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In this paper, we extend the GMM framework for the estimation of the mixed-
regressive spatial autoregressive model by Lee (2007a) to estimate a high order
mixed-regressive spatial autoregressive model with spatial autoregressive distur-
bances. Identification of such a general model is considered. The GMM approach
has computational advantage over the conventional ML method. The proposed
GMM estimators are shown to be consistent and asymptotically normal. The best
GMM estimator is derived, within the class of GMM estimators based on linear
and quadratic moment conditions of the disturbances. The best GMM estimator is
asymptotically as efficient as the ML estimator under normality, more efficient than
the QML estimator otherwise, and is efficient relative to the G2SLS estimator.

1. INTRODUCTION

The spatial autoregressive (SAR) model with high order spatial lags can char-
acterize spatial interdependence based on different types of relationships (e.g.,
geographic distance, social relation) among cross-sectional units. In this paper,
we consider the estimation of a general high order SAR model with SAR distur-
bances.

For the estimation of a SAR model with a first-order spatial lag, the con-
ventional estimation method would be the quasi-maximum likelihood (QML)
(Anselin, 1988). In addition to that, alternative estimation methods have also been
proposed. In the presence of exogenous variables, the SAR model is known as
a mixed regressive, spatial autoregressive (MRSAR) model. For the first-order
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MRSAR model with SAR disturbances, Kelejian and Prucha (1998) introduced a
general spatial two-stage least squares (G2SLS) estimator that is consistent and
asymptotically normal. Lee (2003) discussed the best instrumental variables (IVs)
selection in the last step of the G2SLS procedure and suggested the best one
within the class of IV estimators. To further simplify the computation involved in
the best G2SLS estimator, Kelejian, Prucha, and Yuzefovich (2004) suggested a
series-type best G2SLS estimator that is asymptotically equivalent to Lee’s (2003)
estimator. Kelejian and Prucha (2007a) considered the IV estimation of the first-
order MRSAR model allowing the disturbance process for general patterns of
correlation and heteroskedasticity, and proposed a spatial heteroskedasticity and
autocorrelation consistent (HAC) estimator for the variance–covariance (VC) ma-
trix of the IV estimator.

The various IV or G2SLS estimators have the virtue of computational simplic-
ity, but they are inefficient relative to the ML estimator, when the disturbances are
normally distributed so that the likelihood function is correctly specified. Also, as
the IVs are functions of the spatial weights matrices and exogenous variables, the
G2SLS method would not be applicable when all exogenous variables in a model
are really irrelevant. Lee (2001; 2007a) proposed a systematic generalized method
of moments (GMM) framework for the estimation of the first-order SAR models,
with or without exogenous regressors. The GMM approach combines the IV esti-
mation with a generalization of the method of moments (MOM) in Kelejian and
Prucha (1999) that has been proposed for the estimation of SAR disturbances in
a regression model. That GMM approach is computationally more complicated
than the G2SLS but is simpler than the QML. The GMM estimator is asymptoti-
cally efficient relative to the G2SLS estimator, and with proper moment equations,
it can be asymptotically as efficient as the ML estimator with normally distributed
disturbances.

In this paper, we extend the GMM approach to estimate the (MR)SAR model
with general finite order spatial lags and SAR disturbances of a finite order.
High order SAR models have been specified in Blommestein(1983; 1985), Huang
(1984), and some others (see Anselin and Bera, 1998). The multiple spatial weights
matrices may capture contiguity of units in various dimensions. For example, in
Tao’s (2005) strategic interaction model of local school expenditure, two spatial
weights matrices are specified — one based on geographical contiguity and the
other based on economic similarity. An alternative perspective stated in Anselin
and Bera (1998, p.252) on the need for high order models is to consider them
as alternatives of a poorly specified weights matrix rather than as a realistic data
generating process. For this general model with high order spatial lags and dis-
turbances, the QML approach is not practical and may be, in general, infeasible,
as the parameter space is quite complex and the Jacobian determinant in the log
likelihood function can not be easily evaluated. The IV and G2SLS estimation ap-
proaches are still feasible. For instance, Kelejian and Prucha (2004) proposed the
G2SLS estimation for the spatial simultaneous equation model, where a structural
equation may have spatial lags of several endogenous variables on the right-hand
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side. Also, Kelejian and Prucha (2007a) considered the G2SLS estimation of a
structural equation with spatial lags and endogenous regressors where general
patterns of spatial correlation and heteroskedasticity are allowed for the distur-
bance. The VC matrix of the G2SLS estimate can be consistently estimated with
their proposed HAC estimator. With carefully designed quadratic moment equa-
tions, the GMM approach can be robust against unknown heteroskedasticity (see
Kelejian and Prucha, 2007b; Lin and Lee, 2006). In this paper, we are interested
in efficient estimators instead of robust ones. So we will focus on the model with
homoskedastic disturbances. Under the homoskedasticity assumption, while the
G2SLS estimation approach is feasible, it would not be asymptotically efficient.
We study the identification of the model with homoskedastic disturbances and
the asymptotic properties of the proposed GMM estimator. We discuss the selec-
tion of the best moment conditions without any specific distributional assumption,
and suggest the best GMM (BGMM) estimator within the class of GMM estima-
tors derived from linear and quadratic moment conditions.1 As the GMM objec-
tive function is a polynomial of unknown parameters, constraints on parameters
are not necessary and the BGMM is computationally tractable. Furthermore, the
BGMM estimator is asymptotically as efficient as the ML estimator under nor-
mality, and more efficient than the QML estimator otherwise. It is also efficient
relative to the best G2SLS estimator.

We conduct a Monte Carlo experiment to study the finite sample performance
of the proposed GMM estimator. We find that the GMM estimator of the spatial ef-
fects has smaller bias and standard deviation than those of the G2SLS and B2SLS
when the variation from the exogenous regressors relative to that of the distur-
bances is small. When the disturbances are asymmetrically distributed, the pro-
posed BGMM improves upon the QML and B2SLS, and the improvement could
be as large as 20% in terms of reduction in the standard deviation. The GMM
estimators are also relatively robust to the misspecified order of spatial lags.

This paper is organized as follows: In Section 2, we introduce the high order
MRSAR model with SAR disturbances. Section 3 discusses the existing estima-
tors for this model. We establish identification of the model and propose a GMM
estimation approach in Section 4. Section 5 investigates consistency and asymp-
totic distribution of the GMM estimators. Section 6 derives the best selection of
moment functions and discusses the efficiency properties of the BGMM estima-
tor. Section 7 provides some Monte Carlo results of finite sample properties of
estimators. Section 8 concludes. All the proofs of the results are collected in the
Appendixes.

2. THE MRSAR MODEL WITH SAR DISTURBANCES

We consider a general p-order MRSAR model with q-order SAR disturbances
(for short, SARAR(p,q))

Yn = ∑p
j=1 λj WjnYn + Xnβ +un, un = ∑q

k=1 ρk Mknun + εn, (1)
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where n is the total number of spatial units, Xn is an n × kx dimensional ma-
trix of nonstochastic exogenous variables, and the elements εn1, . . . ,εnn of the n-
dimensional vector εn are i.i.d. (0,σ 2). W1n, . . . ,Wpn and M1n, . . . , Mqn are n ×n
dimensional spatial weights matrices of known constants such that Wj1n �= Wj2n

if j1 �= j2 and Mk1n �= Mk2n if k1 �= k2. However, Wjn and Mkn may or may not be
the same for j = 1, . . . , p and k = 1, . . . ,q. The model (1) incorporates both high
order spatial lags W1nYn, . . . ,WpnYn and spatial correlated disturbances un .2

With a given contiguity-based spatial weights matrix Wn , it seems straightfor-
ward to define high order spatial lags operators as powers of Wn motivated as in
time series. The corresponding SAR(p) model would be Yn = ∑p

j=1 λj W j
n Yn +

Xnβ +εn . As emphasized in Blommestein (1985), powering Wn may result in the
presence of circular and redundant routes. Proper high-order lag operators should
have those circular and redundant routes eliminated. Algorithms have been in-
troduced in Blommestein and Koper (1992) and Anselin and Smirnov (1996) to
construct proper high-order lag operators. Such models can be regarded as spe-
cial cases in our model framework. In general, our framework allows the sev-
eral spatial matrices as (proper) high-order spatial lag operators generated from a
contiguity-based spatial weights matrix but may not be so restricted.

Let ρ = (ρ1, . . . ,ρq)′, λ = (λ1, . . . ,λp)
′, and θ = (ρ′,λ′,β ′)′. In order to distin-

guish the true parameters from other possible values in the parameter space, θ0 =
(ρ′

0,λ
′
0,β

′
0)

′ and σ 2
0 denote the true parameters. Denote Sn(λ) = In −∑p

j=1 λj Wjn

and Rn(ρ) = In − ∑q
k=1 ρk Mkn . At θ0, let Sn = Sn(λ0) and Rn = Rn(ρ0) for

simplicity. (A list of special notations used for this paper has been collected
in Appendix A for convenient reference.) This model is an equilibrium model
so that Sn and Rn are invertible.3 The reduced form equation of (1) is Yn =
S−1

n Xnβ0 + S−1
n R−1

n εn . Furthermore, let Gjn = WjnS−1
n , which provides the rep-

resentations WjnYn = Gjn Xnβ0 + Gjn R−1
n εn for j = 1, . . . , p. WjnYn is corre-

lated with εn because, in general, E((Gjn R−1
n εn)′εn) = σ 2

0 tr(Gjn R−1
n ) �= 0. In

most cases, these correlations rule out the ordinary least squares (OLS) for the
estimation of (1).4

3. EXISTING ESTIMATORS

From (1), if εn is N (0,σ 2
0 In), the log likelihood function of this model is

ln Ln = −n

2
ln(2π)− n

2
lnσ 2 + ln |Sn (λ) |+ ln |Rn (ρ) |

− 1

2σ 2 [Sn (λ)Yn − Xnβ]′ R′
n (ρ) Rn (ρ) [Sn (λ)Yn − Xnβ]. (2)

To guarantee that the log likelihood function is well defined, we only consider
the parameter space of λ and ρ such that the determinants of Sn(λ) and Rn(ρ)
are strictly positive, i.e., |Sn(λ)| > 0 and |Rn(ρ)| > 0. Let || · || be any matrix
norm. One has ||∑p

j=1 λj Wjn|| ≤ (∑p
j=1 |λj |) · maxj=1,...,p ||Wjn||. Hence, when

all Wjn are row-normalized such that ||Wjn||∞ = 1 for j = 1, . . . , p,5 a possible
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parameter space for λ can be one satisfying ∑p
j=1 |λj | < 1. In the event that the

spatial weights matrices are not row-normalized, then the parameter space may
be taken to be ∑p

j=1 |λj | < (maxi=1,...p ||Wjn||)−1. The parameter space of ρ can
be analogously obtained.

Even with the parameter space imposed, the ML method is still computationally
cumbersome as |Sn(λ)| and |Rn(ρ)| are difficult to evaluate.6 Therefore, it seems
of interest to have available alternative efficient estimation methods that do not
involve the complicated parameter space and computation of |Sn(λ)| and |Rn(ρ)|.
Toward this end, we develop the BGMM estimator in this paper.

For the estimation of the SARAR(1,1), Kelejian and Prucha (1998) suggested a
feasible G2SLS (FG2SLS) estimation method. With a consistent initial estimator
ρ̂n for ρ0, the FG2SLS of δ0 is defined as

δ̂g2sls,n = [Z ′
n R′

n(ρ̂n)Qn(Q′
n Qn)−1 Q′

n Rn(ρ̂n)Zn]−1

× Z ′
n R′

n(ρ̂n)Qn(Q′
n Qn)

−1 Q′
n Rn(ρ̂n)Yn, (3)

where Zn = (WnYn, Xn) and Qn is a matrix of IVs. Kelejian and Prucha (1998)
suggested Qn to be taken as a fixed subset of the linearly independent columns
of {Xn,Wn Xn,W 2

n Xn, · · · ,W q
n Xn, Mn Xn, MnWn Xn, MnW 2

n Xn, · · · , MnW q
n Xn},

where q is a preselected positive integer and the subset is required to contain
at least the linearly independent columns of {Xn, Mn Xn}. The FG2SLS estima-
tor has a closed form expression and is computationally the most simple. Lee
(2003) discussed the selection of IVs and proposed the best FG2SLS estimator
with Qn = Rn(ρ̂n)[Gn(λ̂n)Xnβ̂n, Xn], where Gn(λ) = Wn S−1

n (λ).7 As the vari-
ous G2SLS estimators use functions of Wn and Xn as IVs, the G2SLS would not
be applicable when all exogenous variables in Xn are really irrelevant. Another
unsatisfactory feature of the G2SLS estimator is that the asymptotic distribution
of δ̂g2sls,n does not depend on the asymptotic distribution of ρ̂n (see Kelejian and
Prucha, 1999; Lee, 2003).8 In a time series model with lagged dependent variables
and autoregressive disturbances, yt = λ0 yt−1 + xtβ0 + ut with ut = ρ0ut−1 + εt ,
it is known that a feasible GLS estimation of λ0 and β0 based on the transformed
equation yt − ρ̂n yt−1 = λ( yt−1 − ρ̂n yt−2) + (xt − ρ̂n xt−1)β + ε̂t is not efficient
Maddala (1971). The SARAR(1,1) includes this dynamic time series model as a
special case.9 With normal disturbances, the MLEs of ρ0 and λ0 are asymptot-
ically correlated (e.g. Anselin and Bera, 1998), which suggests potential ineffi-
ciency of the G2SLS. We suggest the GMM approach, which estimates ρ0 and λ0
simultaneously using quadratic moments in addition to the linear moments used
in the G2SLS or the best G2SLS. With properly constructed moments, we show
the GMM can be asymptotically more efficient than the best G2SLS.

4. GMM ESTIMATION

The GMM method in its general setting is based on an n × kIV IV matrix Qn and
the IV functions Pinεn(θ), where Pin is an n × n square (constant) matrix with
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tr(Pin) = 0 for i = 1, . . . ,m. Let un(δ) = Sn(λ)Yn − Xnβ and εn(θ) = Rn(ρ)un(δ),
where δ = (λ′,β ′)′. The GMM estimation uses the following empirical moments10

gn(θ) = [Qn, P1nεn(θ), . . . , Pmnεn(θ)]′εn(θ)

= [Qn, P1n Rn(ρ)un(δ), . . . , Pmn Rn(ρ)un(δ)]′ Rn(ρ)un(δ), (4)

where E(gn(θ0)) = E[(Qn, P1nεn, · · · , Pmnεn)′εn] = 0, because E(Q′
nεn) =

Q′
nE(εn) = 0 and E(ε′

n Pinεn) = σ 2
0 tr(Pin) = 0 for i = 1, . . . ,m.11 In a practical

application, one has to select specific Qn and Pin’s to implement the method.
As a simple example, for the SARAR(1,1) model, Qn may consist of Xn , Wn Xn

and Mn Xn ; and P1n and P2n are, respectively, Wn and Mn , where Wn and Mn

have zero diagonals.12 The general but arbitrary set of linear and quadratic mo-
ment conditions provides a framework to discuss the possible selection of best
moment conditions.

There are two motivations to use quadratic moments in addition to linear mo-
ments for the GMM estimation. As will be shown below, one motivation is that
the score vector of the likelihood function essentially consists of linear com-
binations of linear and quadratic moments functions. Another rationale is by
the construction of IVs for the estimation of δ0. Consider the MRSAR model
Yn = λ0WnYn + Xnβ0 +εn for an illustration. As WnYn = Gn Xnβ0 +Gnεn , an IV
for WnYn may be a function of exogenous variables that approximates Gn Xnβ0,
the deterministic component of WnYn . This motivates the use of linear moments.
The quadratic moments are motivated by using the instrumental function Pnεn

which should be correlated with Gnεn , the stochastic component of WnYn , but
uncorrelated with εn .

5. CONSISTENCY AND ASYMPTOTIC DISTRIBUTIONS

To proceed, we follow the regularity assumptions in Lee (2007a) with proper
modifications to fit in the current model.

Assumption 1. The εni ’s are i.i.d. with zero mean, variance σ 2
0 and a moment

of order higher than the fourth exists.

Assumption 2. The elements of Xn are uniformly bounded constants, Xn has
full column rank kx , and limn→∞ 1

n X ′
n Xn exists and is nonsingular.

Assumption 3. The zero diagonal spatial weights matrices {Wjn}, {Mkn} ( j =
1, . . . , p, k = 1, . . . ,q) and the corresponding {S−1

n }, {R−1
n } are uniformly

bounded in both row and column sums in absolute value.13

Assumption 4. The matrices Pin’s with tr(Pin) = 0, for i = 1, . . . ,m, are uni-
formly bounded in both row and column sums in absolute value, and elements of
Qn are uniformly bounded.
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The disturbances in Assumption 1 are in the form of triangular arrays for gen-
erality. It includes the case that εni = εi , independent of the sample size n. The
higher than the fourth moment condition in Assumption 1 is needed in order to ap-
ply the central limit theorem of Kelejian and Prucha (2001) for triangular arrays of
random variables. The nonstochastic Xn and its uniform boundedness conditions
in Assumption 2 are for analytical simplicity. The elements of Xn as well as those
of Wjn’s and Mkn’s, in their generality, may depend on n too. Assumption 3 limits
the spatial dependence among the units to a tractable degree and is originated by
Kelejian and Prucha (1999). It rules out the unit root case (in time series as a spe-
cial case). ||∑p

j=1 λ0 j Wjn||∞ < 1 if (∑p
j=1

∣∣λ0 j
∣∣)maxj=1,...,p

∥∥Wjn
∥∥∞ < 1. A suf-

ficient condition for S−1
n to be uniformly bounded in row sums in absolute value is

that ∑p
j=1

∣∣λ0 j
∣∣ < 1/maxj=1,...,p

∥∥Wjn
∥∥∞, because S−1

n = In + (∑p
j=1 λ0 j Wjn)+

(∑p
j=1 λ0 j Wjn)

2 + . . .. Similarly, S−1
n is uniformly bounded in column sums in

absolute value if ∑p
j=1

∣∣λ0 j
∣∣ < 1/maxj=1,...,p

∥∥Wjn
∥∥

1. With an analogous argu-

ment, R−1
n is uniformly bounded in both row and column sums in absolute value

if ∑q
k=1 |ρ0k | < 1/maxk=1,...,q{‖Mkn‖1 ,‖Mkn‖∞}. The uniform boundedness as-

sumptions of both S−1
n and R−1

n in Assumption 3 are assumed to be valid at λ0 and
ρ0. But with the uniform boundedness of Wjn’s and Mkn’s, S−1

n (λ) and R−1
n (ρ)

will also be uniformly bounded, uniformly in a neighbor of λ0 and ρ0, respectively
(Lee, 2004). The spatial weights matrices are assumed to have zero diagonals to
facilitate the interpretation of a spatial effect and exclude self-influence. For an-
alytical tractability, in Assumption 4, Pin’s are assumed to have the uniformly
boundedness properties as the spatial weights matrices.

