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Appendix A: Some Basic Lemmas

The proofs of the main results depend on the following lemmas. The results state explicitly
that the degree of spatial dependence may grow with the sample size. A way to formulate this
is to consider that the elements of W,.,, 7 = 1,2, are of uniform order O(h,;!) where h,, is such

that lim,, .o (hn/n) = 0, see Lee (2004).

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {A,} and {B,} be two se-
quences of n xn matrices that are uniformly bounded in both row and column sums in absolute
value. Let C,, be a sequence of conformable matrices whose elements are uniformly O(h,1),
where {hy} is a sequence of constants bounded or divergent with n. Then,

(i) the sequence {A, By} are uniformly bounded in both row and column sums,

(ii) the elements of A, are uniformly bounded and tr(A,) = O(n), and

(iii) the elements of A,Cy, and Cp A, are uniformly O(h,').

Lemma A.2. (Lee, 2004, Appendiz A): For Wy, and Brp(\.), r = 1,2, defined for the
SLR model, if |Wyn|l and || Bl at true Ao are uniformly bounded, where || - || is a matriz

norm, then ||B,L(\.)| is uniformly bounded for \. in a neighborhood of Avo.

Lemma A.3. (Lee, 2004, Appendix A): Let X,, be an nxp matriz. If the elements X, are
uniformly bounded and lim,, %X&Xn exists and is nonsingular, then P, = X, (X! X))~ ' X/,

and M, = I, — P,, are uniformly bounded in both row and column sums.

Lemma A.4. (Lemma A.4, Yang, 2018a): Let { Ay} be a sequence of n x n matrices that
are uniformly bounded in either row or column sums. Suppose that the elements an;; of Ay
are O(h,; 1) uniformly in all i and j. Let v, be a random n-vector of iid elements with mean
zero, variance o2 and finite 4th moment, and b, a constant n-vector of elements of uniform
order O(h;lﬂ). Then

(i) Bt Awon) = O(2), (id) Var(v), Ayvn) = O(2),
(i1i) Var (v, Apvn + bon) = O(3-), () vp Anvn = Op(5-),
(0)  vhAnvn = B Anva) = Op((32)2),  (vi) v Anbn = Opl(32)2),
and (vii), the results (iii) and (vi) remain valid if by, is a random n-vector independent of vy,

such that {E(b2,)} are of uniform order O(h,*).

Lemma A.5. (Lemma A.5, Yang, 2018a): Let {®,} be a sequence of n X n matrices

with row and column sums uniformly bounded, and elements of uniform order O(h,'). Let



vp = (v1,-++ ,v,) be a random vector of iid elements with mean zero, variance o2, and finite
(4 + 2eg)th moment for some ey > 0. Let b, = {bn;} be an n x 1 random vector, independent
of vn, such that (i) {E(b2,)} are of uniform order O(h,'), (ii) sup;E|bn|?T® < oo, (iii)
%" Sor 1 [bnii(bni — Ebpi)] = op(1) where {¢n i} are the diagonal elements of ®,, and (iv)
o S0 B2, — E(b2,)] = 0p(1). Define the bilinear-quadratic form:
Qn = by + v, Bpvy, — o2tr(®y,),

and let O'én be the variance of Q. If lz'mn_,ooh};rz/eo /n =0 and {hﬁ‘aén} are bounded away
from zero, then Q,/0q, 4, N(0,1).1°

Lemma A.6. Let Q, = (Qn,7 =1,...,m), where Qp, = b, Vi, + V' ®,., Vi, with Vy,, by,
and ®,,, satisfying the conditions of Lemma A.5. Write ®,, = ®% + &L+ &L  the sum of
the upper triangular, lower triangular, and diagonal matrices of ®.,. Define

Grini = Vi + Ornitni + (Un; — 02) iy 7= 1,...,m,

where {&ni} = &n = (O, + ®L YWV, Let gni = (grmism = 1,...,m)". Then, {gni, Fni} form
a vector martingale difference sequence with respect to the increasing o-fields F ; generated

by {bin - bmniVnt, -+, Uni}, such that (1) Qn —E(Qn) = > 0 8nis
(i) Var(Qn) = 307, E(gnig),), and  (idi) 22 [370 ) gnigy,; — Var(Qn)] = op(1).
Proof of Lemma A.6: We have for each Qj,,j =1,---,m,
Qrn = E(Qrn) = b Vo + Vi@ Vi — 02 t1(Prn)
= b, Vo + V(@Y + &L + @V, — o%tr(D,)
= V(W + &LV, + bV, + V0L Vi — o%tr(P,,)
= V&, + 0.,V + VLV, — 02tr(D,,,)
= Y1 [Vnirni + brnitni + (V3 — %) brniil = D iy Grmi-
Thus, Q, — E(Qn) = Y1 8ni- As & i 18 Fpi—1 measurable, E(gjni|Fni—1) = 0 for j =
1,---,m. It follows that {gy;, F, i} form a vector MD sequence with respect to 7, ;, and that
Var(Qn) = > ;| E(8nig),;), since martingale differences {gy;} are uncorrelated.

