
ARTICLE IN PRESS
Journal of Econometrics 137 (2007) 489–514
0304-4076/$ -

doi:10.1016/j

E-mail ad
www.elsevier.com/locate/jeconom
GMM and 2SLS estimation of mixed regressive,
spatial autoregressive models

Lung-fei Lee

Department of Economics, 410 Arps Hall, Ohio State University, 1945 N. High Street, Columbus,

OH 43210-1172, USA

Received 31 October 2001; accepted 6 October 2005

Available online 30 May 2006
Abstract

The GMM method and the classical 2SLS method are considered for the estimation of mixed

regressive, spatial autoregressive models. These methods have computational advantage over the

conventional maximum likelihood method. The proposed GMM estimators are shown to be

consistent and asymptotically normal. Within certain classes of GMM estimators, best ones are

derived. The proposed GMM estimators improve upon the 2SLS estimators and are applicable even

if all regressors are irrelevant. A best GMM estimator may have the same limiting distribution as the

ML estimator (with normal disturbances).
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1. Introduction

In this paper, we propose a general GMM framework for the estimation of mixed
regressive, spatial autoregressive (MRSAR) models. The GMM estimation for those
models can be computationally simpler than the maximum likelihood (ML) or quasi
maximum likelihood (QML) methods in a general setting. The GMM estimator (GMME)
may be asymptotically more efficient than the two-stage least squares (2SLS) estimator
(2SLSE) and may be asymptotically efficient as the ML estimator (MLE).
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The 2SLS method has been noted for the estimation of the MRSAR model in Anselin
(1988, 1990), Land and Deane (1992), Kelejian and Robinson (1993), Kelejian and Prucha
(1997, 1998), and Lee (2003), among others. The instrumental variables (IVs) are generated
from exogenous regressors and the spatial weights matrix of the model. However, there are
some issues on the 2SLS approach. The main issue is that the proposed 2SLSE is inefficient
relative to the MLE. For the estimation of a conventional linear simultaneous equation
model, the 2SLSE is asymptotically efficient as the limited information MLE (see, e.g.,
Amemiya, 1985). This is not so for the estimation of the MRSAR model. The 2SLSE has
been shown to be consistent and asymptotically normally distributed (Kelejian and
Prucha, 1998). Lee (2003) discusses the best one (B2SLSE) within the class of IV
estimators. By comparing the limiting variance matrices, the 2SLSE and B2SLSE are less
efficient relative to the MLE (when the disturbances are normally distributed). A subtle
issue is that the 2SLS method would not be consistent when all the exogenous regressors in
the MRSAR model are really irrelevant. Furthermore, it is not possible to test the joint
significance of all the exogenous regressors based on those IV estimators (Kelejian and
Prucha, 1998). On the contrary, the MLE of a MRSAR is consistent and its limiting
distribution can be used for testing the joint significance of regression coefficients. These
show that the 2SLS approach is less satisfactory than the ML approach in some of its
statistical properties. However, the 2SLS approach is computationally simpler than the
ML approach and is distribution free.
For pure spatial autoregressive (SAR) processes, a method of moments (MOM) has

been introduced in Kelejian and Prucha (2001). The MOM method is computationally
simpler than the ML method. Their MOM estimator is consistent but is unlikely to be
efficient relative to the MLE.1 Recently, Lee (2001) extends the MOM estimation into a
more general GMM estimation framework. Within that GMM framework, a best GMM
estimator (BGMME) can have the same limiting distribution as the MLE or QML
estimator.
In this paper, we consider the possible generalization of the MOM method for the

MRSAR model. We suggest a combination of the moments in the 2SLS framework with
moment functions originated for the estimation of pure SAR processes. We show that the
resulting GMME can be asymptotically efficient relative to the 2SLSE and B2SLSE. The
best GMME can be made available and it can be efficient as the MLE. With this GMM
framework, one may also test the joint significance of all the possible exogenous regressors.
This paper is organized as follows. In Section 2, we consider the estimation of a

MRSAR model. We discuss the moment functions that can be used in addition to the
moments based on the orthogonality of exogenous regressors with the model disturbance.
Consistency and asymptotic distribution of the GMME will be derived in Section 3. In
Section 4, the GMME and the 2SLSE are compared. The best selection of moment
functions and IVs will be discussed and its possible efficiency property is derived. All the
proofs of the results are collected in the appendices. Section 5 provides some Monte Carlo
results for the comparison of finite sample properties of estimators. Conclusions are drawn
in Section 6.
1The asymptotic distribution of their MOM estimator has not been established in their article. They have

provided Monte Carlo results to demonstrate that their MOM estimator is only slightly inefficient relative to the

QML estimator under various distributions.



ARTICLE IN PRESS
L.-f. Lee / Journal of Econometrics 137 (2007) 489–514 491
2. GMM estimation and identification of the MRSAR model

The MRSAR model differs from a pure SAR process in the presence of exogenous
regressors X n as explanatory variables in the model:

Y n ¼ lW nY n þ X nbþ �n, (2.1)

where X n is a n� k dimensional matrix of nonstochastic exogenous variables, W n is a
spatial weights matrix of known constants with a zero diagonal, and the disturbances �ni,
i ¼ 1; . . . ; n, of the n-dimensional vector �n are i.i.d. ð0;s2Þ. Specifically, we assume that

Assumption 1. The �ni are i.i.d. with zero mean, variance s2 and that a moment of order
higher than the fourth exists.

Assumption 2. The elements of X n are uniformly bounded constants, X n has the full rank
k, and limn!1ð1=nÞX 0nX n exists and is nonsingular.

Because statistics involving quadratic forms of �n will be present in the estimation, the
existence of the fourth order moment of �ni’s will guarantee finite variances for the
quadratic forms. The higher than the fourth moment condition in Assumption 1 is needed
in order to apply a central limit theorem due to Kelejian and Prucha (2001). The
nonstochastic X n and its uniform boundedness conditions in Assumption 2 are for
convenience. If the elements of X n are stochastic and have unbounded ranges, conditions
in Assumption 2 can be replaced by some finite moment conditions.

The W nY n in (2.1) is called a spatial lag and its coefficient is supposed to represent the
spatial effect due to the influence of neighboring units on a single spatial unit. The main
interest in estimation of the model is, in general, the parameters l and b. In order to
distinguish the true parameters from other possible values in the parameter space, we
denote l0;b0, and s20 as the true parameters which generate an observed sample. Let
y ¼ ðl;b0Þ0 and y0 ¼ ðl0; b

0
0Þ
0. This model is supposed to be an equilibrium model. The

structural equation (2.1) implies the reduced form equation that

Y n ¼ ðIn � l0W nÞ
�1X nb0 þ ðIn � l0W nÞ

�1�n. (2.2)

It follows that W nY n ¼W nðIn � l0W nÞ
�1X nb0 þW nðIn � l0W nÞ

�1�n and W nY n

is correlated with �n because, in general, EððW nðIn � l0W nÞ
�1�nÞ

0�nÞ ¼ s20 tr
ðW nðIn � l0W nÞ

�1
Þa0. There are some regularity conditions on W n and ðIn � l0W nÞ

�1

which will be needed in order that the spatial correlations between units can be
manageable. The following Assumption 3 is originated in the works of Kelejian and
Prucha, e.g., Kelejian and Prucha (1998). A sequence of square matrices fAng, where
An ¼ ½an;ij �, is said to be uniformly bounded in row sums (column sums) in absolute value if
the sequence of row sum matrix norm kAnk1 ¼ maxi¼1;...;n

Pn
j¼1 jan;ijj (column sum matrix

norm kAnk1 ¼ maxj¼1;...;n
Pn

i¼1 jan;ijj) are bounded.2

Assumption 3. The spatial weights matrices fW ng and fðIn � lW nÞ
�1
g at l ¼ l0 are

uniformly bounded in both row and column sums in absolute value.

Note that we have imposed the uniform boundedness condition on fðIn � lW nÞ
�1
g only

at l ¼ l0. The stronger assumption that fðIn � lW nÞ
�1
g is uniformly bounded in both row
2Properties of those matrix norms can be found in Horn and Johnson (1985, pp. 294–295).
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and column sums in absolute value, uniformly in l (in a compact parameter space of lÞ is
not imposed.3

With the normal distribution for �n, the unknown parameters l, b and s2 can be
estimated by the ML (or QML) method (Ord, 1975). The ML method involves the
computation of the determinant jðIn � lW nÞj of ðIn � lW nÞ, at each possible value of l
during an optimization search. For the case that W n is row-normalized and the
corresponding spatial matrix before row normalization is symmetric, the eigenvalues of
W n are all real. As jðIn � lW nÞj is solely a function of l and eigenvalues of W n, Ord (1975)
points out that computation of jðIn � lW nÞj can be easily updated as the eigenvalues of
W n need to be computed only once. 4 With a general spatial weights matrix which does not
have special properties, such as sparseness and the symmetry property in Ord (1975), the
MLE would be difficult to be computed for sample with a large size. Recently, Smirnov
and Anselin (2001) discuss the attractability of using a characteristic polynomial approach.
For a computational point of view, a 2SLS method remains the simplest. Kelejian and

Prucha (1998) suggest the use of W nX n, W 2
nX n, etc., together with X n as IVs in a 2SLS for

estimating y. Lee (2003) shows that the B2SLS corresponds to use W nðIn � l0W nÞ
�1X n

and X n as IV matrices. These 2SLSE and B2SLSE are computationally simple and have
closed form expressions. However, the 2SLS and B2SL methods have the limitation in that
at least one nonconstant regressors in X n must have significant coefficients in order that
valid IVs can be generated from them. As the 2SLSE and B2SLSE are based on the
existence of relevant nonconstant regressors, it is impossible to test the joint significance of
X n with those estimators.5

Even if valid IVs do exist, the 2SLSE may be inefficient relative to the MLE. By
comparing the limiting variance matrices of the MLE and 2SLSE (e.g., in Anselin, 1988;
Anselin and Bera, 1998), neither the 2SLSE nor the B2SLE have the same limiting
distribution of the MLE. In this paper, we suggest to incorporate some other moment
conditions in addition to those based on X n in order to improve upon the efficiency of the
2SLSE.
Let Qn be an n� kx matrix of IVs constructed as functions of X n and W n in a 2SLS

approach. Denote �nðyÞ ¼ ðIn � lW nÞY n � X nb for any possible value y. The moment
functions corresponding to the orthogonality conditions of Qn and �n are Q0n�nðyÞ. Let P1n

be the class of constant n� n matrices which have a zero trace. A subclass P2n of P1n

consisting of matrices with a zero diagonal is also interesting. By selecting matrices
P1n; . . . ;Pmn from P1n, we suggest the use of ðPjn�nðyÞÞ

0�nðyÞ in addition to Q0n�nðyÞ to form a
set of moment functions. For analytical tractability, the matrices in P1n are assumed to
have the uniformly boundedness properties as W n.

