
Detecting Extreme Rank Anomalous Collections

Hanbo Dai Feida Zhu Ee-Peng Lim Hwee Hwa Pang
School of Information Systems, Singapore Management University

{hanbo.dai.2008, fdzhu, eplim, hhpang}@smu.edu.sg

Abstract

Anomaly or outlier detection has a wide range of
applications, including fraud and spam detection. Most
existing studies focus on detecting point anomalies,
i.e., individual, isolated entities. However, there is an
increasing number of applications in which anomalies do
not occur individually, but in small collections. Unlike
the majority, entities in an anomalous collection tend to
share certain extreme behavioral traits. The knowledge
essential in understanding why and how the set of
entities becomes outliers would only be revealed by
examining at the collection level. A good example is web
spammers adopting common spamming techniques. To
discover this kind of anomalous collections, we introduce
a novel definition of anomaly, called Extreme Rank
Anomalous Collection. We propose a statistical model
to quantify the anomalousness of such a collection,
and present an exact as well as a heuristic algorithms
for finding top-K extreme rank anomalous collections.
We apply the algorithms on real Web spam data to
detect spamming sites, and on IMDB data to detect
unusual actor groups. Our algorithms achieve higher
precisions compared to existing spam and anomaly
detection methods. More importantly, our approach
succeeds in finding meaningful anomalous collections in
both datasets.

1 Introduction

When a set of entities are ranked by various features,
a small subset of the entities could cluster toward the
top or bottom ranks on some features. We call such
an entity subset an extreme rank anomalous collection
or ERAC. ERACs are prominent in many real-life
applications.

Web spammers are good examples of ERACs. As
reported in [13], [6] and [16], web spammers often adopt
many spamming strategies to boost the ratings of their
pages. For example, they stuff the pages with many
popular keywords and anchor texts that are unrelated to
one another. They may also generate pages from similar
templates on the fly in order to perform “link spam”.
As a result, when measured by those characteristics or

.....

.....

.....e16 e5 e24 e7 e12 e9 e1 e27 e8

e8 e12 e5 e4 e7

e7 e5 e12 e1 e15 e6 e29 e20 e21 e8

f0

f1

f2

e19

e29

e22 e18e2 e14

Figure 1: An example of ERAC. 30 entities {e0, ..., e29}
are ranked according to each 3 features {f0, f1, f2}. In
this example, {e5, e7, e12} is an ERAC

features, spammer hosts consistently demonstrate very
extreme behaviors and form an identifiable anomalous
collection, compared to normal web hosts.

To illustrate, suppose we have 30 web hosts
{e0, ..., e29} as shown in Figure 1. The three host fea-
tures {f0, f1, f2} reflect the aforementioned spamming
strategies: f0 represents the average number of popular
keywords, f1 is the variance of the word count, and f2

captures the average fraction of anchor text. For each
feature, we rank all the web hosts in descending order by
their feature values. We can then identify {e5, e7, e12}
as an ERAC because all of its entities appear at the
top positions for features f0 and f2, and at the bottom
positions for feature f1. The fact that e5, e7 and e12

collectively display extreme behaviors across all the in-
dicative features is strong evidence that they are likely
to be web spammers.

As another example, ERACs can also be groups of
fraudulent users in online marketplaces. A fraudulent
user is likely to create many low-price transactions with
other “accomplice” accounts in a very short time to
gain credibility, before performing fraud transactions
involving large sums of money [8] [21]. Consequently,
they may be ranked at extreme positions with respect
to features such as average number of transactions and
transaction rate.

In the above examples, the features that find enti-
ties at extreme positions are not known ahead of time.
This makes the ERAC detection challenging.

Existing anomaly detection approaches fall short
in the above applications because they either focus on

single point anomalies, or they are not optimized to
detect collections with extreme characteristics. Note
that a set of single point anomalies does not always form
an extreme rank anomalous collection, because neither
does every entity in an ERAC appear at very extreme
position, nor does every single point anomaly share
common pattern with other anomalies. For example,
in Figure 1, e12 is not very extreme by itself although
it is part of an extreme rank anomalous collection
{e5, e7, e12}. In contrast, e8 is quite extreme as it
appears at extreme positions on all three features, but it
does not form an extreme cluster with any other entities.
Our problem therefore cannot be solved by simply
grouping the single point anomalies found by existing
approaches, as the effort to discover various common
patterns among individual outliers is exponential in the
number of outliers and the number of features.

After certain entities are found to form an ERAC,
users can investigate their commonalities to understand
the underlying reason. For example, ERACs could
reveal the common spamming patterns and strategies
adopted by different groups of spammers.

In this paper, we propose to model ERAC by the
hypergeometric distribution. Our anomaly score is
derived from the statistical p-value to measure how
extremely ranked a collection is, which captures the
following principles — A collection is more anomalous
if: (I) it contains a larger number of entities that are
ranked at more extreme positions on some feature; and
(II) it contains entities that are consistently ranked at
extreme positions across more features.

We summarize our contributions as follows:

• We propose a new kind of anomaly called extreme
rank anomalous collection, together with a statis-
tical model to measure the anomalousness of a col-
lection by how extremely ranked it is with respect
to any chosen feature set. With this model, we can
explain statistically why a collection is anomalous,
and how anomalous it is.

• We develop both exact and heuristic algorithms
to find the top-K anomalous collections. We
provide algorithm for coping with independent and
dependent feature sets.

• We apply our approach on a web host graph to
detect web spammers, and on the IMDB dataset
to detect unusual actor groups. The results show
that our approach finds meaningful anomalous col-
lections in both data sets. For the web spam case
with labeled true spammers, our approach discovers
unique spammer collections while achieving higher
precision, compared to existing works in both spam
and anomaly detection.

The rest of the paper is organized as follows.
Section 2 discusses related work. After introducing the
problem formulation in Section 3, Section 4 presents
our algorithms for both independent and dependent
feature sets. Section 5 reports on experiments. Section
6 concludes the paper.

2 Related Work

Most of the studies on anomaly detection focus on point
anomalies [7], using a variety of classification-based [6],
distance-based [19] and density-based [5] approaches.
Since these approaches assume that anomalies appear in
sparse regions or are far away from the normal entities,
true anomalous collections that are dense or are close
to the normal entities may escape detection.

Clustering algorithms have been applied to detect
both point anomalies and anomalous clusters. [12] and
[14] detect point anomalies, on the assumption that they
do not lie in any cluster. For anomalous cluster detec-
tion, [9], [17] and [20] assume that normal entities be-
long to large and dense clusters, whereas outliers form
small or sparse clusters. Thus they apply a clustering al-
gorithm on the data set, and find small clusters that are
below some size threshold. In [9] and [17], small clus-
ters are the smaller ones that together constitute less
than 10% of the population. In [20], the threshold is
half of the average cluster size. These clustering-based
approaches require a threshold for the size of anoma-
lous clusters, which is not trivial to set. Furthermore,
while clustering aims to return entity clusters based on
similarity, we focus on finding collections of extreme be-
haviors without an explicit distance function defined.
We show later in the experiments that there exist ER-
ACs that cannot be detected by the clustering objective
of minimizing intra-ERAC/cluster distance while max-
imizing inter-ERAC/cluster distance.