It left to show (4ii). It is easy to show that, for r,s = 1,--- ,m, conditional on (b, bsy),

COv[(anv an)|(bm,bsn)] = 20* Z?:l Z?:l QS?""JJ'QSS”JJ' + o Z?:l br7nib8’ni
—I—(M(4) — 3) Z?:l (brmii(bsn,ii + U(B) Zyzl(br,ni(bsn,ii + bs,m'(brn,ii)y

where p(3) = E(v3;) and p = E(vl;). This gives, for r,s = 1,--+ ,m,

15 In a special case where {bn} is a sequence of constant vectors, it is assumed that the elements of b,, are

uniformly bounded and are of uniform order h,, 12 " See Lee (2004, Appendix A).



2 2im1 9rmiFe i — COvl(Qrn, Qsn)l (b1 ben)]
= Yo (V2 mibsini — 202 Y51 i BrniijBsnsig) + e Vi (Ernibsmi + Esnibr.ni)]

+ 21 (03 = 0%0i) (Ernibsnii + Esn,iPrn,ii)) + 2y (Vg = 0°)br s ni

+ 30 (03, — 1) (brniBsnii + bsnidrnyii) + Sorg (03, — ) — 20202, — 02))drn,iiBsn,iis
where each of the six terms can be shown to be the sum of one or several MD sequences.
Under Assumptions 2.1-2.4 and using Lemmas A.1-A.5, the conditions for the weak law of
large numbers (WLLN) for martingale difference arrays in Davidson (1994, p. 299) can be
verified, leading to %”{Z:L:l gmyig;m — Cov[(Qrn Qsn)l by pom)|} = 0p(1), for r,s =1, ,m.
It follows that 22[S°" | gl — Var(Qul(s,....mn))] = 0p(1). The unconditional version

follows from the conditions on b,, given in Lemma A.5.1 [ ]

Appendix B: Proofs for the Cross-Sectional SLR Model

Proof of Theorem 2.1: To show T3 z|x, 2, X2, we first prove the following results:

10,), where Q,, = Var[SSz(00)];

(8) =S8R (00) — N (O, limy, oo &
(b) 5 i1 BniGni — Qn = op(1);
( 2 im1(8ni8n; — 8ni8ni) = 0p(1);
(d) 2(Zn.a0 — Snao) = 0p(1) and (S99 — S 0) = 0p(1).

To prove (a), we have the score function at the null S z(6), obtained from Sgrg(¢)) given
in (2.4) by setting o = 0, 2(0) = 1, and dropping /(0) as it is a constant being canceled out

in the final expression of the test statistic:

2= X, (M) Va(8, ),
WVA(B’ ) (ﬁa ) 2023
Sgir(0) = LVI(B,N) Ban(A2) Wi, Yy, — t2[Gin(A1)], (B.1)

LVI(B, V) Gan(M2)Va(B, A) — tr[Gan (X)),
2(172}7’(0)2— [( m(IB7 ) )Zm]

At the true 6y, S§p(0o) reduces to that given in (2.5). The first component of (2.5) is a

vector of components linear in V,,, the middle three are either quadratic or linear-quadratic

16Details are lengthy and are available from the authors upon request. Under an additional condition that
the smallest eigenvalue of Var(Q,) is strictly positive, the joint asymptotic normality of the LQ vector, Qn,
can be established using Lemma A.5 and the Cramér-Wold device.



(LQ) in V,,, and the last component can easily be written as a vector of quadratic forms in
Vi, ie., VI®3,,.V,, — E(V!®3,,V,,),r = 1,...,k, where ®3,, = diag(ﬁznlm...,ﬁznnm)
and zp; , is the rth heteroskedasticity variable. Under Assumptions 2.1-2.4, it is easy to show
by Lemma A.1 that the elements of II; and Ily defined below (2.5) are uniformly bounded
and are of uniform order O(h,, 1/ 2); and that ®,,r = 1,2, 3, defined below (2.5) are uniformly
bounded in both row and column sums in absolute value. Obviously, the latter is also true
for ®3.,.,7 =1...,k, just defined. Thus, the CLT for LQ form of Kelejian and Prucha (2001)
or its alternative version (under homoskedastic errors) given in Lemma A.5 is applicable to
give asymptotic normality for each of the components in (2.5), where the ‘b,’ vector is non-
stochastic (see Footnote 15). Clearly, ¢/ S5 (0) is also an LQ form in V;, for any non-zero vector
¢, which can be shown to be asymptotically normal by Lemma A.5 and under Assumptions
2.1-2.4. Therefore, Cramér-Wold device leads to the joint asymptotic normality of Sg(6o),
10,).

