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7.1. Introduction

Consider the following spatial panel data (SPD) model,

Ynt = λ0W1nYnt + Xntβ0 +µn0 +αt0ln + Unt , Unt = ρ0W2nUnt + Vnt , (7.1)

for t = 1, 2, . . . , T , where for a given t ,

Ynt : n × 1 vector of observations on the response variable,

Xnt : n× k matrix containing the values of k nonstochastic, individually
and time (IT) varying regressors,

Vnt : n × 1 vector of errors; {vit} iid(0, σ2
0) for all i and t ,

µn0: n × 1 vector of unobserved individual-specific effects, and

αT0: T × 1 vector of unobserved time-specific effects (α10, . . . , αT0)
′.

W1n and W2n: n × n spatial weights matrices, capturing the spatial
interaction effects on the response, and the cross-sectional
dependence among the disturbances.

In practice, W1n and W2n may be the same.
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The unobserved effects µn0 and αT0 may be considered as,

fixed effects (FE), in the sense that µn0 and αT0 may be
correlated with the IT-varying regressors in an arbitrary manner,

random effects (RE), in the sense that µn0 and αT0 are
uncorrelated with the IT-varying regressors,

correlated random effects (CRE), in the sense that µn0 and
αT0 are correlated with the IT-varying regressors linearly. It can be
referred to as linear fixed effects (LFE).

The overall size of the data is n × T , which may increase due to the

increase of n but not T , giving the most interesting case for spatial
econometrics, or micro-econometrics in general,

increase of T but not n, giving a case of time-series VAR model,

increase of both n and T (but n is faster than T ), giving another
interesting case for spatial econometrics.
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It is clear that panel data allows researchers to control the unobserved
heterogeneity (in intercepts) across individuals and time:

FE specification gives a full control. However, it creates incidental
parameters problem as the effects are treated as free parameters,
and it does not allow separate estimation of time-invariant effects,
such as gender and race, and individual-invariant effects, such as
policy change;

RE specification gives a minimum control. It does not suffer from
these problems as the effects are uncorrelated with the IT-varying
regressors and hence can be treated as iid random variables;

The CRE or LFE specification goes in-between FE and RE. It does
not suffer from these problems and at the same time gives ‘enough’
control for the unobserved heterogeneity.

Some tests are of interest: FE vs RE, Hausman test,
LFE vs RE, LM test.
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The SPD model given above can be further extended to allow the
individual- and time-specific effects to be interactive, giving

the SPD model with interactive fixed effects (IFE): µn0αt0, where αt0

now can be a vector, referred to as common factors, and the
corresponding µn0 becomes a matrix whose rows are referred to as
factor loadings. The early FE-SDP model is then referred to as SDP
model with additive fixed effects.

the SPD model with interactive random effects (IRE). The early SDP
model is then referred to as SDP model with additive random effects,

the SPD model with correlated IRE.

These specifications have not been fully studied, in particular the RE and
CRE specifications.

Different estimation and inference methods have not been fully explored.
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Overview

In this lecture, we
1 introduce fully QML estimation and inference methods for FE-SPD

model, based on the work of Lee and Yu (2010a, JOE);
2 introduce briefly QML estimation and inference methods for RE-SPD,

by extending the work of Lee and Yu (2012), Baltagi et al. (2013);
3 introduce briefly QML estimation and inference methods CRE-SPD

models, by further extending the work above;
4 discuss extended FE-SPD model: the SPD model with interactive

FEs;
5 introduce various tests for spatial effects in panel data models;
6 present Monte Carlo results for the finite sample performance of the

QMLEs and the tests.
7 present empirical applications to illustrate the methods introduced.
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7.2. QML Estimation of Fixed Effects SPD Models

Under the fixed effects specifications, the effects {ci0} and {αt0} are
treated as free parameters, and hence must be eliminated in certain way
to avoid the incidental parameters problem. Otherwise, joint estimation of
these effects with model’s common parameters will lead to inconsistency.

We follow the transformation approach of Lee and Yu (2010a) to introduce
the QML estimation of the FE-SPD model given by (7.1).

To eliminate the individual and time effects, define the projection matrices:

JT = (IT − 1
T lT l′T ), with orthonormal eigenvectors [FT ,T−1,

1√
T

lT ];

Jn = (In − 1
n lnl′n), with orthonormal eigenvectors [Fn,n−1,

1√
n ln].

Note: The eigenvalues of a projection matrix are either 1 or 0, with
number of ones being the rank of the matrix. FT ,T−1 and Fn,n−1 are the
submatrices of eigenvector matrices, corresponding to eigenvalues of one.

Z. L. Yang, SMU ECON747, Term I 2024-25 7 / 47



Now, for any n × T matrix, such as [Yn1, · · · , YnT ], define the
(n − 1)× (T − 1) transformed matrix as

[Y ∗
n1, . . . , Y ∗

n,T−1] = F ′n,n−1[Yn1, . . . , YnT ]FT ,T−1. (7.2)

This leads to the transformed vector Y ∗
nt , for t = 1, . . . , T − 1. Similarly U∗

nt ,
V ∗

nt , and X ∗
nt,j (for the j th regressor Xnt,j ) are obtained, j = 1, · · · , k .

Let X ∗
nt = [X ∗

nt,1, X ∗
nt,2, . . . , X ∗

nt,k ],

Define W ∗
rn = F ′n,n−1WrnFn,n−1, r = 1, 2,

Assume Wrn is row-normalized. Then, JnWrn = JnWrnJn.

By Spectral Theorem, Jn = Fn,n−1F ′n,n−1, it follows that

F ′n,n−1Wrn = F ′n,n−1WrnFn,n−1F ′n,n−1.

The transformed model we will work on thus takes the form:

Y ∗
nt = λ0W ∗

1nY ∗
nt + X ∗

ntβ0 + U∗
nt , U∗

nt = ρ0W ∗
2nU∗

nt + V ∗
nt , (7.3)

for t = 1, . . . , T − 1.
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After transformations, the effective sample size is N = (n − 1)(T − 1).

When Wjn are not row normalized, the linear SARAR representation of
(7.3) for the spatial panel model will no longer hold. In that case, a
likelihood formulation would not be feasible.

Stacking the vectors and matrices, i.e., letting

YN = (Y ∗′
n1, . . . , Y ∗′

n,T−1)
′,

UN = (U∗′
n1, . . . , U∗′

n,T−1)
′,

VN = (V ∗′
n1, . . . , V ∗′

n,T−1)
′,

XN = (X ∗′
n1, . . . , X ∗′

n,T−1)
′,

and denoting WhN = IT−1 ⊗W ∗
hn, h = 1, 2, we have the following compact

expression for the transformed model:

YN = λ0W1NYN + XNβ0 + UN , UN = ρ0W2NUN + VN , (7.4)

which is in form identical to the spatial autoregressive model with
autoregressive errors (SARAR) or SLE model.
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This shows that the QML estimation of the two-way fixed effects panel
SARAR model is similar to that of the linear SARAR model.

The key difference is that the elements of VN may not be independent
although they are uncorrelated and homoskedastic as seen below:

Letting ⊗ be the Kronecker product, i.e., A⊗ B = {aijB}, we have

(V ∗′
n1, . . . , V ∗′

n,T−1)
′ = (F ′T ,T−1 ⊗ F ′n,n−1)(V

′
n1, . . . , V ′

nT )′.

