Project
Work for ECON734, Term I 2024-25
General
Instruction A Sample
Project
Presentation
Time: Friday, Week 14, 12:00 - 15:15, Nov 22,
2024
Presentation
Venue: SOE, SR 4.1.
Presentation
Sequence:
a)
LI Jinwei and Du Xinyi:
Spatial
Linear Regression with Matlab and Python
(Key
Ref: [3], Related: [1], [2], [4], [5])
Spatial Panel Data Analyses with
Matlab and Python,
Part I (Key Ref: [6], Related: [7], [8])
c)
CAO
Lu, HAO Neng, and LIU Zhihao:
Spatial
Panel Data Analyses with Matlab and Python, Part II (Key Ref: [6], Related: [7], [8])
d)
MIN
Pengjin and WANG Haolin:
Hypothesis
Testing in Spatial Panel Data Models with Matlab and Python (Key Ref: [10], Related: [9], [11])
e)
GAO
Qi and WEI Jiezheng:
Hypothesis
Testing in Dynamic Spatial Panels with Matlab and Python (Key Ref: [14], Related: [12], [13],
[15], [16])
Key
References:
[1]
Lee, L. F. (2004). Asymptotic
distributions of quasi-maximum likelihood estimators for spatial autoregressive
models (Online Appendix). Econometrica
72, 1899-1925.
[2]
Liu, S. F. and Yang, Z. L.
(2015a). Asymptotic
distribution and finite-sample bias correction of QML estimators for spatial
error dependence Model (Matlab Code). Econometrics 3, 376-411.
[3]
Liu, S. F. and Yang, Z. L. (2015b). Modified QML estimation of spatial autoregressive
models with unknown heteroskedasticity and normality (Matlab Code).
Regional
Science and Urban Economics, 52, 50-70.
[4]
Yang, Z. L. (2015a). A general method for third-order bias and variance
corrections on a nonlinear estimator (Matlab Code).
Journal
of Econometrics 186, 178-200.
[5]
Yang, Z. L. (2015b). LM tests of spatial
dependence based on bootstrap critical values (Matlab Code). Journal of Econometrics 185, 33-39.
[6]
Lee, L. F. and Yu, J. (2010). Estimation of spatial autoregressive panel data models
with fixed effects. Journal of Econometrics 154,
165-185.
[7]
Yang, Z. L., Yu, J. H, and Liu, S. F. (2016). Bias correction and refined inferences for fixed
effects spatial panel data models.
Regional Science and Urban Economics 61, 52-72.
[8]
Liu, S. F. and Yang, Z. L. (2020). Robust estimation and inference of spatial panel
data models with fixed effects (Matlab Code). Japanese
Journal of Statistics and Data Science 3, 257–311.
[9]
Baltagi, B. H. and Yang, Z. L. (2013a). Standardized LM tests for spatial error
dependence in linear or panel regressions (Matlab Code). Econometrics
Journal 16, 103-134.
[10]
Baltagi, B. H. and Yang Z. L. (2013b). Heteroskedasticity
and non-normality robust LM tests of spatial dependence (Matlab Code). Regional Science and Urban Economics 43,
725-739.
[11]
Lee,
L.-F. and Ju, J. H. (2012). Spatial panels: random
components versus fixed effects. International Economic Review 53, 1369-1412.
[12]
Yu,
J., de Jong, R. and Lee, L. F. (2008). Quasi-maximum
likelihood estimators for spatial dynamic panel data with fixed effects when
both n and T are large. Journal of Econometrics 146,
118-134.
[13]
Yang,
Z. L. (2018). Unified
M-estimation of fixed-effects spatial dynamic panel data models with short
panels (Supplementary Material, Matlab Code).
Journal of Econometrics
205, 423-447.
[14]
Yang, Z. L. (2021). Joint
tests for dynamic and spatial effects in short dynamic panel data models with
fixed effects and heteroskedasticity (Matlab Code). Empirical Economics 60, 51-92.
[15]
Li, L. Y. and Yang, Z. L. (2020). Estimation of fixed effects spatial dynamic panel data
models with small T and unknown heteroskedasticity.
Regional Science and Urban Economics 81, 103520.
[16]
Baltagi, B. H., Pirotte, A. and Yang, Z. L.
(2021). Diagnostic tests for homoscedasticity in
spatial cross-sectional or panel models (Supplementary Material, Matlab
Code). Journal of Econometrics 224, 245-270.