, we have Ṽnt(ζ ) = Ṽnt −

(λ − λ0)WnỸnt − Z̃nt(δ − δ0). Hence,

Ṽ ′

nt(ζ )Ṽnt(ζ ) = Ṽ ′

nt Ṽnt + (λ − λ0)
2(WnỸnt)

′WnỸnt

+ (δ − δ0)
′Z̃ ′

nt Z̃nt(δ − δ0)

+ 2(λ − λ0)(WnỸnt)
′Z̃nt(δ − δ0) − 2(λ − λ0)

× (WnỸnt)
′Ṽnt − 2(δ − δ0)

′Z̃ ′

nt Ṽnt , (42)

where, usingWnỸnt = GnZ̃ntδ0 + GnṼnt ,

(WnỸnt)
′WnỸnt = (GnZ̃ntδ0)′(GnZ̃ntδ0)

+ 2(GnZ̃ntδ0)′GnṼnt + (GnṼnt)
′GnṼnt .

Using Lemma 15,

1
nT

T∑
t=1

Ṽ ′

nt Ṽnt − E
1
nT

T∑
t=1

Ṽ ′

nt Ṽnt
p

→ 0,

1
nT

T∑
t=1

(WnỸnt)
′WnỸnt − E

1
nT

T∑
t=1

(WnỸnt)
′WnỸnt

p
→ 0,

1
nT

T∑
t=1

Z̃ ′

nt Z̃nt − E
1
nT

T∑
t=1

Z̃ ′

nt Z̃nt
p

→ 0,

1
nT

T∑
t=1

(WnỸnt)
′Ṽnt − E

1
nT

T∑
t=1

(WnỸnt)
′Ṽnt

p
→ 0,

1
nT

T∑
t=1

Z̃ ′

nt Ṽnt − E
1
nT

T∑
t=1

Z̃ ′

nt Ṽnt
p

→ 0,

1
nT

T∑
t=1

(WnỸnt)
′Z̃nt − E

1
nT

T∑
t=1

(WnỸnt)
′Z̃nt

p
→ 0.

As λ and δ are bounded in Θ , we have 1
nT

∑T
t=1 Ṽ

′
nt(ζ )Ṽnt(ζ ) −

1
nT E

∑T
t=1 Ṽ

′
nt(ζ )Ṽnt(ζ )

p
→ 0 uniformly in θ inΘ . Also, 1

nT ln Ln,T (θ)

= −
1
2 ln 2π −

1
2 ln σ 2

+
1
n ln |Sn(λ)|− 1

2σ 2nT

∑T
t=1 Ṽ

′
nt(ζ )Ṽnt(ζ ) and

Qn,T (θ) = E 1
nT ln Ln,T (θ). Using the fact that σ 2 is bounded away

from zero in Θ ,

1
nT

ln Ln,T (θ) − Qn,T (θ) = −
1

2σ 2

(
1
nT

T∑
t=1

Ṽ ′

nt(ζ )Ṽnt(ζ )
−
1
nT

E
T∑

t=1

Ṽ ′

nt(ζ )Ṽnt(ζ )

)
p

→ 0 uniformly in θ.

To prove Qn,T (θ) is uniformly equicontinuous in θ in any compact
parameter space Θ:

We have QnT (θ) = E 1
nT ln Ln,T (θ) = −

1
2 ln 2π −

1
2 ln σ 2

+
1
n ln |Sn(λ)| −

1
2σ 2nT

E
∑T

t=1 Ṽ
′
nt(ζ )Ṽnt(ζ ). As Ṽnt(ζ ) =

Sn(λ)S−1
n Z̃ntδ0 − Z̃ntδ + Sn(λ)S−1

n Ṽnt ,

E
1
nT

T∑
t=1

Ṽ ′

nt(ζ )Ṽnt(ζ ) =
1
nT

E
T∑

t=1

(Sn(λ)S−1
n Z̃ntδ0 − Z̃ntδ)′

× (Sn(λ)S−1
n Z̃ntδ0 − Z̃ntδ) +

1
n
T − 1
T

σ 2
0 tr(S

−1′

n S ′

n(λ)Sn(λ)S−1
n )

