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Abstract

Optimal Advertisement Scheduling

in Breaks of Random Lengths

by Ajay S. Aravamudhan

Broadcasters generate a large part of their revenue through advertising,

especially in live sports. Scheduling advertisements can be challenging in live

broadcasting, however, for sports such as Cricket that have breaks of ran-

dom lengths and number during which the ads are shown. This uncertainty,

coupled with the high price of spots for major competitions, means that

improving ad scheduling can add significant value to the broadcaster. This

problem shares similarities with the stochastic cutting stock problem and the

dynamic stochastic knapsack problem, with applications in the wood, steel

and paper industry and the transportation industry respectively.

This dissertation adds to the existing literature on advertising scheduling

by taking stochasticity in break sizes into consideration. We propose an opti-

mal scheduling rule under simplifying assumptions and prove that our policy

outperforms traditional scheduling methods. We also study the performance

of several heuristics, and find that a flexible heuristic that does not depend

on creating bundles performs the best.
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Chapter 1

Introduction

Revenue for television broadcasters is generated primarily through the sale

of local, regional, and national advertising on the local stations and their

networks. At CBS, the most-watched U.S. broadcast network, TV advertis-

ing accounted for two-thirds of its revenue1. Major sporting events, such as

the Super Bowl, the Olympics or the Football World Cup, greatly increase

advertising revenues as advertisers are willing to pay a premium to air their

ads during live broadcast.

In India, cricket is the main revenue earner for sports broadcasting net-

works. According to a study from TAM Media Research’s advertising mea-

surement arm AdEx, ad volumes in cricket saw a growth of more than three

times in the five years from 2002 to 2007 with the volumes showing an extra

spurt during the World Cups in 2003 and 20072. The biggest spurt was seen

in the 2007 World Cup where the volumes rose nearly 100%, with 22% of the

advertising volumes in live cricket telecasts.

In recent times, the importance of advertising in cricket has increased

even more, with the introduction of shorter formats of the game such as T-

20, which is aimed at prime-time television viewers. Sony, the broadcaster for

the Indian Premier League 2010, was expected to have earned approximately

1Bloomberg Businessweek 2010
2www.indiantelevision.com/
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USD 150 millions from live broadcasting for the tournament alone, with

advertising spots valued at more than USD 1100 per second3. Thus, even a

small percentage gain in advertising revenue can translate to a large increase

in earnings.

Scheduling advertisements in live broadcasting can be challenging, how-

ever, especially for sports that have breaks that are non-deterministic. This

is the case for cricket, in which the duration and also the number of breaks

can be random. Breaks in cricket are taken between overs, when a wicket

falls, or there is a break in the game for refreshments or due to an injury.

While the length of the game is usually predictable (especially in the case of

limited overs games such as ODIs or T-20s), it is not fixed. Teams have to

take up to ten wickets within the allotted overs, however overs may run out

before all wickets are taken. Teams may also find that all their wickets have

fallen before they have managed to bat out the overs. Thus, the number of

breaks, time when they occur, and lengths of breaks in a game cannot be

foretold, and broadcasters have to make ad scheduling decisions while the

break is ongoing.

To do this, networks usually employ several people with specialized knowl-

edge of the sport when scheduling commercials. These ad schedulers have a

view of the live game as it happens from a centralized control center, which

also has a list of ads available on a mainframe, along with the orders (number

of times each ad has to be shown). Before the match starts, the ad scheduling

team creates a few sample bundles, giving priority to tournament sponsors.

The bundles are initially scheduled as planned, but are broken and ads are

scheduled on the fly because break sizes are stochastic. The scheduling team

is advised by an on-field director, who can judge the state of the game and

inform them about how long the break could be. Based on this advice, and

the known break size distribution, the schedulers select ads to be aired in

each break.

3Wall Street Journal, Jan 2010
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The job of the ad schedulers is stressful because of the need to de-

velop good schedules while under constant pressure to satisfy scheduling

constraints. For instance, if live action begins while an ad is running, then

the ad has to be stopped midway (the ad is said to have ‘crashed’) in order

to air live action, thus forgoing any revenue from the crashed ad. Further-

more, networks have to satisfy service levels promised to agencies that get

them the ad contracts, and these service levels are based on sponsorship sta-

tuses and geographical location. Thus, by reducing dependency on human

intervention, there is an opportunity to maximize revenues by automating

the commercial scheduling process while generating near optimal schedules

to meet all goals.

In this dissertation, we consider two approaches to study the problem.

We begin with Chapter 2, where we review literature from the streams of

advertising, random yield, stochastic knapsack and stochastic programming

with recourse to help us gain insights for doing our study.

In Chapter 3, we approach the problem analytically, and study optimal

scheduling policies when faced with stochastic break sizes for a simplified

setting, in which we do not consider constraints other than crashing. We

consider two cases, where the scheduling team either has prior information

about the break duration for the ongoing break, or it does not. In each

case, we assume that the inventory contains ads of two sizes, S and 2S, and

consider scenarios where break sizes range from zero to any multiple of S,

and where the number of breaks can be stochastic. In Chapter 4, we do a

numerical analysis to study the sensitivity of the Optimal Policy to variations

in problem parameters relative to the myopic Greedy rule, which we define

as the ad schedule which generates the maximum revenue for the break in

hand but does not consider the subsequent breaks.

Finally, in Chapter 5, we study several heuristics inspired by the current

scheduling practice in order to improve a broadcaster’s revenues. We use

data provided by a major cricket broadcaster to analyze the performance of
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several heuristics which create bundles beforehand. We consider generating

bundles at various points during a match, and compare performance with the

standard Greedy heuristic. We include some constraints for this study, such

as minimum service levels for each client, to analyze how creating bundles

beforehand affects revenue earned, and how often they should be created.

Finally, we summarize our findings and present our conclusions with di-

rections for future research in Chapter 6.



Chapter 2

Literature Review

In this dissertation, we take two approaches to study the problem of opti-

mally scheduling ads for random breaks: first we propose optimal policies

for scheduling ads during breaks of random durations under simplifying as-

sumptions, and secondly, we analyze several heuristics inspired by current

scheduling practice hoping to provide managerial insight to sports broad-

casters. This research has links to revenue management with random capac-

ity, the dynamic stochastic knapsack problem, the stochastic cutting stock

problem and revenue management in media applications.

2.1 Revenue Management with Random Ca-

pacity

Our problem is related to revenue management with random capacity / ran-

dom yield, with typical applications in production planning. The most com-

mon choice to model random yield has been stochastically proportional yield,

in which the yield is proportional to the order.

Ciarallo et al. (1994) [7] are the first to explore the impact of random

capacity. The authors find that an order-up-to policy is optimal to minimize

production costs. The order target includes a safety stock to account for

6
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random capacity in future periods and is higher than the myopic order-up-to

level. Wang and Gerchak (1996) [27] revisit the results found in Ciarallo et

al. (1994) to offer a more rigorous proof of the order-up-to policy. Khang

and Fujiwara (2000) [15] prove under which conditions the myopic order-up-

to policy is optimal in a multi-period setting. Hwang and Singh (1998) [14]

extend the analysis to a multi-stage production process and find an optimal

policy characterized by a sequence of two critical numbers for each stage: a

minimum input level below which no production takes place and a maximum

desired production level. Finally, Wang and Gerchak (1996) [26] incorporate

random yield and capacity and show that the optimal policy is characterized

by a single reorder point in each period. That critical point is not a constant

and depends on the inventory in hand.

Yano and Lee(1995)[29] review the literature in the area of lot sizing

with random yields, focusing on single-stage continuous review models and

single-stage periodic review models. They cover modeling of costs, modeling

of yield uncertainty, and measures of performance of the system. Grosfeld-

Nir and Gerchak (2004)[13] review papers discussing multiple lot sizing in

production to order in multistage systems, and review situations where both

yield and demand are random. Bollapragada and Morton(1999)[6] provide

heuristics for dealing with random inventory by focusing on inventory at the

end of the period, after the demand is met. They show that the random

yield problem is analogous to the newsvendor problem with the demand

distribution dependent on the quantity ordered. Their research supports the

argument that myopic and near-myopic methods are useful across a wide

spectrum of stochastic inventory problems.

Our model differs in two important aspects from the random yield and

random capacity papers above. First, we maximize revenues rather than

minimize costs. All the papers assume a single product whereas we work in

a multi product setting with different prices and production costs. Therefore

we need to schedule those products based on their profitability and their
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capacity usage. Second, we assume integer units or fixed-size order runs.

Therefore, we cannot simply use capacity to its maximum and hold inventory

to complete an order across multiple periods. Each order needs to be entirely

processed within one production period.

2.2 Dynamic Stochastic Knapsack Problem

The knapsack problem is one of the simplest and thus oldest formulation of a

maximization problem. The knapsack problem has been extensively studied

in operations research, and has various industrial applications in areas such

as resource allocation, capital budgeting, portfolio selection problem, cargo

loading, and cutting stock problems. Knapsack problems of this type are

deterministic because all parameters are known with certainty. However,

in many situations, these parameters may be random variables having a

certain distribution. Kleywegt and Papastavrou have written a series of

papers on this topic ((1996) [19] [21],(2001) [20]), that define the Dynamic

Stochastic Knapsack problem as one in which items to be packed arrive

according to a known distribution, and determine the optimal policy that

maximizes expected value, given the costs associated with waiting. They

expand their research to cases where the rewards associated with an item are

stochastic, and when the size of each item is also stochastic. Our research,

however, attempts to solve a problem with multiple knapsacks, whose sizes

are stochastic, and the items are of known size and value.

More recently, Perry and Hartman (2009) [22] model a multi-period, sin-

gle resource capacity reservation problem as a dynamic, stochastic, multiple

knapsack problem with stochastic dynamic programming. They propose an

approximation approach which utilizes simulation and deterministic dynamic

programming in order to allow for the solution of longer horizon problems and

ensure good time zero decisions. Their simulation based approach, however,

does not sufficiently capture the complexities of our problem.
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Witchakul, Ayudhya, Charnsethikul(2008) [28] discuss random Knapsack

capacity with deterministic weights and costs. They model the Knapsack’s

capacity as a random variable with a known distribution. They use the

expectation of Knapsack size, and both underage and overage penalty costs,

to estimate optimum selection of ads. They provide a heuristic for solving

Stochastic Knapsack with Continuous/Discrete Random Capacity, and prove

the validity of their heuristic analytically and numerically using a Monte

Carlo Simulation. To the best of our knowledge, this is one of the few papers

that address stochastic knapsack sizes. The problem we face, however, can

be seen as a modified bin packing problem where multiple bins of stochastic

capacity have to be optimally filled. Besides, unlike the above paper, we do

not consider overage and underage penalties.

2.3 Stochastic Cutting Stock Problem

The cutting stock problem originated as a knapsack problem which minimizes

unused capacity rather than maximize revenue from the included items. It

is based on industry applications which require to solve how to cut stock

of a certain dimension into smaller, heterogeneous order sizes in such a way

as to minimize waste of material, e.g. in the paper or steel industry. The

problem was introduced by Gilmore and Gomory (1961) [10], and over a

series of papers, the authors proposed a set of specialized techniques to solve

the cutting stock problem (Gilmore and Gomory 1963 [11], 1965 [12]). One

line of extensions to this problem looks at stock with stochastic dimensions.

The randomness can be due to the nature of the stock, e.g., raw material

like wood or stone slabs may come in unequal sizes, quality variation within

the stock or defects at the edges of the stock. Scull (1981) [23] introduces a

stochastic cutting stock problem in which the uncertainty in the stock length

is due to defects at the edges. The stock is then cut into standard-length

units, and the authors find the optimal distance from the edge at which
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to start cutting in order to minimize expected waste if inspection of the

stock and its defects is not possible. Ghodsi and Sassani (2005) [9] introduce

quality and length variability of the stock and the orders. A cut pattern

needs to be decided upon arrival of each piece of stock. The authors propose

a dynamic algorithm which first prioritizes the orders based on their quality

level and quantity and then proposes a suitable cut pattern for the incoming

stock. Even though the orders have different quality requirements, their

revenue is assumed constant, and the objective is to minimize waste. Fathi

and Kianfar (2009) [16] acknowledge that variability in quality may also lead

to difference in revenue, and formulate a similar problem with quality and

length variability with the objective to maximize revenue. They formulate

the cut pattern problem as a dynamic program and conduct a numerical

experiment to show that it is feasible to solve this problem in real time. The

authors, however, do not comment on the performance of their algorithm

with respect to revenue or compare it across different heuristics.

Much research has been devoted in the field of stochastic programming

to solve multi-stage recourse problems, and Birge (1997)[3] gives a summary

of formulations and solution techniques. He gives a general model of the

multistage stochastic linear programming with recourse. This formulation

shares some characteristics with the problem at hand, since the inventory of

ads available changes from one break to the next based on the realization of

break size. Birge goes on to describe solution procedures such as extreme-

point methods, interior point methods and column splitting. However, the

challenges we face are different as our problem is an integer programming

problem, while considerations of integrality are not touched upon.

Techniques for solving Stochastic Integer Programs are available in Birge

and Louveaux (1997) [4]. The modified L-Shaped method suggested by them

integrates branch and bound with the standard L-shaped method, thus an

extra step is added where integrality constraints are checked for every feasibil-

ity cut introduced as part of the L-Shaped method. However they also state
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that “loosely stated, for this class of problems, is very unlikely that an algo-

rithm will be found that would solve the problem in a number of operations

polynomial in the problem data... If the second stage of a stochastic problem

corresponds to an NP-hard problem, it is pointless to design an exact method

that would require the solution of the second stage for each realization of the

random variable”. Thus, it warrants a study of heuristics or alternate al-

gorithms that can actually run in polynomial time - even if their solutions

are global sub-optimal - that can improve on the performance of schedules

created manually. More recently, Haneveld and Van der Vlerk(1999) [18]

survey structural properties of and algorithms for stochastic integer pro-

gramming models, mainly considering linear two stage models with mixed

integer recourse (and their multi-stage extensions). However, they also ob-

serve that “special purpose algorithms will turn out to be necessary to obtain

good computational results for many real-life applications.” Sen (2005) [24]

studies algorithms for both two-stage as well as multi-stage stochastic mixed-

integer programs. He presents stage wise (resource directive) decomposition

methods for two-stage models, and scenario (price directive) decomposition

methods for multi-stage models. He also studies a variety of structures rang-

ing from models that allow randomness in all data elements, to those that

allow only specific elements to be influenced by randomness. He discusses

branch and price and Lagrangian relaxation for multi-stage SMIP, but states

that stage wise decomposition algorithms for the two stage case but states

that scalability of the stage wise decomposition to multi-stage scenarios is

suspect.

The literature survey on integer stochastic programming with recourse

conveys that a specialized algorithm is in order for us to solve the multistage

stochastic integer program we have in hand.
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2.4 Revenue Management in Media Applica-

tions

Literature for revenue management for advertising in TV broadcasting has

looked at the joint order acceptance and scheduling problem with determinis-

tic break lengths. For example, Kimms and Muller-Bungart(2007)[17] formu-

late an integer program that maximizes the broadcaster’s revenue, while tak-

ing into account non-conflicting product constraints and specific scheduling

requests. The authors also propose several heuristics and conduct extensive

numerical analyses that compare performance across the different solution

methods. Bollapragada and Garbiras(2003)[5] also discuss ad scheduling but

assume a deterministic audience distribution and given client preferences.

They automate the commercial scheduling process while generating near op-

timal schedules to meet constraints (such as product conflict requirements

and position percentage), and have implemented it in NBC. Zhang(2006)[30]

uses a hierarchical structure using a model that uses a two step hierarchical

approach, where winners (advertisers) are selected first and then slots are

assigned to selected commercials.

There has also been work done in the area of slot allocation and contract

selection for deciding on the inventory of ads a network has at the time of

broadcasting. Araman and Popescu(2007) [1] develop a model for allocating

advertising slots between up front and scatter markets under audience un-

certainty in up front and operational planning decisions. Kimms and Muller

Bungart(2007) [17] discuss simultaneous optimization of optimal contract se-

lection and ad scheduling. They provide heuristics for optimal ad scheduling

based on contract constraints (such as at which position in the break an ad

can be shown, etc.) Our focus in this dissertation, however, will be on the

optimal selection of ads in a given break and not on contract selection.

Finally, Degraeve and DeReyck(2003)[8] discuss broadcast ad scheduling

using SMS. Their model uses a linear decomposition of three schedules that
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are prepared before the broadcast begins, given a limited capacity of broad-

cast time slots, maximizing customer response and revenues from retailers

paying for each broadcast. The problem we analyze has different parameters

from those outlined in the papers above. Traditional ad scheduling heuris-

tics consider deterministic break sizes, and differ only in the number and

type of constraints they face. To the best of our knowledge, the problem

of scheduling ads in stochastic break sizes under similar constraints as those

faced when break sizes are deterministic has never been studied before.



Chapter 3

Optimal Policy

In this chapter, we will determine optimal selection policies that maximize

expected revenue under some simplifying assumptions. Our objective is to

find a general set of rules that aids ad schedulers when faced with random

break lengths.