Then,
E(V ∗′

n1, . . . , V ∗′
n,T−1)

′(V ∗′
n1, · · · , V ∗′

n,T−1)

= σ2
0(F ′T ,T−1 ⊗ F ′n,n−1)(FT ,T−1 ⊗ Fn,n−1) = σ2

0 IN .

Hence, {v∗it } are iid N(0, σ2
0) if the original errors {vit} are iid N(0, σ2

0).

If the original errors {vit} are iid (0, σ2
0) (non-normal), then {v∗it } are in

general only uncorrelated with mean 0 and constant variance σ2
0 .

In the former, we have exact Gaussian likelihood, and in the latter it
becomes Quasi-Gaussian likelihood.
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The (quasi) Gaussian log likelihood function for (7.4) is,

`N(θ) = −N
2 ln(2πσ2)+ ln |AN(λ)|+ ln |BN(ρ)|− 1

2σ2 V′N(β, δ)VN(β, δ), (7.5)

where θ = (β′, σ2, λ, ρ)′, and δ = (β′, δ)′;
AN(λ) = IN − λW1N , and BN(ρ) = IN − ρW2N ;
VN(β, δ) = BN(ρ)[AN(λ)YN − XNβ].

1 Maximizing `N(θ) gives the QMLE θ̂N of θ.

2 First, maximize w.r.t. β and σ2 to give the constrained QMLEs:

β̃N(δ) = [X′N(ρ)XN(ρ)]−1X′N(ρ)YN(δ), (7.6)

σ̃2
N(δ) = 1

N Y′N(δ)MN(ρ)YN(δ), (7.7)

where YN(δ) = BN(ρ)AN(λ)YN , XN(ρ) = BN(ρ)XN ,

MN(ρ) = IN − XN(ρ)[X′N(ρ)XN(ρ)]−1X′N(ρ);
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3 Then, maximize the concentrated loglikelihood:

`c
N(δ) = `N(β̃N(δ), σ̃2

N(δ), δ)

= −N
2 (ln(2π) + 1) + ln |AN(λ)|+ ln |BN(ρ)| − N

2 ln σ̃2
N(δ). (7.8)

to give the unconstrained QMLE δ̂N of δ.
4 The unconstrained QMLEs of β and σ2 are thus,

β̂N = β̃N(δ̂N) and σ̂2
N = σ̃2

N(δ̂N).

5 Maximization of `c
N(δ) can be computationally demanding if N is large

due to the need for repeated calculation of the two determinants.
Following simplifications help alleviate the computational burden:

|AN(λ)| = |In−1 − λW ∗
1n|

T−1

=
( 1

1−λ |In − λW1n|
)T−1

, (Lee and Yu, 2010b)
=

( 1
1−λ

∏n
i=1(1− λω1i)

)T−1
, (Griffith, 1988)

where ω1i are the eigenvalues of W1n. Similarly, |BN(ρ)| is calculated.
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6 The linear SARAR representation (7.4) has greatly facilitated the
QML estimation of the general FE-SPD model.

7 It is also very helpful for the subsequent developments in bias and
variance corrections, in light of methods presented in Lecture 4.

8 Obviously, it contains the spatial regression models as special cases.
9 Based on this representation, the results developed for this general

model can easily be reduced to suit simpler models:
setting ρ or λ to zero in (7.4) gives an FE-SPD model with only SLD, or
an FE-SPD model with only SED;
dropping either αt0 or µn0 in (7.1) leads to a submodel with only
individual-specific effects, or a submodel with only time-specific effects.
The former is more interesting.

10 On the other hand, the spatial panel model considered in this chapter
can also be extended to include more spatial lag terms in both the
response and the disturbance, in particular the former.
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Asymptotic Properties of the QML Estimators.

Write θ̂N = (β̂′N , σ̂2
N , δ̂′N)′. Let θ0 be the true value of θ, and δ0 be the true

value of δ. Lee and Yu (2010a) show that under some mild conditions θ̂N is√
N-consistent and asymptotically normal.

Assumption A1. W1n and W2n are row-normalized nonstochastic spatial
weights matrices with zero diagonals.

Assumption A2. The disturbances {vit}, i = 1, 2, . . . , n and
t = 1, 2, . . . , T , are iid across i and t with zero mean, variance σ2

0 and
E|vit |4+η

< ∞ for some η > 0.

Assumption A3. An(λ) and Bn(ρ) are invertible for all λ ∈ Λ and ρ ∈ P,
where Λ and P are compact intervals. Furthermore, λ0 is in the interior of
Λ, and ρ0 is in the interior of P.

Note: Due to the nonlinearity of λ and ρ in the model, compactness of Λ and P is

needed. However, the compactness of the space of β and σ2 is not necessary

because the β and σ2 estimates given λ and ρ are least squares type estimates.
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Assumption A4. The elements of Xnt are nonstochastic, and are
bounded uniformly in n and t. Under the setting in Assumption A6, the
limit of 1

N X′NXN exists and is nonsingular.

Assumption A5. W1n and W2n are uniformly bounded in both row and
column sums in absolute value (for short, UB). Also A−1

n (λ) and B−1
n (ρ)

are UB, in λ ∈ Λ and ρ ∈ P.

Assumption A6. n is large, where T can be finite or large.

Assumption A7. Either (a): limn→∞HN(ρ) is nonsingular ∀ρ ∈ P and
limn→∞Q1n(ρ) 6= 0 for ρ 6= ρ0; or (b): limn→∞Q2n(δ) 6= 0 for δ 6= δ0, where

HN(ρ) = 1
N (XN , W1NA−1

N XNβ0)
′B′

N(ρ)BN(ρ)(XN , W1NA−1
N XNβ0),

Q1n(ρ) = 1
n−1

`
ln
˛̨
σ2

0B−1′
n JnB−1

n
˛̨
− ln

˛̨
σ2

n(ρ)B−1
n (ρ)′JnB−1

n (ρ)
˛̨´

,

Q2n(δ) = 1
n−1

`
ln
˛̨
σ2

0B−1′
n A−1′

n JnA−1
n B−1

n
˛̨
− ln

˛̨
σ2

n(δ)B−1
n (ρ)′A−1

n (λ)′JnA−1
n (λ)B−1

n (ρ)
˛̨´

,

σ2
n(δ) =

σ2
0

n−1 tr[(Bn(ρ)An(λ)A−1
n B−1

n )′Jn(Bn(ρ)An(λ)A−1
n B−1

n )], and
σ2

n(ρ) = σ2
n(δ)|λ=λ0 .
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Assumption A8. The limit of 1
(n−1)2

[
tr(Cs

nCs
n)tr(Ds

nDs
n)− tr2(Cs

nDs
n)

]
is

strictly positive, where Cn = JnḠ1n − tr(JnḠ1n)
n−1 Jn, Dn = JnG2n − tr(JnG2n)

n−1 Jn,
Ḡ1n = BnG1nB−1

n , G1n = W1nA−1
n , and G2n = W2nB−1

n .

Theorem

(Lee and Yu, 2010) Under Assumptions A1-A8, we have θ̂N
p−→ θ0, and

√
N(θ̂N − θ0)

D−→ N
[
0, limN→∞Σ−1

N (θ0)ΓN(θ0)Σ
−1
N (θ0)

]
, (7.9)

where ΣN(θ0) = 1
N E[ ∂2

∂θ0∂θ′
0
`N(θ0)] assumed to be positive definite for large

enough N, and ΓN(θ0) = 1
N E[( ∂

∂θ0
`N(θ0))(

∂
∂θ0

`N(θ0))
′] assumed to exist.

