A supplement to “Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Au-
toregressive Models” (for reference only; not for publication)
Appendix A: Some Useful Lemmas

A.1 Uniform Boundedness of Matrices in Row and Column Sums

Lemma A.1 Suppose that the spatial weights matriz W, is a non-negative matrixz with its (i,7)th

element being wy, ;; = dii _ gnd di; >0 for all i,j.
=1 il
(1) If the row sums Z?:l di; are bounded away from zero at the rate hy, uniformly in i, and the column

sums Y ., dij are O(hy,) uniformly in j, then {W,} are uniformly bounded in column sums.

(2) If dij = dj; for all i and j and the row sums Z?Zl dij are O(h,) and bounded away from zero at the

rate hy, uniformly in i, then {W,} are uniformly bounded in column sums.

Proof: (1) Let ¢ and ¢z be positive constants such that ¢k, < Z?:l dij for all i and Y i | dij < cohy
for all 7, for large n. It follows that >°" | wyj = Y iy ﬁ < ﬁ Dz dij < 2 for all i.

(2) This is a special case of (1) because Y., ; dyy = O(hy,) and Y. d;j = > i dj; imply > i, dij =

O(h,). QE.D.

Lemma A.2 Suppose that limsup,, || \oW,, ||< 1, where || - || is a matriz norm, then {|| S;* ||} is

uniformly bounded in both row and column sums.

Proof: For any matrix norm | - ||, || AoWi, ||< 1 implies that S, * = 377 (AoW,)* (Horn and Johnson
1985, p.301). Let ¢ = sup, || AoWa [|. Then, || S0 (1< Y02, | MoWa [[F= Sp f = & < oo for all n.

Q.E.D.

Lemma A.3 Suppose that {| Wy, ||} and {|| S;;* ||}, where || - || is a matriz norm, are bounded. Then

] SN2}, where S, () = I, — AW, is uniformly bounded in a neighborhood of \g.

Proof: Let ¢ be a constant such that | W,, ||[< c and || S, ||< ¢ for all n. We note that S, 1()\) =
(Sn— A =X0)Wp)™t =S, (L, — (A= X0)Gn) L, where G,, = W,,S,; L. By the submultiplicative property of
a matrix norm, || Gy, ||<|| Wy || - || St [|< 2 for all n.

Let Bi(Xo) = {\: |A = Xo| < 1/c?}. Tt follows that, for any A\ € B1(A\o), || (A — X0)Gn [[< | = ol ||
Gn [[<1. As || (A=X0)Gn ||< 1, I, — (A= Xo)G,, is invertible and (I, — (A= Xo)Gn) ™! = D pe o (A= Xo)*GE.
Therefore, || (I — (A — A0)Gn) ™1 1< Sopeo 1A = Xol* || Gu [IF< Yopeo A = XolFc?F = leo\cz < oo for
any A € By(Ag). The result follows by taking a close neighborhood B()g) contained in Bi(Ag). In B()\g),
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SUPXeB(\o) IA — Xolc? < 1, and, hence,

_ _ _ c
sup [ ST IS - sup [ (T = (A= X0)Ga) T[S sup ——rs < 00,
AEB(Xo) XEB(X\o) AeB(Xo) 1-— |)\ — )\0|c
Q.E.D.
Lemma A.4 Suppose that | W, ||< 1 for all n, where || - || is a matriz norm, then {|| S,(\)~1 ||},

where Sy, (A) = I, — AW,,, are uniformly bounded in any closed subset of (—1,1).

Proof: For any A € (—1,1), || AW, ||< |\ || W, ||< 1 and, hence, S, }(\) = > pe A*WE. Tt follows

that, for any [\ <1, || Sy (A) | g IME- || Wi [[F< 02 AR = 1_1‘/\|. Hence, for any closed subset B
of (—1,1), supycp || S, ' (A) ||< supyep 1+M| < 0. Q.ED.

Lemma A.5 Suppose that elements of the n x k matrices X,, are uniformly bounded; and the limiting
matriz of %X;Xn exists and is nonsingular, then the projectors M, and (I, — M,), where M, = I, —
X, (X! X,)7r X!, are uniformly bounded in both row and column sums.

Proof: Let B, = (X X,)~!. From the assumption of the lemma, B, converges to a finite limit.

Therefore, there exists a constant ¢, such that |b, ;| < ¢ for all n, where b, ;; is the (i,7)th element

of B,,. By the uniform boundedness of X,,, there exists a constant ¢, such that |z, ;| < ¢, for all n.

X! X\ — . . k k .
Let A, = %Xn("T) L1X’ which can be rewritten as A, = %Es:l Y vt bnrsTn ey, o, Where @, ;. is

the rth column of X,,. It follows that Z?:l lan,ij| < E?Zl 1 1:21 Zle brrsTn irTnjs| < k2cpc?, for all
i =1,---,n. Similarly, >7" | |an,q;| < S0, 4 S bnrsTnir@n js| < K2epc2 for all j = 1,---,n.
That is, {X,(X/,X,) "t X} are uniformly bounded in both row and column sums. Consequently, {M,} are
also uniformly bounded in both row and column sums. Q.E.D.
A.2 Orders of Some Relevant Quantities
Lemma A.6 Suppose that the elements of the sequences of vectors P, = (Pn1, -, Pnn) and Qn =
(qn1s " Gnn)" are uniformly bounded for all n.
1) If {A,} are uniformly bounded in either row or column sums, then |Q), A, P,| = O(n).
2) If the row sums of {A,} and {Z,} are uniformly bounded, |z;nAnPpn| = O(1) uniformly in i, where z; p,
is the ith row of Z,.
Proof: Let constants ¢; and ¢z such that |p,;| < ¢1 and |gn;| < ¢o. For 1), there exists a constant such
that %Z?:1 Z?:1 |an7ij| < c3. Hence, |Q, A, P,| = |Z?:1 2?21 an,iqupnﬂ < ac Z?:1 Z?:1 |an7ij| <
ncicacs. For 2), let ¢4 be a constant such that E?Zl |an,ij| < cq for all n and . It follows that |e),, A, Pp| =

| Z?:l n,iiPnjl < 1 Z?:l |an,ij| < c1ca where ey is the ith unit column vector. Because {Z,,} is uniformly
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bounded in row sums, Z?:l |znij| < ¢, for some constant c,. It follows that |z;,A4,P,| < Z?:1 |Zn,ij] -
|e;jAnPn| < (Z?Zl |zn,ij|)c1ca < czcica. Q.E.D.
Lemma A.7 Suppose {A,} are uniformly bounded either in row sums or in column sums. Then,
1) elements ay ;j of A, are uniformly bounded in i and j,
2) tr(A7) = O(n) for m > 1, and
3) tr(A,AL) = O(n).

