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The Supplementary Material contains detail proofs of Lemmas B.1-B.4. Lemma C.1 and

Lemma C.2 are first established to help prove the main results.

N

Lemma C.1. There is a ¢y < oo such that fory <y <72 <7 and 1 <r <4,

(i) Ehj(v1,72) <cilyve —ml, (@) Effy(v1,72) < etlre —mnl,
(149) Bkl (v1,72) < ciyve — 7|, (iv) Elj, (1, 72) < ci]ye — 7l

where, hi(71,72) = [[hie|l|dit(v2,71)], fit(v1,72) = || hirvie|l|dit (2, 71) |

kit (v1,72) = Vi — 05 llgiiel|die(va, vl Lie(v1,72) = [viel 2z gigel[vjel | die (2,71

Proof: We only show (i), as the others can be shown similarly. We have

B{Zdu(2)] = BIECZla)dn()] = [ B(Zlgn)dF o)

—0o0

for any random variable Z, where F'(-) denotes the CDF of ¢;;. Hence, %E[Zdit(v)] =E(Z|¢it =

) f(7). Thus by the Jensen inequality and Assumption B(iii), one has
Bl () = Blballase = 2)7() < Bl = )71 (2) < 174
by Assumption B (i47). Since dji(v2) — dj¢(71) equals either zero or one,
Elllhiel"|dit(v2) = dje(v)[] = Elllhitl|"die (v2)] = Elllal[" die(y1)] < exlra = ml;

for some ¢; < o0, by a first-order Taylor series expansion, establishing (). Assume this ¢; is

large enough so that results (ii)-(iv) also hold.



Lemma C.2. There is a ca < oo such that for all v < v1 <72 <7,

Bl A= Y, S (n,72) — ER (v1,32)]] < ezl =, (C.1)
E| A S SR 0n ) - B On )| < ezhz -, (C.2)
E| A S0 Sk (1 92) — ERE (1, 92)]]” < eahre =, (C.3)

E‘\/% S S 2 (1, 72) — B (o, ’72)”2 < colye — il (C.4)

Proof: We only show (C.4) when r = 2, as the proofs of the others are similar and less

difficult, using Lemma C.1. As l;(71,72) are independent across ¢, we have

Bl S S B (n,92) — B (1, 7))
= LY B Y [ (n72) — B (11,9l
= a7 Dict S 2 (B (1,92)8, (71, 72)] = B (11,92)EL, (11, 72)}
= o i S {E (11,72) — (B (1, 72))%)
+ % Ethl Z?:l Z?;éi{E[l?t('Yh '72)l]2't(717 Y2)] — Elzzt(’Yh ’72)Elj2't(71, v2)}

= Li(v,72) + L2(71,72)-
It is easy to verify that I1(v1,72) < & Zthl S E[ld (71,72)] < 2¢1]v2 — 11|- Further,

I} T
I(v1,72) = T Zt:l Z?:1 Z;L;éz Zg@ ZZ;&Z ZZ;&j ZZ# {E(’gil,t

Eldit(v2, y1) [Eldje (v2, YOI [E (il v lvi o5 Jomllop]) — ECuilvi v DEvs vl [vp )] }

|gik,t 9jm,t gjp,t|)

Consider the term with the highest order in error term, i.e., | = k = m = p, as the analyses of

other terms are similar and less difficult. This term equals to

5 T
o i iy 2z 2ot UG P|gne DVE(die (v2, yOlldje (v2, v1) v [E[o3 [Elvfi] — (Elvj])?]

15 T
< o Dimr 2imn IO 9P (221 g0 P)Eldit (v2, 1) [El0f [E[v3 [Elvi] < v — 7l

1 1
for some ¢ < oo, as E(|dit(v2, v1)||djt(v2,71)]) < E2|dit(v2, 1) [E2[djt (72, 11)| = Eldit(v2, 11)| <
c1]y2 — 71| based on (i) of Lemma C.1. Let ¢ be large enough, and hence we can similarly show
all the other non-zero terms in I5(y1,72) are also bounded by ¢|y2 —~1|. Thus, the desired result

follows.