For any feasible θ , model (1) implies that

E(gn(θ))

=

⎛⎜⎜⎜⎝
Q′

n Rn(ρ)dn(δ)

d ′
n(δ)R′

n(ρ)P1n Rn(ρ)dn(δ)+σ 2
0 tr[F

′−1
n F ′

n(ρ,λ)P1n Fn(ρ,λ)F−1
n ]

...

d ′
n(δ)R′

n(ρ)Pmn Rn(ρ)dn(δ)+σ 2
0 tr[F

′−1
n F ′

n(ρ,λ)Pmn Fn(ρ,λ)F−1
n ]

⎞⎟⎟⎟⎠ ,

(5)

where dn(δ) = ∑p
j=1(λ0 j − λj )Gjn Xnβ0 + Xn(β0 − β), Fn(ρ,λ) = Rn(ρ)Sn(λ)

and Fn = Fn(ρ0,λ0).14 Let 
n = (G1n Xnβ0, . . . ,G pn Xnβ0, Xn).

Assumption 5. Either (i) limn→∞ 1
n Q′

n Rn(ρ)
n has full rank (p + kx ) for
each possible ρ in its parameter space, and the moment equations

tr[R
′−1
n R′

n(ρ)Pin Rn(ρ)R−1
n ] = 0, (6)

for i = 1, . . . ,m, have the unique solution at ρ0, or (ii) limn→∞ 1
n Q′

n Rn(ρ)
n

has column rank (p + kx − p0) for some 1 ≤ p0 ≤ p for each possible ρ in its
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parameter space, and the moment equations

tr[F
′−1
n F ′

n(ρ,λ)Pin Fn(ρ,λ)F−1
n ] = 0, (7)

for i = 1, . . . ,m, have the unique solution at the true parameter values.

Assumption 5 summarizes some sufficient conditions for the identification of
θ0. We provide identification conditions for the moment equations (6) and (7) in
Propositions 7 and 8 in Appendix B.

PROPOSITION 1. Under Assumptions 1–5, E(gn(θ)) = 0 has a unique solu-
tion at θ = θ0.

The moment conditions (7) correspond to those of a pure SARAR(p,q) pro-
cess,

Yn = ∑p
j=1 λ0 j WjnYn +un, un = ∑q

k=1 ρ0k Mknun + εn . (8)

For this process, εn(θ) = Fn(ρ,λ)F−1
n εn and, hence, E[ε′

n(θ)Pinεn(θ)] =
σ 2

0 tr[F
′−1
n F ′

n(ρ,λ)Pin Fn(ρ,λ)F−1
n ] for i = 1, . . . ,m. This pure SAR process im-

plies the transformed process Yn = ∑q
k=1 ρ0k MknYn + ∑p

j=1 λ0 j WjnYn − ∑p
j=1

∑q
k=1 ρ0kλ0 j MknWjnYn + εn . For the pure SAR process with p = q, identifica-

tion of ρ0 and λ0 separately would not be possible if Wjn = Mjn for j = 1, . . . , p.
This is because the transformed equation would be reduced to Yn = ∑p

j=1(ρ0 j +
λ0 j )WjnYn − ∑p

j=1 ∑p
k=1 ρ0kλ0 j WknWjnYn + εn , and, hence, ρ0 and λ0 would not

be distinguished from each other.15

Let �n = var(gn (θ0)). �n involves variances and covariances of linear and
quadratic forms of εn . For any square matrix A, vecD(A) = (a11, . . . ,ann)′ is
the column vector formed with the diagonal elements of A, and As = A + A′. It
follows from Lee (2007a) that

�n =
(

0kIV×kIV μ3 Q′
nωnm

μ3ω
′
nm Qn (μ4 −3σ 4

0 )ω′
nmωnm

)
+ Vn, (9)

with ωnm = [vecD(P1n), . . . ,vecD(Pmn)], and

Vn = σ 4
0

⎛⎜⎜⎜⎜⎝
1
σ 2

0
Q′

n Qn 0kIV×1 · · · 0kIV×1

01×kIV tr(Ps
1n P1n) · · · tr(Ps

1n Pmn)
...

...
. . .

...
01×kIV tr(Ps

mn P1n) · · · tr(Ps
mn Pmn)

⎞⎟⎟⎟⎟⎠= σ 4
0

(
1
σ 2

0
Q′

n Qn 0kIV×m

0m×kIV mn

)
,

(10)
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where 0k×l denote the zero matrix of dimension k × l, μ3 and μ4 are, respec-
tively, the third and fourth moments of εni , and mn = [vec(Ps

1n), . . . ,vec(Ps
mn)]′

[vec(P1n), . . . ,vec(Pmn)]. When εn is normally distributed, �n is simplified to Vn

because μ3 = 0 and μ4 = 3σ 4
0 . In general, �n is nonsingular if and only if both

matrices (vec(P1n), . . . ,vec(Pmn)) and Qn have full column ranks. As elements
of Pin’s and Qn are uniformly bounded by Assumption 4, and Ps

in Pjn is bounded in
row or column sums, 1

n �n = O(1). It is thus meaningful to impose the following
conventional regularity condition on the limit of 1

n �n :

Assumption 6. The limit of 1
n �n exists and is a nonsingular matrix.

The asymptotic analysis in this paper assumes each unit has only a finite
(bounded) number of neighbors that does not increase as n increases. The spatial
weights matrices may be sparse. Assumption 6 and parts of Assumption 5 provide
the regular conditions for estimators to have the usual

√
n-rate of convergence.16

The following proposition provides the asymptotic distribution of a GMM esti-
mator with a linear transformation of the moment equations, angn(θ), where an is
a matrix with full row rank greater than or equal to the number of unknown param-
eters (kx + p +q). The an is assumed to converge to a constant matrix a0, which
also has full row rank. This corresponds to the Hansen’s GMM setting, which
illustrates the optimal weighting issue. As usual for nonlinear estimation, the pa-
rameter space � of θ will be taken to be a bounded set with θ0 in its interior.17

Assumption 7. The θ0 is in the interior of the parameter space �, which is a
bounded subset of Rkx +p+q .

Let

Dn = ∂E(gn(θ0))

∂θ ′ (11)

= −

⎛⎜⎜⎜⎝
0kI V ×1 · · · 0kI V ×1 Q′

nḠ1n Rn Xnβ0 · · · Q′
nḠ pn Rn Xnβ0 Q′

n Rn Xn

σ 2
0 tr(Ps

1n H1n) · · · σ 2
0 tr(Ps

1n Hqn) σ 2
0 tr(Ps

1nḠ1n) · · · σ 2
0 tr(Ps

1nḠ pn) 01×kx

...
. . .

...
...

. . .
...

...
σ 2

0 tr(Ps
mn H1n) · · · σ 2

0 tr(Ps
mn Hqn) σ 2

0 tr(Ps
mnḠ1n) · · · σ 2

0 tr(Ps
mnḠ pn) 01×kx

⎞⎟⎟⎟⎠,

where Ḡjn = RnGjn R−1
n and Hkn = Mkn R−1

n for j = 1, . . . , p and k = 1, . . . ,q.18

PROPOSITION 2. Under Assumptions 1–7, suppose gn(θ) is given by (4)
so that limn→∞ anE(gn(θ)) = 0 has a unique root at θ0 in �. Then, the GMM
estimator θ̂n derived from minθ∈� g′

n(θ)a′
nangn(θ) is a consistent estimator of θ0,

and
√

n(θ̂n − θ0)
D→ N (0,�), where
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� = lim
n→∞

[(
1

n
D′

n

)
a′

nan

(
1

n
Dn

)]−1(1

n
D′

n

)
a′

nan

(
1

n
�n

)
a′

nan

(
1

n
Dn

)

×
[(

1

n
D′

n

)
a′

nan

(
1

n
Dn

)]−1

,

with Dn in (11) under the assumption that limn→∞ 1
n an Dn exists and has the full

rank (kx + p +q).

From Proposition 2, with gn(θ) in (4), the optimal choice of a weighting matrix
a′

nan is �−1
n by the generalized Schwartz inequality. As �n involves unknown pa-

rameters σ 2
0 , μ3, and μ4, the optimal GMM objective function will be formulated

with a two-step feasible approach by estimating consistently σ 2
0 , as well as μ3 and

μ4 in the first step. That can be done by using estimated residuals of εn from an
initial consistent estimate of θ0.19 The �n can then be consistently estimated as
�̂n . The following proposition shows that the feasible optimum GMM estimator
with a consistently estimated �̂n has the same limiting distribution of the opti-
mum GMM estimator based on �n . With the optimum GMM objective function,
an overidentification test is available, which can be used as a goodness-of-fit test
for the selection of the order of spatial lags.

PROPOSITION 3. Under Assumptions 1–7, suppose that ( �̂n
n )−1 −(�n

n )−1 =
op(1), then the feasible optimal GMM estimator θ̂ f o,n derived from minθ∈� g′

n(θ)

�̂−1
n gn(θ) based on gn(θ) in (4) has the asymptotic distribution

√
n(θ̂ f o,n − θ0)

D→ N

(
0,

(
lim

n→∞
1

n
D′

n�−1
n Dn

)−1
)

. (12)

Furthermore, g′
n(θ̂n)�̂−1

n gn(θ̂n)
D→ χ2((m + kIV) − (kx + p + q)), where (m +

kIV) > (kx + p +q).

6. EFFICIENCY AND THE BGMM ESTIMATOR

Consider now the issue of selecting the best Pin’s and the best IV matrix Qn . By
transforming un into εn free of spatial correlation, model (1) implies a SAR(p)
process for the transformed variables Ȳn = RnYn and X̄n = Rn Xn ,

Ȳn = ∑p
j=1 λ0 j RnWjnYn + Rn Xnβ0 + εn = ∑p

j=1 λ0 j W̄jnȲn + X̄nβ0 + εn, (13)

where W̄jn = RnWjn R−1
n .

First, consider the case that εn is normally distributed. Under normality, μ4 =
3σ 4

0 and μ3 = 0. Hence, the VC matrix �n = Vn in (10) is a block diagonal matrix.
This VC matrix and the derivative matrix in (11) together imply the asymptotic
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precision matrix (the inverse of the asymptotic VC matrix of an estimator, see
Davidson and MacKinnon, 2004, p. 101) of θ̂ f o,n as

D′
n�−1

n Dn =
(

An B−1
n A′

n 0(p+q)×kx

0kx ×(p+q) 0kx ×kx

)
+
(

0q×q 0q×(p+kx )

0(p+kx )×q
1
σ 2

0
Cn

)
, (14)

where

An =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

tr(Ps
1n H1n) · · · tr(Ps

mn H1n)
...

. . .
...

tr(Ps
1n Hqn) · · · tr(Ps

mn Hqn)

tr(Ps
1nḠ1n) · · · tr(Ps

mnḠ1n)
...

. . .
...

tr(Ps
1nḠpn) · · · tr(Ps

mnḠpn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Bn = 1

2

⎛⎜⎝ tr(Ps
1n Ps

1n) · · · tr(Ps
1n Ps

mn)
...

. . .
...

tr(Ps
mn Ps

1n) · · · tr(Ps
mn Ps

mn)

⎞⎟⎠ ,

and Cn = (Ḡ1n X̄nβ0, . . . , Ḡ pn X̄nβ0, X̄n)′Qn(Q′
n Qn)

−1 Q′
n(Ḡ1n X̄nβ0, . . . , Ḡ pn

X̄nβ0, X̄n). With the asymptotic precision matrix in (14), it follows from the gen-
eralized Schwartz inequality that the best selection of Qn is (Ḡ1n X̄nβ0, . . . , Ḡ pn

X̄nβ0, X̄n), and the best selection of Pn’s are Ḡjn − tr(Ḡjn)
n In and Hkn − tr(Hkn)

n In

for j = 1, . . . , p and k = 1, . . . ,q.
Let P1n denote the class of Pn’s satisfying Assumption 4. The subclass P2n of

P1n consisting of Pn’s with zero diagonals is also interesting. The corresponding
GMM estimator with Pn’s from P2n is robust against distributional assumptions,
because, when vecD(Pin) = 0 for i = 1, . . . ,m, �n = Vn regardless of the values
of μ3 and μ4 − 3σ 4

0 .20 Based on the Schwartz inequality, the best selection of
IV matrix Qn is still (Ḡ1n X̄nβ0, . . . , Ḡn X̄nβ0, X̄n), but the best Pn’s from P2n

are Ḡjn − D(Ḡjn) and Hkn − D(Hkn), for j = 1, . . . , p and k = 1, . . . ,q, under
homoskedasticity. D(A) denotes a diagonal matrix with diagonal elements being
those of A if A is a vector, or the diagonal elements of A if A is a square matrix.

When the distribution of εn is unknown, the following proposition provides the
best linear and quadratic moments for the estimation of the SARAR(p,q) model
via selecting the best Pn’s and Qn .21 If an intercept appears in X̄n , define X̄∗

n as
the submatrix of X̄n with the intercept column deleted. Thus, X̄n = [X̄∗

n,c(ρ0)ln],
where c(ρ0) is a scalar function of ρ0 and ln is an n-dimensional vector of ones.22

Otherwise X̄∗
n ≡ X̄n . Suppose there are k∗

x columns in X̄∗
n . Let X̄nj be the j th

column of X̄n , and X̄∗
nj be the j th column of X̄∗

n . Denote X̄∗d
nj = X̄∗

nj − 1
n lnl ′n X̄∗

nj ,

the deviation of X̄∗
nj from its sample mean. Let Ḡ∗

jn = Ḡjn − (η4−3)−η2
3

(η4−1)−η2
3

D(Ḡjn)−
η3

σ0[(η4−1)−η2
3]

D(Ḡjn X̄nβ0) and H∗
kn = Hkn − (η4−3)−η2

3
(η4−1)−η2

3
D(Hkn), for j = 1, . . . , p

and k = 1, . . . ,q, where η3 = μ3/σ
3
0 is the skewness of the disturbance, and η4 =

μ4/σ
4
0 is the kurtosis of the disturbance. And denote Mn = {θ̂o,n} the class of

optimal GMM estimators derived from linear and quadratic moment conditions
(4), with Pn’s and Qn satisfying Assumption 4.
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PROPOSITION 4. Let P∗
jn = Ḡ∗

jn − 1
n tr(Ḡ∗

jn)In for j = 1, . . . , p, P∗
p+k,n =

H∗
kn − 1

n tr(H∗
kn)In for k = 1, . . . ,q, and P∗

p+q+l,n = D(X̄∗d
nl ) for l = 1, . . . ,k∗

x .
Let Q∗

n = (Q∗
1n, Q∗

2n, Q∗
3n) with Q∗

2n = (Q∗
2n1, . . . , Q∗

2np) and Q∗
3n = (Q∗

3n1, . . . ,

Q∗
3nq) such that Q∗

1n = X̄n + η2
3

(η4−1)−η2
3
(X̄n − 1

n lnl ′n X̄n), Q∗
2nj = Ḡjn X̄nβ0+

η2
3

(η4−1)−η2
3

(Ḡjn X̄nβ0 − 1
n lnl ′nḠjn X̄nβ0)− 2σ0η3

(η4−1)−η2
3
[vecD(Ḡjn)− 1

n tr(Ḡjn)ln], for

j = 1, . . . , p, and Q∗
3nk = vecD(Hkn)− 1

n tr(Hkn)ln, for k = 1, . . . ,q. Within the

class of optimal GMM estimatorsMn, under Assumptions 1–7, the estimator θ̂b,n

derived from minθ∈� g∗′
n (θ)�∗−1

n g∗
n (θ), where �∗

n = var
(
g∗

n (θ0)
)

and g∗
n(θ) =

[Q∗
n, P∗

1nεn(θ), . . . , P∗
p+q+k∗

x ,nεn(θ)]′εn(θ), is the BGMM estimator with the lim-

iting distribution
√

n(θ̂b,n − θ0)
D→N (0,�−1

b ), where

�b = lim
n→∞

1

n

⎛⎜⎜⎝
�11 �12 − 2η3

σ0[(η4−1)−η2
3]

Q∗′
3n X̄n

�′
12 �22 σ−2

0 Q∗′
2n X̄n

− 2η3
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3]
X̄ ′

n Q∗
3n σ−2

0 X̄ ′
n Q∗

2n σ−2
0 X̄ ′

n Q∗
1n

⎞⎟⎟⎠ ,

and

�11 =

⎛⎜⎜⎝
tr(P∗s

p+1,n H1n) · · · tr(P∗s
p+q,n H1n)

...
. . .

...

tr(P∗s
p+1,n Hqn) · · · tr(P∗s

p+q,n Hqn)
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�12 =
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tr(P∗s

1n H1n) · · · tr(P∗s
pn H1n)

...
. . .

...

tr(P∗s
1n Hqn) · · · tr(P∗s

pn Hqn)

⎞⎟⎟⎠ ,

�22 =

⎛⎜⎜⎜⎝
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0

(
Ḡ1n X̄nβ0

)′
Q∗

2n1 + tr
(

P∗s
1n Ḡ1n

) · · · σ−2
0

(
Ḡ1n X̄nβ0

)′
Q∗

2np + tr
(

P∗s
pn Ḡ1n

)
...

. . .
...

σ−2
0

(
Ḡpn X̄nβ0

)′
Q∗

2n1 + tr
(

P∗s
1n Ḡpn

) · · · σ−2
0

(
Ḡ pn X̄nβ0

)′
Q∗

2np + tr
(

P∗s
pn Ḡpn

)
⎞⎟⎟⎟⎠ .

The moment functions [P∗
p+1,nεn(θ), . . . , P∗

p+q,nεn(θ)]′εn(θ) are apparently de-

signed for the estimation of ρ0 in un = ∑q
k=1 ρ0k Mknun + εn . Due to the correla-

tion between linear and quadratic moment functions, it is more involved than the
best moment function for estimating the (pure) SAR(q) process Yn = ∑q

k=1 ρ0k

MknYn + εn .23 And the selection of (P∗
1n, . . . , P∗

pn, P∗
p+q+1,n, . . . , P∗

p+q+k∗
x ,n) and

(Q∗
1n, Q∗

2n, Q∗
3n) corresponds to the selection of the best quadratic moment func-

tions and the best IV matrix for the estimation of the transformed MRSAR model
(13). These two sets of moment functions estimate ρ0 and δ0 simultaneously.
The best selections of Pn’s and Qn from P1n under normality assumption are
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special cases of P∗
n ’s and Q∗

n given in Proposition 4. When εn is normally dis-
tributed, Ḡ∗

jn and H∗
kn reduce to Ḡjn and Hkn , respectively, for j = 1, . . . , p and

k = 1, . . . ,q . Hence, it follows that P∗
jn = Ḡjn − tr(Ḡjn)

n In , P∗
p+k,n = Hkn − tr(Hkn)

n In ,

Q∗
1n = X̄n , and Q∗

2n = (Ḡ1n X̄nβ0, . . . , Ḡ pn X̄nβ0) as η3 = 0, for j = 1, . . . , p and
k = 1, . . . ,q. And it follows arguments in Breusch, Qian, Schmidt, and Wyhowski
(1999) that moment functions [Q∗

3n, D(X∗d
n1 )εn(θ), . . . , D(X∗d

nk∗
x
)εn(θ)]′εn(θ) are

redundant given [Q∗
1n, Q∗

2n, P∗
1nεn(θ), . . . , P∗

p+q,nεn(θ)]′εn(θ) under normality.24

The moment function g∗
n(θ) of the BGMM and its VC matrix �∗

n involve the
unknown parameters θ0,σ

2
0 ,μ3 and μ4. In practice, with initial

√
n-consistent

estimators θ̂n, σ̂ 2
n , μ̂3n and μ̂4n , P∗

in and Q∗
n in g∗

n(θ) can be replaced by their esti-
mated counterparts P̂∗

in and Q̂∗
n , for i = 1, . . . ,k∗

x + p+q, and �∗
n can be estimated

accordingly as �̂∗
n . The following proposition shows that the feasible BGMM esti-

mator has the same limiting distribution as the BGMM estimator in Proposition 4.