Statistical techniques have also been applied to dis-
cover anomalies on the assumption that normal entities
occur in high probability regions of a statistical model,
while anomalies occur in the low probability regions.
This technique utilizes statistical inference tests to de-
termine if an entity is generated by the statistical model
[3]. For example, Grubb’s test and the student’s t-test
have been applied under the assumption that the data
is generated by a Gaussian distribution. However, most
of the existing studies mainly focus on statistical tests
for a single data point, and are not suitable for modeling
a collection of entities. Nevertheless, [2] uses a statisti-
cal model to detect in a network an anomalous cluster
in which the node features have a different distribution
than the rest of the nodes. The work assumes there is
only one anomalous cluster in the network, and only one
feature can be attached to each node.

Supervised approach is used in [18] to detect a group
of anomalous objects, assuming the normal data is
labeled beforehand. A Bayesian network is learned from
the labeled normal data and another Bayesian network
of the same structure but different parameters is also
learned and assumed to generate outliers. However,
since anomalous collections are often of small sizes,
their outlier generation model trained during the search
process would suffer from over-fitting.

3 Extreme Rank Anomalous Collection

Let E denote the universal entity set, and F a set of
features. For an entity e ∈ E, e.f denotes the feature
value of e for feature f ∈ F . Entities can be ranked
with respect to any feature. rankf (e) denotes the rank
of entity e in E w.r.t. feature f , which is simplified
to rank(e) when the context is clear. For example, on
feature f1, rank(e8) = 1 and rank(e7) = 30 in Figure
1, assuming all feature values are distinct.

An entity may lie in top or bottom rank positions
on different features. For the purpose of exposition, the
following discussion focuses on the top rank position
case. Our analysis extends readily to the bottom rank
position case.

3.1 Measuring Anomalousness for A Single
Feature We begin by measuring how anomalous an en-
tity collection is w.r.t. a single feature. Our approach is
based on the following principle: on a given feature f ,
an entity collection S is more anomalous, or more ex-
tremely ranked, if more entities in S appear in extreme
regions of the ranked list of the universal entity set E
w.r.t. f .

We use an extremity index r to refer to an
extreme region, and denote as Sf (r) the subset of
entities in S which appear in top r rank positions w.r.t.
feature f ,

Sf (r) = {e | e ∈ S, rankf (e) ≤ r}

Continuing the example in Figure 1, for S = {e5, e7}
and r = 2, we have Sf0(r) = {e5}. Similarly, for S = E
and extremity index r = 3, Ef1(r) = {e8, e2, e14}. Note
that |Ef (r)| = r when the entities have distinct feature
values. Where there is a tie, |Ef (r)| may be larger than
r.

The extremity of any given entity collection S ⊂ E
can be quantified by the cardinality of Sf (r), which is
a random variable following the hypergeometric distri-
bution. This is because Sf (r) = S ∩ Ef (r), and if we
randomly pick |S| entities from |E| entities, the number
of entities in S that belong to Ef (r) follows the hyperge-
ometric distribution. Thus the probability of observing

|Sf (r)| common entities shared by S and Ef (r) is:

prob(|Sf (r)|, |E|, |Ef (r)|, |S|) =

(|Ef (r)|
|Sf (r)|

) · (|E|−|Ef (r)|
|S|−|Sf (r)|

)
(|E|
|S|

)

We now define the p-value1 of S w.r.t. extremity
index r and feature f , denoted as pf (S, r), as the
probability of observing at least |Sf (r)| common entities
between a random collection of size |S| and Ef (r).

pf (S, r) =
min(|Ef (r)|,|S|)∑

i=|Sf (r)|
prob(i, |E|, |Ef (r)|, |S|)

Thus, a given S leads to different p-values with
different r. Intuitively, for any given r and f , the smaller
the p-value of S, the more extremely ranked S is w.r.t.
r. Therefore, among all the choices of r, we pick the
one which gives the smallest p-value. This particular
r measures the maximum extremity of ranking that S
could possibly have, which is by our definition also the
maximum anomalousness of S w.r.t. f . Formally, we
call this r the representative extremity index of S
w.r.t. f , which is defined as:

rf (S) = argmin0<r<|E|/2 pf (S, r)

The choice of r ranges from 1 to half of the
population of E, because we now focus on the top rank
position case. The bottom rank position case, which we
omit due to space constraint, is easy to derive similarly.

Correspondingly, the representative p-value of S
w.r.t. f is denoted as p̂f (S), i.e., p̂f (S) = pf (S, rf (S)).

Referring to Figure 1, for S = {e5, e7}, r = 2
and r′ = 4, we have |Sf0(r)| = 1 and |Sf0(r

′)| = 2.
Moreover, pf0(S, r) =

∑min(2,2)
i=1 prob(i, 30, 2, 2) = 0.131

and pf0(S, r′) =
∑min(4,2)

i=2 prob(i, 30, 4, 2) = 0.013.
As pf0(S, r′) < pf0(S, r), r′ better represents how
extremely ranked S is than r does for f0. Suppose
rf0(S) = r′ = 4, we have the representative p-value
of S w.r.t. f0 as p̂f0({e5, e7})) = 0.013.

Statistically, the representative p-value reflects how
anomalous (i.e. extremely ranked) a collection S is
w.r.t. a particular feature f . The smaller the represen-
tative p-value, the more anomalous a collection is. For
example, in Figure 1, we compare {e5, e7} with {e7, e12}
by their representative p-values for f0. p̂f0({e7, e12}) =
pf0({e7, e12}) = 0.023. Since p̂f0({e5, e7}) = 0.013 is

1The p-value defined here is the right ended p-value of the
hypergeometric distribution. The right ended p-value is used
instead of the left ended one because in our case the more (instead
of less for the left ended case) S overlaps with Ef (r), the more
extremely ranked S is w.r.t. f .

smaller than p̂f0({e7, e12}), we conclude that {e5, e7}
is more anomalous than {e7, e12} w.r.t. f0; this is in-
tuitive as {e5, e7} sits more towards the top positions
than {e7, e12} on f0. Note that the p-value measures
directly at the collection level, which is different from
measuring on the entity level followed by aggregating
across the individual measures.

We are now ready to give our definition for an
Extreme Rank Anomalous Collection.

Definition 1. [Extreme Rank Anomalous Col-
lection (ERAC)] Given a universal entity set E and
an entity set S s.t. S ⊂ E, 1 < |S| < |E|/2, a fea-
ture set F and a threshold α, we say S is an Extreme
Rank Anomalous Collection w.r.t. F if ∃f ∈ F s.t.
p̂f (S) ≤ α.

The definition of ERAC corresponds to a global
null hypothesis of multiple hypothesis tests, where each
test is associated with one feature. We reject the null
hypothesis that S is not anomalous w.r.t. any feature
in F , if we witness a rare event happening in one test
(i.e. on one feature) as indicated by a p-value that is
smaller than a predefined significance level2 α. Note
that when we reject the null hypothesis and say that S is
anomalous, S may not be significant for every test. We
impose the condition 1 < |S| < |E|/2, as an anomalous
collection should contain more than one entity and yet
remain the minority of the population.