+
2
nT

E
T∑

t=1

(Sn(λ)S−1
n Z̃ntδ0 − Z̃ntδ)′Sn(λ)S−1

n Ṽnt . (43)

The third term 2
nT E

∑T
t=1(Sn(λ)S−1

n Z̃ntδ0 − Z̃ntδ)′Sn(λ)S−1
n Ṽnt is

O
( 1
T

)
according to Lemma 15, and the order O

( 1
T

)
is uniformly

in θ in Θ , because it is a polynomial function in θ and Θ is a
bounded set. The first term is equal to (δ′

− δ′

0, λ − λ0)EHnT (δ
′
−

δ′

0, λ − λ0)
′ using Sn(λ)S−1

n = In − (λ − λ0)Gn; the second term

is equal to T−1
T σ 2

n (λ) where σ 2
n (λ) =

σ 2
0
n tr(S ′−1

n S ′
n(λ)Sn(λ)S−1

n ),
which are all polynomial functions of θ . To prove Qn,T (θ) is
uniformly equicontinuous in θ , the following are sufficient:
(1) ln σ 2 is uniformly continuous; (2) 1

n ln |Sn(λ)| is uniformly
equicontinuous; (3) (δ′

− δ′

0, λ − λ0)HnT (δ
′
− δ′

0, λ − λ0)
′ is

uniformly equicontinuous; (4) σ 2
n (λ) is uniformly equicontinuous.

(1) is obvious, because σ 2 is bounded away from zero in Θ .
For (2), 1

n ln |Sn(λ2)| −
1
n ln |Sn(λ1)| =

1
n tr
(
WnS−1

n

(
λ̄
))

(λ2 − λ1)

where λ̄ lies between λ2 and λ1. As S−1
n (λ) is UB, uni-

formly in θ ∈ Θ , 1
n tr
(
WnS−1

n

(
λ̄
))

is bounded, and, hence,
1
n ln |S(λ)| is uniformly equicontinuous. For (3), because δ and
λ are bounded and because EHnT is O(1), the result follows.

For (4), σ 2
n (λ2) − σ 2

n (λ1) =
σ 2
0
n tr(S ′−1

n S ′
n(λ2)Sn(λ2)S−1

n ) −

σ 2
0
n tr(S ′−1

n S ′
n(λ1)Sn(λ1)S−1

n ) = σ 2
0 [(λ2 − λ1) (λ2 + λ1 − 2λ0)

trG′
nGn
n

−(λ2 − λ1)
tr(G′

n+Gn)
n ] by using Sn(λ)S−1

n = In−(λ−λ0)Gn. AsG′
nGn

and Gn are UB, σ 2
n (λ) is uniformly equicontinuous. �

Proof of nonsingularity of the information matrix. We can
prove the result, by using an argument by contradiction (similar
to Lee (2004)). For Σθ0 ≡ limT→∞ Σθ0,nT , where Σθ0,nT is (6),
we need to prove that Σθ0α = 0 implies α = 0 where α =

(α′

1, α2, α3)
′, α2, α3 are scalars and α1 is (kx + 2) × 1 vector. If

this is true, then, columns ofΣθ0 would be linear independent, and
Σθ0 would be nonsingular. Denote Hδ = limT→∞

1
nT

∑T
t=1 Z̃

′
nt Z̃nt ,

Hδλ = limT→∞
1
nT

∑T
t=1 Z̃

′
ntGnZ̃ntδ0, Hλδ = H ′

δλ and Hλ =

limT→∞
1
nT

∑T
t=1(GnZ̃ntδ0)′GnZ̃ntδ0, then

Σθ0 =
1
σ 2
0

×


EHδ EHδλ 0(kx+2)×1

EHλδ EHλ + lim
n→∞

σ 2
0

n

[
tr(G′

nGn) + tr(G2
n)
]

lim
n→∞

1
n
tr(Gn)

01×(kx+2) lim
n→∞

1
n
tr(Gn)

1
2σ 2

0

 .

