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Abstract

We introduce general estimation and inference methods for threshold spatial panel re-

gression with two-way fixed effects in a diminishing-threshold-effects framework. A valid

objective function is obtained through a simple adjustment on the concentrated quasi log-

likelihood with fixed effects being concentrated out, which leads to a consistent estimation

of all common parameters. We show that the estimation of threshold parameter has a neg-

ligible effect on the asymptotic distribution of the main parameter estimators and thereby

regular inference methods apply, though a bias correction may be necessary. The limiting

distribution of the threshold parameter estimator is shown to be non-regular and infeasible,

and for inference, a likelihood ratio test procedure is proposed. The test for the non-existence

of threshold effects faces an identification issue at the null. To overcome this difficulty, we

propose a sup-Wald test and a bootstrap method for its critical values. Monte Carlo results

show that the proposed methods perform well in finite samples. An empirical application is

presented on age-of-leader effects on political competitions across Chinese cities.
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1. Introduction

Spatial panel regression (SPR) model has been receiving increasing attention from re-

searchers since Anselin (1988), for its ability to model cross-sectional dependence while main-

taining full control of unobservable heterogeneity. See, among others, Anselin et al. (2008),

Baltagi et al. (2003), Lee and Yu (2010a), Baltagi and Yang (2013a,b), Yang et al. (2016),

Kelejian and Piras (2016), and Liu and Yang (2020). See Lee and Yu (2010b, 2015) for surveys.

The threshold panel regression (TPR) model is another popular model specification, which

divides observations into distinct regimes, depending on whether the value of an observable

variable (threshold variable) exceeds some threshold value. See, among others, Hansen (1996,

1999, 2000), and Miao et al. (2020). Hansen (2011) presents an overview of the development of

threshold models in both econometrics and economics literature.

Spatial effecs and threshold effects are both relevant in a wide range of empirical appli-

cations. In social sciences, Schelling (1971) identifies “neighborhood tipping” in residential

segregation, where threshold effects occur as a new minority reaches a critical mass in a neigh-

borhood, triggering spatial interactions between the new minority and existing residents, which

influences behaviors such as moving out and resistance to integration. Strong empirical evi-

dence for this phenomenon was found by Card et al. (2008). In public economics, Glaeser et al.

(1996) analyze crime and social interactions, finding that the extent of spatial interactions in

criminal behavior depends on the severity of the crime, and such interactions drive the spread of

crime through social networks within communities. In finance, Pesaran and Pick (2007) argue

that financial crises spread across markets due to threshold effects, where interdependence and

financial contagion are triggered only after financial stress or instability across critical levels.

Apparently, empirical applications “have rushed ahead” of econometric theory in this field,

as in many other fields. Therefore, there is an urgent need for solid econometric foundations

for spatial panel regressions with threshold effects, which would formally join the two strands

of literature, the SPR and the TPR. Some preliminary attempts have been made. Li (2018)

studies an SPR model with structural change, a special case of the threshold SPR model with the

threshold variable being simply the time variable. A direct quasi-maximum likelihood (QML)

approach is proposed for model estimation, where the incidental parameters problem (Neyman

and Scott, 1948) due to the estimation of fixed effects is not addressed. Wei et al. (2021)

extend Hansen (1999) to allow spatial autoregressive (SAR) structure in a panel model, but

the asymptotic properties of the estimators are not studied and the inference methods for the

threshold parameter are not given. In addition, the estimation method they propose is a two-
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stage least squares (2SLS) estimation (Caner and Hansen, 2004), which is inefficient compared

to ML-type estimation for spatial models. Both works require spatial weight matrices to be

time-invariant and do not consider spatial error dependence. Both studies do not consider the

time-specific fixed effects, but these effects might be important and have empirical implications

in many economic studies (e.g., Ertur and Koch 2007; Elhorst and Fréret 2009). Moreover, the

additional time fixed effects further complicate the incidental parameters problem as shown in

an SPR framework (Lee and Yu, 2010a). Wu and Matsuda (2021) extend the M-estimation of

dynamic SPR model with short panels of Yang (2018) by adding threshold effects where the

threshold parameter is assumed to be known and the threshold variable to be time-invariant.

In this paper, we carry out a formal and general study by relaxing the above mentioned

restrictions, to provide general estimation, testing, and inference methods for the threshold

spatial panel regression (TSPR) models with an unknown threshold parameter and a general

threshold variable, both individual- and time-specific fixed effects, time-varying spatial weights,

and spatial error dependence. The key challenges in this study are: (i) spatial effects introduce

nonlinearity in the estimation and the least-squares methods of Hansen (1999, 2000) cannot be

applied; (ii) the two-way fixed effects introduce incidental parameters problem (Neyman and

Scott, 1948) and the standard transformation methods (Lee and Yu, 2010a) cannot be applied to

solve this problem due to the time-varying nature of spatial-threshold effects; (iii) the threshold

parameter estimate does not have a proper asymptotic distribution that hinders the statistical

inference; and (iv) the threshold parameter is not identified at the null hypothesis of no threshold

effects, making the test for the non-existence of threshold effects a great challenge.

The contributions of this paper are four-fold: (i) we proposed an adjusted QML method for

the estimation of the key model parameters by extending Hansen’s (1999, 2000) diminishing-

threshold-effect (DTE) asymptotic framework, to deal with the challenges arising from the ex-

istence of threshold effects in both regression slopes and spatial parameter(s) and the existence

of incidental two-way fixed effects (FEs). Here, the QML method addresses the issue of nonlin-

earity and the adjustment to the concentrated quasi-likelihood solves the incidental parameters

problem when T (the time dimension) is smaller than n (the cross-section dimension). (ii)

When n and T are of the same magnitude, we derive a bias correction on the adjusted QML

estimates to remove the potential asymptotic biases caused by the estimation of incidental FEs.

These methods (in (i) and (ii)) do away from transformation by carrying out concentration

and correction and allow the spatial weight matrices to be time-varying. They lead to simple

inference methods for the main model parameters valid irrespective of relative magnitude of n

and T (see Section 2.3.2). (iii) We show that the limiting distribution of the estimator of the
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threshold parameter is a scalar multiple of a functional of Brownian motion, where the scalar

cannot be accurately estimated without prior knowledge on the diminishing rate of the thresh-

old effect. To overcome this difficulty, we introduce a likelihood ratio (LR) test method for

inference on the threshold parameter under the DTE framework. (iv) We introduce a sup-Wald

test to test the non-existence of threshold effects. We show that the limiting distribution of

the sup-Wald test is a functional of chi-square processes and thus its asymptotic critical values

cannot be tabulated. To overcome this difficulty, we introduce a bootstrap method which is

shown to give a valid approximation to the asymptotic critical values. The following details

may help to appreciate the methods used and the results obtained.

First, our adjusted QML estimator addresses the incidental parameters problem by concen-

trating out fixed effects and adjusting the concentrated loglikelihood to account for degrees of

freedom loss caused by estimating the fixed effects. This adjustment ensures a consistent estima-

tion of the threshold, spatial, and regression coefficients, as well as the error variance, provided

that T does not grow faster than n. Second, we establish that the threshold estimator converges

at a rate linked to DTE, and its estimation error has an asymptotically negligible impact on

other estimators, thereby preserving their asymptotic normality with the standard convergence

rate. When T and n grow proportionally, these estimators exhibit asymptotic bias due to the

incidental parameters problem. Third, unlike Hansen (1999), the LR test statistic, proposed

to facilitate inference on the threshold parameter, is based on the adjusted log-likelihood func-

tion. Its limiting distribution is unaffected by the asymptotic bias of other estimators under

their standard convergence rate. Furthermore, its asymptotic distribution is not pivotal under

homoskedasticity alone, as its limiting distribution depends on the third and fourth moments

of the errors. However, it becomes pivotal under both normality and homoskedasticity, and a

nonparametric correction can be applied otherwise to estimate the unknown parameters in its

limit distribution. Finally, the sup-Wald statistic, building on Hansen (1996), is constructed to

test for the non-existence of threshold effects using adjusted QML estimators, with its limiting

distribution derived under local-to-null alternatives. The proposed bootstrap procedure works

on an asymptotically equivalent version of the sup-Wald statistic and provides asymptotically

correct critical values. Monte Carlo results show that the proposed methods perform well.

The practical relevance of allowing for threshold effects in SPR models is illustrated by

studying the threshold effect of leaders’ age on political competitions across 338 cities in China

over the periods 2010 to 2012. Political competition among city leaders of the same level is

identified by spatial effects in total investments across city level. We find that the competitions

are strong for local leaders who are younger than a threshold age, but tend to vanish for those

4



who are older than the threshold level, approaching the retirement age.

The rest of the paper goes as follows. Section 2 introduces our model and assumptions,

discusses the adjusted QML estimation and its asymptotic properties, and studies the likelihood

ratio test on the threshold value. Section 3 studies the hypothesis test on threshold effects.

Monte Carlo simulation findings are given in Section 4. Section 5 applies our method to study

the effects of the age of leaders on political competitions across Chinese cities. Section 6 discusses

some extensions. Section 7 concludes. Proofs are collected in the appendices.

Notation. Im denotes anm×m identity matrix, lm anm×1 vector of ones, and 0n×m an n×

m matrix of zeros. For a square matrix, | · | denotes its determinant, tr(·) its trace, and diagv(·)

a column vector of its diagonal elements. diag(·) forms a diagonal matrix using the diagonal

elements of a square matrix or a vector. bdiag(· · · ) forms a block-diagonal matrix based

on given matrices/vectors/scalars. For a real symmetric matrix, ρmin(·) denotes its smallest

eigenvalue. For a real n × m matrix A with elements aij , ∥A∥ denotes its Frobenius norm,

∥A∥1 = max1⩽j⩽m
∑n

i=1 |aij | its maximum column sum norm, and ∥A∥∞ = max1⩽i⩽n
∑m

j=1 |aij |

its maximum row sum norm. The operator ⊗ represents a Kronecker product, The true value

of a parameter is denoted by adding a subscript 0. Finally, As = A+A′.

2. Model and Adjusted QML Estimation

2.1. Threshold SPR model with fixed effects

Consider a total of n spatial units, interconnected at time t through an n×n spatial weight

matrix Wt. There exists a threshold variable qit such that depending on its value the spatial

and regression coefficients may differ. Let dit(γ) = 1(qit ⩽ γ), where 1(·) is the indicator

function and γ is the threshold parameter taking values in a bounded set Γ = [γ, γ]. Define

dt(γ) = diag{d1t(γ), . . . , dnt(γ)}. We first consider a model of the form:

Yt = λ10WtYt + λ20dt(γ0)WtYt +Xtβ10 + dt(γ0)Xtβ20 + µ0 + αt0ln + Vt, (2.1)

t = 1, . . . , T , where Yt = (y1t, . . . , ynt)
′ is an n × 1 vector of responses at time t, Xt =

(x1t, . . . , xnt)
′ is an n × k matrices containing the values of k time-varying regressors, and

Vt = (v1t, v2t, . . . , vnt)
′ is an n × 1 vector of idiosyncratic errors. The λ10 and β10 (k × 1)

characterize the baseline spatial lag effect and covariates effects, and λ20 and β20 (k × 1) are

the corresponding threshold effects. µ0 = {µi0}ni=1 is an n × 1 vector of individual-specific

effects and α0 = {αt0}Tt=1 is a T × 1 vector of time-specific effects, which are allowed to be

correlated with Xt in an arbitrary manner. Therefore, the model is referred to, in this paper,
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as the threshold spatial panel regression (TSPR) model with two-way fixed effects (2FE).1

The neighborhood structure of the n spatial units at period t is captured by a time-varying

spatial weight matrix Wt, and the magnitude of the interaction effects from its neighbors is

measured by the spatial lag parameters. Thus, Model (2.1) implies that each spatial unit i

in any period t receives a certain level of interaction effects from its neighbors (measured by

λ10 or λ10 + λ20), depending on the level of its threshold variable qit. When γ0 is known,

our model can simply be treated as a second-order SPR model of two spatial lag terms with

weight matrices beingWt and dt(γ0)Wt, respectively. An additional complication arises because

dt(γ0)Wt is no longer time-invariant, even if Wt is. This renders the transformation method

(Lee and Yu, 2010a), which requires time-invariant and row-normalized weights, inapplicable

for Model (2.1). Thus, an alternative method that accommodates time-varying dt(γ) and allows

for non-row-normalized, time-varying spatial weights is needed. When γ0 is unknown and must

be estimated, the situation becomes much more challenging due to the involvement of step

functions dit(γ) in the likelihood that renders standard likelihood inference methods invalid.

To overcome these difficulties, we approach the estimation and inference problems for the

TSPR-2FE model using an adjusted QML method. We show that under DTE the estimation

of the threshold parameter γ does not have an asymptotic impact on the joint asymptotic

distribution of the other common parameters, leading to valid estimation and inference methods

for these parameters. An LR test procedure is proposed for inference for γ.