PROPOSITION 5. Let P̂∗
in, Q̂∗

n, and �̂∗
n be the estimated counterparts of

P∗
in, Q∗

n, and �∗
n, for i = 1, . . . ,k∗

x + p + q, with the unknown parameters re-
placed by their

√
n-consistent estimators θ̂n, σ̂ 2

n , μ̂3n, and μ̂4n. Then, under As-
sumptions 1–7, the estimator θ̂ f b,n from minθ∈� ĝ∗′

n (θ)�̂∗−1
n ĝ∗

n (θ) with ĝ∗
n(θ) =

[Q̂∗
n, P̂∗

1nεn(θ), . . . , P̂∗
k∗

x +p+q,nεn(θ)]′εn(θ) has the same limiting distribution of

θ̂b,n derived from minθ∈� g∗′
n (θ)�∗−1

n g∗
n (θ).

Lastly, we compare the asymptotic efficiency of the BGMM estimator with that
of the conventional QML estimator and the best G2SLS estimator in Lee (2003).
As the first order conditions of the log likelihood function (2) are asymptotically
equivalent to some linear and quadratic moment conditions in the sense that their
consistent roots have the same limiting distribution, the QML estimator is asymp-
totically equivalent to some GMM estimator based on those linear and quadratic
moment conditions. The BGMM estimator is asymptotically as efficient as the
ML estimator when εni ’s are i.i.d. normally distributed. When εni ’s are i.i.d. non-
normal errors, the extremum estimator based on the normal likelihood function is
a QML estimator. The BGMM estimator improves the efficiency of such a QML
estimator by using the best linear and quadratic moment conditions via the se-
lection of P∗

n ’s and Q∗
n , and by using the optimal weighting matrix �∗

n . On the
other hand, the BGMM estimator improves the best G2SLS estimator via joint
estimation of ρ0 and δ0 using the quadratic moment conditions in addition to the
linear moment conditions used in the G2SLS. The additional quadratic moment
conditions provide the additional information on the correlation structure of the
reduced form disturbances for the estimation. The result is summarized in the
following proposition.

PROPOSITION 6. Under Assumptions 1–7, the BGMM estimator is asymp-
totically efficient relative to the QML estimator and the best G2SLS estimator.
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7. MONTE CARLO STUDY

In the Monte Carlo study, we first consider the SARAR(1,1) model specified as
Yn = λWnYn + Xn1β1 + Xn2β2 + un , where un = ρWnun + εn , Xn1 = (x11, . . . ,
xn1)

′ and Xn2 = (x12, . . . , xn2)
′. The variables xi1 and xi2 are independently gen-

erated standard normal variables for all i , and εni ’s are independently generated
from the following three distributions, all of which are scaled to have mean 0 and
variance 2: (a) normal, εni ∼ N (0,2), (b) symmetric bimodal mixture normal,
εni = √

2/17u where u ∼ .5N (−4,1)+ .5N (4,1), and (c) gamma, εni = u − 2
where u ∼ gamma (2,1). The skewness (η3) and kurtosis (η4) of these distribu-
tions are, correspondingly: (a) η3 = 0, η4 = 3; (b)η3 = 0, η4 ≈ 1.228; and (c)
η3 = √

2, η4 = 6. Normal distribution is the basis for comparison. Symmetric bi-
modal mixture normal distribution and gamma distribution will study the effects
of skewness and kurtosis excess on the finite sample performance of various esti-
mators. Asymptotically, the feasible BGMM estimator proposed in Proposition 5
is as efficient as the MLE under (a), and is more efficient than the QML estimator
under (b) and (c).

Let WA denote the weights matrix for the study of crimes across 49 districts
in Columbus, Ohio, in Anselin (1988). For moderate sample sizes of n = 245
and 490, the corresponding spatial weights matrices in the Monte Carlo study are
given by I5 ⊗ WA and I10 ⊗ WA, respectively, where ⊗ denotes the Kronecker
product operator. The true λ0 and ρ0 are set to be 0.4 in the data generating pro-
cess. We use different β0 in different experiments.

The estimation methods considered are: (1) the G2SLS and B2SLS: the G2SLS
approach in Kelejian and Prucha (1998) and the best G2SLS method in Lee
(2003);25 (2) the QML: the quasi maximum likelihood method;26 (3) the GMM1:
the feasible best optimal GMM in the class of P2; (4) the GMM2: the feasible best
optimal GMM under the normality assumption; and (5) the BGMM: the general
feasible best GMM described in Proposition 5.

The number of repetitions is 1,000 for each case in the Monte Carlo experi-
ment. The regressors are randomly redrawn for each repetition. In each case, we
report the mean (Mean) and standard deviation (SD) of the empirical distribu-
tions of the estimates. To facilitate the comparison of various estimators, their
root mean square errors (RMSE) are also reported.

Computationally, the G2SLS is the simplest. The best G2SLS involves S−1
n (λ),

and the GMM1, GMM2, and BGMM involve both S−1
n (λ) and R−1

n (λ), hence
they are more complicated than the G2SLS but much simpler than the conven-
tional QML because they do not need the computation of |Sn(λ)| and |Rn(ρ)|,
and S−1

n (λ) and R−1
n (λ) are evaluated only once at an initial consistent estimate.

Tables 1–3 report the results of the case that β01 = 1 and β02 = −1, which will
be referred to as the case with strong x . The ratio of the variance of xi1β10 +xi2β20
over the sum of the variances of xi1β10 + xi2β20 and εi is 0.5. In this case, we
use the G2SLS estimate as the initial estimate to implement the B2SLS and the
various feasible optimal GMM.27 For sample size n = 245, the G2SLS estimates
of ρ0 are biased downwards by about 12%, under all disturbance specifications.
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TABLE 1. Estimation of the SARAR(1,1) model with strong x’s (normal)

λ0 = 0.4 ρ0 = 0.4 β10 = 1.0 β20 = −1.0

n = 245
G2SLS .412(.137)[.138] .351(.154)[.162] .995(.087)[.087] −.998(.092)[.092]
B2SLS .387(.159)[.160] .351(.154)[.162] .992(.091)[.091] −.996(.092)[.092]
QML .389(.135)[.136] .383(.153)[.154] .993(.087)[.087] −.996(.092)[.092]
GMM1 .387(.136)[.137] .393(.152)[.153] .993(.087)[.087] −.996(.093)[.093]
GMM2 .387(.136)[.137] .392(.152)[.152] .993(.087)[.088] −.996(.092)[.093]
BGMM .384(.149)[.150] .400(.162)[.162] .992(.089)[.089] −.995(.095)[.095]

n = 490
G2SLS .400(.096)[.096] .381(.110)[.112] .998(.062)[.063] −.996(.064)[.064]
B2SLS .389(.095)[.096] .381(.110)[.112] .997(.063)[.063] −.995(.064)[.064]
QML .388(.096)[.096] .398(.106)[.106] .997(.062)[.063] −.995(.064)[.064]
GMM1 .386(.096)[.097] .403(.105)[.105] .997(.063)[.063] −.995(.064)[.064]
GMM2 .386(.096)[.097] .403(.105)[.105] .997(.063)[.063] −.995(.064)[.064]
BGMM .385(.099)[.100] .406(.107)[.107] .996(.064)[.064] −.994(.064)[.064]

Note: Mean(SD)[RMSE].

TABLE 2. Estimation of the SARAR(1,1) model with strong x’s (symmetric
mixture normal)

λ0 = 0.4 ρ0 = 0.4 β10 = 1.0 β20 = −1.0

n = 245
G2SLS .413(.135)[.136] .350(.155)[.163] .993(.089)[.089] −1.001(.090)[.090]
B2SLS .390(.137)[.137] .350(.155)[.163] .991(.089)[.090] −.999(.091)[.091]
QML .391(.134)[.135] .383(.153)[.154] .991(.089)[.089] −1.000(.090)[.090]
GMM1 .389(.134)[.135] .393(.149)[.149] .991(.089)[.090] −.999(.090)[.090]
GMM2 .389(.133)[.133] .392(.148)[.148] .991(.089)[.089] −.999(.090)[.090]
BGMM .384(.137)[.138] .401(.147)[.148] .991(.085)[.085] −.998(.084)[.085]

n = 490
G2SLS .404(.094)[.094] .378(.107)[.109] .998(.064)[.064] −1.000(.063)[.063]
B2SLS .394(.093)[.093] .378(.107)[.109] .998(.064)[.064] −1.000(.063)[.063]
QML .394(.094)[.094] .392(.105)[.105] .998(.063)[.063] −1.000(.063)[.063]
GMM1 .392(.095)[.095] .398(.104)[.104] .997(.064)[.064] −.999(.063)[.063]
GMM2 .392(.094)[.094] .398(.104)[.104] .997(.064)[.064] −.999(.063)[.063]
BGMM .392(.093)[.093] .400(.103)[.103] .997(.061)[.061] −.998(.061)[.061]

Note: Mean(SD)[RMSE].

As the sample size increases to n = 490, biases in the G2SLS estimates of ρ0
reduce to 5 ∼ 7%. When n = 245, the G2SLS estimates of λ0 are slightly biased
upwards, and the B2SLS and various GMM estimates of λ0 as well as the QML
estimates of λ0 and ρ0 are slightly biased downwards. All the estimates of β01
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TABLE 3. Estimation of the SARAR(1,1) model with strong x’s (gamma)

λ0 = 0.4 ρ0 = 0.4 β10 = 1.0 β20 = −1.0

n = 245
G2SLS .411(.133)[.133] .354(.154)[.161] .998(.087)[.087] −.996(.094)[.094]
B2SLS .383(.150)[.151] .354(.154)[.161] .995(.090)[.091] −.995(.096)[.096]
QML .383(.137)[.138] .389(.155)[.156] .995(.087)[.087] −.993(.094)[.094]
GMM1 .380(.139)[.141] .400(.151)[.151] .995(.088)[.088] −.993(.095)[.095]
GMM2 .380(.141)[.143] .400(.154)[.154] .994(.088)[.089] −.993(.095)[.095]
BGMM .385(.121)[.122] .402(.139)[.139] .997(.069)[.069] −.994(.073)[.073]

n = 490
G2SLS .411(.092)[.092] .373(.109)[.112] .995(.064)[.064] −.996(.063)[.063]
B2SLS .400(.093)[.093] .373(.109)[.112] .995(.064)[.064] −.995(.063)[.063]
QML .399(.095)[.095] .388(.108)[.109] .994(.064)[.064] −.995(.063)[.063]
GMM1 .398(.094)[.094] .394(.105)[.106] .994(.064)[.064] −.995(.063)[.063]
GMM2 .398(.095)[.095] .393(.107)[.107] .994(.064)[.065] −.995(.063)[.063]
BGMM .397(.073)[.073] .399(.091)[.091] .996(.049)[.049] −.996(.048)[.048]

Note: Mean(SD)[RMSE].

and β02 are essentially unbiased for both sample sizes considered. In terms of
SD and RMSE, the G2SLS estimates are almost as good as those of the QML,
GMM1, and GMM2, under all disturbance specifications. The B2SLS estimates
of λ0 have slightly larger SDs than those of the G2SLS estimates for n = 245.
Other than that, the B2SLS and the G2SLS estimates are similar for both sample
sizes considered. The good finite sample performance of the G2SLS similar to that
of the QML has been noted in Kelejian, Prucha, and Yuzefovich (2004) when X ’s
have strong effects. When the disturbances are normally distributed, for sample
size n = 245, the QML, GMM1, and GMM2 estimates of λ0 and ρ0 are better than
the BGMM estimates in terms of smaller SD and RMSE. The performance of the
BGMM estimates is as good as the others when n = 490. When the disturbances
are symmetric and platykurtic, the BGMM estimates of β0 are a little better than
the others. When the disturbances follow gamma distribution that has η3 �= 0, the
BGMM estimators have smaller SD and RMSE than the other estimates for both
sample sizes considered. For example, when n = 490, the percentage reduction in
SD of the BGMM estimates of λ0, ρ0, β01, and β02 relative to the QML estimates
is, respectively, 23%, 16%, 23%, and 24%.28

To illustrate whether the finite sample distributions of the estimates can be
approximated by the normal distribution in the experiment, we report quantile-
quantile plots from the computer package S-Plus with the BGMM estimates for
samples size 490 in Figures 1–3. The quantile-quantile plots have similar features
for other estimators. As the plotted lines mostly lie on straight lines, the normal
approximations seem adequate (Chambers, Cleveland, Kleiner, and Tukey 1983).
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FIGURE 1. Quantile-quantile plots for the BGMMEs (normal).

Table 4 reports the results of the case that β01 = 0.4 and β02 = −0.4, which will
be referred to as the case with weak x . The ratio of the variance of xi1β10 + xi2β20
over the sum of the variances of xi1β10 + xi2β20 and εi is about 0.14. Hence λ0
may be difficult to estimate by the G2SLS. As the feasible B2SLS and GMM
estimators may be sensitive to initial consistent estimates, we use the unweighted
GMM with Qn = (Xn,Wn Xn,W 2

n Xn) for linear moments, P1n = Wn and P2n =
W 2

n − 1
n tr(W 2

n )In for quadratic moments, and In as the weighting matrix to get
initial estimates.29 The G2SLS estimates of λ0 are biased upwards and those of
ρ0 are biased downwards. For instance, when n = 490 and the disturbances follow
the gamma distribution, the G2SLS estimator of λ0 is upward biased by 21% and
that of ρ0 is downward biased by 37%. The biases of the QML estimates of λ0
and ρ0 are in the same direction as those of the G2SLS estimates but smaller in
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FIGURE 2. Quantile-quantile plots for the BGMMEs (symmetric mixture normal).

magnitude. The B2SLS and various GMM estimates of λ0 are downward biased
and the B2SLS estimates of ρ0 are upward biased. When n = 490, the biases in the
GMM estimators are less than 15% for the normal error and less than 10% for the
other error distributions considered. The other estimates are essentially unbiased.
The GMM1 and GMM2 estimates of λ0 and ρ0 have the smallest SDs for all error
distributions considered. For instance, when n = 490 and the disturbances follow
the normal distribution, the percentage reduction in SD of the GMM2 (the best
GMM under normality assumption) estimates of λ0 and ρ0 relative to the B2SLS
estimates is, respectively, 31% and 18%. On the other hand, when the disturbances
are asymmetrically distributed, the BGMM estimates of β0 have smaller SD and
RMSE than the other estimates, as in the case with strong x .30
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FIGURE 3. Quantile-quantile plots for the BGMMEs (gamma).

To study the properties of the estimators when the order of the spatial lags is
misspecified, we consider a SARAR(2,1) specified as Yn =λ1W1nYn +λ2W2nYn +
Xn1β1 + Xn2β2 + un , where un = ρW1nun + εn . W1n and W2n correspond to the
row-normalized weights matrices for the study of local school expenditure across
612 urban school districts in Ohio in Tao (2005). Before row normalization, W1n

is based on neighbors with common borders: w1i j = 1 if i and j share a border
and w1i j = 0 otherwise. W2n has weights based on the inverse of income differ-
ences: w2i j = 1/|I NC O M Ei − I NC O M Ej |, with I NC O M Ei being median
per capita income in district i over the sample period, for all urban school dis-
tricts j within the same metropolitan area as i . In the data generating process,
we use λ01 = 0.4,λ02 = 0.2,ρ0 = 0.4,β01 = 1, and β02 = −1. The misspecified
model has mistakenly excluded W2nYn in the estimation. The estimation results
are reported in Tables 5–7.
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TABLE 4. Estimation of the SARAR(1,1) model with weak x’s (n = 490)

λ0 = 0.4 ρ0 = 0.4 β01 = 0.4 β02 = −0.4

Normal
G2SLS .449(.243)[.247] .282(.245)[.272] .395(.064)[.065] −.393(.065)[.065]
B2SLS .346(.296)[.301] .432(.245)[.247] .394(.066)[.066] −.392(.066)[.066]
QML .407(.203)[.203] .347(.216)[.223] .396(.063)[.063] −.394(.063)[.064]
GMM1 .352(.205)[.211] .411(.199)[.199] .395(.063)[.063] −.393(.064)[.064]
GMM2 .352(.205)[.211] .411(.199)[.200] .395(.063)[.063] −.393(.063)[.064]
BGMM .344(.224)[.231] .416(.214)[.215] .393(.064)[.065] −.392(.064)[.065]

Symmetric mixture normal
G2SLS .453(.248)[.254] .276(.239)[.269] .394(.065)[.065] −.397(.064)[.064]
B2SLS .361(.269)[.272] .427(.237)[.238] .394(.066)[.067] −.397(.066)[.067]
QML .417(.200)[.201] .337(.214)[.223] .397(.063)[.063] −.399(.063)[.063]
GMM1 .368(.205)[.207] .397(.200)[.200] .395(.064)[.064] −.397(.063)[.063]
GMM2 .371(.198)[.200] .395(.194)[.194] .395(.064)[.064] −.398(.063)[.063]
BGMM .369(.201)[.203] .399(.196)[.196] .395(.062)[.062] −.397(.061)[.061]

Gamma
G2SLS .485(.219)[.235] .253(.233)[.275] .392(.065)[.066] −.394(.064)[.065]
B2SLS .377(.318)[.319] .424(.251)[.252] .390(.069)[.069] −.394(.066)[.066]
QML .428(.195)[.197] .329(.209)[.221] .394(.064)[.064] −.395(.063)[.063]
GMM1 .376(.197)[.198] .391(.193)[.193] .392(.064)[.065] −.394(.063)[.063]
GMM2 .374(.203)[.205] .392(.198)[.198] .392(.064)[.065] −.394(.063)[.064]
BGMM .365(.223)[.226] .400(.213)[.213] .392(.050)[.051] −.393(.050)[.050]

Note: Mean(SD)[RMSE].

To facilitate the comparison, we report the various estimates of the correctly
specified model in the upper panels of Tables 5–7.31 We use the G2SLS estimate
as the initial estimate for the various feasible estimators. Except that the B2SLS
estimates of λ02 is distorted by outliers, we observe a similar pattern as the results
reported in Tables 1–3. We also estimate the misspecified model, i.e., under the
exclusion restriction of λ02 = 0, and the results are reported in the lower panels
of Tables 5–7. The omitted economic interaction effect represented by W2nYn is
partly captured by the effect of W1nYn , but not much. For the misspecified model,
the G2SLS estimates of λ01 are biased upwards by about 7% and those of ρ0
are biased downwards by about 5%. The QML and various GMM estimates of
λ01 are slightly upward biased. The other estimates are essentially unbiased. The
estimates of λ0 and ρ0 in the misspecified model also have slightly larger SDs.
Overall, the exclusion of a spatial lag seems to have small effects on the estimates
of the remaining parameters.