Assumption 4. The matrices Pjn’s from P1n are uniformly bounded in both row and
column sums in absolute value, and elements of Qn are uniformly bounded.
3The latter stronger assumption is needed for the ML approach. For the GMM method that we propose,

because the GMM function is a polynomial function of y, which is relatively simpler function, our analysis does

not require the stronger uniform boundedness assumption.
4However, Kelejian and Prucha (1999) have pointed out that Ord’s method may suffer from numerically

imprecise problems for large sample.
5When b0 ¼ 0, the model would be a pure spatial autoregressive process. For a spatial autoregressive model

with only a nonzero intercept term but no other spatially varying regressors, W nln will not be an useful instrument

for W nY n when W n is row normalized. When W n is row-normalized, W nln ¼ ln where ln is the vector of ones.
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With the selected matrices Pjn’s and IV matrices Qn, the set of moment functions forms a
vector

gnðyÞ ¼ ðP1n�nðyÞ; . . . ;Pmn�nðyÞ;QnÞ
0�nðyÞ ¼ ð�0nðyÞP1n�nðyÞ; . . . ; �0nðyÞPmn�nðyÞ; �0nðyÞQnÞ

0

(2.3)

for the GMM estimation. At y0, gnðy0Þ ¼ ð�
0
nP1n�n; . . . ; �0nPmn�n; �0nQnÞ

0, which has a zero
mean because EðQ0n�nÞ ¼ Q0nEð�nÞ ¼ 0 and Eð�0nPjn�nÞ ¼ s20 trðPjnÞ ¼ 0 for j ¼ 1; . . . ;m.6 The
intuition is as follows. The IV variables in Qn, can be used as IV variables for W nY n and
X n in (2.1). The Pjn�n is uncorrelated with �n. As W nY n ¼W nðIn � l0W nÞ

�1
ðX nb0 þ �nÞ,

Pjn�n can be used as an IV for W nY n as long as Pjn�n and W nðIn � l0W nÞ
�1�n are

correlated.
For any possible value y,

EðgnðyÞÞ

¼

d 0nðyÞP1ndnðyÞ þ s20 trððIn � l0W nÞ
0�1
ðIn � lW 0

nÞP1nðIn � lW nÞðIn � l0W nÞ
�1
Þ

..

.

d 0nðyÞPmndnðyÞ þ s20 trððIn � l0W nÞ
0�1
ðIn � lW 0

nÞPmnðIn � lW nÞðIn � l0W nÞ
�1
Þ

Q0ndnðyÞ

0
BBBBBBB@

1
CCCCCCCA
,

ð2:4Þ

where dnðyÞ ¼ X nðb0 � bÞ þ ðl0 � lÞW nðIn � l0W nÞ
�1X nb0. For these moment functions

to be useful, they have to identify the true parameter y0 of the model. In the GMM
framework, the identification condition requires the unique solution of the limiting
equations, limn!1ð1=nÞEðgnðyÞÞ ¼ 0 at y0 (Hansen, 1982). The moment equations
corresponding to Qn are limn!1ð1=nÞQ0ndnðyÞ ¼ limn!1ð1=nÞ ðQ0nX n;Q

0
nW nðIn � l0W nÞ

�1

X nb0Þððb0 � bÞ0; l0 � lÞ0 ¼ 0. They will have a unique solution at y0 if ðQ0nX n;Q
0
nW nðIn �

l0W nÞ
�1X nb0Þ has a full column rank, i.e., rank ðk þ 1Þ, for large enough n. This sufficient

rank condition implies the necessary rank condition that ðX n;W nðIn � l0W nÞ
�1X nb0Þ has

a full column rank ðk þ 1Þ and that Qn has a rank at least ðk þ 1Þ, for large enough n. The
sufficient rank condition requires Qn to be correlated with W nY n in the limit as n goes to
infinity. This is so because EðQ0nW nY nÞ ¼ Q0nW nðIn � l0W nÞ

�1X nb0. Under the sufficient
rank condition, y0 can thus be identified via limn!1ð1=nÞQ0ndnðyÞ ¼ 0.

The necessary full rank condition of ðX n;W nðIn � l0W nÞ
�1X nb0Þ for large n is possible

only if the set consisting of W nðIn � l0W nÞ
�1X nb0 and X n is not asymptotically linearly

dependent. This rank condition would not hold, in particular, if b0 were zero. There
are other cases when this dependence can occur (see, e.g., Kelejian and Prucha, 1998).
As X n has rank k, if ðX n;W nðIn � l0W nÞ

�1X nb0Þ does not have a full rank ðk þ 1Þ, its rank
will be k, and there will exist a constant vector c such that W nðIn � l0W nÞ

�1X nb0 ¼ X nc.
Then, dnðyÞ ¼ X nðb0 � bþ ðl0 � lÞcÞ and Q0ndnðyÞ ¼ Q0nX nðb0 � bþ ðl0 � lÞcÞ. The corre-
sponding moment equations Q0ndnðyÞ ¼ 0 will have many solutions but the solutions are all
described by the relation that b ¼ b0 þ ðl0 � lÞc as long as Q0nX n has a full rank k.
6The selection of the number of m is not an important issue for our GMM approach, because there exists a best

Pn as discussed in a subsequent section. Furthermore, from our Monte Carlo study, the selection of W n and

ðW 2
n � ðtrðW

2
nÞ=nÞInÞ provides accurate approximations for the best one.
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Under this scenario, b0 can be identified only if l0 is identifiable. The identification
of l0 will rely on the remaining quadratic moment equations limn!1ð1=nÞ trððIn �

l0W nÞ
0�1
ðIn � lW 0

nÞPjnðIn � lW nÞðIn � l0W nÞ
�1
Þ ¼ 0 for j ¼ 1; . . . ;m. In this case,

Y n ¼ l0ðW nðIn � l0W nÞ
�1X nb0Þ þ X nb0 þ ðIn � l0W nÞ

�1�n ¼ X nðb0 þ l0cÞ þ un; where
un ¼ ðIn � l0W nÞ

�1�n. The relationship un ¼ l0W nun þ �n is a SAR process.
The identification of l0 thus comes from the SAR process un. One can see from
Lee (2001) that the set of the limiting quadratic moment equations has a unique solution
at l0 if limn!1ð1=nÞ½trðPs

1nW nðIn � l0W nÞ
�1
Þ; . . . ; trðPs

mnW nðIn � l0W nÞ
�1
Þ�0 is linearly

independent of limn!1ð1=nÞ½trððIn � l0W 0
nÞ
�1W 0

nP1nW nðIn � l0W nÞ
�1
Þ; . . . ; trððIn �

l0W 0
nÞ
�1 W 0

nPmnW nðIn � l0W nÞ
�1
Þ�0, where As ¼ Aþ A0 for any square matrix A. The

following assumption summarizes some sufficient conditions for the identification of y0
from the moment limn!1ð1=nÞEðgnðyÞÞ ¼ 0.

Assumption 5. Either (i) limn!1ð1=nÞQ0nðW nðIn � l0W nÞ
�1X nb0;X nÞ has the full rank

ðk þ 1Þ, or (ii) limn!1ð1=nÞQ0nX n has the full rank k, limn!1ð1=nÞ trðPs
jnW nðIn �

l0W nÞ
�1
Þa0 for some j, and limn!1ð1=nÞ½trðPs

1nW nðIn � l0W nÞ
�1
Þ; . . . ; trðPs

mnW nðIn �

l0W nÞ
�1
Þ�0 is linearly independent of

lim
n!1
ð1=nÞ½trððIn � l0W 0

nÞ
�1W 0

nP1nW nðIn � l0W nÞ
�1
Þ,

. . . ; trððIn � l0W 0
nÞ
�1W 0

nPmnW nðIn � l0W nÞ
�1
Þ�0.

In terms of computation of the GMM estimator, because the moment functions in gnðyÞ
are quadratic functions in l and b, the GMM objective function will be of polynomial of
order four. The derivation of the GMM estimator will involve the minimization of a
polynomial function in y. The computation of polynomial coefficients, which do not
involve the unknown y, need to be done once. The evaluation of the corresponding
objective function will thus involve the multiplication of these polynomial coefficients with
powers of y’s at different values of y. The computation is more complicated than that of
the 2SLS but shall be simpler than that of the ML approach.
The variance matrix of these moment functions involves variances and covariances of

linear and quadratic forms of �n. For any square n� n matrix A, let vecDðAÞ ¼

ða11; . . . ; annÞ
0 denote the column vector formed with the diagonal elements of A. Then,

EðQ0n�n � �0nPn�nÞ ¼ Q0n
Pn

i¼1

Pn
j¼1 pn;ijEð�n�ni�njÞ ¼ Q0n vecDðPnÞm3 and Eð�0nPjn�n � �0nPln�nÞ ¼

ðm4 � 3s40Þ vec0DðPjnÞ vecDðPlnÞ þ s40 trðPjnPs
lnÞ by Lemma A.2, where m3 ¼ Eð�3niÞ and

m4 ¼ Eð�4niÞ. It follows that varðgnðy0ÞÞ ¼ On where

On ¼
ðm4 � 3s40Þo

0
nmonm m3o

0
nmQn

m3Q
0
nonm 0

 !
þ Vn, (2.5)

with onm ¼ ½vecDðP1nÞ; . . . ; vecDðPmnÞ� and

V n ¼ s40

trðP1nPs
1nÞ � � � trðP1nPs

mnÞ 0

..

. ..
. ..

.

trðPmnPs
1nÞ � � � trðPmnPs

mnÞ 0

0 � � � 0 1
s2
0

Q0nQn

0
BBBBB@

1
CCCCCA ¼ s40

Dmn 0

0 1
s2
0

Q0nQn

 !
, (2.6)
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where Dmn ¼ ½vecðP01nÞ; . . . ; vecðP0mnÞ�
0½vecðPs

1nÞ; . . . ; vecðPs
mnÞ�, by using trðABÞ ¼ vecðA0Þ0

vecðBÞ for any conformable matrices A and B. When �n is normally distributed, On is
simplified to V n because m3 ¼ 0 and m4 ¼ 3s40. If Pjn’s are from P2n, On ¼ V n also because
onm ¼ 0. In general, from (2.3), On is nonsingular if and only if both
ðvecðP1nÞ; . . . ; vecðPmnÞÞ and Qn have full column ranks. This is so, because On would be
singular if and only if the moments in gnðy0Þ are functionally dependent, equivalently, if
and only if

Pm
j¼1 ajPjn ¼ 0 and Qnb ¼ 0 for some constant vector ða1; . . . ; am; b

0
Þa0. As

elements of Pjn’s and Qn are uniformly bounded by Assumption 4, it is apparent that
ð1=nÞo0nmQn, ð1=nÞo0nmonm and ð1=nÞQ0nQn are of order Oð1Þ. Furthermore, because PjnPs

ln is
bounded in row or column sums in absolute value, ð1=nÞ trðPjnPs

lnÞ ¼ Oð1Þ. Consequently,
ð1=nÞOn ¼ Oð1Þ. It is thus meaningful to impose the following conventional regularity
condition on the limit of ð1=nÞOn.

Assumption 6. The limit of ð1=nÞOn exists and is a nonsingular matrix.7

The variance matrix On is needed to formulate the optimum GMME with gnðyÞ.
3. Consistency and asymptotic distributions

The following proposition provides the asymptotic distribution of the GMME with a
linear transformation of the moment equations, angnðyÞ, where an is a matrix with a full
row rank greater than or equal to ðk þ 1Þ. The an is assumed to converge to a constant full
rank matrix a0. This corresponds to the Hansen’s GMM setting, which illustrates the
optimal weighting issue.

Assumption 7. y0 is in the interior of the parameter space Y, which is a compact subset of
Rkþ1.8

Proposition 1. Under Assumptions 1–5, suppose that Pjn for j ¼ 1; . . . ;m, are from P1n and

Qn is a n� kx IV matrix so that a0 limn!1ð1=nÞEðgnðyÞÞ ¼ 0 has a unique root at y0 in Y.
Then, the GMME ŷn derived from miny2Y g0nðyÞa

0
nangnðyÞ is a consistent estimator of y0, andffiffiffi

n
p
ðŷn � y0Þ!