Proof: If A,, is uniformly bounded in row sums, let ¢; be the constant such that maxj <<, E?:l lan,i;| <
c1 for all n. On the other hand, if A, is uniformly bounded in column sums, let co be the constant such
that maxi<j<n > iy |an,ij| < c2 for all n. Therefore, |ay,i;| < > |ana| < ¢1 if A, is uniformly bounded
in row sums; otherwise, |ani;| < D7 ; |an.kj| < c2 if A, is uniformly bounded in column sums. The result
1) implies immediately that tr(A,) = O(n). If A, is uniformly bounded in row (column) sums, then A7
for m > 2 is uniformly bounded in row (column) sums. Therefore, 1) implies tr(A7") = O(n). Finally, as
tr(A,AL) = >0, E?Zl ap iis [tr(An A7) < 300 (Z?:l lan,ij])? < nc? if A, is uniformly bounded in row
sums; otherwise [tr(A, A7) < 377 (327, |ani])? <nc3.  Q.ED.

Lemma A.8 Suppose that the elements a,, ;; of the sequence of nxn matrices {A,}, where A, = [an,i;],
are O(h%) uniformly in all i and j; and {B,} is a sequence of conformable n x n matrices.

(1) If { By} are uniformly bounded in column sums, the elements of A, By, have the uniform order O(%)

(2) If {Bn} are uniformly bounded in row sums, the elements of By A, have the uniform order O(h%)
For both cases (1) and (2), tr(AnBy) = tr(BnAn) = O(3-).

Proof: Consider (1). Let an;; = CZ—HJ Because ay, ;; = O(hln) uniformly in ¢ and j, there exists a
constant ¢ so that |c, ;| < ¢ for all ¢, j and n. Because {B,,} is uniformly bounded in column sums, there

exists a constant ¢z so that Y ;_, by xj| < ¢2 for all n and j. Let a;,, be the ith row of A, and b, ; be the

€2 for all 7 and .

n

Ith column of B,,. Tt follows that |a; b, | < % E?Zl |en,ijbn,gil < & S b < &
Furthermore, [tr(AnBy)| = | D00 @inbni| < 37 [@inbn,i]l < cicag. These prove the results in (1). The

results in (2) follow from (1) because (B, A,)" = Al B!/, and the uniform boundedness in row sums of {B,,}

is equivalent to the uniform boundedness in column sums of {B},}. Q.E.D.

Lemma A.9 Suppose that A, are uniformly bounded in both row and column sums. FElements of

n

the n X k matrices X,, are uniformly bounded; and lim, .o X"nX erists and s nonsingular. Let M, =

I — X (X, X,)"'X!. Then



(i) tr(M,A,;) =tr(A,) + O(1),
(ii) tr(Al, M,A,) = tr(A,A,) +O(1),
(iii) tr[(MnAn)?) = tr(A2) + O(1), and
(iv) tr[(Al, M,A,)?| = tr[(M, A, AL)?] = tr[(A, AL)?] + O(1).
Furthermore, if Ay, i; = O(i) for all i and j, then
(a) tr*(MpAy) = tr*(Ay) + O(3) and
(b) X0 (MaAn)i)? = X0y (Anai)? + O(L ).
Proof: The assumptions imply that elements of the k x k matrix (1 X X,,)~1 are uniformly bounded

for large enough n. Lemma A.6 implies that elements of the k x k matrices %X;LAan, %X,’lAnA;an and

LX/ A2 X, are also uniformly bounded. It follows that
tr(MyAn) = tr(Ay) — tr[(X, Xn) "' X, An Xn] = tr(A,) + O(1),

tr(AL M, A,) = tr(ALA,) —tr[(X) X,) ' X! A, AL X, = tr(ALA,) + O(1),

and tr((M,A,)?) = tr(A2) —2tr[(X, X,) ' X, A2 X, ]+ tr([(X) Xn) 7P X An X)?) = tr(A2) + O(1). By (iii),
tr[(A! M, A,)?] = tr[(M, A, AL)?] = tr[(A, AL)?] + O(1).

When A, ;; = O(%), from (i), tr?(MpAy) = (tr(An) + O(1))? = tr?(A,) + 2tr(An) - O(1) + O(1) =
tr2(A,) + O(7%). Because A, is uniformly bounded in column sums and elements of X,, are uniformly
bounded, X}, Anen; = O(1) for all i. Hence, > i (M, An)% = D0 (Anii — 2in (X, X0) 1 X Aneni)? =
S (Anii + O(£)) = 20 [(An i) + 2405 - O(£) + O(32)] = Yo7y (Anii)* + O(3). QE.D.

Lemma A.10 Suppose that A, is an n X n matriz with its column sums being uniformly bounded and
elements of the n x k matriz C,, are uniformly bounded. Elements vls of V,, = (v1,--+,v,) are i.i.d.(0,02).
Then, ﬁC;AnVn = Op(1), Furthermore, if the limit of LC), A, Al,C, exists and is positive definite, then
L Cl ALV, B N(0, 08 limy, e 2C AL AL,C).

Proof: This is Lemma A.2 in Lee (2002). These results can be established by Chebyshev’s inequality
and Liapounov double array central limit theorem. Q.E.D.

A.3 First and Second Moments of Quadratic Forms and Limiting Distribution

" are i.i.d. with zero mean, variance o2 and

For the lemmas in this subsection, v’s in V,, = (v, -, v,)
finite fourth moment .

Lemma A.11 Let A,, = [a;;] be an n-dimensional square matriz. Then
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1) E(V!AV,,) = o*tr(Ay),
2) E(ViAVR)? = (pa — 30h) Y0, a2 + ot [tr?(An) + tr(A, AL) + tr(A2)], and
8) var(ViAVa) = (s — 30%) Sy % + 0 [tr(Au L) + tr(42)].
In particular, if v’s are normally distributed, then E(V,! A, V,,)? = o*[tr?(A,) +tr(A, AL) +tr(A2)] and
var(V! A, V,,) = o*[tr(A, AL) +tr(A2)].

Proof: The result in 1) is trivial. For the second moment,

E(VAV,) Z aijvivj)z = E(Z Z Z Zaijaklvivjvkvl).

i=1 j=1k=11=1
Because v’s are i.i.d. with zero mean, E(v;v;vxv;) will not vanish only when i = j =k =1, (i = j) # (k =1),

AL

(i=k)#(j=1),and (i =1) # (j = k). Therefore,

E(VéAnVn)2 — i a?iE(vf) + i i aiiaij )+ Z Z awE v v )+ Z Z a;jaj; B
i=1

i=1 j#i i=1 j#i i=1 j#i
n n n n n n n
4 2 4 2
= (pa=30") Y afi+0'[D D anay+Y Y af+ )Y aija;l
i=1 i=1 j=1 i=1 j=1 i=1 j=1

= (s —30") Y a + ot [tr* (An) + tr(A, A}) + tr(A2))].

i=1
The result 3) follows from var(V,!A,V,) = E(V,A,V,)? — E*(V!A,V,) and those of 1) and 2). When v’s
are normally distributed, us = 302. Q.E.D.