n

ire., J=S8a(00) = N (O, lim, oo
To prove (b), consider a special case of Lemma A.6 where b,,, are nonstochastic. The
conditions of Lemma A.6 are easily verified under Assumptions 2.1-2.4, and the result follows.
To prove (c), note that the elements of Sg5(60p) are mixtures of linear and quadratic
forms, 11V, and V,®,,V;, — tr(®,), all having an MD form )"} | g,;. It suffices to show that
IS (FkniGrini — Gknigrmi) = 0p(1), k,r=1,2,...,5+k.
As they are similar, we pick a typical and complicate element, corresponding to A1 in Sg5(60o),
Vi®oV, — tr(®2) = Y1 92.ni, to prove the result. Let gon = (92.n1s-..,920n) . Write
&2n = gon(0,) and denote go,(0) = %ggn(Q). By the mean value theorem (MVT), we have
& i1 (o i = Giomi) = 180, (0n)82n (0n) — 85 82n) = 285y, (0n)E2n (00) (0 — b0),
where 6, lies elementwise between én and 6y. Referring to (2.6), we have
g20(0) = Vi (01) © &2 (1) + [Va (1) © Va(61) — 021,] © 2 (),
where © denotes the Hadamard product, 6; = (5, )\), and ¢2(\) is a vector of diagonal
elements of ®5. Thus, g2,(0) = Vn(91)@fzn(91)+Vn(91)®égn(01)+[2Vn(01)@Vn(ﬁl) —Jn 2] ©
$2(N) + [V (1) © Vi (61) — 021,] © h2(N), where V3, (01) = 20, Viu(61), €20 (61) = 297600 (01), and
Jn.o2 is an n x dim(f) matrix with its o column being 1, and the other columns being zero.

As V,,(01) = Bap(A2)[Bin(A1)Ys — X, 0] from Model (2.1), we obtain

Vo (01) = [=Ban(A2)Xn, On, —Ban (X)W1 Yy, —Wap(Bin(M)Yn — Xn0)],



and by £2,(01) = (BY(X) + ®5(N))V,(61), we obtain £a,(01). It is easy to see that
Vo(01) = Vi, = Z (61 — 010) + (M1 — A10) (A2 — A20) Worn Wi Yy, + (A2 — A20) Wan X0 (8 — Bo),

where Z,, = [BonXn, BonW1nYn, G2,Vy]. Further, Y, = By, X80 + By,! By, V;,. Therefore,
%g’% (01)&2r(0r) can be written as sums of weighted averages of v, r = 1,2, 3, 4, with weights
depending on the elements of matrices Wy, Wa, and ®2()\,) and the elements of (6, — )
appearing in the ‘weights’ either multiplicatively except (A, —Ag) which also appears in ®5(\,,).
Clearly, ®2(\,) ~ ®2(A\g), where ¢ ~' denotes asymptotic equivalence. This implies that, e.g.,
Ltr(@2(A\n) = 2tr(®2(Xo) +0p(1), because b, — 0o = 0,(1) due to f, — 0 = 0,(1). With these,
Assumptions 2.1-2.4 and Lemmas A.1, A.2 and A .4, straightforward but very tedious process
leads to 2g (0,,)&20(0n) = Op(1). Hence, the result (c) follows.

To prove (d), we choose the negative Hessian matrices evaluated at the null estimate,
0,,, to be the estimators of Yn.a0 and X, g9, ie., in@g = H;,ae(én) and imgg = Hgﬂg(én).
The expressions of H} ,(0) and H y,(0) are given at the end of the proof of Theorem 2.1,

from which ¥,, .9 and ¥, g9 are obtained. The result %(in’ag — Yn.a0) = 0p(1) follows if:

(7’) l( na9(é ) naG(QU)) = Op(l)’ and (”) %( na9(00) na@) = Op(l);

and similarly, the result %(inﬁg — Xn.00) = 0p(1) follows if

(i47) %(HZ%(@L) - H;%(GO)) = op(1), and (iv) %(HZ,GQ(QO) - En,ee) = op(1).
The proofs of (i) and (¢ii) are straightforward applications of the MVT. We thus focus on the
proofs (ii) and (iv) by picking up a key term, %(Hz,/hh — Y51\ ), to show the details. From
the H p4(0), we have HJ | = 0—12|]Bgnl/[/1nYn||2 + tr(G3,,). It follows that
S5 — Boaun) = 5 ViBg,' GlGinBy, Vi — ofte(By, G, G By, ) + 50, Gin By Vs

where 7, = G1, X, 0. Hence, by Lemmas A.1 and A4, 1 = (H, Ay T Enan) = 0p(1).
Now, consider the - and a-components of Sg5(#) evaluated at the null estimate 6, of 6,