D
Nð0;SÞ, where

S ¼ lim
n!1

1

n
D0n

� �
a0nan

1

n
Dn

� �� ��1
1

n
D0n

� �
a0nan

1

n
On

� �
a0nan

1

n
Dn

� �

�
1

n
D0n

� �
a0nan

1

n
Dn

� �� ��1
ð3:1Þ
7In this paper, for simplicity, we do not consider the large group interactions scenario as in Case (1991), where

limn!1ð1=nÞOn might be singular. It is possible to extend our analysis to cover that case but the analysis would

become much algebraically complicated. For an analysis on the MLE, see Lee (2004).
8For a nonlinear extremum estimator, the parameter space would usually be assumed to be a compact set

(Amemiya, 1985). The extremum estimate always exists when the objective function is continuous on a compact

set. Furthermore, for the proof of consistency of the extremum estimator, the uniform convergence argument will

usually require a compact parameter space (see the uniform convergence theorem in Amemiya). For our GMM

approach, the moment functions are quadratic functions of y. Because of its simple nonlinear structure, the

uniform convergence argument of the sample objective function after proper normalization can be easily

established as long as the parameter space is bounded. So the compact parameter space assumption may be

relaxed to a bounded set as long as the minimum of the objective function exists in such a parameter space.
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and

Dn

¼
s20 trðP

s
1nW nðIn � l0W nÞ

�1
Þ � � � s20 trðP

s
mnW nðIn � l0W nÞ

�1
Þ ðW nðIn � l0W nÞ

�1X nb0Þ
0Qn

0 � � � 0 X 0nQn

0
@

1
A
0

,

ð3:2Þ

under the assumption that limn!1ð1=nÞanDn exists and has the full rank ðk þ 1Þ.

The rank conditions in Assumption 5 imply that limn!1ð1=nÞgnðy0Þ ¼ 0 has a
unique root at y0 and, hence, its corresponding gradient matrix limn!1ð1=nÞDn of
(2.8) has rank ðk þ 1Þ. In the presence of Assumption 5, the extra conditions that
limn!1ð1=nÞanEðgnðyÞÞ ¼ 0 has a unique root at y0 and the limit of ð1=nÞanDn has full rank
ðk þ 1Þ, are simply to eliminate the bad choice of a sequence fang for the linear combination
angnðyÞ, which may result in the loss of identification from the original gn. If Assumption 5
were not satisfied, the condition that a0 limn!1ð1=nÞgnðyÞ ¼ 0 has a unique root at y0
would not be satisfied.9 The identification condition is specified for the limiting function.
The weaker requirement that anEðgnðyÞÞ ¼ 0 has a unique root at y0 for large enough n is
not sufficient for y0 to be identifiably unique, because the objective function might flatten
out in the limit.
From Proposition 1, with the moment functions gnðyÞ in (2.3), the optimal choice of a

weighting matrix a0nan is ðð1=nÞOnÞ
�1 by the generalized Schwartz inequality. If Pjn’s are

selected from the subclass P2n or �ni’s are normally distributed, On in (2.5) will be reduced
to the simpler matrix Vn in (2.6). These variance matrices can be used to form the optimal
GMM objective function with gnðyÞ. The s2, m3, and m4 can be consistently estimated by
using estimated residuals of �n from an initial consistent estimate of y0.

10 The On can then
be consistently estimated as Ôn. The following proposition shows that the feasible
optimum GMME (OGMME) with a consistently estimated Ôn has the same limiting
distribution as that of the OGMME based on On. With the optimum GMM objective
function, an overidentification test is available.

Proposition 2. Under Assumptions 1–6, suppose that ðÔn=nÞ�1 � ðOn=nÞ�1 ¼ oPð1Þ, then the

feasible OGMME ŷo;n derived from miny2Y g0nðyÞÔ
�1
n gnðyÞ based on gnðyÞ in (2.3) with Pjn’s

from P1n has the asymptotic distribution

ffiffiffi
n
p
ðŷo;n � y0Þ!

D
N 0; lim

n!1
ð1=nÞD0nO

�1
n Dn

� ��1� �
. (3.3)

Furthermore,

g0nðŷnÞÔ�1n gnðŷnÞ!
D

w2ððmþ kxÞ � ðk þ 1ÞÞ. (3.4)
9When the set of W nðIn � l0W nÞ
�1X nb0 and X n were linearly dependent, Proposition 1 would not cover the

large group interaction case of Case (1991) because, in this situation, ð1=nÞ trðPs
jnW nðIn � l0W nÞ

�1
Þ would vanish

in the limit and Assumptions 5 and 6 needed be strengthened. The MLE l̂n of l0 in this situation is known to have

a slower rate of convergence than that of the MLE b̂n of b0 (see, Lee, 2004).
10The detailed proof is straightforward but tedious and is omitted here.
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The 2SLSE b̂2sl;n would be inconsistent when the set of W nðIn � l0W nÞ
�1X nb0

and X n is linearly dependent. An obvious example is b0 ¼ 0. Another example is a
model where the only relevant variable in X n is the intercept term ln and W n is
row-normalized (Kelejian and Prucha, 1998). In that case, W nðIn � l0W nÞ

�1X nb0 ¼
ðb01=ð1� l0ÞÞln because ðIn � l0W nÞ

�1ln ¼ ð1=ð1� l0ÞÞln and W nln ¼ ln. However,
even when the set of W nðIn � l0W nÞ

�1X nb0 and X n is linearly dependent, the
GMM approach may still work because of the additional moment functions with Pjn’s.
The asymptotic distribution of the GMME in (2.9) can be used to formulate a Wald
statistic for testing the overall significance of all exogenous variables while that of the
2SLSE cannot.
4. Efficiency and the BGMME

The optimal GMME ŷo;n can be compared with the 2SLSE. With Qn as the IV matrix,
the 2SLSE of y0 is

ŷ2sl;n ¼ ½Z
0
nQnðQ

0
nQnÞ

�1Q0nZn�
�1Z0nQnðQ

0
nQnÞ

�1Q0nY n, (4.1)

where Zn ¼ ðW nY n;X nÞ. The asymptotic distribution of ŷ2sl;n is

ffiffiffi
n
p
ðŷ2sl;n � y0Þ!

D
N 0;s20 lim

n!1

1

n
ðW nðIn � l0W nÞ

�1X nb0;X nÞ
0

	�

�QnðQ
0
nQnÞ

�1Q0nðW nðIn � l0W nÞ
�1X nb0;X nÞ


�1!
, ð4:2Þ

under the assumptions that limn!1ð1=nÞQ0nQn is nonsingular and limn!1ð1=nÞQnðW nðIn �

l0W nÞ
�1X nb0;X nÞ has the full column rank ðk þ 1Þ (Kelejian and Prucha, 1998). Because

the 2SLSE can be derived from miny �0nðyÞQ
0
nðQnQ0nÞ

�1Qn�nðyÞ, the 2SLS approach is a
special case of the GMM estimation in Proposition 1 with an ¼ ð0; ðQ

0
nQn=nÞ�1=2Þ and

ð1=nÞangnðyÞ ¼ ðQ
0
nQn=nÞ�1=2ð1=nÞQ0n�nðyÞ. It follows from Proposition 2, ŷo;n shall be

efficient relative to ŷ2sl;n.
Within the 2SLS framework, by the generalized Schwartz inequality applied to

the asymptotic variance of ŷ2ls;n in (4.2), the best IV matrix Qn will be ðW nðIn�

l0W nÞ
�1X nb0;X nÞ. Using the best IV matrix for Qn in the GMM framework, the

resulting GMME shall be efficient relative to the B2SLE. There is a related question
on whether ðW nðIn � l0W nÞ

�1X nb0;X nÞ can be the best IV matrix in the class of
matrices Qn with given Pjn’s. The answer can be affirmative for cases where the
moments Q0n�n do not interact with the moments �0nPjn�n via their correlations. The
covariance of Q0n�n and �0nPjn�n, j ¼ 1; . . . ;m, is m3Q

0
nonm, which can be zero when m3 ¼ 0 or

onm ¼ 0.
The remaining issue is on the best selection of Pjn’s. When the disturbance �n is normally

distributed or Pjn’s are from P2n,

D0nO
�1
n Dn ¼

CmnD�1mnC0mn 0

0 0

 !
þ

1

s20
ðW nðIn � l0W nÞ

�1X nb0;X nÞ
0

�ðW nðIn � l0W nÞ
�1X nb0;X nÞ, ð4:3Þ
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where Cmn ¼ ½trðP
s
1nW nðIn � l0W nÞ

�1
Þ; . . . ; trðPs

mnW nðIn � l0W nÞ
�1
Þ�. Note that, because

trðPjnPs
lnÞ ¼

1
2
trðPs

jnPs
lnÞ, Dmn can be rewritten as

Dmn ¼
1

2

trðPs
1nPs

1nÞ � � � trðPs
1nPs

mnÞ

..

. ..
.

trðPs
mnPs

1nÞ � � � trðPs
mnPs

mnÞ

0
BBB@

1
CCCA

¼
1

2
½vecðPs

1nÞ � � � vecðPs
mnÞ�
0½vecðPs

1nÞ � � � vecðPs
mnÞ�.

(i) When Pjn’s are from P2n,

trðPs
jnW nðIn � l0W nÞ

�1
Þ ¼

1

2
trðPs

jn½W nðIn � l0W nÞ
�1
�DiagðW nðIn � l0W nÞ

�1
Þ�sÞ

¼
1

2
vec0ð½W nðIn � l0W nÞ

�1
�DiagðW nðIn � l0W nÞ

�1
Þ�sÞ

�vecðPs
jnÞ

for j ¼ 1; . . . ;m, in Cmn, where DiagðAÞ denotes the diagonal matrix formed by the
diagonal elements of a square matrix A. Therefore, the generalized Schwartz inequality
implies that

CmnD�1mnC0mnp
1

2
vec0ð½W nðIn � l0W nÞ

�1
�DiagðW nðIn � l0W nÞ

�1
Þ�sÞ

�vecð½W nðIn � l0W nÞ
�1
�DiagðW nðIn � l0W nÞ

�1
Þ�sÞ

¼ trð½W nðIn � l0W nÞ
�1
�DiagðW nðIn � l0W nÞ

�1
Þ�sW nðIn � l0W nÞ

�1
Þ.

Thus, in the subclass P2n, ½W nðIn � l0W nÞ
�1
�DiagðW nðIn � l0W nÞ

�1
Þ� and together

with ½W nðIn � l0W nÞ
�1X nb0;X n� provide the set of best IV functions.11

(ii) For the case where �n is Nð0;s20InÞ, because, for any Pjn 2 P1n,

trðPs
jnW nðIn � l0W nÞ

�1
Þ

¼
1

2
vec0 W nðIn � l0W nÞ

�1
�

trðW nðIn � l0W nÞ
�1
Þ

n
In

� �s
 !

vecðPs
jnÞ,

for j ¼ 1; . . . ;m, the generalized Schwartz inequality implies that

CmnD�1mnC 0mnptr W nðIn � l0W nÞ
�1
�

trðW nðIn � l0W nÞ
�1
Þ

n
In

� �s

W nðIn � l0W nÞ
�1

 !
.

11Note that the best selected matrix for the quadratic moment is a single matrix which is best relative to any

finite number of Pjn. So any additional Pjn in addition to the best one will not play a role in (asymptotically)

efficient estimation. This is so also for the best IV matrix Q for linear moments.
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Hence, in the broader class P1n, ½W nðIn � l0W nÞ
�1
� ðtrðW nðIn � l0W nÞ

�1
Þ=nÞIn� and

½W nðIn � l0W nÞ
�1X nb0;X n� provide the best set of IV functions. For all those cases, in the

event that the set of W nðIn � l0W nÞ
�1X nb0 and X n is linearly dependent, W nðIn �

l0W nÞ
�1X nb0 is redundant and the best IV matrix shall simply be X n.