Lemma A.12 Suppose that {A,} are uniformly bounded in either row and column sums, and the

elements ay ;5 of An are O(%) uniformly in alli and j. Then, E(V,AnV,) = O(3%), var(Vy An Vi) = O(5%)

and V) Ay, Vyy = Op(3=). Furthermore, if lim, % =0, %”V,;AnVn — %”E(V,;AnVn) =op(1).

n

Proof: E(V!A,V,,) = o*tr(A,) = O(3-). From Lemma A.11, the variance of V; A, V,, is var(V,; A,V,,) =
(na —30") Y00, al ;4 ot [tr(A, A}) + tr(A7)]. Lemma A.8 implies that tr(A7) and tr(A, A7) are O(s%).

As YL ak ;< tr(AnAYL), it follows that 300 a7 ;; = O(%). Hence, var(V,A4,V,) = O(3%). As
E((V!AV,)?) = var(VI A, V,,) + E> (VA V,) = O((%)2), the generalized Chebyshev inequality implies
that P(22|V/A,V,| > M) < 35 (22)2E((V, A, V,)?) = 7520(1) and, hence, 22V A,,V,, = Op(1).

Finally, because var(%"VéAnVn) O(T") o(1) when lim,_, T" = 0, the Chebyshev inequality
implies that 22V’ AV, — 2 B(V!A,V,) = op(1).  Q.E.D.

Lemma A.13 Suppose that {A,} is a sequence of symmetric matrices with row and column sums

uniformly bounded and {b,} is a sequence of constant vectors with its elements uniformly bounded. The

moment E(|v|**2) for some § > 0 of v ewists. Let 04, be the variance of Qn where Qn = bV, +V,; AV, —
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o’tr(Ay). Assume that the variance o) s O(3+) with {%"Uén} bounded away from zero, the elements of

1+2
A, are of uniform order O(%) and the elements of by, of uniform order O(\/}T) Iflimy, oo 2 - 0, then
Lo L, N(0,1).

Proof: The asymptotic distribution of the quadratic random form @, can be established via the mar-
tingale central limit theorem. Our proof of this Lemma follows closely the original arguments in Kelejian
and Prucha (2001). In their paper, U2Qn is assumed to be bounded away from zero with the n-rate. Our
subsequent arguments modify theirs to take into account the different rate of aén.

The @, can be expanded into Qn, = Y1 | bnivi + > vy QniivZ +2> 0 Z;;ll an,ijviv; — o’tr(Ay) =
Sty Zni, where Zy; = bpiv; + @y 4 (07 — 02) + 20 23;11 Qn,ijvj. Define o-fields J; =< vq,...,v; > generated
by v1,...,v;. Because vs arei.i.d. with zero mean and finite variance, E(Z,i|Ji—1) = bni E(vi)+an i (E(v})—
02) 4+ 2E(v;) Z;;ll an,ijv; = 0. The {(Zni, Ji)|1 <i <n,1<n} forms a martingale difference double array.
We note that 03 = 7| E(Z2;) as Z,; are martingale differences. Also 2262 = O(1). Define the
normalized variables Z}, = Z,;/0q,. The {(Z};, 7:)|1 <1i < n} is a martingale difference double array and
Uczn = >" , Z’,. In order for the martingale central limit theorem to be applicable, we would show that
there exists a 0* > such that > | F|Z%[>T" tends to zero as n goes to infinity. Second, it will be shown
that Y1, B(Z27i1) 2 1

For any positive constants p and ¢ such that %—F% =1, Zni| < lan |- |v? — 02|+ |vi| (|bni| +2 23;11 |an,ijl-
[vj]) = |an,iil v |an,ii|% |v? — 2|+ |Uz|(|bm|% |bm-|% +2 Z;;ll |an7ij|§ |an7ij|% |vj]). The Holder inequality for inner

products applied to the last term implies that

T 2%
1 1 1
| Zuil? < 3 | (1bail )P + Z (anai ¥ || Ubasl#li)? + (sl 3107 = 0> + 3 (lanis | #2Jwi] - Jog])?
j=1
[ 1—1
= {bnsl + Y lanigl | {1bnil - (03] + lan,ail - [0F = 0717+ Y |an,i;[27|0i] ) v;]
— j=1

As {A,} are uniformly bounded in row sums and elements of b, are uniformly bounded, there exists a
aq

constant c¢; such that Z?Zl lan,ij| < ec1/2 and |bp;| < ¢1/2 for all i and n. Hence |Z,;]7 < 29¢] (|bps| - [vs|? +

| ii| |02 — 029+ |v; |2 E |an ijllv;|?). Take ¢ = 2+0. Let ¢ > 1 be a finite constant such that E(|v|) < ¢q,

E(Jv]?) < ¢4 and E(|v? — 02|7) < ¢,. Such a constant exists under the moment conditions of v. It follows

q .
that Y20, B Zil? < 2% ¢ 300 (|bul + X5y lan,is]) = O(n). As 30, E|Z3*0 = 0(2;*‘5 ey Bl Zni*

and a2+5 (h—"aén)H%(hl)H% >c- (%)H% for some constant ¢ > 0 when n is large, > i E|Z};>T0 =

n n
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1+% 142

Oty = O(h"n i ), which goes to zero as n tends to infinity.
n?2
It remains to show that > | E(Z;2|Ji—1) 2 0. As
i1 i1
E(Z3)Ti1) = (pa — 0")aj iy + 0% (bni + 2 an i) + 24130, 56(bni +2 Y anijvy),
i=1 i=1

and E(Z2) = (pa — 0*)ad ;; + 40* ZJ 1 Gp i+ 0202, 4 21300 iibni, because E(bni + 22] 1 Qn,ijvi)% =

b2, + 40> ZJ 1am] Hence,

i—1 -1 i—1
E(an'lji—l) - Z Z On,ij0n,ikVjVk + Z ap, 1] 02)) + 4(02bm’ + M3an,ii)(z Qn,ijV;)
J=1k#j j=1
and Y1y B(Z21Ti1) = 1 = 7= S [B(Z21 T 1) = B(Z2)) = 5 (Hin + Hau) + 1 Ha, where
n %Qn Qn
h n i—1i1—1 h n i—1
Hln: ;n Zanlja’nlkvjvkv H2n— fzzaiw(v?_oz)a
i=1 j=1 k#j i=1 j=1

and Hs, = b= El 1(0 bni + p3an, ”)E 1 an,i;vj. We would like to show that Hj, for j = 1,2,3, con-

verge in probability to zero. It is obvious that E(Hs,) = 0. By exchanging summations, Y.""  (02by,; +

H3Gn,ii) Z;;ll Qn,ijUj = Z?;ll(z?:j+l(a2bni + HBan,ii)an,ij)vj- Thus,

) 0’4h2 n—1 n 13 ) 4h2 n—1 n ) hn
E(HBn) = n2n Z( Z (bnz + o2 —50an u)an ZJ) < 2 (112113<Xn |bn1 + CLn u| Z Z |an,ij|) = O(7>
Jj=1 i=j+1 j=1 i=j+1

because max; ;j |ani;| = O(5), max; byl = O(7=) and 37 L (01 lani)? = O(n). E(Ha,) =0 and