SgLR,B(én) => " 8nip and S§LR,a(6~?n) =Y " | 8ni,a- We have by the mean value theorem:
0= SLR,e(é ) SSLR 9(90) + 507 SSLR a(én)(én - ‘90)a (B'2)
S;LR,a(é ) SSLRa(HO) 007 SSLR,a(én)(én - 90)» (B-3)

where 0,, lies elementwise between 6,, and 6. As 6, 2, 6o, 6 2, fp. Hence, by the results

in (d), =757 S518.6(On) = Snp9+0p(n) and —3575§ 5 o (On) = Sag+0p(n). It follows from (B.2)



that, /1[0, — 6o] = [nEglee]ﬁ stro(f0) + 0p(1), and by substituting this into (B.3),

ﬁsgm,a(én) = ﬁSSLR,a(GO) - ﬁza@z;éesgm,e(eo) + Op(l)a (B.4)

which is the asymptotic representation given in (2.10). Clearly, if S§(6p) has the MD de-
composition (2.7), then (B.4) or (2.10) reduces to the asymptotic MD decomposition:

F755im.a(0n) = = 31 (8nia — Tngnis) + 0p(1)

given in (2.10). Therefore, the joint asymptotic normality of Sg z(fo) given in (a) and the

asymptotic representation (B.4) or (2.10) show that

Tr98m.a(0n) ~ N (0, limy .0 L), (B.5)

where Y, = Var[Sgy (6,,)]. Furthermore, (B.4) immediately leads to
Tn = Qn,aa - Qn,aBF;@ - FnQn,Ga + FnQn,GﬁF;L + 0(”)5 (BG)

where I'y = 2 00, 4y, and (00, Do et Cnaa) = n. When Sg5(6p) has the MD
decomposition (2.7) so that €2, has an OPMD form, then (B.6) can be written as

Tn = Z?:l (gni,a - anni,e)(gni,a - anniﬁ)/ + O(n) (B7)

Based on the approximation to Y, in (B.6), a consistent estimator would naturally be,

Yn - Qn aa ﬁn,aerg - fnﬁnﬁa + fnﬁn,GOF;“ (BS)

)

which reduces to a consistent OPMD estimator based on the approximation to Y, in (B.7),

Tn = Z?:l(gm',a - anniﬁ)(gm‘,a - anm',&)l- (B.Q)

With the results (b)-(d), and using (B.5) and (B.7), it is easy to show that %(Tn—Tn) = o0p(1).
Positive definiteness of %Tn (for large enough n) follows from the positive definiteness of
%En,(;g and %Qn stated in the theorem, which can be seen by the simpler form of (B.6):
Y, = (=T, I) Q0 (—Tn, I) + o(n), completing the proof of the result for the robust test.

If V,, is normally distributed, ¥, o9 = 2,49 and X, 99 = €1, 99. Hence, I';, can be con-

sistently estimated by (Y7 | 8nia&h; o) (D1 Enio8h; o) 's leading to the test Tgip and the

second part of the results in Theorem 2.1. [ ]

Hessian Matrices. The negative Hessian matrix, HY ,(0) = —%S&R’a(ﬁ) required

for the estimation of ¥, 49 and the proof of (d), has elements: 5[V, (3,A) ©® Z,)' Xn(X2),



#Z;Ldiag(vn(ﬂ7 MV (B, N), %Z;L[(B%()‘?)Wlnyn) © Va(B8,A)], and #ZH(WlnBln()‘l)Yn -
WinXnB) © V, (B, A)]; and the negative Hessian matrix, H 99 0) = —%ngﬁ(ﬁ), required for

the estimation of ¥, g9 and the proof of (d) above equals:

Ho s, 21X, (A2)Va(B,2), 22X, (A2) Ban(A2) Win Yo, LX) An(A2)Un (B, A1)
~ ValBVIP = g G V(8,0 Ban (A2) Wi Yo, E V1 (8, ) Gan(Aa) Va8, )
~, [ Ban(M2) Wi Y ? + tr[G3,(M)], 22 Y Wi, An(A2)Un (B, A1)
~ ~, 77 [1G2n(AN2) Vi (B, V|12

where Hm@g = %X;L()\Q)Xn()\g), An()\g) = WénBQn()\Q) + Bén()\z)Wgn and Un(ﬁ, )\1) =
B1n(M)Yn — X505 ||| denotes the Euclidean norm, and recall that ® denotes the Hadamard

product and that diag(-) forms a vector by the diagonal elements of a square matrix.