These rules are also applicable for a class of bin scheduling and cutting

stock problems where bin sizes are non-deterministic and items are of known

weight and value. Previous research in this area has focused on randomness

in item value and weight; our contribution will be to add to this literature

by considering randomness in bin sizes, and extend it to cases where the

number of bins is also stochastic. We will use the terms “breaks” and “ads”

throughout this document, but these can be substituted with “bins” and

“items” for the general stochastic bin scheduling problem.

We propose a dynamic programming solution methodology where the re-

turn function is a preference selection criterion and illustrate the conditions

required to guarantee optimality of the selection. We also contrast the behav-

ior of the Optimal Policy with that of the Greedy Policy, and draw insights

and implications.

14
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3.1 Assumptions

We consider a scenario where breaks {b1, b2, . . . , bn} occur sequentially. The

number of breaks has an upper bound N ≥ k ≥ 1, and the capacities of the

breaks follow a known distribution, and are IID.

A decision has to be made as to what ads are to be put in the next

available break. For simplicity, we assume that we are always planning for

break b1, and the index n is the number of remaining breaks expected to

occur.

We assume that we only have two types of ads in the inventory: small

ads of size S and large ads of size L = 2S. This is representative of the types

of ads currently used in American television networks, where ads are usually

of either 15 second or 30 second durations.

We assume that the number of ads we have in our inventory is infinite,

with possibly a fraction of those ads having a non-zero value. Further, the

ads are arranged in descending order of value.

Thus, if S and L are the sets of small and large ads respectively, then

S = {s1,s2, . . . ,0, . . .}

L = {l1, l2, . . . ,0, . . .}

where si ≥ si+1 ≥ 0 and li ≥ li+1 ≥ 0 ∀i. We consider two scenarios: the

size of the current break is either known to the scheduler before he begins

scheduling, or it is unknown. For each scenario, we consider the following

cases:

1. A base case, where the size of each break is limited to either S or L,

and the number of breaks is fixed and known in advance,

2. An extension where the number of breaks is bounded but not fixed,

3. An extension where break sizes are any bounded multiple of S,
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4. An extension where break sizes are any bounded multiple of S and the

number of breaks is stochastic.

We assume that the revenue earned by each ad includes the sponsor status

of an advertiser. We do not discuss per-client service levels in this chapter,

instead focusing on service levels of large and small ads in general. We discuss

per-client service levels in Chapter 5.

We define the Greedy Policy as follows:

Definition 3.1 (Greedy Policy). For each break, select the combination of

ads that earns the highest revenue in that break.

We also assume that ads that are not fully aired do not earn any revenue.

Thus, by Definition 3.1, the Greedy Policy only selects ads that can be aired

completely within the break.

3.2 Known Break Size

Our motivation to study this scenario comes from Cricket broadcasts where

the on-field director can predict the length of the current break, depending on

the type of break being taken and the state of the game. The ad schedulers

then decide what ads to show in the current break based on the advice given

by the on-field director, keeping in mind that the sizes of subsequent breaks

are unknown.

This scenario could also occur in freight shipping where the shipper knows

the capacity available in the next arriving ship but not those of subsequent

ships, and has to build an appropriate consignment given that an certain

number of ships are expected to follow.

Although the size of the current break is known, the scheduler should

look ahead to decide his selection, so that revenue earned over all k breaks

is maximized. The Greedy Policy is not globally optimal because it fails to

consider the subsequent breaks and the stochasticity in their sizes.
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We now look at the four cases mentioned in section 3.1, and discuss

Optimal Policy for each.

3.2.1 Base Case

We assume that breaks are either of size S or of size L = 2S, and there is no

uncertainty about the number of breaks remaining. Breaks of size S arrive

with probability p and breaks of size L arrive with probability 1−p.

One break

Only one ad of size S can be scheduled in a small break. Thus, if b1 = S,

s1 is always packed. It is trivial to prove that this is the case irrespective

of the number of breaks left, hence we will not discuss selection policy when

the current break size is S in subsequent sections.

In a large break, however, one ad of size L or two ads of size S can be

aired. Selection for a large break when k = 1 reduces to a Greedy Policy. The

scheduler chooses between the more profitable of (s1,s2) and l1. We state

the following lemma without proof:

Lemma 3.1. When k = 1, and b1 = L, the optimal policy is to:

1. select l1 if l1 ≥ s1 + s2

2. select (s1,s2) if s1 + s2 > l1

Two breaks

For k = 2, we can write an exhaustive list of all the possible cases. These are

listed out in Table 3.1 From the table, we see that when b1 = L, the scheduler

would choose (s1,s2) if:

(s1 + s2) + ps3 + (1 −p)max{l1,s3 + s4} ≥ l1 + ps1 + (1 −p)max{l2, s1 + s2}
(3.1)
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b1 b2 Optimal selection

S S s1, s2

S L
s1,s2 + s3 if s2 + s3 ≥ l1
s1, l1 otherwise

L S
s1 + s2,s3 if s1 + s2 ≥ l1
l1,s1 otherwise

L L

s1 + s2,s3 + s4 if s3 + s4 ≥ l1
s1 + s2, l1 if s1 + s2 ≥ l1 > s3 + s4

l1,s1 + s2 if l1 > s1 + s2 ≥ l2
l1, l2 otherwise

Table 3.1: Possible selection options for k = 2

We use the above equation to prove the optimal policy.

Lemma 3.2. When k = 2, and b1 = L, the optimal policy is to:

1. select l1 if l1 ≥ s2 + s3

2. select (s1,s2) if l1 < s2 + s3

Proof. Case 1:

Let l1 ≥ s2 + s3. Let Rl and Rs be the revenues earned by selecting l1 first

and s1 + s2 first respectively. From equation 3.1, we can write:

Rl −Rs

= [l1 + ps1 + (1 −p)max{l2, s1 + s2}]

− [(s1 + s2) + ps3 + (1 −p)max{l1,s3 + s4}]

≥ [l1 + ps1 + (1 −p)(s1 + s2)]− [(s1 + s2) + ps3 + (1 −p)l1]

(∵ l1 ≥ s2 + s3 ≥ s3 + s4)

≥ p(l1 − (s2 + s3))

≥ 0 (∵ l1 ≥ s2 + s3)

Therefore, when l1 ≥ s2 +s3, Rl ≥ Rs, so l1 is packed first. Similarly, we can

prove Case 2 by showing that Rs −Rl ≥ 0 when l1 < s2 + s3.
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While the Greedy Policy compares l1 and s1 + s2, Lemma 3.2 compares

l1 and s2 + s3, setting a lower threshold for l1 to be optimal, and improving

its chances of being selected.

If b2 = L and Case 1 applies, then the Optimal Policy selects s1 +s2 for

b2, (from Lemma 3.1), while the Greedy Policy selects l1, and both policies

earn equally.

Consider, however, the case when b2 = S. The Greedy Policy then earns

s1 + s2 + s3. The Optimal Policy, however, earns l1 + s1 which is more than

the revenue earned by the Greedy Policy, since l1 ≥ s2 + s3.

When l1 < s2 +s3, and we schedule l1 in b1, then we are forced to schedule

s1 in b2 when b2 = S, earning l1 + s1. However, we know that s1 + s2 + s3 >

l1 +s1, therefore it is sub-optimal to schedule l1 in b1. Thus, the condition in

Case 1 describes the optimal threshold for l1 to be an attractive candidate

for b1.

We next take a look at the multiple break case.

Multiple breaks

When the number of breaks remaining is greater than two, we see that the

policy outlined in Lemma 3.2 extends to look ahead to all the remaining

breaks.

Theorem 3.1. When k = n, and b1 = L, the optimal policy is to:

1. select l1 if l1 ≥ sn + sn+1

2. select (s1,s2) if l1 < sn + sn+1

Proof. Proof is in Appendix A.

Consider the situation where all breaks subsequent to b1 are of size S. If

we scheduled(s1,s2) in b1, we would have scheduled ads (s1,s2, . . . ,sn,sn+1)

at the end of the planning period. Therefore, we get a higher revenue by

selecting (l1,s1,s2, . . . ,sn−1), since l1 ≥ sn + sn+1.



20 Optimal Policy

It is trivial to see that if one or more large breaks arrive instead, the

Optimal Policy would earn at least as much as the Greedy.

As the number of breaks remaining increases, the threshold above which

it becomes optimal to select l1 decreases, and selecting l1 becomes more

attractive. Service levels of large ads, therefore, are higher with the Optimal

Policy than with the Greedy Policy when breaks of size L occur and values

of large ads fall in the range (sn + sn+1, s1 + s2).

Service levels of small ads are higher with the Greedy Policy than with the

Optimal Policy, since the Greedy Policy has a higher threshold for scheduling

large ads, and is more likely to schedule small ads for the large breaks as well.

In extreme cases, the Greedy Policy can schedule all small ads in the

long breaks and be left with small ads of value zero, losing the opportunity

to earn from small breaks.

3.2.2 Stochastic Number of Breaks

In this section, we consider a scenario where the number of breaks remaining

has an upper bound, but is not fixed. To model this scenario, we assume that

all breaks arrive, but that some breaks have size zero. We assign probabilities

p0 that a break arrives with size zero, p1 that the break has size S and p2

that the break has size L, where p0 + p1 + p2 = 1.

The motivation to model this scenario comes from cases where broad-

casting networks cannot predict how many breaks they can take in the game

(but know the maximum possible number of breaks possible). In cricket, for

instance, a break is taken every time a wicket falls. The maximum number

of wickets that can fall in an innings is ten, however, the actual number

of wickets that fall in each innings may be lower. This scenario can occur

in other situations as well, for instance in freight shipping, where ships can

arrive but have no space for accommodating the consignment to be shipped.

We study the decisions of the scheduler when the number of breaks re-

maining are one and two, then use induction to find the optimal policy for
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the general case.

One break

Selecting ads to be scheduled for one break of known length is trivial, and

exactly the same as outlined in Lemma 3.1. The introduction of breaks of

size zero does not affect ad selection because we already know the size of the

(one) break that has to be scheduled. As before, if the break is of size S, we

schedule s1, and if it is L, we choose the larger of l1 and (s1 + s2). If it is of

size zero, we schedule nothing.

Two breaks

When there are two breaks in the planning period, the Optimal Policy must

look ahead to b2 to decide on the optimal selection for b1. The second break

could be of size zero, which would make the two break case the same as the

one break case. Therefore, with probability p0, the greater of l1 and (s1 +s2)

should be selected. However, with probability p1 + p2, b2 could be non-zero,

and Lemma 3.2 applies. We state the Optimal Policy for two breaks formally

below.

Lemma 3.3. When k = 2, and b1 = L, the optimal policy when p0 ≥ 0 is to:

1. select l1 if (p0 + p1)l1 ≥ p0(s1 + s2) + p1(s2 + s3)

2. select (s1,s2) otherwise

Proof. Case 1:

Let (p0 +p1)l1 ≥ p0(s1 +s2)+p1(s2 +s3), and let Rl and Rs be the revenues

earned by selecting l1 first and s1 + s2 first respectively. Then:

Rl −Rs = [l1 + p00 + p1s1 + p2 max{l2, s1 + s2}]

− [(s1 + s2) + p00 + p1s3 + p2 max{l1,s3 + s4}]
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However,

(p0 + p1)l1 ≥ p0(s1 + s2) + p1(s2 + s3)

=⇒ (p0 + p1)l1 ≥ p0(s3 + s4) + p1(s3 + s4)

=⇒ l1 ≥ (s3 + s4) assuming p0 + p1 > 0

We assume that p0 + p1 > 0, otherwise we would have the degenerate case

where p2 = 1 and all breaks would be of the same size L. Substituting for

Rl −Rs, we get:

Rl −Rs ≥ [l1 + p1s1 + p2(s1 + s2)]− [(s1 + s2) + p1s3 + p2l1]

≥ (p0 + p1)l1 −p0(s1 + s2) −p1(s2 + s3)

≥ 0 (∵ (p0 + p1)l1 ≥ p0(s1 + s2) + p1(s2 + s3))

Therefore, when (p0 + p1)l1 ≥ p0(s1 + s2) + p1(s2 + s3), Rl ≥ Rs, so l1 is se-

lected. Similarly, we can prove Case 2 by showing that Rs − Rl ≥ 0 when

(p0 + p1)l1 < p0(s1 + s2) + p1(s2 + s3).

If b2 = 0, we compare l1 and (s1 +s2), since nothing can be scheduled into

b2. In other words, select l1 if:

p0l1 ≥ p0(s1 + s2) (3.2)

If b2 = S, selecting l1 in b1 earns l1 + s1 and selecting (s1,s2) in b1 earns

(s1 + s2 + s3), so we would select l1 if:

p1(l1 + s1) ≥ p1(s1 + s2 + s3)

=⇒ p1l1 ≥ p1(s2 + s3) (3.3)

Finally, when b2 = L, the Optimal Policy selects (s1,s2) in b2 and the

Greedy Policy selects l1 in b2, therefore both policies earn equally. There-
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fore, Lemma 3.3 checks the expected value earned by selecting l1 against the

expected value earned by selecting (s1,s2) when b2 is not of size L. Com-

bining Equation 3.2 and Equation 3.3, we get the condition described in

Case 1.

We next look at the multiple break case and use induction to prove the

Optimal Policy.

Multiple Breaks

When there are multiple breaks remaining, we look ahead to all remaining

breaks to form the rule. We state the Optimal Policy formally as follows.

Theorem 3.2. When k = n, p0 ≥ 0, and b1 = L, the optimal policy is to:

1. select l1 if (p0 + p1)n−1l1 ≥
n−1
∑

i=0

[(

n−1

i

)

p
(n−1)−i
0 pi

1 (si+1 + si+2)

]

2. select (s1,s2) otherwise

Proof. Proof is in Appendix A.

The intuition behind Theorem 3.2 is similar to that of Lemma 3.3. If

a break of size L were to occur subsequent to the current break, both the

Greedy Policy and the Optimal Policy would earn equal revenues.

The Optimal Policy estimates the value of scheduling l1 assuming that

none of the subsequent breaks are of size L. The reasoning is similar to the

one used in Equation 3.2 and Equation 3.3, except in the multiple break

case where the number of breaks is n − 1, i breaks of size S and n − 1 − i

breaks of size zero can occur with probability
(

n−1
i

)

p
(n−1)−i
0 pi

1. The rest of

the reasoning follows.

The threshold above which l1 is an attractive ad to be scheduled has

increased due to the introduction of p0. For instance, in the base case, for l1

to be optimal when two breaks remained, l1 had to be greater than s2 +s3 .
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However, l1 now has to be greater than

1

(p0 + p1)
(p0(s1 + s2) + p1(s2 + s3)) ≥ s2 + s3

The Optimal Policy weighs the advantages of scheduling the large ad

against the probability that many of the subsequent breaks could be of size

zero and hence earn nothing. It does this by adjusting the threshold for

scheduling l1 based on the break size distribution.

The Optimal Policy helps networks decide on their preferred mix of ads

based on the distribution of break sizes. When there is randomness in the

number of breaks, networks require a higher value for large ads to be shown,

compared to the case where the number of breaks is fixed.

3.2.3 Multiple Break Sizes

In this section, we study the Optimal Policy when break sizes are distributed

between [S,2S, . . . ,MS]. In addition, the size of the current break is assumed

to be mS, where m ≤ M . As before, we study Optimal Policy when the

number of breaks remaining are one and two, and use induction to prove the

Optimal Policy for the multiple break case.

One Break

For the one break case, we choose a set of ads that give us the best possible

revenue within the known break size mS. This corresponds exactly with the

Greedy Policy.

Lemma 3.4. If b1 = mS and k = 1, then the Optimal Policy is to select

(l1, . . . , lλ,s1, . . . ,sm−2λ), where λ is the largest index such that:

• lλ ≥ sm−2λ+1 + sm−2λ+2

• 2λ ≤ m
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Proof. Let Ô = (l1, . . . , lλ,s1, . . . ,sm−2λ) be the set that we want to prove is

optimal. To prove optimality of Ô, we have to prove that any change to Ô

will cause the revenue to decrease.

We note that if ∃λ : lλ ∈ Ô, then ∀i ≤ λ, li ∈ Ô, since

li ≥ lλ ≥ sm−2λ+1 + sm−2λ+2 ≥ sm−2i+1 + sm−2i+2 and 2i ≤ 2λ ≤ m

Now consider the case where we do not select some li ∈ [l1, lλ]. Then, we

can either include (sm−2λ+1,sm−2λ+2), or we can include lλ+1.

Selecting (sm−2λ+1,sm−2λ+2) is inferior because li ≥ lλ ≥ (sm−2λ+1 +

sm−2λ+2), therefore our revenue will decrease. Similarly, li ≥ lλ+1, so sub-

stituting li with lλ+1 will also decrease our revenue. It is trivial to prove

that changing any si ∈ [s1,sm−2λ] with sm−2λ+1 will similarly cause a drop

in revenue. Therefore Ô is the optimal set of ads to be scheduled when

b = 1.