Proof of Lemma B.1: Firstly, we define J ,,7(7) = F Zt L H{di(v)Vs and Jo () =
\/ﬁ ST Vi de(7)GiVi — 02t (di(7)Gy)]. As the analysis of J; ,7(7) is tedious but follows the
similar arguments to that of J ,77(y) for s = 1,2, we show the uniform convergences of Js 7 ()
instead. Lemma C.1 implies that E[||hy||*d;(7)] < co for each 4. Meanwhile, it is easy to see
that {d¢(y)G¢} are matrices with bounded row and column sum norms by Lemma A.1. Hence,
Jinr(y) and J2,7(y) both converge pointwise to a Gaussian distribution by the central limit
theorem (CLT) in Lemma A.3. This can be extended to any finite collection of 7 to yield the
convergence of the finite-dimensional distributions.

Thus, it is left to establish the tightness of Js,r(y) for s = 1,2. We show Ji ,7(7) by
verifying the conditions for Theorem 15.5 of Billingsley (1968). In the following, we claim
that there are finite constants c3 and ¢4 such that for all 43 € T, n > 0 and ¢ > (nT)7!, if
VnT > ca/n,

P( sup | Jsnr () = Jsnr(71)] > 77) csp?n?
<Y<Y+

Now suppose the above results are ture for s = 1,2. Then, fix ¢ > 0 and > 0, and let

© = en*/c3. The above results imply there is a large enough n7" such that for any v € T,

P( sup |Js,nT<v>anTm>|>n> cotnt = e,
Y1I<Y<Y1+P

establishing the conditions for Theorem 15.5 of Billingsley (1968).

Since ¢ > (nT)~!, we can let m be an integer satisfying nTp/2 < m < nTy. Set v, = p/m.
Fork=1,...,m+1,set o =71+ (K — D)om, fitqk = fit(Ve, Yer1), and fir ju = fit(vr,75). We
let Forp = % py Zle fit,k, and thus for v, < v < Y1,

|J1 (V) = Jinr(n)| K VT Fpr g < VT |Foyry — EFy k| + VRTEFE, 1.

It follows that

sup | J1nr(7) = Jimr ()]

LYVt

< max  sup  |Jipr(Vk) — Jier() + Jinr(Y) = Jinr (V)|
1SkSmayy, <y <ypp

< max  |Jipr(V) — Jier(n)| + max VT |Fyr, — EF,yrs| + max VnTEF, 7. (C.5)
2<k<m+1 1<k<m 1<k<m

In the following analysis, we consider bounding each term of the above equation to show the

final result. For any 1 < j < k < m + 1, by the Burkholder’s inequality (see (Hall and Heyde,



1980, p.23)) for some constant ¢; < oo,

_ T

ElJ1nr (W) = Jiar ()| < @Bl Yoimy Yimy fa il
_ -l 2 1 T 2 2
= aElor 2 1Zt (f7 ik — B zt]k) AT D1 Dt Efit,jk‘ .

By Minkowski’s inequality, (iv) of Lemma C.1 and (C.4), the above expression is bounded by

_ . 2
Cl[(E’% Zz lzt 1( ztjk: E zztjk)’ )1/2+Cl(k_j>90mj|

< e [(2EDem1/2 ey (k= o] < e + @) (k — §)202,

where we use the fact that (n7)~' < ¢, and (k — j)Y/2 < (k — j). Given the above result,
Theorem 12.2 of Billingsley (1968, p. 94) implies that there is a finite constant ¢ such that

P<2<Ilgl<ax+1\<71 n(Ve) = Jinr(71)| > 77/3> < 816 (mypm )~ = 81éap®n ™, (C.6)

which bounds the first term of (C.5).
Next, we consider the second term of (C.5). By Lemma C.1, Lemma C.2 and (nT)™! < ¢,

4
ENVAT (Fyry — EFyrp)|* = E\\/% iy S (it — Eficg)|
1?2 Zz 121& 1E ztk+3[niTZz 1Zt lE ztk}

Lc1om + 3392, < (c1 + 3c}) 2,

//\

N

By Markov’s inequality, the above inequality implies

( max VT | Fur — EFors| > n/3) <Y, P(\/nT|FnT7k — EFurgl > 77/3)

1<k<m

< 8lm(er + 3c¢2)p2,n~ % < 81(ey + 3cd)p?n4,

where the final equality uses my,, = ¢ and ¢, < @.

