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This paper investigates asymptotic properties of the maximim likelihood

estimator and the quasi-maximum likelihood estimator for the spatial autore-

gressive model. The rates of convergence of those estimators may depend on

some general features of the spatial weights matrix of the model. It is im-

portant to make the distinction with different spatial scenarios. Under the

scenario that each unit will be influenced by only a few neighboring units,

the estimators may have
√

n-rate of convergence and be asymptotic normal.

When each unit can be influenced by many neighbors, irregularity of the in-

formation matrix may occur and various components of the estimators may

have different rates of convergence.
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1. INTRODUCTION

Spatial econometrics consist of econometric techniques dealing with empirical economic

problems caused by spatial autocorrelation in cross-sectional and/or panel data, see, e.g.,

the survey by Anselin and Bera (1998), and the books by Cliff and Ord (1973), Anselin

(1988), and Cressie (1993). Possible dependence across spatial units is a relevant issue in

urban, real estate, regional, public, agricultural, environmental economics and industrial

organization. To capture spatial dependence, the approaches in spatial econometrics are to

impose structures on a model. One is in the domain of geostatistics where the spatial index

is continuous (Conley (1999)). Another is where spatial sites form a countable lattice. In

this paper, we are concerned about spatial models on lattices.

Among the lattice models, the class of spatial autoregressive (SAR) models by Cliff

and Ord (1973) extends autocorrelation in time series to spatial dimensions. The spatial

aspect of a SAR model has the distinguishing feature of simultaneity in econometric equi-

librium models. Earlier development in testing and estimation of SAR models has been

summarized in Anselin (1988), Cressie (1993), and Anselin and Bera (1998), among others.

Recent empirical applications of the SAR model in the main stream economics journals

include Case (1991), Case et al. (1993), Besley and Case (1995), Brueckner (1998), Bell and

Bockstael (2000), Bertrand et al.(2000), and Topa (2001), among others. The SAR models

can be estimated by the method of maximum likelihood (ML) (Ord (1975), Smirnov and

Anselin (2001)) as well as methods of moments (Kelejian and Prucha (1999)). In this pa-

per, we investigate asymptotic properties of the maximum likelihood estimator (MLE) and

the quasi-maximum likelihood estimator (QMLE) for the SAR model under the normal

distributional specification. The QMLE is appropriate when the estimator is derived from

a normal likelihood but the disturbances in the model are not truly normally distributed.

In the existing literature, the MLE of such a model is implicitly regarded to have the famil-

iar
√

n-rate of convergence as a usual MLE for a parametric statistical model with sample

size n (see, e.g., the reviews by Anselin (1988) and Anselin and Bera (1998)). Manski

(1993) has criticized the literature on the SAR model on the grounds that the equation of

a SAR model does not specify how the spatial weights matrix should change as the sample
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size changes.2

Our investigation below provides a broader view on the asymptotic property of the

MLE and the QMLE. It shows that the rates of convergence of the MLE and QMLE may

depend on some general features of the spatial weights matrix of the model. The MLE

and QMLE may indeed have a
√

n-rate of convergence and their limiting distributions are

normal. But, under some circumstances, the estimators may have a low rate of convergence

for some parameter components of the model and may even be inconsistent.

These results have some counter parts in spatial statistics. An asymptotic is called

increasing-domain asymptotic when it is based on a growing observation region. It is

called fixed-domain asymptotic (or infill asymptotic) when it is based on increasingly dense

observations in a fixed and bounded region (Cressie 1993 and Stein 1999). Mardia and

Marshall (1984) and Cressie and Lahiri (1993) give consistency and asymptotic normality

results for the MLE and related likelihood estimators under increasing-domain asymptotic

for regression models with spatial correlated disturbances.3 Ripley (1988) pointed out that

for fixed-domain asymptotic, as interactions will increase with observations, there are no

theoretical basis for the usual behavior of a MLE. No general results are available for the

MLE under infill asymptotic (Cressie (1993, p.101), Stein (1999)).

This paper is organized as follows. In Sections 2, the spatial autoregressive model

is presented and regularity conditions are specified. We make the important distinction

between models with and without the presence of regressors. In Section 3, we show that

when spatial varying regressors are really relevant, identification of parameters can be

assured if there is no multicollinearity among the regressors and a spatially generated re-

gressor. The MLE and QMLE can be
√

n-consistent and asymptotic normal under some

regularity conditions on the spatial weights matrix. Section 4 considers the event of multi-

collinearity where the spatially generated regressor is collinear with the original regressors.

Examples are given. Under such a circumstance, model parameters can be identified only

through spatial correlation of outcomes. It is important to make the distinction with dif-

2 See the footnote 7 in Manski (1993).
3 Section 7.3.1 of Cressie (1993) provides a review of some related results under increas-

ing domain asymptotic on the Markov random field.
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ferent spatial scenarios. Under the scenario that each unit will be influenced by only a

few neighboring units, the MLE and QMLE may still have
√

n-rate of convergence and

be asymptotic normal. Section 5 considers the spatial scenario that each unit can be in-

fluenced by many neighbors. In this situation, irregularity of the information matrix may

occur and various components of the QMLEs may have different rates of convergence. This

includes the MLE and QMLE for the (pure) SAR process. In Section 6, examples on the

inconsistency of the QMLE are presented and this phenomena is related to the notion of

infill asymptotic (Cressie 1993). Section 7 provides the conclusions. Some useful lemmas

and brief proofs are collected in the Appendix.4

2. SPATIAL AUTOREGRESSIVE MODELS AND QMLE

The SAR model is

(2.1) Yn = Xnβ + λWnYn + Vn,

where n is the total number of spatial units, Xn is an n× k matrix of constant regressors,

Wn is a specified constant spatial weights matrix, and Vn is a n-dimensional vector of i.i.d.

disturbances with zero mean and finite variance σ2. The weights may be based on physical

distance, social networks, or ‘economic’ distance (Case et al., 1993). This spatial model

is an equilibrium model.5 Let θ0 = (β′
0, λ0, σ

2
0)

′ be the true parameter vector. Denote

Sn(λ) = In − λWn for any value of λ.6 The equilibrium vector Yn is

(2.2) Yn = S−1
n (Xnβ0 + Vn),

where Sn = Sn(λ0) is nonsingular. When there are no regressors Xn in the model, it

becomes a pure SAR process:

(2.3) Yn = λWnYn + Vn, .

4 Detailed proofs can be found in the long version of this paper, which is available from
the author’s web site: http://economics.sbs.ohio-state.edu/lee/.

5 Manski (1993) has introduced an endogenous social effect model where the expected
values of spatial neighbors are used in place of WnYn in (2.1). The expected values satisfy
social equilibrium equations and can be derived from them. Manski’s model can be a com-
petitive alternative to the SAR model. It is of interest to investigate model discrimination
issues of these two models in future research.

6 A list of frequently used notations in the text is summarized in Appendix for reference.
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and Yn is simply derived from Vn. To emphasize the distinction of (2.1) and (2.3), the

model with Xn in (2.1) is termed the mixed regressive, spatial autoregression model in Ord

(1975) and Anselin (1988). Whether spatial varying regressors Xn in (2.1) are relevant

or not plays a distinctive role in estimation. In the presence of spatial varying regressors

Xn, in addition to the ML method, the method of instrumental variables (IV) can be used

(Anselin 1988; Kelejian and Prucha 1998; and Lee 2003). However, the IV estimation

method will break down when all the spatial regressors are really irrelevant, and one can

not test the joint significance of the regressors in the IV framework (Kelejian and Prucha

1998). These are so, because there are no valid IV’s available when existing regressors are

irrelevant. The ML method is still applicable. These features have interesting implications

on model identification and asymptotic distribution of the MLE and QMLE.

Let Vn(δ) = Yn − Xnβ − λWnYn where δ = (β′, λ)′. Thus, Vn = Vn(δ0). The log

likelihood function of (2.1) is

(2.4) lnLn(θ) = −n

2
ln(2π) − n

2
lnσ2 + ln |Sn(λ)| − 1

2σ2
V ′

n(δ)Vn(δ),

where θ = (β′, λ, σ2)′. The QMLE or MLE θ̂n is the extremum estimator derived from the

maximization of (2.4). The estimation of the pure SAR process in (2.3) can be regarded

as a constrained estimation of (2.1) by imposing β = 0. Computationally and analytically,

it is convenient to work with the concentrated log likelihood by concentrating out the β

and σ2. From the log likelihood function (2.4), given λ, the QMLE of β is

(2.5) β̂n(λ) = (X ′
nXn)−1X ′

nSn(λ)Yn,

and the QMLE of σ2 is

(2.6) σ̂2
n(λ) =

1
n

[Sn(λ)Yn − Xnβ̂n(λ)]′[Sn(λ)Yn − Xnβ̂n(λ)] =
1
n

Y ′
nS′

n(λ)MnSn(λ)Yn,

where Mn = In − Xn(X ′
nXn)−1X ′

n. The concentrated log likelihood function of λ is

(2.7) lnLn(λ) = −n

2
(ln(2π) + 1) − n

2
ln σ̂2

n(λ) + ln |Sn(λ)|.

The QMLE λ̂n of λ maximizes the concentrated likelihood (2.7). The QMLEs of β and σ2

are, respectively, β̂n(λ̂n) and σ̂2
n(λ̂n).
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To provide a rigorous analysis of the QMLE, basic regularity conditions are assumed

below. Additional regularity conditions will be subsequently listed.

ASSUMPTION 1: The {vi}, i = 1, · · · , n, in Vn = (v1, · · · , vn)′ are i.i.d. with mean

zero and variance σ2. Its moment E(|v|4+γ) for some γ > 0 exits.