The proof for Lemma 3.4 shows that every li ∈ [l1, lλ] should be scheduled

for maximum revenue. In general, it is sufficient to prove that lλ (as defined

in Lemma 3.4) must be scheduled; since every li ≥ lλ belongs to the optimal

set, optimality of selecting lλ implies optimality of selecting li.

We now look at the two break case.

Two Breaks

The two breaks case follows Lemma 3.2; we now check if the large ad lλ earns

more than the sum of the small ads at indexes m − 2λ + 2 and m − 2λ + 3.

We state the Lemma formally below.

Lemma 3.5. If b1 = mS and k = 2, then the Optimal Policy is to select

(l1, . . . , lλ,s1, . . . ,sm−2λ), where λ is the largest index such that:

• lλ ≥ sm−2λ+2 + sm−2λ+3

• 2λ ≤ m
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Proof. As before, let Ô = (l1, . . . , lλ,s1, . . . ,sm−2λ).

Let:

Ol = (l1, . . . , lλ, lλ+1,s1, . . . ,sm−2λ−2)

Os = (l1, . . . , lλ−1,s1, . . . ,sm−2λ+2)

Let Ro, be the revenue earned by selecting the ads in Ô, and let Rl and

Rs be the revenues earned by selecting Ol and Os respectively.

We have to prove that:

1. Ro ≥ Rl and

2. Ro ≥ Rs

It is trivial to prove that if lλ+1 ≥ sm−2λ + sm−2λ+1 and 2(λ + 1) > m,

then substituting li ≥ lλ+1 from Ô and introducing lλ+1 is sub optimal (for

the same reason that we pack l1 in a break of length L, not l2).

We use Vi(l,s) to denote expected revenue earned from scheduling ads for

break i onwards, and the indexes of the first large ad and the first small ad

in our inventory are l and s respectively. Then,

Ro =
λ
∑

i=1

li +
m−2λ
∑

j=1

sj + V2(λ + 1,m−2λ + 1) (3.4)

Rl =
λ+1
∑

i=1

li +
m−2λ−2
∑

j=1

sj + V2(λ + 2,m−2λ −1) (3.5)

Rs =
λ−1
∑

i=1

li +
m−2λ+2
∑

j=1

sj + V2(λ,m−2λ + 3) (3.6)

Case 1:

Ro −Rl =
λ
∑

i=1

li +
m−2λ
∑

j=1

sj + V2(λ + 1,m−2λ + 1)

−




λ+1
∑

i=1

li +
m−2λ−2
∑

j=1

sj + V2(λ + 2,m−2λ −1)
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= −lλ+1 + sm−2λ−1 + sm−2λ

+ V2(λ + 1,m−2λ + 1) −V2(λ + 2,m−2λ −1)

If lλ+1 < sm−2λ + sm−2λ+1, then lλ+2 < sm−2λ−2 + sm−2λ−1. Then by

induction, if b2 ≥ 2S, V2(λ+2,m−2λ−1) would earn (sm−2λ−1 +sm−2λ) fol-

lowed by the sum of values of ads selected from the set {lλ+2, . . . ,sm−2λ+1, . . .}.

For a break of corresponding size, V2(λ + 1,m − 2λ + 1) would earn at least

lλ+1 followed by the sum of values of ads from the set {lλ+2, . . . ,sm−2λ+1, . . .}.

Thus, we can write:

V1(λ + 1,m−2λ + 1)−V1(λ + 2,m−2λ −1)

≥ p1(sm−2λ+1 −sm−2λ−1) (3.7)

+
M
∑

r=2

pr (lλ+1 − [sm−2λ−1 + sm−2λ])

Substituting for Ro −Rl, we get:

Ro −Rl ≥ −lλ+1 + sm−2λ−1 + sm−2λ

+ p1(sm−2λ+1 −sm−2λ−1)

+
M
∑

r=2

pr (lλ+1 − [sm−2λ−1 + sm−2λ])

≥ p1 [−lλ+1 + sm−2λ−1 + sm−2λ + sm−2λ+1 −sm−2λ−1]

≥ p1 [−lλ+1 + sm−2λ + sm−2λ+1]

> 0 (∵ lλ+1 < sm−2λ + sm−2λ+1)

Case 2: Ro −Rs ≥ 0 can be similarly proved:

Ro −Rs =
λ
∑

i=1

li +
m−2λ
∑

j=1

sj + V1(λ + 1,m−2λ + 1)

−




λ−1
∑

i=1

li +
m−2λ+2
∑

j=1

sj + V1(λ,m−2λ + 3)
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= lλ − (sm−2λ+1 + sm−2λ+2)

+ V1(λ + 1,m−2λ + 1) −V1(λ,m−2λ + 3)

Using similar arguments as before,

V1(λ + 1,m−2λ + 1)−V1(λ,m−2λ + 3)

≥ p1(sm−2λ+1 −sm−2λ+3)

+
M
∑

r=2

pr (−lλ + [sm−2λ+1 + sm−2λ+2])

After substituting for Ro −Rs, we get:

Ro −Rs ≥ lλ − (sm−2λ+1 + sm−2λ+2)

+ p1(sm−2λ+1 −sm−2λ+3)

+
M
∑

r=2

pr (−lλ + [sm−2λ+1 + sm−2λ+2])

≥ p1(lλ − (sm−2λ+2 + sm−2λ+3))

≥ 0 (∵ lλ ≥ sm−2λ+2 + sm−2λ+3)

By setting the threshold on the least valuable large ad that can be sched-

uled, the scheduler only needs to check backwards from l⌊m/2⌋ for the least

valuable large ad that satisfies Case 1. When the appropriate ad is found,

all large ads that have greater value are scheduled, and the remaining time

in the break is filled with the most valuable small ads.

Multiple Breaks

The multiple breaks case uses induction, and the intuition behind the proof

is similar to that used in Lemma 3.5. We state the Theorem formally below.
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Theorem 3.3. If b1 = mS and k = n, then the Optimal Policy is to select

(l1, . . . , lλ,s1, . . . ,sm−2λ), where:

• lλ ≥ sm−2λ+n + sm−2λ+n+1

• 2λ ≤ m

Proof. Proof is given in Appendix A.

Consider the case where k = 1, and the break of size mS is split into ⌊m
2 ⌋

breaks of size 2S (and an additional break of size S, if m is an odd number).

Then by Theorem 3.1, l1 would be compared to (sm/2 + sm/2+1), and if it is

lower, to (sm/2+1 + sm/2+2), and so on until either l1 is greater than some

combination of si +si+1, where i > m/2, or the large breaks are exhausted. If

l1 is not scheduled in the first ⌊m
2 ⌋−1 breaks, then l1 will finally be compared

to (sm−1 + sm), which corresponds to (sm−2λ+1 + sm−2λ+2) where λ = 1.

To see why this is true for any lλ where λ > 1, assume that it is true

for l1, . . . , lλ−1. If lλ−1 has been selected for airing, then lλ−1 ≥ (sm−2λ+3 +

sm−2λ+4). If lλ−1 is scheduled for the last large break, then ads (sm−2λ+3,sm−2λ+4)

are not scheduled, and the last small ads to be scheduled are (sm−2λ+1,sm−2λ+2).

For lλ to be an attractive candidate to be scheduled, therefore, it has to be

more valuable than the two least valuable small ads which have been selected:

(sm−2λ+1,sm−2λ+2).

When k > 1, the index of small ads that li has to be compared against

increases by exactly k, because the optimal policy assumes the worst case

where every break subsequent to the current one is small, similar to the

intuition in Section 3.2.1.

From a managerial perspective, the Optimal Policy reduces complexity;

the Greedy Policy would have to generate every combination of ads that fits

the break and select the most profitable. Thus, despite the added complexity

of having breaks of multiple sizes, the Optimal Policy scales well.
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3.2.4 Stochastic Number of Breaks of Multiple Sizes

In this section, we study the Optimal Policy when break sizes are distributed

between [0,S,2S, . . . ,MS]. The size of the current break is assumed to be

mS, where m ≤ M . As we did in Section 3.2.2, we allow breaks of size zero to

model the case where the number of breaks is stochastic. We use probability

pi to denote the probability of a break of size i occurring, where i ∈ [0,M ]

and
M
∑

i=0

pi = 1.

We study the Optimal Policy when the number of breaks remaining are

one and two, and use induction to prove the Optimal Policy for the multiple

break case.

One Break

When the current break is the only break to be scheduled, and the size of

the break is known, we use the same policy as outlined in Lemma 3.4. We

reiterate the lemma here without proof.

Lemma 3.6. If b1 = mS, p0 ≥ 0, and k = 1, then the Optimal Policy is to

select (l1, . . . , lλ,s1, . . . ,sm−2λ), where λ is the largest index such that 2λ ≤ m

and:

lλ ≥ sm−2λ+1 + sm−2λ+2

Two Breaks

We know that Lemma 3.6 applies for b2 when it is the only break remaining.

We will use induction to prove optimality when two breaks remain.

As we did for Lemma 3.5, we prove that it is optimal to select lλ when

it satisfies the rule for optimality, from which we can infer optimality of

selecting all li ≥ lλ.

Lemma 3.7. If b1 = mS, p0 ≥ 0, and k = 2, then the Optimal Policy is to

select (l1, . . . , lλ,s1, . . . ,sm−2λ), where λ is the largest index such that 2λ ≤ m
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and:

(p0 + p1)lλ ≥ p0(sm−2λ+1 + sm−2λ+2) + p1(sm−2λ+2 + sm−2λ+3)

Proof. Let:

Ô = (l1, . . . , lλ,s1, . . . ,sm−2λ)

Ol = (l1, . . . , lλ, lλ+1,s1, . . . ,sm−2λ−2)

Os = (l1, . . . , lλ−1,s1, . . . ,sm−2λ+2)

Let Ro, Rl, and Rs denote the revenues earned by selecting Ô, Ol and Os

respectively. We have to prove that

1. Ro ≥ Rl

2. Ro ≥ Rs

We again use Vi(l,s) to denote expected revenue earned when selecting ads

for break i onwards, when the indexes of the first large ad and the first small

ad are l and s respectively.

Case 1: By definition:

(p0 + p1)lλ ≥ p0(sm−2λ+1 + sm−2λ+2) + p1(sm−2λ+2 + sm−2λ+3) (3.8)

and (p0 + p1)lλ+1 < p0(sm−2λ−1 + sm−2λ) + p1(sm−2λ + sm−2λ+1) (3.9)

Then,

Ro −Rl =
λ
∑

i=1

li +
m−2λ
∑

j=1

sj + V2(λ + 1,m−2λ + 1)

−




λ+1
∑

i=1

li +
m−2λ−2
∑

j=1

sj + V2(λ + 2,m−2λ −1)





= − lλ+1 + sm−2λ−1 + sm−2λ

+ V2(λ + 1,m−2λ + 1) −V2(λ + 2,m−2λ −1)
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From eq. 3.9, we have:

(p0 + p1)lλ+1 < p0(sm−2λ−1 + sm−2λ) + p1(sm−2λ + sm−2λ+1)

< p0(sm−2λ−2 + sm−2λ−1) + p1(sm−2λ−1 + sm−2λ)

=⇒ (p0 + p1)lλ+2 < p0(sm−2λ−2 + sm−2λ−1) + p1(sm−2λ−1 + sm−2λ)

(since lλ+2 ≤ lλ+1)

Then by induction, for b2 ≥ 2S, V2(λ+2,m−2λ−1) earns us (sm−2λ−1 +

sm−2λ) followed by the sum of values of ads selected from the set {lλ+2, . . . ,sm−2λ+1, . . .}.

On the other hand, with V2(λ + 1,m−2λ + 1) we earn at least lλ+1 followed

by the sum of values of ads from the set {lλ+2, . . . ,sm−2λ+1, . . .}. Thus, we

can write:

V2(λ + 1,m−2λ + 1)−V2(λ + 2,m−2λ −1)

≥ p1(sm−2λ+1 −sm−2λ−1)

+
M
∑

i=2

pi (lλ+1 − [sm−2λ−1 + sm−2λ])

Substituting for Ro −Rl, we get:

Ro −Rl ≥ −lλ+1 + sm−2λ−1 + sm−2λ

+ p1(sm−2λ+1 −sm−2λ−1)

+
M
∑

i=2

pi (lλ+1 − [sm−2λ−1 + sm−2λ])

≥ (p0 + p1) [−lλ+1 + sm−2λ−1 + sm−2λ]+ p1 [sm−2λ+1 −sm−2λ−1]

≥ −(p0 + p1)lλ+1 + p0(sm−2λ−1 + sm−2λ) + p1(sm−2λ + sm−2λ+1)

> 0 (from eq. 3.9)

Case 2 Ro −Rs ≥ 0 can be similarly proved using eq. 3.8.

It can be seen that the intuition behind Lemma 3.7 is similar to our
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discussion in Section 3.2.3: the revenue earned by the Optimal Policy is

equal to the case where we have ⌊m/2⌋ breaks of size 2S (and one break of

size S, if m is an odd number). Since p0 ≥ 0, Theorem 3.2 would apply for

each break of size 2S.

The intuition behind the probabilities follows the discussion in Section 3.2.2.

The Optimal Policy adjusts the threshold above which large ads are attrac-

tive based on the break size distribution, and these thresholds increase as p0

increases and other probabilities decrease.

Thus the case of multiple break sizes with stochastic number of breaks

can be seen as a combination of Sections 3.2.2 and 3.2.3.

Multiple Breaks

The multiple breaks case uses induction, and the intuition behind the proof

is similar to that of Lemma 3.7. We state the Theorem formally below.

Theorem 3.4. If b1 = mS, p0 ≥ 0, and k = n, then the Optimal Policy is to

select (l1, . . . , lλ,s1, . . . ,sm−2λ), where λ is the largest index such that 2λ ≤ m

and:

(p0 + p1)n−1lλ ≥
n−1
∑

i=0

[(

n−1

i

)

pn−1−i
0 pi

1(sm−2λ+i+1 + sm−2λ+i+2)

]

Proof. Proof is given in Appendix A

As discussed in section 3.2.2, the threshold has once again increased for

l1; this is because of the introduction of breaks of size zero. Our insights from

Section 3.2.2 still apply. The Optimal Policy sets a threshold, based on the

break size distribution, that each large ad should exceed to be scheduled. As

we have studied, the higher the probability of breaks of size zero, the higher

the value that large ads should have to make them attractive candidates for

scheduling, given the same set of small ads.

In this section, we have studied the Optimal Policy for scheduling ads

in breaks of stochastic sizes, when the size of the break for which we are
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currently scheduling is known but those of subsequent breaks is not. We

conclude with the most general case, Theorem 3.4 where setting M and

p0 to appropriate values will give us the rules described in Theorem 3.1,

Theorem 3.2 and Theorem 3.3. Thus we have described the rule for the full

set of scenarios when the scheduler is aware of the size of the break to be

scheduled next.

In the next section, we study the Optimal Policy for cases when the

scheduler does not know the size of any of the breaks, but knows only the

distribution of break sizes based on which he can create a sequence of ads to

be scheduled.

3.3 Unknown Break Size

In this section we study scenarios where we do not know the size of any of the

breaks at the time of scheduling. Our motivation arises from cases where the

break begins without the on-field director being able to advice the schedulers

on what the break length is expected to be, and an ad schedule has to be

made based only on the break length distribution. We assume that break

sizes are IID.

As before, we discuss Optimal Policy for the four cases mentioned in

section 3.1.

3.3.1 Base Case

In the Base Case, breaks can be of two sizes, small (S) and large (L =

2S). A small break occurs with probability p, and a large break occurs with

probability 1 − p. We study our selection options when a choice has to be

made between selecting either (s1,s2) or l1 before the break size is observed.
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One break

When scheduling for one break unknown size, we choose the maximum of the

expected revenues from selecting either l1 or (s1,s2). If a small break occurs,

selecting (s1,s2) earns s1, since only s1 can be completely aired. Selecting l1

earns nothing, since it cannot be fully aired. If a large break occurs, selecting

(s1,s2) and l1 earn s1 + s2 and l1 respectively.

Therefore the expected revenue from selecting (s1,s2) is ps1 +(1−p)(s1 +

s2), and the expected revenue from selecting l1 is (1 −p)l1.

We state the following lemma without proof:

Lemma 3.8. If k = 1, and the break size is unknown, the Optimal Policy is

to:

1. select l1 if (1 −p)l1 ≥ ps1 + (1 −p)(s1 + s2)

2. select (s1,s2) otherwise

We next look at the Optimal Policy when two breaks remain.

Two breaks

Unlike Lemma 3.2, where the Optimal Policy compared l1 and sn + sn+1,

the absence of ex-ante information forces us to choose myopically between

the expected revenues earned by selecting l1 and (s1,s2) irrespective of the

number of breaks remaining. We state the optimal policy formally as follows.

