
Technical Notes on Extending gSpan to

Directed Graphs

Cane Wing-ki Leung
School of Information Systems

Singapore Management University
Singapore 178902

cane.leung@gmail.com

October 6, 2010

1 About this Article

This article describes an extension of gSpan [3, 2] to directed graphs. It also aims to
provide supplementary materials for our paper on mining link formation rules [1], in
which we propose the LFR-Miner algorithm by extending gSpan, but were unable to
detail parts of the extension due to space constraint.

We assume readers of this article to have essential knowledge about gSpan, and our
focus is on the revisions required for gSpan’s definitions of DFS edge, DFS code’s neigh-
borhood restriction and DFS lexicographic order.

2 Preliminary Concepts

2.1 Directed and Labeled Graph

We consider in this article a simple directed and labeled graph1, defined as a 4-tuple
G = (V, E,L, l). V is a set of vertices/nodes representing individuals in the network.
E is a set of directed links/edges representing relationships between individuals. An
element (u, v) ∈ E, where u, v ∈ V , u 6= v, is an edge from u to v. L is a finite set of
node and edge labels. l : V ∪ E → L assigns labels to elements in V and E.

This definition can be generalized to model a partially labeled graph if the label set
L includes an empty label. G is essentially an unlabeled graph if L is a singleton set.

2.2 Overview of gSpan

This subsection introduces several elements in gSpan to provide context for the subse-
quent discussions.

DFS Subscripting

Given a graph pattern p, gSpan applies DFS subscripting to all nodes in p to encode the
order in which they are traversed in a certain DFS tree. For two “DFS subscripted” nodes
vi and vj , i < j iff vi is traversed before vj . We use pT to denote a DFS subscripted p.
The first and the last nodes traversed in a given pT are called the root and the rightmost
vertex respectively.

1Our work in [1] considers a directed, labeled and temporal (time-stamped) graph. We omit the
temporal aspect of the graph here because it is not concerned with edge directionality. It plays a role
only in the enumeration of pattern occurrences in our work.

1



In building a certain pT , an edge that is visited is called a forward edge, while one
that is not visited a backward edge. An edge in pT can be simply represented as (vi, vj)
or (i, j). It is a forward edge if i < j, and a backward edge otherwise. The path from
the root to the rightmost vertex, built upon forward edges, is called the rightmost path.

DFS Code, DFS Lexicographic Order and Minimum DFS Code

Each pT can be mapped to a DFS code, which comprises a DFS edge sequence. Each
DFS edge corresponds to one edge in p. gSpan defines a linear order among DFS edges,
which in turns helps define a linear DFS lexicographic order among all DFS codes. A
pattern p may be represented by multiple DFS codes. gSpan defines the canonical label
of p as its minimum DFS code, as determined by the DFS lexicographic order.

3 Adding Edge Directions

A few definitions proposed in gSpan have to be revised to take care of edge directions
and mutual links that may exist in directed graphs.

3.1 DFS Edge with Direction

Yan and Han mentioned in [4] that gSpan can be extended to handle directed graphs by
adding a direction value to a DFS edge. In addition, we should define a lexicographic
order among edge directions to ensure the correctness of DFS lexicographic order, which
is crucial for minimum DFS code computation.

DFS Edge Representation

A DFS edge with edge direction can be represented as a 6-tuple: 〈i, j, li, l(i,j), lj , d(i,j)〉
as mentioned in [4]. i and j are DFS subscripts, li and lj are the labels of vertices vi and
vj respectively, l(i,j) is the edge label, and d(i,j) takes two possible values to capture the
direction of the edge. We define d(i,j) =→ if the edge points from vi to vj , and d(i,j) =←
if it points from vj to vi.

Fig. 1 depicts a sample pattern p with directed edges. Table 1 lists the two possible
DFS codes of p, denoted by pT1 and pT2. This example illustrates how DFS edge with
directions and mutual links between a node pair can be represented.

A B
1

1

Figure 1: A sample pattern p.

Edge pT1 pT2

p0 〈0, 1, A, 1, B,→〉 〈0, 1, B, 1, A,→〉
p1 〈1, 0, B, 1, A,→〉 〈1, 0, A, 1, B,→〉

Table 1: Examples of DFS code with edge directions.

Lexicographic Order Among Edge Directions

We define ≺D to be the lexicographic order among d(i,j)’s (edge directions), and d(i,j) =
→ is lexicographically smaller than d(i,j) = ←. ≺D is essential in extending gSpan to
directed graphs because every edge can now take two possible directions, and mutual
links may exist between a node pair. When two DFS edges have the same values of
i, j, li, l(i,j), lj but different directions, ≺D is used to determine their lexicographic order.

2



3.2 DFS Code’s Neighborhood Restriction

DFS code’s neighborhood restriction property (Property 1 in [3]) restricts the i and j
indices of two neighboring DFS edges in any DFS code. This property has to be revised
to take mutual links into account.

Given a DFS code x = (x0, x1, ..., xm), let m ≥ 2. Let xk and xk+1, where 0 ≤
k < m, be two neighboring edges in x. xk = 〈ik, jk, lik

, l(ik,jk), ljk
, d(ik,jk)〉, and xk+1 =

〈ik+1, jk+1, lik+1 , l(ik+1,jk+1), ljk+1 , d(ik+1,jk+1)〉. Also, let Ef
x denotes the forward edge set

of x, and Eb
x denotes the backward edge set of it. The revised DFS code’s neighborhood

restriction property states that xk and xk+1 must agree with the following rules:

Rule 1: if xk ∈ Eb
x, then either of the following is true:

(i) if xk+1 ∈Ef
x , ik+1 ≤ ik and jk+1 = ik + 1 as in gSpan.