Ha,, can be rewritten into Ha, = L= ?:_11 (X1 0m ;) (w7 —0?). Thus
h n—1 n h n—1 n 1
B(HE,) = (1) —0") D230 ah ) < (G1)P0u— o) max Janyl® D23 lansl)® = O().
j=1 i=j+1 j=1 i=j+1

We conclude that Hs, = op(l) and Hs, = op(l). E(Hi,) = 0 but its variance is relatively more
complex than that of Hs, and Hs,. By rearranging terms, Hiy, = %” S Z Zk# i O, ik ViV, =

hny . . o I n . ) . .
o E Ek# n,jkVjVk, Where Sy, i = Ei:max{j)k}ﬂ @n,ijGn,ik- The variance of Hi, is

n—ln—-1ln—1n-—1

E(Hln =\ Z Z Z Z Sn ijn rsE UJ’Uva’US)

j=1 k#j r=1 s#r
As k # j and s # r, E(vjupvyvs) # 0 only for the cases that (j =r) # (k= s) and (j = s) # (k =r). The

variance of Hy, can be simplified and

n—1n—1 n—1ln—-1 n n
E(Hl2n) = Z Z Sn gk < 20 2 Z Z |an,i1jan,i1kan,izjan,igk|)
j=1 k#j j=1k#j i1=11i2=1
n n n
2 520 lenstnial) s 3 o gl
i1=1 j= 1k¢a =I= Yin=
4 Pn
<2012 e 3 o] mn o] 30O ol meu o),
== iz 1 Zl 1] 1



because A,, is uniformly bounded in row and column sums and a, ;; = O(hi) uniformly in 7 and j. Thus,
a+2)
Hy, = op(1) as lim, ., 22 = 0 implied by the condition lim,, ., 22— = 0.

As Hj,, j =1,2,3, are op(1) and lim,, o %"aén >0, Y0 E(Z}?|J;-1) converges in probability to 1.

The central limit theorem for the martingale difference double array is thus applicable (see, Hall and Heyde,

1980; Potscher and Prucha, 1997) to establish the result. Q.E.D.

Lemma A.14 Suppose that A, is a constant n x n matriz uniformly bounded in both row and column
sums. Let c, be a column vector of constants. If =cc,, = o(1), then \/%c%AnVn =op(1). On the other
hand, if "=cl c,, = O(1), then \/%c;AnVn =0p(1).

Proof: The first result follows from Chebyshev’s inequality if var(\/%c;AnV ) = o3lncl A, Alc, goes
to zero. Let A, be the diagonal matrix of eigenvalues of A,A] and I',, be the orthonormal matrix of
eigenvectors. As eigenvalues in absolute values are bounded by any norm of the matrix, eigenvalues in A,
in absolute value are uniformly bounded because || Ay, || (or || An |J1) are uniformly bounded. Hence,
%"C;AnA;lcn < };l—"c;FnF;lcn N An.maz| = %"c;lcnp\n,maﬂ = o(1), where A, mas is the eigenvalue of A, A/,
with the largest absolute value.

When Z2¢l ¢, = O(1), e/ A, Alc, < 22el ey A maz| = O(1). In this case, Var(\/%c;AnVn) =
o2t A, Alye, = O(1). Therefore, /™2, AV, = Op(1).  QED.

Appendix B: Detailed Proofs:

Proof of Consistency (Theorem 3.1 and Theorem 4.1)

We shall prove that +1InL,()A) — 2Q,()\) converges in probability to zero uniformly on A, and the
identification uniqueness condition holds, i.e., for any e > 0, limsup,, . [maxycx.(r,) = (@n(A) = £Qn(No)] <

0 where N,(\g) is the complement of an open neighborhood of \g in A with radius e.

For the proof of these properties, it is useful to establish some properties for In |S,,(\)| and o2 ()\), where

02(N) = Zetr(S 180 (M) (A)Si L) = 02[1 + 200 — AL tr(G) + (o — N2 Ltr(GLG1)].

There is also an auxiliary model which has useful implications. Denote Qp n(\) = —%(In(27) + 1) —
ZIno2(A) + In[Sn(A)|. The log likelihood function of a SAR process Y, = AW, Y, + V,, where V,, ~

N(0,031y), is In Ly n(A,0%) = —2In(27) — 2 Ino? + In|S,(A)| — 522 Y5}, (A)Sn(A)Y,. It is apparent that

20’2
Qp.n(A) = max,2 E,(In Ly (), 0?)), where E, is the expectation under this SAR process. By the Jensen
inequality, Qpn(A) < Ep(In Ly (Ao, 08)) = Qpn(Xo) for all A. This implies that 2(Qpn(A) — Qpn(Xo)) <0

for all .



Let A1 and Az be in A. By the mean value theorem, X (In |5, (A2)| —In S, (A1)]) = Ltr(W, S (M) (A2 —
A1) where A, lies between A\; and A\y. By the uniform boundedness of Assumption 7, Lemma A.8 implies
that %tr(WnSfl(/_\n)) = O(%) Thus, < In|S,(A)] is uniformly equicontinuous in A in A. As A is a bounded
set, £ (In|S,(A2)| — In|S,(A1)|) = O(1) uniformly in A; and Az in A.

The 02 () is uniformly bounded away from zero on A. This can be established by a counter argument.
Suppose that o2 () were not uniformly bounded away from zero on A. Then, there would exist a sequence
{An} in A such that lim, o 02(A,) = 0. We have shown that 1(Qp(A) — Qpn(Xo)) < 0 for all A, and
L(In|S,(Ao)|—In|S,(N)|) = O(1) uniformly on A. This implies that —4 Ino2(\) < —4 InoZ+ 2 (In|S,(Ao)| —
In|S,(N)]) = O(1). That is, —Ino2(\,) is bounded from above, a contradiction. Therefore, o2 (\) must be
bounded always from zero uniformly on A.

(uniform convergence) Show that supyea |2 In L, (A) — 2Q,(N)| = op(1).

Note that £ In L,(A) =1 Q,(A) = —=2(In62(A)—Ino3%(N)). Because M,S,(A)Yn = (Ag—A) M, Gp Xn B0+

M, Sn(N)S; Vi,

oa(N) = iYAS@(A)MnSn(A)Yn = (o — A)Q%(annﬁo)’Mn(annﬁw +2(Xo — N Hin(A) + Har (M), (B.1)

where Hi,(A) = (G X000) My Sn(N)S; Vi, and Han(A) = LV/S7180 (A MSn (A Sy 1 Ve As Hip(X) =

%(Ganﬁo)'MnVn + (Mo — )\)%(Ganﬁo)’MnGnVn, Lemma A.10 and the linearity of Hy,(\) in A imply

Hi,(A) = op(1) uniformly in A € A. Note that

2
Hap(N) — 02()\) = lV,;S,;l5‘;(/\)5,1@)5;1Vn — @tr(s 157 (M)Sn(N)STY) = Th(N),
n

n n n

where T;,(\) = V8 =18 (\) X, (X!, X,,) "' X/ S, (\)S;1V,,. By Lemma A.10,

T n

Y 1y - L oyrgory Ly _
\/ﬁann(/\)Sn Vn_\/ﬁann v, AﬁXnGnVn_op(l).