Lemma 3.9. When k = 2, and the break size is unknown, the optimal policy

is to:

1. select l1 if (1 −p)l1 ≥ ps1 + (1 −p)(s1 + s2)

2. select (s1,s2) if (1 −p)l1 < ps2 + (1 −p)(s2 + s3)

3. select either l1 or (s1,s2) otherwise
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Proof. From Lemma 3.8, the rule holds good for one break. Let Rl and Rs

denote the expected revenues from scheduling l1 and (s1,s2) respectively. Let

Vi(l,s) denote the revenue earned from break i onwards, when the indexes of

the first large ad and the first small ad are l and s respectively.

Case 1: When (1 −p)l1 ≥ ps1 + (1 −p)(s1 + s2),

Rl −Rs = p(0 + V2(1,1)) + (1 −p)(l1 + V2(2,1))

−p(s1 + V2(1,2)) − (1 −p)(s1 + s2 + V2(1,3))

= (1 −p)l1 −ps1 − (1 −p)(s1 + s2)

+ p[V2(1,1) −V2(1,2)]+ (1 −p)[V2(2,1) −V2(1,3)]

≥ (1 −p)l1 −ps1 − (1 −p)(s1 + s2)

+ p[(1 −p)l1 − (1 −p)l1]

+ (1 −p)[p(s1) + (1 −p)(s1 + s2) − (1 −p)l1]

(∵ V2(2,1) ≥ p(s1) + (1 −p)(s1 + s2))

≥ p[(1 −p)l1 −ps1 − (1 −p)(s1 + s2)]

≥ 0

Rl −Rs ≥ 0 =⇒ it is optimal to select l1 first.

Case 2: When (1 −p)l1 < ps2 + (1 −p)(s2 + s3)

Rs −Rl = ps1 + (1 −p)(s1 + s2) − (1 −p)l1

+ p[V2(1,2) −V2(1,1)]+ (1 −p)[V2(1,3) −V2(2,1)]

≥ ps1 + (1 −p)(s1 + s2) − (1 −p)l1 + p[(1 −p)l1 −ps1 − (1 −p)(s1 + s2)]

+ (1 −p)[(1 −p)(l1) −ps1 − (1 −p)(s1 + s2)]

(∵ V2(1,2) and V2(1,3) ≥ (1 −p)(l1))

≥ (1 −p − (1 −p))[ps1 + (1 −p)(s1 + s2) − (1 −p)l1]

≥ 0
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Rs −Rl ≥ 0 =⇒ it is optimal to select (s1,s2) first.

Case 3: When ps1 + (1 −p)(s1 + s2) > (1 −p)l1 ≥ ps2 + (1 −p)(s2 + s3),

Rl −Rs = (1 −p)l1 −ps1 − (1 −p)(s1 + s2)

+ p[V2(1,1) −V2(1,2)]+ (1 −p)[V2(2,1) −V2(1,3)]

= (1 −p)l1 −ps1 − (1 −p)(s1 + s2)

+ p
[

ps1 + (1 −p)(s1 + s2) − (1 −p)l1

]

+ (1 −p)
[

ps1 + (1 −p)(s1 + s2) − (1 −p)l1

]

= 0

Rl = Rs =⇒ we are indifferent between selecting l1and (s1,s2).

The Optimal Policy shows that there is a region where selecting l1 is

strongly preferable, a region where selecting (s1,s2) is strongly preferable,

and a region where we are indifferent between selecting l1 and (s1,s2). We

shall look into the multiple break case before discussing the implications of

such a partition.

Multiple breaks

Theorem 3.5. When k = n, and the break size is unknown, the Optimal

Policy is to:

1. select l1 if (1 −p)l1 ≥ ps1 + (1 −p)(s1 + s2)

2. select (s1,s2) if (1 −p)l1 < psn + (1 −p)(sn + sn+1)

3. select either l1 or (s1,s2) otherwise

Proof. Proof is given in Appendix A

Theorem 3.5 extends Lemma 3.9. There are two regions where the sched-

uler has a strong preference over the possible choices, separated by a region

of indifference.
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In the first region (Case 1), l1 is strongly preferable based on a myopic

comparison of the expected revenues earned from selecting l1 and (s1,s2).

Since s1 and s2 are the most profitable small ads, l1 earns a higher expected

revenue than any combination of small ads to be selected.

The same can be said of the third region (Case 2); since expected revenue

from selecting l1 is lower than that from selecting (sn,sn+1), we select the

smaller ads first. If we are faced with a series of only small breaks, we schedule

(s1, . . . ,sn) through the match, earning more than if we had scheduled l1

first. If a large break were to arrive subsequently, the strategy would check

if Case 1 applies, earning at least as much as the Greedy Policy.

The indifference exists because when breaks can only be of size S or L,

and (1−p)l1 ≥ sn +(1−p)sn+1, then the Optimal Policy expects to schedule

l1 when (1 − p)l1 is greater than some (sj + (1 − p)sj+1), where j > 1, and

Case 1 applies.

In the worst case, suppose (1 − p)l1 = sn + (1 − p)sn+1, and small ads

have been scheduled for the first n − 1 breaks, which are found to be short.

For the nth break, expected revenue from selecting l1 will be compared to

expected revenue from scheduling (sn,sn+1), and Case 1 applies. Therefore

l1 is guaranteed to be selected for some break in the match.

Similarly, since selecting (s1,s2) earns higher expected revenue than any

large ad, then in the worst case, l1 is repeatedly selected for the first n − 1

breaks which turn out to be short. Then for the nth break, Case 2 will apply

and (s1,s2) will be selected. Thus (s1,s2) is also guaranteed to be selected

for some break in the match.

Therefore we are indifferent between selecting l1 and (s1,s2) for b1.

From a managerial perspective, the region of indifference gives the net-

work flexibility when accepting orders with client constraints at the start of

the match. Consider a scenario where a client wishes the network to schedule

a large ad when a particular wicket falls (and breaks in the match can only

be of size S or L). The network can accept this scheduling constraint on
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a long ad as long as the expected value from airing the ad is higher than

the expected value of airing two small ads in their inventory which fall in

the nth and (n+ 1)th position, where n is the total number of breaks in the

match. It is possible, however, that the above condition is satisfied, but the

ad is not the most valuable large ad in the inventory when the break occurs.

The network can still use the Optimal Policy and the break size distribution

to quote a value to the client to make the ad a viable candidate for that

break. The exact methodology is beyond the scope of our current discussion,

however pricing policies based on the Optimal Policy is an area for future

research.

3.3.2 Stochastic Number of Breaks

In this subsection we consider an extension where the number of breaks

is stochastic. As in Section 3.2.2, we introduce a probability p0 of having a

break of size 0, while we assume that break could be of size S with probability

p1, and of size L = 2S with probability p2. We do not consider breaks of size

greater than L.

As before, we assume that a break of size zero might arrive at any point

in the match, and that we are always aware of the arrival of such a break, and

discount the number of breaks remaining accordingly. All other assumptions

and notations as listed in Section 3.1 still remain.

One break

With only one break possible, the scheduler chooses greedily between the

expected values of selecting l1 and (s1,s2). If the last break turns out to be

of size zero, either strategy earns zero; if it is of size S, we earn zero with l1

and s1 with (s1,s2); if it is of size L we earn l1 and s1 + s2 respectively.

As before, we propose a lemma without proof for the one break case:
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Lemma 3.10. When k = 1, p0 ≥ 0, and break sizes are unknown, the Optimal

Policy is to:

1. select l1 if p2l1 ≥ p1s1 + p2(s1 + s2)

2. select (s1,s2) otherwise

Two breaks

For the two break case, the strategy continues to be a myopic choice be-

tween the expected revenues earned from selecting l1 and (s1,s2), despite the

introduction of breaks of size zero.

Lemma 3.11. When k = 2, p0 ≥ 0, and break sizes are unknown, the Optimal

Policy is to:

1. select l1 if p2l1 ≥ p1s1 + p2(s1 + s2)

2. select (s1,s2) otherwise

Proof. Let p2l1 = t+p1s1 +p2(s1 +s2). We use Rl,Rs, and Vi(l,s) as defined

in the previous subsections. From Lemma 3.10, the rule holds good for one

break.

With the introduction of p0, expected revenues earned are as follows:

Rl = (p0 + p1)V1(1,1) + p2(l1 + V1(2,1))

Rs = p0V1(1,1) + p1(s1 + V1(1,2)) + p2(s1 + s2 + V1(1,3))

Case 1: When (1 −p)l1 ≥ ps1 + (1 −p)(s1 + s2),

Rl −Rs = (p0 + p1)V1(1,1) + p2(l1 + V1(2,1))

−p0V1(1,1) −p1(s1 + V1(1,2)) −p2(s1 + s2 + V1(1,3))

= p1(V1(1,1) −s1 −V1(1,2)) + p2(l1 + V1(2,1) − (s1 + s2) −V1(1,3))

= t+ p1[V1(1,1) −V1(1,2)]+ p2[V1(2,1) −V1(1,3)]
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≥ t+ p1[p1s1 + p2(s1 + s2) −p2l1]+ p2[p1s1 + p2(s1 + s2) −p2l1]

≥ t+ p1(−t) + p2(−t)

≥ p0t

≥ 0 ∵ p0 ≥ 0, t ≥ 0

Thus, Rl −Rs ≥ 0 =⇒ it is optimal to selection l1 first.

Case 2: When (1 − p)l1 < ps1 + (1 − p)(s1 + s2), let t + p2l1 = p1s1 +

p2(s1 + s2), where t > 0.

Proceeding along similar lines as Case 1, we can prove that Rs − Rl ≥
p0t ≥ 0.

Case 1 and Case 2 correspond with the cases in Lemma 3.9. The

addition of p0 does not affect the two regions of strong preference because

the expected revenue when the break is of size zero is the same whether we

selection l1 or (s1,s2). Therefore, our decision is solely based on p1 and p2,

and the expected revenues earned thereby.

There is no Case 3 corresponding to Lemma 3.8 because S and L are

not the only break sizes possible. When the expected revenue from selecting

l1 is less than that from selecting (s1,s2), Case 2 applies. From the proof

for Lemma 3.11, the difference between the two expected revenues is at least

p0t, where t ≥ 0 is the difference in expected revenue. Since p0 > 0, we are

indifferent between scheduling l1 and (s1,s2) only when t = 0; i.e. p2l1 =

p1s1 + p2(s1 + s2).

Multiple breaks

From Lemmas 3.10 and 3.11, we can see that the myopic rule holds good

when we plan for either one break or two. In this section, we use the previous

results and prove by induction that the rule holds good for any number of

breaks remaining.
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Theorem 3.6. When k = n, p0 ≥ 0, and break sizes are unknown, the Opti-

mal Policy is to:

1. select l1 if p2l1 ≥ p1s1 + p2(s1 + s2)

2. select (s1,s2) otherwise

Proof. Proof is given in Appendix A

Theorem 3.6 can be seen as a special case of Theorem 3.5 where p0 > 0.

As before, we have two regions where the scheduler has strong preferences,

but there is no region of indifference (except for the point where expected

revenue from selecting l1 equals that from selecting (s1,s2)). Therefore, when

the number of breaks is not fixed and break sizes are not known in advance,

the scheduler is forced to select between l1 and (s1,s2) myopically based on

the expected revenues earned.

3.3.3 Multiple Break Sizes and its variants

In this section, we consider the case where breaks can be of size (S,2S,3S, ...,MS),

and the size of the break is not known in advance.

As shown in Theorem 3.5 when breaks are of sizes S or 2S, the Optimal

Policy when break sizes are unknown is based on a myopic comparison of the

expected revenues earned. When the maximum break size is 2S, we choose

between l1 and (s1,s2). This policy is independent of the number of breaks

remaining, since breaks are IID and break size is unknown for each break.

When the maximum break size is MS, the Optimal Policy should pro-

vide the permutation of ads to be scheduled based on the break size distri-

bution. Consider, for example, the case when M = 3. Let us assume that

the probability of breaks of sizes S,2S and 3S occurring is p1,p2 and p3,

where p1 +p2 +p3 = 1. Then the ad schedules that can be generated and the

revenues earned are shown in Table 3.2.
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Schedule Revenue earned
s1,s2,s3 s1 + (p2 + p3)s2 + p3s3

s1, l1 s1 + p3l1
l1,s1 (p2 + p3)l1 + p3s1

Table 3.2: Revenues earned with each possible schedule

As shown, the revenue earned with each schedule is different, and the

Optimal Policy should select the schedule which generates the maximum

revenue based on the probabilities pi and the values of the ads scheduled.

It can be shown that the number of possible combinations of ads for each

value of M is a Fibonacci sequence as shown in table 3.3.

M Number of ad schedules
1 1
2 2
3 3
4 5
5 8
6 13
7 21
...

...

Table 3.3: Number of possible ad schedules for each value of M

This can be explained as follows: let us assume that each break is divided

into ‘slots’ of length S, thus when M = n, there are n slots available to be

scheduled. Let σn and σn+1 be the number of ad schedules possible when

M = n and M = n+1 respectively. Then for M = n+2, an additional slot is

added at the end of n+1 slots, and this slot can either be programmed with

an ad of size S or an ad of size L = 2S, starting from slot n+ 1. If an ad of

size S is scheduled in slot n+2, the previous n+1 slots can be scheduled in

σn+1 ways. If, however, an ad of size L is scheduled across slots n + 1 and

n + 2 , then the previous n slots can be scheduled in σn ways, thus giving

σn+2 = σn + σn+1.

By the well known Binet’s formula1, when M = n, the number of possible

1Theory of Binet formulas for Fibonacci and Lucas p-numbers[25]
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combinations Φ(n) is

Φ(n) =
ϕn − (1 −ϕ)n

√
5

=
ϕn − (−1/ϕ)n

√
5

Where ϕ = 1+
√

5
2 ≈ 1.6180339887 . . .

The number of ad schedules that can be programmed increases expo-

nentially with the value of M , resulting in a ’Hughes effect’, or a ’curse of

dimensionality’ 2, a classical problem that arises when dealing with prob-

lems of stochastic recourse. For any M = n, the Optimal Policy would be the

maximum of the expected revenues earned from each of the Φ(n) schedules.

As discussed in Section 2.3, the problem is better solved with specialized

heuristics, rather than attempting an analytical solution for the general n-

case.

2Dynamic programming[2]



Chapter 4

Numerical Analysis

In this chapter we perform a numerical analysis of the Optimal Policy dis-

cussed in Chapter 3. We compare the Optimal Policy to the Greedy Policy,

in order to find the conditions under which the Optimal Policy most out-

performs the Greedy Policy. We also study the impact of service level com-

mitments and the impact of uncertainty on the performance of the Optimal

Policy.

4.1 Performance with deterministic number

of breaks

We begin with cases where the number of breaks is fixed, and there are

no breaks of size zero. A study of how the Optimal Policy performs as

parameters change will give us an idea of how stable it is, and allow us to

find conditions where it is most beneficial to use the Optimal Policy.

We begin with listing the parameters we will use for the study, and sub-

sequently study the impact of various parameters on revenues and service

levels.

45



46 Numerical Analysis

4.1.1 Parameters

To evaluate the performance of the policies, we generate the values for the

large and small ads based on the parameters listed in Table 4.1.

Results were averaged over 500 runs, and at each iteration the inventory

and spot values were changed. This was done to ensure that we tested

the strategies across a broad range of data sets, and that the results were

representative of average scenarios.

Parameter Value

Number of breaks 50
Break size (s) 10 sec or 20 sec
Number of large ads 50
Number of small ads 100
Large ads values ($) 1000−1200
Small ads values ($) 200−1000

Table 4.1: Parameters for numerical analysis of Optimal Policy and Greedy
Policy

In Table 4.1, the number of breaks, 50, is typical of the number of breaks

found in a T-20 match, where each of two innings has twenty over breaks,

and ten wickets are expected to fall during the course of the match. We

assume that breaks can be of sizes 10 seconds or 20 seconds only with equal

probability, hence the mean break length is 15 seconds. The range of values

earned by long ads and short ads are typical of orders received by major sports

broadcasters for international T-20 tournaments, and we select random values

within these ranges.

We next look at performances of the Optimal Policy and Greedy Policy

when air time sold (i.e., number of ads available in the inventory) varies.

4.1.2 Impact of variation in air time sold

We analyze how change in the amount of air time sold affects the performance

of the Optimal Policy and the Greedy Policy. We start with 50 large ads and

100 short ads, as listed in Table 4.1, and remove two short ads for every large
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ad removed from the inventory, to keep the ratio of air time between large

and small ads constant. Air time sold ranged from half the expected air time

over the course of a match, to more than twice.

Cricket broadcasters oversell air time for important tournaments, partic-

ularly those that involve India, and expect to make good the ads not shown

during live broadcast in non-live segments later. By overselling, networks

have more flexibility in what ads they show, and are able to cash in on op-

portunities when actual break time in matches exceeds the expected break

time significantly.

Underselling air time is usually done when the penalty of not achieving

service levels is severe, or the network expects a curtailed match, for instance,

due to rain. By decreasing the air time sold, networks often aim to provide

higher service levels, while putting a premium on the spot value per second.