3.2 Measuring Anomalousness for Multiple
Features To measure how extreme an entity collection
is ranked on a set of features, we generalize our prin-
ciple as follows: For a given feature set F , a collection
is more anomalous if it is extremely ranked for more
features in the given feature set.

As the representative p-value measures how anoma-
lous an ERAC is for a single feature, we define the
anomaly score of an ERAC S for F as the product
of the representative p-values for all the features in F .
As the probabilistic value tend to be very small, we take
the log form:

Ω(S, F) = −
∑

f∈F

log p̂f (S)

This definition is consistent with the principle that the

2In order to control the type 1 error (false positive), the
significance level for each individual test should be adjusted.
Our model can accommodate all existing adjustment techniques
including Bonferroni Correction, Holm-Bonferroni and Westfall-
Young step-down. We adopt the Bonferroni Correction [10] to
adjust the significance level to α/|F | to be conservative. For
example, assuming 0.05 is the intended significance level for each
single test, α would be set to 0.05/|F |.

more features S is extremely ranked against, the more
anomalous it is.

We formulate our top-K ERAC detection problem
as:

Definition 2. [Top-K ERAC] Given an entity uni-
verse set E, a feature set F , a target collection size N
(N < |E|/2) and K, find the top-K most anomalous
Extreme Rank Anomalous Collections of size at most
N .

We do not require the elements in different extreme
rank anomalous collections to be mutually exclusive.

4 ERAC Detection Algorithms

To find the top-K ERACs of size at most N , a naive
way is to enumerate all collections of size up to N ,
sort them by anomaly score in decreasing order, and
return the top K ones in the ranking. It is easy to see
the infeasibility of this approach as the search space is
exponential in the size of the universe E, i.e.,

(|E|
2

)
+

... +
(|E|

N

)
. Therefore we propose a bottom-up approach

that successively generates larger ERAC candidates
from smaller ones, maintaining a current top-K list and
pruning unpromising growth paths whenever possible.

Out of this approach arise two main challenges.
(I) How to generate candidates from the current set of
ERACs of smaller sizes? We adopt a classic approach
used in the Apriori Algorithm [1] to generate candidates
for frequent item-sets. Candidates are generated level
by level from single entities to collections of target size
N . To generate a collection of size n + 1, we only
combine two collections of size n sharing the same
first n − 1 entities, assuming all entities are sorted
alphabetically; this has been shown to ensure unique
generation of each candidate collection. (II) How to
prune unnecessary growth paths and generate fewer
candidates? A crucial pruning technique used in
Apriori is to prune any current candidate from future
consideration whenever it is found to fall below the
threshold set by the least one ranked in the current
top-K list, thus avoiding potential traversal of the
entire exponential search space. Unfortunately, in
general, the anomaly score of ERACs does not enjoy
this downward closure property to support the standard
pruning strategy in top-K computation. Specifically, for
any collection S, even when we find the anomaly score
Ω(S, F) is less than the least one in the current top-
K list, we cannot conclude that for all super-sets S′ of
S, the anomaly score Ω(S′, F) ≤ Ω(S, F) and therefore
safely prune S. The absence of this monotonicity on the
anomaly score poses a difficulty to our bottom-up search
approach. It seems that we have to keep all possible
collections of size n to generate candidates of size n + 1

to guarantee the completeness of the mining result.
To tackle this problem, we develop two new prun-

ing techniques based on different bounding techniques
respectively in Sections 4.1 and 4.2. The former pro-
vides a more conservative and safe bound that leads
to an exact algorithm ERAC E which guarantees the
completeness of the result. The latter derives a more
aggressive and tighter bound used in a heuristic algo-
rithm ERAC H with good approximate result. The
more general case of dependent features is discussed in
Section 4.3.

4.1 The Exact Algorithm ERAC E Given a col-
lection S, despite the absence of monotonicity on the
anomaly score precludes an upper-bound on Ω(S′) for
all super-sets S′ of S, it is possible to derive an upper-
bound on Ω(S′) for those super-sets of S of a given
size n. We denote this upper-bound with size-
constraint n as Ω̂(S, F, n), which will be formally de-
fined shortly. Intuitively, the most anomalous super-
set S′ of S can be formed by adding to S exactly
|S′| − |S| entities which are ranked the most extreme
with respect to S. Formally, given a collection S, size
n, (|S| < n ≤ |E|/2), and a feature f , the most anoma-
lous super-set of S is defined as Ŝn(f) = S ∪ S∗, where
|S∗| = n − |S| and ∀e′ ∈ S∗,∀e ∈ E \ Ŝn, rankf (e′) ≤
rankf (e). To illustrate with the example in Figure 1,
suppose S = {e5, e12}. Assuming no tie in the ranking,
we have Ŝ4(f0) = {e16, e5, e24, e12} because, on f0, e16

and e24 are the two entities ranked the most extreme to
the top positions, excluding the entities already in S.

Accordingly, given F and S, the upper-bound with
size-constraint n for S is defined as:

Ω̂(S, F, n) = −
∑

f∈F

log p̂f (Ŝn(f))

Before we present the theorem to show that
Ω̂(S, F, n) indeed represents the upper-bound on the
anomaly score of all super-sets of S of size n, we need
the following property of p-value.

Property 4.1. Given any feature f , collections S
and S′ and extremity indices r and r′, if |S| =
|S′|, |Ef (r)| = |Ef (r′)| and |Sf (r)| > |S′f (r′)|, then
pf (S, r) < pf (S′, r′).

Property 4.1 can be intuitively explained as, with all
other parameters kept constant, the larger the number
of entities in S that fall into the extreme positions, the
smaller the p-value is. Now we have Theorem 4.1.

Theorem 4.1. Given S, 0 < |S| ≤ |E|/2, ∀S′ such
that S ⊂ S′ and |S′| ≤ |E|/2, we have Ω(S′, F) ≤
Ω̂(S, F, |S′|)

Proof. Suppose S and S′ are two collections s.t. S ⊂
S′. To prove Ω(S′, F) = −∑

f∈F log p̂f (S′) ≤
Ω̂(S, F, |S′|) = −∑

f∈F log p̂f (Ŝ|S′|(f)), we need to
show that for any f , p̂f (S′) ≥ p̂f (Ŝ|S′|(f)). Let Ŝ de-
note Ŝ|S′|(f).

Since |Ŝ| = |S′|, Ef (rf (S′)) = Ef (rf (S′)) and
|Ŝ ∩ Ef (rf (S′))| ≥ |S′ ∩ Ef (rf (S′))|. According to
Property 4.1, we have pf (S′, rf (S′)) ≥ pf (Ŝ, rf (S′))
By definition, ∀0 < r < |E|/2, pf (Ŝ, rf (Ŝ)) ≤
pf (Ŝ, r). So we have pf (Ŝ, rf (Ŝ)) ≤ pf (Ŝ, rf (S′)).
Thus pf (Ŝ, rf (S′)) ≥ pf (Ŝ, rf (Ŝ)). Therefore, we
have pf (S′, rf (S′)) ≥ pf (Ŝ|S′|(f), rf (Ŝ|S′|(f))). Hence,
Ω(S′, F) ≤ Ω̂(S, F, |S′|).