ASSUMPTION 2: The elements wn,ij of Wn are at most of order h−1
n , denoted by

O(1/hn), uniformly in all i, j,7 where the rate sequence {hn} can be bounded or divergent.

As a normalization, wn,ii = 0 for all i.

ASSUMPTION 3: The ratio hn/n → 0 as n goes to infinity.

ASSUMPTION 4: The matrix Sn is nonsingular.

ASSUMPTION 5: The sequences of matrices {Wn} and {S−1
n } are uniformly bounded

in both row and column sums.

ASSUMPTION 6: The elements of Xn are uniformly bounded constants for all n.

The limn→∞ X ′
nXn/n exists and is nonsingular.

ASSUMPTION 7: {S−1
n (λ)} are uniformly bounded in either row or column sums,

uniformly in λ in a compact parameter space Λ. The true λ0 is in the interior of Λ.

Assumptions 1-3 are the assumptions that provide the essential features of the disturbances

and the weights matrix for the model. Assumptions 2 and 3 link directly the expression of

Wn to the sample size n. Assumption 2 is always satisfied if {hn} is a bounded sequence.

In some empirical applications, it is a practice to have Wn being row-normalized (Anselin

1988) such that its ith row wi,n = (di1, di2, . . . , din)/
∑n

j=1 dij , where dij ≥ 0, represents

a function of the spatial distance of the ith and jth units in some (characteristic) space.

The weighting operation can be interpreted as an average of neighboring values. For a

row-normalized weights matrix, as di,j are nonnegative constants and uniformly bounded,

if
∑n

j=1 dij , i = 1, · · · , n, are uniformly bounded away from zero at the rate hn in the

sense that
∑n

j=1 dij = O(hn) uniformly in i and lim infn→∞ h−1
n

∑n
j=1 dij > c where c

is a positive constant independent of i and n, the implied normalized weights matrix

will have the property ascribed in Assumption 2. The assumption 3 excludes the cases

where
∑n

j=1 dij , i = 1, · · · , n, diverge to infinity at a rate equal to or faster than the

7 That is, for some real constant c, there exists a finite integer N such that, for all
n ≥ N , |hnwn,ij | < c for all i, j. See, e.g., White (1984), p.14
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rate of the sample size n, because the MLE would likely be inconsistent for those cases.

Examples will be provided later. Bell and Bockstael (2000) argues that row-normalization

for weights matrix may not be meaningful for real estate problems with microlevel data.

Assumptions 2 and 3 are general in that they cover spatial weights matrices where elements

are not restricted to be nonnegative and those that might not be row-normalized. Empirical

examples which satisfy the above assumptions include conventional spatial weights matrices

where neighboring units are defined by only a few adjacent ones, and models of Case

(1991) where all spatial units in a district are neighbors of each other. For models with

a few neighboring units, {hn} would be bounded. An important case that hn might

diverge to infinity and satisfies Assumptions 2 and 3 is that of Case (1991). In Case’s

model, ‘neighbors’ refer to farmers who live in the same district. Suppose that there are

R districts and there are m farmers in each district (for simplicity). The sample size is

n = mR. Case assumed that in a district, each neighbor of a farmer is given equal weight.

In that case, Wn = IR ⊗ Bm, where Bm = (lml′m − Im)/(m − 1), ⊗ is the Kronecker

product, and lm is a m-dimensional column vector of ones. For this example, hn = (m−1)

and hn/n = (m−1)/(mR) = O(1/R). If sample size n increases by increasing both R and

m, then hn goes to infinity and hn/n goes to zero as n tends to infinity.8

Assumption 4 guarantees that the system (2.1) has an equilibrium and Yn has mean

S−1
n Xnβ0 and variance σ2

0S
−1
n S

′−1
n , where σ2

0 is the true variance of vi. Assumption 5

is originated by Kelejian and Prucha (1998, 1999, 2001).9 The uniform boundedness of

{Wn} and {S−1
n } is a condition to limit the spatial correlation in a manageable degree. It

plays an important role in the asymptotic properties of estimators for spatial econometric

models. For example, it guarantees that the variances of Yn are bounded as n goes to

infinity. Some discussions on uniform boundedness are in Appendix A.

When the mixed regressive model is used for analyzing cross-sectional units, it is mean-

ingful to assume that the regressors are bounded as in Assumption 6.10 Multicollinearity

8 Whether {hn} is a bounded or divergent sequence has interesting implications on the
least square approach. The least squares estimators of β and λ are inconsistent when {hn}
is bounded, but they can be consistent when {hn} is divergent.

9 Related conditions have also been adopted in Pinkse (1999) in a different context.
10 If not, it can be replaced by stochastic regressors with certain finite moment conditions.
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among the regressors of Xn are ruled out. Without regressors, it is a pure spatial autore-

gressive process and Assumption 6 is irrelevant.

The uniform boundedness condition of S−1
n at λ0 in Assumption 5 implies that S−1

n (λ)

are uniformly bounded in both row and column sums uniformly in a neighborhood of λ0

(see Appendix A). Assumption 7 is needed to deal with the nonlinearity of ln|Sn(λ)| as a

function of λ in (2.4). As in Appendix A, if ‖ Wn ‖≤ 1 for all n where ‖ · ‖ is a matrix

norm, then {‖ S−1
n (λ) ‖} are uniformly bounded in any subset of (−1, 1) bounded away

from the boundary. In particular, if Wn is a row-normalized matrix, S−1
n (λ) is uniformly

bounded in row sums norm uniformly in any closed subset of (−1, 1). For this case, Λ in

Assumption 7 can be taken as a single closed set contained in (−1, 1) for all n.11 For the

case that Wn is not normalized but its eigenvalues are real, as the Jacobian |Sn(λ)| in (2.4)

will be positive if −1/|µn,min| < λ < 1/µn,max where µn,min and µn,max are the minimum

and maximum eigenvalues of Wn (Anselin 1988), Λ can be a closed interval contained in

(−1/|µn,min|, 1/µn,max) for all n. It is clear from (2.5) and (2.6) that β0 and σ2
0 will be

identifiable once λ0 is identified, and the parameter space of β0 and σ2
0 do not need to be

specified.

3. MIXED REGRESSIVE, SPATIAL AUTOREGRESSIVE MODELS:

THE REGULAR CASE

The presence of Xn in (2.1) is a distinctive feature of the mixed regressive SAR model.

From (2.1) and (2.2), the reduced form equation of Yn can be represented as

(3.1) Yn = Xnβ0 + λ0GnXnβ0 + S−1
n Vn

because In + λ0Gn = S−1
n where Gn = WnS−1

n .

ASSUMPTION 8: The limn→∞(Xn, GnXnβ0)′(Xn, GnXnβ0)/n exists and is nonsin-

gular.

This assumption requires that the generated regressor GnXnβ0 in (3.1) and Xn are not

asymptotically multicollinear. It is a sufficient condition for global identification of θ0.

Define Qn(λ) = maxβ,σ2 E(lnLn(θ)). The optimal solutions of this maximization problem

11 On the other hand, Assumption 7 rules out implicitly the consideration of models
where the true λ0 is close to 1 or -1.
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are β∗
n(λ) = (X ′

nXn)−1X ′
nSn(λ)S−1

n Xnβ0 and

(3.2)
σ∗2

n (λ) =
1
n

E{[Sn(λ)Yn − Xnβ∗
n(λ)]′[Sn(λ)Yn − Xnβ∗

n(λ)]}

=
1
n
{(λ0 − λ)2(GnXnβ0)′Mn(GnXnβ0) + σ2

0tr[S
′−1
n S′

n(λ)Sn(λ)S−1
n ]}.

Hence,

(3.3) Qn(λ) = −n

2
(ln(2π) + 1) − n

2
ln σ∗2

n (λ) + ln |Sn(λ)|.

Identification of λ0 can be based on the maximum values of {(Qn(λ)/n)}. With identifi-

cation and uniform convergence of [lnLn(λ) − Qn(λ)]/n to zero on Λ, consistency of the

QMLE θ̂n follows.

THEOREM 3.1: Under Assumptions 1-8, θ0 is globally identifiable and θ̂n is a con-

sistent estimator of θ0.

The asymptotic distribution of the QMLE θ̂n can be derived from the Taylor expansion

of ∂ ln Ln(θ̂n)
∂θ

= 0 at θ0. The first-order derivatives of the log likelihood function at θ0 are
1√
n

∂ ln Ln(θ0)
∂β = 1

σ2
0
√

n
X ′

nVn, 1√
n

∂ ln Ln(θ0)
∂σ2 = 1

2σ4
0
√

n
(V ′

nVn − nσ2
0), and

(3.4)
1√
n

∂ lnLn(θ0)
∂λ

=
1

σ2
0

√
n

(GnXnβ0)′Vn +
1

σ2
0

√
n

(V ′
nGnVn − σ2

0tr(Gn)).

These are linear and quadratic functions of Vn. The asymptotic distribution of (3.4) may

be derived from central limit theorems for linear-quadratic functions. For the case {hn}

being a bounded sequence, the central limit theorem for linear-quadratic forms in Kelejian

and Prucha (2001) is applicable. For the case that limn→∞ hn = ∞, 1
σ2
0
√

n
(GnXnβ0)′Vn

will dominate the quadratic term of 1√
n

∂ ln Ln(θ0)
∂λ under Assumption 8. This occurs be-

cause var( 1√
n
V ′

nGnVn) = O( 1
hn

), and hence, 1√
n
(V ′

nGnVn − σ2
0tr(Gn)) = oP (1) while

1√
n
(GnXnβ0)′Vn = OP (1). Under this situation, Kolmogorov’s central limit theorem can

be applied.