In summary, the GMM approaches with both linear and quadratic moments
can improve upon the G2SLS and B2SLS in the finite sample when the variation
from the exogenous regressors relative to that of the innovations is small. The
proposed BGMM improves upon the QML and B2SLS when disturbances are
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TABLE 5. Estimation of the SARAR(2,1) model (normal)

λ01 = 0.4 λ02 = 0.2 ρ0 = 0.4 β01 = 1.0 β02 = −1.0

G2SLS .419(.090)[.092] .241(.134)[.140] .339(.104)[.120] .995(.059)[.059] −.996(.055)[.055]
B2SLS .389(.201)[.201] .157(.746)[.747] .339(.104)[.120] .993(.064)[.065] −.995(.061)[.061]
GMM1 .393(.092)[.092] .204(.089)[.089] .399(.105)[.105] .994(.059)[.059] −.995(.055)[.055]
GMM2 .393(.097)[.097] .202(.088)[.088] .400(.108)[.108] .993(.059)[.060] −.995(.056)[.056]
BGMM .392(.098)[.098] .201(.087)[.087] .403(.111)[.111] .993(.060)[.060] −.995(.056)[.057]

Under the exclusion restriction λ02 = 0
G2SLS .428(.090)[.095] − .378(.111)[.113] .999(.059)[.059] −.999(.055)[.055]
B2SLS .418(.089)[.091] − .378(.111)[.113] .998(.059)[.059] −.999(.055)[.055]
QML .417(.095)[.097] − .398(.111)[.111] .998(.059)[.059] −.998(.056)[.056]
GMM1 .414(.099)[.100] − .404(.112)[.113] .997(.059)[.059] −.998(.056)[.056]
GMM2 .414(.098)[.099] − .404(.112)[.112] .997(.059)[.059] −.998(.056)[.056]
BGMM .414(.100)[.101] − .405(.113)[.113] .997(.059)[.060] −.998(.056)[.056]

Note: Mean(SD)[RMSE].
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TABLE 6. Estimation of the SARAR(2,1) model (symmetric mixture normal)

λ01 = 0.4 λ02 = 0.2 ρ0 = 0.4 β01 = 1.0 β02 = −1.0

G2SLS .420(.086)[.088] .245(.131)[.138] .339(.100)[.117] .999(.056)[.056] −.999(.056)[.056]
B2SLS .395(.104)[.104] .186(.360)[.361] .339(.100)[.117] .998(.057)[.057] −.998(.057)[.057]
GMM1 .392(.105)[.105] .206(.104)[.105] .402(.106)[.106] .997(.058)[.058] −.998(.057)[.057]
GMM2 .391(.108)[.108] .205(.106)[.106] .403(.105)[.105] .997(.058)[.058] −.998(.057)[.057]
BGMM .392(.098)[.098] .198(.094)[.094] .406(.106)[.106] .997(.055)[.055] −.998(.055)[.055]

Under the exclusion restriction λ02 = 0
G2SLS .428(.088)[.092] − .378(.106)[.108] 1.003(.057)[.057] −1.003(.056)[.056]
B2SLS .418(.087)[.088] − .378(.106)[.108] 1.002(.057)[.057] −1.002(.056)[.056]
QML .417(.092)[.093] − .402(.108)[.108] 1.002(.057)[.057] −1.002(.056)[.056]
GMM1 .414(.094)[.095] − .407(.109)[.109] 1.002(.057)[.057] −1.002(.056)[.056]
GMM2 .415(.093)[.094] − .406(.108)[.109] 1.002(.057)[.057] −1.002(.056)[.056]
BGMM .415(.092)[.093] − .407(.106)[.106] 1.001(.055)[.055] −1.002(.055)[.055]

Note: Mean(SD)[RMSE].
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TABLE 7. Estimation of the SARAR(2,1) model (gamma)

λ01 = 0.4 λ02 = 0.2 ρ0 = 0.4 β01 = 1.0 β02 = −1.0

G2SLS .416(.093)[.094] .244(.132)[.139] .341(.105)[.120] .998(.056)[.056] −.997(.059)[.059]
B2SLS .392(.163)[.164] .185(.800)[.800] .341(.105)[.120] .996(.059)[.059] −.998(.079)[.080]
GMM1 .388(.101)[.102] .200(.081)[.081] .405(.107)[.107] .997(.057)[.057] −.996(.059)[.060]
GMM2 .388(.105)[.106] .199(.085)[.085] .405(.107)[.108] .997(.058)[.058] −.996(.060)[.060]
BGMM .393(.080)[.080] .197(.081)[.082] .403(.093)[.093] .998(.043)[.043] −1.000(.044)[.044]

Under the exclusion restriction λ02 = 0
G2SLS .423(.094)[.097] − .382(.111)[.112] 1.002(.056)[.056] −1.001(.059)[.059]
B2SLS .414(.093)[.094] − .382(.111)[.112] 1.002(.056)[.056] −1.000(.059)[.059]
QML .411(.100)[.101] − .403(.113)[.113] 1.001(.057)[.057] −1.000(.059)[.059]
GMM1 .410(.099)[.100] − .409(.111)[.112] 1.001(.056)[.056] −1.000(.059)[.059]
GMM2 .409(.100)[.100] − .409(.112)[.112] 1.001(.056)[.056] −1.000(.059)[.059]
BGMM .414(.079)[.080] − .408(.094)[.095] 1.001(.042)[.042] −1.004(.044)[.044]

Note: Mean(SD)[RMSE].
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asymmetrically distributed, and the improvement could be as large as 20% in
terms of reduction in SD. Furthermore, the GMM estimators are relatively robust
to the misspecified order of spatial lags.

8. CONCLUSION

In this paper, we consider the GMM estimation of high order MRSAR models
with SAR disturbances. The proposed GMM approach improves upon the G2SLS
in Kelejian and Prucha (1998) and the best G2SLS in Lee (2003) in asymptotic
efficiency. Among the optimal GMM estimators, we show the existence of the
BGMM estimator that is asymptotically as efficient as MLE under normality, and
more efficient than the QML estimator when the disturbances are not normally
distributed. Some evidence from Monte Carlo experiments confirms that the pro-
posed GMM may improve upon the finite sample performance of the conventional
QML and the best G2SLS approaches.

NOTES

1. The best GMM estimator is the optimal GMM estimator with the best linear and quadratic
moment conditions. It is called the “best” because it is the most efficient one within the class of GMM
estimators derived from linear and quadratic moment conditions.

2. The feature of (1) is that the λ’s and ρ’s are unknown parameters. If the spatial lag components
have a form like λ∑p

j=1 ωj WjnYn = λW∗
n Yn , where the weight parameters ωj ’s are known and deter-

mined outside the model, then such an alternative model is technically a SAR model of the first order
as analyzed in Lee (2007a).

3. As the values of the dependent variable are determined by the model with Xn and εn , the model
is, therefore, an equilibrium one. This feature differs from a time series autoregressive model where
there is an initial value problem.

4. Lee (2002) has identified a subclass of models for which the OLS estimator can be consistent.
5. For any n×n matrix An = [an,i j ], the row sum matrix norm is defined by ||An ||∞=maxi=1,...,n

∑n
j=1 |an,i j |, and the column sum matrix norm is defined by ||An ||1 = maxj=1,...,n ∑n

i=1 |an,i j |.
6. With a single weights matrix Wn , the Ord device (Ord, 1975), explained as follows, can sim-

plify the evaluation of |In −λWn |. When Wn is diagonalizable, we have Wn = Rn Dn R−1
n , where Dn

is a diagonal matrix of eigenvalues and Rn is the corresponding eigenvector matrix. It follows that
|In −λWn | = |In −λRn Dn R−1

n | = |In −λDn | = ∏n
i=1(1−λdni ), where dni ’s are diagonal elements

in Dn . The Ord device is to compute the eigenvalues of the spatial weights matrix once and then use
them to evaluate the determinant at different values of λ. However, the Ord device will not be applica-
ble to the current model with a few exceptions. For a simple illustration, consider two matrices W1n
and W2n that are both diagonalizable, i.e., Wjn = Rjn Djn R−1

jn , j = 1,2. Unless R1n = R2n , they can

not be canceled out in |In − λ1 R1n D1n R−1
1n − λ2 R2n D2n R−1

2n |. The R1n might be equal to R2n in
some special situations. A well-known case is when both W1n and W2n can be simultaneously diag-
onalizable. However, to be simultaneously diagonalizable, the sufficient conditions are that both W1n
and W2n are symmetric and commutative, i.e., W1n W2n = W2n W1n (see Dhrymes, 1978). Another

case is the high order spatial lags model with Wjn = W j
n , j = 1, . . . , p, generated as powers of a di-

agonalizable Wn . In this case, |In −∑p
j=1 λj W j

n | = |In −∑p
j=1 λj Rn D j

n R−1
n | = |In −∑p

j=1 λj D j
n | =

∏n
i=1(1 − ∑p

j=1 λj d j
in). However, the Ord device would not be applicable if redundant and circular

routes of the high order spatial operators are eliminated (Blommestein, 1985). The ML method may
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be practically tractable when all the spatial weights matrices are sparse such that Sn(λ) and Rn(ρ) can
be effectively evaluated by sparse matrix techniques.

7. To simplify the computation involved in the best FG2SLS estimator, Kelejian, Prucha, and Yuze-
fovich (2004) suggested the best series FG2SLS estimator that is also an asymptotically efficient esti-
mator within the class of IV estimators, with Qn = Rn(ρ̂n)[∑rn

k=0 λ̂k
n W k+1

n Xn β̂n , Xn ], and rn is some
sequence of natural numbers going to infinite.

8. In the regression model with SAR disturbances, as all the explanatory variables in the main
equation are exogenous variables, the asymptotic distribution of ρ̂n in Kelejian and Prucha (1999) via
the least squares residual does not depend on the asymptotic distribution of the least squares estimator
of β0. For the SARAR(1,1) model, as the second step estimator, the asymptotic distribution of ρ̂n
depends on the asymptotic distribution of the first step estimator of δ0 via the estimated residual ûn in
the presence of the spatial lag WnYn in the main equation (Kelejian and Prucha, 2007b).

9. It has a special spatial weights matrix of a single neighbor for each spatial unit and y0 = 0.
10. These moments have been designed to focus on the estimation of θ . If we are also interested in

the estimation of σ 2, it can be estimated by the empirical second moment with estimated residuals of
εn . In Liu, Lee, and Bollinger (2006), we show that this approach will not lose asymptotic efficiency
by focusing on θ .

11. However, the zero trace assumption of Pn ’s is not sufficient for consistency of the GMM esti-
mator in the presence of the heteroskedasticity of unknown form. Under heteroskedasticity, we need
to use Pn ’s with zero diagonals to ensure consistency. (Lin and Lee, 2006)

12. For the SARAR(1,1) model, Kelejian et al. (2004) suggested the use of the linearly independent
columns of [Xn ,Wn Xn , Mn Xn , Mn Wn Xn ] for Qn in the G2SLS procedure for estimating the main
equation, and use Mn and M ′

n Mn to set up moments via estimated residuals of the first stage to
estimate the disturbance process.

13. A sequence of square matrices {An}, where An = [an,i j ], is said to be uniformly bounded in
row sums (column sums) in absolute value if the sequence of row sum matrix norm ||An ||∞ (column
sum matrix norm ||An ||1) are bounded. (Horn and Johnson, 1985)

14. Derivation of (5) is given in Lemma C.9.
15. It is noted that when the identification of the MRSAR model via linear moments is possible,

Wn is not required to be distinct from Mn . When Xn = ln (i.e., only intercept) and Mn = Wn is row
normalized, 
n will not have a full column rank. In this case, the parameters cannot be identifiable.
When Xn = ln and Wn is row-normalized, Gn Xnβ0 = Xnc where c = β0/(1 − λ0). Thus, 
n =
(Gn Xnβ0, Xn) does not have the full column rank. In practice, if there is a need to specify an Mn for
the error process, which should be different from Wn , a possible thinking is, while the spatial weight
matrix Wn for the main equation may be designed to capture reactions of economic competitors,
there might still be autocorrelation in variables not crucial to the model. Autocorrelated disturbances
might then be considered to capture such correlations. This interpretation has been offered, e.g., in
Benirschka and Binkley (1994) for a model of agricultural land values. In that case, the correlation of
disturbances may be captured by the specification of a spatial correlated process, with Mn representing
geographic proximity.

16. There are scenarios where the number of neighbors increases as n increases. Those are large
group interaction scenarios, which are relevant for in-filling asymptotics. In Lee (2004), it is shown
that such scenarios might imply estimates to have lower than the usual

√
n-rate of convergence. The

analysis in this paper can be extended to incorporate the large group interaction scenarios but will
involve much complicated notations. For additional and related analyses for GMM estimation with
large group interactions, see Lee (2007b).

17. Note that it is unnecessary to require that for each θ in �, |Sn(λ)| is positive. The property of
such a determinant does not play a role in the GMM estimation. In theory, any bounded set in Assump-
tion 7 will do as long as θ0 is in the interior of the parameter space and other assumptions are satisfied
at θ = θ0. The boundedness (or compactness) assumption of the parameter space is needed for asymp-
totic analysis in proving the uniform convergence in probability of the GMM objective function. In this
regard, the G2SLS estimation has the theoretical advantage, as restrictions on the parameter space is
not explicitly needed even though there are implicit restrictions due to the uniform boundedness of
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Sn(λ0) and Rn(ρ0). The disadvantage of the G2SLS may simply be due to inefficiency, in particular,
when exogenous variables in Xn have small effects (relative to disturbances) on the outcomes.

18. The derivation of (11) is given in Lemma C.10.
19. The detailed proof is straightforward and is omitted here.
20. It is also robust against unknown heteroskedasticity (Lin and Lee, 2006).
21. When the disturbances are normally distributed, it is quite easy to identify the best moments via

the generalized Schwartz matrix as shown above. Without normality, it is not so. In general, the key
ingredient is to incorporate proper diagonal elements of Gn in the construction of additional moment
conditions. The final derivation of the best moments is based on such an insight and trial by errors.

22. When Mn is row-normalized, Mnln = ln and (In −ρ0 Mn)−1ln = (1−ρ0)−1ln . Hence, Rnln =
Mn(In −ρ0 Mn)−1ln = (In −ρ0 Mn)−1 Mnln = (1−ρ0)−1ln . In this case, cn(ρ0) = (1−ρ0)−1.

23. For the pure SAR(q) process, the BGMM estimator uses the quadratic moment conditions

with P∗
kn = Ht

kn − η4−3
η4−1 D(Ht

kn) for k = 1, . . . ,q (Liu et al., 2006), where At = A − 1
n tr(A) In for an

n ×n matrix A.
24. We note that the quadratic moments with Pn ’s from P1n but not P2n will not be robust when

εni ’s have heteroskedastic variances (Lin and Lee, 2006). The quadratic moments with P∗
n ’s given in

Proposition 4 can improve asymptotic efficiency only under the homoskedasticity assumption.
25. To estimate the SARAR(1,1) model, we use Qn = (Xn ,Wn Xn ,W 2

n Xn) as the IV matrix for the
G2SLS. In general, a valid IV matrix could be (Xn ,Wn Xn , · · · ,W q

n Xn) for some q ≥ 1. We have tried
different values of q. We found that as more spatial lags of Xn are included as IVs, the SD of the esti-
mated (λ0,ρ0) will decrease slightly, while the bias will increase a lot. To balance the tradeoff between
SD and bias, we picked the Qn according to the RMSE for illustration. To estimate the SARAR(2,1)
model presented later, we use Qn =(Xn ,W1n Xn ,W2n Xn ,W 2

1n Xn ,W 2
2n Xn ,W1n W2n Xn ,W2n W1n Xn)

as the IV matrix for the G2SLS.
26. The QML estimator is calculated using sac.m in Econometrics Toolbox (version 7) by James P.

Lesage. Function option in f o.l f lag = 0 for full computation (instead of approximation), and other
options are set to the default values.

27. The G2SLS estimates of (λ0,ρ0) lie in (−1,1)2 for all replications.
28. We also estimated the model by the iterated G2SLS and B2SLS. In the 1,000 repetitions, only

about 650 repetitions generated convergent estimates. Also, the convergent iterated estimates of ρ0 are
severely downward biased. To save space, the Monte Carlo results of the iterated G2SLS and B2SLS
estimators are not reported in this paper.

29. We impose a restricted parameter space on the simple unweighted GMM, so that the estimated
(λ̂n , ρ̂n) lie in (−1,1)2. There are a few divergent cases. For n = 490, the numbers of divergent cases
are from 15 to 17 with different error specifications. Additional replications are generated to have a
total of 1,000 convergent cases for the reported results.

30. Additional Monte Carlo results can be found in our previous two working papers. We considered
alternative disturbance distributions (t distribution and asymmetric bimodal mixture normal distribu-
tion) and weights matrix for the SARAR(1,1) model. The general conclusions are similar. We also
considered smaller values of β0 for the case with weak x . We found that as the variation from the
exogenous regressors relative to that of the disturbances becomes smaller (than 0.14), the biases and
SDs in the G2SLS and B2SLS estimates of (λ0,ρ0) dramatically increases, while the various GMM
estimators are still reasonably good. Also, there are additional results on the SARAR(2,0) model.

31. As the QML approach is hard to implement for high order MRSAR models, we did not report
the QML estimates for the correctly specified model.

REFERENCES

Anselin, L. (1988) Spatial Econometrics: Methods and Models. Kluwer.
Anselin, L. & A. Bera (1998) Spatial dependence in linear regression models, with an introduction to

spatial econometrics. In A. Ullah and D.E.A. Giles (eds), Handbook of Applied Economic Statistics.
Marcel Dekker.



HIGH ORDER SPATIAL AUTOREGRESSIVE MODELS 213

Anselin, L. & O. Smirnov (1996) Efficient algorithms for constructing proper higher order spatial lag
operators. Journal of Regional Science 36, 67–89.

Benirschka, M. & J. K. Binkley (1994) Land price volatility in a geographically dispersed market.
American Journal of Agricultural Economics 76, 185–195.

Blommestein, H.J. (1983) Specification and estimation of spatial econometric models: A discussion
of alternative strategies for spatial economic modelling. Regional Science and Urban Economics
13, 250–271.

Blommestein, H.J. (1985) Elimination of circular routes in spatial dynamic regression equations. Re-
gional Science and Urban Economics 15, 121–130.

Blommestein, H.J. & Koper, N.A. (1992) Recursive algorithms for the elimination of redundant paths
in spatial lag operators. Journal of Regional Science 32, 91–111.

Breusch, T., H. Qian, P. Schmidt, & D. Wyhowski (1999) Redundancy of moment conditions. Journal
of Econometrics 91, 89–111.

Chambers, J.M., W.S. Cleveland, B. Kleiner, & P. Tukey (1983) Graphical Methods for Data Analysis.
Wadsworth and Brooks/Cole.

Davidson, R. & J. MacKinnon (2004) Econometric Theory and Methods. Oxford University Press.
Dhrymes, P.J. (1978) Mathematics for Econometrics. Springer-Verlag.
Horn, R. & C. Johnson (1985) Matrix Analysis. Cambridge Univsersity Press.
Huang, J.S. (1984) The autoregressive moving average model for spatial analysis. Australian Journal

of Statistics 26, 169–178.
Kelejian, H.H. & I.R. Prucha (1998) A generalized spatial two-stage least squares procedure for es-

timating a spatial autoregressive model with autoregressive disturbance. Journal of Real Estate
Finance and Economics 17, 99–121.

Kelejian, H.H. & I.R. Prucha (1999) A generalized moments estimator for the autoregressive parame-
ter in a spatial model. International Economic Review 40, 509–533.