Based on the upper-bound with size-constraint, we
propose an exact algorithm to incorporate the following
pruning strategy. At any time in the bottom-up search
process, there are three data structures in the system:
(I) the current top-K list; (II) the set of ERACs of size
n, which are used to generate candidates of size n + 1;
and (III) the set of single entities which have yet to grow
into any super-set yet. Denote Ωt as the anomaly score
of the least anomalous one in the current top-K list.

Pruning Technique 1. When generating candidates
of size n+1, only those collections S with anomaly score
upper-bound for size-constraint n+1, i.e., Ω̂(S, F, n+1),
larger than Ωt are grown.

Why is this pruning strategy sound? Observe that
due to the absence of the downward closure property,
a standard Apriori-style bottom-up cannot drop any
collection S even if its anomaly score falls below Ωt.
On the other hand, the upper-bound derived directly
from the target size N , i.e., Ω̂(S, F, N), would almost
always prevail over Ωt, leaving us with little pruning
power if any. In contrast, with our pruning strategy, the
upper-bound is computed with a size-constraint which
increases consistently with the size of candidates being
generated. Consequently, (I) when the size is small,
an upper-bound with the same small size-constraint is
more likely to fall below Ωt; (II) as the size grows, Ωt

increases monotonically as well, continually pushing the
bar higher for the upper-bound to beat. This accounts
for the greater pruning power of our method. The
ERAC E algorithm for computing top-K ERACs of size
up to N is shown in Algorithm 1, followed by a running
example in Table 1 to illustrate the pruning techniques
applied on the example in Figure 2.

Step 6 of Algorithm 1 applies Theorem 4.1, where
collections with upper-bounds smaller than the thresh-
old will not be included in S, which maintains the set

Algorithm 1 ERAC E for independent features
Input: E, F , K, N
Output: Top-K ERACs: S∗
{S∗ is implemented by a priority queue of max length K. Ωt

is the smallest anomaly score of collections in S∗, and is set to
zero if S∗ = ∅. S(i) is the current selected collections of size i,
implemented by a hash tree.}
1: n = 1; S∗ = ∅; S(i) = ∅, for i = 1..N ; S = {{e} | e ∈ E}
2: while S 6= ∅ && n < N do
3: update S∗ by elements in S {Ωt is updated accordingly}
4: S = {{e} | e ∈ E} − S(1)
5: for i = 1 to n do
6: S = {S ∈ S | Ω̂(S, F, n + 1) > Ωt} {S now keeps the

set of eligible collections}
7: S(i) = S ∪ S(i)
8: S = join(S(i), S(i)) {generate new candidates of size

i + 1, and update S∗ accordingly by elements in S}
9: n + +

10: return S∗

e16 e5 e24 e7 e12 e17 e13 e0 e3e18e19 e21 e14 e15e6

Figure 2: Top 15 entities ranked according to f0 in
Figure 1

of eligible collections. In Step 8 using join(), the su-
persets of collections with anomaly score upper-bounds
smaller than the threshold are excluded from S. The
join(S(i),S(i)) function computes S1

⊗
S2 for each

(S1, S2) pair derived from S(i), where the operation
⊗

combines two size-i collections with identical i − 1 ele-
ments to a size-(i + 1) collection (and is implemented
similarly as in the Apriori Algorithm [1]).

Running Example. Figure 2 shows the top 15 entities
ranked by f0 out of a universe of 30 entities. Suppose
K = 1 and N= 3. Table 1 shows the execution of
Algorithm 1 with the changes in S(i), S∗ and Ωt.

When n = 1, S∗ is updated to keep the current
most anomalous collection after Step 3: {e16}. Ωt is
updated to Ω({e16}, {f0}) = − log p̂({e16}) = 3.40.
At Step 4, since S(1) = ∅, S contains all the singular
sets. At Step 6, the set of selected collections of size
1 is S = {{e16}, {e5}, {e24}, {e7}, {e12}} by comparing

n S(i) S∗ (Ωt)

1 S(1) = {{e16}, {e5}, {e24}, {e7}, {e12}} {{e16}}(3.4)

2 S(1): same as above {{e16, e5}}
S(2) = {{e16, e5}, {e16, e24}, {e16, e7}, (6.08)
{e16, e12}, {e5, e24}, {e5, e7}, {e5, e12},
{e24, e7}, {e24, e12}, {e7, e12}}

3 S(1), S(2): same as above {{e16, e5, e24}}
S(3) = {{e16, e5, e24}, {e16, e5, e7}, (8.31)
{e5, e24, e7}}

Table 1: Algorithm 1 run on the example in Figure 2

their upper-bounds and Ωt. {e18} is not eligible as
Ω̂({e18}, {f0}, 2) = − log p̂({e16, e18}) = 3.37 < Ωt.
In Step 8, we get S containing 10 collections.
When n = 2, S∗ is updated to {{e16, e5}} and
Ωt = Ω({e16, e5}, {f0}) = 6.08. S contains the re-
maining singular collections from {e18} to {e15} along
the ranked list. This time i goes from 1 to 2. When
i = 1, at Step 6, the algorithm tries to pick out
the previous left over singular entities that may be
selected to generate collections of size 3. However,
even Ω̂({e18}, {f0}, 3) = − log p̂({e16, e5, e18}) =
5.31 < Ωt, meaning none of them is selected
for now. When i = 2, in Step 6, we get S =
{{e16, e5}, {e16, e24}, {e16, e7}, {e5, e24}, {e5, e7}, {e24, e7}}.
After executing the join function in Step 8,
S = {{e16, e5, e24}, {e16, e5, e7}, {e5, e24, e7}}. Fi-
nally, we get the top-1 ERAC of size no greater than 3
on feature f0: {e16, e5, e24} with anomaly score 8.31.
Note that if we had set N = 6, previous left-over singu-
lar entities e18 would be selected and the corresponding
nodes in the lattice tree would be grown from level 1
to level 6. Due to space limit, we only show the results
for N = 3.

In this example, a standard Apriori algorithm with-
out Pruning Strategy 1 would have to traverse the entire
search space of all the candidates up to size 3, visiting
altogether

(
15
1

)
+

(
15
2

)
+

(
15
3

)
=575 nodes in the search lat-

tice, due to the absence of the downward closure prop-
erty. In comparison, we only visit 5+10+3=18 nodes in
total, saving the visit to 96% of nodes even in this small
example.

Efficient Anomaly Score Computation. By the
definition of Ω(S, F), for a given S and each feature f ∈
F , we need to compute p̂f (S), which is decided by the
representative extremity index of S w.r.t f . The naive
approach to find this representative extremity index
would examine all |E|/2 possible indices. However,
the following property of the p-value allows us to avoid
checking all extemity indices.

Property 4.2. Given any feature f , collections S
and S′, and extremity indices r and r′, if |S| =
|S′|, |Sf (r)| = |S′f (r′)| and |Ef (r)| > |Ef (r′)|, then
pf (S, r) > pf (S′, r′).

Property 4.2 suggests that with all other parameters
kept constant, the smaller the extremity index, the
smaller the p-value is.