The variance matrix of 1√
n

∂ ln Ln(θ0)
∂θ is

E(
1√
n

∂ lnLn(θ0)
∂θ

· 1√
n

∂ ln Ln(θ0)
∂θ′

) = −E(
1
n

∂2 ln Ln(θ0)
∂θ∂θ′

) + Ωθ,n
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where

(3.5)

− E

(
1
n

∂2 ln Ln(θ0)
∂θ∂θ′

)

=




1
σ2
0n

X ′
nXn

1
σ2
0n

X ′
n(GnXnβ0) 0

1
σ2
0n

(GnXnβ0)′Xn
1

σ2
0n

(GnXnβ0)′(GnXnβ0) + 1
n tr(Gs

nGn) 1
σ2
0n

tr(Gn)

0 1
σ2
0n

tr(Gn) 1
2σ4

0




with Gs
n = Gn + G′

n, is the average Hessian matrix (information matrix when v’s are

normal), and

(3.6)
Ωθ,n

=




0 ∗ ∗
µ3

σ4
0n

∑n
i=1 Gn,iixi,n

2µ3
σ4
0n

∑n
i=1 Gn,iiGinXnβ0 + (µ4−3σ4

0)

σ4
0n

∑n
i=1 G2

n,ii ∗
µ3

2σ6
0n

l′nXn
1

2σ6
0n

[µ3l
′
nGnXnβ0 + (µ4 − 3σ4

0)tr(Gn)] (µ4−3σ4
0)

4σ8
0




is a symmetric matrix with µj = E(vj
i ), j = 2, 3, 4, being, respectively, the second, third,

and fourth moments of v, where Gin is the ith row of Gn, Gn,ij is the (i, j)th entry of Gn,

and xi,n is the ith row of Xn. Assumption 8 is sufficient to guarantee that the average

Hessian matrix is nonsingular for large enough n. If Vn is normally distributed, Ωθ,n = 0.

THEOREM 3.2: Under Assumptions 1-8,
√

n(θ̂n − θ0)
D→ N(0, Σ−1

θ + Σ−1
θ ΩθΣ−1

θ ),

where Ωθ = limn→∞ Ωθ,n and Σθ = − limn→∞ E
(

1
n

∂2 ln Ln(θ0)
∂θ∂θ′

)
, which are assumed to

exist. If v′
is are normally distributed, then

√
n(θ̂n − θ0)

D→ N(0, Σ−1
θ ).12

The asymptotic results in Theorems 3.1 and 3.2 are valid regardedless whether {hn}

is a bounded or divergence sequence. For the case that limn→∞ hn = ∞, because Gn,ij =

O(1/hn), the matrices (3.5) and (3.6) can be simplified into

Ωθ = lim
n→∞




0 0 ∗
0 0 ∗

µ3
2σ6

0n
l′nXn

µ3
2σ6

0n
l′n(GnXnβ0)

(µ4−3σ4
0)

4σ8
0


 ,

and

Σθ = lim
n→∞




1
σ2
0n

X ′
nXn

1
σ2
0n

X ′
n(GnXnβ0) 0

1
σ2
0n

(GnXnβ0)′Xn
1

σ2
0n

(GnXnβ0)′(GnXnβ0) 0

0 0 1
2σ4

0


 .

12 The estimation of the asymptotic variance of θ̂n is trivial. The Σθ can be estimated
by (3.5) evaluated at θ̂n. The Ωθ can be estimated with (3.6). For the QMLE, the extra
moments µ3 and µ4 in Ωθ,n can be estimated by the third and fourth order empirical
moments based on estimated residuals of v’s.
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The presence of Xn and the linear independence of GnXnβ0 and Xn are the crucial condi-

tions for the asymptotic results in Theorem 3.2, in particular, the
√

n-rate of convergence

of θ̂n.

When v’s are normally distributed, θ̂n is the MLE. When {hn} is bounded, the MLEs

λ̂n and σ̂2
n will be asymptotically dependent because limn→∞ tr(Gn)/n is finite and may

not be zero. Anselin and Bera (1998) discussed the implication of this dependence on

statistical inference problems. We note that, however, for the case that {hn} is a divergent

sequence, limn→∞ tr(Gn)/n = 0 and the MLEs λ̂n and σ̂2
n are asymptotically independent.

4. MIXED REGRESSIVE, SPATIAL AUTOREGRESSIVE MODELS:

MUTICOLLINEARITY OF GnXnβ0 AND Xn

The set of the vectors GnXnβ0 and Xn can be linearly dependent under some cir-

cumstances. If β0 = 0, GnXnβ0 = 0 and, hence, the set of GnXnβ0 and Xn is linearly

dependent. This case corresponds to the pure spatial autoregressive process in (2.3). An-

other case is when Wn is row-normalized and the relevant regressor is only a constant

term. Let Xn = (ln, X2n) and, conformably, β0 = (β01, β
′
02) where β02 = 0. Conse-

quently, as Xnβ0 = lnβ01, GnXnβ0 = (β01/(1 − λ0))ln because Wnln = ln implies that

Snln = (1 − λ0)ln and Gnln = ln/(1 − λ0). The multicollinearity of GnXnβ0 and Xn is

equivalent to the columns of GnXnβ0 lying in the space spanned by the columns of Xn,

i.e., MnGnXnβ0 = 0. It is also possible that even though GnXnβ0 and Xn are linear inde-

pendent for finite n, they become asympototically multicollinear as n goes to infinity. This

may happen for spatial scenario of Case (1991) where the regressor vector x has a common

mean across all districts with large group interactions. Quantitatively, this corresponds to

limn→∞ (1/n)(GnXnβ0)′Mn(GnXnβ0) = 0.13 For subsequent analyses, Assumption 8 will

be replaced by

ASSUMPTION 8′: limn→∞(GnXnβ0)′Mn(GnXnβ0)/n = 0.

Denote

(4.1) σ2
n(λ) =

σ2
0

n
tr[S

′−1
n S′

n(λ)Sn(λ)S−1
n ].

13 From the partition matrix formula, the limn→∞ (1/n)(Xn, GnXnβ0)′(Xn, GnXnβ0) is
nonsingular if and only if limn→∞ (1/n)X ′

nXn and limn→∞ (1/n)(GnXnβ0)′Mn(GnXnβ0)
are nonsingular.
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Under the situation of Assumption 8′, limn→∞ σ∗2
n (λ) = limn→∞ σ2

n(λ) and Qn(λ) in (3.3)

can be approximated by Qa,n(λ) = −(n/2)(ln(2π)+1)− (n/2) lnσ2
n(λ)+ ln |Sn(λ)|, which

does not involve Xn. The identification condition of λ0 can be stated in terms of the

concentrated log likelihood function of λ when {hn} is bounded.

ASSUMPTION 9: The {hn} is a bounded sequence and, for any λ 6= λ0,

(4.2) lim
n→∞

(
1
n

ln |σ2
0S

−1
n S

′−1
n | − 1

n
ln |σ2

n(λ)S−1
n (λ)S

′−1
n (λ)|

)
6= 0.

For the SAR model, as Yn = S−1
n Xnβ0 + S−1

n Vn, the variance matrix of Yn is

σ2
0S

−1
n S

′−1
n . Assumption 9 is a global identification condition related to the uniqueness of

the variance matrix of Yn.

THEOREM 4.1: For the situation of Assumption 8′, the QMLE θ̂n is a consistent

estimator of θ0 under Assumptions 1-7 and 9.

For the situation of Assumption 8′, Σθ can be nonsingular if

(4.3) lim
1→∞

1
n

tr(Cs
nCs

n) 6= 0,

where Cn = Gn−(tr(Gn)/n)In and Cs
n = C ′

n+Cn. This property is implied by Assumption

9. We note that tr(Cs
nCs

n) = 2[tr(GnG′
n) + tr(G2

n) − (2/n)tr2(Gn)], which is the square

of the Euclidean norm of Cs
n, so in general (1/n)tr(Cs

nCs
n) > 0. The global identification

condition in Assumption 9 guarantees that the limit in (4.3) does not vanish. As it shall

be noted later, Assumption 9 and (4.3) can be valid only under the scenario that {hn}

is a bounded sequence because tr(Cs
nCs

n) = O(n/hn). The asymptotic distribution of the

QMLE θ̂n is
√

n-consistent and asymptotically normal when {hn} is a bounded sequence.

THEOREM 4.2: Under Assumptions 1-7, 8′, and 9,
√

n(θ̂n − θ0)
D→ N(0, Σ−1

θ +

Σ−1
θ ΩθΣ−1

θ ). Furthermore, if v′
is are normally distributed, then

√
n(θ̂n − θ0)

D→ N(0, Σ−1
θ ).

When {hn} is a bounded sequence, all the QMLE’s of λ0, β0 and σ2
0 have the usual

√
n-rate of convergence from Theorem 4.2. This includes the QMLE for the pure SAR

process in (2.3). For the pure SAR process, its concentrated log likelihood function of λ is

similar to that in (2.7) with Xn being zero in (2.6). These conclusions will subsequently

be changed when {hn} is a divergence sequence.
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5. MIXED REGRESSIVE MODELS WITH SINGULAR INFORMATION MATRICES

When limn→∞ hn = ∞, Σθ = − limn→∞ E( 1
n

∂2 ln Ln(θ0)
∂θ∂θ′ ) can be nonsingular only

if GnXnβ0 and Xn are not asymptotically multicollinear as in Assumption 8. For the

situation under Assumption 8′, when limn→∞ hn = ∞, Σθ will become singular because

(1/n)tr[(C ′
n + Cn)(C ′

n + Cn)′] = O(1/hn) = o(1).

For the pure SAR process with θ = (λ, σ2), as limn→∞ hn = ∞, Σθ =
(

0 0
0 1/(2σ4

0)

)
.