2.2. Adjusted QML estimation

Denote λ = (λ1, λ2)
′, β = (β′1, β

′
2)

′, and θ = (β′, λ′, σ2)′. Define W = bdiag(W1, . . . ,WT ),

D(γ) = bdiag(d1(γ), . . . , dT (γ)), Y = (Y ′
1 , . . . , Y

′
T )

′, X = (X ′
1, . . . , X

′
T )

′, Cµ = lT ⊗ In, Cα =

IT ⊗ ln, V = (V ′
1 , . . . , V

′
T )

′, and X(γ) = [X, D(γ)X]. Model (2.1) can be written in matrix form:

Y = λ1WY+λ2D(γ)WY+X(γ0)β0+Cµµ0+Cαα0+V. To avoid the unidentification of µi0

and αt0 as µi0 + αt0 = (µi0 + c) + (αt0 − c) for an arbitrary c, we impose a zero-sum constraint

on αt so that α1 = −
∑T

t=2 αt. Thus, the QML estimation is based on the model form:

Y = λ1WY + λ2D(γ)WY + X(γ0)β0 +Cψ0 +V, (2.2)

where C = [Cµ, C
⋆
α], C

⋆
α = [−lnl′T−1; IT−1 ⊗ ln], ψ = (µ′, α∗′)′, and α∗ = (α2 . . . , αT )

′. Under

the exogeneity of (qit, Xt,Wt), the quasi Gaussian loglikelihood as if {vit} were iid N(0, σ20) is,

ℓnT (θ, γ, ψ) = −nT
2

ln(2πσ2) + ln |A(λ, γ)| − 1

2σ2
V′(β, λ, γ, ψ)V(β, λ, γ, ψ), (2.3)

1Model (2.1) allows spatial Durbin effects to be a part of Xt. It can be readily extended to include spatial
error dependence and serial correlation. Further extensions are also possible. See Sec. 6 for details.
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where A(λ, γ) = InT − λ1W− λ2D(γ)W, and V(β, λ, γ, ψ) = A(λ, γ)Y−X(γ)β −Cψ. Given

the set of common parameters (θ, γ), the first-order condition for the FE parameters ψ implies:

ψ̂nT (β, λ, γ) = (C′C)−1C′[A(λ, γ)Y − X(γ)β]. (2.4)

Upon substitution, we have the concentrated quasi Gaussian loglikelihood function for (θ, γ):

ℓcnT (θ, γ) = −nT
2

ln(2πσ2) + ln |A(λ, γ)| − 1

2σ2
Ṽ′(β, λ, γ)Ṽ(β, λ, γ), (2.5)

where Ṽ(β, λ, γ) ≡ QnT [A(λ, γ)Y − X(γ)β] and QnT = InT − C(C′C)−1C′ = (IT − lT l′T
T ) ⊗

(In − lnl′n
n ). Maximizing ℓcnT (θ, γ) gives the direct QML estimators θ̂dnT and γ̂dnT of θ and γ.

Note that, for the regular SPR-2FE model (i.e., β2 = 0 and λ2 = 0), Lee and Yu (2010a)

show that when T is fixed the direct approach only gives consistent estimators for spatial and

regression parameters β and λ but not for the variance parameter σ2 - the well known incidental

parameters problem of Neyman and Scott (1948). Furthermore, even when n and T are both

large, the asymptotic distribution of the normed estimators of common parameters would not

be properly centered. An intuitive interpretation is that the direct QML estimator of σ2 failed

to “recover” the effect of degrees of freedom loss due to the estimation of (n + T − 1) FE

parameters µ and α. The TSPR-2FE model may face the same issues.

Considering the fact that Ṽ′(β, λ, γ)Ṽ(β, λ, γ) has (n−1)(T −1) degrees of freedom, that is,

E[Ṽ′(β0, λ0, γ0)Ṽ(β0, λ0, γ0)] = O((n−1)(T −1)), we find that a simple adjustment to ℓcnT (θ, γ)

will achieve the consistency in the joint estimation of θ and γ:

ℓ∗nT (θ, γ) = − nT

2
ln(2πσ2) + ln |A(λ, γ)| − cnT

2σ2
Ṽ′(β, λ, γ)Ṽ(β, λ, γ), (2.6)

where cnT = nT
(n−1)(T−1) (see below for a detailed theoretical reasoning). Therefore, the adjusted

QML (AQML) estimators of θ and γ are defined as follows

(θ̂nT , γ̂nT ) = argmax
(θ,γ)∈Θ×Γ

ℓ∗nT (θ, γ),

where Θ is the parameter space for θ and Γ is the parameter space for γ defined above (2.1).

To solve the above maximization problem, we first maximize the above objective function

for a given γ to obtain an estimate θ̂nT (γ) of θ. Then, we define ℓ∗cnT (γ) ≡ ℓ∗nT (θ̂nT (γ), γ), and

search over ΓnT = Γ∩{qit, 1 ⩽ i ⩽ n, 1 ⩽ t ⩽ T} for γ̂nT that maximizes ℓ∗cnT (γ). This is because

the objective function ℓ∗cnT (γ) is a step function with at most nT steps as it depends on γ only

through the indicator function 1{qit ⩽ γ}. When nT is large, Hansen (1999) suggests that, to

reduce the computational burden, the search can be restricted to a grid of N0 specific quantiles

for some N0 < nT , ΓN0 = {q(1), . . . , q(N0)}, where q(j) is the [η + j−1
N0−1(1 − 2η)]th quantile of

the sample qit and η = 1% or 5%. Then γ̂N0 = argmaxγ∈ΓN0
ℓ∗cnT (γ) is a good approximation to
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γ̂nT . Given γ̂nT , the AQMLE of θ is just θ̂nT ≡ θ̂nT (γ̂nT ).

Validity of the objective function ℓ∗nT (θ, γ). We define G(λ, γ) = WA−1(λ, γ). In what

follows, a parametric quantity at true parameter(s) is denoted by dropping its argument(s),

e.g., A = A(λ0, γ0) and G = G(λ0, γ0). For θ̂nT to be consistent, i.e., θ̂nT − θ0 = op(1), it is

necessary that plimn,T→∞
1
nT S

∗
θ,nT (θ0, γ0) = 0, where,

S∗
θ,nT (θ, γ) =

∂

∂θ
ℓ∗nT (θ, γ) =



cnT
σ2 X′(γ)Ṽ(β, λ, γ),

cnT
σ2 Y′W′Ṽ(β, λ, γ)− tr[G(λ, γ)],

cnT
σ2 Y′W′D′(γ)Ṽ(β, λ, γ)− tr[D(γ)G(λ, γ)],

cnT
2σ4 Ṽ

′(β, λ, γ)Ṽ(β, λ, γ)− nT
2σ2 .

(2.7)

Under Assumption A below and using the facts: Ṽ(β0, λ0, γ0) = QnTV, WY = GAY =

G(Xβ0 +Cψ0 +V), G is block diagonal, and QnT = (IT − lT l′T
T )⊗ (In − lnl′n

n ), we have,

E[S∗
θ,nT (θ0, γ0)] = E

(
01×2k,− 1

n−1tr(ḠJ),− 1
n−1tr[D(γ0)ḠJ], 0

)
, (2.8)

where Ḡ = G−diag(G) and J = IT⊗lnl′n. AsG is bounded in both row and column sum norms

(Lemma A.1 and Assumptions C and D), E[tr(ḠJ)] and E[tr(D(γ0)ḠJ)] are both O(nT ).

Thus, E[S∗
θ,nT (θ0, γ0)] = O(T ). The adjustment corrects the degrees of freedom loss, and the

effective sample size becomesN = (n−1)(T−1). It follows that 1
N S

∗
θ,nT (θ0, γ0) = Op(

1
n). Hence,

a consistent estimation is possible for all common parameters based on maximizing ℓ∗nT (θ, γ),

whether T is fixed or increases with n. Furthermore, 1√
N
S∗
θ,nT (θ0, γ0) = Op(

√
T
n ), and therefore

the asymptotic distribution of
√
N(θ̂nT − θ0) would be centered as long as T

n = o(1).2 When

T
n = O(1), the asymptotic distribution of

√
N(θ̂nT − θ0) may not be centered, and in this case

(2.8) provides a simple way for bias correction. See Sec. 2.3.2. for details.

2.3. Asymptotic properties of the adjusted QML estimators

We study the consistency and asymptotic distributions of the adjusted QML estimators

θ̂nT and γ̂nT . We show that θ̂nT has regular asymptotic properties but γ̂nT has a non-regular

convergence rate and asymptotic distribution, due to the DTE assumption.

Denote Z = Z(β0, λ0, ψ0, γ0) = G(λ0, γ0)(X(γ)β0 + Cψ0), which acts as additional re-

gressors as discussed below Assumption G. Let H = [X, Z] with rows {h′it}, and M(γ) =

1
nT

∑n
i=1

∑T
t=1 E(hith

′
it|qit = γ). Let f(·) be the probability density function of qit and f2(·, ·)

the joint probability density function of (qit, qjt). The value of f(·) at qit = γ0, f(γ0), plays an

2Our adjusted QML approach falls in spirit to the “Bias-Correction of the Concentrated Likelihood function”
of Arellano and Hahn (2007). Cox and Reid’s (1987) adjusted profile likelihood approach also belongs to this
category but requires that the parameters of interest are orthogonal to the nuisance parameters.
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important role. Note, with the new notational convention, M = M(γ0). Formal asymptotic

analyses are based on the following assumptions.

Assumption A: The innovations vit are independent and identically distributed (i.i.d.) in

i and t, having mean zero, variance σ20, and E|vit|8 <∞.

Assumption B:(i) The regressors and the threshold variable are exogenous with elements

(xit, qit) being iid across i and t, (ii) For all γ ∈ Γ, E(∥hit∥4|qit = γ) < ∞ and f(γ) ⩽ c

for some c < ∞, (iii) For all γ1, γ2 ∈ Γ, E(∥hit∥4|qit = γ1, qjt = γ2) < ∞ and f2(γ1, γ2) <

∞, (iv) M(γ)f(γ) is continuous at γ = γ0, (v) 0 < Mf(γ0) < ∞, and (vi) the limit of

1
nT E[X

′(γ)QnTX(γ)] exists and is nonsingular.

Assumption C: The spatial weight matrices {Wt} are exogenous with zero diagonals, al-

lowed to vary in time. Both ∥W∥1 and ∥W∥∞ are bounded.

Assumption D: The true λ0 lies in the interior of a compact space Λ. Conditional on the

threshold variable {qit} and for (γ, λ) ∈ Γ× Λ, (i) A(λ, γ) is invertible; (ii) both ∥A−1(λ, γ)∥1

and ∥A−1(λ, γ)∥∞ are bounded.

Assumption E: n is large, and T can be finite or large but cannot grow faster than n, i.e.,

T
n → c, where 0 ⩽ c <∞.

Assumption F: Threshold effects λ20 and β20 satisfy λ20 = (nT )−τ l0 and β20 = (nT )−τ b0

for some τ ∈ (0, 1/2) with l0 ∈ R, l0 ̸= 0 and b0 ∈ Rk, b0 ̸= 0.

The iid assumption in A is standard in the spatial econometrics literature (see, e.g., Lee and

Yu, 2010a; Li, 2018), but the finite eighth moment condition on errors is more stringent than

in the standard SPR models, where only a finite fourth moment condition is required. This

stronger assumption is needed to establish the weak convergence in functional space of some

linear-quadratic (LQ) forms that depend on γ through the indication function 1{qit ⩽ γ} (see

Lemma B.1, Appendix B), which is crucial for asymptotic studies on our estimators. Assumption

B(i) assumes that regressors and threshold variable are both exogenous as in Hansen (1999,

2000). As {hit} can be treated as the model regressors in a reduced form of (2.1) (see (2.15)),

Assumptions B(ii)–B(v) are also common in the threshold literature (e.g., Hansen (1999); Li

and Lin (2024)). Assumption B(vi) is the identification condition for β. Assumptions C and

D are standard in the spatial econometrics literature. Assumption E allows T/n to be O(1) or

o(1) (including the case of fixed T ). All these scenarios encounter the incidental parameters

problem of Neyman and Scott (1948) due to the estimation of the individual and time fixed

effects. The assumption that T cannot grow faster than n is used to establish the consistency

of γ̂nT . Assumption F is in the spirit of Hansen (2000) so that the asymptotic distribution of

the threshold estimator is free of nuisance parameters, and thus statistical inference on γ is
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possible. In contrast, if threshold effects are fixed (that is, τ = 0), according to Chan (1993),

we can expect that the asymptotic distribution of γ̂nT will involve nuisance parameters such as

the marginal distribution of xit.

2.3.1. Consistency and convergence rate

To study the consistency of (θ̂nT , γ̂nT ), it is crucial to first establish the consistency of

(λ̂nT , γ̂nT ). Given λ and γ, the ℓ∗nT (θ, γ) given in (2.6) is partially maximized at

β̂nT (λ, γ) = [X′(γ)QnTX(γ)]−1X′(γ)QnTA(λ, γ)Y, and (2.9)

σ̂2nT (λ, γ) =
1
N Ṽ′(β̂nT (λ, γ), λ, γ)Ṽ(β̂nT (λ, γ), λ, γ). (2.10)

Hence, the concentrated AQL (adjusted quasi loglikelihood) function of λ and γ is

ℓ∗cnT (λ, γ) = −nT
2 (ln 2π + 1)− nT

2 ln σ̂2nT (λ, γ) + ln |A(λ, γ)|. (2.11)

Maximizing ℓ∗cnT (λ, γ) gives the AQMLEs λ̂nT and γ̂nT of λ and γ.3

The population counterpart of ℓ∗cnT (λ, γ) is ℓ̄∗cnT (λ, γ) = max
β,σ2

E[ℓ∗nT (θ, γ)]. Given λ and γ,

E[ℓ∗nT (θ, γ)] is partially maximized at

β̄nT (λ, γ) = [E(X′(γ)QnTX(γ))]−1E[X′(γ)QnTA(λ, γ)Y], and (2.12)

σ̄2nT (λ, γ) =
1
NE[Ṽ′(β̄nT (λ, γ), λ, γ)Ṽ(β̄nT (λ, γ), λ, γ)]. (2.13)

Thus, upon substituting β̄nT (λ, γ) and σ̄
2
nT (λ, γ) back into E[ℓ∗nT (θ, γ)], we obtain,

ℓ̄∗cnT (λ, γ) =
nT
2 (ln 2π + 1)− nT

2 ln σ̄2nT (λ, γ) + E(ln |A(λ, γ)|). (2.14)

For standard extremum-type estimation problems, the consistency of λ̂nT and γ̂nT can be es-

tablished if (λ0, γ0) uniquely maximizes 1
N ℓ̄

∗c
nT (λ, γ) and

1
N [ℓ∗cnT (λ, γ)− ℓ̄∗cnT (λ, γ)] converges to 0

uniformly in (λ, γ) ∈ Λ × Γ. However, under the diminishing threshold assumption, the limit

of either 1
N ℓ

∗c
nT (λ0, γ) or

1
N ℓ̄

∗c
nT (λ0, γ) does not depend on the threshold parameter γ, implying

that the consistency of λ̂nT and γ̂nT cannot be established simultaneously.