With Property 4.2, we check only those extremity
indices “indicated” by the rank positions of entities
in S. For example, in Figure 1, for S = {e5, e7}
and f0, we just need to check r = 2 and r′ = 4
corresponding to the positions of e5 and e7 respectively.
The other extremity indices can be skipped. Take

r′′ = 3 for example, as |Sf0(r
′′)| = |Sf0(r)| but

|Ef (r′′)| = 3 > |Ef (r)| = 2, according to Property 4.2,
we have pf0(S, r) < pf0(S, r′′). Thus, we do not need to
consider r′′. Extremity indices that do not correspond
to the rank of any entity in S have larger p-values than
the extremity index corresponding to the rank of some
entity in S. Therefore, to compute the representative
p-value p̂f (S) for each f ∈ F , we examine only O(|S|)
extremity indices instead of O(|E|).

It can be shown the total running time of Algorithm
1 is of O(|S|2+|S|·N4 ·|F |), where |S| denote the average
size of S(i) for all i and all n.

4.2 The Heuristic Algorithm: ERAC H The
bound given in Section 4.1 could be rather loose and
gives little pruning power. We now show another prun-
ing technique by exploiting our Apriori-style candidate
generation.

As stated in Section 3, given a collection S, the
p-value of S is determined by the extremity index r
(r < |E|/2) and the number of entities in S that appear
in Ef (r), i.e., |Sf (r)|. We denote |Sf (r)| as i. For any
given p-value and size n, we can explicitly express the
underlying i and r according to the p-value formula by
denoting the p-value as pf (i, r, n), or just p(i, r, n) when
the context is clear.

Let Sx be the ERAC realizing x (i.e., Ω(Sx, F) = x).
Since the anomaly score is the sum of the negative loga-
rithm of the representative p-values of every feature, we
want to derive for each feature f ∈ F , the correspond-
ing representative p-value pf (ix, rx, n) for Sx. From
there, we check whether, for feature f , combining S1

and S2 will achieve a representative p-value that is even
smaller than pf (ix, rx, n). If so, combining S1 and S2

will achieve a higher anomaly score than x. We will dis-
cuss how to decompose x into a set of p-values later in
this section. For now, we assume pf (ix, rx, n) is known
for any f .

For any feature f , given any representative p-value
pf (ix, rx, n) of some collection S of size n, we take the
heuristic that the representative p-values of S’s subsets
of size n′ that generate S is at most pf (ix − (n −
n′), rx, n′). This heuristic is based on some properties
of p-value, which are omitted here due to space limit.
Given an anomaly score x of any size-n collection and
a collection size n′, n′ < n, we define the lower-cut
with score-size constraint (x, n) as Ω∗(x, n, n′) =
−∑

f∈F log pf (ix − (n− n′), rx, n′).
We have the following pruning heuristic.

Pruning Technique 2. Given an anomaly score
threshold x for collections of size n, and its correspon-
dent representative p-value pf (ix, rx, n) for each feature
f ∈ F , we can use pf (ix − (n− n′), rx, n′) to derive the

lower-cut Ω∗(x, n, n′) and prune away any collection of
size n′, n′ < n, such that its anomaly score is smaller
than Ω∗(x, n, n′).

With this pruning heuristic, our heuristic algorithm
works as follows. Given a target size N , we first estimate
a threshold ΩN of collections of size N by the anomaly
score of the collection comprising the top-N anomalous
singular entities, which is a valid candidate collection
to be used as a reasonable start. It is possible that
this estimated initial bound ΩN is too aggressive and is
even higher than the true Ωt of the final top-K result.
To remedy, we first run with this initial ΩN to obtain
a preliminary top-K result, then set the smaller one
between the initial ΩN and this preliminary Ωt as the
new threshold ΩN to reboot the algorithm.

With this new threshold ΩN and its correspondent
set of pf (ix, rx, n), we compute the sequence of lower-
cuts Ω∗(ΩN , N, i) for all levels 1 ≤ i < N . Another
trick is that, when we are to generate candidates of
size n, it could be that the anomaly score of the least
one in the current top-K list (i.e., Ωt) can provide a
better cut i.e., Ω∗(Ωt, n + 1, n) > Ω∗(ΩN , N, n). Using
the better cut, we can prune away current ERACs of
size n before trying to combine any two of them to
generate candidates of size n+1. The details are shown
in Algorithm 2.

Algorithm 2 ERAC H for independent features
Input: E, F , K, N
Output: Top-K ERACs: S∗
{S∗ is implemented by a priority queue of max length K. Ωt is
the smallest anomaly score of collections in S∗, and is set to zero
if S∗ = ∅ }
1: n = 1; S∗ = ∅; S = {{e} | e ∈ E}
2: ΩN = Ω(SN , F), where SN is the union of the top-N

anomalous elements in S.
3: repeat
4: Ω′N = ΩN

5: for n = 1 to N − 1 do
6: S = {S ∈ S | Ω(S, F) >

max(Ω∗(ΩN , N, n), Ω∗(Ωt, n + 1, n))}
7: S = join(S, S) {S∗ and Ωt are updated by elements

in S whenever necessary}
8: ΩN = Ωt

9: until ΩN ≥ Ω′N
10: return S∗

Running Example. Setting K = 1 and N= 3
again, we show how Algorithm 2 executes on the same
example in Figure 2. The algorithm estimates ΩN as
Ω({e16, e5, e24}, {f0}) = 8.31, since these three entities
are the top-3 anomalous singular entities. When n = 1,
the algorithm checks whether each collection of size
1 can beat the current Ωt by Pruning Technique 2.
As Ω∗(8.31, 3, 1) = − log p(1, 3, 1), only {e16},{e5} and

{e24} are selected to generate collections of size 2. After
the join step, S = {{e16, e5}, {e16, e24}, {e5, e24}}. The
algorithm goes on to find {e16, e5} as the current top-
1 ERAC. When n = 2, Step 7 finds all elements in
the current S are eligible to generate collections of size
3. The join() generates the collection {e16, e5, e24} and
keeps it as the top-1 ERAC. Since the current Ωt is
equal to the estimated threshold Ω({e16, e5, e24}, {f0}),
the algorithm stops and returns {e16, e5, e24} as the final
result.

For the same example, we have shown that the exact
algorithm ERAC E visits 18 nodes in total, whereas
the heuristic algorithm ERAC H only visits 3+3+1=7
nodes, saving the visit to 61% of nodes over the exact
algorithm.

We now analyze the time complexity of Algorithm
2. Let |S′| denote the average size of S for all n. The
time complexity of Algorithm 2 is of O(|S′|2 + |S′| ·N3 ·
|F |), lower than that of Algorithm 1 as N3 < N4 and as
we expect |S′| in Algorithm 2 to be much smaller than
the counterparts |S| in Algorithm 1.

Anomaly Score Decomposition. We now discuss
how to derive representative value pf (ix, rx, n) for each
feature f ∈ F from a given anomaly score x. Ideally,
we aim to obtain the set of p-values that minimize
Ω∗(x, n, n′), subject to (1) X ≤ −∑

f∈F log xf ; (2)
@i′ < ix with p(i′, r′, n) < p(ix, rx, n).