Finally, we consider the last term of (C.5). By (iv) of Lemma C.1 and ¢, < %,
VNTEF, 7 = VnTEfi ) < VnTeiom < 2c1(nT) 12,
Aggregating the above results for the three terms of (C.5), we have if 2¢1(nT) "% < 1/3,

P swp ha0) = Sarln)l > 0) < S+t (CD)

MLyt



By setting c¢3 = 81(¢é2 + ¢1 + 36%) and ¢4 = 6¢1, we achieve the desired result.

The proof on the tightness of Jy,7(7) follows the same reasoning as that of result (a) in
Lemma A.8 of Li and Lin (2024). As the details are analogous, they are omitted here for brevity.
Finally, the derivation of their asymptotic variances follows Lemma B.5 of Yang (2015) for each

~. This concludes the proof of Lemma B.1. |

Proof of Lemma B.2: We show the result for F,7(v), as the other two can be shown

similarly. For notation simplicity, let m; = djhy and mi(v) = 64hirdi (Y0, Ynr)- Hence,

Far(v) = % i= 1 Zt lmzt( v) — % Zz 1 Zk 1 Zt L mit(v)mig(v)
— g S S S ma(v)m(v) + S S S S ST ma(v)my(v)
Zgzl ]:s,nT(U)~ (0-8)

Consider the case where v is positive first. Observe that since v = v, — 70,

P(g; < — P(qg;; <
anr Pl < g < 1) = v ”}yf_,m(q“ ), flof (C.9)

as simple size increases. Symmetrically, we can show that a,7P(v1 < git < v) — f|v|, when
v is negative. In the following argument, we only consider the case where v is positive, as the

negative case can be studied symmetrically. Thus,

EFLnr(v) = 22570 S Blm21{y0 < g < 11}]
= % >in ZL E(m2|v0 < git < 71)anrP(y0 < git < M1)
= LS ST EB(mE g = y0) flv] = 8)Méo f|vl.

Besides, by (C.1),

B\ F1nr(v) — BELyr (0)[2 < %2 60| *B| -2 327, 57 102 (70, 1) — BRZ (70, 1))
n n S BT T 2wi=1 2at=11"%t 70, 71 70,7

< S l10olfe2lv] = o(1).

Hence, the Markov’s inequality implies that JFy ,7(v) — 6 Mo f|v] —= 0.
We next consider the second term of (C.8). By (C.9), for i # j or t # k, anrP(y0 < qit <



V1,7 < @ik < 71) = anr P(0 < git < 71)P(v0 < ¢jk < 1) — 0. Hence,

EFr(v) = % 30 S S ElmamaL{vo < gie < 1}1{v0 < gk <}
= A S S E(mamiak o < g < 71,70 < @in < 1)anrP(r0 < gt < 71,9 < qik < 1)

= L3 S EmE v < g < )anr P(ro < gir < 71) + 0p(1) = £6,M o f|vl.
Similarly, we have
E‘}—ZnT(U) - E]'—Q,nT("U)’2 < E]:22,nT( v) = n2T4 Z =1 Zt 1Em (v) + Op(l) — 0.

Hence, the Markov’s inequality implies Fo 7 (v) — 560 M8 f|v| 250.

Similarly, we have

S Y Yy mie(0)mye(v) = 16, M o flv] + 0p(1) = 0

and

i 1 21 Yo Lot it (V)m(v) = Jp6y Mo flu] + 0p(1) = 0.

Since Fr(v) is monotonically increasing on [0, 9] and decreasing on [—v,0], and the limit

function is continuous, the convergence is uniform over Y. [ ]

Proof of Lemma B.3: The uniform convergence follows if

(a) The finite dimensional distributions of R, (v) converge to those of B(v);

(b) Rpr(v) is tight.