Thus, T,(A) = £ (2= X48,(0) S, Vi) (XaX0) 1 (L X1,5,,(\)S;V,)' = 0p(1). By Lemma A.12,
1

(Va8 Su (NSNS, V= 0tr(S,715,,(N)Sa (M) S, 1)) = op(1)

n

uniformly in A € A. These convergences are uniform on A because \ appears simply as linear or quadratic
factors in those terms. That is, Ha,(A) — 02 (\) = op(1) uniformly on A. Therefore, 52 ()\) — 0:2(\) = op(1)
uniformly on A. By the Taylor expansion, |In62(\) —Ino2(\)| = |62(A\) — 0;2(N\)|/52()), where 62 ()\) lies

n

between 62 () and 07:2(X). Note that 72(X) > 02 (A) because 0;2(A) = (Ao— )21 (G X0 B80) M (Gn X0 fB0)+

n
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02()\). As 2()) is uniformly bounded away from zero on A, ¢2(\) will be so too. It follows that, because
62(\)—02(A\) = op(1) uniformly on A, 62(\) will be bounded away from zero uniformly on A in probability.
Hence, [In62(X\) —Ino;2(A)| = op(1) uniformly on A. Consequently, supyep |+ In Ly (A) = 2Qn(N)| = op(1).

(uniform equicontinuity) We will show that £ InQ,(A\) = —3(In(27) + 1) — 3 Ino;2(A) + L In|S, (V)] is
uniformly equicontinuous on A. The 072()) is uniformly continuous on A. This is so, because 02()) is a
quadratic form of A and its coefficients, 1 (G X,00)' Mn(Gn X0 50), 2tr(Gy) and 2ir(G),G,) are bounded by
Lemmas A.6 and A.8. The uniform continuity of In o*(\) on A follows because % is uniformly bounded

on A. Hence %hl Q@ () is uniformly equicontinuous on A.

(identification uniqueness) At \g, 02(\g) = 0. Therefore,

LQu() = £Qu(A0) = ~ 5 (m 3 (N) ~Inod) + - (in]S, (V)] ~ ]S, (o)) — 5 m o7 () ~ I oZ (V)
= L (Qun(N) = Q) — 5T (N) ~ I (N)]

Suppose that the identification uniqueness condition would not hold. Then, there would exist an € > 0 and
a sequence A, in N¢(Ag) such that lim, .eo[2Qn(An) — 2@, (No)] = 0. Because N()\o) is a compact set,
there would exist a convergent subsequence {\,, } of {\,}. Let A4 be the limit point of A\, in A. As
1@, ()) is uniformly equicontinuous in A, limnm_,oo[ﬁQnm M) — ﬁ@nm()\o)] = 0. Because (Qpn(\) —
Qp.n(X0)) < 0and —[Inoj2(X) —Ino2(N)] < 0, this is possible only if limy,,, —oo (032 (A4)—02 (A1) =0and
lim,,, oo (7= Qpnp (M) = 75 Qpnyn (M) = 0. The limy,,, —.oo(072 (A) — 05 (A1) = 0 is a contradiction
when lim,,_, o0 %(Ganﬁo)'Mn(Ganﬁo) # 0. In the event that lim,, %(Ganﬁo)'Mn(Ganﬁo) =0, the
contradiction follows from the relation limy, oo (£Qp.n(At) — 2Qpn(X0)) = 0 under Assumption 9. This is
so, because, in this event, Assumption 9 is equivalent to that limy, o[ (In[S,(A)| = In[S,|) — $(In o2 (A) —
Ino3)] = limp—o0 [Qpn(A) — Qpn(Ao)] # 0 for X # Xg. Therefore, the identification uniqueness condition
must hold.

The consistency of An and, hence, 6,, follow from this identification uniqueness and uniform convergence
(White 1994, Theorem 3.4). Q.E.D.
Proof of Theorem 3.2

(Show that Xy is nonsingular): Let o = (o], a2, a3)’ be a column vector of constants such that ¥pa = 0.
It is sufficient to show that o = 0. From the first row block of the linear equation system Ypa = 0, one

. X! X . X! Gn X . _
has lim,, o =201 4 limy, oo %”60042 = 0 and, therefore, a1 = — lim,, o0 (X, X,,) "1 X! G, X, 50 - ta.

tr(Gy)

n

From the last equation of the linear system, one has a3 = —208 lim, s - . By eliminating a; and

10



as, the remaining equation becomes

{ lim —(G X0B0) My (G X0fo) + lim S tr(G,Gp) + tr(G2) — %tr2(Gn)} } az = 0. (B.2)

n—oo no’o n—oo 1

Because tr(GnG),) + tr(G2) — 2tr*(G,) = 3tr[(C), + C,)(Cl, 4+ Cy,)'] > 0 and Assumption 8 implies that
lim, oo %(Ganﬁo)’Mn(Ganﬁo) is positive definite, it follows that as = 0 and, so, a = 0.

(the limiting distribution of %%@‘(9“)): The matrix G,, is uniformly bounded in row sums. As the
elements of X,, are bounded, the elements of G,, X, 5y for all n are uniformly bounded by Lemma A.6. With

the existence of high order moments of v in Assumption 1, the central limit theorem for quadratic forms of

double arrays of Kelejian and Prucha (2001) can be applied and the limiting distribution of the score vector

follows.
(Show that 1 & ‘g;;;ﬁ"") %82 lgH%ZE"” P 0): The second-order derivatives are
0%In L, (0) 1 9%In L, (0) 1 9%In L, (0) 1
e = S X Xy, et = = XOW,Y,, e = —— X V(0),
toJelolok o2 " OBON o2 " 0p0c? od™ " (9)
9%1n L, (0) 1/\\12 1 0?1n L, (0) 1
Z o n\v) — ¢ - — _ _Y/ / nYn Z o =n\v) — __Y/ / -
N2 T([W Sn ()‘)] ) o2 anW ) 92O\ ok anV (5)5
and 861;2%’;(29) ooy — a—lsV,;(é)Vn(é). As X’,"”nX" =0(1), 7X’;VZ"Y" =Op(1) and 52 2, o2, it follows that

102°InL,(6,) 18%InL,(6) 11 X'X,
- — = — = (=~ =) = 0p(1),
n  0BIB n  0pop o5 On on

and

102InL,(0,) 10*°InL,(6) 11 X\W,Y,
_ _ = (—2 — 3)7 = Op(l).
n  OBOX n 0PI o§ 02 n

As Vn(gn) =Y, — Xan - S\anYn = Xn(ﬁo - Bn) + (/\0 - :\n)WnYn + Va,

102InL,(6,) 182WL,(6y) ,1 1 X'V, X.X, XIW, Y,
n “n =\ T RN, — o) = op(1).
n 08002 n_ 08902 (061 04) " + G (6 — o) + ot ()\ o) = o0p(1)