Hence, Σθ0α = 0 implies

1
σ 2
0
EHδ × α1 +

1
σ 2
0
EHδλ × α2 = 0,
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1
σ 2
0
EHλδ × α1 +

(
1
σ 2
0
EHλ + lim

n→∞

1
n

[
tr(G′

nGn) + tr(G2
n)
])

× α2

+ lim
n→∞

1
σ 2
0 n

tr(Gn) × α3 = 0,

lim
n→∞

1
σ 2
0 n

tr(Gn) × α2 +
1

2σ 4
0

× α3 = 0.

The first and third equations imply, respectively, α1 = −(EHδ)
−1

EHδλ × α2 and α3 = −2 limn→∞

σ 2
0
n tr(Gn) × α2. By eliminating α1

and α3, the second equation becomes
{( 1

σ 2
0

(
EHλ − EHλδ(EHδ)

−1EHδλ

)
) + limn→∞

1
n [tr(G

′
nGn) + tr(G2

n)

− 2 tr2(Gn)
n ]} × α2 = 0. Because tr(G′

nGn) + tr(G2
n) − 2 tr2(Gn)

n =

1
2 tr
[
(C ′

n + Cn)(C ′
n + Cn)

′
]

≥ 0 where Cn = Gn −
trGn
n In, combined

with the condition that limT→∞ EHnT is nonsingular,wehaveα2 =

0 and hence α = 0. �

Proof of Theorem 1. As E
∑T

t=1 Ṽ
′
nt Ṽnt = n(T − 1)σ 2

0 , at θ0, (5)
implies E ln Ln,T (θ0) = −

nT
2 ln 2π −

nT
2 ln σ 2

0 + T ln |Sn| −
n(T−1)

2 .

Denote σ 2
n (λ) =

σ 2
0
n tr(S−1′

n S ′
n(λ)Sn(λ)S−1

n ). By using Sn(λ)S−1
n =

In + (λ0 − λ)Gn for (43), it follows that

1
nT

E ln Ln,T (θ) −
1
nT

E ln Ln,T (θ0)

= −
1
2
(ln σ 2

− ln σ 2
0 ) +

1
n
ln |Sn(λ)| −

1
n
ln |Sn|

−

(
1

2σ 2

1
nT

T∑
t=1

EṼ ′

nt(ζ )Ṽnt(ζ ) −
T − 1
2T

)

= T1,n(λ, σ 2) −
1

2σ 2
T2,n,T (δ, λ) + o(1)

where T1,n(λ, σ 2) = −
1
2 (ln σ 2

− ln σ 2
0 )+

1
n ln |Sn(λ)|− 1

n ln |Sn|−
1

2σ 2 (σ
2
n (λ) − σ 2) and

T2,n,T (δ, λ) =
1
nT

T∑
t=1

E
{
(Z̃nt(δ0 − δ) + (λ0 − λ)GnZ̃ntδ0)′

× (Z̃nt(δ0 − δ) + (λ0 − λ)GnZ̃ntδ0)
}

.

Consider the process Ynt = λ0WnYnt + Vnt for a period t ,
the log likelihood function of this process is ln Lp,n(λ, σ 2) =

−
n
2 ln 2π −

n
2 ln σ 2

+ ln |Sn(λ)| − 1
2σ 2 (Sn(λ)Ynt)

′Sn(λ)Ynt . Let Ep(·)
be the expectation operator for Ynt based on this process. It follows
that Ep( 1

n ln Lp,n(λ, σ 2)) − Ep( 1
n ln Lp,n(λ0, σ

2
0 )) = −

1
2 (ln σ 2

−

ln σ 2
0 ) +

1
n ln |Sn(λ)| −

1
n ln |Sn(λ0)| −

1
2σ 2 (σ

2
n (λ) − σ 2), which

equals T1,n(λ, σ 2). By the information inequality, ln Lp,n(λ, σ 2) −

ln Lp,n(λ0, σ
2
0 ) ≤ 0. Thus, T1,n(λ, σ 2) ≤ 0 for any (λ, σ 2). Also,

T2,n,T (δ, λ) is a quadratic function of δ and λ. Under the condition
that limT→∞ EHnT is nonsingular, T2,n,T (δ, λ) > 0 whenever
(δ, λ) 6= (δ0, λ0), so, (δ, λ) is globally identified. Given λ0, σ 2

0 is
the unique maximizer of T1,n(λ0, σ

2). Hence, (δ, λ, σ 2) is globally
identified.