We observe changes in service levels of large and small ads, along with change

in revenues earned for each policy as the amount of air time sold is varied.

The result of the numerical analysis when lengths of breaks and their

number are known at the time of scheduling is summarized in Table 4.2.

When air time sold is close to the expected air time available (∼ 750s),

we see that the Optimal Policy outperforms the Greedy Policy by almost 3%.

This translates to an average of $1262 per match, equivalent to the expected

value earned by airing two small ads more per match than the Greedy Policy.

Service levels for the Optimal Policy and the Greedy Policy show that the

Optimal Policy consistently schedules more large ads than then Greedy Policy

does, whereas the Greedy Policy relies more on small ads. As a consequence,

we see that when the air time sold is 800s, approximately 97% of the small

ads have been shown by the Greedy Policy, yet almost one small break in

a 50 break match has nothing scheduled in it. This is because the Greedy

Policy schedules small ads even for large breaks early in the match and runs

out of ads to schedule when small breaks occur.

This is an important result for broadcast networks. The over reliance of
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the Greedy Policy on small ads to earn revenue may lead to lost opportunities,

whereas the Optimal Policy schedules large ads whenever possible and holds

a reserve of small ads for small breaks, leading to improved service levels and

revenues overall.
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Figure 4.1: Average total revenue versus air time sold

We plot the revenues earned by the Optimal Policy and the Greedy Policy

against air time sold in Figure 4.1. The difference in revenues earned is pro-

nounced when the service level is between 80% and 90%, which corresponds

to airtime sold of around 800 seconds (from Table 4.2), which is roughly

equal to the expected air time. The service level mark of 80% is significant,

since this is the service level usually promised by the network to advertisers

during most tournaments. Thus the Optimal Policy is significantly better

than the Greedy Policy in conditions that approach real world situations.

We next consider the case where the number of breaks in a match is

not fixed. The maximum difference between the Optimal Policy and the

Greedy Policy occurs when the time sold is 800 seconds, which corresponds

to 40 small ads and 10 large ads sold. Since the number of breaks is 50, the

Greedy Policy schedules the small ads in the large breaks and is left with

almost one small break left unscheduled (Table 4.2). When airtime sold is

higher, both policies have a greater choice of ads to choose from and the
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difference between policies reduces; and when the airtime sold is lower, both

policies suffer from a lack of ads equally.

The efficient frontier helps managers determine what service level is most

optimal. Promising lower service levels can yield higher revenues, which

should be balanced, however, with the possible loss of goodwill. Managers

can thus decide on a target service level by considering both the benefits and

costs involved.

4.1.3 Value of flexibility

Small ads can be shown in both small and large breaks, whereas large ads can

only be shown in large breaks. Thus, small ads offer more flexibility to the

broadcaster as to which break they can be shown in. To analyze the value

of flexibility, we study the change in revenue as we change the mix of small

and large ads in the inventory. We begin with the parameters as outlined in

Table 4.1, and split the large ads randomly into two, thus creating equally

valued small ads, and increasing the ratio of small ads to large ads in the

inventory.

We begin with a numerical analysis when the number of breaks per match

is fixed. Table 4.3 shows the average revenue earned per match by the Opti-

mal Policy and the Greedy Policy as the mix of large and small ads is varied

and the number of breaks is fixed.

The percentage change in revenue for each policy is the amount of change

that each policy earns in comparison to the case when the ratio of air time is

equally split between small ads and large ads, which is our starting ratio. The

last column lists the percentage difference in revenues between the Greedy

Policy and the Optimal Policy. We see that as the ratio of small ads to large

ads increases, the difference between the two policies decreases. We plot the

percentage change of the Optimal Policy and the Greedy Policy in Figure 4.2.

The Optimal Policy does not vary much from its original value, whereas the

Greedy Policy displays an increase of almost 2.5% from its original.
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Figure 4.2: Change in revenue with split of large ads

The increase in the revenue earned by the Greedy Policy is explained by

the preference of the Greedy Policy for small ads: as discussed in section 4.1.2,

the Greedy Policy schedules more small ads than long ads, therefore revenues

increase when the number of small ads increase.

From a managerial perspective, the ability of the Optimal Policy to main-

tain revenue earned despite substantial change in the ratio of small and large

ads is of importance. Thus the Optimal Policy is a robust strategy despite

changing inventory mix, and ensures the network a stable revenue regardless

of the inventory composition.

Figure 4.3 plots the difference between the Optimal Policy and the Greedy

Policy. We see that the difference is most significant when the air time is

equally divided between the large ads and the small ads, and this difference

decreases as the proportion of small ads increases. As expected, when the

inventory consists only of small ads, there is no difference in revenue earned

between the Optimal Policy and the Greedy Policy.

4.1.4 Impact of Variability

We next investigate the impact of variability on the performance of the Op-

timal Policy, as defined in Theorem 3.3. The distribution of break lengths
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Figure 4.3: Difference between Greedy and Optimal with split of large ads

and the size of our inventory are listed in Table 4.4, and all other parameters

are the same as listed in Table 4.1.

To simulate variability, we use a Uniform Distribution with a mean of 60

seconds Although the break lengths were generated from a Uniform Distribu-

tion, they are rounded down to the nearest multiple of 10 seconds, which is

the size of the small ad. Large ads are of size 20 seconds, as before. We vary

the support for the break size distribution from a constant 60 to [10,110].

This corresponds to varying the standard deviation between [0, 50√
3
], and the

range between [0,100]. As before, however, break sizes that are not a multi-

ple of 10 are rounded down to the nearest multiple of 10, since the remaining

break time will remain unutilized. For simplicity, we will only consider the

range when discussing variability. Finally, we note that the expected air

time has increased substantially, necessitating an increase in the size of our

inventory as shown in Table 4.4.

The results have been tabulated in Table 4.5. We find that both the Op-

timal Policy and the Greedy Policy are not affected significantly by increase

in variability. The ‘percentage change’ row for each policy shows the change

in revenues earned compared to zero variability case. In this case, we see that

there is negligible change in the revenues earned by the Optimal Policy and
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the Greedy Policy as variability increases. Service levels also do not show

significant changes with variability, thus supporting our inference that the

effect of variability on revenues earned is negligible. Figure 4.4 shows the

percentage change in revenues with increase in range.
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Figure 4.4: Change in revenue with variability

From a managerial perspective, as long as the expectation of break lengths

is steady, increased variability does not significantly affect revenues. As vari-

ability increases, breaks of large sizes are complemented by breaks of small

sizes, keeping the overall revenues earned from fluctuating. The order in

which large breaks and small breaks occur causes the small gains for the Op-

timal Policy over the Greedy Policy. The Greedy Policy has a preference for

scheduling small ads in the large breaks, so when matches have a sequence

of large breaks followed by small ones, the Greedy Policy is left with less

valuable small ads for the small breaks. In contrast, the Optimal Policy has

a lower threshold for scheduling large ads as discussed in section 3.2.3, there-

fore it is able to gain more from the short breaks in the latter part of the

match.

In this chapter, we studied the behavior of the Optimal Policy numeri-

cally, and derived insights from the results. In the next chapter, we will dis-

cuss specialized algorithms and heuristics that will attempt to solve harder

problems, such as having ads of multiple lengths with diversity constraints.
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Air time sold (sec) 2000 1600 1200 800 400

Revenue
OP 54,935.46 52,349.08 49,523.60 44,489.78 23,034.12
GP 54,733.86 51,927.26 48,673.94 43,227.58 23,034.12
% Difference 0.37 0.81 1.72 2.84 0.00

Service Levels (%)
OP

L ads 22.52 39.26 67.15 99.44 100.00
S ads 52.37 54.42 57.92 87.34 100.00

GP
L ads 16.50 29.31 50.35 88.11 100.00
S ads 58.40 64.37 74.72 96.62 100.00

Unused Breaks
OP

L breaks - - - 0.03 14.64
S breaks - - - 0.01 5.39

GP
L breaks - - - 0.02 10.70
S breaks - - - 0.84 13.15

Table 4.2: Revenues and Service levels with change in air time sold
(L: large, S: small, OP: Optimal Policy, GP: Greedy Policy)
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Long ads split (%)
Optimal Policy Greedy Policy

Difference (%)
Average Value % change Average Value % change

0 48,304 0 47,132 0 2.43
10 48,358 +0.11 47,965 +1.77 0.81
20 48,340 +0.08 48,195 +2.26 0.30
30 48,248 -0.17 48,215 +2.30 0.07
40 48,199 -0.22 48,183 +2.23 0.03
50 48,267 -0.08 48,261 +2.40 0.01
60 48,347 +0.09 48,343 +2.57 0.01
70 48,275 -0.06 48,274 +2.42 0
80 48,369 +0.14 48,369 +2.62 0
90 48,229 -0.15 48,229 +2.33 0
100 48,306 +0.00 48,306 +2.49 0

Table 4.3: Value of Flexibility

Parameter Value

Break lengths ∼ U(µ − δ,µ + δ)
µ = 60, δ ∈ [0,50]

Number of large ads 100
Number of small ads 200

Table 4.4: Parameters for analyzing impact of variability on Optimal Policy
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Range 0 20 40 60 80 100

Average Revenue

OP 191,411 191,335 191,184 191,420 191,564 191,404
% change 0.00 -0.04 -0.12 +0.01 +0.08 -0.003
GP 191,411 191,313 191,180 191,408 191,559 191,396
% change 0.00 -0.05 -0.12 -0.001 +0.08 -0.01

Service Levels (%)
OP

L ads 88.94 89.22 89.30 89.01 88.82 89.16
S ads 61.06 60.78 60.70 60.99 61.18 60.84

GP
L ads 88.94 87.90 88.84 88.08 88.34 88.49
S ads 61.06 62.10 61.16 61.92 61.66 61.51

Table 4.5: Impact of variability
(L: large, S: small, OP: Optimal Policy, GP: Greedy Policy)



Chapter 5

Applications in Practice:

Scheduling ads for Cricket

In previous chapters, we have studied the Optimal Policy for a stylized model

of the real world problem. The motivation for this research came from our

discussions with a major cricket broadcaster, who also provided us with real-

world data, based on which we generated parameters for numerical analysis.

We now test several scheduling heuristics under more constraints and present

the analysis of the data, a study of the heuristics tested and the results

obtained, and create relevant managerial insights.

5.1 Data Description

In order to have an estimate of the parameters and constraints in which ad

scheduling was done, we received production logs of ads aired and the spot

price for each of those ads during a T-20 tournament.

5.1.1 Break Lengths

Our findings are shown in Table 5.1, and the break length distribution is

shown in Fig 5.1. The breaks recorded here were measured between the end

56
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of an over and the start of the next one, creating a slight skew towards the

right (since actual time available to show ads is shorter than the time between

two such overs).

Parameter Value(seconds)

Average break length 68.4
Standard Deviation 23
Minimum break length 10
Maximum break length 170
Number of samples (breaks) 983

Table 5.1: Analysis of break length data
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Figure 5.1: Break length distribution

For our numerical simulation, we estimated the break length to have a

mean of 40 seconds and to be uniformly distributed between 10 seconds and

70 seconds.

For our study of T-20 matches, we estimated a total of 50 breaks per

match (40 breaks in between overs and 10 wicket breaks). As a simplification

of match conditions, we set the number of breaks to be 50 while estimating

the performance of our heuristic.
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5.1.2 Ad Lengths, Service Levels and Demands

The lengths of the ads contracted from clients was given directly by the

sports broadcaster, and a summary of the data is shown in Table 5.2. For

Parameter Value(seconds)

Average ad length 20.82
Standard Deviation 7.84
Minimum ad length 10
Maximum ad length 40
Number of samples (ads) 2393

Table 5.2: Analysis of ad length data

our analysis, we consider ad lengths of 10 seconds, 20 seconds, and 30 seconds.

This agrees closely with the data from the broadcaster. On average, ads from

20 advertisers were shown in each match, and their demands were as shown

in Table 5.3:

Parameter Value(seconds)

Average Demand 83.82
Standard Deviation 9.84
Minimum Demand 20
Maximum Demand 180
Number of samples (matches) 25

Table 5.3: Analysis of Client Demands

In our discussions with the broadcaster, we found that the broadcaster

had to satisfy service level commitments of between 75% to 80% of the total

demand of each advertiser (i.e. 75%-80% of the demand had to be successfully

aired). These commitments could be satisfied across the duration of the

tournament, but for our study we limit our service level commitments to

each game. For our simulation, we estimate demands from advertisers such

that we can satisfy the service levels promised to most, if not all advertisers.

To achieve this, we use ‘penalties’ in the model, so that unsatisfied demand



5.2 Assumptions 59

below the promised service level decrease the profits earned. The IP model

with service level guarantee is given in Section 5.3.1.

5.1.3 Spot Values

Parameter Value($)

Average Rev/Sec 4110
Standard Deviation 583
Minimum Rev/Sec 3714.28
Maximum Rev/Sec 5714.29
Number of samples (advertisers / match) 20

Table 5.4: Analysis of spot values

Spot values in the tournament we analyzed were linear with ad length.

This made it easier to characterize the value of each advertiser in terms of how

much revenue per second each of his ads earned, so broadcaster concerns such

as giving higher value to ‘sponsors’ of a tournament could be incorporated

by adding value to the revenue per second that that advertiser earns. For our

simulation, we draw random values from the range [3500,5500]. The number

of advertisers per match varied in the tournament, with an average of 20

advertisers per match.

From the data collected, we could characterize the advertisers, their de-

mands, and the break lengths for each match and run simulations that closely

reflected real world requirements. We discuss the heuristics considered for

the simulation below.

5.2 Assumptions

To simplify the models we examine, we assume the following:

1. Spot prices for ads are linear in ad length. This is supported by the

data we received from the sports broadcaster (see Section 5.1.3).
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2. Two ads from the same advertiser cannot be shown in the same break;

but there is no restraint on showing two ads from one advertiser in

subsequent breaks.

In later sections, we will add an assumption that service level commit-

ments must be met, and the broadcaster pay a penalty if he doesn’t meet

those constraints.

5.3 Knapsack Model

In this section we study the basic Knapsack model and a variation with

service level guarantees. The Knapsack model aims to fit the best possible

combination of ads into a break. The size of the knapsack is taken as the

expected length of the break. Similar to Witchakul et al [28] we consider

penalties for crashes and underutilization, but unlike them, we build a model

for multiple periods, where ad inventory changes from break to break.

The model is as follows:

max z =
∑

n

∑

a

∑

l

ral ∗ xaln

subject to:
∑

l

xaln ≤ 1 ,∀a,n (5.1)

∑

a

∑

l

(l ∗ xaln) ≤ b ,∀n (5.2)

∑

n
xaln ≤ Nal ,∀a, l (5.3)

xaln = 0 or 1 (5.4)

where

a is the index of advertisers,

l is the length of each ad
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n is the break sequence number

b is the expected / predicted break length

Nal is the number of ads of length l contracted from advertiser a

xaln is the decision variable

Constraint(5.1) restricts the number of times an advertiser’s ad can be

shown in a break;

Constraint(5.2) specifies that the sum of all ads per break should be lower

than the break length expected;

Constraint(5.3) ensures that we only show as many ads as we have a con-

tract for;

Constraint(5.4) makes this model a binary integer programming model

5.3.1 Knapsack model with service guarantee

Sports broadcasters, ensure service levels (usually of around 80%) to their

clients, and usually have to make good or pay a penalty when the service

level commitments are not met. We include this constraint to the earlier

Knapsack model discussed in section 5.3:

max z =
∑

n

∑

a

∑

l

ral ∗ xaln −P
∑

a
sa

subject to:
∑

l

xaln ≤ 1 ,∀a,n (5.5)

∑

a

∑

l

(l ∗ xaln) ≤ b ,∀n (5.6)

∑

n
xaln ≤ Nal ,∀a, l (5.7)

n+1
∑

n
xaln ≤ 1 ,∀a, l,n (5.8)
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∑

l

∑

n
(l ∗ xaln) + sa ≥ S ∗

∑

l

(l ∗ Nal), ∀a (5.9)

xaln = 0 or 1 (5.10)

sa ≥ 0 (5.11)

where

P is the penalty for not meeting the promised service level

sa is the duration by which the service level was not met

S is the promised service level

and all other variables have the same meaning as before (see section 5.3).

Constraint(5.9) ensures that the service level guarantees, if not met, are

penalized in the Objective.

5.4 Heuristics

In this section we describe a few heuristics that we evaluate for recommenda-

tion to the sports broadcaster. These heuristics work on data as outlined in

section 5.1. Finally, we compare the revenues earned by each approach with

the revenue earned in the perfect information case (PI), where the lengths

of all breaks are known in advance of the schedule generation, which is the

theoretical upper bound.