The results of the theorem serve two purposes:

they provide theory for asymptotic inferences;

they provide crucial results for higher-order bias and variance
corrections, and thus for refined inferences.
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Inferences for FE-SPD Model

Statistical inferences for the parameters θ in the FE-SPD model require
consistent estimators of ΣN(θ0) and ΓN(θ0).

We propose plug-in estimators and for this the analytical expressions of
ΣN(θ0) and ΓN(θ0) are required.

The quasi score vector has a similar form as (2.27) for the SLE model,
which is under the new notations designed for the FE-SPD model:

∂`N(θ)

∂θ
=



1
σ2 X′NBN(ρ)VN(β, δ),

− N
2σ2 + 1

2σ4 V′N(β, δ)VN(β, δ),

1
σ2 V′N(β, δ)BN(ρ)W1NYN − tr[G1N(λ)],

1
σ2 V′N(β, δ)G2N(ρ)VN(β, δ)− tr[G2N(ρ)].

(7.10)

With this, ΣN(θ0) = 1
N E[ ∂2

∂θ0∂θ′
0
`N(θ0)] can be derived. At the true θ0, the

score vector can be simplified so that ΓN(θ0) = E[∂`N (θ0)
∂θ

∂`N (θ0)
∂θ′ ], the VC

matrix of the quasi score, can be derived.
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First, with the notations introduced earlier, letting G1N(λ) = W1NA−1
N (λ)

and G2N(ρ) = W2NB−1
N (ρ), and denoting AN = AN(λ0), BN = BN(ρ0),

G1N = G1N(λ0), G2N = G2N(ρ0), XN = XN(ρ0), etc., we have:

ΣN(θ0) =


1

Nσ2
0
X′NXN , 0, 1

Nσ2
0
X′NηN , 0

∼, 1
2σ4

0
, 1

Nσ2
0
tr(G1N), 1

Nσ2
0
tr(G2N)

∼, ∼, T1N + 1
Nσ2

0
η′NηN , T3N

∼, ∼, ∼, T2N

 , (7.11)

where ηN = BNG1NXNβ0,

T1N = 1
N tr(Ḡs

1NḠ1N), Ḡ1N = BNG1NB−1
N ,

T2N = 1
N tr(Gs

2NG2N), Gs = G + G′, for a matrix G,

T3N = 1
N tr(Gs

2NḠ1N).

With the analytical expression, ΣN(θ0) can be consistently estimated by
the plug-in estimator ΣN(θ̂N)
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To obtain the other component ΓN(θ0) of the VC matrix of θ̂N , Yang et al.
(2016) give an expression of the score vector in terms of
VnT = (V ′

n1, . . . , V ′
nT )′, the vector of original errors using the relation,

VN = F′nT ,NVnT , where FnT ,N = FT ,T−1 ⊗ Fn,n−1 :

∂`N(θ0)

∂θ0
=



1
σ2

0
A′1nT VnT ,

1
2σ4

0
V′nT A′2nT VnT − N

2σ2
0
,

1
σ2

0
V′nT A′3nT VnT + 1

σ2
0
b′nT VnT − tr[G1N(λ)],

1
σ2

0
V′nT A′4nT VnT − tr[G2N(ρ)],

(7.12)

where bnT = FnT ,NηN ,
A1nT = FnT ,NBNXN ,
A2nT = FnT ,NF′nT ,N ,
A3nT = FnT ,NBN ·GNB−1

N F′nT ,N , and
A4nT = FnT ,NW2NB−1

N F′nT ,N .
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Letting ainT be the diagonal vector of AinT , and denoting

Πij = 1
N tr[AinT (AjnT + A′jnT )] + 1

N k4a′inT ajnT , (7.13)

where k4 is the 4th cumulant of the original errors, Yang et al. (2016) give,

ΓN(θ0)=


1

Nσ2
0
X′NXN , 0, 1

Nσ2
0
A′1nT bnT , 0

∼, 1
4σ4

0
Π22,

1
2σ2

0
Π23,

1
2σ2

0
Π24

∼, ∼, Π33 + 1
Nσ2

0
b′nT bnT , Π34

∼, ∼, ∼, Π44

 . (7.14)

For practical applications, ΣN(θ0) is estimated by ΣN(θ̂N);

and ΓN(θ0) by plugging-in θ̂N for θ and k̂4 for k4, where

k̂4 = ā−1
4 κ4(V̂N),

where κ4(V̂N) is the fourth sample cumulant of the QML residuals V̂N ,
and ā4 = 1

N

∑N
i=1 a4,i with a4,i = l ′nT f4

i and fi is the i th column of FnT ,N .
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Lee and Yu (2010a) provide a useful identity:

(In−1 − λW ∗
hn)

−1 = F ′n,n−1(In−1 − λWhn)
−1Fn,n−1.

Based on this, the inverses of AN(λ) and BN(λ) can easily be calculated
as they are block-diagonal.

As discussed in Lee and Yu (2010a, Footnote 12),

the first difference and Helmert transformation have often been used
to eliminate the individual effects.

A special selection of FT ,T−1 gives rise to the Helmert transformation
where {Vnt} are transformed to

( T−t
T−t+1 )1/2[Vnt − 1

T−t (Vn,t+1 + · · ·+ VnT ),

which is of particular interest for dynamic panel data models.
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7.3. LM Tests of Spatial Dependence in FE-SDP Models

Under normality and homoskedasticity, Debarsy and Ertur (2010)
developed LM tests for Model (7.4) of the following three hypotheses,

HSL
0 : λ = 0|ρ = 0; HSE

0 : ρ = 0|λ = 0; HSLE
0 : λ = ρ = 0,

LMFISL =
Np

S1 + D̃
Ṽ′

NW1NYN

Ṽ′
N ṼN

, (7.15)

LMFISE =
N√
S2

Ṽ′
NW2N ṼN

Ṽ∗′
N ṼN

, (7.16)

LMFISLE =
1
σ̃4

N

 
Ṽ∗′

N W1NYN

Ṽ∗′
N W2N ṼN

!′ 
S1 + D̃ S3

S3 S2

!−1 
Ṽ′

NW1NY∗
N

Ṽ′
NW2N ṼN

!
, (7.17)

ṼN denotes the OLS residuals from regressing YN on XN ,

S1 = tr[(W1N + W′
1N)W1N ], D̃ = σ̃−2

N η̃′NMN η̃N , η̃N = W1NXN β̃N ,

S2 = tr[(W2N + W′
2N)W2N ], MN = IN − XN(X′NXN)−1X′N ,

S3 = tr[(W2N + W′
2N)W1N ],

β̃N and σ̃2
N are the OLS estimators of β and σ2, respectively.
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Baltagi and Yang (2013a) present a standardized version of LMFISE, with a
much improved finite sample performance, but not the other two tests.