There are other cases in which the irregularity occurs. If Wn is row-normalized and Xn =

ln, WnXn = ln and GnXn = ln/(1 − λ0). In this case, when limn→∞ hn = ∞, Σθ is

singular because (1/n)tr(Gn) and (1/n)[tr(G′
nGn) + tr(G2

n)] are O(1/hn), which goes to

zero, and the submatrix

1
n

(Xn, GnXnβ0)′(Xn, GnXnβ0) =

(
1 β0

(1−λ0)
β0

(1−λ0)
( β0
(1−λ0)

)2

)

is singular. When all spatially varying regressors X2n in Xn = (ln, X2n) are irrelevant

but are included in estimation, the coefficient β02 of X2n in β0 = (β01, β
′
02)

′ is zero.

Consequently, Xnβ0 = lnβ01 and GnXnβ0 = (β01/(1 − λ0))ln, when Wn is row-normalized.

It follows that

(
1
nX ′

nXn
1
nX ′

n(GnXnβ0)
1
n (GnXnβ0)′Xn

1
n (GnXnβ0)′(GnXnβ0)

)
=
( 1

n
X ′

nXn
β01

1−λ0
· 1

n
X ′

nln
β01

1−λ0
· 1

n
l′nXn ( β01

1−λ0
)2 · 1

n
l′nln

)

is singular because the last column is proportional to the first one. The irregularity also

occurs under Case’s spatial scenario when x has a common mean across all districts (see

footnote 15).

The singularity of the information matrix has implications on the rate of conver-

gence of the estimators. When limn→∞ hn = ∞, (1/n) ln Ln(θ) is rather flat in λ and

the convergence of (1/n)(lnLn(λ) − Qn(λ)) to zero is too fast to be useful. However,

with a properly adjusted rate, (hn/n)[(lnLn(λ) − ln Ln(λ0)) − (Qn(λ) − Qn(λ0))]
p→ 0

uniformly in λ in Λ, which shall be the one useful. We consider the situation that

limn→∞ (hn/n)(GnXnβ0)′Mn(GnXnβ0) = c, where 0 ≤ c < ∞. In this situation, it is

natural that elements of MnGnXnβ0 are of uniform order O(1/
√

hn). In the event that

c = 0, Assumption 9 shall be modified with a proper normalization.
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ASSUMPTION 10: The {hn} is a divergent sequence, elements of Mn(GnXnβ0) have

the uniform order O(1/
√

hn), and limn→∞ (hn/n)(GnXnβ0)′Mn(GnXnβ0) = c with 0 ≤

c < ∞. Under this situation, either (a) c > 0, or (b) if c = 0,

lim
n→∞

(
hn

n
ln |σ2

0S
−1
n S

′−1
n | − hn

n
ln |σ2

n(λ)S−1
n (λ)S

′−1
n (λ)|) 6= 0,

whenever λ 6= λ0.

Assumption 10(b) modifies Assumption 9 with the factor hn to account for the proper rate

of convergence.

THEOREM 5.1: For the situation of Assumption 10, the QMLE λ̂n derived from the

maximization of ln Ln(λ) in (2.7) is a consistent estimator, under Assumptions 1-7.

Asymptotic distribution of the QMLE λ̂n can be derived from the concentrated log

likelihood function. Once the asymptotic distribution of λ̂n is available, those of the QM-

LEs β̂n and σ̂2
n from (2.5) and (2.6) can be derived. The limiting distribution of ∂ ln Ln(λ0)

∂λ

depends on the quadratic form of Vn. The original central limit theorem in Kelejian and

Prucha (2001) is not directly applicable to the case with {hn} being a divergent sequence.

But their theorem and its proof can be generalized to cover the divergent case (see Ap-

pendix A). Assumption 3 needs to be slightly strengthened.

ASSUMPTION 3′: h1+η
n /n → 0 for some η > 0 as n goes to infinity.

The central limit theorem for a linear-quadratic form implies that
√

hn

n
∂ ln Ln(λ0)

∂λ is asymp-

totically normal. The asymptotic distribution of λ̂n follows from

√
n

hn
(λ̂n − λ0) = −

(
hn

n

∂2 ln Ln(λ̃n)
∂λ2

)−1√
hn

n

∂ lnLn(λ0)
∂λ

.

Assumption 10(b) implies the local identification condition that limn→∞ (hn/n)tr(Cs
nCs

n) 6=

0. Let vecD(A) be the vector formed by the diagonal elements of a square matrix A.

THEOREM 5.2: Under Assumption 1-2, 3′, 4-7 and 10,
√

n
hn

(λ̂n − λ0)
D→ N(0, σ2

λ),

where

σ2
λ = lim

n→∞
{hn

n
[

1
σ2

0

(GnXnβ0)′Mn(GnXnβ0) + tr(CnCs
n)]}−2

hn

n
· [ 1

σ2
0

(GnXnβ0)′Mn(GnXnβ0) + tr(CnCs
n) + 2

µ3

σ4
0

(GnXnβ0)′MnvecD(C ′
nMn)].
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In the special case with c = 0 in Assumption 10, σ2
λ = limn→∞{(hn/n)tr(CnCs

n)}−1.

The possible slower rate of convergence of λ̂n in Theorem 5.2 implies that, for statis-

tical inference, one shall take into account the factor hn in addition to the sample size n.

Some practical formulas for classical inference statistics can be valid. In general, the ‘t’

statistic for testing λ as a specific constant, say λc, is asymptotically valid when the proper

asymptotic standard deviation of λ̂n is used. Suppose that the disturbances are normally

distributed. Let ω̂2
λ,n = −(∂2 ln Ln(λ̂n)

∂λ2 )−1. This (n/hn)ω̂2
λ,n is a consistent estimate of σ2

λ.

The conventional test statistic for testing H0 : λ0 = λc is (λ̂n − λc)/ω̂λ,n. This statistic is

asymptotically standard normal, because

λ̂n − λ0

ω̂λ,n
= (−hn

n

∂2 lnLn(λ̂n)
∂λ2

)−1/2

√
hn

n

∂ lnLn(λ0)
∂λ

+ oP (1) D−→ N(0, 1)

under the null hypothesis. In addition to the Wald-type statistic, the conventional likeli-

hood ratio and efficient score test statistics are also valid for testing λ0 = λc under normal

disturbances. This is so, because, under the null hypothesis

2[lnLn(λ̂n) − lnLn(λc)] = −∂2 ln Ln(λ̄n)
∂λ2

(λ̂n − λ0)2

=
√

n

hn
(λ̂n − λ0)Σ−1

λλ

√
n

hn
(λ̂n − λ0) + oP (1) D→ χ2(1).

The efficient score statistic ∂ ln Ln(λc)
∂λ

(
−∂2 ln Ln(λc)

∂λ2

)−1
∂ ln Ln(λc)

∂λ is asymptotically chi-

square distributed because −hn

n
∂2 ln Ln(λc)

∂λ2 is a consistent estimate of the limiting vari-

ance of
√

hn

n
∂ ln Ln(λc)

∂λ under the null hypothesis. From our results, we note that, even

when {vi} are not normally distributed, these classical statistics based on the concentrated

likelihood can be asymptotically valid as long as limn→∞ hn = ∞ and µ3 = 0.

With λ̂n, the QMLEs of β0 and σ2
0 are β̂n = (X ′

nXn)−1X ′
nSn(λ̂n)Yn, and σ̂2

n =
1
nY ′

nS′
n(λ̂n)MnSn(λ̂n)Yn.

THEOREM 5.3: Under Assumption 1-2, 3′, 4-7, and 10,

(5.1)

√
n

hn
(β̂n − β0)

=
√

n

hn
(X ′

nXn)−1X ′
nVn −

√
n

hn
(λ̂n − λ0) · (X ′

nXn)−1X ′
nGnXnβ0 + Op(

1√
n

)

D→ N
(
0, σ2

λ lim
n→∞

(X ′
nXn)−1X ′

n(GnXnβ0)(GnXnβ0)′Xn(X ′
nXn)−1

)
,
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and
√

n(σ̂2
n − σ2

0) = 1√
n

∑n
i=1(v

2
i − σ2

0) + oP (1) D→ N(0, µ4 − σ4
0). However, when β0 = 0,

√
nβ̂n

D→ N
(
0, σ2

0 limn→∞(X′
nXn

n
)−1
)

.

The asymptotic distribution of λ̂n has the
√

n/hn-rate of convergence in Theorem

5.2. As hn is divergent, this rate of convergence is lower than
√

n. For the Case spatial

scenario, this corresponds to
√

R, where R is the number of districts in the sample. The

asymptotic distribution of the QMLE β̂n and its low rate of convergence in Theorem 5.3

are determined by the asymptotic distribution of λ̂n that forms the leading term in the

asymptotic expansion (5.1). When β0 = 0, this leading term vanishes and β̂n converges

to β0 with the usual
√

n-rate. The asymptotic distribution of σ̂2
n has the usual

√
n-rate of

convergence.

The rate of convergence of β̂n can be improved in the event that (1/n)X ′
nGnXnβ0

may vanish asymptotically. However, the exact rate of convergence will depend on how fast

(1/n)X ′
nGnXnβ0 will vanish in the limit. When GnXnβ0 and Xn are multicollinear for

finite n, the implications of Theorem 5.3 on the various components of β̂n can be spelled

out more explicitly. Suppose there exists a column vector cn such that GnXnβ0 = Xncn,

then the asymptotic distribution of β̂n in (5.1) can be rewritten as
√

(n/hn)(β̂n − β0)
D→

N(0, σ2
λ limn→∞ cnc′n). If some components of cn are zero, the corresponding limiting

variances will be zero. These components of β̂n will have degenerated distributions and may

converge at a rate faster than
√

n/hn, while the estimates of the remaining components

will converge at the
√

n/hn-rate. From (5.1), β̂n − β0 = (X ′
nXn)−1X ′

nVn − (λ̂n − λ0)cn +

OP (
√

hn/n). If c1n 6= 0 but c2n = 0 where cn = (c′1n, c′2n)′, β̂n1 may be affected by the

limiting distribution of λ̂n but β̂n2 will not. This is because the dominated term for β̂n1

is (λ̂n − λ0)c1n. For β̂n2, as the corresponding component (λ̂n − λ0)c2n vanishes, β̂n2 has

the usual
√

n-rate of convergence regardless if {hn} is divergent or not.