12

In practice, with initial consistent estimates l̂n, b̂n of l0 and b0, W nðIn � l0W nÞ
�1 can be

estimated as W nðIn � l̂nW nÞ
�1, and W nðIn � l0W nÞ

�1X nb0 by Ŵ nðIn � l̂nW nÞ
�1X nb̂n.

The corresponding variance matrix V n of these best moment functions can be estimated as
V̂ n. The following proposition summarizes the results and shows that the feasible
BGMME has the same limiting distribution as the BGMME.
Proposition 3. Under Assumptions 1–3, suppose that l̂n is a
ffiffiffi
n
p

-consistent estimate of l0, b̂n

is a consistent estimate of b0, and ŝ2n is a consistent estimate of s20.
Within the class of GMMEs derived with P2n, the BGMME ŷ2b;n has the limiting

distribution that
ffiffiffi
n
p
ðŷ2b;n � y0Þ!

D
Nð0;S�12b Þ where

S2b

¼ lim
n!1

1

n

tr½ðGn �DiagðGnÞÞ
sGn� þ

1
s2
0

ðGnX nb0Þ
0
ðGnX nb0Þ

1
s2
0

ðGnX nb0Þ
0X n

1
s2
0

X 0nðGnX nb0Þ
1
s2
0

X 0nX n

0
B@

1
CA, ð4:4Þ

with Gn ¼W nðIn � l0W nÞ
�1, which is assumed to exist.

In the event that �n�Nð0;s20InÞ, within the broader class of GMME’s derived with P1n, the

BGMME ŷ1b;n has the limiting distribution that
ffiffiffi
n
p
ðŷ1b;n � y0Þ!

D
Nð0;S�11b Þ where

S1b

¼ lim
n!1

1

n

tr½ðGn �
trðGnÞ

n
InÞ

sGn� þ
1
s2
0

ðGnX nb0Þ
0
ðGnX nb0Þ

1
s2
0

ðGnX nb0Þ
0X n

1
s2
0

X 0nðGnX nb0Þ
1
s2
0

X 0nX n

0
B@

1
CA, ð4:5Þ

which is assumed to exist.
When �n is Nð0;s20InÞ, model (2.1) can be estimated by the ML method.
The log likelihood function of the MRSAR model via its reduced form equation
in (2.2) is

lnLn ¼ �
n

2
lnð2pÞ �

n

2
ln s2 þ ln jðIn � lW nÞj �

1

2s2
½Y n � ðIn � lW nÞ

�1X nb�0

�ðIn � lW 0
nÞðIn � lW nÞ½Y n � ðIn � lW nÞ

�1X nb�. ð4:6Þ
12The best IV vector W nðIn � l0W nÞ
�1X nb0 together with X n will satisfy the identification Assumption 5(i) as

long as they are not linearly dependent in the limit. In the event that they are, the model identification will follow

from the best matrix W nðIn � l0W nÞ
�1
� ð1=nÞ trðW nðIn � l0W nÞ

�1
ÞIn or W nðIn � l0W nÞ

�1
�DiagðW nðIn �

l0W nÞ
�1
Þ for the quadratic moment (Lee, 2001). With those best IV vectors and matrices, its variance matrix will

be nonsingular and Assumption 6 will also be satisfied.
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The asymptotic variance of the MLE ðŷml;n; ŝ2ml;nÞ is

AsyVarðŷml;n; ŝ
2
ml;nÞ

¼

trðG2
nÞ þ trðG0nGnÞ þ

1
s2
0

ðGnX nb0Þ
0
ðGnX nb0Þ

1
s2
0

ðX 0nGnX nb0Þ
0 trðGnÞ

s2
0

1
s2
0

X 0nGnX nb0
1
s2
0

X 0nX n 0

trðGnÞ

s2
0

0 n
2s4

0

0
BBBBB@

1
CCCCCA

�1

(see, e.g., Anselin and Bera, 1998, p. 256). From the inverse of a partitioned matrix, the
asymptotic variance of the MLE ŷml;n is

AsyVarðŷml;nÞ

¼

trðG2
nÞ þ trðG0nGnÞ þ

1
s2
0

ðGnX nb0Þ
0
ðGnX nb0Þ �

2
n
tr2ðGnÞ

1
s2
0

ðX 0nGnX nb0Þ
0

1
s2
0

X 0nGnX nb0
1
s2
0

X 0nX n

0
B@

1
CA
�1

.

ð4:7Þ

As trðG2
nÞ þ trðG0nGnÞ � ð2=nÞ tr2ðGnÞ ¼ trððGn � ðtrðGnÞ=nÞInÞ

sGnÞ, the GMME ŷ1b;n has the
same limiting distribution as the MLE of y0 from Proposition 3.
There is an intuition on the best GMM approach compared with the ML one. The

derivatives of the log likelihood in (4.6) are

q lnLn

qb
¼

1

s2
X 0n�nðyÞ,

q lnLn

qs2
¼ �

n

2s2
þ

1

2s4
�0nðyÞ�nðyÞ,

and

q lnLn

ql
¼ � trðW nðIn � lW nÞ

�1
Þ þ

1

s2
½W nðIn � lW nÞ

�1X nb�0�nðyÞ

þ
1

s2
�0nðyÞ½W nðIn � lW nÞ

�1
�0�nðyÞ.

The equation q lnLn=qs2 ¼ 0 implies that the MLE is ŝ2nðyÞ ¼ ð1=nÞ�0nðyÞ�nðyÞ for a given
value y. By substituting ŝ2nðyÞ into the remaining likelihood equations, the MLE ŷml;n will
be characterized by the moment equations: X 0n�nðyÞ ¼ 0; and

½W nðIn � lW nÞ
�1X nb�0�nðyÞ

þ �0nðyÞ W nðIn � lW nÞ
�1
�

1

n
trðW nðIn � lW nÞ

�1
Þ

� �
�nðyÞ ¼ 0.

The similarity of the best GMM moments and the above likelihood equations is revealing.
The best GMM approach has the linear and quadratic moments of �nðyÞ in its formation
and uses consistently estimated matrices in its linear and quadratic forms.
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5. Some Monte Carlo results

The model in the Monte Carlo study is specified as

Y n ¼ lW nY n þ X n1b1 þ X n2b2 þ X n3b3 þ �n,

where xi1, xi2 and xi3 are three independently generated standard normal variables and are
i.i.d. for all i, and �ni’s are i.i.d. Nð0;s2Þ. When the sample size is n ¼ 49, the spatial weights
matrix W n corresponds to the weights matrix for the study of crimes across 49 districts in
Columbus, Ohio in Anselin (1988). For large sample sizes of n ¼ 245 and 490, the
corresponding spatial weights matrices are block diagonal matrices with the preceding
49� 49 matrix as their diagonal blocks. These correspond to the pooling, respectively, of
five and ten separate districts with similar neighboring structures in each district. The
estimation methods considered are the
(1)
13

the

min

restr
2SLS—the 2SLS method with IV’s X n;W nX n, and W 2
nX n;
(2)
 GMM—a simple unweighted GMM approach using Qn ¼ ðX n;W nX n;W
2
nX nÞ for

linear moments and W n and W 2
n � ðtrðW

2
nÞ=nÞIn for quadratic moments (with an

identity matrix as the distance matrix);

(3)
 OGMM—the optimum GMM approach using Qn ¼ ðX n;W nX n;W

2
nX nÞ for linear

moments and W n and W 2
n � ðtrðW

2
nÞ=nÞIn for quadratic moments (with the inverse of

their (estimated) variance matrix as the distance matrix)13;

(4)
 BGMM—the best optimum GMM approach by using X n and ðIn � l̂nW nÞ

�1X nb̂n for
the linear moments, and W nðIn � l̂nW nÞ

�1
� ð1=nÞ tr½W nðIn � l̂nW nÞ

�1
�In for the

quadratic moment, where ðl̂n; b̂nÞ is an initial consistent estimate;

(5)
 ML—the ML approach.
The number of repetitions is 1,000 for each case in this Monte Carlo experiment. The

regressors are randomly redrawn for each repetition. In each case, we report the mean
‘Mean’ and standard deviation ‘SD’ of the empirical distributions of the estimates. To
facilitate the comparison of various estimators, their root mean square errors ‘RMSE’ are
also reported. In all the cases of this study, the true l0 is set to 0.6. The smallest sample size
is n ¼ 49, and the moderate sample sizes are 245 and 490. The variance of the equation
errors s20 is 2. The b coefficients are varied in the experiments.

Table 1 reports the results of the case where b10 ¼ �1:0, b20 ¼ 0 and b30 ¼ 1:0. In this
case, the corresponding variance ratio of xb0 with the sum of variances of xb0 and � is 0.5.
If one ignores the interaction term, this ratio would represent R2 ¼ 0:5 in a regression
equation. The results indicate that the main differences of the various estimation
approaches are on the estimation of the spatial effect l. For the small sample size N ¼ 49,
the 2SLS is biased upward by 12.7% and it has also the largest SD compared with the
various GMMEs and the MLE. The MLE is biased downward by 4% and the OGMME is
biased upward by 6.8%. The GMME and BGMME are essentially unbiased. The
BGMME is not better than the GMME and OGMME in terms of SD and RMSE with this
small sample. Among the various GMM estimates, the OGMME is better in terms of SD
The normality of the disturbances is assumed. The s2 in the variance matrix of the moments is estimated with

estimated residuals of the model equation with the simple GMM estimates as its coefficients. Note that the

imization of an objective function in various GMM approaches is performed globally without imposing a

icted parameter space, such as l lies in ð�1; 1Þ, in our study.
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Table 1

2SLSE, GMME, and MLE

Method l b1 b2 b3

Mean (SD)[RMSE] Mean (SD)[RMSE] Mean (SD)[RMSE] Mean (SD)[RMSE]

N ¼ 49

2SLS 0.676 (0.177)[0.192] �0.968 (0.218)[0.220] 0.001 (0.204)[0.204] 0.985 (0.213)[0.214]

GMM 0.600 (0.150)[0.150] �0.982 (0.221)[0.222] 0.001 (0.206)[0.206] 0.998 (0.211)[0.211]

O-GMM 0.641 (0.134)[0.141] �0.971 (0.221)[0.223] 0.001 (0.208)[0.208] 0.987 (0.212)[0.213]

BGMM 0.593 (0.161)[0.161] �0.978 (0.219)[0.220] 0.001 (0.207)[0.207] 0.993 (0.209)[0.210]

MLE 0.575 (0.115)[0.118] �0.988 (0.218)[0.218] 0.000 (0.205)[0.205] 1.002 (0.211)[0.211]

N ¼ 245

2SLS 0.612 (0.078)[0.079] �0.993 (0.092)[0.093] �0.002 (0.090)[0.090] 0.991 (0.094)[0.094]

GMM 0.600 (0.053)[0.053] �0.997 (0.092)[0.092] �0.002 (0.090)[0.090] 0.996 (0.093)[0.093]

O-GMM 0.606 (0.049)[0.049] �0.994 (0.091)[0.092] �0.003 (0.090)[0.090] 0.993 (0.093)[0.094]

BGMM 0.598 (0.048)[0.048] �0.995 (0.091)[0.092] �0.002 (0.090)[0.090] 0.994 (0.093)[0.093]

MLE 0.596 (0.047)[0.047] �0.998 (0.091)[0.091] �0.002 (0.090)[0.090] 0.997 (0.093)[0.093]

N ¼ 490

2SLS 0.608 (0.056)[0.056] �0.994 (0.063)[0.064] �0.001 (0.065)[0.065] 0.996 (0.066)[0.067]

GMM 0.600 (0.037)[0.037] �0.997 (0.063)[0.063] �0.001 (0.066)[0.066] 0.999 (0.066)[0.066]

O-GMM 0.604 (0.032)[0.033] �0.995 (0.063)[0.063] �0.001 (0.066)[0.066] 0.997 (0.066)[0.066]

BGMM 0.599 (0.032)[0.032] �0.996 (0.063)[0.063] �0.001 (0.066)[0.066] 0.998 (0.066)[0.066]

MLE 0.598 (0.032)[0.032] �0.997 (0.063)[0.063] �0.001 (0.066)[0.066] 0.999 (0.066)[0.066]

True parameters: l ¼ 0:6, b1 ¼ �1:0, b2 ¼ 0, and b3 ¼ 1:0.