5.4.1 Greedy Policy

The Greedy Policy assumes that break lengths are known in advance, and

then uses the Knapsack model for each (known) break without planning for

subsequent breaks. We have compared a simplified version of the Greedy

Policy to the Optimal Policy in Chapter 3, and we will extend that study

and compare the Greedy Policy with other heuristics.
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5.4.2 Certainty Equivalent Heuristic

The Certainty Equivalent heuristic (CE) builds a schedule of ads based on

the expected break length (based on the knapsack model with service level

guarantee outlined in section 5.3.1). Having generated the breaks (which are

all of length equal to the mean break length), we schedule them against the

actual breaks and find out how it performs. This gives us a lower bound on

how any variation of the certainty equivalent heuristic should perform.

5.4.3 Dynamic Certainty Equivalent Heuristic

For Dynamic Certainty Equivalent (DCE) , we generate ‘bundles’ to fit an

expected distribution of break lengths and that satisfies all constraints. The

IP is as outlined in section 5.3.1. The scheduler, who knows the length of

the break, schedules the bundle that best matches the break size. If there

are multiple bundles of equal size that fit in the break, the scheduler chooses

the first one among them.

5.4.4 Dynamic Modified Certainty Equivalent Heuris-

tic

The Dynamic Modified Certainty Equivalent Heuristic (DMCE) is a variation

of DCE, we now generate bundles not only at the beginning of the match

but also periodically during of the match. The periods of bundle generation

could be varied: bundles could be generated at specific points during the

match, or when a break occurs with no perfectly matching bundles at hand.

We study both cases and report insights.

5.4.5 Perfect Information

The Perfect Information heuristic (PI) is the theoretical ’upper bound’, so

we can compare the performance of heuristics as a percentage the maximum
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revenue attainable. We assume that sizes of all breaks are known before the

first break, and run a knapsack that schedules ads with the given constraints

in all breaks.

5.5 Comparative Statics with Service Con-

straints

In this section, we study results of numerical analysis done based on the

heuristics proposed in Section 5.4, under service constraints. The main aim

of this study was to find out which of the heuristics was most promising,

and to be able to suggest the most promising direction in which the sports

broadcaster may direct their efforts to maximize the revenue in real world

situations.

5.5.1 Parameters

Our assumptions for the following sections are as given in Section 5.2. The

parameters for the numerical simulation are listed in Table 5.5.

Parameter Value

Number of breaks per match 50
Number of advertisers 20
Ad lengths (s) 10, 20, 30
Revenue per second per advertiser Randomly drawn from [3500,5500]
Break length distribution (s) ∼ U(10,60)
Number of random trials (matches) 100
Target Service Level 80% of time sold
Penalty for not reaching service level 1000$ for each second below target

Table 5.5: Parameters for Numerical Simulation

For this simulation, we assume that advertisers order advertising time

from the network, and that the network commits to a certain service level

that is a percentage of the time sold to each advertiser. In our simulation,
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we assume that this value is 80%. Further, to discourage not meeting the

service level, we set a penalty value of 1000$ for each second short of the

promised service level. In the real world, networks either make good on their

contract in subsequent tournaments, or show ads at the end of the game to

make up on advertising time. For our simplified setup, a penalty of 1000$

suffices to show us the general direction in which we must direct our efforts.

5.5.2 Results
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Figure 5.2: Performance of heuristics with service constraints

Heuristic % of PI
Greedy 99%
CE 74%
DCE 90%
DMCE 93%

Table 5.6: Performance of heuristics relative to PI

Among the heuristics selected, while the Greedy does not create bundles

beforehand, the CE, DCE and DMCE heuristics rely on creating bundles,

either before the match or during the match. From the results, we see that

the Greedy performs almost on par with the PI, while heuristics that depend

on creating bundles before the match do not perform as well.

When break sizes are known before the commencement of the break,
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creating bundles and trying to fit the best one offers us no advantage over

myopically choosing the best ads to fit the break. Since the size of the bundle

is fixed, when we run out of appropriately sized bundles to fit into the break,

we are forced to schedule a bundle that is of smaller size than the break,

hence losing out on earning opportunities. Having bundles that fit the break

by regenerating them (DMCE) does not guarantee us optimum ad selection,

since valuable ads that could have been scheduled in the current break may be

included in a bundle of a different size, and hence not scheduled. Therefore,

the Greedy is able to best capitalize on the advance knowledge of break sizes.

We note that the Optimal Policy as described in Chapter 3 does not rely

on creating bundles before the realization of breaks. In our discussions with

the sports broadcaster, we found that the ad scheduling team did create

bundles beforehand, but the bundles were discarded when they didn’t have

the right bundle for a break. The network should therefore stick to a flexible

schedule that does not depend on pre-created bundles, affording flexibility in

scheduling and giving them a better chance to earn higher revenues.

5.6 Comparison of Greedy and Optimal Poli-

cies

We next study numerically the conditions that determine how well the Opti-

mal Policy performs over the Greedy Policy. In this study, we only consider

the Base Case as presented in Section 3.2.1, where breaks and ads are of two

sizes, short (15 seconds) and long (30 seconds), and the number of breaks is

fixed.

We vary parameters across the relative value of small and large ads, the

distribution of the two types of ads, and the Service Level, defined as the

percentage of air time sold that is expected to be aired (the lower the per-

centage, the higher the air time sold). The parameters are summarized in
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Table 5.7.

Parameter Values

Ratio of values of small to large ads 1, 0.55, 0.50, 0.45, 0.40, 0.35, 0.30
Ratio of number of small to large ads 3, 2, 1, 1/2, 1/3
Service Level 80%,90%,100%,110%

Table 5.7: Parameters for comparison of Greedy and Optimal Policy

The results are presented in Appendix B. The Revenues tables in Sec-

tion B.1 show the potential revenue that could be earned if all orders that

were accepted could be shown, as well as the performance of the Greedy Pol-

icy and the Optimal Policy as a percentage of this total. The Service Level

tables shown in Section B.1 show the percentage of ads, small and long, that

were shown, and the Utilization tables in Section B.3 show the percentage of

total break time that was utilized for showing ads.

5.6.1 Results

The percentage gain of the Optimal Policy over the Greedy Policy against

the variation in the relative value of small ads is shown in Figure 5.3, where

each graph is drawn for a particular service level.

We observe that gains of Optimal Policy over Greedy Policy monotoni-

cally decrease as the value of small ads decreases in comparison to large ads.

While the greatest gains are seen when small ads are almost as valuable as

large ads, when the relative value of small ads is 0.45 or less, the Optimal

Policy shows no gains over the Greedy Policy.

This behavior can be explained by the Optimal Policy having a lower

threshold for large ads, and therefore its tendency to schedule more large

ads than the Greedy Policy (as discussed in Section 3.2.1 and Section 4.1.2).

When small ads are as valuable as large ads, the Greedy Policy schedules

small ads up front in the large breaks, since it earns twice as much with two

small ads than one large ad. This behavior causes it to run out of small ads



68 Applications in Practice: Scheduling ads for Cricket

earlier than the Optimal Policy would, and it fails to schedule small ads in

the small breaks that occur at some point after it runs out of small ads.

The difference in the service levels (tables in Section B.2) of large ads is

acute when the ratio of small ads to large ads is 1:2, where we have half as

many small ads as large ads, causing the Greedy Policy to run out of small

ads early in a match.

When the ratio of small ads to large ads is 1:3, however, the gains made

by Optimal Policy drop below those made when the ratio is 1:2. While

the Optimal Policy does not exhaust its inventory of small ads as early as

the Greedy Policy, the number of small ads is small enough for it to lose

scheduling opportunities in small breaks at the later stages of a game. Tables

in Section B.3 show that the utilization of breaks by the Optimal Policy when

we have a 1:3 distribution is consistently less than 100%, and is always less

than the utilization when ads are distributed by a 1:2 ratio.

When the relative value of small ads is 0.45 or less, the Greedy Policy

schedules large ads just as often as the Optimal Policy, since two small ads

no longer have as much value as one large ad. Thus we see no difference in

either the revenues earned, or the service levels of small and large ads.

It can be argued that when the relative value of small ads is greater

than 1, we would see that the gains made by the Optimal Policy decrease

once again (compared to the case where the relative value of small ads is 1).

Despite the Optimal Policy having a low threshold for large ads, the small

ads be valuable enough for the most valuable large ad to not make that

threshold, causing the Optimal Policy and the Greedy Policy to schedule

similarly. Having small ads of relative value greater than 1, however, is only

of academic interest, and we do not discuss it in detail.

From a managerial perspective, we see that the Greedy Policy is just as

effective as the Optimal Policy when the inventory has small ads that are less

than half the value of large ads. The Greedy Policy is easily implemented,

and the network broadcaster need not invest in forward looking heuristics in
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Figure 5.3: Performance of Optimal Policy over Greedy Policy

such a case. Conversely, as the relative value of small ads increases above

the 0.5 mark, the network broadcaster can significantly improve his revenues

by implementing the Optimal Policy.

We also note that the greatest gains made by using the Optimal Policy

occur when the ratio of small ads to large ads is 1:2. This may occur when

the broadcaster has priced his small ads to a level where advertisers see more

value in buying large ads, thereby skewing the ad distribution.

Finally, we note that service levels between 80% and 90% provide the

best returns for using the Optimal Policy, and we note that our discussions

with the network broadcaster showed that service levels in that range were

usually targeted.



Chapter 6

Conclusion

TV networks showing live sports are often challenged by having breaks of

non deterministic size, and the high profit margins in live sports broadcasting

demand a better way of scheduling ads in such situations. In this dissertation

we have discussed a method to schedule ads optimally when breaks are of

random size and number, and the broadcaster has ads of two lengths.

Earlier literature related to advertising scheduling assume fixed break

durations, and do not sufficiently answer how ads must be scheduled when

faced with uncertainty in break sizes. Literature related to Random Yield,

Stochastic Knapsack, and Stochastic Recourse do not sufficiently match the

setting typical of our problem.

We find that the Optimal Policy when faced with non-deterministic breaks

is a forward looking Greedy implementation. Bundling strategies fail to

sufficiently account for the stochasticity in break sizes, and earn less than

a flexible heuristic such as the Greedy Policy. Further, we show that the

Optimal Policy outperforms the Greedy Policy when small ads have a value

equal to or greater than half the value of a large ad.

While we do not account for all the constraints that broadcasters face,

our model is general enough to be applied to a class of bin packing problems,

for instance, cargo shipping when containers have non-deterministic capacity.

This simple model, however, does not fully meet the network broadcaster’s

70
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requirements. There is scope for the following extensions to this work:

1. Inclusion of diversity constraints into the Optimal Policy: two ads from

the same advertiser, or from competing advertisers, cannot be shown

in a break.

2. Optimal Policy when breaks are not all IID: for instance a rain break

or an injury break takes a longer time than mid-over breaks.

3. Incorporating service levels constraints for advertisers, agencies, and

geographic regions.

4. Extension to help managers in making pricing decisions and accepting

spot orders based on the Optimal Policy.

5. A study of Broadcaster-Advertiser behavior based on Game Theoretic

principles when the broadcaster employs the Optimal Policy.

To conclude, the area of Optimal scheduling of items (ads, cargo, etc)

in non-deterministic containers is an area that has many possibilities for

research and development. It is hoped that this dissertation is a stepping

stone in establishing improved heuristics in this area.
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Appendix A

Proofs of theorems

Notation Explanation

Vi(l,s) Expected revenue earned from break i onwards, when the
indexes of the first large ad and the first small ad available
are l and s respectively

Rl Expected revenue earned by selecting l1 in the current (large)
break

Rs Expected revenue earned by selecting s1 + s2 in the current
(large) break

b Number of breaks remaining

Table A.1: Summary of notation

A.1 Proof of Theorem 3.1

Proof. From Lemma 3.1 and Lemma 3.2, we know the rule to be true when

one or two breaks remain.

Let us assume the rule be true for breaks

2, . . . , n. We will use then use induction to prove this theorem.
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A.1 Proof of Theorem 3.1 77

Then,

Rl = l1 + V2(2,1)

Rs = s1 + s2 + V2(1,3)

Vn(1,1) = max{Rl,Rs}

We prove that Rl −Rs ≥ 0 when l1 ≥ sn + sn+1.

Rl −Rs = l1 + V2(2,1) − [s1 + s2 + V2(1,3)]

= (l1 − (s1 + s2)) + (V2(2,1) −V2(1,3))

Expanding the above to a look ahead of two breaks, we get:

Rl −Rs = (l1 − (s1 + s2))

+ p[s1 + V3(2,2)]−p[s3 + V3(1,4)]

+ (1 −p)max















l2 + V3(3,1), if l2 > sn−1 + sn

s1 + s2 + V3(2,3) otherwise

− (1 −p)(l1 + V3(2,3))

Though we have no information about l2 and sn−1 + sn, the max operator

guarantees that the value of V2(2,1) must at least be s1 +s2 +V3(2,3). Thus

we get:

Rl −Rs ≥ (l1 − (s1 + s2))

+ p[s1 + V3(2,2) −s3 −V3(1,4)]

+ (1 −p)[s1 + s2 + V3(2,3) − l1 −V3(2,3)]

≥ p
[

l1 − (s2 + s3) + V3(2,2) −V3(1,4))
]
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Continuing enumeration to look ahead for i < n breaks, we get

Rl −Rs ≥ pi−1
[

l1 − (si + si+1) + Vn−i(2, i) −Vn−i(1, i+ 2)
]

Thus, for i = n−1, we get:

Rl −Rs ≥ pn−2
[

l1 − (sn−1 + sn) + Vn(2,n−1) −Vn(1,n+ 1)
]

≥ pn−2
[

l1 − (sn−1 + sn)

+ p(sn−1 −sn+1) + (1 −p)(sn−1 + sn − l1)
]

≥ pn−2
[

p(l1 − (sn + sn+1))
]

≥ 0 (∵ p ≥ 0, l1 ≥ (sn + sn+1)

Therefore we have proved that when the number of breaks remaining is n

and l1 ≥ sn + sn+1, it is optimal to pack l1 first.

The reverse case, i.e. Rs − Rl ≥ 0 when sn + sn+1 ≥ l1 can be proved

similarly.

A.2 Proof of Theorem 3.2

Proof. From Lemma 3.1 and Lemma 3.3, we know the rule to be true when

one and two breaks remain.

Let us assume the rule be true when the number breaks remaining are

1, 2, . . . , n − 1. We will use then use induction to prove this theorem. As

before, we use Rl and Rs to denote the revenues earned by scheduling l1 and

(s1,s2) respectively in b1. We have:

Rl = l1 + V2(2,1)

Rs = s1 + s2 + V2(1,3)
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Then,

Rl −Rs = l1 + V2(2,1) − [s1 + s2 + V2(1,3)]

= (l1 − (s1 + s2)) + (V2(2,1) −V2(1,3))

= (l1 − (s1 + s2))

+
[

p0(V3(2,1) −V3(1,3))

+ p1(s1 + V3(2,2) −s3 −V3(1,4))

+ p2(max{l2 + V3(3,1),s1 + s2 + V3(2,3)}

−max{l1 + V3(2,3),s3 + s4 + V3(1,5)})
]

We can trivially prove that

(p0 + p1)n−1l1 ≥
n−1
∑

i=0

[

Cn−1
i pn−1−i

0 pi
1 (si+1 + si+2)

]

=⇒ (p0 + p1)n−2l1 ≥
n−2
∑

i=0

[

Cn−2
i pn−2−i

0 pi
1 (si+3 + si+4)

]

(A.1)

Using Equation A.1 and using induction, we can say that

V2(1,3) = p0V3(1,3) + p1(s3 + V3(1,4)) + p2(l1 + V3(2,3))

Substituting for Rl −Rs, we get:

Rl −Rs ≥ (l1 − (s1 + s2))

+
[

p0(V3(2,1) −V3(1,3))

+ p1(s1 + V3(2,2) −s3 −V3(1,4))

+ p2(s1 + s2 + V3(2,3) − l1 −V3(2,3))
]

≥ (1 −p2)(l1 − (s1 + s2))

+
[

p0(V3(2,1) −V3(1,3))

+ p1(s1 + V3(2,2) −s3 −V3(1,4))
]
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≥ (p0 + p1)l1 −p0(s1 + s2) −p1(s2 + s3)

+
[

p0(V3(2,1) −V3(1,3))

+ p1(V3(2,2) −V3(1,4))
]

On expanding, and applying induction throughout,

p0(V3(2,1)−V3(1,3)) + p1(V3(2,2) −V3(1,4))

≥ p0

[

p0(V4(2,1) −V4(1,3))

+ p1(s1 + V4(2,2) −s3 −V4(1,4))

+ p2(s1 + s2 + V4(2,3) − l1 −V4(2,3))
]

+ p1

[

p0(V4(2,2) −V4(1,4))

+ p1(s2 + V4(2,3) −s4 −V4(1,5))

+ p2(s2 + s3 + V4(2,4) − l1 −V4(2,4))
]

Substituting for Rl −Rs, we get:

Rl −Rs ≥ (p0 + p1)2l1

−p2
0(s1 + s2) −2p0p1(s2 + s3) −p2

1(s3 + s4)

+ p2
0(V4(2,1) −V4(1,3))

+ 2p0p1(V4(2,2) −V4(1,4))

+ p2
1(V4(2,3) −V4(1,5))
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Continuing to enumerate in this fashion and applying induction, we get:

Rl −Rs ≥ (p0 + p1)n−2l1

−pn−2
0 (s1 + s2) − (n−2)pn−3

0 p1(s2 + s3) − . . .−pn−2
1 (sn−1 + sn)

+ pn−2
0 (Vn(2,1) −Vn(1,3))

+ (n−2)pn−3
0 p1(V1(2,2) −V1(1,4))

...