THEOREM 5.4: Under Assumption 1-2, 3′, 4-7, 10(b) and GnXnβ0 = X1nc1n

for some c1n, where Xn = (X1n, X2n),
√

n
hn

(β̂n1 − β01)
D→ N(0, σ2

λc1c
′
1), where c1 =

limn→∞ c1n, but

√
n(β̂n2 − β02)

D−→ N(0, σ2
0[ lim

n→∞

1
n

X ′
2n(In − X1n(X ′

1nX1n)−1X ′
1n)X2n]−1).
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In summary, consider the SAR model where all the included spatial varying regressors

are irrelevant, i.e., Xn = (ln, X2n) and β = (β1, β
′
2)

′ with β02 = 0. Because β02 = 0 is

an unknown event, one estimates both β1 and β2. Because GnXnβ0 = β01Gnln, GnXnβ0

and ln can be distinguished regressors if Gnln is not linearly depended on ln. In that

case, Theorems 3.1 and 3.2 are applicable and the QMLE θ̂n can be
√

n-consistent. In

the event that Gnln and ln are multicollinear but {hn} is a bounded sequence, Theorems

4.1 and 4.2 are applicable and θ̂n is still
√

n-consistent. The irregular case occurs when

limn→∞ hn = ∞ and Gnln and ln are multicollinear. If β01 were zero, it would correspond

to β0 = 0 covered by the last part of Theorem 5.3. For the model with β01 6= 0 but

β02 = 0 and the weights matrix being row-normalized, as GnXnβ0 = (β01/(1 − λ0))ln,

c1n = β01/(1 − λ0) 6= 0 and c2n = 0. For this case, Theorem 5.4 implies that, when

limn→∞ hn = ∞, β̂n1 has the same low rate of convergence as that of λ̂n, but β̂n2 will

converge to zero in probability at the usual
√

n-rate.

When the constraint β02 = 0 is correctly imposed, the model for estimation becomes

a spatial autoregressive model with an unknown intercept: Yn = β1ln + λWnYn + Vn.

The unknown parameters are β1, λ and σ2. Given an λ, the QMLEs of β1 and σ2 are,

respectively, β̂n1(λ) = (1/n)l′nSn(λ)Yn and σ̂2
n(λ) = (1/n)Y ′

nS′(λ)M1nSn(λ)Yn, where

M1n = In − lnl′n/n. The concentrated log likelihood function of λ is in (2.7) with Mn

replaced by M1n. Because M1n is a special case for Mn (with Xn = ln), Theorems 5.1-5.4

hold also for the restricted parameter estimates λ̂n, β̂n1 and σ̂2
n. For the pure SAR process

(2.3), the estimation corresponds to imposing β0 = (β01, β02) = 0. The concentrated log

likelihood of λ corresponds to the one in (2.7) with Mn = In. Theorems 5.1 and 5.2 hold

also for the SAR process.

6. INCONSISTENCY WHEN limn→∞ (hn/n) > 0.

The preceding results are derived with limn→∞ hn/n = 0 under Assumption 3. That

is, either {hn} is a bounded sequence or {hn} diverges to infinity at a rate slower than n.

In this section, we provide an example that the QMLE θ̂n may not be consistent if hn has

the rate n.

Consider Wn = (1/(n − 1))(lnl′n − In) in Case (1991) when sample data are collected

only from a single district. In this case, hn = (n−1) is O(n). For simplicity, consider σ2
0 = 1
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being known. With this Wn, S−1
n (λ) = (1 + λ/(n − 1))−1(In + (λ/(1 − λ))lnl′n/(n − 1))

and WnS−1
n (λ) = (1/(n − 1 + λ))(lnl′n/(1 − λ) − In). As Xn includes an intercept term,

GnXnβ0 = (n/(n − 1 + λ0)) ((l′nXnβ0)ln/[(1 − λ0)n] − Xnβ0/n) is multicollinear with Xn.

The log likelihood function is lnLn(δ) = −(n/2) ln(2π) + ln |Sn(λ)| − V ′
n(δ)Vn(δ)/2,

where δ = (β′, λ)′. Given λ, the QMLE of β0 is β̂n(λ) = (X ′
nXn)−1X ′

nSn(λ)Yn and the

concentrated log likelihood function of λ is

(6.1) lnLn(λ) = −n

2
ln(2π) + ln |Sn(λ)| − 1

2
Y ′

nS′
n(λ)MnSn(λ)Yn.

Because MnGnXnβ0 = 0, ∂ ln Ln(λ)
∂λ = −tr(WnS−1

n (λ))+V ′
nMnGnVn+V ′

nG′
nMnGnVn(λ0−

λ). Because tr(Gn) = (n/(n − 1 + λ0))λ0/(1 − λ0) and MnGn = −Mn/(n − 1 + λ0),
∂ ln Ln(λ0)

∂λ
= −(n/(n − 1 + λ0))λ0/(1 − λ0) − V ′

nMnVn/(n − 1 + λ0). The second order

derivative of (6.1) is

∂2 ln Ln(λ)
∂λ2

= −tr[(WnS−1
n (λ))2] − V ′

nG′
nMnGnVn

= − n2

(n − 1 + λ)2

[
1 − 2(1 − λ)/n

(1 − λ)2
+

1
n

]
− V ′

nMnVn

(n − 1 + λ0)2
.

By the mean value theorem, λ̂n = λ0−
(

∂2 ln Ln(λ̄n)
∂λ2

)−1
∂ ln Ln(λ0)

∂λ where λ̄n lies between λ̂n

and λ0. Suppose λ̂n were consistent, we shall show that there would be a contradiction. If

λ̂n were consistent, it would imply that λ̄n
p→ λ0 and, hence, ∂2 ln Ln(λ̄n)

∂λ2

p→ −1/(1 − λ0)2.

As 1
nV ′

nMnVn = 1
nV ′

nVn + oP (1)
p→ 1, ∂ ln Ln(λ0)

∂λ

p→ 1 − λ0/(1 − λ0). Consequently, λ̂n
p→

λ0 + (1 − λ0)(1 − 2λ0) 6= λ0 in general, a contradiction.

For the pure SAR process, it corresponds to β0 = 0 imposed in estimation. As

∂ lnLn(λ0)
∂λ

= − λ0

1 − λ0
(1 − (1 − λ0)

n
)−1 +

1
n − 1 + λ0

V ′
n(

lnl′n
1 − λ0

− In)Vn,

and

1
n

V ′
n(

lnl′n
1 − λ0

− In)Vn − λ0

1 − λ0
=

1
1 − λ0

[(
∑n

i=1 vi√
n

)2 − 1] + (1 −
∑n

i=1 v2
i

n
)

p→ ξ − 1
1 − λ0

,

where ξ is a χ2(1) variable, ∂ ln Ln(λ0)
∂λ

D→ (ξ − 1)/(1 − λ0). The second-order derivative is

∂2 lnLn(λ)
∂λ2

= −(
n

n − 1 + λ
)2(

1 − 2(1−λ)
n

(1 − λ)2
+

1
n

)− 1
(n − 1 + λ)2

V ′
n(

n − 2(1 − λ)
(1 − λ)2

lnl′n+In)Vn.

18



By the mean value theorem, λ̂n = λ0−
(

∂2 ln Ln(λ̄n)
∂λ2

)−1
∂ ln Ln(λ0)

∂λ , where λ̄n lies between λ̂n

and λ0. If λ̂n were a consistent estimator, λ̄n
p→ λ0 and ∂2 ln Ln(λ̄n)

∂λ2
D→ −(ξ + 1)/(1 − λ0)2.

Thus, if λ̂n were a consistent estimator, it would imply λ̂n −λ0
D→ (1−λ0)(ξ − 1)/(ξ + 1).

This would be a contradiction as (1 − λ0)(ξ − 1)/(ξ + 1) would not have a degenerate

distribution (at zero). So λ̂n could not be a consistent estimator of λ0.

7. MONTE CARLO RESULTS

To investigate finite sample properties of the QMLE by a Monte Carlo study, we

focus on the spatial scenario by Case (1991) with an R number of districts, m members

in each district, and each neighbor of a member in a district is given equal weight, i.e.,

Wn = IR ⊗Bm, where Bm = (1/(m − 1))(lml′m − Im) as in Section 2. We consider models

with and without regressors.14

The first model (SAR) in the study is a spatial process Yn = λWnYn + Vn, where

Vn ∼ N(0, σ2In). The sample data are generated with λ = 0.5 and σ2 = 1. The second

model (MRSAR-1) extends the first model to Yn = λWnYn + Xnβ + Vn by including a

regressor, where Xn ∼ N(0, In) and β = 1. The regressors are i.i.d. across districts as

well as members in a district. The third model (MRSAR-2) specifies a regressor where

its values for members in a single district can be correlated. Let zr, r = 1, · · · , R, be

generated by N(0, 1). The regressor xir of the ith member in the district r is generated

as xir = (zr + zir)/
√

2, where zir are i.i.d. N(0, 1) for all i and r and are independent of

zr. This specification implies that the average value of xir of the district r will converge

in probability to zr as m goes to infinity in MRSAR-2. On the other hand, the average

value for each district in MRSAR-1 will go to zero, which is their mean by design.15

We have experimented with different values of R from 30 to 120 and m from 3 to

14 Monte Carlo studies for the MLE under spatial scenarios that each unit has a few
neighbors can be found in Anselin (1988).