Baltagi and Yang (2013b) give outer-product-of-martingale-differences
(OPMD) variants of the three LM tests given in (7.15)-(7.17), robust to
nonnormality and unknown heteroskedasticity:

LMMD
SAR =

Ṽ′
NW1NYN

(Ṽ2 ′
N ξ̃2

1N)
1
2
, (7.18)

LMMD
SED =

Ṽ′
NW2N ṼN

(Ṽ2 ′
N ξ̃2

2N)
1
2
, and (7.19)

LMMD
SLE =

 
Ṽ′

NW1NYN

Ṽ′
NW2N ṼN

!′ 
Ṽ2 ′

N ξ̃∗2
1N Ṽ2 ′

N (ξ̃1N ⊗ ξ̃2N)

∼ Ṽ2 ′
N ξ̃2

2N

!−1 
Ṽ′

NW1NYN

Ṽ′
NW2N ṼN

!
, (7.20)

where ξ̃1N = (Wl
1N + Wu′

1N)ṼN + MN η̃N , ξ̃2N = (Wl
2N + Wu′

2N)ṼN ,
Wl

rN , Wu
rN : lower- and upper-triangular matrices of WrN , r = 1, 2.

These tests may perform quite poorly in finite sample, but the OPMD
ideas behind them are very important.
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Batagi and Yang (3013b) went on to give OPMD-variants of the LM tests
with finite sample corrections.

Define A1 = MNW1N and A2 = MNW2NM. Let Hr = diag(Ar )diag(MN)−2

and A◦r = Ar −MNHr MN , decomposed as A◦r = A◦u
r + A◦l

r + A◦d
r , r = 1, 2.

• Let ξ̃◦1N = (A◦u′
1N + A◦l

1N)ṼN + A◦d
1N ṼN + M η̃N ,

• and ξ̃◦2N = (A◦u′
2N + A◦l

2N)ṼN + A◦d
2N ṼN .

The three OPMD-based tests are:

SLMMD
SL =

Ṽ′
NW1NYN − Ṽ′

NH1ṼN

(Ṽ2 ′
N ξ̃◦2

1N)
1
2

, (7.21)

SLMMD
SE =

Ṽ′
N(W2N −H2)ṼN

(Ṽ2 ′
N ξ̃◦2

2N)
1
2

, and (7.22)

SLMMD
SLE = S′N

 
Ṽ2 ′

N ξ̃2◦
1N Ṽ2 ′

N (ξ̃◦1N � ξ̃◦2N)

Ṽ2 ′
N (ξ̃◦1N � ξ̃◦2N) Ṽ2 ′

N ξ̃◦2
2N

!−1

SN , (7.23)

where SN = (Ṽ′NW1NYN − Ṽ′NH1ṼN , Ṽ′N(W2N −H2)ṼN)′. Under H0,

SLMOPMD
SLD

D−→ N(0, 1), SLMOPMD
SED

D−→ N(0, 1), and SLMOPGMD
SLE

D−→ χ2
2.
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7.4. Monte Carlo Results for FE-SPD Models

Some Monte Carlo results are taken from Yang et al. (2016) to show

(i) finite sample performance of the QML and the bias-corrected QML
estimators of the FE-SPD models,

(ii) finite sample performance of the LM tests for spatial effects.

For (i), the following model is used:

Ynt = λ0W1nYnt + X1ntβ10 + X2ntβ20 + µn0 + αt0ln + Unt ,

Unt = ρ0W2nUnt + Vnt , t = 1, . . . , T .

For (ii), the following model is used:

Ynt = λ1W1nYnt + X1nβ1 + X2nβ2 + X3nβ3 + µn + unt ,

unt = λ2W2nunt + εnt , t = 1, . . . , T .

See Yang et al. (2016) for the detailed set-up of the experiments.
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Table 7.1. Empirical Mean[rmse](sd) of Estimators of λ, 2FE-SPD Model with SLD

(a) Queen Contiguity, REG1 (b) Group Interaction, REG2

λ λ̂N λ̂bc2
N λ̂N λ̂bc2

N
Normal Error, n=50, T=3

.50 .484[.120](.119) .502[.120](.120) .469[.095](.089) .497[.088](.088)

.25 .234[.142](.141) .248[.143](.143) .210[.130](.124) .250[.123](.123)

.00 -.010[.158](.158) .001[.161](.161) -.049[.167](.159) -.001[.160](.160)
-.25 -.258[.161](.161) -.251[.164](.164) -.303[.189](.182) -.250[.184](.184)
-.50 -.504[.163](.163) -.503[.166](.166) -.565[.214](.204) -.509[.208](.208)

Normal Mixture, n=50, T=3

.50 .483[.119](.117) .500[.118](.118) .470[.091](.086) .498[.084](.084)

.25 .238[.139](.139) .253[.141](.141) .209[.128](.121) .248[.120](.120)

.00 -.013[.155](.154) -.002[.157](.157) -.048[.160](.152) -.001[.153](.153)
-.25 -.257[.158](.158) -.251[.161](.161) -.301[.188](.181) -.248[.182](.182)
-.50 -.504[.163](.163) -.503[.166](.166) -.556[.206](.199) -.500[.203](.203)

Lognormal Error, n=50, T=3

.50 .485[.111](.110) .501[.111](.111) .470[.090](.085) .497[.083](.083)

.25 .239[.133](.133) .253[.134](.134) .212[.122](.116) .249[.115](.115)

.00 -.010[.146](.146) .001[.149](.149) -.045[.154](.147) .000[.147](.147)
-.25 -.255[.151](.151) -.249[.154](.154) -.302[.178](.171) -.251[.173](.173)
-.50 -.498[.152](.152) -.499[.155](.155) -.556[.204](.196) -.503[.200](.200)
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Table 7.2. Empirical Mean[rmse](sd) of Estimators of ρ, 2FE-SPD Model with SED

(a) Queen Contiguity, REG1 (b) Group Interaction, REG2

ρ ρ̂N ρ̂bc2
N ρ̂N ρ̂bc2

N
Normal Error, n=50, t=3

.50 .481[.144](.142) .500[.143](.143) .457[.139](.132) .503[.116](.116)

.25 .233[.171](.170) .252[.171](.171) .177[.202](.188) .258[.167](.167)

.00 -.018[.190](.189) -.001[.190](.190) -.115[.266](.240) -.004[.221](.221)
-.25 -.271[.202](.201) -.255[.203](.203) -.382[.299](.268) -.250[.256](.256)
-.50 -.516[.203](.202) -.503[.205](.205) -.637[.321](.290) -.496[.287](.287)

Normal Mixture, n=50, T=3

.50 .480[.139](.138) .500[.138](.138) .458[.137](.130) .504[.114](.114)

.25 .233[.166](.165) .252[.166](.166) .168[.210](.194) .251[.172](.172)

.00 -.016[.186](.185) .002[.186](.186) -.108[.258](.234) .004[.214](.214)
-.25 -.267[.195](.194) -.252[.196](.196) -.381[.293](.262) -.248[.251](.251)
-.50 -.511[.198](.197) -.498[.200](.200) -.636[.313](.282) -.493[.280](.280)

Lognormal Error, n=50, t=3

.50 .483[.135](.133) .504[.134](.134) .454[.136](.128) .502[.112](.112)

.25 .237[.160](.159) .256[.161](.160) .174[.196](.181) .257[.160](.160)

.00 -.012[.179](.179) .006[.180](.180) -.105[.242](.218) .009[.199](.199)
-.25 -.264[.186](.186) -.248[.188](.188) -.368[.273](.247) -.233[.235](.235)
-.50 -.512[.191](.191) -.499[.194](.194) -.632[.305](.275) -.489[.272](.272)
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Table 7.3a. Empirical Sizes of LM Tests of H0 : λ = 0|ρ = 0, FE-SPD with SLD
Normal Errors, W1n = Group, g = n0.5; XVal-B; T = 3.