L.-f. Lee / Journal of Econometrics 137 (2007) 489–514502
and RMSE. The MLE has the smallest SD and RMSE among all these estimates. The
estimates of b’s of the various methods do not have much differences. The estimates of b’s
have small biases. When n increases to 245 or 490, the upward bias of the 2SLS estimate of
l is reduced. All the other estimates are unbiased. Even for the moderate sample sizes, the
2SLS estimates of l have apparently larger SD and RMSEs than the corresponding
various GMMEs and MLEs. The BGMME is slightly better than the OGMME, and, in
turn, the OGMME is slightly efficient relative to the GMME. The BGMM is efficient as
the MLE when N ¼ 490.
In Table 2, the true parameters are b1 ¼ �0:2, b2 ¼ 0, and b3 ¼ 0:2. The variance of xb0

is much smaller than the variance of �. If one ignores the interaction term, the implied R2 is
about 0.04 in a regression equation. In this case, the lmay be relatively more difficult to be
estimated by the 2SLS. The upward bias of the 2SLSE of l can be large. The SD and
RMSE of the 2SLS estimates are larger than those of the MLE and various GMMEs. The
OGMME can be the best among the various GMM estimates when N ¼ 49. The BGMME
can be better than the other GMMEs with larger N. The BGMME estimates can be as
efficient as the MLE with large N ¼ 490. For the estimates of the b’s, there are not much
differences among the various estimates.
In summary, the 2SLSE of l has larger biases and SDs than those of the various

GMMEs.14 The performance of the 2SLSE becomes worse when the value of R2 becomes
14This may be so because our cases have only moderate or very small R2 values due to the explanatory

variables.
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Table 2

2SLSE, GMME, and MLE

Method l b1 b2 b3

Mean (SD)[RMSE] Mean (SD)[RMSE] Mean (SD)[RMSE] Mean (SD)[RMSE]

N ¼ 49

2SLS 0.906 (0.316)[0.440] �0.177 (0.215)[0.216] 0.001 (0.209)[0.209] 0.195 (0.213)[0.213]

GMM 0.597 (0.174)[0.174] �0.191 (0.217)[0.218] �0.001 (0.205)[0.205] 0.201 (0.213)[0.213]

O-GMM 0.688 (0.216)[0.233] �0.186 (0.219)[0.219] 0.001 (0.211)[0.211] 0.199 (0.216)[0.216]

BGMM 0.605 (0.193)[0.193] �0.187 (0.214)[0.214] �0.002 (0.206)[0.206] 0.198 (0.211)[0.211]

MLE 0.566 (0.142)[0.146] �0.190 (0.216)[0.216] 0.000 (0.205)[0.205] 0.203 (0.210)[0.210]

N ¼ 245

2SLS 0.795 (0.258)[0.323] �0.189 (0.092)[0.092] �0.003 (0.089)[0.089] 0.188 (0.093)[0.094]

GMM 0.600 (0.059)[0.059] �0.198 (0.091)[0.091] �0.002 (0.091)[0.091] 0.197 (0.093)[0.093]

O-GMM 0.613 (0.060)[0.061] �0.197 (0.091)[0.091] �0.003 (0.090)[0.090] 0.196 (0.093)[0.093]

BGMM 0.600 (0.058)[0.058] �0.197 (0.090)[0.091] �0.002 (0.090)[0.090] 0.196 (0.092)[0.092]

MLE 0.596 (0.057)[0.057] �0.198 (0.091)[0.091] �0.002 (0.090)[0.090] 0.197 (0.093)[0.093]

N ¼ 490

2SLS 0.747 (0.218)[0.263] �0.190 (0.063)[0.064] �0.002 (0.064)[0.064] 0.192 (0.066)[0.067]

GMM 0.600 (0.041)[0.041] �0.198 (0.062)[0.062] �0.001 (0.066)[0.066] 0.199 (0.065)[0.065]

O-GMM 0.606 (0.041)[0.041] �0.197 (0.062)[0.062] �0.001 (0.065)[0.065] 0.199 (0.065)[0.065]

BGMM 0.600 (0.040)[0.040] �0.197 (0.062)[0.062] �0.001 (0.065)[0.065] 0.199 (0.065)[0.065]

MLE 0.597 (0.040)[0.040] �0.197 (0.062)[0.062] �0.001 (0.065)[0.065] 0.199 (0.065)[0.065]

True parameters: l ¼ 0:6, b1 ¼ �0:2, b2 ¼ 0, and b3 ¼ 0:2.
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small. The various GMMEs can substantially improve upon the 2SLSE. The OGMME
and BGMME can be efficient as the MLE with large sample sizes.15 The differences of the
various estimators occur only for the estimation of l but not for estimation of the b’s.

6. Conclusion

In this paper, we consider the estimation of the MRSAR model. The 2SLS method has
been suggested in the literature for the estimation of the MRSAR model. The 2SLS
method can be applicable only if some of the spatially varying exogenous variables are
really relevant. It is impossible in the 2SLS framework to test the overall significance of all
the exogenous variables in the MRSAR model. It is known that the 2SLSE does not attain
the same limiting distribution of the MLE (under normal disturbances) of the MRSAR
model. This paper improves upon the 2SLS approach by introducing additional moment
functions in the GMM framework. The resulted GMME can be efficient relative to the
2SLSE. It is possible to derive the best GMMEs within certain classes of GMMEs. One of
the BGMMEs can attain the same limiting distribution of the MLE (under normal
disturbances). Within the GMM estimation framework, it is possible to test the overall
significance of all the exogenous variables in the model. The GMM approach may, in
principle, be generalized for the estimation of MRSAR models with higher order spatial
15However, in some repetitions, the BGMME may be sensitive to initial consistent estimates in the construction

of Gn. The results in Tables 1 and 2 are based, respectively, on 2SLSE and GMME as initial estimates.
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lags and models with both spatial lags and/or SAR disturbances. However, many issues for
the models with higher order moments have not been well understood, for example, the
proper parameter space of the lag coefficients and its identification problem. These will be
studied in another occasion.
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Appendix A. Some useful lemmas

In this appendix, we list some lemmas which are useful for the proofs of the results in the
text.

Lemma A.1. Suppose that the sequences of n-dimensional column vectors fz1ng and fz2ng are

uniformly bounded. If fAng are uniformly bounded in either row or column sums in absolute

value, then jz01nAnz2nj ¼ OðnÞ.

Proof. This is trivial. &

Lemma A.2. Suppose that �n1; . . . ; �nn are i.i.d. random variables with zero mean,
finite variance s2 and finite fourth moment m4. Then, for any two square n� n matrices A

and B,

Eð�0nA�n � �
0
nB�nÞ ¼ ðm4 � 3s40Þ vec0DðAÞ vecDðBÞ þ s40½trðAÞ trðBÞ þ trðABsÞ�,

where Bs ¼ Bþ B0.

Proof. This is a Lemma in Lee (2001). &

Lemma A.3. Suppose that fAng are uniformly bounded in both row and column

sums in absolute value. The �n1; . . . ; �nn are i.i.d. with zero mean and its fourth moment

exists. Then, Eð�0nAn�nÞ ¼ OðnÞ, varð�0nAn�nÞ ¼ OðnÞ, �0nAn�n ¼ OPðnÞ, and ð1=nÞ�0nAn�n�

ð1=nÞEð�0nAn�nÞ ¼ oPð1Þ.

Proof. Lee (2001). &

Lemma A.4. Suppose that An is a n� n matrix with its column sums being uniformly

bounded in absolute value, elements of the n� k matrix Cn are uniformly bounded, and

�n1; . . . ; �nn are i.i.d. with zero mean and finite variance s2. Then, ð1=
ffiffiffi
n
p
ÞC0nAn�n ¼ OPð1Þ and

ð1=nÞC0nAn�n ¼ opð1Þ. Furthermore, if the limit of ð1=nÞC0nAnA0nCn exists and is positive

definite, then ð1=
ffiffiffi
n
p
ÞC0nAn�n!

D
Nð0;s2limn!1ð1=nÞC0nAnA0nCnÞ:

Proof. See Lee (2004). &

Lemma A.5. Suppose that fAng is a sequence of symmetric n� n matrices with row and

column sums uniformly bounded in absolute value and bn ¼ ðbn1; . . . ; bnnÞ
0 is a n-dimensional
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vector such that supnð1=nÞ
Pn

i¼1 jbnij
2þZ1o1 for some Z140. The �n1; . . . ; �nn are i.i.d.

random variables with zero mean and finite variance s2, and its moment Eðj�j4þ2dÞ for some

d40 exists. Let s2Qn
be the variance of Qn where Qn ¼ �

0
nAn�n þ b0n�n � s2 trðAnÞ. Assume

that the variance s2Qn
is bounded away from zero at the rate n. Then, ðQn=sQn

Þ �!
D

Nð0; 1Þ.

Proof. See Kelejian and Prucha (2001). &

Lemma A.6. Suppose that ð1=nÞðQnðyÞ � Q̄nðyÞÞ converges in probability to zero uniformly in

y 2 Y which is a convex set, and fð1=nÞQ̄nðyÞg satisfies the identification uniqueness condition

at y0. Let ŷn and ŷ�n be, respectively, the minimizers of QnðyÞ and Q�nðyÞ in Y. If ð1=nÞðQ�nðyÞ �
QnðyÞÞ ¼ oPð1Þ uniformly in y 2 Y, then both ŷn and ŷ�n converge in probability to y0.

In addition, suppose that ð1=nÞðq2QnðyÞ=qyqy
0
Þ converges in probability to a well

defined limiting matrix, uniformly in y 2 Y, which is nonsingular at y0, and

ð1=
ffiffiffi
n
p
ÞðqQnðy0Þ=qyÞ ¼ OPð1Þ. If ð1=nÞðq2Q�nðyÞ=qyqy

0
� q2QnðyÞ=qyqy

0
Þ ¼ oPð1Þ uniformly

in y 2 Y and ð1=
ffiffiffi
n
p
ÞðqQ�nðy0Þ=qy� qQnðy0Þ=qyÞ ¼ oPð1Þ, then

ffiffiffi
n
p
ðŷ�n � y0Þ and

ffiffiffi
n
p
ðŷn � y0Þ

have the same limiting distribution.

Proof. The convergence of ŷn to y0 follows from the uniform convergence of ð1=nÞðQnðyÞ �
Q̄nðyÞÞ to zero in probability and the uniqueness identification condition of fQ̄nðyÞg (White,

1994). As ð1=nÞðQ�nðyÞ � Q̄nðyÞÞ¼ð1=nÞðQ�nðyÞ �QnðyÞÞ þ ð1=nÞðQnðyÞ � Q̄nðyÞÞ ¼ oPð1Þ uni-

formly in y 2 Y, the convergence of ŷ�n to y0 in probability follows. For the limiting

distribution, the Taylor expansion of qQ�nðyÞ=qy at y0 implies that

ffiffiffi
n
p
ðŷ�n � y0Þ ¼ �

1

n

q2Q�nðȳnÞ

qyqy0

� ��1
1ffiffiffi
n
p

qQ�nðy0Þ
qy

¼ �
1

n

q2QnðȳnÞ

qyqy0
þ oPð1Þ

� ��1
1ffiffiffi
n
p

qQnðy0Þ
qy

þ oPð1Þ

� �

¼ �
1

n

q2QnðȳnÞ

qyqy0

� ��1
1ffiffiffi
n
p

qQnðy0Þ
qy

þ oPð1Þ.