+ pn−2
1 (V1(2,n−1) −Vn(1,n+ 1))

≥ (p0 + p1)n−1l1 −
n−1
∑

i=0

[

C(n−1, i) pn−1−i
0 pi

1 (si+1 + si+2)
]

≥ 0 (by definition)

The proof for the reverse case, i.e. Rs −Rl ≥ 0 when

(p0 + p1)n−1l1 <
n−1
∑

i=0

[

C(n−1, i) pn−1−i
0 pi

1 (si+1 + si+2)
]

can be proved similarly.

A.3 Proof of Theorem 3.3

Proof. We have proved the strategy to be true when k = 1 (Lemma 3.4) and

k = 2 (Lemma 3.5).

To prove the strategy is true when k = n, let us assume the strategy hold

good for breaks (2,3, . . . ,n), i.e. for all subsequent breaks.

As before, let Ô = (l1, . . . , lλ,s1, . . . ,sm−2λ).

Let Ol = (l1, . . . , lλ, lλ+1,s1, . . . ,sm−2λ−2) and Os = (l1, . . . , lλ−1,s1, . . . ,sm−2λ+2).

Let Ro, be the revenue earned by selecting the ads in Ô, and let Rl and Rs
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be the revenues earned by selecting Ol and Os respectively.

Ro =
λ
∑

i=1

li +
m−2λ
∑

j=1

sj + V2(λ + 1,m−2λ + 1) (A.2)

Rl =
λ+1
∑

i=1

li +
m−2λ−2
∑

j=1

sj + V2(λ + 2,m−2λ −1) (A.3)

Rs =
λ−1
∑

i=1

li +
m−2λ+2
∑

j=1

sj + V2(λ,m−2λ + 3) (A.4)

We have to prove that:

1. Ro ≥ Rl and

2. Ro ≥ Rs

Case 1:

Ro −Rl =
λ
∑

i=1

li +
m−2λ
∑

j=1

sj + V2(λ + 1,m−2λ + 1)

−




λ+1
∑

i=1

li +
m−2λ−2
∑

j=1

sj + V2(λ + 2,m−2λ −1)





= −lλ+1 + sm−2λ−1 + sm−2λ

+ V2(λ + 1,m−2λ + 1) −V2(λ + 2,m−2λ −1)

Note that lλ+2 < sm−2λ+n−2 +sm−2λ+n−1. By a similar argument as given

in Equation 3.7, we can write:

V2(λ + 1,m−2λ + 1)−V2(λ + 2,m−2λ −1)

≥ p1

(

sm−2λ+1 + V3(λ + 1,m−2λ + 2)

−sm−2λ−1 −V3(λ + 2,m−2λ)
)

+
M
∑

k=2

pk (lλ+1 − [sm−2λ−1 + sm−2λ])
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Substituting in Ro −Rl, we get:

Ro −Rl ≥ −lλ+1 + sm−2λ−1 + sm−2λ

+ p1

(

sm−2λ+1 + V3(λ + 1,m−2λ + 2)

−sm−2λ−1 −V3(λ + 2,m−2λ)
)

+
M
∑

k=2

pk (lλ+1 − [sm−2λ−1 + sm−2λ])

≥ p1[−lλ+1 + sm−2λ + sm−2λ+1

+ V3(λ + 1,m−2λ + 2) −V3(λ + 2,m−2λ)]

Continuing enumeration of the above to expand to all n breaks, we get:

Ro −Rl ≥ pn−1
1 [−lλ+1 + sm−2λ+n−2 + sm−2λ+n−1]

≥ 0 (∵ lλ+1 < sm−2(λ+1)+n + sm−2(λ+1)+n+1)

Similarly, we can prove Case 2 by showing that

Ro −Rs ≥ pn−1
1 [lλ −sm−2λ+n −sm−2λ+n+1] ≥ 0

A.4 Proof of Theorem 3.4

Proof. We have proved the strategy to be true when k = 1 (Lemma 3.6) and

k = 2 (Lemma 3.7).

To prove the strategy is true when k = n, let us assume the strategy hold

good for breaks (2, . . . ,n), i.e. for all subsequent breaks.

We define Ô,Ol,Os as before.

Let Ro, Rl, and Rs denote the revenues earned by selecting Ô, Ol and Os

respectively. We have to prove that
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1. Ro ≥ Rl

2. Ro ≥ Rs

Case 1:

By definition:

(p0 + p1)n−1lλ ≥
n−1
∑

i=0

[(

n−1

i

)

pn−1−i
0 pi

1(sm−2λ+i+1 + sm−2λ+i+2)

]

(A.5)

and (p0 + p1)n−1lλ+1 <
n−1
∑

i=0

[(

n−1

i

)

pn−1−i
0 pi

1(sm−2λ+i−1 + sm−2λ+i)

]

(A.6)

As before,

Ro −Rl = − lλ+1 + sm−2λ−1 + sm−2λ

+ V2(λ + 1,m−2λ + 1) −V2(λ + 2,m−2λ −1)

From eq. A.6,

(p0 + p1)n−1lλ+1 <
n−1
∑

i=0

[(

n−1

i

)

pn−1−i
0 pi

1(sm−2λ+i−1 + sm−2λ+i)

]

=⇒ (p0 + p1)n−1lλ+2 <
n−1
∑

i=0

[(

n−1

i

)

pn−1−i
0 pi

1(sm−2λ+i−1 + sm−2λ+i)

]

=⇒ (p0 + p1)n−1lλ+2 <
n−1
∑

i=0

[(

n−1

i

)

pn−1−i
0 pi

1(sm−2λ+i−3 + sm−2λ+i−2)

]

Then by induction, for b2 ≥ 2S, V2(λ+2,m−2λ−1) earns us (sm−2λ−1 +

sm−2λ) followed by the sum of values of ads selected from the set {lλ+2, . . . ,sm−2λ+1, . . .}.

On the other hand, with V2(λ + 1,m−2λ + 1) we earn at least lλ+1 followed

by the sum of values of ads from the set {lλ+2, . . . ,sm−2λ+1, . . .}.
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Therefore:

V2(λ + 1,m−2λ + 1) −V2(λ + 2,m−2λ −1)

≥ p0(V3(λ + 1,m−2λ + 1) −V3(λ + 2,m−2λ −1))

+ p1 (sm−2λ+1 −sm−2λ−1 + V3(λ + 1,m−2λ + 2) −V3(λ + 2,m−2λ))

+
M
∑

i=2

pi (lλ+1 − [sm−2λ−1 + sm−2λ])

Substituting for Ro −Rl, we get:

Ro −Rl ≥ −lλ+1 + sm−2λ−1 + sm−2λ

+ p0(V3(λ + 1,m−2λ + 1) −V3(λ + 2,m−2λ −1))

+ p1(sm−2λ+1 −sm−2λ−1 + V3(λ + 1,m−2λ + 2) −V3(λ + 2,m−2λ))

+
M
∑

i=2

pi (lλ+1 − [sm−2λ−1 + sm−2λ])

≥ −(p0 + p1)lλ+1 + p0(sm−2λ−1 + sm−2λ) + p1(sm−2λ + sm−2λ+1)

+ p0(V3(λ + 1,m−2λ + 1) −V3(λ + 2,m−2λ −1))

+ p1(V3(λ + 1,m−2λ + 2) −V3(λ + 2,m−2λ))

≥ −(p0 + p1)lλ+1 + p0(sm−2λ−1 + sm−2λ) + p1(sm−2λ + sm−2λ+1)

+ p2
0(V4(λ + 1,m−2λ + 1) −V4(λ + 2,m−2λ −1))

+ p0p1(sm−2λ+1 −sm−2λ−1) + p0p1(V4(λ + 1,m−2λ + 2) −V4(λ + 2,m−2λ))

+ p0

M
∑

i=2

(lλ+1 − (sm−2λ−1 + sm−2λ))

+ p1p0(V4(λ + 1,m−2λ + 2) −V4(λ + 2,m−2λ))

+ p2
1(sm−2λ+2 −sm−2λ) + p2

1(V4(λ + 1,m−2λ + 3) −V4(λ + 2,m−2λ + 1))

+ p1

M
∑

i=2

(lλ+1 − (sm−2λ + sm−2λ+1))
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≥ lλ+1(−p0 −p1 + p0(1 −p0 −p1) + p1(1 −p0 −p1))

+ sm−2λ−1(p0 −p0p1 −p0(1 −p0 −p1))

+ sm−2λ(p0 + p1 −p0(1 −p0 −p1) −p2
1 −p1(1 −p0 −p1))

+ sm−2λ+1(p1 + p0p1 −p1(1 −p0 −p1))

+ sm−2λ+2(p2
1)

+ p2
0(V4(λ + 1,m−2λ + 1) −V4(λ + 2,m−2λ −1))

+ 2p0p1(V4(λ + 1,m−2λ + 2) −V4(λ + 2,m−2λ))

+ p2
1(V4(λ + 1,m−2λ + 3) −V4(λ + 2,m−2λ + 1))

≥ −lλ+1(p0 + p1)2

+ p2
0(sm−2λ−1 + sm−2λ) + 2p0p1(sm−2λ + sm−2λ+1) + p2

1(sm−2λ+1 + sm−2λ+2)

+ p2
0(V4(λ + 1,m−2λ + 1) −V4(λ + 2,m−2λ −1))

+ 2p0p1(V4(λ + 1,m−2λ + 2) −V4(λ + 2,m−2λ))

+ p2
1(V4(λ + 1,m−2λ + 3) −V4(λ + 2,m−2λ + 1))

Continuing to enumerate in this fashion, and applying induction, after ex-

panding up to Vn we get:

Ro −Rl ≥ −lλ+1(p0 + p1)n−2 +
n−2
∑

i=0

(

n−2

i

)

pn−2−i
0 pi

1(sm−2λ+i−1 + sm−2λ+i)

+
n−2
∑

i=0

(

n−2

i

)

pn−2−i
0 pi

1(Vn(λ + 1,m−2λ + i+ 1) −Vn(λ + 2,m−2λ + i−1))

≥ −(p0 + p1)n−1lλ+1

+
n−1
∑

i=0

[(

n−1

i

)

pn−1−i
0 pi

1(sm−2λ+i−1 + sm−2λ+i)

]

≥ 0 from eq A.6

Case 2: Ro −Rs ≥ 0 can be similarly proved using eq. A.5.
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A.5 Proof of Theorem 3.5

Proof. We have proved all three cases to be true when one break and two

breaks remain. Let the rule be true for all subsequent breaks, b2, ..., bn. We

will then prove by induction that it is true for break b1.

Case 1: Let (1 −p)l1 = ps1 + (1 −p)(s1 + s2) + t, where t ≥ 0.

Then,

Rl = pV2(1,1) + (1 −p)(l1 + V2(2,1))

Rs = p(s1 + V2(1,2)) + (1 −p)(s1 + s2 + V2(1,3))

Thus, we get:

Rl −Rs = p[V2(1,1) −s1 −V2(1,2)]

+ (1 −p)[l1 − (s1 + s2) + V2(2,1) −V2(1,3)]

= t+ p[V2(1,1) −V2(1,2)]+ (1 −p)[V2(2,1) −V2(1,3)]

Expanding the above to look ahead two breaks, we get:

Rl −Rs = t+ p[V2(1,1) −V2(1,2)]+ (1 −p)[V2(2,1) −V2(1,3)]

≥ t+ p
[

pV3(1,1) + (1 −p)(l1 + V3(2,1))

−pV3(1,2) − (1 −p)(l1 + V3(2,2)
]

+ (1 −p)
[

p(s1 + V3(2,2)) + (1 −p)(s1 + s2 + V3(2,3))

−pV3(1,3) − (1 −p)(l1 + V3(2,3)
]

≥ t+ p
[

p(V3(1,1) −V3(1,2)) + (1 −p)V3(2,1)
]

+ (1 −p)
[

ps1 + (1 −p)(s1 + s2) −pV3(1,3) − (1 −p)l1

]

≥ t+ p
[

p(V3(1,1) −V3(1,2))

+ (1 −p)(V3(2,1) −V3(1,3))
]

− (1 −p)t
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≥ p
[

t+ p[V3(1,1) −V3(1,2)]

+ (1 −p)[V3(2,1) −V3(1,3)]
]

Continuing to expand the above to look ahead for n−1 breaks, we get:

Rl −Rs ≥ pn−2
[

t+ p[Vn(1,1) −Vn(1,2)]+ (1 −p)[Vn(2,1) −Vn(1,3)]
]

≥ pn−2
[

t+ p[(1 −p)l1 − (1 −p)l1]

+ (1 −p)[ps1 + (1 −p)(s1 + s2) − (1 −p)l1]
]

≥ pn−2
[

t+ (1 −p)(−t)
]

≥ pn−1t

≥ 0, since t ≥ 0, p ≥ 0

Therefore Rl − Rs ≥ 0 =⇒ selecting l1 is profitable when (1 − p)l1 ≥ ps1 +

(1 −p)(s1 + s2)

Case 2: Let (1 −p)l1 < psn + (1 −p)(sn + sn+1) Then

Rs −Rl = ps1 + (1 −p)(s1 + s2) − (1 −p)l1

+ p[V2(1,2) −V2(1,1)]+ (1 −p)[V2(1,3) −V2(2,1)]

≥ ps1 + (1 −p)(s1 + s2) − (1 −p)l1

+ p
[

pV3(1,2) + (1 −p)(l1 + V3(2,2))

−p(s1 + V3(1,2)) − (1 −p)(s1 + s2 + V3(1,3)
]

+ (1 −p)
[

pV3(1,3) + (1 −p)(l1 + V3(2,3))

−p(s1 + V3(2,2)) − (1 −p)(s1 + s2 + V3(2,3))
]

[

∵ V2(1, i) ≥ (1 −p)(l1 + V3(2, i))∀i < n
]

≥ 0

Rs −Rl ≥ 0 =⇒
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it is optimal to schedule s1 + s2 when (1 −p)l1 < psn + (1 −p)(sn + sn+1).

Case 3: Let ps1 + (1 −p)(s1 + s2) = (1 −p)l1 + t where t ≥ 0

Rl −Rs = (1 −p)l1 −ps1 − (1 −p)(s1 + s2)

+ p[V2(1,1) −V2(1,2)]+ (1 −p)[V2(2,1) −V2(1,3)]

= −t+ p
[

p(s1 + V3(1,2)) + (1 −p)(s1 + s2 + V3(1,3))

−pV3(1,2) − (1 −p)(l1 + V3(2,2))
]

+ (1 −p)
[

p(s1 + V3(2,2)) + (1 −p)(s1 + s2 + V3(2,3))

−pV3(1,3) − (1 −p)(l1 + V3(2,3))
]

In the above step, note that for V2(1,1), in break b2, (1−p)l1 need not exceed

psn−1 + (1 − p)(sn−1 + sn), however ps1 + (1 − p)(s1 + s2) ≥ (1 − p)l1. Since

we assume that the policy holds good in subsequent breaks, either Case 2

((s1,s2) preferred) or Case 3 (indifference) will apply, therefore we select

(s1,s2). The expansion for the other terms is similarly explained.

=⇒ Rl −Rs = −t+ p
[

t+ p[V3(1,2) −V3(1,2)]+ (1 −p)[V3(1,3) −V3(2,2)]
]

(1 −p)
[

t+ p[V3(2,2) −V3(1,3)]

+ (1 −p)[V3(2,3) −V3(2,3)]
]

= −t+ pt+ (1 −p)t

= 0

Rl −Rs = 0 =⇒ selecting l1 and s1 + s2 are both equally profitable.

A.6 Proof of Theorem 3.6

Proof. Let p2l1 = t+ p1s1 + p2(s1 + s2) where t ≥ 0.



90 Proofs of theorems

Case 1:

Rl −Rs = (p0 + p1)V2(1,1) + p2(l1 + V2(2,1))

−p0V2(1,1) −p1(s1 + V2(1,2)) −p2(s1 + s2 + V2(1,3))

= p1(V2(1,1) −s1 −V2(1,2))

+ p2(l1 + V2(2,1) − (s1 + s2) −V2(1,3))

= t+ p1[V2(1,1) −V2(1,2)]+ p2[V2(2,1) −V2(1,3)]

≥ t+ p1

[

p0V3(1,1) + p1(s1 + V3(1,2)) + p2(s1 + s2 + V3(1,3)

− (p0 + p1)(V3(1,2) −p2(l1 + V3(2,2)
]

+ p2

[

p0V3(2,1) + p1(s1 + V3(2,2)) + p2(s1 + s2 + V3(2,3)

− (p0 + p1)(V3(1,3) −p2(l1 + V3(2,3)
]

≥ p0

[

t+ p1(V3(1,1) −V3(1,2)) + p2(V3(2,1) −V3(1,3))
]

Continuing enumeration, we get:

Rl −Rs ≥ pn−2
0

[

t+ p1(Vn(1,1) −Vn(1,2)) + p2(Vn(2,1) −Vn(1,3))
]

≥ pn−2
0

[

t+ p1(p1s1 + p2(s1 + s2) −p2l1) + p2(p1s1 + p2(s1 + s2) −p2l1)
]

≥ pn−2
0

[

t+ p1(−t) + p2(−t)
]

≥ pn−1
0 t

≥ 0

Rl −Rs ≥ 0 =⇒ it is optimal to schedule l1 first.