If γ0 were known, standard asymptotic arguments (e.g., Theorem 5.9 of Van der Vaart,

1998), the uniform convergence of 1
N [ℓ∗cnT (λ, γ0)− ℓ̄∗cnT (λ, γ0)] to 0 in λ ∈ Λ and the global iden-

tification of λ0, i.e., λ0 uniquely maximizes the limit of 1
N ℓ̄

∗c
nT (λ, γ0) on Λ, lead to consistency

of λ̂nT (γ0). When γ0 is unknown, the convergence of supλ∈Λ
1
N [ℓ∗cnT (λ, γ) − ℓ̄∗cnT (λ, γ)] is still

useful to establish the consistency of λ̂nT , uniformly in γ ∈ Γ, although it cannot provide useful

3It is worth noting that ℓccnT (λ, γ) = maxβ,σ2 ℓcnT (θ, γ) = ℓ∗cnT (λ, γ) +
nT
2

ln cnT . Thus, ℓ
∗c
nT (λ, γ) and ℓccnT (λ, γ)

yield the same maximizer, leading to identical estimates for λ, γ and β. However, as discussed above, ℓ∗nT (θ, γ)
is a valid joint objective function that allows us to provide joint inference methods for all common parameters.
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information to study the asymptotic behavior of γ̂nT as threshold effects become zero at the

limit. Therefore, we first show λ̂nT (γ) is consistent, uniformly in γ ∈ Γ.4 Then, based on this

result, we establish the consistency of γ̂nT . Let σ
2
nT (λ, γ) =

σ2
0

N tr[A′−1A′(λ, γ)QnTA(λ, γ)A−1]

and H(γ) = [H, D(γ)H]. We provide the identification conditions for λ as follows.

Assumption G: Either (i) the limit of 1
N [H′(γ)QnTH(γ)] exists and is nonsingular, or (ii)

the limit of 1
N (ln |σ2nT (λ0, γ)A−1(λ0, γ)A

′−1(λ0, γ)|− ln |σ2nT (λ, γ)A−1(λ, γ)A′−1(λ, γ)|) is none

zero for λ ̸= λ0, uniformly in γ ∈ Γ.

Assumption G generalizes the global identification conditions for the SPR model of Lee

and Yu (2010a) to our TSPR model. To gain more intuition on this assumption, noting that

WY = WA−1(Xβ10 +D(γ0)Xβ20 +Cψ0 +V), we have from Model (2.2),

Y = Xβ10 + Zλ10 +D(γ0)Xβ20 +D(γ0)Zλ20 +Cψ0 +A−1V, (2.15)

because A−1 = InT +λ10G+λ20D(γ0)G, which comes from InT = A+λ10W+λ20D(γ0)W by

right-multiplying A−1 on both sides of the equation. Clearly, the above equation can be treated

as a standard panel data model with regressor matrix H(γ0). Thus, it is standard to impose

the non-singularity or full-rank condition on the limit of 1
NE[H′(γ0)QnTH(γ0)] to identify β and

λ. As the consistency of γ̂nT has not been established, a uniform (in γ) existence condition,

Assumption G(i), must be imposed. In addition, λ can also be identified by the uniqueness

of the conditional variance of Y, σ20A
−1A′−1, given X and the threshold variable qit. Again,

without knowing the consistency of γ̂nT , a uniform (in γ) Assumption G(ii) must be imposed.

The AQMLEs of β and σ2 are β̂nT ≡ β̂nT (λ̂nT , γ̂nT ) and σ̂2nT ≡ σ̂2nT (λ̂nT , γ̂nT ). It is

interesting to note from (B.4) and (B.5) in Appendix B that, under Assumptions B(vi) and

F, the consistencies of β̂nT and σ̂2nT follow that of λ̂nT , whether γ̂nT is consistent or not.

These suggest that the consistency of θ̂nT does not rely on that of γ̂nT under the assumption

of diminishing threshold effect, and thus it can be established separately. With the above

identification conditions and the convergence of supλ∈Λ
1
N [ℓ∗cnT (λ, γ)− ℓ̄∗cnT (λ, γ)] to 0 uniformly

in γ ∈ Γ, we have the following theorem.

Theorem 2.1. Suppose Assumptions A-G hold. We have θ̂nT − θ0
p−→ 0.

As the adjustment to the concentrated loglikelihood function in (2.6) can help to “recover”

the degrees of freedom loss caused by the estimation of the incidental parameters, we see that

all common estimators are consistent even when T is fixed. As discussed above, although λ̂nT

is shown to be consistent, the convergence of the original objective function 1
N ℓ

∗c
nT (λ, γ) is still

4One can also see from (2.17) that limN→∞
1
N
ES∗

θ,nT (θ0, γ) = 0, uniformly in γ ∈ Γ, a necessary condition to

have consistency of θ̂nT (γ).
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too fast to be useful for studying the limiting behavior of γ̂nT , when the threshold effects shrink

to zero at the rate (nT )−τ . However, we find the re-scaled objective function:

ℓ∗∗nT (γ) =
(nT )2τ

nT [ℓ∗cnT (λ̂nT (γ), γ)− ℓ∗cnT (λ0, γ0)] (2.16)

can be very useful. Specifically, multiplying (nT )2τ gives us the non-diminishing threshold

effects, while taking the differences removes the terms that are not asymptotically negligible,

i.e., those with an order of magnitude bigger than Op((nT )
1−2τ ).

The consistency of γ̂nT follows if the maximizer of ℓ∗∗nT (γ) has an asymptotically negligible

distance from γ0, i.e., the identification condition for γ. Let D(γ1, γ2) = D(γ1) − D(γ2) and

H(γ) = [H(γ), D(γ0, γ)H]. Let C(γ) be a 3 × 3 matrix of elements 1
nT tr[C

s
a(γ)Cs

b(γ)], a, b =

1, 2, 3, where C1 = G − 1
nT tr(G)InT , C2(γ) = D(γ)G − 1

nT tr(D(γ)G)InT , and C3(γ) =

D(γ0, γ)G− 1
nT tr(D(γ0, γ)G)InT . We introduce the identification condition for γ.

Assumption H: ∃ c > 0 s.t. ρmin

(
1
NH′(γ)QnTH(γ)

)
≥ c|γ−γ0| or ρmin

(
C(γ)

)
≥ c|γ−γ0|.

As shown in Appendix B, to study the asymptotic properties of ℓ∗∗nT (γ̂nT ), one has to establish

a rough convergence rate for λ̂nT−λ0. As the objective function is highly nonlinear in λ and there

is no closed-form solution for its AQMLE, we have to rely on the study of the θ-component of

the concentrated quasi score (CQS) function given in (2.7). We start with a Taylor expansion

of S∗
θ,nT (θ̂nT , γ̂nT ) = 0 at θ0, then justify the non-singularity of the probability limit of the

negative Hessian matrix under Assumption H, and finally study the order of the component CQS

function S∗
θ,nT (θ0, γ̂nT ). By Theorem 2.1, we show that (nT )τ (θ̂nT − θ0) is at most Op(1) under

Assumption E, regardless of the consistency of γ̂nT . With this preliminary convergence rate, we

show ℓ∗∗nT (γ̂nT ) ≤ −c̄|γ̂nT − γ0|+ op(1) for some positive constant c̄ < ∞ under Assumption H.

Meanwhile, the definition of γ̂nT ensures that ℓ∗∗nT (γ̂nT ) ≥ 0. Therefore, we conclude that γ̂nT

must be sufficiently close to γ0 in probability, which establishes the consistency of γ̂nT .

Theorem 2.2. Suppose Assumptions A-H hold. We have γ̂nT − γ0
p−→ 0.

To establish the convergence rate for γ̂nT , one needs a more precise knowledge of the con-

vergence rate of θ̂nT . With the consistency of γ̂nT and the Taylor expansion mentioned above,

we further show that (nT )τ (θ̂nT − θ0) = op(1). Thus, we have the following theorem.

Theorem 2.3. Under Assumptions A-H, anT (γ̂nT − γ0) = Op(1), where anT = (nT )1−2τ .

Theorem 2.3 shows that the convergence rate of γ̂nT is anT , in line with Hansen (1999).

Intuitively, γ̂nT converges to γ0 faster when the threshold effects (λ20 and β20) are greater (i.e.,

τ is smaller or the threshold diminishing rate (nT )−τ is slower), as in this case more sample

information is obtained about γ and hence a more precise estimate can be made.
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2.3.2. Asymptotic distribution of θ̂nT

Theorem 2.3 is crucial for establishing the asymptotic distribution of the AQMLE θ̂nT . The

generic Theorem 2.4 reveals that (i) when T/n = o(1),
√
N(θ̂nT − θ0) has a centered limiting

normal distribution, and inference about θ0 can be made simply based on the AQMLE θ̂nT ;

and (ii) when T/n = O(1),
√
N(θ̂nT − θ0) has a non-centered limiting normal distribution, and

a bias correction must be made on θ̂nT for valid inference about θ0.

To derive the result, a Taylor series expansion of S∗
θ,nT (θ̂nT , γ̂nT ) = 0 at θ0 gives

√
N(θ̂nT − θ0) =

[
1
nTH

∗
nT (θ̄, γ̂nT )

]−1
√
N

nT S
∗
θ,nT (θ0, γ̂nT ),

where we use H∗
nT (θ̄, γ) to denote − ∂

∂θ′S
∗
θ,nT (θ, γ)

∣∣
θ=θ̄r in rth row

for simplicity and {θ̄r} are on

the line segment between θ̂nT and θ0. Thus, the asymptotic property of
√
N(θ̂nT − θ0) depends

on that of
√
N

nT S
∗
θ,nT (θ0, γ̂nT ) provided that plim 1

nTH
∗
nT (θ̄, γ̂nT ) is nonsingular. We have

√
N

nT S
∗
θ,nT (θ0, γ̂nT ) =

1√
N
S∗u
θ,nT (θ0, γ̂nT ) +

√
T
n bθ,nT (λ0, γ̂nT ) + op(1), (2.17)

where bθ,nT (λ0, γ) =
{
01×2k, − 1

nT tr(ḠJ), − 1
nT tr[D(γ)ḠJ], 0

}′
, which is (2.8) rescaled, and

S∗u
θ,nT (θ0, γ) =



1
σ2
0
X′(γ)QnTV,

1
σ2
0
Z′QnTV + 1

σ2
0
[V′G′QnTV − σ20tr(QnTG)],

1
σ2
0
Z′D(γ)QnTV + 1

σ2
0
[V′G′D(γ)QnTV − σ20tr(QnTD(γ)G)],

1
2σ4

0
(V′QnTV −Nσ20).

(2.18)

It is easy to verify that E[S∗u
θ,nT (θ0, γ0)] = 0. Furthermore, with the convergence rate of γ̂

proved in Theorem 2.3, we show that 1√
N
S∗u
θ,nT (θ0, γ̂nT ) converges to a Gaussian distribution

with mean zero and variance 1
NVar[S∗u

θ,nT (θ0, γ0)] and that bθ,nT (λ0, γ̂nT ) = Op(1). Then, by

showing 1√
N
∥S∗u

θ,nT (θ0, γ̂nT )−S∗u
θ,nT (λ0, γ0)∥

p−→ 0 and ∥bθ,nT (λ0, γ̂nT )− bθ,nT (λ0, γ0)∥
p−→ 0, we

show that θ̂nT − θ̂nT (γ0) = op(1). We have the following theorem.

Theorem 2.4. Under Assumptions A-H, we have

(i)
√
N(θ̂nT − θ0)−

√
T
nΣ

−1
nT bθ,nT

D−→ N
(
0, lim

nT→∞
Σ−1
nTΩnTΣ

−1
nT

)
,

(ii)
√
N(θ̂nT − θ̂nT (γ0))

p−→ 0,

where bθ,nT ≡ bθ,nT (λ0, γ0), ΣnT = − 1
nT E[

∂
∂θ′S

∗
θ,nT (θ0, γ0)], and ΩnT = 1

NVar[S∗u
θ,nT (θ0, γ0)].

Several important conclusions are drawn from Theorem 2.4. First, Theorem 2.4(i) shows

that the convergence rate of θ̂nT is
√
N in general. Second, if T is fixed or small relative to

n, then the bias term
√

T
nΣ

−1
nT bθ,nT disappears as N → ∞ and hence the estimators of all
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common parameters are asymptotically unbiased and inference about θ0 proceeds as normal.5

Third, when T
n → c ̸= 0,

√
T
nΣ

−1
nT bθ,nT = O(1) and thus a bias correction on θ̂nT must be made

for valid inference. The bias-corrected AQMLE is:

θ̂bcnT = θ̂nT −
√

T
nN Σ̂−1

nT b̂θ,nT , (2.19)

where b̂θ,nT and Σ̂nT are the consistent estimators of bθ,nT and ΣnT given below. It is easy to

see that θ̂bcnT has the same asymptotic variance as θ̂nT , that is, 1
NΣ−1

nTΩnTΣ
−1
nT . Fourth, from

Theorem 2.4(ii), we also see that given the convergence rate of γ̂nT in Theorem 2.3, γ̂nT can

be treated as if it is the true value of γ. In other words, the estimation error associated with

γ̂nT has asymptotically negligible effects on the asymptotic property of the AQMLEs of the

common θ. In summary, Theorem 2.1 shows that θ̂nT (γ) is consistent for θ0 for any γ ∈ Γ,

while Theorem 2.4(ii) says that θ̂nT ≡ θ̂nT (γ̂nT ) and θ̂nT (γ0) are asymptotically equivalent.

Inference for θ. In practice, to conduct statistical inference on θ, one relies on consistent

estimations of ΣnT and ΩnT . For the former, its analytical expression is

ΣnT =


1

Nσ2
0
E[X′(γ0)QnTX(γ0)], 1

Nσ2
0
E[X′(γ0)QnTZ(γ0)], 02k×1

∼, Σ22,nT (γ0),
1
σ2
0
E[SnT (γ0)]

∼, ∼, 1
2σ4

0

 , (2.20)

where Σ22,nT (γ) =
1

Nσ2
0
E[Z′(γ)QnTZ(γ)]+E[SnT (γ)], SnT (γ) =

1
nT

{
tr(G), tr[G◦(γ)]

}′
, SnT (γ) =

1
nT

{
tr(GGs), tr[G◦(γ)Gs]; tr[G◦s(γ)G], tr[G◦(γ)G◦s(γ)]

}
, Z(γ) = [Z, D(γ)Z], andG◦(γ) =

D(γ)G. Thus, the sample analogue, Σ̂∗
N = − 1

nT
∂
∂θ′S

∗
θ,nT (θ, γ)|θ=θ̂nT ,γ=γ̂nT

, consistently esti-

mates ΣnT ; see the proof of Theorem 2.2 given in Appendix B.