Thus,
ffiffiffi
n
p
ðŷ�n � y0Þ and

ffiffiffi
n
p
ðŷn � y0Þ have the same limiting distribution. &

Lemma A.7. Suppose that the elements of the n� k matrices X n are uniformly bounded for

all n; and limn!1ð1=nÞX 0nX n exists and this limiting matrix is nonsingular, then the

projectors, X nðX
0
nX nÞ

�1X 0n and In � X nðX
0
nX nÞ

�1X 0n, are uniformly bounded in both row and

column sums in absolute value.

Proof. See Lee (2004). &

Lemma A.8. Suppose that fkW nkg and fkS�1n ðl0Þkg, where k � k is a matrix norm, are

bounded. Then fkSnðlÞ
�1
kg, where SnðlÞ ¼ In � lW n, are uniformly bounded in a

neighborhood of l0.

Proof. See Lee (2004). &

In the following Lemmas and Appendix B, some simplified notations shall be used to
minimize the presentation of mathematical terms. For any square n� n matrix A, we shall
denote the adjusted matrix ðA� ððtrðAÞ=nÞInÞ or ðA�DiagðAÞÞ by Ad . Furthermore, with



ARTICLE IN PRESS
L.-f. Lee / Journal of Econometrics 137 (2007) 489–514506
the spatial weights matrix W n, denote SnðlÞ ¼ In � lW n, Sn ¼ Snðl0Þ, GnðlÞ ¼
W nðIn � lW nÞ

�1, and Gn ¼ Gnðl0Þ.

Lemma A.9. Suppose that z1n and z2n are n-dimensional column vectors of constants

which elements are uniformly bounded, the n� n constant matrices An are uniformly

bounded in the maximum column sum norm, and �ni’s in �n ¼ ð�n1; . . . ; �nnÞ, are i.i.d. with zero

mean and a finite variance s2. Let l̂n be an
ffiffiffi
n
p

-consistent estimate of l0. Then, under

Assumption 3,
(1)
 ð1=nÞz01nðGnðl̂nÞ � GnÞ
0z2n ¼ oPð1Þ, ð1=nÞz01nðGnðl̂nÞ � GnÞ

d 0z2n ¼ oPð1Þ; andffiffiffip ffiffiffip 0
(2)
 ð1= nÞz01nðGnðl̂nÞ � GnÞ
0An�n ¼ oPð1Þ, ð1= nÞz01nðGnðl̂nÞ � GnÞ

d An�n ¼ oPð1Þ.
Proof. As Sn � Snðl̂nÞ ¼ ðl̂n � l0ÞW n, it follows that Gnðl̂nÞ � Gn ¼W n½S
�1
n ðl̂nÞ � S�1n � ¼

W nS�1n ðl̂nÞ½Sn � Snðl̂nÞ�S
�1
n ¼ðl̂n � l0ÞGnðl̂nÞGn; and ðGnðl̂nÞ � GnÞ

d
¼ðl̂n � l0ÞðGnðl̂nÞ

GnÞ
d . A further expansion implies that Gnðl̂nÞ � Gn ¼ ðl̂n � l0ÞG2

n þ ðl̂n � l0Þ
2Gnðl̂nÞG

2
n

and ðGnðl̂nÞ � GnÞ
d
¼ ðl̂n � l0ÞG2d

n þ ðl̂n � l0Þ
2
ðGnðl̂nÞG

2
nÞ

d . We note that, under Assump-
tion 3, because S�1n is uniformly bounded in both row and column sums in absolute
value, S�1n ðlÞ and, hence, GnðlÞ must be uniformly bounded in both row and column
sums in absolute value uniformly in l in a small neighborhood of l0 by Lemma A.8.
As l̂n is consistent, it follow that Gnðl̂nÞ is uniformly bounded in both row and
column sums in absolute value with probability one. Therefore, Lemma A.1 implies that
ð1=nÞz01nG0nG0nðl̂nÞz2n ¼ OPð1Þ. Hence, ð1=nÞz01nðGnðl̂nÞ � GnÞ

0z2n ¼ ðl̂n � l0Þð1=nÞz01nG0nG0n
ðl̂nÞz2n ¼ oPð1Þ as l̂n � l0 ¼ oPð1Þ. Similarly, ð1=nÞz01nðGnðl̂nÞ � GnÞ

d 0z2n ¼ oPð1Þ. This
proves ð1Þ.
For (2), by the further expansion of Gnðl̂nÞ around Gn,

1ffiffiffi
n
p z01nðGnðl̂nÞ � GnÞ

0An�n ¼
ffiffiffi
n
p
ðl̂n � l0Þ

1

n
z01nG02n An�n þ ðl̂n � l0Þ

2

�
1ffiffiffi
n
p z01nG02n G0nðl̂nÞAn�n.

Lemma A.4 implies that ð1=nÞz01nG02n An�n ¼ oPð1Þ. Therefore, with the
ffiffiffi
n
p

-consistent l̂n,
the first term on the right-hand side is oPð1Þ. The remainder term is also oPð1Þ. This is
so as follows. Let k � k1 be the maximum column sum norm. Because the product of
matrices uniformly bounded in column sums in absolute value is uniformly bounded in
column sums in absolute value, kG0nG0nðl̂nÞAnk1pc1 for some constant c1 for all n.
As elements of z1n are uniformly bounded, there exists a constant c2 such that kz01nk1pc2.
It follows that

ðl̂n � l0Þ
2 1ffiffiffi

n
p z01nG02n G0nðl̂nÞAn�n

����
����
1

p
ffiffiffi
n
p
ðl̂n � l0Þ

h i2 1

n3=2
k�nk1 � kz

0
1nk1 � kG

02
n G0nðl̂nÞAnk1

p
c1c2

n
1
2

ffiffiffi
n
p
ðl̂n � l0Þ

h i2 1
n

Xn

i¼1

j�nij.

Result (2) follows because
ffiffiffi
n
p
ðln � l0Þ ¼ oPð1Þ and ð1=nÞ

Pn
i¼1j�nij ¼ OPð1Þ by the

strong law of large numbers. Similarly arguments are applicable to ð1=
ffiffiffi
n
p
Þz01n

ðGnðl̂nÞ � GnÞ
d 0An�n. &
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Lemma A.10. Let An and Bn be n� n matrices, uniformly bounded in both row and

column sums in absolute value. The �ni’s in �n ¼ ð�n1; . . . ; �nnÞ are i.i.d. with zero mean

and its fourth moment exists. Suppose that l̂n is a
ffiffiffi
n
p

-consistent estimator of l0. Then,
under Assumption 3,
(i)
 ð1=nÞ�0nA0nðGnðl̂nÞ � GnÞ
dBn�n ¼ oPð1Þ, andffiffiffip
(ii)
 ð1= nÞ�0nðGnðl̂nÞ � GnÞ
d�n ¼ oPð1Þ.
Proof. This is a case of Lemma A.9 in Lee (2001). &

Appendix B. Proofs

Proof of Proposition 1. For consistency, we first show that ð1=nÞangnðyÞ � ð1=nÞanEðgnðyÞÞ
will converge in probability uniformly in y 2 Y to zero. Let an ¼ ðan1; . . . ; anm; anxÞ where
anx is a (row) subvector. Then angnðyÞ ¼ �

0
nðyÞð

Pm
j¼1 anjPjnÞ�nðyÞ þ anxQ0n�nðyÞ. By expan-

sion, �nðyÞ ¼ dnðyÞ þ �n þ ðl0 � lÞGn�n where dnðyÞ ¼ ðl0 � lÞGnX nb0 þ X nðb0 � bÞ. It
follows that

�0nðyÞ
Xm

j¼1

anjPjn

 !
�nðyÞ ¼ d 0nðyÞ

Xm

j¼1

anjPjn

 !
dnðyÞ þ lnðyÞ þ qnðyÞ,

where lnðyÞ ¼ d 0nðyÞð
Pm

j¼1 anjP
s
jnÞð�n þ ðl0 � lÞGn�nÞ and qnðyÞ ¼ ð�

0
n þ ðl0 � lÞ�0nG0nÞ

ð
Pm

j¼1 anjPjnÞð�n þ ðl0 � lÞGn�nÞ. The term lnðyÞ is linear in �n. By expansion,

1

n
lnðyÞ ¼ ðl0 � lÞ

1

n
ðX nb0Þ

0G0n

Xm

j¼1

anjP
s
jn

 !
�n þ ðb0 � bÞ0

1

n
X 0n

Xm

j¼1

anjP
s
jn

 !
�n

þ ðl0 � lÞ2
1

n
ðX nb0Þ

0G0n

Xm

j¼1

anjP
s
jn

 !
Gn�n

þ ðl0 � lÞðb0 � bÞ0
1

n
X 0n

Xm

j¼1

anjP
s
jn

 !
Gn�n ¼ oPð1Þ,

by Lemma A.4, uniformly in y 2 Y. The uniform convergence in probability follows
because lnðyÞ is simply a quadratic function of l and b and Y is a bounded set. Similarly,

1

n
qnðyÞ ¼

1

n
�0n

Xm

j¼1

anjPjn

 !
�n þ l0 � lð Þ

1

n
�0nG0n

Xm

j¼1

anjP
s
jn

 !
�n

þ ðl0 � lÞ2
1

n
�0nG0n

Xm

j¼1

anjPjn

 !
Gn�n

¼ ðl0 � lÞ
s20
n

Xm

j¼1

anj trðG
0
nPs

jnÞ þ ðl0 � lÞ2
s20
n

Xm

j¼1

anj trðG
0
nPjnGnÞ þ oPð1Þ,
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uniformly in y 2 Y, by Lemma A.3 and Eð�0nPjn�nÞ ¼ s20 trðPjnÞ ¼ 0 for all j ¼ 1; . . . ;m.
Consequently,

1

n
�0nðyÞ

Xm

j¼1

anjPjn

 !
�nðyÞ ¼

1

n
d 0nðyÞ

Xm

j¼1

anjPjn

 !
dnðyÞ þ ðl0 � lÞ

s20
n

Xm

j¼1

anjtrðP
s
jnGnÞ

þ ðl0 � lÞ2
s20
n

Xm

j¼1

anj trðG
0
nPjnGnÞ þ oPð1Þ,

uniformly in y 2 Y. As gnðyÞ is a quadratic function of y andY is bounded, ð1=nÞanEðgnðyÞÞ
is uniformly equicontinuous on Y. The identification condition and the uniform
equicontinuity of ð1=nÞanEðgnðyÞÞ imply that the identification uniqueness condition for
ð1=n2ÞEðg0nðyÞa

0
nanEðgnðyÞÞ must be satisfied. The consistency of the GMME ŷn follows

from the uniform convergence and the identification uniqueness condition (White, 1994).
For the asymptotic distribution of ŷn, by the Taylor expansion of ðqg0nðŷnÞ=qyÞ

a0nangnðŷnÞ ¼ 0 at y0,

ffiffiffi
n
p
ðŷn � y0Þ ¼ �

1

n

qg0nðŷnÞ

qy
a0nan

1

n

qgnðȳnÞ

qy0

" #�1
1

n

qg0nðŷnÞ

qy
a0n

1ffiffiffi
n
p angnðy0Þ.