Heteroskedasticity ∝ group size Heteroskedasticity = 1
n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 -0.3253 0.8610 .0607 .0209 .0032 -0.1970 0.9908 .1017 .0498 .0098

-0.4452 0.9846 .1298 .0646 .0100 -0.2340 1.0235 .1186 .0591 .0112
-0.0699 1.0249 .1096 .0534 .0075 -0.0453 1.0327 .1134 .0557 .0099

100 -0.2568 0.9231 .0817 .0372 .0056 -0.1633 0.9840 .0989 .0485 .0075
-0.3465 0.9965 .1202 .0629 .0127 -0.1995 0.9999 .1102 .0547 .0107
-0.0558 1.0059 .1038 .0536 .0098 -0.0311 1.0091 .1045 .0518 .0096

200 -0.2194 0.9466 .0851 .0364 .0063 -0.1599 0.9943 .1021 .0507 .0097
-0.2834 1.0015 .1109 .0580 .0121 -0.1765 1.0046 .1052 .0547 .0113
-0.0416 1.0123 .1027 .0504 .0105 -0.0180 1.0100 .1039 .0512 .0101

500 -0.1587 0.9665 .0904 .0434 .0081 -0.0901 0.9856 .0963 .0461 .0089
-0.2023 1.0026 .1060 .0543 .0120 -0.0979 0.9891 .0987 .0467 .0091
-0.0442 1.0086 .1025 .0515 .0107 0.0015 0.9913 .0966 .0458 .0089

1000 -0.1141 0.9576 .0869 .0426 .0088 -0.0705 0.9959 .0998 .0505 .0085
-0.1472 1.0008 .1047 .0548 .0126 -0.0782 1.0006 .1030 .0512 .0092
-0.0290 1.0043 .1023 .0525 .0124 -0.0120 1.0015 .1018 .0515 .0083

Note: Three rows under each n: LMFI
SL, LMMD

SL and SLMMD
SL.
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Table 7.3b. Empirical Sizes of LM Tests of H0 : λ = 0|ρ = 0, FE-SPD with SLD
Normal Mixture, W1n = Group, g = n0.5; XVal-B; T = 3.
Heteroskedasticity ∝ group size Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 -0.3299 0.8416 .0577 .0190 .0024 -0.1623 0.9962 .1036 .0509 .0095

-0.4366 0.9748 .1225 .0570 .0091 -0.1902 1.0287 .1179 .0588 .0089
-0.0614 1.0211 .1062 .0497 .0062 -0.0066 1.0389 .1158 .0547 .0078

100 -0.2562 0.9227 .0785 .0350 .0067 -0.1706 0.9784 .0942 .0441 .0080
-0.3378 1.0000 .1202 .0597 .0111 -0.2062 0.9999 .1062 .0524 .0083
-0.0449 1.0136 .1040 .0507 .0092 -0.0380 1.0086 .1015 .0486 .0078

200 -0.2249 0.9235 .0770 .0349 .0063 -0.1542 0.9793 .0976 .0492 .0094
-0.2839 0.9804 .1058 .0521 .0108 -0.1694 0.9928 .1047 .0518 .0102
-0.0428 0.9920 .0950 .0484 .0103 -0.0112 0.9980 .0973 .0475 .0090

500 -0.1411 0.9710 .0948 .0452 .0079 -0.1102 1.0016 .1014 .0527 .0101
-0.1835 1.0080 .1100 .0561 .0111 -0.1186 1.0039 .1037 .0521 .0106
-0.0250 1.0146 .1047 .0546 .0097 -0.0192 1.0061 .1023 .0517 .0103

1000 -0.1230 0.9531 .0873 .0419 .0066 -0.0688 1.0029 .1009 .0529 .0095
-0.1550 0.9993 .1011 .0542 .0108 -0.0764 1.0049 .1016 .0517 .0097
-0.0366 1.0028 .0994 .0505 .0089 -0.0102 1.0061 .1019 .0515 .0104

Note: Three rows under each n: LMFI
SL, LMMD

SL and SLMMD
SL.
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Table 7.3c. Empirical Sizes of LM Tests of H0 : λ = 0|ρ = 0, FE-SPD with SLD
Lognormal Errors, W1n = Group, g = n0.5; XVal-B; T = 3.
Heteroskedasticity ∝ group size Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 -0.3234 0.8164 .0554 .0186 .0030 -0.1856 0.9603 .0929 .0442 .0066

-0.4302 0.9518 .1121 .0516 .0053 -0.2086 1.0116 .1107 .0503 .0069
-0.0469 1.0001 .0988 .0447 .0057 -0.0293 1.0256 .1064 .0490 .0072

100 -0.2630 0.8978 .0716 .0324 .0055 -0.1404 0.9737 .0925 .0442 .0077
-0.3345 0.9764 .1069 .0519 .0081 -0.1694 0.9988 .1022 .0488 .0079
-0.0424 0.9938 .0966 .0432 .0068 -0.0039 1.0052 .0978 .0462 .0077

200 -0.2446 0.9243 .0814 .0375 .0063 -0.1699 0.9667 .0930 .0432 .0075
-0.3003 0.9917 .1081 .0561 .0100 -0.1768 0.9834 .0964 .0466 .0068
-0.0606 1.0058 .1000 .0480 .0088 -0.0216 0.9914 .0952 .0445 .0073

500 -0.1225 0.9450 .0836 .0393 .0069 -0.0776 0.9941 .0972 .0475 .0092
-0.1650 0.9853 .0982 .0457 .0083 -0.0721 0.9968 .0993 .0474 .0082
-0.0066 0.9921 .0968 .0465 .0075 0.0268 1.0020 .1003 .0464 .0079

1000 -0.0902 0.9596 .0868 .0398 .0080 -0.0622 0.9901 .0955 .0487 .0091
-0.1186 1.0044 .1015 .0520 .0103 -0.0650 0.9938 .0974 .0468 .0079
-0.0003 1.0079 .1011 .0496 .0105 0.0008 0.9955 .0986 .0482 .0080

Note: Three rows under each n: LMFI
SL, LMMD

SL and SLMMD
SL.
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Table 7.4a. Empirical Sizes of LM Tests for H0 : ρ = 0|λ = 0, FE-SPD with SED
Normal Errors, W1n = Group, g = n0.5; XVal-B; T = 3.

Heteroskedasticity ∝ group size Heteroskedasticity = 1
n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 -0.3231 0.8613 .0524 .0173 .0043 -0.4076 0.9258 .0926 .0345 .0041

-0.4803 1.0012 .1406 .0717 .0136 -0.5256 1.0103 .1499 .0816 .0170
-0.1354 1.0579 .1224 .0632 .0126 -0.0887 1.0539 .1225 .0597 .0110

100 -0.2876 0.9175 .0773 .0295 .0048 -0.3306 0.9483 .0937 .0380 .0046
-0.4094 1.0044 .1318 .0705 .0132 -0.4327 1.0129 .1378 .0732 .0146
-0.1034 1.0239 .1120 .0580 .0100 -0.0874 1.0379 .1154 .0572 .0102

200 -0.2709 0.9169 .0739 .0285 .0052 -0.2827 0.9548 .0927 .0390 .0066
-0.3835 0.9935 .1229 .0629 .0137 -0.3716 1.0051 .1273 .0676 .0147
-0.0987 1.0152 .1073 .0548 .0100 -0.0668 1.0194 .1073 .0542 .0106