For the latter, we have ΩnT = ΣnT + ΓnT , where

ΓnT =


02k×2k,

T̄ κ3
Nσ0

E[X′(γ0)QnTR(γ0)], 02k×1

∼, Γ22,nT (γ0),
κ4T̄ 2

2Nσ2
0
E[R′(γ0)lnT ]

∼, ∼, κ4T̄
4σ4

0

 , (2.21)

R(γ) = [diagv(G), D(γ)diagv(G)], Γ22,nT (γ) =
2κ3T̄
Nσ0

E[Z′(γ)QnTR(γ)] + κ4T̄ 2

N E[R′(γ)R(γ)] +

E[BnT (γ)], κ3 and κ4 are the skewness and excess kurtosis of the errors, and BnT (γ) is 2×2 with

elements: B11,nT = 1
NT 2

∑T
t=1

∑T
k=1 tr[(Gt−Gk)Gt], B12,nT (γ) =

1
NT 2

∑T
t=1

∑T
k=1 tr[(dt(γ)Gt−

dk(γ)Gk)Gt] = B′
21,nT (γ), and B22,nT (γ) =

1
NT 2

∑T
t=1

∑T
k=1 tr[(dt(γ)Gt−dk(γ)Gk)dt(γ)Gt].

6 A

consistent estimator of ΓnT (θ0, γ0) is obtained by plugging in θ̂nT or θ̂bcnT for θ0, γ̂nT for γ0, and

5This is in contrast to the direct approach of Li (2018) where the estimator of error variance is inconsistent.
6The result for the standard SPR model Lee and Yu (2010a) does not involve κ3. This is due to the time-

varying feature of our model, reflected by the terms {Gt} and {dt(γ0)Gt} in BnT (γ0).
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the consistent estimators of κ3 and κ4 derived based on the ideas in Meng and Yang (2024):

κ̂3,nT =

∑nT
j=1 v̂

3
j,nT

σ̂3nT
∑nT

j=1

∑nT
k=1 q

3
jk

and κ̂4,nT =

∑nT
j=1 v̂

4
j,nT − 3σ̂4nT

∑nT
j=1

∑nT
k=1

∑nT
l=1 q

2
jkq

2
jl

σ̂4nT
∑nT

j=1

∑nT
k=1 q

4
jk

,

where v̂j,nT is the jth element of V̂ ≡ Ṽ(β̂nT , λ̂nT , γ̂nT ) ≡ QnT [A(λ̂nT , γ̂nT )Y − X(γ̂nT )β̂nT ],

and qjk is the (j, k)th element of QnT . The θ̂nT are to be replaced by θ̂bcnT if T/n = O(1).

2.3.3. Asymptotic distribution of γ̂nT

Next, we establish the asymptotic distribution of γ̂nT . Its convergence rate, which is anT ,

has already been established in Theorem 2.3. To use these results in Theorem 2.4, we define

ℓ‡nT (γ) = ℓ∗nT (θ̂nT , γ), which must be uniquely maximized at γ = γ̂nT because otherwise it

contradicts that (θ̂nT , γ̂nT ) maximizes ℓ∗nT (θ, γ). With a constant term ℓ‡nT (γ0) subtracted, we

still have γ̂nT = argmax
γ∈Γ

[ℓ‡nT (γ)−ℓ
‡
nT (γ0)]. We then make the change-of-variable γ = γ0+v/anT

and therefore anT (γ̂nT−γ0) = argmax
v

[ℓ‡nT (γ0+v/anT )−ℓ
‡
nT (γ0)]. Thus, the asymptotic analysis

of anT (γ̂nT−γ0) relies on that of the objective function ℓ‡nT (γ0+v/anT )−ℓ
‡
nT (γ0), whose limiting

distribution involves following quantities:

Ξ1 = lim
nT→∞

T̄ [δ′0Mδ0 + l20σ
2
0(π1 + π2)] and Ξ2 = lim

nT→∞
T̄ 2(2l0σ0κ3δ

′
0π3 + l20σ

2
0κ4π2),

where π1(γ) = 1
nT

∑T
t=1

∑n
i=1 E(

∑n
j=1 g

2
ij,t|qit = γ), π2(γ) = 1

nT

∑T
t=1

∑n
i=1 E(g

2
ii,t|qit = γ),

π3(γ) =
1
nT

∑T
t=1

∑n
i=1 E(gii,thit|qit = γ) with gij,t being the (i, j)th entry of G’s tth block Gt,

and δ0 = (b′0, l0)
′. Under Assumption B(v), it is easy to see that Ξ1 must be strictly positive.

Thus, the following theorem provides the asymptotic distribution of γ̂nT .

Theorem 2.5. Under Assumptions A-H, we have

anT (γ̂nT − γ0)
D−→ σ20

f

Ξ

Ξ2
1

argmax
−∞<r<∞

[
− |r|

2
+W (r)

]
,

where Ξ = Ξ1 + Ξ2 and W (r) as a two-sided standard Brownian motion on the real line, i.e.,

W (r) =Wa(−r)1{r ⩽ 0}+Wb(r)1{r > 0}, and Wa(·) and Wb(·) are two independent standard

Brownian motions on [0,∞) with Wa(0) =Wb(0) = 0.

According to Chan (1993), when the threshold effects are fixed over sample size (i.e., τ = 0),

it may be possible to demonstrate that nT (γ̂nT−γ0) = Op(1), but the asymptotic distribution of

nT (γ̂nT−γ0) might be a functional of a compound Poisson process that depends on the marginal

distribution of xit, and hence is not useful for making inference on γ. In contrast, under the

shrinking threshold effects assumption, Theorem 2.5 shows that the limiting distribution of γ̂nT

does not involve this undue component. However, in order to conduct inference on γ directly
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through the above theorem, one has to find a consistent estimate for the scale component Ξ
Ξ2
1f
.

Note that both Ξ1 and Ξ2 involve δ0 or l0, neither of which can be estimated accurately without

prior knowledge of the nuisance parameter τ .

2.4. Inference for γ̂nT based on the likelihood ratio test

It is of practical interest to infer more precisely on the true value of γ. While Theorem 2.5

provides a theoretical base, its application is hindered by the difficulty in the estimation of δ0

or l0 and thus an alternative method is desired. Inspired by Hansen (1999) on regular threshold

panel regression models, we introduce an inference procedure for the threshold parameter γ

in the TSPR model by inverting a likelihood ratio test. Recall ℓ∗cnT (γ) ≡ ℓ∗nT (θ̂nT (γ), γ). The

likelihood ratio statistic for testing the null hypothesis H0: γ = γ0 is:

LRnT (γ) =
2

cnT
[ℓ∗cnT (γ̂nT )− ℓ∗cnT (γ)]. (2.22)

Theorem 2.6. Under Assumptions A-H, we have

LRnT (γ0)
D−→ ϖ2 0,

where ϖ2 = 1+ Ξ2
Ξ1

with Ξ1 and Ξ2 being given in Theorem 2.4, and 0 = max
−∞<r<∞

[−|r|+2W (r)],

of which the distribution function is characterized by P (0 ⩽ z) = (1− e−z/2)2.

Note that ϖ2 = Ξ
Ξ1

, since Ξ = Ξ1 + Ξ2. Thus, ϖ2 must be strictly positive, because Ξ1

is so and σ20Ξ is the variance of some LQ form (see Lemma B.3 in Appendix B). In a special

case where errors are iid normal, one has Ξ2 = 0 because κ3 = κ4 = 0. It follows that ϖ2 = 1

and LRnT (γ0) is an asymptotic pivot. Our result differs from Hansen’s (1999, Theorem 1) for

standard panels, in that his σ20Ξ term does not involve the third and fourth moments, κ3 and

κ4, of errors as it is just the variance of some linear form.

When errors are not normally distributed, ϖ2 must be estimated consistently. Let θ20 =

(β′20, λ20)
′, the collection of the threshold effects. Then, by Assumption F, we have

Ξ2

Ξ1
=

(nT )−2τΞ2

(nT )−2τΞ1
=

lim
nT→∞

T̄ [2λ20σ0κ3θ
′
20π3 + λ220σ

2
0κ4π2]

lim
nT→∞

[θ′20Mθ20 + λ220σ
2
0(π1 + π2)]

. (2.23)

Thus, by multiplying (nT )−2τ on both the numerator and denominator, we replace δ0 and l0

with θ20 and λ20, respectively. As we already have consistent estimators for θ20 and λ20, the need

for τ is eliminated. Let Z = (Z ′
1, . . . , Z

′
T )

′. Note that θ′20Mθ20 = 1
nT

∑n
i=1

∑T
t=1 E[(x

′
itβ20)

2 +

2λ20Zitx
′
itβ20 + Z2

itλ
2
20|qit = γ0] and θ′20π3 = 1

nT

∑n
i=1

∑T
t=1 E[gii,t(x

′
itβ20 + Zitλ20)|qit = γ0],

where Zit is the ith element of Zt. As Yt = A−1
t (Xtβ0 + µ0 + αt0ln + Vt), we have Yt ≡

WtYt = Zt +GtVt, which implies E(Zitx
′
it|qit) = E(Yitx

′
it|qit), E(gii,tZit|qit) = E(gii,tYit|qit) and
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E(Z2
it|qit) = E(Y2

it|qit)− σ20E(
∑n

j=1 g
2
ij,t|qit), where Yit is the ith element of Yt. Thus, we have

Ξ2

Ξ1
=

lim
nT→∞

∑n
i=1

∑T
t=1 E(ϑ2,it|qit = γ0)

lim
nT→∞

∑n
i=1

∑T
t=1 E(ϑ1,it|qit = γ0)

,

where ϑ1,it = (x′itβ20)
2 + 2λ20Yitx

′
itβ20 + Y2

itλ
2
20 + λ220σ

2
0g

2
ii,t and ϑ2,it = T̄ [2λ20σ0κ3gii,t(x

′
itβ20

+ Yitλ20) + λ220σ
2
0κ4g

2
ii,t]. To find their sample counterparts, we let κ̂3 and κ̂4 be the consistent

estimations of κ3 and κ4, which are standard to find in the literature (see Li, 2018), ĝij,t

the ith row and jth column of Gt(λ̂nT , γ̂nT ). Thus, their sample counterparts are just ϑ̂1,it =

(x′itβ̂2,nT )
2+2λ̂2,nTYitx

′
itβ̂2,nT+Y2

itλ̂
2
2,nT+λ̂

2
2,nT σ̂

2
nT ĝ

2
ii,t and ϑ̂2,it = T̄ [2λ̂2,nT σ̂nT κ̂3ĝii,t(x

′
itβ̂2,nT+

Yitλ̂2,nT ) + λ̂22,nT σ̂
2
nT κ̂4ĝ

2
ii,t], respectively. Therefore, we finally propose to estimate ϖ2 by

ϖ̂2 = 1 +

∑n
i=1

∑T
t=1Kh(qit − γ̂nT )ϑ̂2,it∑n

i=1

∑T
t=1Kh(qit − γ̂nT )ϑ̂1,it

,

where Kh(u) = h−1k(u/h) for some bandwidth h → 0 and kernel function k(·). With this, a

test of H0 : γ = γ0 rejects at the asymptotic level of α if LRnT (γ0)/ϖ̂
2 exceeds 01−α, where

01−α = −2 ln(1−
√
1− α) is the 1− α quantile of 0. From Table I of Hansen (2000), we have

01−α = 5.94, 7.35 and 10.59 for α = 0.1, 0.05 and 0.01, respectively.

3. Testing for the Existence of Threshold Effects

A threshold value γ0 may always exist but whether the threshold effects enter the model

depends on whether θ2 = (β′2, λ2)
′ is non-zero. Therefore, a test of

H0 : θ20 = 0

is of great practical interest. However, at the null, the threshold parameter γ is not identified,

which poses a great challenge in constructing such a test. In particular, the asymptotic dis-

tributions of the classical tests are nonstandard and it is impossible to tabulate their critical

values.7 To overcome the difficulties facing the classical tests, we propose a sup-Wald test and

study its asymptotic property by adopting a local-to-null reparameterization similar in ideas

to Hansen (1996): θ20 = c√
nT

, where c = (c′b, cl)
′, cb is a k × 1 vector and cl is a scalar. In

this sequence of alternatives, we see that the diminishing rate is faster than the one specified in

Assumption F, which facilitates our study of the distributional theory of the test statistic. We

propose a novel bootstrap procedure to bootstrap the critical values of the test statistic.

7This is in fact a classical problem raised by Davies (1977) and investigated by Andrews (1993) and Hansen
(1996), under regular panel regression models.
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3.1. The sup-Wald test and its asymptotic distribution

The construction of the sup-Wald-type test statistic is straightforward. For each γ ∈ Γ, we

first obtain θ̂nT (γ). Under the null, one has (see Appendix B for details)

√
N(θ̂nT (γ)− θ0) = Σ∗−1

nT (γ, γ)
[

1√
N
S∗u
θ,nT (θ0, γ) +

√
T
n bθ,nT (λ0, γ)

]
+ op(1), (3.1)

where the analytical expression for Σ∗
nT (γ1, γ2) is in (B.22). It can be shown that 1√

N
S∗u
θ,nT (θ0, γ)

converges weakly (in distribution) to Sθ(γ), a mean-zero Gaussian process, under the uniform

metric. The covariance kernel of Sθ(γ) is defined by lim
nT→∞

Ω∗
nT (γ1, γ2), where Ω∗

nT (γ1, γ2) is

given in (B.24). Here, the two arguments γ1 and γ2 are used because they are treated as

distinct parameters in the subsequent derivations. A bias-corrected estimator θ̂bcnT (γ) is then

obtained by substituting θ̂nT with θ̂nT (γ) in the expression for θ̂bcnT given in (2.19), while keeping

the general parameter γ. Let Q̂nT (γ, γ) ≡ Σ̂∗−1
nT (γ, γ)Ω̂∗

nT (γ, γ)Σ̂
∗−1
nT (γ, γ), where Σ̂∗

nT (γ, γ) =

Σ∗
nT (γ, γ)|θ=θ̂nT (γ) and Ω̂∗

nT (γ, γ) = Ω∗
nT (γ, γ)|θ=θ̂nT (γ) are the respective plug-in estimators.

Thus, the Wald statistic for a given γ is simply

WnT (γ) = Nθ̂bc′nT (γ)L[L
′Q̂nT (γ, γ)L]

−1L′θ̂bcnT (γ), (3.2)

where L is a selection matrix defined as L = [0k×k Ik 0k×1 0k×1 0k×1; 01×k 01×k 0 1 0]′.