As q�nðyÞ=qy
0
¼ �ðW nY n;X nÞ, it follows that qgnðyÞ=qy

0
¼ �ðPs

1n�nðyÞ; . . . ;
Ps

mn�nðyÞ;QnÞ
0
ðW nY n;X nÞ. Explicitly, ð1=nÞ�0nðyÞP

s
jnW nY n ¼ ð1=nÞ �0nðyÞP

s
jnGnX nb0 þ ð1=nÞ

�0nðyÞP
s
jnGn�n. By Lemmas A.4 and A.3,

1

n
�0nðyÞP

s
jnGnX nb0 ¼

1

n
d 0nðyÞP

s
jnGnX nb0 þ

1

n
�0nPs

jnGnX nb0 þ ðl0 � lÞ
1

n
�0nG0nPs

jnGnX nb0

¼
1

n
d 0nðyÞP

s
jnGnX nb0 þ oPð1Þ,

and

1

n
�0nðyÞP

s
jnGn�n ¼

1

n
d 0nðyÞP

s
jnGn�n þ

1

n
�0nPs

jnGn�n þ
1

n
ðl0 � lÞ�0nG0nPs

jnGn�n

¼
s20
n
trðPs

jnGnÞ þ ðl0 � lÞ
s20
n
trðG0nPs

jnGnÞ þ oPð1Þ,

uniformly in y 2 Y. Hence,

1

n
�0nðyÞP

s
jnW nY n ¼

1

n
d 0nðyÞP

s
jnGnX nb0 þ

ss
0

n
trðPs

jnGnÞ þ ðl0 � lÞ
s20
n
trðG0nPs

jnGnÞ þ oPð1Þ,

uniformly in y 2 Y. At y0, dnðy0Þ ¼ 0 and, hence, ð1=nÞ�0nðy0ÞP
s
jnW nY n ¼ ðs20=nÞ trðPs

jnGnÞþ

oPð1Þ. At y0, ð1=nÞ�0nðy0ÞP
s
jnX n ¼ oPð1Þ. Finally, ð1=nÞQ0nW nY n ¼ ð1=nÞQ0nGnX nb0 þ ð1=nÞ

Q0nGn�n ¼ ð1=nÞQ0nGnX nb0 þ oPð1Þ. In conclusion, ð1=nÞðqgnð
~ynÞ= qyÞ ¼ �ð1=nÞDn þ oPð1Þ

with Dn in (3.2). On the other hand, Lemma A.5 implies that

1ffiffiffi
n
p angnðy0Þ ¼

1ffiffiffi
n
p �0n

Xm

j¼1

anjPjn

 !
�n þ anxQ0n�n

" #
!
D

N 0; lim
n!1

1

n
anOna0n

� �
.

The asymptotic distribution of
ffiffiffi
n
p
ðl̂n � l0Þ follows. &
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Proof of Proposition 2. The generalized Schwartz inequality implies that the optimal
weighting matrix for a0nan in Proposition 1 is ðð1=nÞOnÞ

�1. For consistency, consider

1

n
g0nðyÞÔ

�1
n gnðyÞ ¼

1

n
g0nðyÞO

�1
n gnðyÞ þ

1

n
g0nðyÞðÔ

�1
n � O�1n ÞgnðyÞ.

With an ¼ ðð1=nÞOnÞ
�1=2 in Proposition 1, Assumption 6 implies that a0 ¼ ðlimn!1

ð1=nÞOnÞ
�1=2 exits. Because a0 is nonsingular, the identification condition of y0 corresponds

to the unique root of limn!1 Eð1=nÞ gnðyÞÞ ¼ 0 at y0, which is satisfied by Assumption 5.
Hence, the uniform convergence in probability of ð1=nÞg0nðyÞO

�1
n gnðyÞ to a well defined limit

uniformly in y 2 Y follows by a similar argument in the proof of Proposition 1. So it
remains to show that ð1=nÞg0nðyÞðÔ

�1
n � O�1n ÞgnðyÞ ¼ oPð1Þ uniformly in y 2 Y. Let k � k be

the Euclidean norm for vectors and matrices. Then,

1

n
g0nðyÞðÔ

�1
n � O�1n ÞgnðyÞ

����
����p 1

n
kgnðyÞk

� �2 Ôn

n

 !�1
�

On

n

� ��1������
������.

To show that this is of probability order oPð1Þ uniformly in y 2 Y, it is sufficient to show
that ð1=nÞkgnðyÞk ¼ OPð1Þ uniformly in y 2 Y. From the proof of Proposition 1,
ð1=nÞ½gnðyÞ � EðgnðyÞÞ� ¼ oPð1Þ uniformly in y 2 Y. On the other hand, as

1

n
d 0nðyÞPjndnðyÞ ¼ ðl0 � lÞ2

1

n
ðX nb0Þ

0G0nPjnGnX nb0 þ ðl0 � lÞ
1

n
ðX nb0Þ

0G0nPs
jnX nðb0 � bÞ

þ ðb0 � bÞ0
1

n
X 0nPjnX nðb0 � bÞ ¼ OPð1Þ,

uniformly in y 2 Y by Lemma A.1, it follows that

1

n
Eð�0nðyÞPjn�nðyÞÞ

¼
1

n
d 0nðyÞPjndnðyÞ þ ðl0 � lÞs20

1

n
trðPs

jnGnÞ þ ðl0 � lÞ2s20
1

n
trðG0nPjnGnÞ ¼ Oð1Þ,

uniformly in y 2 Y. Similarly, ð1=nÞEðQ0n�nðyÞÞ ¼ ð1=nÞQ0ndnðyÞ ¼ ðl0 � lÞð1=nÞQ0nGnX nb0
þð1=nÞQ0nX nðb0 � bÞ ¼ Oð1Þ uniformly in y 2 Y. These imply that kð1=nÞEðgnðyÞÞk ¼ Oð1Þ
uniformly in y 2 Y. Consequently, by the Markov inequality, ð1=nÞkgnðyÞk ¼ OPð1Þ
uniformly in y 2 Y. Therefore, k1=n g0nðyÞðÔ

�1
n � O�1n ÞgnðyÞk ¼ oPð1Þ, uniformly in y 2 Y.

The consistency of the feasible optimum GMME ŷo;n follows. For the limiting distribution,
as ð1=nÞqgnðŷnÞ=qy ¼ �Dn=nþ oPð1Þ from the proof of Proposition 1,

ffiffiffi
n
p
ðŷo;n � y0Þ ¼ �

1

n

qg0nðŷnÞ

qy
Ôn

n

 !�1
1

n

qgnðŷnÞ

qy0

2
4

3
5
�1

1

n

qg0nðŷnÞ

qy
Ôn

n

 !�1
1ffiffiffi
n
p gnðy0Þ

¼
D0n
n

On

n

� ��1
Dn

n

" #�1
D0n
n

On

n

� ��1
1ffiffiffi
n
p gnðy0Þ þ oPð1Þ.

The limiting distribution of
ffiffiffi
n
p
ðŷon � y0Þ in (3.3) follows from this expansion.
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For the overidentification test, by the Taylor expansion,

1ffiffiffi
n
p gnðŷo;nÞ ¼

gnðy0Þffiffiffi
n
p þ

1

n

qgnðȳnÞ

qy0
ffiffiffi
n
p
ðŷo;n � y0Þ ¼

gnðy0Þffiffiffi
n
p �

Dn

n

ffiffiffi
n
p
ðŷo;n � y0Þ þ oPð1Þ

¼ An

gnðy0Þffiffiffi
n
p þ oPð1Þ,

where An ¼ In � ðDn=nÞ½ðD0n=nÞðOn=nÞ�1Dn=n��1D0n=nðOn=nÞ�1. Therefore,

g0nðŷonÞÔ�1n gnðŷonÞ ¼
1ffiffiffi
n
p g0nðy0ÞA

0
n

On

n

� ��1
An

1ffiffiffi
n
p gnðy0Þ þ oPð1Þ

¼
1ffiffiffi
n
p g0nðy0Þ

On

n

� ��1=2
In �

On

n

� ��1=2
Dn

n

D0n
n

On

n

� ��1
Dn

n

" #�18<
:

�
D0n
n

On

n

� ��1=29=
; On

n

� ��1=2
1ffiffiffi
n
p gnðy0Þ þ oPð1Þ

!
D

w2ððmþ kxÞ � ðk þ 1ÞÞ,

because ð1=
ffiffiffi
n
p
Þ gnðy0Þ!

D
Nð0; limn!1On=nÞ as in the proof of Proposition 1. &

Proof of Proposition 3. For the feasible best GMM estimation with P1n, the vector of
moment functions is ĝb;nðyÞ ¼ ð�

0
nðyÞðĜn � ðtrðĜnÞ=nÞInÞ�nðyÞ; �0nðyÞĜnX nb̂n; �

0
nðyÞX nÞ

0; and
the corresponding estimated V n is

V̂ n ¼ ŝ4n
tr Ĝn �

trðĜnÞ

n
In

� �s

Ĝn

� �
0

0 1
ŝ2n
ðĜnX nb̂n;X nÞ

0
ðĜnX nb̂n;X nÞ

0
B@

1
CA.

When GnX nb0 and X n are linearly dependent, the linear moment of ĜnX nb̂n would be
redundant and should be dropped. The moment function gb;nðyÞ and the corresponding
proper weighting function V̂n should simply be ĝb;nðyÞ ¼ ð�

0
nðyÞðĜn � ðtrðĜnÞ=nÞInÞ

�nðyÞ; �0nðyÞX nÞ
0; and

V̂ n ¼ ŝ4n
tr Ĝn �

trðĜnÞ

n
In

� �s

Ĝn

� �
0

0 1
ŝ2n

X 0nX n

0
B@

1
CA.

The feasible best GMME with P1n will be derived from miny2Y g0b;nðyÞV̂
�1
n gb;nðyÞ.

For the best GMM estimation with the subclass P2n, its moment functions ĝ2b;n and
estimated variance matrix are those with Ĝn �DiagðĜnÞ replacing ðĜn � ðtrðĜnÞ=nÞInÞ in
the preceding expressions.
We shall show that the objective functions Q�nðyÞ ¼ ĝ0b;nðyÞV̂

�1
n ĝb;nðyÞ and QnðyÞ ¼

g0b;nðyÞV
�1
n gb;nðyÞ, where gb;n is the counter part of ĝb;n with Gn and b0 replacing, respectively

by Ĝn and b̂n, will satisfy the conditions in Lemma A.6. If so, the GMME from the
minimization of Q�nðyÞ will have the same limiting distribution as that of the minimization
of QnðyÞ. The difference of Q�nðyÞ and QnðyÞ and its derivatives involve the difference of
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ĝb;nðyÞ and gb;nðyÞ and their derivatives. Furthermore, one has to consider the difference of
V̂ n and Vn.

First, consider ð1=nÞðĝb;nðyÞ � gb;nðyÞÞ. Explicitly,

1

n
ðĝb;nðyÞ � gb;nðyÞÞ

0
¼

1

n
�0nðyÞðĜn � GnÞ

d�nðyÞ;
1

n
ðĜnX nb̂n � GnX nb0Þ

0�nðyÞ; 0
� �

.