Kelejian, H.H. & I.R. Prucha (2001) On the asymptotic distribution of the moran i test statistic with
applications. Journal of Econometrics 104, 219–257.

Kelejian, H.H. & I.R. Prucha (2004) Estimation of simultaneous systems of spatially interrelated cross
sectional equations. Journal of Econometrics 118, 27–50.

Kelejian, H.H. & I.R. Prucha (2007a) Hac estimation in a spatial framework. Journal of Econometrics
140, 131–154.

Kelejian, H.H. & I.R. Prucha (2007b) Specification and estimation of spatial autoregressive models
with autoregressive and heteroskedastic disturbances. Working paper, University of Maryland.

Kelejian, H.H., I.R. Prucha, & E. Yuzefovich (2004) Instrumental variable estimation of a spatial
autoregressive model with autoregressive disturbances: Large and small sample results. In J. LeSage
and K. Pace (eds.), Advances in Econometrics: Spatial and Spatiotemporal Econometrics. Elsevier.

Lee, L.F. (2001) Generalized method of moments estimation of spatial autoregressive processes.
Manuscript, Ohio State University.

Lee, L.F. (2002) Consistency and efficiency of least squares estimation for mixed regressive, spatial
autoregressive models. Econometric Theory 18, 252–277.

Lee, L.F. (2003) Best spatial two-stage least squares estimators for a spatial autoregressive model with
autoregressive disturbances. Econometric Reviews 22, 307–335.

Lee, L.F. (2004) Asymptotic distributions of quasi-maximum likelihood estimators for spatial econo-
metric models. Econometrica 72, 1899–1926.

Lee, L.F. (2007a) GMM and 2SLS estimation of mixed regressive, spatial autoregressive models.
Journal of Econometrics 137, 489–514.

Lee, L.F. (2007b) The method of elimination and substitution in the GMM estimation of mixed re-
gressive, spatial autoregressive models. Journal of Econometrics 140, 155–189.

Lin, X. & L.F. Lee (2006) GMM estimation of spatial autoregressive models with unknown het-
eroskedasticity. Working paper, Ohio State University.

Liu, X., L.F. Lee, & C. Bollinger (2006) Improved efficient quasi maximum likelihood estimator of
spatial autoregressive models. Working paper, Ohio State University.



214 LUNG-FEI LEE AND XIAODONG LIU

Maddala, G.S. (1971) Generalized least squares with an estimated covariance matrix. Econometrica
39, 23–33.

Ord, J. (1975) Estimation methods for models of spatial interaction. Journal of the American Statistical
Association 70, 120–126.

Tao, J. (2005) . Spatial econometrics: Models, methods and applications. Ph.D. thesis, Ohio State
University.

White, H. (1984) . Asymptotic Theory for Econometricians. Academic Press.

APPENDIX A: Summary of Notations

D (A) = Diag(A) is a diagonal matrix with diagonal elements being those of A if A is a
vector, or diagonal elements of A if A is a square matrix.
vecD (A) is a column vector formed by the diagonal elements of a square matrix A.

As = A + A′where A is a square matrix.

At = A − 1

n
tr(A) In where A is an n ×n matrix.

AL is a linearly transformed square matrix of A that preserves the uniform boundedness
property.

δ = (λ′,β ′)′; θ = (ρ′,δ′)′.

Sn(λ) = In −
p

∑
j=1

λj Wjn; Sn = Sn(λ0); Rn(ρ) = In −∑q
k=1 ρk Mkn ; Rn = Rn(ρ0).

Gjn (λ) = WjnS−1
n (λ) ; Gjn = Gjn (λ0) ; Hkn(ρ) = Mkn R−1

n (ρ); Hkn = Hkn(ρ0).

Fn(ρ,λ) = Rn(ρ)Sn(λ); Fn = Rn Sn .

un(δ) = Sn(λ)Yn − Xnβ; εn(θ) = Rn(ρ)un(δ).

Ȳn(ρ) = Rn(ρ)Yn ; X̄n(ρ) = Rn(ρ)Xn ; W̄jn(ρ) = Rn(ρ)Wjn R−1
n (ρ).

S̄n(ρ,λ) = Rn(ρ)Sn(λ)R−1
n (ρ); Ḡjn(ρ,λ) = W̄jn(ρ)S̄−1

n (ρ,λ).

Ȳn = Ȳn(ρ0); X̄n = X̄n(ρ0); W̄jn = W̄jn(ρ0); S̄jn = S̄jn(ρ0,λ0); Ḡjn = Ḡjn(ρ0,λ0).

ln is an n ×1 vector of ones.
ek j is the j th unit column vector in Rk .
If an intercept appears in X̄n such that X̄n = [X̄∗

n ,c(ρ0)ln], where c(ρ0) is a scalar function
of ρ0, X̄∗

n is the submatrix of X̄n with the intercept term removed. Otherwise X̄∗
n ≡ X̄n .

X̄∗d
nj = X̄∗

nj − 1

n
lnl ′n X̄∗

nj is the deviation of observation X̄∗
nj from its sample mean.
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Ḡ∗
jn = Ḡjn − (η4 −3)−η2

3

(η4 −1)−η2
3

D(Ḡjn)

− η3

σ0[(η4 −1)−η2
3]

D(Ḡjn X̄nβ0), where η3 = μ3/σ 3
0 and η4 = μ4/σ 4

0 .

H∗
kn = Hkn − (η4 −3)−η2

3

(η4 −1)−η2
3

D(Hkn).

APPENDIX B: Identification

In Appendix B, we first estabish the identication of the GMM. Then, we provide identifi-
cation conditions for the moment equations (6) and (7) in Assumption 5 in the following
two subsections.

Proof of Proposition 1. From (5), Q′
n Rn(ρ)dn(δ) = 0 is explicitly Q′

n Rn(ρ)
n(δ0 −
δ) = 0, which has the unique solution δ0 if Q′

n Rn(ρ)
n , where 
n = (G1n Xnβ0, . . . ,G pn
Xnβ0, Xn), has full column rank (kx + p) for each possible ρ in its parameter space. With
δ0 identified, because Fn(ρ,λ0)F−1

n = Rn(ρ)R−1
n and dn(δ0) = 0, the remaining mo-

ment equations in (5) become (6). The identification of ρ0 via these moment conditions
is the same as that of the pure SAR process un = ∑q

k=1 ρk Mknun + εn via the moments
[P1n Rn(ρ)un, . . . , Pmn Rn(ρ)un]′ Rn(ρ)un as if un were observable. The necessary and
sufficient condition, as well as some other sufficient conditions, for the identification of ρ0
via (6) is given in Proposition 7.

On the other hand, if 
n does not have a full column rank (kx + p), then dn(δ) =
0 alone could not identify δ0. Suppose Xn has full column rank kx . Without loss of
generality, assume that (Gp0+1,n Xnβ0, . . . ,Gpn Xnβ0, Xn) has full rank (p + kx − p0),
for some 1 ≤ p0 ≤ p, and there exist constant vectors aj and constants cjl such that

Gjn Xnβ0 = ∑p
l=p0+1 Gln Xnβ0cjl + Xnaj for j = 1, . . . , p0. Hence, the linear moment

equations Q′
n Rn(ρ)d(δ) = 0 from (5) reduce to

Q′
n Rn(ρ)

{
p

∑
l=p0+1

Gln Xnβ0

[
p0

∑
j=1

(
λ0 j −λj

)
cjl + (λ0l −λl )

]

+Xn

[
p0

∑
j=1

(
λ0 j −λj

)
aj + (β0 −β)

]}
= 0,

which have all their solutions satisfying

λl = λ0l +∑p0
j=1

(
λ0 j −λj

)
cjl , β = ∑p0

j=1

(
λ0 j −λj

)
aj +β0, (B.1)

for l = p0 + 1, . . . , p. From (B.1), β0 and λ0l (l = p0 + 1, . . . , p) are identifiable once
λ01, . . . ,λ0p0 are identified. With dn(δ) = 0, the identification of λ01, . . . ,λ0p0 based on

(5) will reduce to (7). Let vn = F−1
n εn be the disturbance vector of that equation. The

reduced form equation becomes Yn = Xn[β0 + ∑p0
j=1 λ0 j aj ] + ∑p

l=p0+1 Gln Xnβ0[λ0l +
∑p0

j=1 λ0 j cjl ]+vn . The moment equations (7) correspond to a pure SARAR(p,q) process,

vn = ∑p
j=1 λ0 j Wjnvn +un, un = ∑q

k=1 ρ0k Mknun + εn . (B.2)
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We provide the necessary and sufficient condition for the identification of the moment
equations (7) in Proposition 8, and we also discuss some weaker sufficient conditions for
identification. With (ρ′

0,λ01, . . . ,λ0p0) identified, as shown above, the remaining parame-
ters can be identified from the linear moment conditions. n

B.1. Identification of a Pure SAR (q) Process. In this subsection, we discuss the iden-
tification of the pure SAR process un = ∑q

k=1 ρk Mknun + εn via the quadratic moment
equations (6). Let ϕk and ϕjk be m-dimensional vectors with the i th element being, respec-
tively, ϕk,i = tr(Ps

in Hkn) and ϕjk,i = tr(H ′
jn Pin Hkn).

PROPOSITION 7. The necessary and sufficient condition for (6) to have the unique
solution at ρ0 is that the vectors ϕk’s and ϕjk ’s do not have a linear combination with
nonlinear coefficients in the form that

∑q
k=1 δkϕk +∑q

j=1 ∑q
k=1 δj δkϕjk = 0, (B.3)

for some nonzero constants δ1, . . . ,δq .

Proof. As Rn (ρ) R−1
n = In + ∑q

k=1 (ρ0k −ρk) Hkn , tr[R
′−1
n R′

n(ρ)Pin Rn(ρ)R−1
n ] =

∑q
k=1 (ρ0k −ρk)ϕk,i + ∑q

j=1 ∑q
k=1
(
ρ0 j −ρj

)
(ρ0k −ρk)ϕjk,i for i = 1, . . . ,m. It is ap-

parent that ρ0 is a common solution of these m moment equations. The desired result
follows. n

A sufficient identification condition for the pure SAR(q) model is that the ϕ’s are linearly
independent. Weaker sufficient conditions are available. If there exists a solution ρ1 not
equal to ρ01, one has δ1 �= 0 in (B.3). This will imply that either ϕ1 or ϕ11 will be linearly
dependent on all the other ϕ’s. So it is sufficient to identify ρ1 if each of ϕ1 and ϕ11 is
linearly independent of the other ϕ’s. With ρ1 being identified, (B.3) becomes ∑q

k=2 δkϕk +
∑q

j=2 ∑q
k=2 δj δkϕjk = 0. Similar arguments apply to the identification of ρ02, and so on.

B.2. Identification of a Pure SARAR (p, q) Process. When 
n does not have full col-
umn rank, the identification of the original model (1) reduces to the identification of a pure
SARAR(p,q) process (B.2), as shown in the proof of Proposition 1. The identification
conditions of (B.2) can be derived by investigating some characteristics of the moment
equations (7). Let hjn = Ḡjn − ∑p

l=p0+1 cjlḠln , αρk ,i = tr(Ps
in Hkn), αλj ,i = tr(Ps

inhjn),

αρk1k2 ,i = tr(H ′
k1n Pin Hk2n), αλj1 j2 ,i = tr(h′

jn Pinhjn), αρkλj ,i = tr(Ps
in Hknhjn+

H ′
kn Ps

inhjn), αρk1k2λj ,i = tr(H ′
k1n Ps

in Hk2nhjn), αρkλj1 j2 ,i = tr(h′
j1n Ps

in Hknhj2n), and

αρk1k2λj1 j2 ,i = tr(h′
j1n H ′

k1n Pin Hk2nhj2n). Let αρk be the m-dimensional vector with αρk ,i
as its i th element. Similarly, αλj , etc., are defined.

PROPOSITION 8. Suppose 
n has column rank (p +kx − p0), for some 1 ≤ p0 ≤ p.
The necessary and sufficient condition for (7) and (B.1) to have the unique solution at
(ρ′

0,λ01, . . . ,λ0p0) is that the vectors α’s do not have a linear combination with nonlinear
coefficients in the form that

∑q
k=1 αρk δk +∑p0

j=1 αλj γj +∑q
k1,k2=1 αρk1k2

δk1δk2 +∑p0
j1, j2=1 αλj1 j2

γj1γj2

+∑p0
j=1 ∑q

k=1 αρkλj δkγj +∑p0
j=1 ∑q

k1,k2=1 αρk1k2λj δk1δk2γj
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+∑p0
j1, j2=1 ∑q

k=1 αρkλj1 j2
δkγj1γj2 +∑p0

j1, j2=1 ∑q
k1,k2=1 αρk1k2λj1 j2

δk1δk2γj1γj2 = 0,

(B.4)

for some nonzero constants δ1, . . . ,δq or γ1, . . . ,γp0 .

Proof. For the identification of the pure SARAR(p,q) process in (B.2), as Fn(ρ,λ) =
Fn +∑q

k=1(ρ0k −ρk)Mkn Sn +∑p
j=1(λ0 j −λj )Rn Wjn +∑p

j=1 ∑q
k=1(ρ0k −ρk)(λ0 j −λj )

Mkn Wjn, it implies that Fn(ρ,λ)F−1
n = In +∑q

k=1(ρ0k −ρk)Hkn +∑p
j=1(λ0 j −λj )Ḡjn +

∑p
j=1 ∑q

k=1(ρ0k −ρk)(λ0 j −λj )HknḠjn. It follows that

tr
(

F
′−1
n F ′

n(ρ,λ)Pin Fn(ρ,λ)F−1
n

)
= ∑q

k=1(ρ0k −ρk)tr(Ps
in Hkn)+∑p

j=1(λ0 j −λj )tr(Ps
inḠjn)

+ ∑q
k1,k2=1(ρ0k1 −ρk1)(ρ0k2 −ρk2)tr(H ′

k1n Pin Hk2n)

+ ∑p
j1, j2=1(λ0 j1 −λj1)(λ0 j2 −λj2)tr(Ḡ

′
j1n PinḠ j2n)

+ ∑p
j=1 ∑q

k=1(ρ0k −ρk)(λ0 j −λj )tr(Ps
in HknḠjn + H ′

kn Ps
inḠjn)

+ ∑p
j=1 ∑q

k1,k2=1(ρ0k1 −ρk1)(ρ0k2 −ρk2)(λ0 j −λj )tr(H ′
k1n Ps

in Hk2nḠjn)

+ ∑p
j1, j2=1 ∑q

k=1(ρ0k −ρk)(λ0 j1 −λj1)(λ0 j2 −λj2)tr(Ḡ
′
j1n Ps

in HknḠ j2n)

+ ∑p
j1, j2=1 ∑q

k1,k2=1(ρ0k1 −ρk1)(ρ0k2 −ρk2)(λ0 j1 −λj1)(λ0 j2 −λj2)

×tr(Ḡ′
j1n H ′

k1n Pin Hk2nḠ j2n),

for i = 1, . . . ,m. Substitution of (B.1) gives

tr
(

F
′−1
n F ′

n(ρ,λ)Pin Fn(ρ,λ)F−1
n

)
= ∑q

k=1(ρ0k −ρk)αρk ,i +∑p0
j=1(λ0 j −λj )αλj ,i

+ ∑q
k1,k2=1(ρ0k1 −ρk1)(ρ0k2 −ρk2)αρk1k2 ,i

+∑p0
j1, j2=1(λ0 j1 −λj1)(λ0 j2 −λj2)αλj1 j2 ,i

+ ∑p0
j=1 ∑q

k=1(ρ0k −ρk)(λ0 j −λj )αρkλj ,i

+ ∑p0
j=1 ∑q

k1,k2=1(ρ0k1 −ρk1)(ρ0k2 −ρk2)(λ0 j −λj )αρk1k2 λj ,i

+ ∑p0
j1, j2=1 ∑q

k=1(ρ0k −ρk)(λ0 j1 −λj1)(λ0 j2 −λj2)αρkλj1 j2 ,i

+ ∑p0
j1, j2=1 ∑q

k1,k2=1(ρ0k1 −ρk1)(ρ0k2 −ρk2)(λ0 j1 −λj1)(λ0 j2 −λj2)αρk1k2 λj1 j2 ,i .
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It is apparent that (ρ′
0,λ01, . . . ,λ0p0) is a common solution of these m moment equations.

The desired result follows. n

A sufficient identification condition is that the α’s are linearly independent. Weaker suf-
ficient conditions are available. If there exists a solution ρ1 not equal to ρ01, one has δ1 �= 0
in (B.4). This will imply that either αρ1 or αρ11 will be linearly dependent on all the other
α’s. So it is sufficient to identify ρ01 if both αρ1 and αρ11 are linearly independent of all
the other α’s. With ρ01 being identified, (B.4) becomes

∑q
k=2 αρk δk +∑p0

j=1 αλj γj +∑q
k1,k2=2 αρk1k2

δk1δk2 +∑p0
j1, j2=1 αλj1 j2

γj1γj2

+∑p0
j=1 ∑q

k=2 αρkλj δkγj +∑p0
j=1 ∑q

k1,k2=2 αρk1k2λj δk1δk2γj

+∑p0
j1, j2=1 ∑q

k=2 αρkλj1 j2
δkγj1γj2 +∑p0

j1, j2=1 ∑q
k1,k2=2 αρk1k2λj1 j2

δk1δk2γj1γj2 = 0,

(B.5)

Then similar arguments apply to the identification of ρ02, and so on. With ρ0 being identi-
fied, (B.5) further reduces to

∑p0
j=1 αλj γj +∑p0

j1, j2=1 αλj1 j2
γj1γj2 = 0. (B.6)

So it is sufficient to identify λ01 if both αλ1 and αλ11 are linearly independent of all the
other α’s in (B.6). Then similar arguments apply to the identification of λ02, and so on. By
symmetric arguments, a similar set of sufficient conditions can be stated for the identifica-
tion of λ0 first and then the identification of ρ0. As a general principle, the true (ρ0,λ0)
may be identifiable when sufficient distinct moment equations are used and their solution
sets intersect only at the true parameter vector. As the GMM estimation with those moment
functions can be rewritten in a nonlinear least squares estimation framework with nonlin-
earity only in parameters, sufficient identification condition can also be derived from the
corresponding nonlinear regression equation.

APPENDIX C: Some Useful Lemmas

In Appendix C, we list some lemmas which are useful for the proofs of the results in the
text. First, we state some basic properties. The central limit theorem in Kelejian and Prucha
(2001) is stated here as Lemma C.5. The other properties in Lemmas C.1–C.8 are either
trivial or can be found in Lee (2004; 2007a).

LEMMA C.1. Suppose that the elements of the sequences of n-dimensional column
vectors {z1n} and {z2n} are uniformly bounded. If the n × n dimensional matrices {An}
are uniformly bounded in either row or column sums in absolute value, then

∣∣z′
1n Anz2n

∣∣=
O(n).

LEMMA C.2. Suppose that εn1, . . . ,εnn are i.i.d. random variables with zero mean
and finite variance σ 2 and finite fourth moment μ4. Then, for any two n × n matrices An

and Bn, E
(
ε′

n Anεn · ε′
n Bnεn

)=
(
μ4 −3σ 4

)
vec′

D (An)vecD (Bn)+σ 4 [tr(An) tr(Bn)+
tr
(

An Bs
n
)]

, where Bs
n = Bn + B′

n.
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LEMMA C.3. Suppose that {An} are uniformly bounded in both row and column sums
in absolute value. εn1, . . . ,εnn are i.i.d. with zero mean and finite fourth moment. Then,
E(ε′

n Anεn) = O(n), var(ε′
n Anεn) = O(n), ε′

n Anεn = Op(n), and 1
n ε′

n Anεn − 1
n

E(ε′
n Anεn) = op(1).