This statistic is, however, practically infeasible as its asymptotic distribution depends on the

nuisance parameter γ. We define a sup-Wald test statistic,

supWn = sup
γ∈Γ

WnT (γ), (3.3)

in the same spirit of Hansen (1996) for a linear threshold regression, which is shown to be an

asymptotic pivot with asymptotic distribution being free from model parameters including γ.

Thus, we can approximate the distribution of supWn via simulation!

Let Q(γ1, γ2) = Σ∗−1(γ1, γ2)Ω
∗(γ1, γ2)Σ

∗−1(γ1, γ2), where Σ∗(γ1, γ2) = lim
nT→∞

Σ∗
nT (γ1, γ2)

and Ω∗(γ1, γ2) = lim
nT→∞

Ω∗
nT (γ1, γ2). We have the following theorem.

Theorem 3.1. Under Assumptions A-E, G, and the alternatives H1 : θ20 =
c√
nT

,

supWnT
D−→ sup

γ∈Γ
W c(γ), with

W c(γ) = [L′Σ∗−1(γ, γ)Sθ(γ) + Σ̄(γ)c]′[L′Q(γ, γ)L]−1[L′Σ∗−1(γ, γ)Sθ(γ) + Σ̄(γ)c],

where Σ̄(γ) =
√
T̄L′Σ∗−1(γ, γ)Σ∗(γ, γ0)L and Sθ(γ) is a mean-zero Gaussian process with co-

variance kernel Ω∗(γ1, γ2).

Under null hypothesis, c = 0 and supWnT converges in distribution to supγ∈ΓW
0(γ) =

supγ∈Γ Sθ(γ)
′Σ∗−1(γ, γ)L[L′Q(γ, γ)L]−1L′Σ∗−1(γ, γ)Sθ(γ). It is a functional of chi-square pro-
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cesses and thus its asymptotic critical values cannot be tabulated in general. In special cases

of testing for the existence of a structure change, Andrews (1993) and Li (2018) show that the

critical values depend only on the column dimension of regressors and the parameter space of γ0

so that they can be tabulated. For threshold SPR models, an alternative approach is desired.

3.2. Bootstrap critical values for sup-Wald test

We propose a bootstrap procedure, the estimating function bootstrap, to approximate the

asymptotic null distribution of the test statistic, extending the idea of Hansen (1996). The

challenge lies in the way of simulating the asymptotic distribution with the nonlinear spatial

components in the model, in contrast to Hansen (1999) for a regular panel regression.

From Theorem 3.1, 1√
N
S∗u
θ,nT (θ0, γ)

D−→ Sθ(γ), where S
∗u
θ,nT (θ0, γ) is in (2.18). To simulate

the null distribution of the sup-Wald statistic, we need the expression of S∗u
θ,nT (θ0, γ) at the null,

which is of the form by (2.18),

S∗u
θ,nT (θ10, γ) =



1
σ2
0
X′(γ)QnTV,

1
σ2
0
Y′W′QnTV − tr[QnTG1],

1
σ2
0
Y′W′D′(γ)QnTV − tr[QnTD(γ)G1],

1
2σ4

0
V′QnTV − N

2σ2
0
,

(3.4)

where θ1 = (β′1, λ1, σ
2)′, G1 = WA−1

1 , and A1 = A1(λ10) with A1(λ1) = A(λ, γ)|λ2=0. The fact

that Ṽ(ϕ0, γ) = QnTV at the null has been used in the above derivation, where ϕ = (β′, λ′)′.

Our idea is to bootstrap S∗u
θ,nT (θ10, γ), and thus the distribution of W 0(γ). Note that the real

world null DGP (data generating process) is

A1Y = Xβ10 +Cψ0 +V.

Its sample analogue is A1(λ̂1)Y = Xβ̂1+Cψ̂+V̂, which can potentially be used as a bootstrap

DGP that mimics the real world DPG at the null. However, this is infeasible as due to the

incidental parameters problem one cannot find a consistent estimator for V when T is fixed.

Furthermore, the involvement of incidental parameters ψ0 would invalidate any potential boot-

strap procedure. Although a QnT transformation of the null DGP can remove ψ0 and QnTV

can be ’consistently’ estimated by the unrestricted residuals Ṽ(ϕ̂nT , γ̂nT ), the elements of QnTV

are correlated and cannot be used for bootstrapping.

Very interestingly, we find that the spectral decomposition, QnT = SS′, helps to do the trick

that leads to an asymptotically valid bootstrap DGP, where S is the nT ×N eigenvector ma-

trix corresponding to eigenvalues of one. The details are as follows. First, QnTV = SS′V.
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Since S′S = IN , the elements of S′V are iid normal if {vit} are iid normal, and are un-

correlated if {vit} are iid. In addition, S′V ≡ S′QnTV can be ‘consistently’ estimated by

Ṽ∗(ϕ̂nT , γ̂nT ) ≡ S′Ṽ(ϕ̂nT , γ̂nT ), which leads to a potentially valid way of simulating QnTV

through bootstrapping Ṽ∗(ϕ̂nT , γ̂nT ).

Another challenge is the generation of bootstrapped values of Y or WY as it appears in

both the λ1- and λ2-components of S∗u
θ,nT (θ10, γ).

8 We show how WY can be related to S′V.

Under H0, WY = G1A1Y and A1Y = Xβ10 +Cψ0 +V. Let PnT = InT −QnT and write

A1Y = (PnT +QnT )A1Y = PnTA1Y +QnTXβ10 +QnTV.

The first term is uncorrelated with QnTV and can thus be treated as constant during bootstrap

draws. With QnTV = SS′V and the elements of V∗ = S′V being iid or uncorrelated, a

bootstrap value of V∗ is therefore translated into a bootstrap value of A1Y or Y or WY.

These lead to the bootstrap DGPs for Y and WY mimicking the real world DGPs at null:

Y∗ = A−1
1 (λ̂1,nT )[µ(β̂1,nT , λ̂1,nT ) + SṼ∗(ϕ̂nT , γ̂nT )], (3.5)

(WY)∗ = η(β̂1,nT , λ̂1,nT ) +G1(λ̂1,nT )SṼ
∗(ϕ̂nT , γ̂nT ), (3.6)

where µ(β1, λ1) = PnTA1(λ1)Y +QnTXβ1, η(β1, λ1) = G1(λ1)µ(β1, λ1), and β̂1,nT and λ̂1,nT

are the unrestricted estimates of β1 and λ1. In bootstrapping, one can choose (3.5) or (3.6).

The following bootstrap algorithm uses the latter.

Estimating Function Bootstrap:

1. Calculate the unrestricted AQML estimators θ̂nT and γ̂nT , the unrestricted transformed

residuals Ṽ∗(ϕ̂nT , γ̂nT ), and η(β̂1,nT , λ̂1,nT );

2. ∀γ ∈ Γ, calculate and save Q̃nT (γ, γ) and Σ̃∗
nT (γ, γ), which are the plug-in estimators of

QnT (γ, γ) and Σ∗
nT (γ, γ) with θ1 = θ̂1,nT and θ2 = 0;

3. Let FnT be the empirical distribution function (EDF) defined by the centered Ṽ∗(ϕ̂nT , γ̂nT ).

Draw a random sample of size N from FnT and denote it by Ṽb
N . Compute the bootstrap

value (WY)b = η(β̂1,nT , λ̂1,nT ) +G1(λ̂1,nT )SṼ
b
N through (3.6);

4. For each γ, calculate a bootstrap value of S∗u
θ,nT (θ̂1,nT , γ) and denote it by S̃b

θ,nT (γ) based

on Ṽb
N and (WY)b;

5. Compute supW b
nT ≡ supγ∈Γ

1
N S̃

b′
θ,nT (γ)Σ̃

∗−1
nT (γ, γ)L[L′Q̃nT (γ, γ)L]

−1L′Σ̃∗−1
nT (γ, γ)S̃b

θ,nT (γ);

6. Repeat steps 3-5 B times;

8This issue is not involved in the standard linear panel regression model in Hansen (1999) as only the linear
β-component of S∗u

θ,nT (θ10, γ) is needed in the simulation.
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7. Calculate the bootstrap p-value of the test: pbW = 1
B

∑B
b=1 1{supW b

nT ≥ supWnT }, and

reject the null when pbW is less than the pre-chosen level of significance.

The following theorem justifies the asymptotic validity of the above procedure.

Proposition 1. Suppose Assumptions A-E, G, H and the null hypothesis hold, we have

supW b
nT

Db

−→ sup
γ∈Γ

W 0(γ),

where Db denotes the bootstrap distribution.

For the proof of Proposition 1, it is sufficient to show that 1√
N
S̃b
θ,nT (γ) converges weakly

in FnT to a Gaussian process with covariance Ω∗(γ1, γ2). The details of the proof are given in

Appendix B. The above theorem implies that we can approximate the asymptotic null distri-

bution of the statistic supWnT by the EDF of {supW b
nT , b = 1, . . . , B} for a sufficiently large B.

Therefore, we can reject the null at the significance level of α when pbW < α.

Remark 3.1. The above bootstrap procedure approximates the limiting distribution of

supWnT . As supWnT is an asymptotic pivot, directly bootstrapping on supWnT can potentially

lead to refined inference as it approximates the finite sample distribution of supWnT . However,

this procedure, though possible in theory, may not be practical, as an estimation of the full

model is required for every bootstrap sample, which can be computationally intensive.

Remark 3.2. Our proposed bootstrap procedure does not require re-estimation of the

model, null or full, and thus is computationally simple. Step 3 of the bootstrap algorithm can

instead be as follows: generate Y∗ using DGP (3.5), estimate the null model to give θ̂b1,nT , and

then compute a bootstrap value of S∗u
θ,nT (θ10, γ) using Y∗ and θ̂b1,nT . This evidently increases

the computational burden. Our simulation results show that this does not make a significant

difference. Thus, we recommend the proposed bootstrap procedure for computational simplicity.

Remark 3.3. When bootstrapping the null distribution of a test statistic where only the

estimation of the null model may be required, it is important to use unrestricted estimates and

unrestricted residuals to set up the bootstrap DGP that mimics the real world at the null, as

we never know whether the null is true or untrue, an important point made by Yang (2015b).

4. Monte Carlo Study

Monte Carlo experiments are performed to evaluate the finite sample performance of the

proposed estimators and the test statistics. The following data-generating process is used:

Yt = λ1WtYt + λ2dt(γ)WtYt +Xtβ1 + dt(γ)Xtβ2 + µ+ αtln + Vt, t = 1, . . . , T
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where the time-varying weight matrices Wt’s are generated according to Queen contiguity, xit

are generated from N(0, 22), the fixed effects µ are generated according to 1
T Σ

T
t=1Xt + e, where

e ∼ N(0, IN ), and the time fixed effects α are generated from N(0, IT ). The distributions of the

error term can be (i) normal, (ii) normal mixture (90% N(0, 1) and 10% N(0, 42)), or (iii) chi-

square with 3 degrees of freedom. In both (ii) and (iii), the error distributions are standardized

to have mean zero and variance σ2 = 1. We set β1 = 1, λ1 = 0.2, β2 = λ2 = (nT )−0.2 and

γ = 0. The number of Monte Carlo runs under each parameter configuration is 1000.

Table 1 presents the Monte Carlo results for AQMLE based on (2.6) and bias-corrected

AQMLE (bc-AQMLE) based on (2.19), for various combinations of n = 50, 100, 200 and T =

5, 10, 20, 40. As direct QMLE based on (2.5) shares the same estimated values as AQMLE for

all parameters except σ2 (see Footnote 3), only the results of direct QMLE of σ2 are provided

at the bottom of the table. As a comparison, the 2SLS estimator of Wei et al. (2021) is also

included in our Monte Carlo experiments. Monte Carlo biases and standard deviations (sd,

reported in brackets) are presented for all parameters, with empirical averages of the robust

standard error estimates (ŝd) also shown for AQMLE and bc-AQMLE. Note that bc-AQMLE of

γ is the same as AQMLE of γ as the latter does not incur asymptotic bias. Only the estimation

of θ is subject to asymptotic bias, as shown in Theorems 2.4 and 2.5.

The results indicate that the finite sample performance of the 2SLS estimator can be poor,

exhibiting large biases and high standard deviations. The direct QML method improves the

estimation of all parameters but the error variance, aligning with our theory that the direct

QML estimator of σ2 is inconsistent when T is fixed due to the incidental parameters problem.

In contrast, the results demonstrate an excellent finite-sample performance of our AQMLE in

terms of both consistency and efficiency of the estimation. Our bc-AQMLE performs even

better, particularly when both n and T are large. All estimators improve as the sample size

increases, regardless of the error distribution. The
√
N convergence rate of both AQMLE and

bc-AQMLE is clearly demonstrated by the Monte Carlo standard deviations. Moreover, the

robust standard error estimates (ŝd) are, on average, very close to the corresponding Monte

Carlo standard deviations, with this closeness increasing as the sample size grows.

Table 2 reports the coverage probabilities of the nominal 95% confidence intervals for γ

obtained by inverting the LR test introduced in Section 2.4. The results show that the coverage

probabilities are close to the nominal levels under different error distributions.

Table 3 summarizes Monte Carlo results for the size and local power of the supWald test for

the non-existence of threshold effects introduced in Section 3. Under the null hypothesis (β20 =

λ20 = 0), the rejection rates align with the nominal levels under different error distributions,
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showing that the proposed bootstrap procedure works well. We also examine the local power of

the test in the last two columns of the table. As expected, the rejection rates increase rapidly

as β20 and λ20 deviate from zero. When β20 = λ20 = 10/
√
nT , the power of our test reaches

100% for all sample sizes.

5. An Empirical Application

In this section, we apply our method to study the age-of-leader effects on political com-

petitions across Chinese cities. The tournament competition among Chinese city government

leaders has been an important topic in China’s economic growth literature (Yao and Zhang,

2015). Local government leaders compete against one another in enhancing local investment

and promoting the local economy’s growth so as to increase their chances for political promo-

tion. Based on this theory, Yu et al. (2016) document a strong spatial effect for the city-level

total investment. Besides, the age of a local leader is another pivotal factor determining the

leader’s chances of promotion. A leader’s chance diminishes quickly as he or she gets older (Yao

and Zhang, 2015; Yu et al., 2016). Thus, those leaders who are close to retirement age (60)

should have less incentive to join this tournament competition than the young leaders, and thus

a weaker spatial effect should be expected among the old leaders. That is, we would expect that

the spatial correlation of city-level total investment has a threshold effect based on the leaders’

age. In contrast to Yu et al. (2016) who try various cutoff ages to see the change of the spatial

correlation over leader’s age, our threshold SPR model can directly estimate the threshold age.