Case 2 can be similarly proved by showing that Rs −Rl ≥ pn−1
0 t ≥ 0.

For both cases above, Rl > Rs and Rs > Rl if t > 0 and p0 > 0. There is

no interval where Rl = Rs, unlike the cases where the number of breaks is

fixed.
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In this section, we present the results of the study of Section 5.6.

B.1 Revenues

Value of Small ad to Large ad = 1:1

Ad Distribution 3:1 2:1 1:1 1:2 1:3
Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %

G
562507

487050 86.59%
526768

446389 84.74%
468266

378272 80.78%
422645

324126 76.69%
400530

301423 75.26%
0.8OP 499215 88.75% 465490 88.37% 407503 87.02% 360522 85.30% 334538 83.52%

G
499790

456156 91.27%
467940

421150 90.00%
418699

362125 86.49%
373653

312025 83.51%
355398

292008 82.16%
0.9

OP 470848 94.21% 441146 94.27% 390884 93.36% 345551 92.48% 320642 90.22%

G
450114

430013 95.53%
422869

399202 94.40%
373440

341916 91.56%
337703

300653 89.03%
319617

282890 88.51%
1

OP 442744 98.36% 415556 98.27% 366165 98.05% 327070 96.85% 304156 95.16%

G
409715

402782 98.31%
382869

374863 97.91%
342268

327816 95.78%
305894

288663 94.37%
292337

271519 92.88%
1.1OP 408688 99.75% 382253 99.84% 341317 99.72% 302620 98.93% 285320 97.60%

Value of Small ad to Large ad = 0.55:1

Ad Distribution 3:1 2:1 1:1 1:2 1:3
Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %

G
372654

311747 83.66%
366942

308653 84.11%
362189

302933 83.64%
360137

291868 81.04%
355506

280061 78.78%
0.8OP 311766 83.66% 308720 84.13% 303530 83.80% 298844 82.98% 289581 81.46%

G
331519

303806 91.64%
327327

300211 91.72%
324898

294839 90.75%
318249

280060 88.00%
315820

271274 85.90%
0.9

OP 304306 91.79% 301177 92.01% 297660 91.62% 289513 90.97% 280349 88.77%

G
297895

290187 97.41%
295353

286524 97.01%
289347

278910 96.39%
287066

268923 93.68%
283672

261446 92.16%
1

OP 291189 97.75% 288230 97.59% 282774 97.73% 276476 96.31% 267598 94.33%

G
270900

269744 99.57%
267059

265670 99.48%
265620

262879 98.97%
260188

253669 97.49%
260286

250240 96.14%
1.1OP 270154 99.72% 266293 99.71% 264705 99.66% 257028 98.79% 253500 97.39%

Value of Small ad to Large ad = 0.50:1

Ad Distribution 3:1 2:1 1:1 1:2 1:3
Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %

G
351843

293129 83.31%
350388

292226 83.40%
350378

293012 83.63%
353217

291053 82.40%
350352

282769 80.71%
0.8OP 293132 83.31% 292236 83.40% 293066 83.64% 292116 82.70% 284670 81.25%

G
312939

287301 91.81%
311786

286621 91.93%
313862

287615 91.64%
312619

281689 90.11%
311536

272300 87.41%
0.9

OP 287322 91.81% 286643 91.94% 287836 91.71% 284084 90.87% 274473 88.10%

G
281754

275030 97.61%
281371

274845 97.68%
280336

273326 97.50%
281636

268788 95.44%
279427

262200 93.83%
1

OP 275066 97.63% 274935 97.71% 273992 97.74% 270985 96.22% 263617 94.34%

G
256159

255259 99.65%
254232

253425 99.68%
256459

255184 99.50%
255425

251154 98.33%
255463

248140 97.13%
1.1OP 255300 99.66% 253509 99.72% 255659 99.69% 251969 98.65% 248766 97.38%
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Value of Small ad to Large ad = 0.45:1

Ad Distribution 3:1 2:1 1:1 1:2 1:3
Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %

G
330546

276433 83.63%
332031

278749 83.95%
338309

284475 84.09%
345789

285941 82.69%
345354

279550 80.95%
0.8OP 276436 83.63% 278755 83.95% 284501 84.10% 285980 82.70% 279576 80.95%

G
293251

270251 92.16%
295951

272470 92.07%
303227

277522 91.52%
305453

277815 90.95%
306411

270744 88.36%
0.9

OP 270254 92.16% 272475 92.07% 277552 91.53% 277914 90.98% 270860 88.40%

G
264550

258437 97.69%
266697

261356 98.00%
270413

264983 97.99%
276806

265810 96.03%
275777

259288 94.02%
1

OP 258438 97.69% 261358 98.00% 265007 98.00% 265910 96.06% 259351 94.04%

G
240346

239698 99.73%
241203

240636 99.76%
247575

246843 99.70%
250021

247082 98.82%
252560

245994 97.40%
1.1OP 239698 99.73% 240636 99.76% 246860 99.71% 247094 98.83% 246005 97.40%

Value of Small ad to Large ad = 0.40:1

Ad Distribution 3:1 2:1 1:1 1:2 1:3
Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %

G
310024

260721 84.10%
314426

266555 84.78%
326934

276571 84.60%
339081

280942 82.85%
340170

275459 80.98%
0.8OP 260722 84.10% 266557 84.78% 276577 84.60% 280943 82.85% 275459 80.98%

G
274868

253379 92.18%
279775

258561 92.42%
292649

269167 91.98%
299547

272878 91.10%
301994

265616 87.95%
0.9

OP 253380 92.18% 258561 92.42% 269173 91.98% 272879 91.10% 265617 87.95%

G
247739

242651 97.95%
252752

247337 97.86%
261218

256259 98.10%
269972

260204 96.38%
271632

255966 94.23%
1

OP 242651 97.95% 247337 97.86% 256260 98.10% 260204 96.38% 255966 94.23%

G
225236

224529 99.69%
228246

227722 99.77%
239049

238394 99.73%
245975

242504 98.59%
248498

241756 97.29%
1.1OP 224529 99.69% 227722 99.77% 238394 99.73% 242504 98.59% 241756 97.29%

Value of Small ad to Large ad = 0.35:1

Ad Distribution 3:1 2:1 1:1 1:2 1:3
Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %

G
288319

245652 85.20%
296923

254473 85.70%
315499

268947 85.24%
332214

274394 82.60%
335219

269381 80.36%
0.8OP 245652 85.20% 254473 85.70% 268947 85.24% 274394 82.60% 269381 80.36%

G
256171

237395 92.67%
264060

245706 93.05%
282793

261611 92.51%
293474

266182 90.70%
297596

261492 87.87%
0.9

OP 237395 92.67% 245706 93.05% 261611 92.51% 266182 90.70% 261492 87.87%

G
229753

225361 98.09%
239045

234222 97.98%
252063

247013 98.00%
265018

255561 96.43%
268123

251432 93.77%
1

OP 225361 98.09% 234222 97.98% 247013 98.00% 255561 96.43% 251432 93.77%

G
210459

209950 99.76%
215751

215153 99.72%
230812

230244 99.75%
240302

236896 98.58%
245440

238007 96.97%
1.1OP 209950 99.76% 215153 99.72% 230244 99.75% 236896 98.58% 238007 96.97%

Value of Small ad to Large ad = 0.30:1

Ad Distribution 3:1 2:1 1:1 1:2 1:3
Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %

G
266957

230602 86.38%
279147

243588 87.26%
304171

261839 86.08%
326007

268216 82.27%
330878

265376 80.20%
0.8OP 230602 86.38% 243588 87.26% 261839 86.08% 268216 82.27% 265376 80.20%

G
237807

221652 93.21%
247977

232355 93.70%
271416

253118 93.26%
286391

260789 91.06%
293131

257646 87.89%
0.9

OP 221652 93.21% 232355 93.70% 253118 93.26% 260789 91.06% 257646 87.89%

G
213766

209595 98.05%
223994

220168 98.29%
243056

238571 98.15%
259721

249160 95.93%
263681

247027 93.68%
1

OP 209595 98.05% 220168 98.29% 238571 98.15% 249160 95.93% 247027 93.68%

G
194713

194133 99.70%
203484

202990 99.76%
223077

222287 99.65%
234956

231532 98.54%
241067

234358 97.22%
1.1OP 194133 99.70% 202990 99.76% 222287 99.65% 231532 98.54% 234358 97.22%
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B.2 Service Levels

Value of Small ad to Large ad = 1:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 100% 100% 100% 100% 100%

0.8

30 41% 49% 57% 60% 62%

OP
15 99% 99% 99% 99% 99%
30 51% 61% 71% 75% 74%

G
15 100% 100% 100% 100% 100%

0.9

30 61% 66% 69% 71% 72%

OP
15 99% 99% 99% 99% 100%
30 75% 81% 85% 87% 85%

G
15 100% 100% 100% 100% 100%

1

30 80% 81% 80% 81% 82%

OP
15 100% 100% 99% 100% 100%
30 93% 95% 96% 95% 92%

G
15 100% 100% 100% 100% 100%

1.1

30 93% 93% 90% 90% 89%

OP
15 100% 100% 100% 100% 100%
30 99% 100% 99% 98% 96%
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Value of Small ad to Large ad = .55:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 88% 90% 94% 99% 100%

0.8
30 68% 71% 73% 72% 71%

OP
15 88% 90% 92% 95% 99%
30 69% 71% 75% 76% 74%

G
15 96% 97% 99% 100% 100%

0.9
30 80% 82% 84% 82% 80%

OP
15 96% 97% 97% 99% 100%
30 81% 84% 86% 87% 84%

G
15 99% 100% 100% 100% 100%

1
30 93% 93% 94% 90% 89%

OP
15 99% 99% 99% 100% 100%
30 95% 95% 96% 95% 92%

G
15 100% 100% 100% 100% 100%

1.1
30 99% 99% 98% 96% 95%

OP
15 100% 100% 100% 100% 100%
30 99% 99% 99% 98% 96%

Value of Small ad to Large ad = .50:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 80% 81% 82% 92% 99%

0.8
30 80% 80% 79% 76% 74%

OP
15 80% 80% 80% 88% 97%
30 80% 80% 80% 78% 75%

G
15 90% 90% 92% 99% 100%

0.9
30 90% 90% 89% 86% 83%

OP
15 90% 90% 90% 96% 100%
30 90% 90% 90% 88% 84%

G
15 97% 97% 98% 100% 100%

1
30 97% 97% 96% 93% 91%

OP
15 97% 97% 97% 100% 100%
30 97% 97% 97% 95% 92%

G
15 100% 100% 100% 100% 100%

1.1
30 100% 100% 99% 98% 96%

OP
15 100% 100% 100% 100% 100%
30 100% 100% 100% 98% 96%
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Value of Small ad to Large ad = .45:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 72% 71% 69% 84% 97%

0.8
30 92% 90% 87% 79% 75%

OP
15 72% 71% 68% 83% 96%
30 92% 91% 87% 79% 75%

G
15 85% 83% 80% 93% 99%

0.9
30 98% 97% 94% 88% 84%

OP
15 85% 83% 79% 92% 99%
30 98% 97% 95% 89% 84%

G
15 95% 95% 95% 99% 100%

1
30 100% 100% 99% 95% 92%

OP
15 95% 95% 94% 99% 100%
30 100% 100% 99% 95% 92%

G
15 99% 99% 99% 100% 100%

1.1
30 100% 100% 100% 98% 96%

OP
15 99% 99% 99% 100% 100%
30 100% 100% 100% 98% 97%

Value of Small ad to Large ad = .40:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 66% 63% 58% 81% 96%

0.8
30 99% 98% 92% 80% 75%

OP
15 66% 62% 57% 81% 96%
30 99% 98% 92% 80% 75%

G
15 82% 80% 74% 92% 99%

0.9
30 100% 100% 97% 89% 84%

OP
15 82% 80% 74% 92% 99%
30 100% 100% 97% 89% 84%

G
15 95% 94% 93% 99% 100%

1
30 100% 100% 99% 95% 92%

OP
15 95% 94% 93% 99% 100%
30 100% 100% 99% 95% 92%

G
15 99% 99% 99% 100% 100%

1.1
30 100% 100% 100% 98% 96%

OP
15 99% 99% 99% 100% 100%
30 100% 100% 100% 98% 96%



B.2 Service Levels 97

Value of Small ad to Large ad = .35:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 66% 61% 57% 81% 96%

0.8

30 100% 100% 93% 80% 75%

OP
15 66% 61% 57% 81% 96%
30 100% 100% 93% 80% 75%

G
15 82% 80% 74% 92% 99%

0.9

30 100% 100% 97% 89% 84%

OP
15 82% 80% 74% 92% 99%
30 100% 100% 97% 89% 84%

G
15 95% 94% 93% 99% 100%

1

30 100% 100% 99% 95% 92%

OP
15 95% 94% 93% 99% 100%
30 100% 100% 99% 95% 92%

G
15 99% 99% 99% 100% 100%

1.1

30 100% 100% 100% 98% 96%

OP
15 99% 99% 99% 100% 100%
30 100% 100% 100% 98% 96%

Value of Small ad to Large ad = .30:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 66% 62% 55% 82% 96%

0.8

30 100% 100% 93% 79% 75%

OP
15 66% 62% 55% 82% 96%
30 100% 100% 93% 79% 75%

G
15 82% 80% 74% 92% 99%

0.9

30 100% 100% 98% 89% 84%

OP
15 82% 80% 74% 92% 99%
30 100% 100% 98% 89% 84%

G
15 95% 94% 93% 99% 100%

1

30 100% 100% 99% 95% 92%

OP
15 95% 94% 93% 99% 100%
30 100% 100% 99% 95% 92%

G
15 99% 99% 99% 100% 100%

1.1

30 100% 100% 100% 98% 96%

OP
15 99% 99% 99% 100% 100%
30 100% 100% 100% 98% 96%



98 Tables

B.3 Utilization of breaks

Value of Small ad to Large ad = 1:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 96% 93% 89% 85% 84%
0.8

OP 100% 100% 100% 100% 97%
G 94% 92% 88% 85% 84%

0.9
OP 100% 100% 100% 99% 95%
G 92% 90% 87% 84% 83%

1
OP 97% 97% 97% 96% 92%
G 88% 87% 85% 83% 82%

1.1OP 91% 90% 91% 89% 88%

Value of Small ad to Large ad = .55:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 97% 93%
0.8

OP 100% 100% 100% 100% 97%
G 100% 99% 99% 95% 91%

0.9
OP 100% 100% 100% 99% 95%
G 97% 97% 95% 93% 90%

1
OP 97% 98% 97% 96% 92%
G 91% 90% 90% 88% 87%

1.1OP 91% 91% 91% 90% 88%

Value of Small ad to Large ad = .50:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 99% 96%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 98% 94%

0.9
OP 100% 100% 100% 99% 95%
G 97% 97% 97% 95% 92%

1
OP 97% 97% 97% 96% 92%
G 91% 91% 91% 90% 88%

1.1OP 91% 91% 91% 90% 88%



B.3 Utilization of breaks 99

Value of Small ad to Large ad = .45:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 99% 95%

0.9
OP 100% 100% 100% 99% 95%
G 98% 97% 97% 96% 92%

1
OP 98% 97% 97% 96% 92%
G 91% 90% 91% 89% 88%

1.1OP 91% 90% 91% 89% 88%

Value of Small ad to Large ad = .40:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 99% 95%

0.9
OP 100% 100% 100% 99% 95%
G 97% 97% 97% 96% 92%

1
OP 97% 97% 97% 96% 92%
G 91% 90% 91% 90% 88%

1.1OP 91% 90% 91% 90% 88%

Value of Small ad to Large ad = .35:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 99% 95%

0.9
OP 100% 100% 100% 99% 95%
G 97% 97% 97% 96% 92%

1
OP 97% 97% 97% 96% 92%
G 91% 91% 91% 90% 88%

1.1OP 91% 91% 91% 90% 88%

Value of Small ad to Large ad = .30:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 99% 95%

0.9
OP 100% 100% 100% 99% 95%
G 98% 97% 97% 96% 92%

1
OP 98% 97% 97% 96% 92%
G 91% 91% 91% 90% 88%

1.1
OP 91% 91% 91% 90% 88%