Proof of Theorem 2.2: Similar to the proof of Theorem 2.1. [ |

Hessian Matrices. To facilitate the derivations of the Hessian matrices required for

estimating ¥* | and 37 ,,, write the first two components of (2.17) as

Y@L Ya(A) — 252 (A {@1 (V)] = V2B, () Mz ) Wi Yo
G (M) = Xn Dy (A2) X7, Cn(A2) G1n (A1) Yy B, (A1) My (A2) B (M) Yo,
V) @2(NYa(N) — 2252 (A ex[2(N)] = Y. Bl (\) M (ha) Bia(M)Ya
— a5 1t[G2n(N2) = By, (A2)Wapn X Dy (A2) X1 1Y, B, (M) M; (A2) Bin (A1) Yo,
where Cy,(A2) = By, (A2)Ban(A2), Dn = X[,Cr(X2) X, Myy(A2) = By, (A2) My (X2) Ban(A2), and
M;*(A2) = B, (A2) M (X2)G2n(A2) My (A2) Ban(A2).
To simplify the presentation, we write By, = Bp(A\r),r = 1,2, Gy, = Bp(\r),r = 1,2,
Cr = Cn(X2), Dy = Dyp(N2), My, = My(Xo), M = M*(\p), and M* = M**(\g). Let C,,, M*

and M;* be, respectively, the derivatives of Cy,, M;* and M**, and D,, the derivative of D,

with respect to Ao.!7 The negative Hessian matrix, Hy, oA (A) = _%ng,a(/\), takes the form
0N 2zl + wp (VB MW, + WinMiBr)Ya)] )
T, =

3Znla3 — ﬁ(YABinM;BlnYn)]

(nx1)’

where ¢f = —2V,(\) @ (BanWinYn), @5 = [ — quﬁgi()\) + mwmﬁm()\)}(nxl), wy =

My, © )i, @ = Won Xn D2 X! By + Bon X D=L X! Wap, — Bon X D X' Bl w9 = —2V,,(\)®
n n*"2n n n n"2n

(WanBi1nYn — Won X, 3), and {Gpi(A\)} = V() = Vi (Bu(N), A).

""We have C = —(B5,Wan + W3,B2,), Dn = —D;'X,Co X, DY, My = Cn — Co X, Dy X, C +
Co XD X! Cp 4+ Cr XnDp X!,Cy, and M;* can easily be expressed in terms of C,,, D,,, and M.



The negative Hessian matrix, H,,(\) = —% sr(A) has the elements:

Hiya, = YaWi, MaW, Yo + Str(GR, — Xo D X,CuGL )Y By, M Bl Y
—ﬂtr(Gln — XD, X CrG1) Y, (B, MWy, + Wi, M Byy,) Yo,
Hey s, = —Ye B M WY, + 2te(Gin — XDy X, CuGin) Yy Bl My Bin Yo,
— a5 tr(Xn Dn X[, GG + XD X! CrG1,)Y! By, M} By, Yy,
HY 0, = — Yo (B, My Wy, + Wi, M B1,,) Yy
+ o tr(Gan — By, Won X, Dy X1) Y, (B, My Wy, + W1, M;: Bin ) Yo,
Hyyn, = YaBl, M BinYy — 72tr(Gan — W3, Bon X, Dy X1, B, M Bi, Yy,
— o tx(GE, + W5, Wan X Dy X}, — Wi, Bon X Dy XY B, My Bi Y.

Appendix C: Proofs for the Panel FE-SPD Model

Proof of Theorem 3.1: To show Tspp|m, L, X% when the original errors {v;} are iid
normal, with the help of Lemmas A.1-A.6, using the fact that the elements {v;‘} of Vi are
totally independent (iid normal), and referring to the increasing o -fields Fy ; generated by

(vf, -, J) one can easily show, in the same way as the proof of Theorem 2.1, the following;:

(a) ﬁsgpn,a(é]v) — N(Op, limy—co %Y n), where T = Var[Sgp o (On)].

(b) % Zjvzl gNj(QO)gﬁfj(eO) - %Var[Sé’PD(QO)] = op(1);
() & Zjm1 [Bni8h; — 8ni(00)gl;(60)] = op(1).

The result, Tspp|m, L, X%, thus follows when {v;;} are iid normal.

The proof of Tgpp|m, 2, X2 is much trickier when the original errors {v;;} are allowed to
be nonnormal (though still iid), since in this case it is not guaranteed that {v;‘} will be again

totally independent. It amounts to show
(2) 5SS al0x) 25 N(Og, limy oo £ ), where T = Var[Sgep o ().
(b) r - %Var[Sg’PD(GO)] = op(1);
(¢) & X1 (8ns8hy — 8nigly) = 0p(1) and 5 37 (dwydyy; — dydR;) = op(1);
(d) %(BNa0 — Bnao) = 0p(1) and F(Zn00 — Bn0) = 0p(1).