First, a test of no threshold effects is carried out using the sup-Wald test developed in Section 3,

and then if this test is rejected, a confidence interval for the threshold parameter is constructed

by inverting the LR test given in Section 2.4.

Model and data. Following the above discussions, we consider the following model:

invit = λ1
∑n

j=1wij,tinvjt + λ2
∑n

j=1wij,tinvjt1{ageit ⩽ γ}+ xitβ + µi + αt + vit,

where invit denotes the total investment of local government of city i in year t, ageit denotes

the age of the local leader of city i in year t, xit is a vector of time-varying regressors including

fiscal revenue, fiscal expenditure, population, manufacturing ratio, GDP per capita and a set of

province level variables: fiscal revenue, fiscal expenditure, and public capital investment, µi and

αt are the two-way fixed effects, and vit is the idiosyncratic error. We follow Yu et al. (2016)

and define those same-province cities whose within-province rankings of GDP per capita are

either one place above or below a city as this city’s spatial neighbors, because they are the main

competitors in the tournament competition. Because there is no theoretical evidence to justify
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the threshold effects for regression coefficients, they are not included.

We analyze the annual total investments (in RMB) of 338 cities in the 27 provinces in

mainland China from 2010 to 2012. Economic data is from Fiscal Statistics of Cities and

Counties in China, China City Statistical Yearbook and China Statistical Yearbook for Regional

Economy for the period 2010-2012. The ages of leaders are obtained from local government

websites. The data is standardized to make all the variables have comparable scales.

Test for the presence of threshold effects. Before the estimation of the model, we

conduct hypothesis testing on the presence of the age-of-leader threshold effect. In China’s

local official system, there are two types of leaders in the local governments, party secretaries

and mayors. Party secretaries are mainly responsible for personnel work and overall decision-

making while the mayors are for the formulation and implementation of specific economic and

social policies so that Yao and Zhang (2013) find the weight of economic performance is lower

for the party secretary than for the mayor in the assessment of local leaders. Consequently,

we consider only mayors in our analysis. In addition, as Yu et al. (2016) find the age-of-leader

effects on political competitions are more clear among old leaders and old leaders have different

spatial responsiveness to their young and old neighbors, we also separate the leaders into young

and old groups. Here, “old” leaders are defined as those whose ages exceed the median age (49

years and 8 months).

We conduct a sup-Wald test on mayors, examining four types of competitive effects: “all vs

all,” which examines spatial correlation among all mayors; “old vs all,” which measures spatial

correlation between old mayors and all their neighboring counterparts; “old vs old,” which con-

siders spatial correlation solely among old mayors; and “old vs young,” which looks at the spatial

correlation between old mayors and their younger neighbors. The resulting supWnT statis-

tics and associated bootstrap p-values, based on 699 bootstrap replications, are (3.785, 0.336),

(8.360, 0.060), (11.543, 0.015), and (1.885, 0.845), respectively. Consequently, we can reject the

null hypothesis of no threshold effect at the 10% significance level for the “old vs all” pattern

and at the 5% level for the “old vs old” pattern.

Estimation results. Table 4 reports the regression results for the two scenarios when we

can reject the null hypothesis of no threshold effect. “Model 1” and “Model 2” correspond to

the “old vs all” pattern and “old vs old” pattern, respectively. The estimations of threshold

coefficient γ are 55.33 (55 years and 4 months)and 54.58 (54 years and 7 months) for these

two models, respectively. We also report the 95% confidence intervals that are based on the

likelihood ratio test. The estimations of λ1 in these two models suggest that the spatial cor-

relations when the ages of local mayors are beyond the threshold levels are slightly negative
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(-0.033 and -0.041) but not significant. In contrast, when the ages of local mayors are below

the threshold levels, the spatial correlations among local investments are the estimations of

λ1 + λ2 and thus become strongly positive as λ2 are positive with a much larger magnitude.

These empirical findings are in line with our theoretical expectation, considering that mayors

normally take office in their forties or fifties and the mandatory retirement age for them is 60.

A more comprehensive study on this topic is of interest as future research.

6. Extensions

We have by far focused on a threshold SPR model (2.1) that contains only a spatial lag

(SL) structure with additive fixed effects, for ease of exposition. The proposed estimation and

inference methods are in fact quite general and can be extended to include additional features in

the model such as spatial error dependence, serial correlation, time dynamics, multiple threshold

effects, threshold effects on error parameters, interactive fixed effects, etc. An immediate and

much-needed extension is the inclusion of spatial error (SE) effect:

Yt = λ10WtYt + λ20dt(γ0)WtYt +Xtβ10 + dt(γ0)Xtβ20 + µ0 + αt0ln + Ut, Ut = ρ0W
e
t Ut + Vt,

for t = 1, . . . , T , where parameter ρ and weight matrices {W e
t } together characterize the SE

effects, and the other parts are defined in Model (2.1). Let B(ρ) = InT − ρWe, where We =

bdiag(W e
1 , . . . ,W

e
T ). We redefine θ = (β′, λ′, ρ, σ2)′ to accommodate the extra spatial error

parameter. The quasi Gaussian loglikelihood function of all the parameters becomes

ℓnT (θ, γ, ψ) = −nT
2

ln(2πσ2) + ln |A(λ, γ)|+ ln |B(ρ)| − 1

2σ2
V′(θ, γ, ψ)V(θ, γ, ψ),

where V(θ, γ, ψ) = B(ρ)[A(λ, γ)Y − X(γ)β −Cψ]. ℓnT (θ, γ, ψ) is partially maximized at

ψ̂(θ, γ) = [C′(ρ)C(ρ)]−1C′(ρ)B(ρ)[A(λ, γ)Y − X(γ)β],

where C(ρ) = B(ρ)C. Thus, the adjusted concentrated quasi loglikelihood function correspond-

ing to (2.6) becomes

ℓ∗nT (θ, γ) = −nT
2

ln(2πσ2) + ln |A(λ, γ)|+ ln |B(ρ)| − cnT
2σ2

V̈′(θ, γ)V̈(θ, γ),

where V̈(θ, γ) = QC(ρ)B(ρ)[A(λ, γ)Y − X(γ)β] and QC(ρ) = InT − C(ρ)[C′(ρ)C(ρ)]−1C′(ρ).

The adjusted QML estimators of θ, ρ and γ are simply

(θ̂nT , γ̂nT ) = argmax
(θ,γ)∈Θ×Γ

ℓ∗nT (θ, γ),

where Θ is now extended to include the the parameter space for ρ, which is denoted by ∆ρ.
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In practice, we can also first maximize the objective function conditional on γ to get θ̂nT (γ),

and then apply the grid search algorithm in Section 2.2 to obtain γ̂nT . With some additional

conditions (e.g., both ∥We∥1 and ∥We∥∞ are bounded; both ∥B−1(ρ)∥1 and ∥B−1(ρ)∥∞ are

bounded on ∆ρ; ρ is identifiable), we expect the estimation error of γ̂nT still have asymptotically

negligible effects on θ̂nT , and thus we can establish similar results to those in Theorems 2.1 -

2.5. Moreover, to construct a confidence interval for γ, we construct the LR statistic in the

same way as in Section 2.4,

LRnT (γ) =
2

cnT
[ℓ∗nT (θ̂nT , γ̂nT )− ℓ∗nT (θ̂nT (γ), γ)].

When errors are normally distributed, the asymptotic distribution of LRnT (γ0) is still pivotal,

following the distribution of 0. In this case, the asymptotic 1−α confidence interval for γ is the

set of values of γ satisfying LRnT (γ) ⩽ 01−α. Finally, to test the presence of threshold effects,

we just follow Section 3 and establish the new sup-Wald test statistic and bootstrap procedure

in a similar manner.

Our estimation and inference methods can also be extended to handle models with other

additional features. Firstly, an extension to allow for serial correlation in the error term (e.g.,

vit = ϱvi,t−1 + eit with |ϱ| < 1) is also straightforward like the above one with the SE struc-

ture. We expect the arguments and ideas behind estimation and inference methods can still be

applied with minor modifications. Secondly, we can generalize our model to the dynamic SPR

framework. When T is large, the direct QML approach should provide a consistent estimation

for all the parameters, and thus the asymptotic properties of these AQMLEs can be derived

in a standard manner. When T is fixed, the analysis will become complicated as adjustments

to the concentrated QML function are required to deal with the incidental parameters prob-

lems coming from both the initial condition and the concentration. Thirdly, the extension to

include multiple thresholds (Hansen, 1999) is also of theoretical and practical interest. For this

extension, our AQML approach is still appropriate and the objective function with multiple

thresholds corresponding (2.6) is also straightforward to construct. Thus, the adjusted QML

estimators of all the parameters including multiple threshold parameters jointly maximize the

new objective function. In practice, the grid search over multiple thresholds may require an

excessive amount of computation. We recommend using the sequential estimation method with

refinement (Bai, 1997; Hansen, 1999) to avoid this computational burden.

Fourthly, our methods can also be extended to include the threshold effects on error pa-

rameters, e.g., error variance (Miao et al., 2020). In this case, the threshold effects on error

parameters need to be incorporated into the QML function. For example, when error variance
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has threshold effects, for each observation the variance parameter will appear in the form of

σ21 + σ221(qit ⩽ γ), where σ21 is the baseline parameter and σ22 is its threshold effect. Finally,

our methods can be extended to allow the individual and time fixed effects to appear in the

model interactively. According to Miao et al. (2020), we would expect the concentrated QML

estimation (with common factors being concentrated out) can provide a consistent estimation

for all the parameters, including threshold parameter and factor loadings, when both n and T

are large. Besides, we expect that the estimation error of the threshold estimate still has no

asymptotic effect on the asymptotic properties of the other estimators and that the inference

methods in this paper can still be applied. However, formal studies on these extensions are still

quite involved and can only be handled in future research.

7. Conclusion

In this paper, we consider estimation and inference for a threshold spatial panel data model

with both individual and time fixed effects, where threshold effects are allowed for both spatial

and regression parameters. The presence of the threshold effects renders the commonly used

orthogonal transformation approach inapplicable to wipe out fixed effects. We propose an ad-

justed quasi maximum likelihood estimation method, where the objective function is obtained

by adjusting the concentrated quasi loglikelihood function (with fixed effects being concen-

trated out) to “recover” the effect of degrees of freedom loss due to the estimation of these

incidental parameters. We study the asymptotic properties of the adjusted QML estimators in

the diminishing-threshold-effect framework and propose a likelihood ratio statistic to construct

confidence intervals for the threshold parameter. We also consider the hypothesis testing on

the presence of threshold effects and a sup-Wald statistic based on the bias-corrected adjusted

QML estimation is proposed. Monte Carlo results show excellent performance of the proposed

estimation and inference methods. We apply our model to study the age-of-leader effects on

political competitions across Chinese cities and find competitions only exist among city leaders

who are younger than a threshold age.
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Appendix A: Some Basic Lemmas

Lemma A.1. (Lee, 2002): Let {An} and {Bn} be two sequences of n × n matrices that are

uniformly bounded in both row and column sums. Let Cn be a sequence of conformable matrices

whose elements are uniformly O(h−1
n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(h−1
n ).

Lemma A.2. (Lemma B.4, Yang, 2015a): Let {An} be a sequence of n× n matrices that are

uniformly bounded in both row and column sums. Suppose that the elements an,ij of An are

bounded uniformly in all i and j, and an,ii ̸= 0 for some i. Let vn be a random n-vector of

iid elements with mean zero, variance σ2 and finite 4th moment, and bn a random n-vector

independent of vn such that {E(b2ni)} are bounded. Then

(i) E(v′nAnvn) = O(n), (ii) Var(v′nAnvn) = O(n),

(iii) Var(v′nAnvn + b′nvn) = O(n), (iv) v′nAnvn = Op(n),

(v) v′nAnvn − E(v′nAnvn) = Op(n
1
2 ), (vi) v′nAnbn = Op(n

1
2 ).

Lemma A.3. (Lemma A.5, Yang, 2018): Let {Φn} be a sequence of n×n matrices with row and

column sums uniformly bounded, and elements of uniform order O(h−1
n ). Let vn = (v1, . . . , vn)

′

be a random vector of iid elements with mean zero, variance σ2, and finite (4+2ϵ0)th moment for

some ϵ0 > 0. Let bn = {bni} be an n×1 random vector, independent of vn, such that (i) {E(b2ni)}

are of uniform order O(h−1
n ), (ii) supiE|bni|2+ϵ0 < ∞, (iii) hn

n

∑n
i=1[ϕn,ii(bni − Ebni)] = op(1)

where {ϕn,ii} are the diagonal elements of Φn, and (iv) hn
n

∑n
i=1[b

2
ni − E(b2ni)] = op(1). Define

the bilinear-quadratic form:

Qn = b′nvn + v′nΦnvn − σ2tr(Φn),

and let σ2Qn
be the variance of Qn. If limn→∞ h

1+2/ϵ0
n /n = 0 and {hn

n σ
2
Qn

} are bounded away

from zero, then Qn/σQn

D−→ N(0, 1).

Lemma A.4. (Adapted from Lemma 1, Hansen, 1996): If {wi} are iid, E[Ψ(wi)] < ∞ for a

matrix function Ψ of wi, and wi has a continuous distribution, then

sup
γ∈Γ

∥∥∥ 1
n

n∑
i=1

Ψ(wi)1{wi ⩽ γ} − E[Ψ(wi)1{wi ⩽ γ}]
∥∥∥ −→ 0 a.s.
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Appendix B: Proofs of the Theorems

This appendix presents proofs of the main theorems of the paper. The proofs of the main

theorems are greatly facilitated by Lemmas B.1-B.4 given below. Their proofs are given in

Supplementary Material. All quantities involved are defined in Sections 2.2 and 2.3.