500 -0.2300 0.9333 .0790 .0334 .0063 -0.2451 0.9818 .1022 .0471 .0089
-0.3352 1.0073 .1213 .0606 .0142 -0.3171 1.0163 .1229 .0654 .0156
-0.0984 1.0155 .1067 .0542 .0105 -0.0773 1.0243 .1101 .0559 .0126

1000 -0.2367 0.9328 .0823 .0349 .0062 -0.1864 0.9716 .0978 .0447 .0077
-0.3250 1.0003 .1168 .0608 .0145 -0.2437 0.9941 .1092 .0585 .0114
-0.0891 1.0078 .1024 .0524 .0119 -0.0627 0.9999 .1015 .0517 .0096

Note: Three rows under each n: LMFI
SE, LMMD

SE and SLMMD
SE.
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Table 7.4b. Empirical Sizes of LM Tests for H0 : ρ = 0|λ = 0, FE-SPD with SED
Normal Mixture, W1n = Group, g = n0.5; XVal-B; T = 3.
Heteroskedasticity ∝ group size Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 -0.3185 0.8280 .0442 .0146 .0034 -0.4324 0.8930 .0913 .0321 .0024

-0.4623 0.9745 .1248 .0608 .0086 -0.5414 0.9841 .1448 .0752 .0143
-0.1098 1.0331 .1134 .0558 .0076 -0.0952 1.0373 .1141 .0547 .0088

100 -0.2767 0.9077 .0705 .0261 .0053 -0.3434 0.9299 .0878 .0369 .0060
-0.3910 0.9956 .1272 .0624 .0113 -0.4399 0.9979 .1316 .0685 .0137
-0.0790 1.0188 .1051 .0523 .0082 -0.0888 1.0267 .1081 .0548 .0105

200 -0.2822 0.9041 .0740 .0265 .0047 -0.2984 0.9253 .0813 .0345 .0054
-0.3898 0.9922 .1211 .0613 .0129 -0.3816 0.9788 .1189 .0596 .0103
-0.1015 1.0180 .1092 .0540 .0099 -0.0733 0.9943 .0975 .0457 .0090

500 -0.2451 0.9134 .0743 .0275 .0049 -0.2293 0.9686 .0942 .0431 .0064
-0.3471 0.9970 .1170 .0597 .0133 -0.2980 1.0024 .1161 .0580 .0112
-0.1091 1.0068 .1033 .0503 .0097 -0.0574 1.0110 .1052 .0492 .0094

1000 -0.2318 0.9306 .0814 .0319 .0057 -0.1797 0.9751 .0953 .0434 .0083
-0.3199 1.0017 .1189 .0615 .0140 -0.2360 0.9952 .1100 .0551 .0100
-0.0838 1.0094 .1050 .0528 .0109 -0.0546 1.0010 .1029 .0493 .0096

Note: Three rows under each n: LMFI
SE, LMMD

SE and SLMMD
SE.
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Table 7.4c. Empirical Sizes of LM Tests for H0 : ρ = 0|λ = 0, FE-SPD with SED
Lognormal Errors, W1n = Group, g = n0.5; XVal-B; T = 3.
Heteroskedasticity ∝ group size Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 -0.3231 0.8057 .0382 .0131 .0039 -0.3989 0.8701 .0706 .0242 .0032

-0.4800 0.9669 .1253 .0583 .0073 -0.5309 0.9812 .1410 .0666 .0105
-0.1099 1.0207 .1058 .0474 .0071 -0.0607 1.0242 .1035 .0470 .0066

100 -0.2792 0.8806 .0607 .0245 .0055 -0.3250 0.9069 .0763 .0333 .0068
-0.4103 0.9920 .1252 .0614 .0091 -0.4399 0.9887 .1281 .0590 .0115
-0.0788 1.0141 .1031 .0490 .0070 -0.0709 1.0129 .1017 .0462 .0070

200 -0.2910 0.8975 .0653 .0259 .0063 -0.2939 0.9230 .0801 .0339 .0068
-0.4155 0.9985 .1305 .0641 .0113 -0.3968 0.9944 .1215 .0618 .0126
-0.1160 1.0176 .1072 .0501 .0082 -0.0785 1.0078 .1024 .0470 .0083

500 -0.2188 0.9046 .0684 .0286 .0052 -0.2354 0.9472 .0879 .0370 .0060
-0.3245 0.9938 .1153 .0571 .0119 -0.3145 0.9945 .1128 .0565 .0109
-0.0810 1.0048 .1030 .0512 .0089 -0.0627 1.0004 .0990 .0462 .0081

1000 -0.2181 0.9361 .0806 .0316 .0055 -0.2000 0.9766 .0960 .0457 .0076
-0.3127 1.0109 .1184 .0585 .0129 -0.2668 1.0107 .1173 .0595 .0119
-0.0739 1.0188 .1072 .0524 .0100 -0.0642 1.0158 .1071 .0534 .0098

Note: Three rows under each n: LMFI
SE, LMMD

SE and SLMMD
SE.

Z. L. Yang, SMU ECON747, Term I 2024-25 33 / 47



Table 7.5a. Empirical Sizes of LM Tests of H0 : λ = ρ = 0, FE-SPD with SLE
Normal Errors; W1n = Queen, r = 5; W2n = Group, g = n0.5; XVal-B; T = 3.

Heteroskedasticity ∝ group size Heteroskedasticity = 1
n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 1.8475 1.7698 .0702 .0306 .0061 1.9882 1.8950 .0880 .0431 .0084

2.2877 2.0462 .1310 .0620 .0100 2.2342 2.0594 .1236 .0624 .0104
2.1617 1.9856 .1175 .0539 .0077 2.1093 1.9760 .1092 .0523 .0084

100 1.8967 1.8868 .0731 .0348 .0086 1.9887 1.8975 .0850 .0397 .0082
2.2495 2.1328 .1310 .0661 .0124 2.2646 2.1610 .1286 .0654 .0136
2.0986 2.0037 .1101 .0528 .0095 2.1072 2.0321 .1107 .0560 .0106

200 1.8844 1.8150 .0794 .0345 .0062 1.9774 1.9044 .0896 .0435 .0084
2.2110 2.1588 .1236 .0628 .0130 2.1567 2.0882 .1170 .0620 .0117
2.0704 2.0488 .1099 .0534 .0111 2.0467 1.9972 .1059 .0526 .0097

500 1.9370 1.9192 .0848 .0390 .0087 2.0093 2.0198 .0982 .0463 .0094
2.1424 2.1107 .1222 .0613 .0114 2.1147 2.1101 .1144 .0576 .0126
2.0377 2.0138 .1027 .0512 .0105 2.0492 2.0549 .1046 .0538 .0118

1000 1.9527 1.9511 .0907 .0444 .0090 1.9837 1.9384 .0952 .0434 .0086
2.0930 2.0803 .1141 .0591 .0112 2.0706 2.0503 .1041 .0529 .0115
2.0383 2.0335 .1065 .0532 .0107 2.0098 1.9949 .0999 .0491 .0108

Note: Three rows under each n: LMFI
SLE, LMMD

SLE and SLMMD
SLE.
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Table 7.5b. Empirical Sizes of LM Tests of H0 : λ = ρ = 0, FE-SPD with SLE
Normal Mixture; W1n = Queen, r = 5; W2n = Group, g = n0.5; XVal-B; T = 3.