LEMMA C.4. Suppose that An is an n ×n matrix with its column sums being uniformly
bounded in absolute value, elements of the n × kx matrix Cn are uniformly bounded, and
εn1, . . . ,εnn are i.i.d. with zero mean and finite variance σ 2. Then, 1√

n
C ′

n Anεn = Op(1)

and 1
n C ′

n Anεn = op(1). Furthermore, if the limit of 1
n C ′

n An A′
nCn exists and is positive

definite, then 1√
n

C ′
n Anεn

D→ N (0,σ 2 limn→∞ 1
n C ′

n An A′
nCn).

LEMMA C.5. Suppose that {An} is a sequence of symmetric n × n matrices with row
and column sums uniformly bounded in absolute value, and bn = (bn1, . . . ,bnn)′ is an
n-dimensional vector such that supn

1
n ∑n

i=1 |bni |2+η1 < ∞ for some η1 > 0. εn1, . . . ,εnn

are i.i.d. random variables with zero mean and finite variance σ 2, and its moment
E(|ε|4+2δ) for some δ > 0 exists. Let σ 2

Qn
be the variance of Qn where Qn = ε′

n Anεn +
b′

nεn −σ 2tr(An). Assume that the variance σ 2
Qn

is bounded away from zero at the rate n.

Then, Qn
σQn

D→ N (0,1).

LEMMA C.6. Let θ̂n and θ̂∗
n be, respectively, the minimizers of �n(θ) and �∗

n(θ) in �.
Suppose that 1

n (�n(θ)−�̄n(θ)) converges in probability to zero uniformly in θ ∈ �, where

θ0 is in the interior of �, and
{

1
n �̄n(θ)

}
satisfies the uniqueness identification condition

at θ0. If 1
n (�∗

n(θ)−�n(θ)) = op(1) uniformly in θ ∈ �, then both θ̂n and θ̂∗
n converge in

probability to θ0.

In addition, suppose that 1
n

∂2
�n(θ)

∂θ∂θ ′ converges in probability to a well-defined limit-

ing matrix, uniformly in θ ∈ �, which is nonsingular at θ0, and 1√
n

∂�n(θ0)
∂θ = Op(1). If

1
n (

∂2
�

∗
n(θ)

∂θ∂θ ′ − ∂2
�n(θ)

∂θ∂θ ′ ) = op(1) uniformly in θ ∈ � and 1√
n
(
∂�∗

n(θ0)
∂θ − ∂�n(θ0)

∂θ ) = op(1),

then
√

n(θ̂∗
n − θ0) and

√
n(θ̂n − θ0) have the same limiting distribution.

LEMMA C.7. Under Assumption 2, the projectors Xn(X ′
n Xn)−1 X ′

n and In − Xn
(X ′

n Xn)−1 X ′
n are uniformly bounded in both row and column sums in absolute value.

LEMMA C.8. Suppose that {||Wjn||}, {||Mkn ||}, {||S−1
n ||}, and {||R−1

n ||}, where || · ||
is a matrix norm, are bounded for j = 1, . . . , p and k = 1, . . . ,q. Then {||Sn(λ)−1||} and
{||Rn(ρ)−1||} are uniformly bounded in a neighborhood of λ0 and ρ0, respectively.

The following are two facts for model (1):

LEMMA C.9. For model (1), εn(θ) = Rn(ρ)dn(δ) + Fn(ρ,λ)F−1
n εn, where dn(δ) =

∑p
j=1(λ0 j −λj )Gjn Xnβ0 + Xn(β0 −β).
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Proof. As Sn(λ)S−1
n = ∑p

j=1(λ0 j − λj )Gjn + In , εn(θ) = Rn(ρ)[Sn(λ)Yn − Xnβ] =
Rn(ρ)[Sn(λ)(S−1

n Xnβ0 + S−1
n R−1

n εn) − Xnβ] = Rn(ρ)[∑p
j=1(λ0 j − λj )Gjn Xnβ0+

Xn(β0 −β)]+ Rn(ρ)Sn(λ)S−1
n R−1

n εn . n

LEMMA C.10. For model (1), Dn = ∂
∂θ ′ E(gn(θ0)) is given by (11).

Proof. The derivatives of gn(θ) in (4) with respect to ρk , λj , and β are ∂gn(θ)
∂ρk

=
−[Qn, Ps

1n Rn(ρ)un(δ), . . . , Ps
mn Rn(ρ)un(δ)]′Mknun(δ), ∂gn(θ)

∂λj
= −[Qn, Ps

1n Rn(ρ)

un(δ), . . . , Ps
mn Rn(ρ)un(δ)]′ Rn(ρ)WjnYn , and ∂gn(θ)

∂β ′ = −[Qn, Ps
1n Rn(ρ)un(δ), . . . , Ps

mn

Rn(ρ)un(δ)]′ Rn(ρ)Xn , for j = 1, . . . , p and k = 1, . . . ,q. At θ0, as un = R−1
n εn and

WjnYn = Gjn Xnβ0 + Gjn R−1
n εn , (11) follows from Assumption 1. n

The following properties are specific to the model in this paper. Lemma C.11 is a trivial
extension of Liu et al. (2006). The proofs of Lemmas C.12 and C.13 are presented in
Appendix D.

LEMMA C.11. Suppose that z1n and z2n are n-dimensional column vectors of con-
stants of which elements are uniformly bounded, the n ×n constant matrix An is uniformly
bounded in column sums in absolute value, the n × n constant matrices B1n and B2n are
uniformly bounded in both row and column sums in absolute value, and εn1, . . . ,εnn are
i.i.d. random variables with zero mean and finite second moment.

√
n(α̂n −α0) = Op(1)

where α0 is an r-dimensional vector in the interior of its parameter space. The n×n matrix
Cn(α̂n) has the expansion that

Cn(α̂n)−Cn(α0) =
m−1

∑
i=1

r

∑
j1=1

· · ·
r

∑
ji =1

(α̂nj1 −α0 j1) · · · (α̂nji −α0 ji )Kin (α0)

+
r

∑
j1=1

· · ·
r

∑
jm=1

(α̂nj1 −α0 j1) · · · (α̂njm −α0 jm )Kmn(α̂n), (C.1)

for some m ≥ 2, where Cn(α0) and Kin (α0) are uniformly bounded in both row and
column sums in absolute value for i = 1, . . . ,m − 1, and Kmn (α) is uniformly bounded
in both row and column sums in absolute value, uniformly in a small neighborhood of
α0. Then, (a) 1

n z′
1n(Cn(α̂n)−Cn(α0))z2n = op(1); (b) 1√

n
z′

1n(Cn(α̂n)−Cn(α0))Anεn =
op(1); (c) 1

n ε′
n B′

1n(Cn(α̂n) − Cn(α0))B2nεn = op(1), if (C.1) holds for m ≥ 3; and (d)
1√
n
ε′

n(Cn(α̂n) − Cn(α0))εn = op(1), if (C.1) holds for m ≥ 4 with tr(Kin (α0)) = 0 for

i = 1, · · · ,m −1.
Furthermore, suppose

√
n(γ̂n −γ0) = Op(1) where γ0 is an s-dimensional vector in the

interior of its parameter space, and the matrix Dn(γ̂n) has the expansion that

Dn(γ̂n)− Dn(γ0) =
m−1

∑
i=1

s

∑
j1=1

· · ·
s

∑
ji =1

(γ̂nj1 −γ0 j1) · · · (γ̂nji −γ0 ji )Lin (γ0)

+
s

∑
j1=1

· · ·
s

∑
jm=1

(γ̂nj1 −γ0 j1) · · · (γ̂njm −γ0 jm )Lmn(γ̂n), (C.2)
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for some m ≥ 2, where Dn(γ0) and Lin (γ0) are uniformly bounded in both row and col-
umn sums in absolute value for i = 1, . . . ,m − 1, and Lmn(γ ) is uniformly bounded in
both row and column sums in absolute value, uniformly in a small neighborhood of γ0.
Then, (a’) 1

n z′
1n(Cn(α̂n)− Cn(α0))(Dn(γ̂n)− Dn(γ0))z2n = op(1); (b’) 1√

n
z′

1n(Cn(α̂n)

− Cn(α0))(Dn(γ̂n) − Dn(γ0))Anεn = op(1); (c’) 1
n ε′

n B′
1n(Cn(α̂n) − Cn(α0))(Dn(γ̂n)−

Dn(γ0))B2nεn = op(1), if (C.1) and (C.2) hold for m ≥ 3; and (d’) 1√
n
ε′

n(Cn(α̂n) −
Cn(α0))(Dn(γ̂n)− Dn(γ0))εn = op(1), if (C.1) and (C.2) hold for m ≥ 4 with tr(Kin (α0)
Ljn (γ0)) = 0 for i, j = 1, . . . ,m −1.

LEMMA C.12. Suppose that z1n and z2n are n-dimensional column vectors of con-
stants of which their elements are uniformly bounded, the n × n constant matrix An is
uniformly bounded in column sums in absolute value, and the n × n constant matrices
B1n and B2n are uniformly bounded in both row and column sums in absolute value.
Let θ̂n, σ̂ 2

n , μ̂3n, and μ̂4n be, respectively,
√

n-consistent estimates of θ0,σ 2
0 ,μ3, and μ4.

Let Cn be either Ḡjn or Hkn, and C∗
n be either Ḡ∗

jn, H∗
kn, or D(X̄∗

nl ) for j = 1, . . . , p,

k = 1, . . . ,q, and l = 1, . . . ,k∗
x . Let Ĉn and Ĉ∗

n be the estimated counterparts of Cn and C∗
n .

For these Cn (resp. C∗
n ) matrices, C L

n (resp. C∗L
n ) represents its linear transformed matrix

that preserves the uniform boundedness in row and column sums property. Furthermore, let
D̂n be a stochastic matrix that can be expanded to the form of (C.1). Then, under Assump-
tions 1–3, (a) 1

n z′
1n(Ĉ ′

n − C ′
n)L z2n = op(1), 1√

n
z′

1n(Ĉ ′
n − C ′

n)L Anεn = op(1), 1
n ε′

n B′
1n

(Ĉn − Cn)L B2nεn = op(1), 1√
n
ε′

n(Ĉn − Cn)t εn = op(1); (b) 1
n z′

1n(Ĉ∗′
n − C∗′

n )L z2n =
op(1), 1√

n
z′

1n(Ĉ∗′
n − C∗′

n )L Anεn = op(1), 1
n ε′

n B′
1n(Ĉ∗

n − C∗
n )L B2nεn = op(1), 1√

n
ε′

n

(Ĉ∗
n −C∗

n )t εn = op(1); (c) 1
n vec′

D(Ĉn −Cn)L z2n = op(1), 1√
n

vec′
D(Ĉn −Cn)L Anεn =

op(1); and (d) 1
n vec′

D(Ĉ∗
n −C∗

n )L z2n = op(1), 1
n tr[A′

n(Ĉ∗
n −C∗

n )L ] = op(1).
In addition, if Dn (γ ) is uniformly bounded in both row and column sums in absolute

value, uniformly in a small neighborhood of γ0 that is in the interior of its parameter space,
then (e) 1

n tr[D′
n
(
γ̂n
)
(Ĉ∗

n −C∗
n )L ] = op(1), where γ̂n −γ0 = op(1).

LEMMA C.13. Suppose that zn is an n-dimensional column vector of constants that
are uniformly bounded, and the n ×n constant matrix An is uniformly bounded in column
sums in absolute value. Let θ̂n, σ̂ 2

n , μ̂3n, and μ̂4n be, respectively,
√

n-consistent estimates
of θ0,σ 2

0 ,μ3, and μ4. Let Cn be either Ḡjn or Hkn, for j = 1, . . . , p and k = 1, . . . ,q, with

Ĉn being the estimated counterpart. Let T1n = X̄n + η2
3

(η4−1)−η2
3
(X̄n − 1

n lnl ′n X̄n), T2n =

Cn X̄nβ0 + η2
3

(η4−1)−η2
3
(Cn X̄nβ0 − 1

n lnl ′nCn X̄nβ0), and T3n = 2σ0η3
(η4−1)−η2

3
vecD(Ct

n), with

T̂1n, T̂2n, and T̂3n being their estimated counterparts. Then, under Assumptions 1–3, (a)
1
n (T̂in − Tin)′zn = op(1); and (b) 1√

n
(T̂in − Tin)′ Anεn = op(1), for i = 1,2,3.

Furthermore, let Dn(γ̂n) be a stochastic matrix that can be expanded to the form of
(C.2) for some m ≥ 3. Then, (c) 1

n (T̂in − Tin)′Dn(γ̂n) = op(1), for i = 1,2,3.

To show that the proposed moment conditions are optimal, we show that adding ad-
ditional moment conditions to the moment conditions does not increase the asymptotic
efficiency of the GMM estimator using the conditions for redundancy in Breusch, Qian,
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Schmidt, and Wyhowski (1999). Their definition of redundancy is given as follows: “Let
θ̂ be the optimal GMM estimator based on a set of (unconditional) moment conditions
E
[
g1 ( y,θ)

] = 0. Now add some extra moment conditions E
[
g2 ( y,θ)

] = 0 and let θ̃ be
the optimal GMM estimator based on the whole set of moment conditions E[g ( y,θ)] ≡
E
[
g′

1 ( y,θ) ,g′
2 ( y,θ)

]′ = 0. We say that the moment conditions E
[
g2 ( y,θ)

] = 0 are re-
dundant given the moment conditions E

[
g1 ( y,θ)

] = 0, or simply that g2 is redundant

given g1, if the asymptotic variances of θ̂ and θ̃ are the same” (Breusch et al., 1999,

p. 90). Let � ≡ E
[
g ( y,θ)g′ ( y,θ)

]=(�11 �12
�21 �22

)
, with �jl = E

[
gj ( y,θ)g′

l ( y,θ)
]

for

j, l = 1,2. And define Dj = E
[
∂gj ( y,θ)/∂θ ′] for j = 1,2. Suppose the dimensions of

g1 (y,θ), g2 ( y,θ), and θ are, respectively, k1, k2, and kθ .

LEMMA C.14 (Theorem 1 in Breusch et al., 1999). The following statements are equiv-
alent. (a) g2 is redundant given g1; (b) D2 = �21�−1

11 D1; and (c) there exists a k1 × kθ
matrix A such that D1 = �11 A and D2 = �21 A.

LEMMA C.15 (Theorem 2 in Breusch et al., 1999). Suppose E[g (θ)] ≡ E
[
g′

1 (θ) ,

g′
2 (θ) ,g′

3 (θ)
]′ = 0, or simply g = (g′

1,g′
2,g′

3

)′. Then
(
g′

2,g′
3

)′ is redundant given g1 if
and only if g2 is redundant given g1 and g3 is redundant given g1.

APPENDIX D: Proofs

Proof of Lemma C.12. As Sn − Ŝn = ∑p
j=1(λ̂nj −λ0 j )Wjn, it follows that Ŝ−1

n −S−1
n =

Ŝ−1
n (Sn − Ŝn)S−1

n = Ŝ−1
n [∑p

j=1(λ̂nj −λ0 j )Gjn]. By induction,

Ŝ−1
n − S−1

n = S−1
n

m−1

∑
i=1

[
p

∑
j=1

(λ̂nj −λ0 j )Gjn

]i

+ Ŝ−1
n

[
p

∑
j=1

(λ̂nj −λ0 j )Gjn

]m

=
m−1

∑
i=1

p

∑
j1=1

· · ·
p

∑
ji =1

(λ̂nj1 −λ0 j1) · · · (λ̂nji −λ0 ji )(S−1
n Gj1n · · ·Gji n)

+
p

∑
j1=1

· · ·
p

∑
jm=1

(λ̂nj1 −λ0 j1) · · · (λ̂njm −λ0 jm )(Ŝ−1
n Gj1n · · ·Gjm n), (D.1)

for any m ≥ 2. Hence, it follows that

(Ĝln − Gln)L =
m−1

∑
i=1

p

∑
j1=1

· · ·
p

∑
ji =1

(λ̂nj1 −λ0 j1) · · · (λ̂nji −λ0 ji )(GlnGj1n · · ·Gji n)L

+
p

∑
j1=1

· · ·
p

∑
jm=1

(λ̂nj1 −λ0 j1) · · · (λ̂njm −λ0 jm )(ĜlnGj1n · · ·Gjm n)L ,(D.2)

which conforms to the expansion (C.1) with Kin (λ0) = (GlnGj1n · · ·Gji n)L and

Kmn(λ̂n) = (ĜlnGj1n · · ·Gjm n)L . Analogously, we have,
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R̂−1
n − R−1

n =
m−1

∑
i=1

q

∑
k1=1

· · ·
q

∑
ki =1

(ρ̂nk1 −ρ0k1) · · · (ρ̂nki −ρ0ki )(R−1
n Hk1n · · · Hki n)

+
q

∑
k1=1

· · ·
q

∑
km=1

(ρ̂nk1 −ρ0k1) · · · (ρ̂nkm −ρ0km )(R̂−1
n Hk1n · · · Hkm n), (D.3)

for any m ≥ 2, and

(Ĥln − Hln)L =
m−1

∑
i=1

q

∑
k1=1

· · ·
q

∑
ki =1

(ρ̂nk1 −ρ0k1) · · · (ρ̂nki −ρ0ki )(Hln Hk1n · · · Hki n)L

+
q

∑
k1=1

· · ·
q

∑
km=1

(ρ̂nk1 −ρ0k1) · · · (ρ̂nkm −ρ0km )(Ĥln Hk1n · · · Hkm n)
L.(D.4)

Expansion (C.6) conforms to expansion (C.1) with Kin (ρ0) = (Hln Hk1n · · · Hki n)L , and

Kmn(ρ̂n) = (Ĥln Hk1n · · · Hkm n)L . As Ḡn = RnGn R−1
n , we have ̂̄Gn − Ḡn = (R̂n − Rn)

Ĝn R̂−1
n + Rn(Ĝn −Gn)(R̂−1

n − R−1
n )+ Rn(Ĝn −Gn)R−1

n + RnGn(R̂−1
n − R−1

n ). (R̂n −
Rn)Ĝn R̂−1

n = ∑q
k=1(ρ0k − ρ̂nk)MknĜn R̂−1

n . On the other hand, Ĝn and R̂−1
n can be ex-

panded to the form of (C.1) by (D.2) and (D.3), respectively. Note that when the transfor-
mation ·t is taken, the deterministic parts of the expansions of Rn(Ĝn − Gn)(R̂−1

n − R−1
n ),

Rn(Ĝn − Gn)R−1
n , and RnGn(R̂−1

n − R−1
n ) have a zero trace by construction. Hence (a)

follows from Lemma C.11, where the uniform boundedness in a neighborhood of the true
parameters of the relevant matrices in the remainder terms follow from Lemma C.8.