Lemma B.1. Under Assumptions A-E, we have

J1,nT (γ) =
1√
N
H′D(γ)QnTV ⇒ J1(γ),

J2,nT (γ) =
1√
N
[V′QnTD(γ)GV − σ20tr(QnTD(γ)G)] ⇒ J2(γ),

where “ ⇒ ” denotes weak convergence with respect to the uniform metric, and both J1(γ) and

J2(γ) are mean-zero Gaussian processes with almost surely continuous sample paths and vari-

ances lim
nT→∞

σ2
0

N E[H′D(γ)QnTD(γ)H] and lim
nT→∞

σ4
0

N E[(tr(QnTD(γ)G)2+QnTD(γ)GG′D(γ))]+

κ4σ4
0

N E[diagv(QnTD(γ)G)′diagv(QnTD(γ)G)], respectively.

Lemma B.2. Under Assumptions A-E, we have,

FnT (v) =
anT
nT δ

′
0H

′D(γnT , γ0)QnTD(γnT , γ0)Hδ0 ⇒ lim
nT→∞

T̄ δ′0Mδ0f |v|,

KnT (v) =
anT
nT l

2
0V

′G′D(γnT , γ0)QnTD(γnT , γ0)GV ⇒ lim
nT→∞

l20σ
2
0T̄ π1f |v|,

LnT (v) =
anT
nT l

2
0tr[(D(γnT , γ0)G)2] ⇒ lim

nT→∞
l20π2f |v|,

where γnT = γ0+v/anT , v is on a compact set Υ = [−v̄, v̄], π1 and π2 are defined above Theorem

2.5, T̄ = T−1
T , and D(γ1, γ2) = D(γ1)−D(γ2).

Lemma B.3. Under Assumptions A-E and for Jr,nT (γ) in Lemma B.1, r = 1, 2, we have,

RnT (v) =
√
anT

[
δ′0J1,nT (γnT , γ0) + l0J2,nT (γnT , γ0)

]
⇒

√
σ20Ξf W (v)

where Jr,nT (γnT , γ0) = Jr,nT (γnT )−Jr,nT (γ0), γnT = γ0+ v/anT with v being on a compact set

[−v̄, v̄], and W (v) is a standard Brownian motion with Ξ being given in Theorem 2.5.

Lemma B.4. Under Assumptions A-E, there exist constants B > 0, 0 < k < ∞, and 0 < l <

∞, such that for all η > 0, and ϵ > 0, there exists a v̄ <∞ such that

(a) P

(
inf

γ∈NnT

Dr,nT (γ)
|γ−γ0| < (1− η)k

)
⩽ ϵ, (b) P

(
sup

γ∈NnT

∥Fs,nT (γ)∥
|γ−γ0| > (1 + η)l

)
⩽ ϵ,

(c) P

(
sup

γ∈NnT

|Ks,nT (γ)|
|γ−γ0| > (1 + η)l

)
⩽ ϵ, (d) P

(
sup

γ∈NnT

|Lr,nT (γ)|
|γ−γ0| > (1 + η)l

)
⩽ ϵ,

(e) P

(
sup

γ∈NnT

∥Pr,nT (γ)∥
|γ−γ0| > η

)
⩽ ϵ, (f) P

(
sup

γ∈NnT

∥Js,nT (γ,γ0)∥√
anT |γ−γ0| > η

)
⩽ ϵ,

for large enough (n, T ) and r = 1, 2, 3 and s = 1, 2, where NnT =
{
γ : v̄

anT
⩽ |γ − γ0| ⩽ B

}
,

D1,nT (γ) = δ′0F1,nT (γ)δ0, D2,nT (γ) = l20K1,nT (γ), D3,nT (γ) = l20L2,nT (γ),
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F1,nT (γ) =
1
nT H

′D(γ0, γ)QnTD(γ0, γ)H, F2,nT (γ) =
1
nT H

′(γ0)QnTD(γ0, γ)H,

K1,nT (γ) =
1
nT V

′G′D(γ0, γ)QnTD(γ0, γ)GV, K2,nT (γ) =
1
nT V

′(γ0)QnTD(γ0, γ)GV,

L1,nT (γ) =
1
nT tr[D(γ0, γ)G], L2,nT (γ) =

1
nT tr[(D(γ0, γ)G)2],

L3,nT (γ) =
1
nT tr[D(γ0, γ)GJ], P1,nT (γ) =

1
nT H

′D(γ0, γ)QnTD(γ0, γ)GV,

P2,nT (γ) =
1
nT H

′(γ0)QnTD(γ0, γ)GV, P3,nT (γ) =
1
nT V

′(γ0)QnTD(γ0, γ)H,

Jr,nT (γ), r = 1, 2, are defined in Lemma B.1, and D(γ0, γ) is defined in Lemma B.2.

Equipped with Lemmas B.1-B.4, recall the notations defined in Section 2:

• β = (β′1, β
′
2)

′, λ = (λ1, λ2)
′, ϕ = (β′, λ′)′, δ0 = (b′0, l0)

′, θ2 = (β′2, λ2)
′;

• D(γ) = bdiag(d1(γ), . . . , dT (γ)), A(λ, γ) = InT − λ1W − λ2D(γ)W,

G(λ, γ) = WA−1(λ, γ), Ḡ(λ, γ) = G(λ, γ)− diag(G(λ, γ));

• Z = G(Xβ0 +Cψ0), H = [X, Z];

• X(γ) = [X, D(γ)X], Z(γ) = [Z, D(γ)Z], H(γ) = [H, D(γ)H],

V(γ) = [GV, D(γ)GV], R(γ) = [diagv(G), D(γ)diagv(G)],

and define the following new notations: A[k] denotes the submatrix of A, consisting of the first

k rows and columns; and h[k] denotes the subvector of h, consisting of the first k elements. We

are ready to prove Theorems 2.1-2.3.

Proof of Theorem 2.1: We first prove the convergence of β̂nT (λ̂nT , γ) and σ̂2nT (λ̂nT , γ),

uniformly in γ ∈ Γ. We have A(λ, γ)A−1 = In+(λ10−λ1)G+(λ20−λ2)D(γ)G+λ20D(γ0, γ)G,

noting that A−1 = In + λ10G + λ20D(γ0)G. By Y = A−1(Xβ0 + Cψ0 + V) and Xβ0 =

X(γ)β0 +D(γ0, γ)Xβ20, we have

A(λ, γ)Y = X(γ)β0+[Z(γ)+V(γ)](λ0−λ)+D(γ0, γ)Hθ20+λ20D(γ0, γ)GV+Cψ0+V, (B.1)

Combining it with (2.9) and (2.10), we have

β̂nT (λ, γ) = β0 + [X′(γ)QnTX(γ)]−1{X′(γ)QnT [Z(γ) + V(γ)](λ0 − λ) (B.2)

+ X′(γ)QnT [D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV +V]}, and

σ̂2nT (λ, γ) =
1
N (λ0 − λ)′[Z(γ) + V(γ)]′MnT (γ)[Z(γ) + V(γ)](λ0 − λ) (B.3)

+ 2
N (λ0 − λ)′[Z(γ) + V(γ)]′MnT (γ)[D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV +V]

+ 1
N [D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV +V]MnT (γ)[D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV +V],

where MnT (γ) = QnT −QnTX(γ)[X′(γ)QnTX(γ)]−1X′(γ)QnT .

Under Assumption B(vi), the limit of 1
NX′(γ)QnTX(γ) exists and is nonsingular. In addi-

tion, uniformly in γ ∈ Γ, 1
NX′(γ)QnTV and 1

N (Z(γ), D(γ0, γ)H)′QnTV are Op((N)−1/2) by
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Lemma B.1; 1
NX′(γ)QnT (V(γ),D(γ0, γ)GV) and 1

N (Z(γ), D(γ0, γ)H)′QnT (V(γ),D(γ0, γ)GV)

are op(1) by Lemma A.4; similarly, 1
NX′(γ)QnT (Z(γ), D(γ0, γ)H), 1

NV′QnT (V(γ),D(γ0, γ)GV),

1
N (V(γ),D(γ0, γ)GV)′QnT (V(γ),D(γ0, γ)GV) and 1

N (Z(γ), D(γ0, γ)H)′QnT (Z(γ), D(γ0, γ)H)

are all Op(1) by Lemma A.4, as their expectations are all O(1). Besides, 1
NV′QnTV−σ20 = op(1)

by Lemma A.2 and θ20 = O((nT )−τ ) by Assumption F. These together lead to

β̂nT (λ, γ) = β0 + [ 1NX′(γ)QnTX(γ)]−1 1
NX′(γ)QnTZ(γ)(λ0 − λ) + op(1), and (B.4)

σ̂2nT (λ, γ) = σ20 +
2
NV′QnTV(γ)(λ0 − λ) + (λ0 − λ)′{ 1

NV′(γ)QnTV(γ) + 1
NZ′(γ)QnTZ(γ)

− 1
NZ′(γ)QnTX(γ)[ 1NX′(γ)QnTX(γ)]−1 1

NX′(γ)QnTZ(γ)}(λ0 − λ) + op(1). (B.5)

These imply that

β̂nT (λ̂nT , γ) = β0 + op(1) and σ̂
2
nT (λ̂nT , γ) = σ20 + op(1), (B.6)

uniformly in γ ∈ Γ, as long as λ̂nT = λ0+op(1). That is, to show the consistency of θ̂nT , we only

need to show that of λ̂nT . By Theorem 2.5 of Newey and McFadden (1994), the consistency of

λ̂nT follows if

(a) sup
(λ,γ)∈Λ×Γ

1
N |ℓ∗cnT (λ, γ)− ℓ̄∗cnT (λ, γ)| = op(1),

(b) lim
nT→∞

1
N ℓ̄

∗c
nT (λ, γ) is uniformly equicontinuous in λ for any γ,

(c) λ0 uniquely maximizes lim
nT→∞

1
N ℓ̄

∗c
nT (λ, γ) over (λ, γ) ∈ Λ× Γ.

Proof of (a): For simplicity, we establish sup
(λ,γ)∈Λ×Γ

1
nT |ℓ

∗c
nT (λ, γ)− ℓ̄∗cnT (λ, γ)| = op(1) instead,

as N
nT = O(1). Note from (2.11) and (2.14),

1
nT [ℓ

∗c
nT (λ, γ)− ℓ̄∗cnT (λ, γ)] = −1

2 [ln σ̂
2
nT (λ, γ)− ln σ̄2nT (λ, γ)] +

1
nT [ln |A(λ, γ)| − E(ln |A(λ, γ)|)].

For the second term, Lemma A.4 implies that supγ∈Γ
1
nT [ln |A(λ, γ)| − E(ln |A(λ, γ)|)] = op(1)

for any given λ. Also, for a given γ, it is op(1) for each λ and uniformly equicontinuous in λ

(see the proof of (b)). Hence, sup
(λ,γ)∈Λ×Γ

1
nT [ln |A(λ, γ)| − E(ln |A(λ, γ)|)] = op(1).

For the first term, if, uniformly in (λ, γ) ∈ Λ × Γ, σ̄2nT (λ, γ) > c > 0 and σ̂2nT (λ, γ) −

σ̄2nT (λ, γ) = op(1), then ln σ̂2nT (λ, γ)− ln σ̄2nT (λ, γ) = ln[1 + σ̄−2
nT (λ, γ)(σ̂

2
nT (λ, γ)− σ̄2nT (λ, γ))] =

op(1) uniformly in (λ, γ) ∈ Λ×Γ. From (B.1), rewriteA(λ, γ)Y = X(γ)β0+(Z(γ), D(γ0, γ)H)ϕ†+

Cψ0 +A(λ, γ)A−1V, where ϕ† = ((λ0 − λ)′, θ′20)
′. Then by (2.13),

σ̄2nT (λ, γ) = Eσ2nT (λ, γ) + ϕ†′{E[ 1N (Z(γ), D(γ0, γ)H)′QnT (Z(γ), D(γ0, γ)H)] (B.7)

− E[ 1N (Z(γ), D(γ0, γ)
′QnTH)X(γ)]E[ 1NX′(γ)QnTX(γ)]−1E[ 1NX′(γ)QnT (Z(γ), D(γ0, γ)H)]}ϕ†,

where σ2nT (λ, γ) is given above Assumption G. The remaining term in (B.7) is non-negative as

the quantity in the curly brackets is a Schur complement of 1
NE[H(γ)QnTH(γ)] and thus must
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be positive semi-definite (p.s.d.), where H(γ) = [H(γ), D(γ0, γ)H].

For the first term in (B.7), we have,

σ2nT (λ, γ) =
σ2
0

(n−1)T

∑T
t=1 tr(A

′−1
t A′

t(λ, γ)At(λ, γ)A
−1
t )− σ2

0
n(n−1)T

∑T
t=1 l

′
nAt(λ, γ)A

−1
t A′−1

t A′
t(λ, γ)ln

= σ̈2nT (λ, γ) +Op(
1
n),

where σ̈2nT (λ, γ) =
σ2
0

nT

∑T
t=1 tr(A

′−1
t A′

t(λ, γ)At(λ, γ)A
−1
t ). Note that

− 1
2 [ln σ̈

2
nT (λ, γ)− lnσ20] +

1
nT [ln |A(λ, γ)| − ln |A|]

= − 1
2

[
ln( 1

nT

∑T
t=1 tr(A

′−1
t A′

t(λ, γ)At(λ, γ)A
−1
t ))− ln(

∏T
t=1 |A

′−1
t A′

t(λ, γ)At(λ, γ)A
−1
t |)

1
nT

]
⩽ 0,

due to the fact that arithmetic mean is no less than geometric means. As σ2nT (λ, γ) = σ̈2nT (λ, γ)+

Op(
1
n), the above inequality implies

−1
2 lnσ

2
nT (λ, γ) ⩽ −1

2 lnσ
2
0 − 1

nT [ln |A(λ, γ)| − ln |A|] +Op(
1
n) = Op(1). (B.8)

Hence, we conclude that σ2nT (λ, γ) is bounded away from zero on Λ× Γ, and so is σ̄2nT (λ, γ).