We show (a) first. With Assumptions A to D, the conditions for the CLT in Lemma A.3
are well established. Hence, for v € Y, we have R,r(v) EN N(0,0%(v)), where 0% (v) is
the variance of R,r(v). Then, it is left to show 0% (v) = |v|=f. Let H*(v) = D(yur,v0)H,
G*(v) = D(Yar,70)G and q(v) = diagv[QnrD(Ynr,70)G]. By Lemma B.5 of Yang (2015), we

have

07 (v) = oFBFur(v) + 2loog k3 7 B0 H (v)Qura(v)] + Fogra GFEld (v)a(v)]

+ Bod e Bltr (QarG* (v) (G (v) + QurG*(v))] = Xi_, Cs.

By Lemma B.2, we have (C; 4 C4) — 0221 f|v| == 0. Similar to the proof of Lemma B.2, we can
also show (Cy 4 C3) — 022 f|v| -2 0. Hence, we conclude that R,7(v) N N(0,ZEf|v]). This

argument can be extended to include any finite collection [vy,...,vg] to yield the convergence



of the finite dimensional distributions of R,r(v) to those of B(v).
We now show (b). By Lemma B.1, for all v; € I', n > 0 and ¢ > (nT) "1, there exist finite
constant ¢z and ¢4 such that if n > ¢4 /vnT,

P< sup Wﬁﬁﬁﬂ%%»+%C&manm>n)<$%ﬁ- (C.10)
V<Y<Yt

Fix € > 0,71 > 0. Set 1 = et /c3, o = 1/anr,n = m/\/anr and Ny = (max(p~1/2, ¢4 /m))"/7.
Hence, for nT > Nj, we have ¢ = /N (nT)%*" > ar (nT)~™! and n > c4/v/nT. Set

nTcs = nTc3

7 =Y + vi/anr. By (C.10), for nT > Ny,

P( sup \RnT(v)—RnT(vl)!>U1)

v1 <UKv1tp1

= P( sup (|06 T1,n7 (7, 75) + loT2nr (7, 71) || > 77>

<Y<ty

< %CW%T(%/%TV = p1e

As discussed in the proof of Lemma B.1, this shows that (b) holds. [ |

Proof of Lemma B.4: Firstly, we show (a) when r = 1, and the proofs of the other results
in (a)-(d) are similar and thus omitted. Note that D ,7(7y) is just a linear transformation of

D11 () = 7%T%H’D(’yg,’y)HcSo. It suffices to show

D
P( sup Duinr(7) <(1 —n)k> <e.
’YGNnT |ry - ’YO|

Without loss of generality (WLOG), we assume 7 > g, as a symmetric argument can be

established for the case of v < 7. Hence,
dED11 iy () /dy = 6M (7). f(7)do.

Since 6, M () f(7)do > 0 (Assumption B(v)) and §)M () f(7)dp is continuous at vy (Assumption
B(iv)), then there is a B sufficiently small such that

k= min &M(7)f(7)do >0,
[v—0|<B

Because ED11 »7(70) = 0, a first-order Taylor series expansion about 7o yields

inf  EDi1,7(7) = kv — 0l (C.11)
Iv—v0|<B



Then, (C.1) implies

E|D11,n7 () — ED11ar(7)? < 00*Elr 0y S (W3 (11, 72) — ERZ (11, 72)]

< [6ol[*(nT) " ealy — o0l (C.12)
For any n and e, set
1—n/2
b= 1212 and (C.13)
L=n
4
7= 8|[do[*c2 (C.14)

en?k2(1 — 1/b)

< B, else the inequality (a) is

We may assume that (n,7T) i
trival. For | = 1,2,..., N + 1, set vi = Yo + b~ Ja,r, where N is the integer such that
Y5 — 70 = 06" ! Janr < B and YN41— 0 = ob" Janp > B. (Note that N > 1 since % < B.)

Markov’s inequality, (C.11) and (C.12) yield

P( sup ‘Dll,nT('Yj) — ED11 7 (v;) ) ) Z E|D11n7(v;) — ED11r ()2
1<<N ED11,n7(75) n? [ED1107(7;)2

k2|'7] 'YO|
4160l * 2
—27
< (nT) n2k2o ZbJ 1
4||50H4CQ €
< oo € 1
n?k2v(1 —1/b) 2 (C.15)
D11 nr(v5)

where the final equation is based on (C.14). Thus, with probability exceeding 1—2/e, )m_
2 for all 1 < < N. So for any v € [yo + U/ant, Y0 + B], there is some 1 < j < N such