Combined with uniform convergence and equicontinuity in
Claim 1, the consistency follows. �

Proof of Theorem 2. From proof of Theorem 1, 1
nT E ln Ln,T (θ) −

1
nT E ln Ln,T (θ0) = T1,n(λ, σ 2) −

1
2σ 2 T2,n,T (δ, λ) + o(1). When

limT→∞ EHnT is singular, δ0 and λ0 cannot be identified from
T2,n,T (δ, λ). Global identification requires that the limit of
T1,n(λ, σ 2) is strictly less than zero. As T1,n(λ, σ 2) ≤ 0 by
the information inequality, T1,n(λ, σ 2) 6= 0 is equivalent to
1
n ln

∣∣σ 2
0 S

−1
n S−1′

n

∣∣ 6=
1
n ln

∣∣σ 2
n (λ)S−1

n (λ)S−1′
n (λ)

∣∣ (see Lee (2004,
Proof of Theorem 4.1)). After λ0 and σ 2
0 are identified, given λ0,

δ0 can be identified from T2,n,T (δ, λ). Combined with uniform con-
vergence and equicontinuity in Claim 1, the consistency follows.

�

Proof of Claim 2. From (7), Z̃nt = Z̃∗
nt − (ŪnT ,−1,WnŪnT ,−1, 0n×kx),

which has two components: one is Z̃∗
nt , uncorrelated with Vnt ; the

other is −(ŪnT ,−1, WnŪnT ,−1, 0n×kx), correlated with Vnt when

t ≤ T − 1. Correspondingly, 1
√
nT

∂ ln Ln,T (θ0)

∂θ
=

1
√
nT

∂ ln L∗n,T (θ0)

∂θ
− ∆nT

where 1
√
nT

∂ ln L∗n,T (θ0)

∂θ
is in (8) and ∆nT is in (9). For 1

√
nT

∂ ln L∗n,T (θ0)

∂θ
,

the CLT ofmartingale difference arrays (Lemma 13) can be applied.
For ∆nT , using Lemma 9 and Lemma 11, it is equal to

√
n
T ϕn +

O
(√

n
T3

)
+ Op

(√
1
T

)
where ϕn is O(1) in Box I. �

Proof of Theorem 3. According to the Taylor expansion,
√
nT (θ̂nT

− θ0) =

(
−

1
nT

∂2 ln Ln,T (θ̄nT )

∂θ∂θ ′

)−1
·

(
1

√
nT

∂ ln L∗n,T (θ0)

∂θ
− ∆nT

)
where

1
√
nT

∂ ln L∗n,T (θ0)

∂θ

d
→N(0, Σθ0 + Ωθ0), ∆nT =

√
n
T ϕn + O

(√
n
T3

)
+

Op

(√
1
T

)
with ϕn = O(1) and θ̄nT lies between θ0 and θ̂nT .

As −
1
nT

∂2 ln Ln,T (θ̄nT )

∂θ∂θ ′ =

(
−

1
nT

∂2 ln Ln,T (θ̄nT )

∂θ∂θ ′ −

(
−

1
nT

∂2 ln Ln,T (θ0)

∂θ∂θ ′

))
+(

−
1
nT

∂2 ln Ln,T (θ0)

∂θ∂θ ′ − Σθ0,nT

)
+ Σθ0,nT where the first term is∥∥θ̄nT − θ0

∥∥ · Op(1) from (38) and the second term is Op

(
1

√
nT

)
from (39), − 1

nT
∂2 ln Ln,T (θ̄nT )

∂θ∂θ ′ =
∥∥θ̄nT − θ0

∥∥ · Op(1) + Op

(
1

√
nT

)
+

Σθ0,nT . Because
∥∥θ̄nT − θ0

∥∥ = op(1) and Σθ0,nT is nonsingular

in the limit, −
1
nT

∂2 ln Ln,T (θ̄nT )

∂θ∂θ ′ is invertible for large n and T and(
−

1
nT

∂2 ln Ln,T (θ̄nT )