Let G, (\) = W,,S;1(\). By the mean value theorem, tr(G2(\,)) = tr(G2) + 2tr(G3 (M) - (e — o),

10%2InL,,(0,) 10%2InL,(00) __ tr(G3 (Zn)) (X 1 1\Y, W/ W, Y,
therefore, = 2 - 2 = —2f(/\n —Xo) + (a_g — E)* = 0p(1), because

tr(G2(\n)) = O(3=) and Y, W, W,.Y,, = Op(5-). Note that G, (\n) is uniformly bounded in row and column

sums uniformly in a neighborhood of Ag by Lemma A.3 under Assumption 5. Therefore, tr(G3(X,)) = O(7%).

n

On the other hand, because

. YW'X VWA WoYo | YaWoVe _ YiWaVa
—Y’W’V(5) 7(50—5,1) (Ao — Ap) 2 nont = e op(1)

n n
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and

e XX, YW WnYn VIV,
EVé(CSn)Vn(CSn) = (Bn — Bo) nn (Bn = Bo) + (An — Ag)? 22 +—
~ ~ X'W,Y,, V Y’W’V
+2(A — Ao)(Bn — 50)/717 2(Bo — Bn) =2 4 2(Ng — Ay) "
=B o),

it follows that

10*InLn(0,) 1°ImLn(6o)  YiW.Va(6n) N Y'W!V,
n o0\ n 0020\ ain agn
YW X, ~ Y W)W, Y, ~ 1 1. YWV,
—_n''n n  — n''n’'nitn /\n _ )\ — 1
5’?‘1711 (6 60)+ 5’?‘111, ( 0)+(061 04) n OP( )a
and _ _ _
182 InLn(0n) 582 InLn(6o) 1 V! (60) Vi (05) 1 VIV,
n 002002 n  J0200% 254 nod 208 nof
1,1 1 1 1. V)V,
= 5051~ 30+ Gp — 32 +or(D) = o)

(Show L2ZMLa(00) _ 187 InLallo)y P, (). By Lemma A.10, 1X/,G,V, = op(1) and L X/,G, GV, =

op(1). It follows that L+ X, W, Y, = 1 X/ G, X0 + op(1), 2Y, W)V, = LV/G.V;, + op(1), and
1 ! ! 1 Yal 1 yal
YW WYy = — (X0 B0) GG Xnflo + — V' G GV + 0p(1).
n n n

Lemmas A.11 and A.8 imply E(V,/G.V,) = o3tr(G,) and

| - 3‘70 / 2 1
- ) = - t t = :
var(= VG Vy) = Zan i+ S5 [tr(GuG) +1r(G2)] O(-7-)
Similarly, E(V,G!,G,Vy) = otr(G.,G,) and
1o 3UO - 0_3 ' 2y _ 1
var(~ VGG Va) = ; i+ 2 5tr((GLGn)") = O( 7).

By the law of large numbers, %VAVH 2 o2. With these properties, the convergence result follows.
. 5 1
Finally, from the expansion v/n(6,, —6y) = — ( % %) \/1— %"(0”) the asymptotic distribution
of 8, follows.  Q.E.D.

Proof of Theorem 4.2 The nonsingularity of 3y will now be guaranteed by Assumption 9 instead of

Assumption 8. With (B.2) in the proof of Theorem 3.2, under Assumption &', one arrives at

2
lim 1 tr(Gl,Gy) + tr(G2) — 2M
n

n—oo n

042:().
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Because L [tr(G, Gl )+tr(G2)—2tr*(G,)] = 5=tr[(ClL+Cy)(CL+Cy)'] > 0 for large n implied by Assumption
9, it follows that ap = 0. Hence ¥y is nonsingular. The remaining arguments are similar as in the proof of
Theorem 3.2. Q.E.D.
Proof of Theorem 5.1

(Show that f= 2 (ln Ly, (A) — In L (Ao) — (Qn(A) — Qn(Mo)] %, 0 uniformly on A): From (2.7) and (3.3), by

the mean value theorem,

22l L,(3) = 1 L) = (Qu(N) = Qu))]
= —%[ln 62(\) —Iné2(\o) — (Ino2(\) —Ino?(No))]
— a2 —met2(0) — (In62(h) — Ino*2(N))] = I 063 (An) — Ino3(An)] (A = Ao)-
2 2 oA
With the expressions of 62()) in (2.6) and o22()) in (3.2), it follows that 22X = — 2y’ M1, S, (A)Y,,
and
971 ) _ L (a0 20) (G X 0) M (G X ) — 2081r{G 50051

These imply that

h

_ 1 hn ! ! N ’I27,(A ) N i
=30 AW My Sn (M) Yo = — 0 )[()\0 = M) (G XnBo) M (G X, 50)
+ o5tr (G Sn(An) Sy IHA = Xo)
_ %%”{zgwgmsﬂ(xn)yﬂ — (M0 = M) (G XnBo) My (G X o) + 024r(G, S (3) S 1]
Pl ) 00— 3,)(G X ) M (G Xof) + o3G0 () SN = Ao

By using S,(\)S;; ! = I, + (Ao — A\)G},, the model implies that
Y'W! MySp(\)Ys
= (GnXnf0) MnSn(N) Sy Xnfo + (GrnXn o) MpSn(N) Sy Vi + VGl My S, (NS X o
+ VG M, S, (NS, 1V,
= (GnXnfo) Mp(GrnXnfo) (Mo = A) + (GnXnf0) M Vi + 2(GnXnf0) MGV (No — )
+ VG MV, + VG M, Gp Vi (Ao — N).
Lemma A.9 implies that tr(M,G,) = tr(G,) + O(1) and tr(G/,M,G,) = tr(G,,G,) + O(1). The law
of large numbers in Lemma A.12 shows that %"(V,;MnGnVn —02tr(Gp)) = op(1) and Z—"(V,;G;MnGnVn —
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odtr(G!Gy)) = op(1). Under Assumption 10, %(GHXHBO)'MnVn = op(1) and %(Ganﬁo)’MnGnVn =
op(1) by Lemma A.14. Therefore,

%"{Y,;W,;Mnsn(x)yn — (G X0 B0) M (G X B0) (Ao — N) — oatr(GL S, (NS 1)}

hr,
= 7{(annﬁo)vwnvn +2(Ng — \)(GnX00)' M, GV
+ VG M, Vi, + (Ao — V.Gl MG Vi — aitr(GL) — o3 (Mo — Nir(GLG)}
= Op(l).