15 If the mean µr of xir conditional on a district is the same across districts, i.e.,
µr = µ for all r, then, when either µ = 0 or Xn includes an intercept term, MnGnXn =
Mn{(m/(1 − λ0)(m − 1 + λ0))((x̄.1 − µ)′l′m · · · (x̄.R − µ)′l′m)′ − Xn/(m − 1 + λ0)} and its
elements are O(1/

√
m), where x̄.r is the mean of x in the rth district. This case corre-

sponds to the situation in Assumption 10. If µr’s are different across different districts,
MnGnXn = Mn{(m/(1 − λ0)(m − 1 + λ0))(x̄′

.1l
′
m · · · x̄′

.Rl′m)′ − Xn/(m − 1 + λ0)} and its
elements will, in general, have O(1).
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100. For each case, there are 400 repetitions.16 The optimization is performed with the

Brent method in one-dimensional search with first derivatives (Press et al. 1992, Ch. 10).

The empirical mean and standard deviation (in bracket) for each parameter estimator are

reported in Tables 1 and 2. The effects of m on λ̂n are of interest. There are biases in

λ̂n in all three models. The biases of λ̂n decrease as m becomes larger. The biases of σ̂n

and β̂n are rather small. The empirical standard errors of β̂n and σ̂n decrease as either R

or m increases. For a fixed R, the empirical standard errors of λ̂n do not change much as

m becomes large for both the SAR process and the MRSAR-1 model. They decrease as

m increases for the MRSAR-2 model. This behavior of λ̂n confirms the implication of our

theoretical analysis as
√

n/hn =
√

R here.17

8. CONCLUSION

The examples of inconsistent QMLE have samples from a single district. By increasing

n, it increases spatial units in the (same) district. That corresponds to the notion of

‘infill asymptotics’ (Cressie 1993, p.101). This example shows that the QMLE under infill

asymptotics alone may not be consistent. If there are many separate districts from which

samples are obtained, the QMLEs can be consistent if the number of districts R increases to

infinity. The latter scenario corresponds to the notion of ‘increasing-domain asymptotics’

(Cressie 1993, p.100). Consistency of the QMLE can be achieved with increasing-domain

asymptotics. From our results, the QMLE under the increasing-domain asymptotics alone

can have the usual
√

n-rate of convergence. But, when both infill and increasing-domain

asymptotics are operating, the rates of convergence of the QMLEs for various parameters

can be different and some may have slower rates than the usual
√

n one.

Department of Economics, The Ohio State University, Columbus, OH 43210-1172,

U.S.A.; lflee@econ.ohio-state.edu; http://economics.sbs.ohio-state.edu/lee/

16 The regressor matrix is randomly generated in each Monte Carlo trial.
17 For the MRSAR-1 model, the standard error of β̂n decreases with increasing m. This

is a special result of Theorem 5.3. As xri are i.i.d. with zero mean, X ′
nGnXn = OP (1/m)

for the MRSAR-1 model. In this case,
√

n(β̂n − β0) = (X ′
nXn/n)−1(1/

√
n)X ′

nVn + oP (1)
from (5.1).
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TABLE 1
ML ESTIMATION OF SPATIAL AUTOREGRESSIVE MODELS

m = 3 5 10 20 50 100
R SAR

30 λ .3896 .4290 .4552 .4741 .4834 .4849
(.0734) (.0778) (.0764) (.0681) (.0692) (.0722)

σ .9533 .9852 .9975 1.0008 .9992 .9998
(.0769) (.0582) (.0407) (.0282) (.0183) (.0131)

60 λ .3930 .4365 .4679 .4830 .4906 .4917
(.0520) (.0519) (.0504) (.0480) (.0471) (.0493)

σ .9586 .9879 .9985 .9986 .9997 1.0005
(.0504) (.0409) (.0282) (.0202) (.0132) (.0094)

120 λ .3978 .4430 .4725 .4858 .4927 .4939
(.0373) (.0372) (.0351) (.0351) (.0332) (.0350)

σ .9613 .9886 .9964 .9989 1.0004 1.0002
(.0362) (.0280) (.0203) (.0148) (.0095) (.0067)

R MRSAR-1

30 λ .3992 .4367 .4624 .4775 .4827 .4881
(.0676) (.0600) (.0595) (.0577) (.0562) (.0507)

β .9512 .9831 .9946 .9981 .9970 .9997
(.1041) (.0820) (.0568) (.0410) (.0264) (.0191)

σ .9403 .9792 .9950 .9998 1.0001 .9997
(.0718) (.0572) (.0396) (.0284) (.0174) (.0123)

60 λ .3990 .4403 .4672 .4846 .4876 .4937
(.0469) (.0427) (.0423) (.0385) (.0373) (.0365)

β .9526 .9848 .9960 .9972 .9997 .9995
(.0769) (.0562) (.0411) (.0300) (.0191) (.0128)

σ .9520 .9852 .9978 .9994 .9996 .9997
(.0513) (.0391) (.0283) (.0198) (.0123) (.0090)

120 λ .4000 .4421 .4718 .4854 .4907 .4949
(.0320) (.0303) (.0290) (.0264) (.0265) (.0265)

β .9573 .9861 .9950 .9989 .9995 .9997
(.0527) (.0412) (.0300) (.0221) (.0127) (.0089)

σ .9580 .9881 .9973 .9994 .9996 .9999
(.0373) (.0277) (.0198) (.0141) (.0090) (.0063)
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Remarks:
1) SAR: Yn = λWnYn + Vn, Vn ∼ N(0, σ2In).
2) MRSAR-1: Yn = λWnYn + Xnβ + Vn, where Vn ∼ N(0, σ2In) and Xn ∼ N(0, In).
3) The R is the number of districts and m is the number of members in a district.

TABLE 2

ML ESTIMATION OF SPATIAL AUTOREGRESSIVE MODELS

m = 3 5 10 20 50 100
R MRSAR-2

30 λ .3912 .4358 .4661 .4829 .4915 .4964
(.0635) (.0550) (.0428) (.0366) (.0248) (.0184)

β .9684 .9880 1.0006 1.0039 .9983 1.0023
(.1151) (.1026) (.0727) (.0526) (.0362) (.0248)

σ .9524 .9808 .9955 .9990 1.0009 1.0002
(.0728) (.0612) (.0420) (.0275) (.0184) (.0132)

60 λ .3985 .4415 .4689 .4846 .4930 .4974
(.0462) (.0364) (.0332) (.0259) (.0158) (.0117)

β .9614 .9863 1.0023 1.0011 .9999 1.0008
(.0852) (.0696) (.0527) (.0388) (.0258) (.0166)

σ .9537 .9865 .9974 .9987 1.0005 .9995
(.0513) (.0431) (.0288) (.0193) (.0136) (.0090)

120 λ .3986 .4424 .4717 .4860 .4940 .4973
(.0324) (.0253) (.0227) (.0178) (.0113) (.0091)

β .9625 .9871 .9994 .9995 .9991 1.0007
(.0597) (.0474) (.0380) (.0281) (.0175) (.0123)

σ .9580 .9878 .9973 1.0001 1.0001 .9997
(.0381) (.0297) (.0204) (.0143) (.0091) (.0062)

Remarks: MRSAR-2: Yn = λWnYn + Xnβ + Vn, where the elements xir of Xn are
xir = (zr + zir)/

√
2. The zir’s and zr’s are i.i.d. N(0, 1).
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APPENDIX A

NOTATIONS: The following list summarizes some frequently used notations in the text:

Sn(λ) = In − λWn for any possible λ.

Sn = In − λ0Wn.

Gn = WnS−1
n .

Cn = Gn − tr(Gn)
n In.

ln Ln(θ) is the log likelihood of θ = (β′, λ, σ2)′.

ln Ln(λ) is the concentrated log likelihood function of λ.

Qn(λ) = maxβ,σ2 E(lnLn(θ)).

σ2
n(λ) = σ2

0
n tr[S

′−1
n S′

n(λ)Sn(λ)S−1
n ].

Mn = In − Xn(X ′
nXn)−1X ′

n.

SOME BASIC PROPERTIES: This following statements summarize some basic properties

on spatial weights matrices and some laws of large numbers and central limit theorems on

linear and quadratic forms. The elements vi’s of Vn = (v1, · · · , vn)′ are assumed to be i.i.d.

with zero mean and a finite variance σ2
0 . For quadratic forms involving Vn, the fourth

moment µ4 of v’s is assumed to exist.

• Suppose that the spatial weights matrix Wn is a row-normalized matrix with its

(i, j)th element being wn,i = dij/
∑n

l=1 dil and dij ≥ 0 for all i, j. If dij = dji for all i and

j and
∑n

j=1 dij are O(hn) and are bounded away from zero at the rate hn uniformly in i,

then {Wn} are uniformly bounded in column sums.

• Suppose that {‖ Wn ‖} and {‖ S−1
n ‖}, where ‖ · ‖ is a matrix norm, are bounded.

Then {‖ Sn(λ)−1 ‖} are uniformly bounded in a neighborhood of λ0.

• Suppose that ‖ Wn ‖≤ 1 for all n, where ‖ · ‖ is a matrix norm, then {‖ Sn(λ)−1 ‖}

are uniformly bounded in any closed subset of (−1, 1).

• Suppose that elements of the n × k matrices Xn are uniformly bounded for all n;

and limn→∞ X ′
nXn/n exists and is nonsingular, then the projectors Xn(X ′

nXn)−1X ′
n and

In − Xn(X ′
nXn)−1X ′

n are uniformly bounded in both row and column sums.