For efficiency purpose, we approximate the min-
imum value of Ω∗(x, n, n′) by assuming the anomaly
score x is evenly divided across features up to a degree
of approximation. We first compute e−

x
|F | , then we find

the pf (ix, rx, n) such that (1) pf (ix, rx, n) ≤ e−
x
|F | ; (2)

@i′ < ix with p(i′, r′, n) < p(ix, rx, n); (3) @r′ < rx

with p(ix, r′, n) < e−
x
|F | . Condition (1) guarantees

x ≤ −∑
f∈F log xf . Condition (2) is required in the

heuristic. Condition (3) is based on Property 4.2. As
ix is fixed, we choose the larger rx so that the corre-
sponding p(ix − (n− n′), rx, n′) is larger, which in turn
corresponds to a smaller anomaly score.

4.3 Handling Dependent Features We have so far
assumed that features in F are independent of one other.
Now we handle the more general case of dependant
features. A feature set F is said to be an Independent
Feature Set or IFS, if |F | > 1 and ∀fi, fj ∈ F , fi

is independent of fj . However, it is not necessary to
compute the anomaly score of a collection for every IFS,
as many of them are subsumed by others. We hence
focus on maximal IFSs. An IFS F is a maximal IFS if
6 ∃ an IFS F ′ s.t. F ⊂ F ′. Given a feature set F , the set
of all maximal independent feature sets derived from F
is denoted as F.

In Section 3, the anomaly score is measured on
one independent feature set. Given F, the overall
anomaly score of S is aggregated by taking the largest
anomaly score across all maximal IFSs in F as Ω(S) =
maxF ′∈FΩ(S, F ′).

We now detect ERACs for any dependent feature
set F based on the algorithms for independent features.
We denote the algorithm using ERAC E as ERACD E
and the one using ERAC H as ERACD H. In both ER-
ACD E and ERACD H, we first generate all maximal
IFS from F . For each maximal IFS, we call ERAC E or
ERAC H. Finally, we get the top-K collections of size
up to N by aggregating the top-K collections across
all maximal IFSs. Since we are presented with multi-
ple maximal IFSs, we return not only the ERACs but
also their corresponding maximal IFSs. We still use a
priority queue of maximum length of K as before, but
with composite elements 〈S, F ′〉. Each element keeps
the anomalous ERACs and the corresponding maximal
IFSs that make S most anomalous. We constrain the
priority queue to have distinct collections only. As to
compute all maximal IFSs F is NP-hard [22], we adopt
the algorithm in [11] for an approximation.

5 Experiments

In this section, we apply our ERAC detection framework
on a web host graph to detect web spam collections,
and on an IMDB dataset to detect anomalous actor
groups. We show the effectiveness and efficiency of our
proposed algorithms. In the case of the web spam where
the ground truth is available, we compare the precision
of our framework with the existing web spam detection
approach, and anomaly detection approaches. We lastly
show the results on IMDB dataset.

5.1 Detecting Web Spam Collections As re-
ported in [4], spammers often try to game the search
result ranking by fabricating incoming links from link
farms, which are usually also spammers deploying the
same spamming strategies. Moreover, these incoming
spammer pages are often created by the same web page
template at a very low cost.

As a result, the incoming neighborhoods of spam-
mers are extremely homogeneous or heterogeneous com-
pared to those of normal ones that are gradually built
up. In other words, web spammers are expected to be
ranked at top or bottom by their incoming neighbor-
hood’s homogeneity.

Given a node e, we define the incoming Neigh-
borhood Feature or iNF as:
iNF (f, e) = mediane′,e′′∈iNBR(e),e′ 6=e′′ 6=edist(e′.f, e′′.f),
where dist(e′.f, e′′.f) = |e′.f − e′′.f |, and iNBR(e)
denote node e’s 1-hop incoming neighborhood.

Intuitively, a node with a small iNF value has a
more homogeneous incoming neighborhood, whereas a
node with a large iNF value has a more heterogeneous
incoming neighborhood.

We extract our web host graph from WEBSPAM-
UK20063 published by Yahoo! Research Barcelona. We
adopt 96 content features calculated by [6] [4], where
the features of a host are represented by its home page
as well as the page with the highest PageRank score on
the host. We compute 6 structural features at the host
level, including the number of 1-hop and 2-hop incoming
neighbors. These features are further processed to
derive the corresponding neighborhood features. We
iteratively remove entities with less than 2 incoming
neighbors, assuming they are not spammers. This leaves
one big connected web host graph, with 5634 nodes
(1709 spammers) associated with 102 features.

We first compare the top-K ERACs found by our
exact and heuristic algorithms in Section 4, then demon-
strate the effectiveness of our approach by comparing to
other existing techniques.

5.1.1 Exact Versus Heuristic Algorithms As the
exact algorithm takes a long time to execute on the
entire graph, we sample several subgraphs for comparing
the exact and heuristic algorithms. We are interested
to know how different they are, in terms of the ERACs
returned and efficiency.

We extract subgraphs by uniformly sampling the
edges at random so that the density of connected com-
ponents is preserved. We extract four groups of sub-
graphs, with each group having five subgraphs gener-
ated by 50, 80, 100 and 150 random edges respectively.
For each subgraph, we iteratively remove entities with
less than 2 incoming neighbors as mentioned before.
The average number of nodes of the resultant graphs
for each setting is shown in Table 2. We then extract
maximal IFSs for each subgraph and randomly select
one maximal IFS, with which we apply both the exact
and heuristic algorithms. As for the other parameters,
we empirically set N to 3, K to one fifth of the number
of nodes in the sample.

To evaluate how close the results of the two algo-
rithms are, we compute the overlap between the top-
K ERACs S∗exact and S∗heuristic as |S∗exact∩S∗heuristic|

K . To
evaluate efficiency, we define the speed-up as the ratio
of the execution time of the exact algorithm to that of
the heuristic one.

The average overlap and average speed-up is shown
in Table 2. As we see in the table, the heuristic
algorithm produces almost identical top-K ERACs as

3http://barcelona.research.yahoo.net/webspam/datasets

Table 2: Average overlap and speed-up
of sampled edges
(Avg # of nodes)

Avg Speed-
up

Avg Overlap

50 (81) 51 0.99

80 (135) 101 0.99

100 (182) 110 0.99

150 (246) 154 1.0

the exact algorithm, in a much shorter time.

5.1.2 Effectiveness of ERACD H Since some of
the 102 features in the web spam data set are dependent
on each other, we apply the algorithm designed for
dependent feature set to compute the top-K ERACs
of size no greater than N . As the exact algorithm is too
costly to run on the web host graph, we show results
from the heuristic algorithm ERACD H, which should
output almost identical results as the exact one. We set
K=1000, around one fifth of the total number of hosts
as we did before and set N=12. We keep N small as
anomalous collections normally are not large.