To show (a), noting that Viy = (Fp 7| ® In)Vyr, the components of the score function
SSpp(00) given in (3.7) can all be written as linear, or quadratic, or linear-quadratic forms of

Var, a vector of iid elements. Lemma A.5 and Cramér-Wold device lead to the asymptotic



normality of ﬁSng (Ao), and hence the asymptotic normality of \/%S‘FDE,SPD@ (On).

To prove (b), note that Sgpp(6o) = Zjvzl gn;(bo) = Zé\le gn;j, where

Iy v7,
viij + (v;? — ag) b1,

BNj = Y vi&e; + (v ;2 03)b2; + I 07, (C.1)
vi&s; + (V32 — 95)Paj,

21223 (U;Q - O-g)a

where {&;} = & = (@Y + ®L)Vy, and ¢,; are the diagonal elements of ®,,r = 1,2,3. All
quantities are defined in (3.7), and A(0) in the last element of gn; is dropped as it is canceled

out in the final expression of the test statistic. We have,

Var[Sgpp (60)] ZVar gnj) + ZZCOV gNj, BN¢)- (C.2)
J=1 045

Recall that ® denotes the Hadamard product. A vector raised to rth power is operated elemen-
twise. Let f; be the jth column of Frr_1®1, and q,; be the jth column of (Frr_1®1,)(®}+
&), for j =1,...,N. We have vl = fJ’-VnT and &; = q;jVnT; v}‘fﬁrj = V’nT(qu;j)VnT; and

=V}, r(£;£})Vyr. Using the following easily proved results:

Cov(cyVor, V. 1 AV, 1) = u(()?’)c?\,a]v, and
Cov (V1 ANV, Vi By Vir) = () — 308)aiyby + oftr{An(Bx + By,

for conformable matrices Ay and By and vector ¢y, with ax and by being the vectors formed

by the diagonal elements of Ay and By, respectively, and u(()g) and ugl

) being, respectively,
the 3rd and 4th moments of v;;, we have the key elements in Cov(gnj, gne):

3)

COV(UJ»W&@) = py £(E ©ap),
Cov(vt,v}?) = uE(EOf),
Cov(v *érw &) = (1) —308)(F © ary) (fe © are) + oftr[(Eral;) (Focly + o)),
Cov(vi2,vi&e) = (uS? = 308)(£ © 1) (£ © are) + odtel(E8]) (Fealy + aref))],
Cov(v?,02) = (ub? —30d)(F © £) (£ © £) + ot (58] (Ef] + £.£))),

r = 1,2,3. It is easy to see that (i) fif, = 0 for all j # {, (i) fiq, = 0 for £ < j, and
(iii) f; © q,; = 0.1® Thus, all terms vanish except £i(fe © fy) and (f; © £;)'(f, © ), and

"®The result (i7) is due to the fact that v} is uncorrelated with & for ¢ < j, and (i4i) follows from (Frr-1 ®
L)(®@44-®!) = Fror_1®(®*+®Y) and hence (Frr_1Q1,)O[(Frr-1®(®4+dY)] = 0, where ®, = Ir_1 @,..



subsequently all covariances vanish except,

Cov(v}, v;2) = u$ 1(f, © £) and Cov(vi2,v}?) = (u? — 308) (£ O ) (R O £).  (C.3)

Note that (i) the vector f; has only (7' — 1) nonzero elements, and (i¢) for integers k > 1 and
m>1, f]’? © )" # 0, only when the indices j = (i,t) and £ = (i,s), t # s. These show that,

N N n T-1 n T-1
> > Covigng, gnve) =Y ( Z E(dy,idly ;) ) => ) Edyady,), (C4)
G=1 0£j i=1 t=1  s(£t)= i=1 t=1

!
where dy it = {letvm(U‘Q UO)¢1Zta( 12— JO)¢2@t+H22tU'Lt>(U*2 UO)¢3zt72c1r22m(U:t2_o-(2))}

and dy ;; = Zs(;ét):l dyis. Letting dN,it and dj’v i+ be theestimates of dy;; and d%;;; at the

null, one can show (details are available upon request from the authors) that

n T-1
*ZZCOV gNj, 8NL) — *ZZ szthzt = op(1). (C.5)
J=1 t#j =1 t=1

It left to prove %{ Zjvzl gN8N; — Z;\le E(gNng)} = 0p(1), which can be done by referring
to the proof of Lemma A.6.
The proofs of (c) and (d) can be carried out by referencing to the proofs of (c¢) and (d) of

Theorem 2.1, with details being available upon request from the authors. [ |

Estimation of ¥y .9 and Xy . A pair of consistent estimators of ¥y .9 and X gg
are the negative Hessian matrices, HY 4(\) = —%S;PD’O[(H) and HY 5o (0) = —%ng/\(@),
evaluated at the null estimate ,,, which take identical forms as these for the SLR model given
in the proof of Theorem 2.1, Appendix B, except that n is replaced by N and the relevant
quantities are replaced by the corresponding bold-faced quantities for the SPD model, and

hence are not repeated here. These matrices are also required in proving (a) and (d) above.