For (b), first consider the case that C∗
n is either Ḡ∗

jn or H∗
kn for j = 1, . . . , p and k =

1, . . . ,q. We have Ḡ∗
jn = Ḡjn − κ−2σ 6

0
κ D(Ḡjn) − σ 2

0 μ3
κ D(Ḡjn X̄nβ0) and H∗

kn = Hkn −
κ−2σ 6

0
κ D(Hkn), for j = 1, . . . , p and k = 1, . . . ,q, where κ = σ 2

0 (μ4 −σ 4
0 )−μ2

3. Let κ̂n be

κ’s estimated counterpart, and U1n = [Ĉn − κ̂n−2(σ̂ 2
n )3

κ̂n
D(Ĉn)] − [Cn − κ−2σ 6

0
κ D(Cn)] =

(Ĉn −Cn)−(1− 2(σ̂ 2
n )3

κ̂n
)D(Ĉn −Cn)+(

2(σ̂ 2
n )3

κ̂n
− 2σ 6

0
κ )D(Cn). As (2(σ̂ 2

n )3/κ̂n −2σ 6
0 /κ) =

op(1), it follows from (a) and Lemma C.1 that 1
n z′

1n(U ′
1n)L z2n = op(1). On the other hand,

let U2n = − σ̂ 2
n μ̂3n
κ̂n

D(Ĉn X̄n(ρ̂n)β̂n −Cn X̄nβ0)− (
σ̂ 2

n μ̂3n
κ̂n

− σ 2
0 μ3
κ )D(Cn X̄nβ0) = − σ̂ 2

n μ̂3n
κ̂n

D[(Ĉn − Cn)X̄nβ0 + Ĉn X̄n(β̂n − β0) + Ĉn(X̄n(ρ̂n) − X̄n)β̂n] − (
σ̂ 2

n μ̂3n
κ̂n

− σ 2
0 μ3
κ )

D(Cn X̄nβ0), where Ĉn − Cn takes the general form Ĉn − Cn = ∑m−1
i=1 ∑r

j1=1 · · ·∑r
ji =1

(α̂nj1 − α0 j1) · · · (α̂nji − α0 ji )Kin (α0) + ∑r
j1=1 · · ·∑r

jm=1(α̂nj1 − α0 j1) · · · (α̂njm − α0 jm )

Kmn(α̂n), in the proof of (a). Therefore, D[(Ĉn − Cn)X̄nβ0] = ∑m−1
i=1 ∑r

j1=1 · · ·∑r
ji =1

(α̂nj1 −α0 j1) · · · (α̂nji −α0 ji )D[Kin (α0) X̄nβ0]+∑r
j1=1 · · ·∑r

jm=1(α̂nj1 −α0 j1) · · · (α̂njm −
α0 jm )D[Kmn(α̂n)X̄nβ0]. As conditions in Lemma C.11 are satisfied via Lemma C.8, it

follows that 1
n z′

1n D′[(Ĉn −Cn)X̄nβ0]L z2n = op(1). Let ek j be the j th unit column vector

in Rk , then 1
n z′

1n D′[Ĉn X̄n(β̂n −β0)]z2n = 1
n ∑n

i=1 z1n,i z2n,i e′
ni Ĉn X̄n(β̂n −β0) = op(1),

as 1
n ∑n

i=1 z1n,i z2n,i e′
ni Ĉn X̄n = Op (1) and β̂n −β0 = op(1). Similarly, 1

n z′
1n D′[Ĉn(X̄n
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(ρ̂n) − X̄n)β̂n]z2n = ∑q
k=1(ρ0k − ρ̂nk) 1

n z′
1n D′(Ĉn Mkn Xn β̂n)z2n = op(1). The remain-

ing term in 1
n z′

1n(U ′
2n)L z2n is op(1) as (σ̂ 2

n μ̂3n/κ̂n − σ 2
0 μ3/κ) = op(1). And with sim-

ilar arguments and corresponding results in Lemma C.11, the other results in (b) follow,
when C∗

n is either Ḡ∗
jn or H∗

kn for j = 1, . . . , p and k = 1, . . . ,q. When C∗
n = D(X̄∗

nl ),

for l = 1, . . . ,k∗
x , we have Ĉ∗

n − C∗
n = D(Rn(ρ̂n)X∗

nl ) − D(Rn(ρ0)X∗
nl ) = ∑q

k=1(ρ0k −
ρ̂nk)D(Mkn X∗

nl ). Because (ρ0 − ρ̂n) = op(1) and
√

n(ρ0 − ρ̂n) = Op(1), the four claims
in (b) hold for C∗

n = D(X̄∗
nj ) by Lemmas C.1, C.4, C.3, and C.5, respectively.

For (c), as vec′
D(Ĉn −Cn)L = l ′n D(Ĉn −Cn)L , the results follow from similar argument

as in the proof of (a).
For (d), as vec′

D(Ĉ∗
n − C∗

n )L = l ′n D(Ĉ∗
n − C∗

n )L , it follows from similar arguments as

in the proof of (b) that 1
n vec′

D(Ĉ∗
n − C∗

n )L z2n = op(1). To prove 1
n tr[A′

n(Ĉ∗
n − C∗

n )L ] =
op(1), first we consider the case when C∗

n is either Ḡ∗
jn or H∗

kn for j = 1, . . . , p and

k = 1, . . . ,q. As in the proof of (a), for m = 2, Ĉn − Cn = ∑r
j=1(α̂nj −α0 j )K1n (α0)+

∑r
j1=1 ∑r

j2=1(α̂nj1 −α0 j1)(α̂nj2 −α0 j2)K2n(α̂n). Hence, it follows 1
n tr[A′

n(Ĉn −Cn)L ] =
∑r

j=1(α̂nj − α0 j )
1
n tr(A′

n K L
1n (α0)) + ∑r

j1=1 ∑r
j2=1(α̂nj1 − α0 j1)(α̂nj2 − α0 j2)

1
n tr(A′

n

K L
2n(α̂n)) = op(1), because 1

n tr(A′
n K L

1n (α0)) = O(1), 1
n tr(A′

n K L
2n(α̂n)) = Op(1), and

α̂n − α0 = op(1). Similarly, 1
n tr[A′

n D(Ĉn X̄n(ρ̂n)β̂n − Cn X̄nβ0)] = 1
n vec′

D(An)[(Ĉn −
Cn)X̄nβ0 + Ĉn(X̄n(ρ̂n)− X̄n)β̂n + Ĉn X̄n(β̂n −β0)] = op(1), because 1

n vec′
D(An)(Ĉn −

Cn)X̄nβ0 = ∑r
j=1(α̂nj − α0 j )

1
n vec′

D(An)K1n (α0) X̄nβ0 + ∑r
j1=1 ∑r

j2=1(α̂nj1 − α0 j1)

(α̂nj2 −α0 j2)
1
n vec′

D(An)K2n(α̂n)X̄nβ0, 1
n vec′

D(An)Ĉn(X̄n(ρ̂n)− X̄n)β̂n = ∑q
k=1(ρ0k −

ρ̂nk) 1
n vec′

D(An)Ĉn Mkn Xn β̂n , and 1
n vec′

D(An)Ĉn X̄n(β̂n − β0) are op(1). As 1
n tr[A′

n

D(Cn)] = O(1), 1
n tr[A′

n D(Cn Xnβ0)] = O(1), and σ̂ 2
n , μ̂3n, κ̂n are consistent estimates, it

follows that 1
n tr[A′

n(Ĉ∗
n −C∗

n )L ] = op(1). When C∗
n = D(X̄∗

nl ), for l = 1, . . . ,k∗
x , we have

1
n tr[A′

n(Ĉ∗
n −C∗

n )L ] = ∑q
k=1(ρ0k − ρ̂nk) 1

n tr[A′
n D(Mkn X∗

nl )] = op(1), because ρ0 − ρ̂n =
op(1) and 1

n tr[A′
n D(Mkn X∗

nl )] = O(1).
For (e), as Dn(γ ) is uniformly bounded in both row and column sums in absolute value,

uniformly in a small neighborhood of γ0, and γ̂n − γ0 = op(1), it follows that Dn(γ̂n) is
uniformly bounded in both row and column sums in absolute value with probability one.
The remaining arguments will be similar to those in part 2 of (d). n

Proof of Lemma C.13. As κ = σ 2
0 (μ4 −σ 4

0 )−μ2
3, with μ3 = η3σ 3

0 and μ4 = η4σ 4
0 ,

we have

T̂1n − T1n = (X̄n(ρ̂n)− X̄n)+ μ̂2
3n

κ̂n

(
In − 1

n
lnl ′n
)

(X̄n(ρ̂n)− X̄n)

+
(

μ̂2
3n

κ̂n
− μ2

3
κ

)(
In − 1

n
lnl ′n
)

X̄n, (D.5)

T̂2n − T2n = (Ĉn X̄n(ρ̂n)β̂n −Cn X̄nβ0)+ μ̂2
3n

κ̂n

(
In − 1

n
lnl ′n
)

(Ĉn X̄n(ρ̂n)β̂n −Cn X̄nβ0)

+
(

μ̂2
3n

κ̂n
− μ2

3
κ

)(
In − 1

n
lnl ′n
)

Cn X̄nβ0, (D.6)
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and T̂3n − T3n = 2(σ̂ 2
n )2μ̂3n
κ̂n

vecD(Ĉn −Cn)t +
(

2(σ̂ 2
n )2μ̂3n
κ̂n

− 2σ 4
0 μ3
κ

)
vecD(Ct

n). Let �n be

either In or In − 1
n lnl ′n . 1

n (T̂1n −T1n)′zn = op(1), since 1
n (X̄n(ρ̂n) − X̄n)′�′

nzn = ∑q
k=1

(ρ0k − ρ̂nk) 1
n (Mkn Xn)′�′

nzn = op(1) and μ̂2
3n/κ̂n −μ2

3/κ = op(1). For the first two terms

in 1
n (T̂2n − T2n)′zn , since 1

n [(Ĉn − Cn)Rn(ρ̂n)X̄n β̂n]′�′
nzn = op(1) by Lemma C.12,

1
n [Cn(X̄n(ρ̂n) − X̄n)β̂n]′�′

nzn = ∑q
k=1(ρ0k − ρ̂nk) 1

n (Cn Mkn Xn β̂n)′�′
nzn = op(1), and

(β̂n −β0)′ 1
n (Cn X̄n)′�′

nzn = op(1), it follows that 1
n (Ĉn X̄n(ρ̂n)β̂n − Cn X̄nβ0)′�′

nzn =
1
n [(Ĉn − Cn) Rn(ρ̂n)X̄n β̂n + Cn(X̄n(ρ̂n) − X̄n)β̂n + Cn X̄n(β̂n − β0)]′�′

nzn = op(1).

The remaining term in 1
n (T̂2n − T2n)′zn is op(1) because μ̂2

3n/κ̂n − μ2
3/κ = op(1) and

1
n (�nCn X̄nβ0)′zn = O(1). For the first term in 1

n (T̂3n −T3n)′zn , it follows from Lemma

C.12 that 1
n vec′

D(Ĉn−Cn)t zn =op(1). And the remaining term in 1
n (T̂3n −T3n)′zn is op(1)

because (σ̂ 2
n )2μ̂3n/ κ̂n −σ 4

0 μ3/κ = op(1) and 1
n vec′

D(Ĉ t
n)zn = O(1). This proves (a).

For (b), the first two terms in 1√
n
(T̂1n − T1n)′ Anεn are op(1) because 1√

n
(X̄n(ρ̂n) −

X̄n)′�′
n Anεn =∑q

k=1
√

n(ρ0k − ρ̂nk) 1
n (Mkn Xn)′�′

n Anεn =op(1), where
√

n(ρ0k − ρ̂nk)=
Op(1) and 1

n (Mkn Xn)′�′
n Anεn = op(1) by Lemma C.4 for k = 1, . . . ,q. Similarly, the

remaining term in 1√
n
(T̂1n − T1n)′ Anεn is also op(1). For the first two terms in 1√

n
(T̂2n −

T2n)′ Anεn , we have

1√
n

(Ĉn X̄n(ρ̂n)β̂n −Cn X̄nβ0)′�′
n Anεn

= 1√
n

[(Ĉn −Cn)(Rn(ρ̂n)− Rn)Xn β̂n]′�′
n Anεn + 1√

n
[(Ĉn −Cn)Rn Xn β̂n]′�′

n Anεn

+∑q
k=1

√
n(ρ0k − ρ̂nk)β̂ ′

n
1

n
(Mkn Xn)′C ′

n�′
n Anεn +√

n(β̂n −β0)′ 1

n
X̄ ′

nC ′
n�′

n Anεn .

(D.7)

The first two terms of (D.7) are op(1) by Lemma C.12. And the remaining terms of

(D.7) are op(1) because 1
n (Mkn Xn)′C ′

n�′
n Anεn = op(1) and 1

n X̄ ′
nC ′

n�′
n Anεn = op(1)

by Lemma C.4. Similarly, the remaining term in 1√
n
(T̂2n − T2n)′ Anεn is also op(1). The

first term in 1√
n
(T̂3n −T3n)′ Anεn is op(1) by Lemma C.12, and the remaining term is also

op(1) because 1
n vec′

D(Ct
n) Anεn = op(1) by Lemma C.4. The desired results follow.

For (c), as the arguments are similar to those in the proof of (a), we only give the proof
for 1

n (T̂2n − T2n)′ D̂n = op(1). For its first two terms, we have

1

n
(Ĉn X̄n(ρ̂n)β̂n −Cn X̄nβ0)′�′

n D̂n

= 1

n
[(Ĉn −Cn)X̄n β̂n]′�′

n D̂n

+ [∑q
k=1(ρ0k − ρ̂nk)Ĉn Mkn Xn β̂n +Cn X̄n(β̂n −β0)]′�′

n D̂n, (D.8)

where the first term can be rewritten as 1
n [(Ĉn − Cn)X̄n β̂n]′�′

n(D̂n − Dn) + 1
n [(Ĉn −

Cn)X̄n β̂n]′�′
n Dn , and it is op(1) by Lemma C.12. The remaining term of (D.8) is also
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op(1) because ρ̂n − ρ0 = op(1), β̂n − β0 = op(1), and (�nĈn Mkn Xn)′ D̂n = Op(1),
(�nCn X̄n)′ D̂n = Op(1). Similarly, we have (μ̂2

3n/κ̂n −μ2
3/κ)(�nCn X̄nβ0)′ D̂n = op(1).

Hence, 1
n (T̂2n − T2n)′ D̂n = op(1). n

Proofs of Propositions 2 and 3. With the basic properties in Lemmas C.1–C.5 and our
assumptions, the proofs of these two propositions will be similar to the arguments in Lee
(2007a) and, hence, are omitted. n

Proof of Proposition 4. Consider the moment conditions E
(
g∗

n (θ0) ,gn (θ0)
)′ = 0,

where gn (θ) is a vector of arbitrary moment functions taking the form of (4). To show the
desired results, it is sufficient to show that gn is redundant given g∗

n , or, equivalently, that
there exists an An invariant with Pin (i = 1, . . . ,m) and Qn st. D2 = �21 An according to
Lemma C.14 (c), where

D2 = ∂ E(gn(θ0))

∂θ ′

= −

⎛⎜⎜⎜⎝
0kI V ×q Q′

n(Ḡ1n X̄nβ0, . . . , Ḡ pn X̄nβ0) Q′
n X̄n

σ 2
0 (tr(Ps

1n H1n), . . . , tr(Ps
1n Hqn)) σ 2

0 (tr(Ps
1n Ḡ1n), . . . , tr(Ps

1n Ḡ pn)) 01×kx

...
...

...

σ 2
0 (tr(Ps

mn H1n), . . . , tr(Ps
mn Hqn)) σ 2

0 (tr(Ps
mn Ḡ1n), . . . , tr(Ps

mn Ḡ pn)) 01×kx

⎞⎟⎟⎟⎠ ,

and

�21 = E
(
gn (θ0)g∗′

n (θ0)
)

=

⎛⎜⎜⎜⎜⎜⎝
σ 2

0 Q′
n Q∗

n μ3 Q′
nvecD

(
P∗

1n

) · · · μ3 Q′
nvecD(P∗

p+q+k∗
x ,n)

μ3vec′
D (P1n) Q∗

n σ 4
0 tr(Ps

1n P∗
1n) · · · σ 4

0 tr(Ps
1n P∗

p+q+k∗
x ,n)

...
...

. . .
...

μ3vec′
D (Pmn) Q∗

n σ 4
0 tr(Ps

mn P∗
1n) · · · σ 4

0 tr(Ps
mn P∗

p+q+k∗
x ,n)

⎞⎟⎟⎟⎟⎟⎠

+(μ4 −3σ 4
0 )

⎛⎜⎜⎜⎜⎝
0kIV×kIV 0kI V ×(p+q+k∗

x )

01×kI V vec′
D (P1n)(vecD

(
P∗

1n

)
, . . . ,vecD(P∗

p+q+k∗
x ,n))

...
...

01×kIV vec′
D (Pmn)(vecD

(
P∗

1n

)
, . . . ,vecD(P∗

p+q+k∗
x ,n))

⎞⎟⎟⎟⎟⎠ .

With κ = σ 6
0

[
(η4 −1)−η2

3

]
= σ 2

0 (μ4 −σ 4
0 )−μ2

3, let

An = −
⎛⎜⎝ 0q×kx 0q×p − 2σ 2

0 μ3
κ Iq 0q×p σ−2

0 Iq 0q×k∗
x

0p×kx σ−2
0 Ip 0p×q σ−2

0 Ip 0p×q 0p×k∗
x

σ−2
0 Ikx 0kx ×p 0kx ×q 0kx ×p 0kx ×q b

⎞⎟⎠
′

,

where b = (b′
1, . . . ,b′

k∗
x
)′ with bl = − (μ3/κ)e′

kx l for l = 1, . . . ,k∗
x . To check D2 = �21 An ,

the following identities are helpful. For j = 1, . . . , p, k = 1, . . . ,q, and l = 1, . . . ,k∗
x , (a)

vecD(P∗
jn) = 2σ 6

0
κ vecD

(
Ḡjn − tr(Ḡjn)

n In

)
−σ 2

0 μ3
κ (Ḡjn X̄nβ0 − 1

n lnl ′nḠjn X̄nβ0); (b) vecD

(P∗
p+k,n) = 2σ 6

0
κ vecD

(
Hkn − tr(Hkn)

n In

)
; (c) vecD(P∗

p+q+l,n) = X̄∗
nl − 1

n lnl ′n X̄∗
nl ; and (d)

∑
k∗

x
l=1 vecD(P∗

p+q+l,n)e′
kx l = X̄n − 1

n lnl ′n X̄n . It follows from (a), (b), and (d), respectively,
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to have that (e) σ 2
0 Q∗

2nj + μ3vecD(P∗
jn) = σ 2

0 Ḡjn X̄nβ0; (f)
2σ 6

0
κ Q∗

3nk = vecD(P∗
p+k,n);

and (g) Q∗
1n − μ2

3
κ ∑

k∗
x

l=1 vecD(P∗
p+q+l,n)e′

kx l = X̄n . For an arbitrary n ×n matrix Pn with

tr(Pn) = 0, we have: (h) vec′
D(Pn)Q∗

1n = (σ 2
0 (μ4 −σ 4

0 )/κ)vec′
D(Pn)X̄n ; (i) μ3vec′

D(Pn)

Q∗
2nj +σ 4

0 tr(Ps
n P∗

jn)+ (μ4 −3σ 4
0 )vec′

D(Pn)vecD(P∗
jn) = σ 4

0 tr(Ps
n Ḡjn); (j) − 2σ 4

0 μ2
3

κ vec′
D

(Pn)Q∗
3nk +σ 4

0 tr(Ps
n P∗

p+k,n)+ (μ4 −3σ 4
0 )vec′

D(Pn)vecD(P∗
p+k,n) = σ 4

0 tr(Ps
n Hkn); and

(k) σ 4
0 tr(Ps

n P∗
p+q+l,n) + (μ4 − 3σ 4

0 )vec′
D(Pn)vecD(P∗

p+q+l,n) = (μ4 − σ 4
0 )vec′

D(Pn)

vecD(P∗
p+q+l,n).