∂θ∂θ ′

)−1
is Op(1). Then,

√
nT (θ̂nT − θ0) = Op(1) ·(

Op(1) + O
(√

n
T

))
, which implies that

θ̂nT − θ0 = Op

(
max

(√
1
nT

,
1
T

))
. (44)

Hence,
√
nT (θ̂nT − θ0) =

(
Σθ0,nT + Op

(
max

(√
1
nT , 1

T

)))−1
·(

1
√
nT

∂ ln L∗n,T (θ0)

∂θ
− ∆nT

)
. Using the fact that17(

Σθ0,nT + Op

(
max

(√
1
nT

,
1
T

)))−1

= Σ−1
θ0,nT

+ Op

(
max

(√
1
nT

,
1
T

))
, (45)

we have
√
nT (θ̂nT − θ0) = Σ−1

θ0,nT
·

1
√
nT

∂ ln L∗n,T (θ0)

∂θ
+

Op

(
max

(√
1
nT , 1

T

))
·

1
√
nT

∂ ln L∗n,T (θ0)

∂θ
− Σ−1

θ0,nT
· ∆nT −

Op

(
max

(√
1
nT , 1

T

))
· ∆nT , which implies that

√
nT (θ̂nT − θ0) +

Σ−1
θ0,nT

· ∆nT + Op

(
max

(√
1
nT , 1

T

))
∆nT = (Σ−1

θ0,nT
+ op(1)) ·

1
√
nT

∂ ln L∗n,T (θ0)

∂θ
. As Σθ0 = limT→∞ Σθ0,nT exists, then using

Claim 2 and ∆nT =

√
n
T ϕn + O

(√
n
T3

)
+ Op

(√
1
T

)
,
√
nT (θ̂nT −

17 For two nonsingular matrices Ck and Dk with Ck − Dk = Op(T−η) for η > 0, we
have C−1

k − D−1
k = C−1

k (Dk − Ck)D−1
k = Op(T−η).
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θ0) +

√
n
T Σ−1

θ0,nT
ϕn + Op

(
max

(√
n
T3

,

√
1
T

))
d

→N(0, Σ−1
θ0

(Σθ0 +

Ωθ0)Σ
−1
θ0

). �

Proof of Theorem 4. From the first order condition ∂ ln Ln,T (θ,cn)
∂cn

=

1
σ 2

∑T
t=1 Vnt(ζ ), we have ĉnT (θ) =

1
T

∑T
t=1(Sn(λ)Ynt − Zntδ). As

SnYnt = Zntδ0 + cn0 + Vnt and Sn(λ)S−1
n = In − (λ − λ0)Gn, it

implies that ĉnT (θ) =
1
T

∑T
t=1((In − (λ−λ0)Gn)(Zntδ0 + cn0 +Vnt)

− Zntδ). Hence, for each fixed effect,

ĉi,nT (θ̂nT ) − ci,0 = −
1
T

T∑
t=1

((Gncn0 + GnZntδ0)i , (Znt)i)

×

(
λ̂nT − λ0

δ̂nT − δ0

)
+

1
T

T∑
t=1

{(
In − (λ̂nT − λ0)Gn

)
Vnt

}
i
.

As elements of 1
T

∑T
t=1((Gncn0 + GnZntδ0)i , (Znt)i) are Op(1) uni-

formly in n and i by Lemma 18 and θ̂nT −θ0 = Op

(
max

(√
1
nT , 1

T

))
by Theorem 3, the dominant term of ĉi,nT (θ̂nT ) − ci,0 would be
1
T

∑T
t=1 vit . So, for each fixed effect,

√
T
(
ĉi,nT (θ̂nT ) − c0

)
d

→N(0,

σ 2
0 ) and they are independent from each other asymptotically. �

Proof of Theorem 5. Theorem 3 states that
√
nT (θ̂nT − θ0) +√

n
T Σ−1

θ0,nT
ϕn + Op

(
max

(√
n
T3

,

√
1
T

))
d

→N(0, Σ−1
θ0

(Σθ0 + Ωθ0)

Σ−1
θ0

). As θ̂1
nT = θ̂nT +

1
T (− 1

nT E
∂2 ln LnT (θnT )