From (B.1) and (3.2),

G20 — 0"2(\) = 20 — /\)%(Ganﬁo)’MnSn()\)Sglvn

1 , /
+ ﬁ{Vrisnilsflz(/\)MnSn()‘)Srjlvn - UgtT[S,;lS;l(/\)MnSn()\)Sgl]}

B 1 G VI ACHEVEr I CARCHEVCHEVER))

=op(1),
uniformly in A by Chebyshev’s LLN, Lemma A.12 and Lemma A.9. Note that % (G XnB0) Mn(GrnXnfBo) =

O(1) and 22tr(G, 8, (\) S 1) = O(1). When h,, — 00, 02(\) = 02[142(Ag— ) ZC2) 4 (A= \g)2rCnCu))

n n

o2 uniformly on A. As 07?(\) > 02(\) and o2 > 0, # is O(1) and ﬁ is Op(1). In conclusion,

o [(In L,,(A) = In L,(Ao)) — (Qn(A) — Qn(No))] = 0p(1) uniformly in A € A.

—_n
n

(Show the uniform equicontinuity of 2= (Q,,(\) — @n(Xo))): Recall that
hn hn *2 2 h’"
—(@n(A) = Qu(Xo)) = = (Inoy" (V) = Inog) + —=(In S5 (A)] = n|Sn (Ao)1)-

As tr(S718! (NS (WS —n = (Ao — Ntr(GL, + G) + (A — o) 2tr (Gl G),

nl072(3) = )
= (0= 20022 (G X 50) M (G X o) + 73 2 (1[S00 (0)S;] — )

n

=(\- A0)27(Ganﬂo)’Mn(Ganﬂo) +02(Xo — A);tr(G; +Gp) + 02 (N — /\)2;tr(G;Gn)

is uniformly equicontinous in A € A. By the mean value theorem, h,(Ino%?(\) —Ino?) = 596) (0:2(N\) — )

where 2 () lies between ¢2(\) and o2. As 07?()) is uniformly bounded away from zero on A and o3 > 0,

52()\) is uniformly bounded from above. Hence, h,(Inc??(\) — Ino3) is uniformly equicontinuous on A.

The 2= (In|S,(\)| — In[S,(No)]) = Z2tr(W, S, (M) (A — Xo) is uniformly equicontinuous on A because
%"tr(WnSgl(S\n)) = Op(1). In conclusion, 22 (Q,(N\) — Q,(\o)) is uniformly equicontinuous on A.

n
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uniqueness identification): For identification, let D,(\) = —ba(lng2(\) = Ino?) + 22 (In|S,,(\)| —
2 n 0 n

In |S,(Xo)])- Then, 22(Q,(N) — Qn(No)) = Dp(A) — 22 (Ino2(X) — Ino2(N)). By the Taylor expansion,

N - — 721 A A—X0)? hn ,
1nan2(/\) —1110’721(/\) = ;2 )\U ( )) = (0:12()?)) ;(GanBO) Mn(Gan60)7

where 2 lies between 0:2()\) and o2 (\). Because 07:2(\) > o2(\) for all A € A,

L
g2(N) n

hyp(Ino2(X) —InoZ(N)) > (A = 20)%(Gn X0 f0) My, (G X0 f0).-

For the situation in Assumption 8', 072(\) — 02(A\) = op(1) uniformly on A. Thus, lim, . 0:2(\) = o3.

Therefore, under Assumption 10(a),

h

1 n
— lim A, (In 0:12()\) — 1na,21()\)) < — lim ——— (A= X)) =2(Gn X f0) M (G X, 0)
n— o0 n— 00 0':;2()\) n
EEWRY:
= —()\0.72)\0) lim %(Ganﬁo)/Mn(Ganﬁo) <0,
0 n—oo

for any A # Ag. Furthermore, under the situation in Assumption 10(b), D,(A) < 0 whenever A # .
It follows that lim, e 22(Qn () — @n(Xo)) < 0 whenever A # Xo. As 22(Q,(A) — Qn(\o)) is uniformly
equicontinuous, the identification uniqueness condition holds and 6 is identifiably unique.

The consistency of An follows from the uniform convergence and the identification uniqueness condition.

For the pure SAR process, f = 0 is imposed in the estimation. The consistency of the QMLE of A
follows by similar arguments above. For the pure process, 6%(\) = 1Y/S/,(A)S,(\)Y;, and the concentrated
log likelihood function is In L,,(A) = —2(In(27) + 1) — 21In62(\) + In[S,(A)|. For the pure process, Qn(\)
happens to have the same expression as that of the case where G, X, 3y is multicollinear with X,,. The

simpler analysis corresponds to setting X,, = 0 and M,, = I,, in the preceding arguments. Q.E.D.

Proof of Theorem 5.2

(Show ;;l_n(a? lnaL)\g(x") 2 IHOLAQ(A“)) = op(1)): The first and second order derivatives of the concentrated

log likelihood are
Oln L, (N 1

_ 11a7! _ -1
oy S AT (s

and

8%1n L, (\) > , 1
2~ maioy nWaMnSn()Yn)” = 255

n

YW MW Y — tr([Wa Sy (NP,

where 62(\) = 1Y/S! (A\)M,,S,,(\)Y,,. For the pure SAR process, 3y = 0 and the corresponding derivatives

n T n
are similar with M,, replaced by the identity I,. So it is sufficient to consider the regressive model.
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Because M, X,, = 0 and S,(A\) = S, + (Ao — \)W,,, one has

and
Y!W! MpSn(\Yn = YW MpSn Yy + (Ao — MY/ W. My WY, = Y. W. M, Vi + (Ao — NY! W' M, W, Y,
= (GnXnfo) MpVy + VoG M Vi + (Mo = N [(Gr X B0) M (GnXnfo)
+ 2(Gn X f0) MG Vi + V.G MG V).
As shown in the proof of Theorem 5.1, %"(Ganﬁo)’MnGnVn = op(1). Hence,

I hn hy

and
hn / / hn IYall h’ﬂ / h’ﬂ yal
n n n n

Lemma A.12 implies that V,/ G}, M,,V;, = O, (;%) and V, G}, MGV, = Op(7~). Thus 22Y W) M,,S,(\)Y,, =

n n

Op(1) uniformly on A. From the proof of Theorem 5.1, 62()\) = 02(\) + op(1) = 03 + op(1) uniformly

n

on A, when lim,,_, hy, = 0o. Thus, ﬁ%ng;MnGnVn =LL
n 0

=n
n

V.G MG, V,, + op(1) uniformly on A.

Therefore, one has

hy #@InL,(\) 1 h, , Py B, C1/yy2
FT = _U_g[F(Ganﬁo) Mn(Ganﬂo) + FVnGnMnGnVn] - Wtr([WnSn ()‘)] )+ OP(l)v

uniformly on A. By Lemma A.8, under Assumption 7, Z2tr(G3()\)) = O(1) uniformly on A. There-

fore, by the Taylor expansion, %"(82 lnaL/\Z(i") -z ln;\;()‘“)) = —%"{tr([WnSgl(:\n)]Q) —tr(G%)} + op(1) =
—2hetr(G3 (An))An = Xo) 4+ 0p(1) = 0p(1), for any A, which converges in probability to Ao.