Heteroskedasticity ∝ group size Heteroskedasticity = 1
n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 1.7835 1.7222 .0626 .0268 .0059 1.9417 1.9156 .0851 .0398 .0094

2.2488 1.9511 .1190 .0563 .0068 2.2105 1.9364 .1172 .0554 .0066
2.1386 1.9122 .1071 .0511 .0067 2.0945 1.8742 .1034 .0475 .0052

100 1.8511 1.7889 .0697 .0341 .0069 1.9745 1.8478 .0859 .0374 .0071
2.2567 2.0837 .1243 .0618 .0112 2.2528 2.0556 .1230 .0592 .0109
2.0949 1.9784 .1095 .0486 .0089 2.0979 1.9381 .1061 .0492 .0074

200 1.8491 1.8272 .0767 .0348 .0070 1.9458 1.8929 .0867 .0386 .0082
2.1792 2.1047 .1181 .0621 .0128 2.1271 2.0206 .1137 .0542 .0085
2.0437 1.9938 .1048 .0530 .0086 2.0275 1.9425 .1012 .0458 .0081

500 1.8883 1.8336 .0791 .0362 .0073 1.9872 1.9464 .0945 .0453 .0083
2.1018 2.0185 .1092 .0561 .0101 2.0992 2.0569 .1114 .0565 .0104
2.0081 1.9430 .0998 .0492 .0076 2.0345 2.0052 .1029 .0532 .0090

1000 1.9304 1.9345 .0864 .0417 .0091 2.0028 2.0047 .0985 .0512 .0101
2.0690 2.0586 .1039 .0540 .0125 2.0891 2.1085 .1114 .0575 .0122
2.0211 2.0064 .1008 .0491 .0105 2.0373 2.0604 .1070 .0549 .0103

Note: Three rows under each n: LMFI
SLE, LMMD

SLE and SLMMD
SLE.
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Table 7.5c. Empirical Sizes of LM Tests of H0 : λ = ρ = 0, FE-SPD with SLE
Lognormal Errors; W1n = Queen, r = 5; W2n = Group, g = n0.5; XVal-B; T = 3.

Heteroskedasticity ∝ group size Heteroskedasticity = 1
n mean sd 10% 5% 1% mean sd 10% 5% 1%
50 1.6484 1.6401 .0499 .0246 .0054 1.8401 1.9910 .0724 .0346 .0089

2.2424 1.9181 .1149 .0534 .0060 2.2157 1.8932 .1122 .0486 .0065
2.0917 1.8562 .0996 .0447 .0053 2.0671 1.8043 .0956 .0398 .0052

100 1.7922 1.8153 .0688 .0321 .0074 1.8906 1.8987 .0797 .0385 .0081
2.2755 2.0395 .1235 .0591 .0105 2.2403 2.0305 .1188 .0579 .0099
2.0908 1.9104 .1002 .0467 .0076 2.0575 1.8992 .0988 .0484 .0076

200 1.7899 1.7512 .0690 .0307 .0061 1.9355 1.9223 .0874 .0407 .0092
2.1999 2.0088 .1174 .0571 .0094 2.1670 1.9633 .1133 .0531 .0075
2.0485 1.9124 .1017 .0489 .0069 2.0503 1.8708 .1017 .0446 .0048

500 1.8536 1.9127 .0785 .0357 .0092 1.9202 1.8952 .0838 .0384 .0082
2.1259 2.0422 .1127 .0553 .0108 2.0790 1.9645 .1002 .0508 .0084
2.0156 1.9389 .0998 .0473 .0086 2.0117 1.9100 .0939 .0462 .0080

1000 1.9047 1.9584 .0856 .0436 .0089 1.9925 2.0059 .0999 .0480 .0093
2.0683 1.9870 .1072 .0489 .0096 2.1012 2.0611 .1115 .0559 .0118
2.0159 1.9403 .1010 .0465 .0079 2.0424 2.0051 .1036 .0512 .0096

Note: Three rows under each n: LMFI
SLE, LMMD

SLE and SLMMD
SLE.
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7.5. An Empirical Application of FE-SPD Model

To facilitate the practical applications of the proposed methods, we provide
an empirical illustration using the well known data set on public capital
productivity of Munnell (1990).

The dataset gives indicators related to public capital productivity for
48 US states observed over 17 years (1970-1986).

The dataset can be downloaded from
http://pages.stern.nyu.edu/∼wgreene/Text/Edition6/tablelist6.htm

This dataset has been extensively used for illustrating the applications
of the regular panel data models (see, e.g., Baltagi, 2013).

In the spatial framework, it was used by Millo and Piras (2012) for
illustrating the QML and GMM estimation of fixed effects and random
effects spatial panel data models,

and by Yang et al. (2016, Supplementary material) for illustrating the
bias-correction and refined inferences for the FE-SPD models.
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In Munnell (1990), the empirical model specified is a Cobb-Douglas
production function of the form:

ln Y = β0 + β1 ln K1 + β2 ln K2 + β3 ln L + β4Unemp + ε,

with state specific fixed effects, where

Y is the gross social product of a given state,

K1 is public capital,

K2 is private capital,

L is labour input and

Unemp is the state unemployment rate.

This model is now extended by adding spatial effects and/or spatial Durbin
effects. The spatial weights matrix W takes a contiguity form with its
(i , j)th element being 1 if states i and j share a common border, otherwise
0. The final W is row normalized. For models with more than one spatial
term, the corresponding W ′s are taken to be the same.
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Table 7.6 gives the QMLEs and second-order bias-corrected QMLEs
of model parameters for the full dataset spanning over the 17 years,

fitted using the 2FE-SPD model with five different types of spatial
specifications: SL, SE, SLE, Durbin-SL and Durbin-SE, see Lecture 4
for the bias-correction methodology.

Spatial effect (SLD or SED) is highly significant when appeared in the
model alone; But in the the model with both SLD and SED, the SLD
effect is not significant.

It is interesting to note that the spatial Durbin term W log(emp) is
highly significant in the Durdin-SLD model but not significant in the
Durbin-SED model.

When the full dataset is considered, N = (n − 1)(T − 1) = 752 is
relatively large, the difference between the original QMLE-based
results and the bias-corrected results is not so much. This is in line
with the theoretical results on the consistency of the QMLEs.
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Table 7.6: QMLEs and BC-QMLEs for the SPD-FE Models Based on the Full Data (Years 1970-86).