Proof of Theorem 3.2: Similar to the proof of Theorem 3.1. [ |

Estimation of 2* o) and 37 NAA- A pair of consistent estimators of E* o and 373 NAA
are the negative Hessian matrices, Hy \(A) = — 55 SSPDA(/\) and H}y, ,,(A) = 8(2\' Sgpp A (A)s
evaluated at the null estimate Ay, which take identical forms as these for the SLR model given
in the proof of Theorem 2.2, Appendix B, except that n is replaced by N and the relevant
quantities are replaced by the corresponding bold-faced quantities for the SPD model, and

hence are not repeated here. These matrices are required in the proof of Theorem 3.2.
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Appendix D: Proofs for the Panel FE-DSPD Model

Proof of Theorem 4.1: To show T3gpp|m, 2, X2, it suffices to show

(8) e Stsmna(On) = N (Og, limy oo %Y ), Where Ty = Var[Ssen o (01)];

(b) % i1 8ni(00)8n;(00) — %Var[SSSPD(HO)] = 0p(1);

() & 2i-1[8ni&hi — 8ni(00)81: ()] = 0p(1);

(d) ¥ (ENa0 = Zna0) = 0p(1) and {(En0 — Zno9) = 0p(1).

To show (a), we first establish the joint asymptotic normality of Sgepp(6o) given in (4.4).
While this can be done along the same line as that for Spepp 4(69) of the null model given in
Yang (2018a), it is useful to give some technical details in order for a better understanding
of our methodology in constructing the tests for homoskedasticity for FE-DSPD model. Note
that SSgpp(fo) contains three types of terms: IIAV y, AV @AV y and AV, WAY nq. Let
Vor = (Va1,- .-, Var)', the nT x 1 vector or the original iid errors. Then, AVy = FpV,p,

where Fp is the first-differencing transformation matrix. Therefore, we have,
AV y = IV, = S5 TV,
AV BAVy =V &V, =YL ST viat v,

AVNOAY yy = VW AY vy = S0 VU5 AY,,

for suitably defined *-quantities, where ¥} = ZST:1 vy, and II}, @7, and ¥}, are, respectively,
the sub-vectors or sub-matrices of II*, ®* and W, partitioned according to t,s = 1,...,T.
Now, based on the original model from which (2.3) is obtained, we have Y;,; = BfnlBQnYno +

Ml + BfnlBgnl Va1, where 1,1 collects all the other terms in the model. Thus,
T * T o T T *
Zt:l r;t\l’t-AYnl = Zt:l ritq’t-YnO + Zt:l Vét‘I’Ian + Zt:l Vritlpt-nnl

as in Yang (2018a). Therefore, for every non-zero (p+ k+5) x 1 vector ¢, ¢ SSspp(6o) is a sum
of liner, bilinear and quadratic forms in Yo, V; and Vi, t,s = 1,...,T, and the asymptotic
normality of ¢/ S§spp(f0) can be proved under the assumptions stated in the theorem and using
Lemma A.5. Finally, Cramér-Wold devise leads to the joint asymptotic normality of S5pp(6o)-

Next, similar to (2.11), an asymptotic expansion can be developed for Spepp (On):
SIC))SPD,a (éN) = SSSPD,a (90) - I‘NSSSPD,G(QO) + Op(\/ﬁ)a

by applying MVT and the results in (d), where I'ny = Zn 09 Z 1Y) ENa0 = —E[%SSSPD’Q(GO)],
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and Xy g9 = —E[% 5spp.o(P0)]. This and the joint asymptotic normality of Sggpp(6o) lead to
e SSspp.a(On) 2> N(0,1i L
N DSPD,a( N) - ( , MMy — oo 77 N)a

where Ty = Qn a0 — TNQN o — QN 0oy + QoI Using the MD decompositions for
Spse,a(f0) and Sgsep (00), we have Yy = 3710 El(8nia — T'N8ni o) (8nia — Tn8nio)']-

The proof of (b) follows closely to the proof of Theorem 3.3 of Yang (2018a) using the
Hessian matrix given below. Proof of (¢) can be carried out along the same line as that of the
proof of Theorem 2.1. The proof of the second part of (d) is given in the proof of Theorem

3.3 of Yang (2018a), and that of the first part can be done in a similar manner. [