Applying the ERACD H algorithm, we formed 258
maximal IFSs from the 102 features. Among the
maximal IFSs, 21 of them are of size 3, the largest
size of all. The top most ERAC returned by ER-
ACD H identifies 12 hosts, all true spammers (in-
cluding www.englandguide.co.uk and www.posters.co.uk
that are still actively spamming despite being labeled as
spammers in 2006). This collection is associated with
the maximal IFS of {“Number of words”, “Top 100 cor-
pus precision”, “Independent LH” }, where corpus pre-
cision refers to the fraction of words that appear in the
set of popular terms, and Independent LH is a measure
of the independence of the distribution of trigrams.

Now we look further into the representative ex-
tremity indices of this collection, and explain why it is
anomalous. It turns out that the web hosts in this col-
lection are clustered in the top 18 positions on “Num-
ber of words”, top 22 on “Top 100 corpus precision”
and top 45 on “Independent LH”. This means that the
neighborhood of each host in this collection is very ho-
mogeneous in terms of number of words, tendency to
use very popular keywords, and pattern of using many
unrelated keywords. Therefore our approach is able to
discover true spammer collections as well as explain why
they are anomalous.

5.1.3 Comparison to Spam Detection Ap-
proaches Next, we compare our ERACD H algorithm,
denoted as ERACD, with the unsupervised TrustRank
[16] [15] and the supervised decision tree techniques em-
ployed in [6] and [4]. These spam detection approaches

ERACD_n=4 DT_n=4 ERACD_n=8
DT_n=8 ERACD_n=12 DT_n=12

0 250 500 750 1,000
 top-K

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 p
re

ci
si

on

Figure 3: ERACD v.s.DT

ERACD_n=4 TR_hp_n=4 ERACD_n=8
TR_hp_n=8 ERACD_n=12 TR_hp_n=12

0 250 500 750 1,000
 top-K

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 p
re

ci
si

on

Figure 4: ERACD v.s.TR hp

ERACD_n=4 TR_mp_n=4 ERACD_n=8
TR_mp_n=8 ERACD_n=12 TR_mp_n=12

0 250 500 750 1,000
 top-K

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 p
re

ci
si

on

Figure 5: ERACD v.s.TR mp

aim at detecting individual spammers, not spam collec-
tions. We therefore assume that all the entities in top-K
ERACs are spammers, and compare the precision of the
competing methods.

To compute the trustrank score, we follow the guid-
ance of [15] and [6].We then rank web hosts in ascend-
ing order by the trustrank score of their respective home
page (hp), as well as the page with the highest page rank
(mp). Since the lower the trustrank score of a node, the
more likely it is a spammer, the hosts at the top are
more likely to be spammers. We denote the approach
involving home pages as TR hp and the ranked list it
produces as EL(TR hp). The approach involving the
pages with the highest page rank is denoted as TR mp
and its ranked list as EL(TR mp).

For the decision tree denoted as DT, we use J48 of
Weka4 with 5-fold cross validation. The features used
are the neighborhood features used in ERACD. To derive
a ranked list of web hosts for comparing with other
approaches, we sort the hosts in descending order of
the prediction values assigned to them by the decision
tree. The ranked list is denoted as EL(DT).

Since our heuristic algorithm works incrementally,
in each loop of n from 1 to N , it outputs the top-K ER-
ACs of size no greater than n denoted as S∗(n,K). We
therefore are able to compare the ERACD approach with
collections of various sizes by keeping the intermediate
top-K ERACs results of ERACD H for various n ≤ N .
In the experiments, we try n ∈ {4, 8, 12}.

Given n and K, let τ(n,K) = |⋃e∈⋃
S∈S∗(n,K)

e|
denote the number of distinct entities in S∗(n,K). We
assume that all entities in S∗(n,K) are spammers and
compare the top τ(n, K) entities of each approach.
Let EL(O, τ(n,K)) denote the top τ(n,K) entities

4www.cs.waikato.ac.nz/ml/weka

returned by approach O ∈ {ERACD, TR hp, TR mp,
DT}. The precision of the top τ(n,K) entities is defined
as: |EL(O,τ(n,K))∩Γ|

|EL(O,τ(n,K))| , where Γ denotes the set of true
spammers in E.

Figures 3, 4 and 5 plot the precision against K
for ERACD versus {DT, TR hp and TR mp}. In the
figures, ERACD is represented by the solid line, while
the competing approaches are in doted lines.

As we observe from the plots, ERACD outperforms
DT, TR hp and TR mp across the n settings. This
demonstrates that our approach, although not specifi-
cally designed for detecting spammers, still outperforms
the other methods in precision.

The recall levels achieved by our approach are all
around 0.03 for n = 4, 8, 12 respectively and with
K = 1000. The low recall levels are expected, as our
approach is intended for discovering the most anomalous
collections of entities, with no attempt to avoid overlap
between collections.

Next, to see whether our approach finds unique
spammers, we check the overlap between the
top τ(n,K) entities returned by each pair of
approaches. Specifically, the overlap ratio is
|EL(ERACD,τ(n,K))∩EL(O,τ(n,K)|

τ(n,K) , where O ∈ {TR hp,

TR mp, DT}. For K = 1000 and n ∈ {4, 8, 12}, all
the overlap ratios are smaller than 0.05, suggesting ER-
ACD detects unique spammer hosts that are missed by
the competing methods.

5.1.4 Comparison to Anomaly Detection Ap-
proaches Having compared our approach with spam-
mer detection approaches that produce point anoma-
lies, we compare with the general density-based and
clustering-based anomaly detection approaches. Note
that the density-based approach returns point anoma-

ERACD_n=4 Density_n=4 ERACD_n=8
Density_n=8 ERACD_n=12 Density_n=12

0 250 500 750 1,000
 top-K

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 p
re

ci
si

on

Figure 6: ERACD v.s. Density-based
method on web spam dataset

top-1 ERAC top-1000 ERAC Clustering-based

2 3 4 5 6 7 8 9 10 11 12
 n

0

20

40

60

80

100

120

140

160

180

 a
no

m
al

y
sc

or
e

Figure 7: ERACD v.s. Clustering-
based method on web spam dataset

ERAC Clustering-based

1 2 3
 top-K

0

5

10

15

20

25

 a
no

m
al

y
sc

or
e

Figure 8: ERACD v.s. Clustering-
based method on IMDB dataset

lies whereas the clustering-based one returns collections
of entities. We are interested to know whether the
anomaly score and precision of the collections returned
by our approach are better.

Figure 6 shows the comparison with the density-
based approach [5]. The top entities returned by
the density-based approach are mostly non-spammers.
This is because the density-based approach assumes
anomalies appear in sparse regions. However, true
spammers are likely to employ common spamming
tricks, making them less likely to appear in sparse
regions of the feature space.

Next, we consider clustering-based outlier detec-
tion approaches, which consider “small clusters” to be
anomalous. We follow [20] in defining a small cluster as
one with a size that is smaller than half of the average
cluster size.

We apply agglomerative hierarchical clustering with
complete link and Euclidian distance to cluster E.
The clustering algorithm is run on each maximal IFS
calculated by our approach so as to find the most
anomalous cluster across all maximal IFSs. In clustering
for a given maximal IFS, we stop growing the cluster
tree if any two lower level clusters being combined makes
the average size of all clusters larger than 2 ·N . This is
to make sure that all resultant clusters of size smaller or
equal to N are “small” clusters by the definition of the
clustering-based approach. Since the clusters returned
by our approach are of size no greater than N , we
can make a fair comparison with the “small” clusters
returned by the clustering-based approach.