• Suppose that An is a square matrix with its column sums being uniformly bounded

and elements of the n × k matrix Zn are uniformly bounded. Then, (1/
√

n)Z ′
nAnVn =

OP (1). Furthermore, if the limit of Z ′
nAnA′

nZn/n exists and it is positive definite, then
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(1/
√

n)Z ′
nAnVn

D→ N(0, σ2
0 limn→∞ Z ′

nAnA′
nZn/n).

• Let An = [aij] be an n-dimensional square matrix. Then, E(V ′
nAnVn) = σ2

0tr(An)

and var(V ′
nAnVn) = (µ4 − 3σ4

0)
∑n

i=1 a2
ii + σ4

0[tr(AnA′
n) + tr(A2

n)].

• Suppose the elements an,ij of the n × n matrices An are O(1/hn) uniformly for all

i, j. If n × n matrices {Bn} are uniformly bounded in column sums (respectively, row

sums), then the elements of AnBn (respectively, BnAn) have the uniform order O(1/hn).

For these cases, tr(AnBn) = tr(BnAn) = O(n/hn).

• Suppose that {An} are uniformly bounded either in row or column sums and their

elements an,ij have O(1/hn) uniformly in i and j. Then E(V ′
nAnVn) = O(n/hn) and

var(V ′
nAnVn) = O(n/hn). If limn→∞ hn/n = 0, then (hn/n)[V ′

nAnVn − E(V ′
nAnVn)] =

oP (1).

• Suppose that {An} is a sequence of symmetric matrices with row and column sums

uniformly bounded in absolute value and {bn} is a sequence of constant vectors with its

elements uniformly bounded. The moment E(|v|4+2δ) for some δ > 0 of v exists. Let

σ2
Qn

be the variance of Qn where Qn = b′n + V ′
nAnVn − σ2tr(An). Assume that the

variance σ2
Qn

is O(n/hn) with {(hn/n)σ2
Qn

} bounded away from zero, the elements of An

are of uniform order O(1/hn) and the elements of bn are of uniform order O(1/
√

hn). If

limn→∞(h1+ 2
δ

n /n) = 0, then Qn/σQn

D−→ N(0, 1).

• Suppose that An is a constant n × n matrix uniformly bounded in both row and

column sums. Let cn be a column vector of constants. If (hn/n)c′ncn = o(1), then

(
√

hn/n)c′nAnEn = oP (1). On the other hand, (
√

hn/n)c′nAnEn = OP (1) if (hn/n)c′ncn =

O(1).

APPENDIX B

PROOF OF THEOREM 3.1 AND THEOREM 4.1: The consistency of θ̂n will follow

from the uniform convergence of (1/n)(lnLn(λ) − Qn(λ)) to zero on Λ and the unique-

ness identification condition that, for any ε > 0, lim supn→∞ maxλ∈N̄ε(λ0)(1/n)[Qn(λ) −

Qn(λ0)] < 0, where N̄ε(λ0) is the complement of an open neighborhood of λ0 in Λ of

diameter ε (White 1994, Theorem 3.4).

Note that (1/n)(lnLn(λ) − Qn(λ)) = −(1/2)(ln σ̂2
n(λ) − lnσ∗2

n (λ)). The σ∗2
n (λ) and

σ̂2
n(λ) can be written as σ∗2

n (λ) = (λ0 − λ)2(GnXnβ0)′Mn(GnXnβ0)/n + σ2
n(λ) where
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σ2
n(λ) = (σ2

0/n)tr(S
′−1
n S′

n(λ)Sn(λ)S−1
n ), and

σ̂2
n(λ) =

1
n

Y ′
nS′

n(λ)MnSn(λ)Yn

= (λ0 − λ)2
1
n

(GnXnβ0)′Mn(GnXnβ0) + 2(λ0 − λ)H1n(λ) + H2n(λ),

where H1n(λ) = (1/n)(GnXnβ0)′MnSn(λ)S−1
n Vn and

H2n(λ) =
1
n

V ′
nS

′−1
n S′

n(λ)MnSn(λ)S−1
n Vn.

It can be shown that H1n(λ) = oP (1) and H2n(λ)−σ2
n(λ) = oP (1) uniformly on Λ. There-

fore, σ̂2
n(λ) − σ∗2

n (λ) = oP (1) uniformly on Λ. Consequently, supλ∈Λ |(1/n)(lnLn(λ) −

Qn(λ))| = oP (1). The identification uniqueness condition can be established by a counter

argument. First, (1/n)[Qn(λ) − Qn(λ0)] = (1/n)(Qp,n(λ) − Qp,n(λ0)) − (1/2)[lnσ∗2
n (λ) −

ln σ2
n(λ)], where Qp,n(λ) = −(n/2)(ln(2π)+1)−(n/2) lnσ2

n(λ)+ln |Sn(λ)|. The Qn(λ)/n is

uniformly equicontinuous on Λ. By Jensen’s inequality, (1/n)(Qp,n(λ)−Qp,n(λ0)) ≤ 0 for

all λ. Furthermore, σ∗2
n (λ) ≥ σ2

n(λ). If the identification uniqueness condition were not sat-

isfied, without loss of generality, there would exist a sequence λn ∈ Λ which would converge

to a point λ+ 6= λ0 such that limn→∞(1/n)[Qn(λn)−Qn(λ0)] = 0. This would be possible

only if limn→∞(σ∗2
n (λ+) − σ2

n(λ+)) = 0 and limn→∞(1/n)[Qp,n(λ+) − Qp,n(λ0)] = 0. The

latter would generate contradiction to either limn→∞(1/n)(GnXnβ0)′Mn(GnXnβ0) 6= 0 or

Assumption 9. Q.E.D.

PROOF OF THEOREM 3.2: Except λ, β and 1
σ2 appear either linearly or in quadratic

form in ∂2 ln Ln(θ)
∂θ∂θ′ . The second derivative with λ is ∂2 ln Ln(θ)

∂λ2 = −tr([WnS−1
n (λ)]2) −

Y ′
nW ′

nWnYn/σ2. Denote Gn(λ) = WnSn(λ). By the mean value theorem, tr(G2
n(λ̃n)) =

tr(G2
n)+2tr(G3

n(λ̄n)) · (λ̃n−λ0). Assumption 5 implies that Gn(λ̄n) is uniformly bounded

in row and column sums uniformly in a neighborhood of λ0. Hence, (1/n)[∂2 ln Ln(θ̃n)
∂λ2 −

∂2 ln Ln(θ0)
∂λ2 ] = −2[tr(G3

n(λ̄n))/n](λ̃n − λ0) + [(1/σ2
0) − (1/σ̃2

n)]Y ′
nW ′

nWnYn/n = op(1), be-

cause tr(G3
n(λ̄n)) = O(n/hn) and Y ′

nW ′
nWnYn = OP (n/hn). As other terms of the second

order derivatives can be easily analyzed, (1/n)[∂2 ln Ln(θ̃n)
∂θ∂θ′ − ∂2 ln Ln(θ0)

∂θ∂θ′ ]
p→ 0. The con-

vergence of (1/n)[∂2 ln Ln(θ0)
∂θ∂θ′ − E(∂2 ln Ln(θ0)

∂θ∂θ′ )] to zero in probability is straightforward by

showing that linear functions and quadratic functions of Vn deviated from their means,

e.g., X ′
nGnVn/n, and (1/n)(V ′

nGnVn − σ2
0tr(Gn)), are all oP (1).
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The components of 1√
n

∂ ln Ln(θ0)
∂θ are linear or quadratic functions of Vn. With the

existence of high order moments of v in Assumption 1, the central limit theorem for linear-

quadratic forms of Kelejian and Prucha (2001) can be applied and 1√
n

∂Ln(θ0)
∂θ

D→ N(0, Σθ +

Ωθ). Assumption 8 guarantees that Σθ is nonsingular. The asymptotic distribution of θ̂n

follows from the expansion
√

n(θ̂n − θ0) = −
(

1
n

∂2 ln Ln(θ̃n)
∂θ∂θ′

)−1
1√
n

∂ ln Ln(θ0)
∂θ , where θ̃n

converges to θ0 in probability. Q.E.D.

PROOF OF THEOREM 4.2: The nonsingularity of Σθ is now guaranteed by Assump-

tion 9. The remaining arguments are the same in the proof of Theorem 3.2. Q.E.D.

PROOF OF THEOREM 5.1:

By the mean value theorem,

hn

n
[ln Ln(λ) − ln Ln(λ0) − (Qn(λ) − Qn(λ0))] = −hn

2
∂[ln σ̂2

n(λ̄n) − ln σ∗2
n (λ̄n)]

∂λ
(λ − λ0)

=
1

σ̂2
n(λ̄n)

hn

n
{Bn(λ̄n) − σ̂2

n(λ̄n) − σ∗2
n (λ̄n)

σ∗2
n (λ̄n)

An(λ̄n)}(λ − λ0).

where

An(λ) = (λ0 − λ)(GnXnβ0)′Mn(GnXnβ0) + σ2
0tr(G

′
nSn(λ)S−1

n )

and Bn(λ) = Y ′
nW ′

nMnSn(λ)Yn−An(λ). The (hn/n)(V ′
nMnGnVn−σ2

0tr(Gn)) = oP (1) and

(hn/n)(V ′
nG′

nMnGnVn − σ2
0tr(G

′
nGn)) = oP (1) by the law of large numbers for quadratic

forms. The (hn/n)(GnXnβ0)′MnVn = oP (1) and (hn/n)(GnXnβ0)′MnGnVn = oP (1)

under Assumption 10. Therefore,

hn

n
Bn(λ) =

hn

n
{(GnXnβ0)′MnVn + 2(λ0 − λ)(GnXnβ0)′MnGnVn

+ V ′
nG′

nMnVn + (λ0 − λ)V ′
nG′

nMnGnVn − σ2
0tr(G

′
n) − σ2

0(λ0 − λ)tr(G′
nGn)}

= oP (1)

,

uniformly on Λ. The (hn/n)An(λ) has O(1) uniformly on Λ. With expressions in the

proof of Theorem 3.1, σ̂2
n(λ) − σ∗2

n (λ) = oP (1) uniformly on Λ. The σ∗2
n (λ̄n) and σ̂2

n(λ̄n)

are bounded away from zero in probability. Hence, (hn/n)[lnLn(λ)− ln Ln(λ0)− (Qn(λ)−

Qn(λ0))] converges in probability uniformly on Λ.