The �nðyÞ is related to �n as �nðyÞ ¼ �n þ ðl0 � lÞGn�n þ dnðyÞ where
dnðyÞ ¼ ðl0 � lÞGnX nb0 þ X nðb0 � bÞ. It follows that ð1=nÞX 0nG0n�nðyÞ ¼ ð1=nÞX 0nG0n�n þ

ðl0 � lÞð1=nÞX 0nG0nGn�n þ ð1=nÞX 0nG0ndnðyÞ ¼ ð1=nÞX 0nG0ndnðyÞ þ oPð1Þ by Lemma A.4, uni-
formly in y 2 Y. On the other hand, Lemma A.1 implies that ð1=nÞX 0nG0ndnðyÞ ¼ OPð1Þ
uniformly in y 2 Y. The uniformity follows because dnðyÞ is linear in l and b. Hence
ð1=nÞX 0nG0n�nðyÞ ¼ OPð1Þ uniformly in y 2 Y. Similarly, Lemma A.9 implies ð1=nÞX 0nðĜn �

GnÞ
0�nðyÞ¼ð1=nÞX 0nðĜn�GnÞ

0�nþðl0 � lÞð1=nÞX 0nðĜn�GnÞ
0Gn�nþð1=nÞX 0nðĜn�GnÞ

0dnðyÞ ¼
oPð1Þ uniformly in y 2 Y. It follows that ð1=nÞðĜnX nb̂n � GnX nb0Þ

0�nðyÞ ¼ ð1=nÞb̂
0

nX 0nðĜn �

GnÞ
0�nðyÞ þ ðb̂n � b0Þ

0
ð1=nÞX 0nG0n�nðyÞ ¼ oPð1Þ because b̂n � b0 ¼ oPð1Þ. Similarly, Lemmas

A.9 and A.10 imply that ð1=nÞ�0nðyÞðĜn � GnÞ
d�nðyÞ ¼ oPð1Þ uniformly in y 2 Y. Hence, we

conclude that ð1=nÞðĝb;nðyÞ � gb;nðyÞÞ ¼ oPð1Þ uniformly in y 2 Y.
Consider the derivatives of ĝb;nðyÞ and gb;nðyÞ. As the second derivatives of �nðyÞ with

respect to y are zero because �nðyÞ is linear in y, it follows that

qgb;nðyÞ
qy0

¼

�0nðyÞG
ds
n

q�nðyÞ
qy0

ðGnX nb0Þ
0 q�nðyÞ

qy0

X n
q�nðyÞ
qy0

0
BB@

1
CCA; q2gb;nðyÞ

qyqy0
¼

q�0nðyÞ
qy Gds

n
q�nðyÞ
qy0

0

0

0
B@

1
CA.

The first order derivatives of �nðyÞ is q�nðyÞ=qy
0
¼ �ðW nY n;X nÞ. Because W nY n ¼

GnX nb0 þ Gn�n,

1

n
ðW nY nÞ

0
ðĜn � GnÞ

ds�nðyÞ

¼
1

n
ðGnX nb0Þ

0
ðĜn � GnÞ

dsdnðyÞ þ
1

n
ðGnX nb0Þ

0
ðĜn � GnÞ

ds
ð�n þ ðl0 � lÞGn�nÞ

þ d 0nðyÞðĜn � GnÞ
dsGn�n þ

1

n
�0nG0nðĜn � GnÞ

ds
ð�n þ ðl0 � lÞGn�nÞ ¼ oPð1Þ,

uniformly in y 2 Y, and

1

n
ðW nY nÞ

0
ðĜn � GnÞ

dsW nY n

¼
1

n
ðX nb0Þ

0G0nðĜn � GnÞ
dsGnX nb0 þ

2

n
ðX nb0Þ

0G0nðĜn � GnÞ
dsGn�n

þ
1

n
�0nG0nðĜn � GnÞ

dsGn�n

¼ oPð1Þ,

by Lemmas A.9 and A.10. Similarly, Lemmas A.9 and A.10 imply that ð1=nÞX 0nðĜn � GnÞ
ds

�nðyÞ ¼ oPð1Þ, ð1=nÞX 0nðĜn � GnÞ
dsW nY ¼ oPð1Þ, and ð1=nÞX 0nðĜn � GnÞ

dsX n ¼ opð1Þ.
Hence, we conclude that ð1=nÞðqĝb;nðyÞ=qy� qgb;nðyÞ=qyÞ ¼ oPð1Þ and ð1=nÞðq2ĝb;nðyÞ=
qyqy0 � q2gb;nðyÞ=qyqy

0
Þ ¼ oPð1Þ uniformly in y 2 Y.
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For the cases under consideration, V̂ n and Vn are block diagonal matrices. Without loss
of generality, consider the situation that GnX nb0 and X n are not linearly dependent for
large n. Thus,

V̂ n ¼
trðĜ

ds

n ĜnÞ 0

0 ŝ2nÂn

0
@

1
A; V n ¼

trðGds
n GnÞ 0

0 s20An

 !
,

where An ¼ ðGnX nb0;X nÞ
0
ðGnX nb0;X nÞ and Ân ¼ ðĜnX nb̂n;X nÞ

0
ðĜnX nb̂n;X nÞ. The differ-

ence of Ĝn and Gn is ðĜn � GnÞ ¼ ðl̂n � l0ÞG2
n þ ðl̂n � l0Þ

2ĜnG2
n. This implies that

1

n
trðGds

n ðĜn � GnÞÞ ¼ ðl̂n � l0Þ
1

n
trðGds

n G2
nÞ þ ðl̂n � l0Þ

2 1

n
trðGds

n ĜnG2
nÞ ¼ oPð1Þ,

because ð1=nÞ trðGds
n G2

nÞ ¼ Oð1Þ, ð1=nÞ trðGds
n ĜnG2

nÞ ¼ OPð1Þ and ðl̂n � l0Þ ¼ oPð1Þ. Simi-
larly,

1

n
tr½ðĜn � GnÞ

dsĜn� ¼ ðl̂n � l0Þ
1

n
trðG2ds

n ĜnÞ þ ðl̂n � l0Þ
2 1

n
tr½ðĜnG2

nÞ
dsĜn� ¼ oPð1Þ.

Therefore, ð1=nÞ½trðĜ
ds

n ĜnÞ � trðGds
n GnÞ� ¼ ð1=nÞ tr½ðĜ

ds

n � Gds
n ÞĜn þ Gds

n ðĜn � GnÞ� ¼ oPð1Þ.
Consider the remaining block matrix. Because ŝ2n is a consistent estimate of s20 and
ð1=nÞAn ¼ Oð1Þ by Lemma A.1,

1

n
ðŝ2nÂn � s20AnÞ ¼ ŝ2n

1

n
ðÂn � AnÞ þ ðŝ2n � s20Þ

1

n
An ¼ ŝ2n

1

n
ðÂn � AnÞ þ oPð1Þ.

The difference ð1=nÞðÂn � AnÞ is opð1Þ because

1

n
ðĜnX nb̂nÞ

0X n �
1

n
ðGnX nb0Þ

0X n ¼
1

n
b̂
0

nX 0nðĜ
0

n � G0nÞX n þ
1

n
ðb̂n � b0Þ

0X 0nG0nX n ¼ oPð1Þ

and

1

n
ðĜnX nb̂nÞ

0
ðĜnX nb̂nÞ �

1

n
ðGnX nb0Þ

0
ðGnX nb0Þ

¼ b̂
0

n

1

n
X 0nðĜn � GnÞ

0ĜnX nb̂n þ b̂
0

n

1

n
X 0nG0nðĜn � GnÞX nb̂n

þ ðb̂n þ b0Þ
0 1

n
X 0nG0nGnX nðb̂n � b0Þ ¼ oPð1Þ,

by Lemmas A.1 and A.9. In conclusion, ð1=nÞV̂ n � ð1=nÞV n ¼ oPð1Þ. It follows that
ðð1=nÞV̂nÞ

�1
� ðð1=nÞV nÞ

�1
¼ oPð1Þ by the continuous mapping theorem.

Furthermore, because ð1=nÞðĝb;nðyÞ � gb;nðyÞÞ ¼ oPð1Þ, and ð1=nÞ½gb;nðyÞ � Eðgb;nðyÞÞ� ¼
oPð1Þ uniformly in y 2 Y, and supy2Y 1=njEðgb;nðyÞÞj ¼ Oð1Þ in the proof of Proposition 2,
ð1=nÞgb;nðyÞ and ð1=nÞĝb;nðyÞ are stochastically bounded, uniformly in y 2 Y. Similarly,
ð1=nÞðqgb;nðyÞ=qy), ð1=nÞðqĝb;nðyÞ=qyÞ, ð1=nÞðq2gb;nðyÞ=qyqyÞ and ð1=nÞðq2ĝb;nðyÞ=qyqyÞ are
stochastically bounded, uniformly in y 2 Y. With the uniform convergence in probability
and uniformly stochastic boundedness properties, the difference of Q�nðyÞ and QnðyÞ can be
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investigated. By expansion,

1

n
ðQ�nðyÞ �QnðyÞÞ ¼

1

n
ĝ0b;nðyÞV̂

�1
n ðĝb;nðyÞ � gb;nðyÞÞ

þ
1

n
g0b;nðyÞðV̂

�1
n � V�1n Þĝb;n þ

1

n
g0b;nðyÞV

�1
n ðĝb;nðyÞ � gb;nðyÞÞ

¼ oPð1Þ,

uniformly in y 2 Y. Similarly, for each component yl of y,

1

n

q2Q�nðyÞ
qylqy

0 �
1

n

q2QnðyÞ
qylqy

0 ¼
2

n

qĝ0b;nðyÞ

qyl

V̂�1n

qĝb;nðyÞ
qy0

þ ĝ0b;nðyÞV̂
�1
n

q2ĝb;nðyÞ
qylqy

0

"

�
qgb;nðyÞ
qyl

V�1n

qgb;nðyÞ
qy0

þ g0b;nðyÞV
�1
n

q2gb;nðyÞ
qylqy

0

 !#

¼ oPð1Þ.

Finally, because ððqĝ0b;nðy0Þ=qyÞV̂
�1
n � ðqg0b;nðy0Þ=qyÞV

�1
n Þ ¼ oPð1Þ as above, and ð1=

ffiffiffi
n
p
Þ

gb;nðy0Þ ¼ OPð1Þ by the central limit theorems in Lemmas A.4 and A.5,

1ffiffiffi
n
p

qQ�nðy0Þ
qy

�
qQnðy0Þ

qy

� �

¼ 2
qĝ0b;nðy0Þ

qy
V̂�1n

1ffiffiffi
n
p ðĝb;nðy0Þ � gb;nðy0ÞÞ

	

þ
qĝ0b;nðy0Þ

qy
V̂�1n �

qg0b;nðy0Þ

qy
V�1n

� �
1ffiffiffi
n
p gb;nðy0Þ




¼ 2
qĝ0b;nðy0Þ

qy
V̂�1n

1ffiffiffi
n
p ðĝb;nðy0Þ � gb;nðy0ÞÞ þ oPð1Þ.

This difference will be of order oPð1Þ if ð1=
ffiffiffi
n
p
Þðĝb;nðy0Þ � gb;nðy0ÞÞ ¼ oPð1Þ. Lemma A.10

implies that the component ð1=
ffiffiffi
n
p
Þ�0nðĜn � GnÞ

d�n ¼ oPð1Þ. Lemmas A.4 and A.9

imply that ð1=
ffiffiffi
n
p
Þ½ðĜnX nb̂nÞ

0
� ðGnX nb0Þ

0
��n ¼ b̂

0

nð1=
ffiffiffi
n
p
ÞX 0nðĜn � GnÞ

0�n þ ðb̂n � b0Þ
0

ð1=
ffiffiffi
n
p
ÞX 0nG0n�n ¼ oPð1Þ, and ð1=

ffiffiffi
n
p
Þðb̂
0

nX 0n�n � b00X
0
n�nÞ ¼ ðb̂n � b0Þ

0
ð1=

ffiffiffi
n
p
ÞX 0n�n ¼ oPð1Þ.

Hence ð1=
ffiffiffi
n
p
Þðĝb;nðy0Þ � gb;nðy0ÞÞ ¼ oPð1Þ.

Finally, the results of the proposition follows from Lemma A.6 and the preceding
propositions. &
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