∂θ∂θ ′ )−1ϕn(θ̂nT ),
√
nT (θ̂1

nT −

θ0)
d

→N(0, Σ−1
θ0

(Σθ0 + Ωθ0)Σ
−1
θ0

) if
√

n
T ((− 1

nT E
∂2 ln LnT (θ̂nT )

∂θ∂θ ′ )−1ϕn

(θ̂nT ) − Σ−1
θ0,nT

ϕn(θ0))
p

→ 0 and n
T3

→ 0. Assuming that n
T3

→ 0,
we are going to prove that√

n
T

(−
1
nT

E
∂2 ln LnT (θ̂nT )

∂θ∂θ ′

)−1

ϕn(θ̂nT ) − Σ−1
θ0,nT

ϕn(θ0)

 p
→ 0.

(46)

From (44) and (45),− 1
nT E

∂2 ln LnT (θ̂nT )

∂θ∂θ ′ = Σ−1
θ0,nT

+Op(max( 1
T , 1

√
nT

)).
Hence,√

n
T

(−
1
nT

E
∂2 ln LnT (θ̂nT )

∂θ∂θ ′

)−1

ϕn(θ̂nT ) − Σ−1
θ0,nT

ϕn(θ0)


=

√
n
T

(
Σ−1

θ0,nT

(
ϕn(θ̂nT ) − ϕn(θ0)

))
+

√
n
T

ϕn(θ̂nT ) × Op

(
max

(
1
T

,
1

√
nT

))
.

As θ̂nT − θ0 = Op

(
max

(
1
T , 1

√
nT

))
and ϕn(θ0) is O(1), according to

the Taylor expansion of ϕn(θ̂nT ) in Box I around ϕn(θ0), to prove
(46) is reduced to prove that elements of ∂ϕn(θ̄nT )

∂θ ′ < ∞ where
θ̄nT lies between θ̂nT and θ0. As An(θ) = S−1

n (λ)(γ In + ρWn),
we have ∂An(θ)

∂γ
= S−1

n (λ), ∂An(θ)

∂ρ
= S−1

n (λ)Wn, ∂An(θ)

∂βi
= 0 for

i = 1, 2, . . . , kx and ∂An(θ)

∂λ
= S−1

n (λ)WnS−1
n (λ)(γ In + ρWn).

Because18 ∂Ahn(θ)

∂θ ′ = hAh−1
n (θ) ∂An(θ)

∂θ ′ for h ≥ 1,
∑

∞

h=1
∂Ahn(θ)

∂θ ′ =

18 This can be proved by mathematical induction. Step (i) For h = 2, ∂A2n(θ)

∂λ
=

An(θ) ∂An(θ)

∂λ
+

∂An(θ)

∂λ
An(θ). Using WnS−1

n (λ) = S−1
n (λ)Wn , ∂An(θ)

∂λ
An(θ) =

An(θ) ∂An(θ)

∂λ
. So, ∂A2n(θ)

∂λ
= 2An(θ) ∂An(θ)

∂λ
. Step (ii) Suppose ∂Ahn(θ)

∂λ
= hAh−1

n (θ) ∂An(θ)

∂λ
,

then ∂Ah+1
n (θ)

∂λ
= hAh−1

n (θ) ∂An(θ)

∂λ
An(θ) + Ah

n(θ) ∂An(θ)

∂λ
= (h + 1)Ah

n(θ) ∂An(θ)

∂λ
. Same

arguments can be applied to other components of ∂Ahn(θ)

∂θ
.

∑
∞

h=1 hA
h−1
n (θ) ∂An(θ)

∂θ ′ . As (1)
∑

∞

h=0 A
h
n(θ) and

∑
∞

h=1 hA
h−1
n (θ) are

uniformly bounded in either row sum or column sum, uniformly
in a neighborhood of θ0, (2) S−1

n (λ) is UB, also uniformly in λ in a
neighborhood of λ0 and (3) Wn is UB, it follows that the elements
of ∂ϕn(θ)

∂θ ′ will be uniformly bounded in a neighborhood of θ0. As θ̄nT

converges in probability to θ0, elements of ∂ϕn(θ̄nT )

∂θ ′ are Op(1). �
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