that v; < v < 7j41 and

Duipr(y) o Dinr(yj) EDunr(y) >a-" ki =l _ (1- n)ﬁ
v =l ~ EDunr(y;) [v+1 — 0l 2" [vj+1 = Yol b

with probability exceeding 1 — €/2, according to (C.15). Based on the definition of b, (C.13),
11, nT( )

the above inequality can be simplified as Dlﬂ/ivol > (1—mn)k. Since this event has a probability

exceeding 1 — €/2, we have established

D
p< i Pinr() _ (1—n)k> <&
veNur |7 = o 2
A symmetric argument applies to the case —B < v — 9 < —%.



Secondly, we show the results in (e). WLOG, we assume v > 7. Let vj = 70 + 00/ "L Jaur
for I =1,2,...,N + 1, where b and N are defined as before. By definition, it is seen that there
are at most logy (a,7B/0)+2 points in the interval v—~g € [a%, B, i.e., N < logy(anrB/v)+2.
Then, for r =1, 2, 3,

N
P,
P( sup 1Prn n) P(ﬂmn B ()l ) ZP<II mm>r>n>.
YENnT \7 Yol 1SN \ 70\ 70\

Jj=1

Following the proof of Lemma C.2, for any j, we have E|P.,7(v;)||*> < <|v; — 70|. Thus,

Chebyshev inequality implies that

N N _
ZP(HPrnT Yy || ) Z HPrnT E[|Pnr (v)I? < i C20nT _Cz(nT) o7 =0
Y0 = - Y|%*n? nTobi—1n?2 = o(1 — 1/b)n?

]:]_ ]=1

A symmetric argument establishes a similar result for v < p.

Finally, we consider the two results in (f). As their proofs follow the same manner, we
use general notation Js,7(7) to denote either of them. Fix n > 0. For j = 1,2,..., set
Vi — Y0 = ©27~1 a7, where © < oo will be determined later. By the similar analysis as used in
the proof of Lemma B.1, for all v; € I', n > 0 and ¢ > (nT)~!, there exist c3, ¢y < co such that

if n > ca/VnT,

E|Tsnr(V5) = Tsnr(h0)[I* < c1lv; — 0!, and (C.16)
P( sup || Tsnr(7) — Tsmr (35) ] >77) csp?n (C.17)
V<Y<Yt

Next, we do the following decomposition

sup | Tsnr(v) = Tsnr(0) |
NENT VanT|Y — 0
| Tsnr (v) = Ts.nr (0) |l 175 — 70l

=sup sup
i v<v<ver NanTlyy — 70l v = 70l

<sup  sup [ Tsn1(7) = Tor ()l +SupH~75,nT(’Yj) ~ Tsanr(0) Il (C.18)
i <y NanT — Yol i Vant|v; = ol

For the first term of (C.18), we set ¢; = ;41 —; and n; = \/a,7|v; — Y0|n/2, and then

o0

P<sup sup  Wernt () = Tomr ()l 77/2) < ZP< sup || Tt (V)= Tsnr ()| > nj).

J YY1 Vanr|v; = 0l j=1 \GSYSVte;

Note that if © > 1, then ¢; > 1/a,r > 1/n. In addition , if © > 12¢;/n, then n; =
029720/ \fanT = c4/\JanT = c4/v/nT. Thus, if © > max(1,12¢;/n), using (C.17), the right



hand side of above inequality is bounded by

2
i C3%; _ > 1663”7j+1 — ’}/j‘Q _ 64c;
= o enrhy—ltt o 307t

For the second term of (C.18), Markov’s inequality and (C.16) imply
o0
P<Sup||js,nT(fY]) - js,nT(70)|’ > 77/2> < ZP<‘js,nT(7]) — JS,nT(’VO)H > 77/2>
J

Vanr|v =70l th ~ 0l

anle 70!2772

j*l

< i deq |y — ol _ &
ant|V; —Y0*0?  on?

j=1

Together, if v > max(1,12¢;/n) we have

P( sup | Ts () = Ts e (0) | - >< 64cs 8¢y

senbr Nanry — ol =302t on?’

which can be made arbitrarily small by picking suitably large v. Thus, results in (f) hold. =
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