SLE SLD SED Durbin-SLD Durbin-SED

θ̂ML θ̂bc2ML θ̂ML θ̂bc2ML θ̂ML θ̂bc2ML θ̂ML θ̂bc2ML θ̂ML θ̂bc2ML

SLD (λ) 0.0270 0.0294 0.2100 0.2129 0.4124 0.4205
t-ratio 0.7037 0.7563 7.3923 7.4118 9.5186 9.5559

SED (ρ) 0.4068 0.4095 0.4374 0.4403 0.4101 0.4168
t-ratio 7.5937 7.4208 10.2813 10.2547 9.4120 9.4037

ln(K1) -0.0145 -0.0145 -0.0352 -0.0352 -0.0122 -0.0121 -0.0090 -0.0088 -0.0184 -0.0183
t-ratio -0.5599 -0.5697 -1.3637 -1.3771 -0.4749 -0.4817 -0.3420 -0.3430 -0.6867 -0.6960

ln(K2) 0.1553 0.1553 0.1585 0.1583 0.1548 0.1547 0.1591 0.1591 0.1662 0.1662
t-ratio 5.8638 5.8822 5.9803 6.1402 5.8581 5.8662 5.9888 6.0288 6.1140 6.1957

ln(L) 0.7555 0.7553 0.6824 0.6812 0.7584 0.7583 0.7514 0.7515 0.7539 0.7539
t-ratio 25.7262 25.3540 22.8939 22.5454 26.1169 25.7695 25.1208 24.9504 25.6309 25.4225

Unemp -0.0012 -0.0012 -0.0015 -0.0015 -0.0012 -0.0012 -0.0006 -0.0006 -0.0009 -0.0009
t-ratio -2.3652 -2.3935 -3.1327 -3.1614 -2.3511 -2.3807 -1.1295 -1.1574 -1.7158 -1.7599

W ln(K1) -0.0567 -0.0558 -0.0750 -0.0745
t-ratio -1.1809 -1.1734 -1.3044 -1.3110

W ln(K2) 0.0066 0.0046 0.0901 0.0897
t-ratio 0.1391 0.0950 1.5161 1.4757

W ln(L) -0.3159 -0.3228 -0.0130 -0.0141
t-ratio -5.8105 -5.7999 -0.2559 -0.2758

W Unemp -0.0013 -0.0013 -0.0017 -0.0017
t-ratio -1.5365 -1.5334 -1.7525 -1.7440
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Table 7.7 gives the same results for a shorter time interval
concentrating on the years 1982-84, allowing us to see the necessity
of bias-correction and the effectiveness of the bias-correction
methods, when the sample size is not so large (here, N = 94).

As can be seen from the estimation results of Table 7.7, there is a
clear difference between the original QMLE-based results and the
bias-corrected results.

Point estimates of the bias-corrected QMLEs of the spatial
parameters can be significantly larger than the corresponding
QMLEs, in line with the theoretical results that the QMLEs are
downward biased.

The bias-corrected t-ratios for the spatial effects and the covariate
effects can be noticeably smaller compared to the original t-ratios,
showing that the original QMLE-based inferences can be
conservative (or over rejection) when sample size is not large, in line
with the theoretical results reported in Lecture 4.
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Table 7.7: QMLEs and BC-QMLEs for the SPD-FE Models Based on a Subset Data (Years 1982-84).

SLE SLD SED Durbin-SAR Durbin-SED

θ̂ML θ̂bc2ML θ̂ML θ̂bc2ML θ̂ML θ̂bc2ML θ̂ML θ̂bc2ML θ̂ML θ̂bc2ML

SLD (λ) 0.0552 0.0524 0.3074 0.3231 0.4963 0.5635
t-ratio 0.4529 0.3948 4.0296 4.0207 4.4443 4.6018

SED (ρ) 0.5516 0.5940 0.6160 0.6371 0.5230 0.5788
t-ratio 4.0558 3.8449 6.2920 6.1987 4.7379 4.5433

ln(K1) -0.2469 -0.2361 -0.2839 -0.2799 -0.2322 -0.2262 -0.1069 -0.1108 -0.1168 -0.1161
t-ratio -2.3605 -2.0841 -3.3297 -3.1705 -2.1801 -1.9933 -0.9088 -0.9007 -1.0261 -0.9876

ln(K2) 0.5663 0.5368 0.5132 0.4902 0.5522 0.5344 0.3309 0.3325 0.4619 0.4768
t-ratio 2.4170 2.1668 2.4694 2.2659 2.4118 2.2126 1.3570 1.3184 1.9837 1.9932

ln(L) 1.1873 1.1880 1.1149 1.1113 1.1796 1.1795 1.1393 1.1385 1.1046 1.0963
t-ratio 13.9952 13.7878 12.7139 12.4853 14.2798 14.2521 13.1989 12.8462 12.1188 11.6417

Unemp -0.0009 -0.0008 -0.0014 -0.0014 -0.0008 -0.0008 -0.0010 -0.0010 -0.0015 -0.0015
t-ratio -1.0818 -1.0203 -1.7243 -1.6917 -1.0505 -1.0297 -1.3149 -1.2655 -1.7725 -1.8093

W ln(K1) -0.0698 -0.0302 -0.1609 -0.1305
t-ratio -0.3984 -0.1663 -0.7779 -0.6117

W ln(K2) 0.3929 0.3195 0.9698 0.9718
t-ratio 1.0732 0.8280 2.3128 2.2267

W lg(L) -0.6881 -0.7761 -0.2377 -0.2664
t-ratio -3.5131 -3.7384 -1.2768 -1.3755

W Unemp -0.0023 -0.0022 -0.0034 -0.0033
t-ratio -1.5803 -1.4514 -1.9087 -1.8428
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7.6. QML Estimation of Random Effects SPD Models

When the unobserved individual and time specific effects µn and αT are
uncorrelated with IT-varying regressors, they can be treated as random
vectors of iid elements with means 0 and variances σ2

µ0 and σ2
α0.

In this case, a set of time-invariant regressors including the constant term,
Zn, can be added to the Model (7.1) to give a RE-SPD model:

Ynt = λ0W1nYnt + Xntβ0 + Znγ0 + µn + αt ln + Unt , (7.24)

Unt = ρ0W2nUnt + Vnt , t = 1, 2, . . . , T .

Various random effects specifications have been considered in the
literature, but none contain the time effects αt in the model.

Anselin (1988), Baltagi et al. (2003): Model (7.24) without W1nYnt and αt ;

Kapoor et al. (2007): Ynt = Xntβ0 + Znγ0 + Unt , Unt = ρ0W2nUnt + µn + Vnt .

Baltagi et al. (2013): Ynt = Xntβ0 + Znγ0 + Unt ,
Unt = ρ10W2nUnt + Vnt , µn = ρ20µnW3n + en.
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Fingleton (2008): Ynt = λ0W1nYnt + Xntβ0 + Znγ0 + Unt ,
Unt = (In + ρ0W2n)ξn, ξn = µn + Vnt .

Lee and Yu (2012) provide a general model that embeds all the models above
except (7.24) which contains random time effects {αt}:

Ynt = λ10W1nYnt + Xntβ0 + Znγ0 + µn + Unt , (7.25)

Unt = λ20W2nUnt + (In + δ10M1n)Vnt ,

Vnt = ρ0Vn,t−1 + ent , t = 1, . . . , T

µn = λ30W3nµ + (In + δ20M2n)εn.

1 See Lee and Yu (2012) for the QML estimation of Model (7.25).
2 However, method for estimating the robust VC matrix of QMLEs of

Model (7.25) is not given. Difficulty lies in the estimation of 3rd and
4th moments of two error components.

3 QML estimation of Model (7.24) has not been formally considered.
4 See Lee and Yu (2010b, 2015) for surveys on SPD models.
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7.7. QMLE of SPD Models with Correlated Random Effects

The Model (7.24) can be extended by allowing µn to correlate with Xnt

linearly. In particular,
µn = δ01n + X̄nβ1 + ε, (7.26)

where X̄n is the time mean of Xnt , as in Mundlak (1978).
1 Combining (7.26) with (7.24), the CRE-SPD model has the same form

as the RE-SPD model (7.24), and hence can be estimated in the
same manner.

2 Difficulty lies again in the estimation of the robust VC matrix of the
QMLEs of the model.

3 Under nonnormality, the variance of the score function at the true
parameters values involve 3rd and 4th moments of all three error
components, and methods for consistent estimation of these higher
moments are is not available.
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