The (hn/n)(Qn(λ) − Qn(λ0)) = −(hn/2)(lnσ∗2(λ) − lnσ2
0) + (hn/n)(ln |Sn(λ)| −

ln |Sn(λ0)|) is uniformly equicontinuous on Λ. Firstly, (hn/n)(ln |Sn(λ2)| − ln |Sn(λ1)|) =
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(hn/n)tr(WnS−1
n (λ̄n))(λ2 − λ1) by the mean value theorem, and it is uniformly equicon-

tinuous on Λ because (hn/n)tr(WnS−1
n (λ̄n)) = O(1). Also, hn(lnσ∗2

n (λ) − lnσ2
0) =

hn(σ∗2
n (λ)−σ2

0)/σ̄∗2
n (λ) is uniformly continuous because σ̄∗2

n (λ) is uniformly bounded away

from zero and

hn(σ∗2
n (λ) − σ2

0) = (λ − λ0)2
hn

n
(GnXnβ0)′Mn(GnXnβ0)

+ σ2
0[2

hn

n
tr(Gn) + (λ0 − λ)

hn

n
tr(G′

nGn)](λ0 − λ)

is uniformly equicontinuous. The latter follows because (hn/n)(GnXnβ0)′Mn(GnXnβ0),

(hn/n)tr(Gn) and (hn/n)tr(G′
nGn) are of O(1). For identification, let

Dn(λ) = −hn

2
(ln σ2

n(λ) − ln σ2
0) +

hn

n
(ln |Sn(λ)| − ln |Sn(λ0)|).

Then, (hn/n)(Qn(λ)−Qn(λ0)) = Dn(λ)− (hn/2)(lnσ∗2
n (λ)− ln σ2

n(λ)). Assumption 10(a)

implies that limn→∞ hn(lnσ∗2
n (λ) − lnσ2

n(λ)) > 0 for any λ 6= λ0. Also, Dn(λ) < 0

whenever λ 6= λ0 under Assumption 10(b). Overall, limn→∞(hn/n)(Qn(λ) − Qn(λ0)) < 0

whenever λ 6= λ0. Together, these imply that λ0 is uniquely identifiable. The consistency

of λ̂n follows. Q.E.D.

PROOF OF THEOREM 5.2: The first and second order derivatives of the concen-

trated log likelihood are ∂ ln Ln(λ)
∂λ = (1/σ̂2

n(λ))Y ′
nW ′

nMnSn(λ)Yn − tr(WnS−1
n (λ)), and

∂2 ln Ln(λ)
∂λ2

=
2

nσ̂4
n(λ)

(Y ′
nW ′

nMnSn(λ)Yn)2 − 1
σ̂2

n(λ)
Y ′

nW ′
nMnWnYn − tr([WnS−1

n (λ)]2),

where σ̂2
n(λ) = (1/n)Y ′

nS′
n(λ)MnSn(λ)Yn. For the pure SAR process, β0 = 0 and the

corresponding derivatives are similar with Mn replaced by the identity In.

Under Assumption 10,

hn

n
Y ′

nW ′
nMnWnYn =

hn

n
(GnXnβ0)′Mn(GnXnβ0) +

hn

n
V ′

nG′
nMnGnVn + oP (1)

and

hn

n
Y ′

nW ′
nMnSn(λ)Yn

=
hn

n
V ′

nG′
nMnVn + (λ0 − λ)[

hn

n
(GnXnβ0)′Mn(GnXnβ0) +

hn

n
V ′

nG′
nMnGnVn] + oP (1).
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When limn→∞ hn = ∞, (1/n)Y ′
nW ′

nMnSn(λ)Yn = oP (1) and σ̂2
n(λ) = σ2

0+oP (1) uniformly

on Λ. Hence

hn

n

∂2 lnLn(λ)
∂λ2

= − 1
σ2

0

[
hn

n
(GnXnβ0)′Mn(GnXnβ0) +

hn

n
V ′

nG′
nMnGnVn]

− hn

n
tr([WnS−1

n (λ)]2) + oP (1),

uniformly on Λ. Under Assumption 7, (hn/n)tr(G3
n(λ)) = O(1) uniformly on Λ. Therefore,

by the Taylor expansion,

hn

n
(
∂2 ln Ln(λ̃n)

∂λ2
− ∂2 ln Ln(λ0)

∂λ2
) = −hn

n
{tr([WnS−1

n (λ̃n)]2) − tr(G2
n)} + oP (1)

= −2
hn

n
tr(G3

n(λ̄n))(λ̃n − λ0) + oP (1) = oP (1),

for any λ̃n which converges in probability to λ0.

Define Pn(λ0) = −(1/σ2
0)[(GnXnβ0)′Mn(GnXnβ0) + V ′

nG′
nMnGnVn] − tr(G2

n). Then

(hn/n)∂2 ln Ln(λ0)
∂λ2 = Pn(λ0) + oP (1) and E(Pn(λ0)) = −(GnXnβ0)′Mn(GnXnβ0)/σ2

0 −

[tr(GnG′
n) + tr(G2

n)] + O(1). As (hn/n)[Pn(λ0)−E(Pn(λ0))] = −(1/σ2
0)∆n + o(1), where

∆n = (hn/n)[V ′
nG′

nMnGnVn − σ2
0tr(G

′
nMnGn)] = oP (1), (hn/n)[Pn(λ0) − E(Pn(λ0))] =

oP (1).

One has
√

hn/n∂ ln Ln(λ0)
∂λ = (1/σ̂2

n(λ0))
√

hn/n[(GnXnβ0)′MnVn + qn] where qn =

V ′
nC ′

nMnVn. The mean and variance of qn are E(qn) = σ2
0tr(MnCn) = O(1) and σ2

qn
=

(µ4−3σ4
0)
∑n

i=1 C2
n,ii +σ4

0[tr(C
′
nCn)+ tr(C2

n)]+O(1). The variance of ((GnXnβ0)′MnVn +

qn) is σ2
lqn

= σ2
0(GnXnβ0)′Mn(GnXnβ0) + σ2

qn
+ 2(GnXnβ0)′MnvecD(C ′

nMn)µ3. The

(qn − E(qn))/σlqn

D→ N(0, 1) by the central limit theorem for linear-quadratic functions

(Appendix A). It follows that

√
hn

n

∂ ln Ln(λ0)
∂λ

=

√
hn

n σlqn

σ̂2
n(λ0)

· [(GnXnβ0)′MnVn + (qn − E(qn))]
σlqn

+ oP (1)

p→ N

(
0, lim

n→∞

hn

n

σ2
lqn

σ4
0

)
.

Q.E.D.

PROOF OF THEOREM 5.3: Note that β̂n(λ̂n) − β0 = (X ′
nXn)−1X ′

nVn − (λ̂n −

λ0)(X ′
nXn)−1X ′

nGnXnβ0+Op(
√

hn/n). Therefore,
√

n/hn(β̂n(λ̂n)−β0) = −
√

n/hn(λ̂n−
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λ0) · (X ′
nXn)−1X ′

nGnXnβ0 + Op(1/
√

hn), and its limited distribution is a linear function

of that of λ̂n. If β0 is zero,
√

n(β̂n(λ̂n) − β0) = (X ′
nXn/n)−1X ′

nVn/
√

n + Op(
√

hn/n) D→

N(0, σ2
0 limn→∞(X ′

nXn/n)−1). For σ̂2
n,

√
n(σ̂2

n − σ2
0)

=
1√
n

(V ′
nVn − nσ2

0) −
1√
n

V ′
nXn(X ′

nXn)−1X ′
nVn

− 2
√

n

hn
(λ̂n − λ0) ·

√
hn

n
Y ′

nW ′
nMnSnYn +

√
n

hn
(λ̂n − λ0)2 ·

√
hn

n
Y ′

nW ′
nMnWnYn.

Under Assumption 10, (
√

hn/n)Y ′
nW ′

nMnSnYn = O(1/
√

hn) and (
√

hn

n )Y ′
nW ′

nMnWnYn =

O(1/
√

hn). Hence, as limn→∞ hn = ∞,
√

n(σ̂2
n − σ2

0) = (1/
√

n)(V ′
nVn − nσ2

0) + oP (1) D→

N(0, µ4 − σ4). Q.E.D.

PROOF OF THEOREM 5.4: Let Xn = (X1n, X2n), M1n = In −X1n(X ′
1nX1n)−1X ′

1n

and M2n = In − X2n(X ′
2nX2n)−1X ′

2n. Using a matrix partition for (X ′
nXn)−1,

√
n

hn
(β̂n1 − β01)

=
1√
hn

(
1
n

X ′
1nM2nX1n)−1 1√

n
X ′

1nM2nVn − c1n ·
√

n

hn
(λ̂n − λ0) + Op(

1√
n

)

= −c1n ·
√

n

hn
(λ̂n − λ0) + OP (

1√
hn

),

and
√

n(β̂n2 − β20) = (X ′
2nM1nX2n/n)−1 · (1/

√
n)X ′

2nM1nVn + OP (
√

hn/n). The asymp-

totic distributions of β̂n1 and β̂n2 follow. Q.E.D.
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