Hessian Matrices. We now give the negative Hessian matrices Hy, 4(0) = — %Sgsm,a(ﬁ)
and HY 4,(0) = _%Sgspn,e(e) required for estimating 3y o9 and Xy g9, and for proving (a)
and (d) above. Recall AV (53,0) = Ban(A3)[Bin(AM)AY N — Ban(p, A2)AY n 1 — AX N /.
Denote AU(61) = B3y (A3)AVN(3,6) = Bin(M)AY N —Ban(p, \a)AY y—1 — AX v /3, where
01 = (0,61)" and &1 = (p, A1, A2)'. First, HY o(0) has its jth row, j =1,...,k:

— LAV (8,8)(Crl®2n;) [Bsn(A3)AX N, 52z AVN(B,6), Bsn(A3)AZy, WsnAUN(B,61)],

where AZy = [AY N1, WinAY y, WonyAY y _;1]. The expression for Hy gg(6) is available
from Yang (2018a, Appendix C). Here we give a simpler form to facilitate the numerical
implementation of our testing methods. Denote Q, = Qu(\3) = #Var(AU) =Cr1 ®
(B}, Bs,)~t. The AQS subvector Spepp¢(0) defined in (4.2) can be rewritten as

LAXN QT IAU(G),

L AU’(&l)leAU(Ql) - N

204 2027

SSPD,G(G) =
#AZNQu_lAU(Gl) + /.L((Sl),

5z AU (61)(Cr L, © A(Xs))AU(6y),
where 11(8;) = (tr(Cy'Dy,—1),tr(Cy' Dy Win), tr(Cy' Dy, 1 Way)) and A(X3) = W5, Ba,(\3) +
Bs,,(A3)Ws,,. We have the rows of HY o,(6):

Hp = HZAXN[Q7AX N, HO7MAUG), Q7 AZy, —Qp AUG)],

He.p = 2 [AU/(0)9 T AX N, HAU (0001 AU(0) — 5, AZ'QIAU(6), —3AU ()07 AU(9)],

HS y = L [AZVOTIAX Yy, AZYQTIAU(61), AZVQTIAZN — 1(61), —AZN Qg AU (61)],
HS o= 2 [AU'(6,)Q5 [AX y, AU(6:), AZy], AU (0) W5 W3y AU(6;) — (T — 1)tr(G3,)],

where Q7 = 8%39;1, and f1(01) = a%i,u((sl).
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Proof of Theorem 4.2: Similar to the proof of Theorem 4.1. [ |

Hessian Matrices. The negative Hessian matrices, Hy 5(6) = —55 SDSPD,a((S) and
HY 55(6) = —%S;SPD 5(0), for the estimation of 3%, 5 and X7 55 and for the proof of Theorem

4.2 are given below. As in the regular AQS test, Hjy os(0) has its jth row:
AV () (Crly @ Z0j) AV 6(0) = 115, 5(A)TR(G) + iy, (Ns)GR5(6), 5 =1,k

where AV 5(6) = 2 AVN(8), 1 5(As) = g, (As) and 5325(6) = 73:67(0). Using the
relation AV y(8) = C1/2MN()\3)AYN(6), and the quantities AYx(8) and 632(5) defined in
Section 4.3, the d;-components of these derivatives can easily be obtained. The derivatives
w.r.t. A3 are more tedious as they involve the projection matrix My (A3) but are straightfor-
ward. Alternatively, numerical derivatives can be used.

Now, for HY ;5(), using the AZ, notation introduced above and denoting uj () =

(115(0), 113, (6), 13, (0))'s Spspp 5(0) can be written more compactly as:

AZ\ Bl (As)CR AV N (8) — i, (6)532(6),
AV (8)[Crl) ® Gan(A) AV () — 115, (A3)5R (9)-

SSPDg (5) =

Therefore, we obtain the components of Hy 55(6):

H; s, = AZBhy(As)C AV s, (0) — g, 5, (D)2 (8) — 3, (6)5325, (),
Hj,,, = AZyBhy(A3)CR AV, (6) — Az;vngc#AVNw) — 15,5, (0)FR2(8) — w3, (8)532 5, (6),
H;Bél = ZAV/ [C -1 ® G3” 3

] VN 51 :uig (>‘3)&}k\72,61 (5)7
C_ 1 ® G3TL >\3 ]
)TN

Ve (0) + AV (9)[Crt ) @ G3,(A3)] AV (6)
2 (0),

where an quantity with an extra subscript indicates the partial derivative in row direction, e.g.,

)] AV
Hj ,, = 2AV/ (S AV
_N§3A3(/\3)5N( ) — /J>\3( 3

A\~/N751 (0) = %A{/'N(d), and 5 5 (6) = 3%3#;1(5)- The rest are straightforward, although

the derivatives w.r.t. Az are tedious. Again, numerical derivatives can be used in these cases.
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