(Show & (P Cel — B(P, (%)) 2 0):

Define Pri(Ao) = —35[(GnXnfo) Ma(GnXnfo) + VG MuGp V] — tr(G3). Then ha OlnLaC0)
%"Pn()\o) +op(1). From Lemma A.9, tr(G!, M, G,) = tr(G!,G,) + O(1), tr[(G! M,G,)?] = tr[(G,G)?] +
O(1) and Y1, (G, MnGr)ii)® = Y1y ((G,Gn)ii)?* + O(35). The tr(G),M,Gy) and tr((G;,M,G,)?) are

O(#) and 7" | ((G},Gr)ii)* = O(7%) from Lemma A.8. Therefore,

E(P, (o)) = _iz(Ganﬂo)/Mn(Ganﬁo) — [tr(GnGY) +tr(G3)] + O(1).
o)
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As L2[P, (M) = E(Pa(M0))] = =2 A +o0(1), where A, = 22 [V G! M, G, V;, — 0dtr(Gl M, G)], 22 [P, (o) —

E(P,(Ao))] = op(1) if A,, = 0p(1). By Lemma A.11 and the orders of relevant terms,
2 B o 1 vt hn - 4 / 2 hn
B(A7) = () var(VGL MG V) = (<) (14 = 30%) Y (G iMnGini)? + 200tr((G MnGn)?)] = O(S1),
i=1

2
which goes to zero. Therefore, % (%{;()‘0) - E(Pn()\o))) =op(1).
(Show /2= alnL N(0,03%) when lim,,_,oc hy, = 00):

Let g, =V, C! M, V;,. Thus,

[hdlnL,(do) 1 [h )

The mean of g, is E(g,) = odtr(M,Cy) = —0o} - tr[(X}, X,,) 1 X, C,, X,,] = O(1) because % = O(1) and

X!\ CnX,
n

= O(1) from Lemma A.6. The variance of ¢, from Lemma A.11 is

M:

= (4 —303) ) _((CrMy)is)* + o5 [tr(C;, My Cr) + tr((C}, My)?)]

I
—

2

.M:

Il
-

= (s = 300) ) (Cnii)* + 05 [tr(C;, Cn) + tr(C)] + O(1),

(3
where the last expression follows because

é((C;LMn)M)2 = iz:l;(cn,uﬁ—i-()(h—ln), tr(C! M,,Cy) = tr(C!.Cr)+0(1) and tr[(C!,M,)?] = tr(C2)+0(1)

from Lemma A.9. The covariance of a linear term @Q,,V;, and a quadratic form V! P, V,, is E(Q,V,,-V! P, V,,) =

Q> Z?:l Pn.ij E(Vpvnivn;) = QL vecp(P,)us. Denote qun = var((GnXnBo) M, Vy, + qrn). Thus,
0ry = 04(CGnXnB0) Mn(Gn X0 0) + 02, + 2(GnXnBo) Myvecp (Cy My )ps

an
As 1/ L B(gn) = \/ ) which goes to zero,

\/h_T&ln Ln(/\O) \/%Ulq" [(GanBO)/MnVn + qn — E(Qn)] hn E(qn)
n

= — . + _—

h"l
_ VOt (G XnBo) MVt an = B(@)] 0y 2, N, i o Tl
&2(Xo) Olgn ‘n—oo n of

As (Cni)? = O(h%), fn S (Crii)? = O(%) which goes to zero when lim, .. h, = oo. Finally, as

lim (OOl ) 4+ 4r(C2)] = Tim (GGl ) 4+ #1(G2) — 242(G)] = Tim [ (Ga L) + tr(G2)].

n—oo N n—oo M n n—oo n
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The limiting distribution of \/ﬁ(jxn — Xo) follows from the Taylor expansion and the convergence results
above. Q.E.D.

Proof of Theorem 5.3 As S,(A) = Sn + (Ao — An )W,
B — Bo = (X, X)X Vi = (A = M) (X}, X)) T X WY,
= (X! X)) XV — (A — M) (X! X)) X G XnBo — (A — Xo) (X X0) 1 X! GV,

As (A = M) (X}, X)L X GV = Op(¥L2) becanse 2252 = O(1) and X202% = Op(1) and A, — Ay =

Op(y/ ) by Theorem 5.2, B, — fo = (X, Xn) "X Vi — (A — X0) (X1 X)) ' X1G X o + Op(¥L2). In

general,
n s 1 X)X, 1 XV, n
e L — — n<rn .\ — n'n e = . X/X lX/ Xn .
n 1
=— /== No) (X' X)X Gu X O :
h ( 0) ( n ) n 60 + P(\/H)
If o is zero, v/ii(B, — Bo) = (FaX2) 1 2ake 1 Op(y /e ) 25 N(0, 03 Timy, oo (Fa2) 1),
As 1
62 = E1/7;3;1(}n)Mms*n(Xn)Yn
= l1/7;5*;1\4”5"1/,1 +2(N\o — Xn)iy,;W,;MnSnYn + (Ao — Xn)QlY,{leManYn
n n n
and %Y,;S;MnSnYn = %V,{MnVn, it follows that
1
£2 2y _ L vy 2 1y
\/E(Un UO) \/H(ann nUO) X (X X ) XnVn
—2,/}%(5\,, —Xo) - i LYW M, S, Y, +1/h£()\ —Xo)?- i W MW, Y.
n n n

Because M, X, = 0, and \/22(G, XnB0)' M,V = Op(1) and 22 (G, X,,80)' MGV, = Op(1) under As-

sumption 10,

N/ N , \/h 1
W, M, S,Y, = GnXn GyVo)' M, V, = WMV, +0p(—) =0
and
Vhn, Vhn
Vhn ., 1 1
= M, GV, +Op(——=) = Op(——=
02 — G’

by Lemmas A.12 and A.14. As E(ﬁVéXn(X,’an)_le’an) = \/—‘;_ltr(Xn(X,’an) X)) = \/0— goes to

n

zero, the Markov inequality implies that %V’Xn(X,’an)_lX,'LVn = op(1). Hence, as lim,_,o hy, = 00,
V(62 = 03) = <= (ViVi = nod) + op(1) 2 N(0, ps — o), Q.E.D.
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Proof of Theorem 5.4

Let Xn = (Xln,XQn), Mln = In — Xln(X{nxln)ilX{n and M2n = In — Xgn(XénXgn)ilXén USiIlg

a matrix partition for (X, X,)~1, Ba1 — Bor = (X}, MonX1n) ' X], Mon Vi — c1n(An — Ao) + Op(¥22), and

n

Bz — Boo = (X, Mi1n, Xo,) " X5, M1, Vi, + Op(¥L2). Therefore,

/75 __ LIy 1 Ly _ [ L
hn(ﬁnl 601)_ \/H(nXlannXIn) \/ﬁX1nM2nVn Cin hn(An /\O)+0P(\/ﬁ)
—Cin

T (B — Xo) + Op(—),

b, Vhn

and \/H(Bng — B20) = (%XéannXgn)*l . ﬁXéanVn + Op(4/ };l—") The asymptotic distributions of Bnl

and B, follow.  Q.E.D.
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