(ii) if xk+1 ∈Eb
x, ik+1 = ik and jk ≤ jk+1.

Rule 2: if xk ∈Ef
x , then either of the following is true:

(i) if xk+1 ∈Ef
x , ik+1 ≤ jk and jk+1 = jk + 1 as in gSpan.

(ii) if xk+1 ∈Eb
x, ik+1 = jk and jk+1 ≤ ik.

Condition (ii) of both Rule 1 and Rule 2 allow for mutual links to exist. Consider
the sample pattern q in Fig. 2, and one of its possible DFS codes qT1 in Table 2. The
neighboring edges q2 and q3 satisfy Condition (ii) of Rule 1. Referring to the sample
pattern p in Fig. 1, the neighboring edges p0 and p1 in both codes in Table 1 satisfy
Condition (ii) of Rule 2.

A B C

1

1 1

1

Figure 2: A sample pattern q.

Edge qT1

q0 〈0, 1, A, 1, B,→〉
q1 〈1, 2, B, 1, C,→〉
q2 〈2, 0, C, 1, A,→〉
q3 〈2, 0, C, 1, A,←〉

Table 2: A DFS code of q built by taking node A as v0.

3.3 DFS Code Lexicographic Order

Recall that ≺D defines the lexicographic order among edge directions. Let ≺L be the
lexicographic order among labels in the label set L. We now define the revised DFS code
lexicographic order as follows.

Given are two DFS codes x = (x0, x1, ..., xm) and y = (y0, y1, ..., yn). Let Ef
x and

Eb
x respectively be the forward edge set and the backward edge set of x, and similar for Ef

y

and Eb
y. Also, let xt = 〈ix, jx, lix , l(ix,jx), ljx , d(ix,jx)〉, and yt = 〈iy, jy, liy , l(iy,jy), ljy , d(iy,jy)〉

be the tth DFS edge in x and in y respectively. x ≤ y iff either of the following is true:

(i) xk = yk for 0 ≤ k ≤ m, and m ≤ n.

(ii) ∃t, 0 ≤ t ≤ min(m,n), xk = yk for k < t, and xt ≺e yt,

where xt ≺e yt is true if either of the following conditions is true:

3



1. xt ∈Eb
x, and yt ∈Ef

y .

2. xt ∈Eb
x, yt ∈Eb

y, and jx < jy.

3. xt ∈Eb
x, yt ∈Eb

y, jx = jy, and l(ix,jx) ≺L l(iy,jy).

4. xt ∈Eb
x, yt ∈Eb

y, jx = jy, l(ix,jx) = l(iy,jy), and d(ix,jx) ≺D d(iy,jy).

5. xt ∈Ef
x , yt ∈Ef

y , and iy < ix.

6. xt ∈Ef
x , yt ∈Ef

y , ix = iy, and lix < liy .

7. xt ∈Ef
x , yt ∈Ef

y , ix = iy, lix = liy , and l(ix,jx) ≺L l(iy,jy).

8. xt ∈Ef
x , yt ∈Ef

y , ix = iy, lix
= liy

, l(ix,jx) = l(iy,jy), and ljx
≺L ljy

.

9. xt ∈Ef
x , yt ∈Ef

y , ix = iy, lix = liy , l(ix,jx) = l(iy,jy), ljx = ljy , and d(ix,jx) ≺D

d(iy,jy).

Note that Conditions 4 and 9 above consider ≺D when ordering DFS edges.

3.4 Remarks on DFS Code Children Generation

As described in [3], we need to generate all potential children C of a given DFS code p
and count their support. One possible way to do this, among others, is to generate C by
adding one edge to p first, and then count their support in the actual graphs. It is worth
mentioning that one shall detect and disallow multiple edges from one node to another
in this children generation process. We explain this with an example. Consider a code p
with only one edge p0 = 〈0, 1, A, 1, B,→〉. Suppose we grow p to obtain a child c by an
edge p1 = 〈1, 0, B, 1, A,←〉. Although p0 and p1 do not violate the revised neighborhood
restriction property and DFS lexicographic order, they are in fact multiple edges pointing
from node v0 to node v1. One can detect similar cases of multiple edges at a negligible
cost and discard them in the first place.

Another approach to generating and counting the support of the children set C of p
does not require generating C in advance. Instead, this approach adds a child c to C
and counts it whenever it is found given an occurrence of p. Taking this approach does
not require handling the problem of multiple edges, because they would never be found
given that the input graph G is a simple graph.

4 Contact

Any comment or question regarding this article would be greatly appreciated, and could
be forwarded to Cane Leung at cane.leung@gmail.com.

References

[1] C. W. K. Leung, E. P. Lim, D. Lo and J. Weng. Mining Interesting Link Formation
Rules in Social Networks. In Proceedings of the 19th ACM International Conference
on Information and Knowledge Management (CIKM), 2010.

[2] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining, University of
Illinois at Urbana-Champaign, Tech. Rep. UIUCDCS-R-2002-2296, 2002.

[3] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining, in Proceedings
of ICDM, pages 721–724, 2002.

[4] X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In KDD,
pages 286–295, 2003.

4