In this comparison, we keep the intermediate top-K
results when n varies, and show the top-1 ERAC and
top-1000 ERAC of ERACD for each n together with the
most anomalous cluster discovered by the clustering-

based approach.
In Figure 7, we see that for all n, the collections dis-

covered by our approach are more anomalous than the
clustering-based ones, because our ERACD is optimized
to find clusters sitting at extreme positions.

As for precision, we compute first for each given
maximal IFS, the ratio of the number of true spammers
in all the small clusters over the total number of entities
in all the small clusters. The maximal ratio is selected as
the precision across all maximal IFSs. We also compute
this precision for all n from 2 to 12. The results show
that the precision of the small clusters is quite low
for each n, with a maximum of 0.35 at n=10. This
suggests that most of the entities in small clusters are
not necessarily spammers. Thus we cannot rely on
clustering-based anomaly detection techniques to find
spammer collections.

5.2 Detecting Anomalous Collections in IMDB
From the IMDB data set obtained from its portal5, we
extracted actors and actresses participating in movies
shown between 1990 and 2008. We extract actors
playing non-trivial roles in each movie by taking only
those appearing among the top 10 names in the cast
list. We extracted 6 actor features including number
of movies, average rating of all movies, average salary,
average movie budget, average movie box office and
average payback (the ratio of average box office to
average salary). We remove actors with missing feature
values. In the end, we get altogether 183 actors.

We apply our ERACD on this preprocessed IMDB
dataset. The maximal independent feature set gener-
ated consists of {number of movies, average movie bud-

5http://www.imdb.com/interfaces

get, average payback}. With this maximal IFS, we
also run the clustering-based approach on this IMDB
dataset. We set N = 3, meaning the clusters returned
that are of size no greater than 3 are considered anoma-
lous by the clustering-based approach. Altogether, the
clustering-based approach returned 29 clusters, includ-
ing 3 anomalous ones. Figure 8 shows that the top-3
ERACs returned by ERACD are more anomalous than
those returned by the clustering-based approach.

Interestingly, the top-1st ERAC returned by our
ERACD is {Grint Rupert, Radcliffe Daniel, Watson
Emma}, containing the three major actors in Harry Pot-
ter movies. The most anomalous cluster returned by the
clustering-based approach is {Lohan Lindsay, Wither-
spoon John, Madonna}. We plot their relative rank-
ings along the three features in Figure 9. The center
point of each star chart represents the middle rank-
ing. The distance to the center point represents the
extremity. Therefore, the further away an actor’s rank-
ing is from the center point along a feature, the more
extremely ranked he or she is w.r.t that feature. By vi-
sual inspection, we can see that {Grint Rupert, Radcliffe
Daniel, Watson Emma} is anomalous because the actors
in the collection are consistently ranked extremely in all
three features. However, the collection returned by the
clustering-based approach is less anomalous. This il-
lustrates again that, while clustering-based approaches
could return sets of similar entities, they are not de-
signed to capture those interesting collections exhibiting
extreme behavior as in our problem setting.

Our findings are useful especially when groups of
extremely ranked actors w.r.t a certain combination of
features are of interest. For example, a movie producer
may want to find actors who perform in few large-
budget movies but have big payback. Our results
suggest the producer should go for the top ERACs.

6 Conclusions

In this paper, we introduce the problem of discovering
extreme rank anomalous collections (ERAC). We pro-
posed both exact and heuristic algorithms for detect-
ing top-K ERACs, for both independent and depen-
dent feature sets. We applied our approach to detect
web spammers in web host graph as well as anomalous
actor groups in IMDB. The results on both data sets
showed that the top ERACs are meaningful. Interest-
ingly, the anomalous entities discovered by our approach
are largely distinct from those found with existing meth-
ods. Moreover, for web spam detection, our approach
not only detects web spammer collections with higher
precision than existing approaches, but also explains the
anomaly statistically.

Lohan Lindsay Witherspoon John

Madonna Grint Rupert

Radcliffe Daniel Watson Emma

number of movies

avg movie

budget
avg

payback

Figure 9: top-1st ERACD v.s. top-1st cluster by
Clustering-based method

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining associa-

tion rules in large databases. In VLDB Conf., 1994.
[2] E. Arias-Castro, E. J. Cands, and A. Durand. Detection of an

anomalous cluster in a network. Ann. Statist., 39(1), 2011.
[3] V. Barnett and T. Lewis. Outliers in statistical data. John

Wiley and Sons, 1994.
[4] L. Becchetti, C. Castillo, D. Donato, R. Baeza-YATES, and

S. Leonardi. Link analysis for web spam detection. ACM Trans.
Web, 2(1), 2008.

[5] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:
identifying density-based local outliers. In SIGMOD Conf.,
2000.

[6] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri.
Know your neighbors: web spam detection using the web topol-
ogy. In SIGIR Conf., 2007.

[7] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey. ACM Comput. Surv., 41(3), 2009.

[8] C. E. H. Chua and J. Wareham. Fighting internet auction fraud:
An assessment and proposal. Computer, 37(10), 2004.

[9] L. Duan, L. Xu, Y. Liu, and J. Lee. Cluster-based outlier
detection. Annals of Operations Research, 168(1), 2009.

[10] C. W. Dunnett. A multiple comparison procedure for comparing
several treatments with a control. Journal of the American
Statistical Association, 50(272), 1955.

[11] D. Eppstein. All maximal independent sets and dynamic domi-
nance for sparse graphs. In SODA Conf., 2005.

[12] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases with
noise. In ICDM Conf., 1996.

[13] D. Fetterly, M. Manasse, and M. Najork. Spam, damn spam, and
statistics: using statistical analysis to locate spam web pages.
In Proc. of the 7th International Workshop on the Web and
Databases, 2004.

[14] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering
algorithm for categorical attributes. In ICDE Conf., 1999.

[15] Z. Gyöngyi, P. Berkhin, H. Garcia-Molina, and J. Pedersen. Link
spam detection based on mass estimation. In VLDB Conf., 2006.

[16] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating web
spam with trustrank. In VLDB Conf., 2004.

[17] Z. He, X. Xu, and S. Deng. Discovering cluster-based local
outliers. Pattern Recogn. Lett., 24(9), 2003.

[18] D. Kaustav, S. Jeff, and B. N. Daniel. Detecting Anomalous
Groups in Categorical Datasets. CMU Technical Report, 2009.

[19] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based
outliers in large datasets. In VLDB Conf., 1998.

[20] A. Loureiro, L. Torgo, and C. Soares. Outlier detection using
clustering methods: a data cleaning application. In Proc. of the
data mining for business workshop, 2004.

[21] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Netprobe:
a fast and scalable system for fraud detection in online auction
networks. In WWW Conf., 2007.

[22] J. M. Robson. Algorithms for maximum independent sets.
Journal of Algorithms, 7(3), 1986.

[23] T. Wu. An accurate computation of the hypergeometric distri-
bution function. ACM Trans. Math. Softw., 19(1), 1993.