It follows from identity (f) the (1,1) block of �21 An is 0kI V ×q ; it follows from iden-
tity (e) that the (1,2) block of �21 An is −Q′

n(Ḡ1n X̄nβ0, . . . , Ḡpn X̄nβ0); and it follows
from identity (g) that the (1,3) block of �21 An is −Q′

n X̄n . Identity ( j) implies that the
(i +1,1) blocks of �21 An are −σ 2

0 (tr(Ps
in H1n), · · · , tr(Ps

in Hqn)) for i = 1, . . . ,m; identity

(i) implies that the (i + 1,2) blocks of �21 An are −σ 2
0 (tr(Ps

inḠ1n), . . . , tr(Ps
inḠpn)) for

i = 1, . . . ,m; and identities (d), (h), and (k) imply that the remaining blocks of �21 An are
zeros. Therefore, �21 An = D2.

Furthermore, as g∗
n (θ) is a special case of gn (θ), and An is invariant with Pn’s and Qn , it

follows that D1 = �11 An , and hence �−1
11 D1 = An , where �11 = �∗

n = var
(
g∗

n (θ0)
)

and

D1 = E
(

∂g∗
n (θ0)
∂θ

)
. Hence �b = limn→∞ 1

n D′
1�−1

11 D1 = limn→∞ 1
n D′

1 An . After some

tedious but straightforward algebra, the desired result follows. n

Proof of Proposition 5. We shall show that �∗
n(θ) = ĝ∗′

n (θ)�̂∗−1
n ĝ∗

n (θ) and �n(θ) =
g∗′

n (θ)�∗−1
n g∗

n (θ) will satisfy the conditions in Lemma C.6. If so, the GMM estimator
from the minimization of �∗

n(θ) will have the same limiting distribution as that of the
minimization of �n(θ). The difference of �∗

n(θ) and �n(θ) and its derivatives involve
the difference of ĝ∗

n (θ) and g∗
n (θ) and their derivatives. Furthermore, one has to consider

the difference of �̂∗
n and �∗

n .
First, consider 1

n (ĝ∗
n (θ)− g∗

n (θ)). Let m∗ = k∗
x + p +q. Explicitly,

1

n
(ĝ∗

n (θ)−g∗
n (θ))′=

[
1

n
(Q̂∗

n − Q∗
n)′, 1

n
ε′

n(θ)(P̂∗
1n − P∗

1n), . . . ,
1

n
ε′

n(θ)( P̂∗
m∗n − P∗

m∗n)

]
εn(θ).

The εn(θ) is related to εn as εn(θ) = en(θ)+(In +∑q
k=1(ρ0k −ρk)Hkn)(In +∑p

j=1(λ0 j −
λj )Ḡjn)εn where en(θ) = (In + ∑q

k=1(ρ0k − ρk)Hkn)[∑p
j=1(λ0 j − λj )Ḡjn X̄nβ0 + X̄n

(β0 −β)]. It follows that 1
n (Q̂∗

n − Q∗
n)′εn(θ) = 1

n (Q̂∗
n − Q∗

n)′(In + ∑q
k=1(ρ0k −ρk)Hkn)

(In +∑p
j=1(λ0 j −λj )Ḡjn)εn + 1

n (Q̂∗
n − Q∗

n)′en(θ) = op(1) uniformly in θ ∈ � by Lemma

C.13. From Lemma C.12, it follows that 1
n ε′

n(θ)(P̂∗
in − P∗

in)εn(θ) = op(1), for i = 1, . . . ,m∗,

uniformly in θ ∈ �. Hence, we conclude that 1
n (ĝ∗

n (θ) − g∗
n (θ)) = op(1) uniformly in

θ ∈ �.
Consider the derivatives of ĝ∗

n (θ) and g∗
n (θ).

∂g∗
n (θ)

∂θ ′ =

⎛⎜⎜⎜⎜⎝
Q∗′

n
∂εn(θ)

∂θ ′
ε′

n(θ)P∗s
1n

∂εn(θ)
∂θ ′

...

ε′
n(θ)P∗s

m∗n
∂εn(θ)

∂θ ′

⎞⎟⎟⎟⎟⎠ , and
∂2g∗

n (θ)

∂θ∂θ ′ =

⎛⎜⎜⎜⎜⎝
Q∗′

n
∂2εn(θ)
∂θ∂θ ′

∂ε′(θ)
∂θ P∗s

1n
∂εn(θ)

∂θ ′ + ε′
n(θ)P∗s

1n
∂2εn(θ)
∂θ∂θ ′

...
∂ε′(θ)

∂θ P∗s
m∗n

∂εnθ
∂θ ′ + ε′

n(θ)P∗s
m∗n

∂2εn(θ)
∂θ∂θ ′

⎞⎟⎟⎟⎟⎠ .
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The first-order derivatives of εn(θ) are ∂εn(θ)
∂θ ′ = −[M1nun(δ), . . . , Mqnun(δ), Rn(ρ)W1n

Yn, . . . , Rn(ρ)WpnYn, Rn(ρ)Xn], where un(δ) = (In − ∑p
j=1 λj Wjn)Yn − Xnβ, Rn(ρ) =

In −∑q
k=1 ρk Mkn , and Yn = S−1

n Xnβ0 + S−1
n R−1

n εn . The second derivatives of εn(θ) are
∂2εn(θ)
∂λj ∂ρk

= Mkn WjnYn, ∂2εn(θ)
∂ρk∂β ′ = Mkn Xn , and ∂2εn(θ)

∂λj ∂β ′ = 0. It follows from Lemmas C.12

and C.13 that 1
n

( ∂ ĝ∗
n (θ)
∂θ − ∂g∗

n (θ)
∂θ

) = op(1) and 1
n

( ∂2 ĝ∗
n (θ)

∂θ∂θ ′ − ∂2g∗
n (θ)

∂θ∂θ ′
) = op(1) uniformly

in θ ∈ �.
Consider 1

n (�̂∗
n −�∗

n), where

�∗
n = E

[
g∗

n (θ0)g∗′
n (θ0)

]=( σ 2
0 Q∗′

n Q∗
n μ3 Q∗′

n ω∗
m∗

μ3ω∗′
m∗ Q∗

n σ 4
0 ∗

m∗ + (μ4 −3σ 4
0 )ω∗′

m∗ω∗
m∗

)
,

with ω∗
m∗ = [vecD(P∗

1n), . . . ,vecD(P∗
m∗n)] and

∗
m∗ =

⎛⎜⎝ tr
(

P∗s
1n P∗

1n

) · · · tr
(

P∗s
1n P∗

m∗n
)

...
. . .

...
tr
(

P∗s
m∗n P∗

1n

) · · · tr
(

P∗s
m∗n P∗

m∗n
)
⎞⎟⎠ .

First, consider the block matrix σ 4
0 ∗

m∗ + (μ4 − 3σ 4
0 )ω∗′

m∗ω∗
m∗ . It follows from Lemma

C.12 that 1
n tr(P̂∗s

in P̂∗
jn)− 1

n tr(P∗s
in P∗

jn) = 1
n tr[(P̂∗s

in − P∗s
in )P̂∗

jn + P∗s
in (P̂∗

jn − P∗
jn)] and 1

n vec′
D

(P̂∗
in) vecD(P̂∗

jn)− 1
n vec′

D

(
P∗

in
)

vecD(P∗
jn) = 1

n vec′
D(P̂∗

in)vecD(P̂∗
jn − P∗

jn)+ 1
n vec′

D(P̂∗
in −

P∗
in)vecD(P∗

jn) are op(1) for i, j = 1, . . . ,m∗. Hence, 1
n (σ̂ 2

n )2tr(P̂∗s
in P̂∗

jn) − 1
n σ 4

0

tr(P∗s
in P∗

jn) and 1
n (μ̂4n − 3(σ̂ 2

n )2)vec′
D(P̂∗

in)vecD(P̂∗
jn) − 1

n (μ4 − 3σ 4
0 )vec′

D(P∗
in)vecD

(P∗
jn) are op(1) for i, j = 1, . . . ,m∗.

Next consider the block matrix μ3 Q∗′
n ω∗

m∗ . It follows from Lemmas C.12 and C.13 that
1
n Q̂∗′

n vecD(P̂∗
in)− 1

n Q∗′
n vecD(P∗

in) = 1
n (Q̂∗

n − Q∗
n)′vecD(P̂∗

in)+ 1
n Q∗′

n vecD(P̂∗
in − P∗

in) =
op(1), for i = 1, . . . ,m∗. Hence, 1

n (μ̂3n Q̂∗′
n vecD(P̂∗

in)−μ3 Q∗′
n vecD(P∗

in)) = μ̂3n
1
n (Q̂∗′

n

vecD (P̂∗
in)− Q∗′

n vecD(P∗
in))+ (μ̂3n −μ3) 1

n Q∗′
n vecD(P∗

in) = op(1), for i = 1, . . . ,m∗.

Lastly, consider the remaining block matrix σ 2
0 Q∗′

n Q∗
n . Lemma C.13 implies that 1

n (Q̂∗′
in

Q̂∗
jn − Q∗′

in Q∗
jn) = 1

n [Q̂∗′
in(Q̂∗

jn − Q∗
jn)+(Q̂∗

in − Q∗
in)′Q∗

jn] = op(1), for i, j = 1,2,3. There-

fore, it follows that 1
n (σ̂ 2

n Q̂∗′
n Q̂∗

n − σ 2
0 Q∗′

n Q∗
n) = σ̂ 2

n
1
n (Q̂∗′

n Q̂∗
n − Q∗′

n Q∗
n) + (σ̂ 2

n − σ 2
0 ) 1

n
Q∗′

n Q∗
n = op(1). In conclusion, 1

n �̂∗
n − 1

n �∗
n = op(1). As the limit of 1

n �∗
n exists and is

a nonsingular matrix (as the moments are not linearly dependent with probability 1), it
follows that ( 1

n �̂∗
n)−1 − ( 1

n �∗
n)−1 = op(1) by the continuous mapping theorem (White,

1984, Prop. 2.30).
Furthermore, because 1

n (ĝ∗
n (θ) − g∗

n (θ)) = op(1), and 1
n [g∗

n (θ) − E(g∗
n (θ))] = op(1)

uniformly in θ ∈ �, and supθ∈�
1
n |E(g∗

n (θ))| = O(1) (see the proof of Proposition 3),

hence 1
n g∗

n (θ) and 1
n ĝ∗

n (θ) are Op(1), uniformly in θ ∈�. Similarly, 1
n

∂g∗
n (θ)
∂θ , 1

n
∂ ĝ∗

n (θ)
∂θ ,

1
n

∂2g∗
n (θ)

∂θ∂θ , and 1
n

∂2 ĝ∗
n (θ)

∂θ∂θ are Op(1), uniformly in θ ∈ �.
With the uniform convergence in probability and uniformly stochastic boundedness

properties, the difference of�∗
n(θ) and�n(θ) can be investigated. By expansion, 1

n (�∗
n(θ)−

�n(θ)) = 1
n ĝ∗′

n (θ)�̂∗−1
n (ĝ∗

n (θ)−g∗
n (θ))+ 1

n g∗′
n (θ)(�̂∗−1

n −�∗−1
n )ĝ∗

n (θ)+ 1
n g∗′

n (θ)�∗−1
n
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(ĝ∗
n (θ) − g∗

n (θ)) = op(1), uniformly in θ ∈ �. Similarly, for each component θl of

θ , 1
n

∂2
�

∗
n(θ)

∂θl∂θ ′ − 1
n

∂2
�n(θ)

∂θl∂θ ′ = 2
n [ ∂ ĝ∗′

n (θ)
∂θl

�̂∗−1
n

∂ ĝ∗
n (θ)
∂θ ′ + ĝ∗′

n (θ)�̂∗−1
n

∂2 ĝ∗
n (θ)

∂θl∂θ ′ − (
∂g∗′

n (θ)
∂θl

�∗−1
n

∂g∗
n (θ)
∂θ ′ + g∗′

n (θ)�∗−1
n

∂2g∗
n (θ)

∂θl∂θ ′ )] = op(1).

Finally, because (
∂ ĝ∗′

n (θ0)
∂θ �̂∗−1

n − ∂g∗′
n (θ0)
∂θ �∗−1

n ) = op(1) as above, and 1√
n

g∗
n (θ0) =

Op(1) by the central limit theorems in Lemmas C.4 and C.5, 1√
n
(
∂�∗

n(θ0)
∂θ − ∂�n(θ0)

∂θ ) =
2{∂ ĝ∗′

n (θ0)
∂θ �̂∗−1

n
1√
n
(ĝ∗

n (θ0)−g∗
n (θ0))+ (

∂ ĝ∗′
n (θ0)
∂θ �̂∗−1

n − ∂g∗′
n (θ0)
∂θ �∗−1

n ) 1√
n

g∗
n (θ0)} = 2 1

n
∂ ĝ∗′

n (θ0)
∂θ ( 1

n �̂∗
n)−1 1√

n
(ĝ∗

n (θ0) − g∗
n (θ0)) + op(1). As 1√

n
(ĝ∗

n (θ0) − g∗
n (θ0)) = op(1) by

Lemmas C.12 and C.13, 1√
n
(
∂�∗

n(θ0)
∂θ − ∂�n(θ0)

∂θ ) = op(1). The desired result follows from

Lemma C.6. n

Proof of Proposition 6. The log-likelihood function for the SARAR(p,q) model is
given by (2), and its derivatives are ∂ ln Ln

∂β = 1
σ 2 (Rn (ρ) Xn)′εn(θ) = 1

σ 2 X̄ ′
n(ρ)εn(θ),

∂ ln Ln
∂σ 2 = − n

2σ 2 + 1
2σ 4 ε′

n(θ)εn(θ), ∂ ln Ln
∂λj

= −tr(Ḡjn(ρ,λ)) + 1
σ 2 {Ḡjn(ρ,λ)X̄n(ρ)β}′

εn(θ) + 1
σ 2 ε′

n(θ)Ḡjn(ρ,λ)εn(θ), ∂ ln Ln
∂ρk

= −tr(Hkn(ρ)) + 1
σ 2 ε′

n(θ)Hknεn(θ), where

Ȳn(ρ) = Rn(ρ)Yn , X̄n(ρ) = Rn(ρ)Xn , W̄jn(ρ) = Rn(ρ)Wjn R−1
n (ρ), S̄n(ρ,λ) = Rn(ρ)

Sn(λ)R−1
n (ρ), and Ḡjn(ρ,λ) = W̄jn(ρ)S̄−1

jn (λ), for j = 1, . . . , p and k = 1, . . . ,q. The

QML estimator of σ 2 is σ̂ 2
ml,n(θ) = 1

n ε′
n(θ)εn(θ) for a given value θ . Substitution of

σ̂ 2
ml,n(θ) in the remaining likelihood equations shows that the QML estimator is charac-

terized by the equations X̄ ′
n(ρ)εn(θ) = 0, [Ḡjn(ρ,λ)X̄n(ρ)β]′εn(θ)+ ε′

n(θ)[Ḡjn(ρ,λ)−
1
n tr(Ḡjn(ρ,λ))]εn(θ) = 0, and ε′

n(θ)[Hkn(ρ)− 1
n tr(Hkn(ρ))]εn(θ) = 0, for j = 1, . . . , p

and k = 1, . . . ,q. Denote the QML estimator of θ by θ̂ml,n . Obviously, θ̂ml,n is the solution
of an ĝml,n(θ) = 0, with

an =
⎛⎝ Ikx 0 0 0

0 Ip Ip 0
0 0 0 Iq

⎞⎠
and

ĝml,n(θ) = [X̄n(ρ̂ml,n), Ḡ1n(ρ̂ml,n, λ̂ml,n)X̄n(ρ̂ml,n)β̂ml,n, . . . , Ḡ pn(ρ̂ml,n, λ̂ml,n)

X̄n(ρ̂ml,n)β̂ml,n, Ḡt
1n(ρ̂ml,n, λ̂ml,n)εn(θ), . . . , Ḡt

pn(ρ̂ml,n, λ̂ml,n)εn(θ),

Ht
1n(ρ̂ml,n)εn(θ), . . . , Ht

qn(ρ̂ml,n)εn(θ)]′εn(θ),

where At = A− 1
n tr(A) In for a square matrix A. And it follows by similar arguments as in

the proof of Proposition 5 that an ĝml,n(θ) = 0 is asymptotically equivalent to angml,n(θ) =
0, where gml,n(θ) = [X̄n, Ḡ1n X̄n β̂ml,n, . . . , Ḡ pn X̄n β̂ml,n, Ḡt

1nεn(θ), . . . , Ḡt
pnεn(θ),

Ht
1nεn(θ), . . . , Ht

qnεn(θ)]′εn(θ), in the sense that their consistent roots have the same
limiting distribution. The vector of empirical moments gml,n(θ) consists of linear and
quadratic functions of εn(θ), hence the corresponding optimal GMM estimator derived
from min g′

ml,n(θ)�−1
n gml,n(θ) is in the classMn . As the BGMM estimator is the most

efficient estimator in Mn , the BGMM estimator is efficient relative to the QML
estimator.
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The best G2SLS estimator of Lee (2003) is consistent and asymptotic normal with√
n(δ̂bg2sls,n − δ0)

D→N (0,σ 2
0 (limn→∞ 1

n 
′
n R′

n Rn
n)−1), where 
n = (G1n Xnβ0, . . . ,
Gpn Xnβ0, Xn). The asymptotic variance of the best G2SLS estimator can be easily
compared with the asymptotic variance of the BGMM estimator in P2n . With the best
Pn’s in P2n , the asymptotic variance of θ̂b,n is the inverse of the asymptotic precision ma-
trix in (14). By the inverse formula of a partitioned matrix, the corresponding asymptotic
variance of the component δ̂b,n of θ̂b,n is

(
Cn

σ 2
0

+
(

(An B−1
n A′

n)22 − (An B−1
n A′

n)21(An B−1
n A′

n)−1
11 (An B−1

n A′
n)12 0p×kx

0kx ×p 0kx ×kx

))−1

,

where (An B−1
n A′

n)11 is the first q × q diagonal block in An B−1
n A′

n , (An B−1
n A′

n)22 is
the other p × p diagonal block in An B−1

n A′
n , and (An B−1

n A′
n)21 and (An B−1

n A′
n)12 are,

respectively, the p×q lower block and the q × p upper block in An B−1
n A′

n . InP2n , the best
selection of IVs is given by Q∗

n = Rn
n and, hence, Cn = 
′
n R′

n Rn
n . As An B−1
n An is

nonnegative definite, the asymptotic variance of the BGMM estimator in P2n is relatively
smaller than the asymptotic variance of the best G2SLS estimator. AsP1n is a broader class
containing P2n , the BGMM estimator in P1n given in Proposition 4 is therefore efficient
relative to the best G2SLS estimator. n