Thus, it is left to show σ̂2nT (λ, γ) − σ̄2nT (λ, γ) = op(1), uniformly in (λ, γ) ∈ Λ × Γ. Firstly,

using A(λ, γ)A−1 = In + (λ10 − λ1)G+ (λ20 − λ2)D(γ)G+ λ20D(γ0, γ)G, we have

σ2nT (λ, γ) = σ20 + 2σ20G′
1,nT (γ)λ

† + σ20λ
†′G1,nT (γ)λ

†, (B.9)

where λ† = ((λ0−λ)′, λ20)′, G1,nT (γ) =
1
N [tr(QnTG), tr(QnTD(γ)G), tr(QnTD(γ0, γ)G)]′ and

G1,nT (γ) =
1
N


tr(QnTGG′), tr(QnTD(γ)GG′), tr(QnTD(γ0, γ)GG′),

∼, tr(QnTD(γ)GG′D(γ)), tr(QnTD(γ0, γ)GG′D(γ)),

∼, ∼, tr(QnTD(γ0, γ)GG′D(γ0, γ)),

 .
By plugging (B.9) into (B.7) and using the fact that the elements of E[G1,nT (γ)] and

E[G1,nT (γ)] are uniformly bounded on Γ by Assumption C and D and θ20 = O((nT )−τ ) by

Assumption F, we have , corresponding to (B.5),

σ̄2nT (λ, γ) = σ20 + 2σ20E[G
[2]′
1,nT (γ)](λ0 − λ) + (λ0 − λ)′

{
σ20E[G

[2]
1,nT (γ)] + E[ 1NZ′(γ)QnTZ(γ)]

− E[ 1NZ′(γ)QnTX(γ)]E[ 1NX′(γ)QnTX(γ)]−1E[ 1NX′(γ)QnTZ(γ)]
}
(λ0 − λ) + o(1). (B.10)

We see that E[ 1NV′QnTV(γ)] = σ20E[G
[2]′
1,nT (γ)] and E[ 1NV′(γ)QnTV(γ)] = σ20E[G

[2]
1,nT (γ)]. Thus,

Lemma A.4 implies 1
NV′QnTV(γ)−σ20E[G

[2]′
1,nT (γ)]

a.s.−→ 0, 1
NV′(γ)QnTV(γ)−σ20E[G

[2]
1,nT (γ)]

a.s.−→

0, and 1
NX′(γ)QnTX(γ), 1

NZ′(γ)QnTX(γ) and 1
NZ′(γ)QnTZ(γ) converge to their expectations

almost surely, uniformly in γ ∈ Γ. The convergence of σ̂2nT (λ, γ) to σ̄
2
nT (λ, γ) is also uniform on

Λ because λ appears simply as linear or quadratic factors in these terms. Therefore, we have

σ̂2nT (λ, γ)− σ̄2nT (λ, γ) = op(1), uniformly in (λ, γ) ∈ Λ× Γ.
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Proof of (b): Recall from (2.14),

1
N ℓ̄

∗c
nT (λ, γ) = − cnT

2 (ln 2π + 1)− cnT
2 ln σ̄2nT (λ, γ) +

1
NE(ln |A(λ, γ)|).

From (B.10), we see that the limit of σ̄2nT (λ, γ) is uniformly equicontinuous on Λ given γ, as its

terms are linear or quadratic in λ with the corresponding vector or matrices being bounded. To

see the uniform equicontinuity of 1
NE(ln |A(λ, γ)|) on Λ, a Taylor expansion around λ0 gives,

1
NE(ln |A(λ, γ)|) = 1

NE[(ln |A(λ0, γ)|) + tr(G(λ̇, γ))(λ1 − λ10) + tr(D(γ)G(λ̇, γ))(λ2 − λ20)],

where λ̇ lies between λ and λ0. As
1
N tr(G(λ̇, γ)) and 1

N tr(D(γ)G(λ̇, γ)) are uniformly bounded

by Assumptions C and D for any λ̇ and γ, we conclude 1
NE(ln |A(λ, γ)|) is also uniformly

equicontinuous on Λ for any γ.

Proof of (c): Again, for simplicity, we show that λ0 uniquely maximizes lim
nT→∞

1
nT ℓ̄

∗c
nT (λ, γ)

over (λ, γ) ∈ Λ× Γ. Letting σ̌2nT (λ, γ) = Eσ2nT (λ, γ), we have

1
nT [ℓ̄

∗c
nT (λ, γ)− ℓ̄∗cnT (λ0, γ0)]

= − 1
2 [ln σ̄

2
nT (λ, γ)− ln σ̌2nT (λ, γ)]−

1
2 [ln σ̌

2
nT (λ, γ)− ln σ̄2nT (λ0, γ)]−

1
2 [ln σ̄

2
nT (λ0, γ)

− ln σ̄2nT (λ0, γ0)] +
1
nT E[ln |A(λ, γ)| − ln |A(λ0, γ)|] + 1

nT E[ln |A(λ0, γ)| − ln |A|]

= − 1
2 [ln σ̄

2
nT (λ, γ)− ln σ̌2nT (λ, γ)]−

1
2 [ln σ̌

2
nT (λ, γ)− ln σ̄2nT (λ0, γ)]

+ 1
nT E[ln |A(λ, γ)| − ln |A(λ0, γ)|] + o(1),

where the last equation holds as σ̄2nT (λ0, γ)−σ̄2nT (λ0, γ0) = o(1) by (B.10) and 1
nT E[ln |A(λ0, γ)|−

ln |A|] = 1
nT E[ln |A(λ0, γ)A

−1|] = 1
nT E[ln |InT + λ20d(γ0, γ)G|] = o(1) by λ20 = O((nT )−τ ).

Thus, it amounts to showing the last three terms are always negative for λ ̸= λ0 given any γ.

For the first term, noting that σ2nT (λ, γ) − σ̌2nT (λ, γ) = op(1), uniformly in (λ, γ) ∈ Λ × Γ,

and using the results in (a), we have

− 1
2 [ln σ̄

2
nT (λ, γ)− ln σ̌2nT (λ, γ)]

=− 1
2 ln[1 +

1
Nσ2

nT (λ,γ)
(λ0 − λ)′Z′(γ)M(γ)Z(γ)(λ0 − λ)] + op(1).

We note that 1
NZ′(γ)M(γ)Z(γ) is the Schur complement of 1

N [H′(γ)QnTH(γ)] so that it is p.s.d..

Thus, the limit of the above equation is non-positive.

For the second and third terms, using σ̌2nT (λ, γ) − σ2nT (λ, γ) = op(1) and σ̄2nT (λ0, γ) −

σ2nT (λ0, γ) = op(1), shown in the proof of (a), we have

− 1
2 [ln σ̌

2
nT (λ, γ)− ln σ̄2nT (λ0, γ)] +

1
nT [E(ln |A(λ, γ)|)− E(ln |A(λ0, γ)|)]

= − 1
2 [lnσ

2
nT (λ, γ)− lnσ2nT (λ0, γ)] +

1
nT [ln |A(λ, γ)| − ln |A(λ0, γ)|] + op(1),

the limit of which is also non-positive, implied by (B.8) as σ2nT (λ0, γ) = σ20 + op(1) by (B.9) and
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1
nT [ln |A(λ0, γ)| − ln |A|] = 1

nT [ln |InT + λ20d(γ0, γ)G|] = op(1). Together, we have

1
nT [ℓ̄

∗c
nT (λ, γ)− ℓ̄∗cnT (λ0, γ0)]

= − 1
2 ln[1 +

1
Nσ2

nT (λ,γ)
(λ0 − λ)′Z′(γ)M(γ)Z(γ)(λ0 − λ)]

− 1
2 [lnσ

2
nT (λ, γ)− lnσ2nT (λ0, γ)] +

1
nT [ln |A(λ, γ)| − ln |A(λ0, γ)|] + op(1).

As discussed above, we have lim
nT→∞

1
nT [ℓ̄

∗c
nT (λ, γ) − ℓ̄∗cnT (λ0, γ0)] ⩽ 0. From the matrix par-

tition formula, lim
nT→∞

1
NH′(γ)QnTH(γ) is non-singular if and only if lim

nT→∞
1
NX′(γ)QnTX(γ)

and lim
nT→∞

1
NZ′(γ)M(γ)Z(γ) are non-singular. Hence, if Assumption G(i) holds, then we have

lim
nT→∞

1
NZ′(γ)M(γ)Z(γ) is positive definite (p.d.) and the limit of 1

nT [ℓ̄
∗c
nT (λ, γ) − ℓ̄∗cnT (λ0, γ0)]

is strictly less than zero unless λ = λ0, i.e., λ0 is the unique maximizer of 1
nT ℓ̄

∗c
nT (λ, γ). If

Assumption G(i) fails, identification requires that the limit of −1
2 [lnσ

2
nT (λ, γ)− lnσ2nT (λ0, γ)]+

1
nT [(ln |A(λ, γ)|) − (ln |A(λ0, γ)|)] is strictly less than zero for any γ and λ ̸= λ0, which is

equivalent to Assumption G(ii). ■

Proof of Theorem 2.2: We show the consistency of γ̂nT in two steps:

(a) We derive a preliminary convergence rate for θ̂nT , (nT )
τ (θ̂nT − θ0) = Op(1);

(b) Based on the convergence rate, we then establish the consistency of γ̂nT .

Proof of (a): Applying the mean value theorem (MVT) to each element of S∗
θ,nT (θ̂nT , γ̂nT )

where S∗
θ,nT (θ, γ) is given in (2.7), we have

0 = S∗
θ,nT (θ̂nT , γ̂nT ) = S∗

θ,nT (θ0, γ̂nT ) +
[

∂
∂θ′S

∗
θ,nT (θ, γ̂nT )

∣∣
θ=θ̄r in rth row

]
(θ̂nT − θ0),

where {θ̄r} are on the line segment between θ̂nT and θ0. In the following, we use θ̄ to denote

{θ̄r} and H∗
nT (θ̄, γ) to denote − ∂

∂θ′S
∗
θ,nT (θ, γ)

∣∣
θ=θ̄r in rth row

for simplicity. Thus, we have

(nT )τ (θ̂nT − θ0) =
[

1
nTH

∗
nT (θ̄, γ̂nT )

]−1 (nT )τ

nT S∗
θ,nT (θ0, γ̂nT ). (B.11)

Therefore, the proof of the result in (a) is equivalent to showing for any given γ,

(i) 1
nT [H

∗
nT (θ̄, γ)−H∗

nT (θ0, γ)] = op(1),

(ii) 1
nT [H

∗
nT (θ0, γ)− E(H∗

nT (θ0, γ))] = op(1),

(iii) The limit of 1
nT E[H

∗
nT (θ0, γ)] is non-singular,

(iv) (nT )τ

nT S∗
θ,nT (θ0, γ) = Op(1).

The Hessian matrix H∗
nT (θ, γ) has the following components:

H∗
βθ =

cnT
σ2 [X′(γ)QnTX(γ), X′(γ)QnTWY, X′(γ)QnTD(γ)WY, 1

σ2X′(γ)Ṽ(ϕ, γ)],

H∗
λ1λ1

= cnT
σ2 Y′W′QnTWY+tr(G2(λ, γ)),H∗

λ1λ2
= cnT

σ2 Y′W′QnTD(γ)WY+tr(D(γ)G2(λ, γ)),

H∗
λ1σ2 = cnT

σ4 Y′W′Ṽ(ϕ, γ), H∗
λ2λ2

= cnT
σ2 Y′W′D(γ)QnTD(γ)WY + tr[(D(γ)G(λ, γ))2],
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H∗
λ2σ2 = cnT

σ4 Y′W′D(γ)Ṽ(ϕ, γ), H∗
σ2σ2 = cnT

2σ6 [2Ṽ
′(ϕ, γ)Ṽ(ϕ, γ)−Nσ2].

To prove (i), we note that WY = Z + GV and Ṽ(ϕ, γ) = QnT [A(λ, γ)Y − X(γ)β] =

QnT [X(γ)(β0 − β) + (Z(γ) + V(γ))(λ0 − λ) + D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV + V] by (B.1).

Hence, for any given γ, 1
nTH

∗
nT (θ̄, γ) = Op(1) by Lemma A.1 and A.2. As θ̂nT − θ0

p−→ 0, we

have θ̄ − θ0 = op(1). Noting that σ−p appears in H∗
nT (θ) multiplicatively for p = 2, 4, 6 and

σ̄−p = σ−p
0 + op(1), we have 1

nTH
∗
nT (θ̄, γ) =

1
nTH

∗
nT (ϕ̄, σ

2
0, γ) + op(1). Thus, it is equivalent to

showing 1
nT [H

∗
nT (ϕ̄, σ

2
0, γ)−H∗

nT (θ0, γ)]
p−→ 0. As proof for each component in H∗

nT (ϕ̄, σ
2
0, γ) is

similar, we only show one of them for example,

1
nT [H

∗
λ1σ2(ϕ̄, σ

2
0, γ)−H∗

λ1σ2(θ0, γ)] =
1

Nσ4
0
Y′W′[Ṽ(ϕ̄, γ)− Ṽ(ϕ0, γ)]

=− 1
Nσ4

0
(Z+GV)′QnT [X(γ)(β̄ − β0) + (Z(γ) + V(γ))(λ̄− λ0)] = op(1),

by Lemmas A.1 and A.2, and θ̄ − θ0 = op(1).

To prove (ii), we note that Ṽ(ϕ0, γ) = QnTV +QnTD(γ0, γ)Hθ20 + λ20QnTD(γ0, γ)GV

by (B.1). Hence, 1
nT [H

∗
nT (θ0, γ)−E(H∗

nT (θ0, γ))] = op(1) follows directly from Lemma A.4 and

θ20 = O((nT )−α).

To prove (iii), using the facts that λ20 = O((nT )−τ ) and the elements ofG(λ0, γ)D(γ, γ0)G

are uniformly bounded, we have 1
nT tr[G(λ0, γ) −G] = 1

nT tr[G(λ0, γ)(InT −A(λ0, γ)A
−1)] =

λ20
nT tr[G(λ0, γ)D(γ, γ0)G] = Op((nT )

−τ ). Meanwhile, as QnT = (IT − lT l′T
T ) ⊗ (In − lnl′n

n ), we

have 1
N tr(QnTΠ)− 1

nT tr(Π) = Op(
1
n) for Π = GG′, D(γ)GG′ or D(γ)GG′D′(γ). Thus, one

shows that 1
nT E[H

∗
nT (θ0, γ)]− ΣnT (θ0, γ) = o(1) for any γ, where ΣnT (θ0, γ0) is in (2.20).

Therefore, it amounts to proving the limit of ΣnT (θ0, γ) is nonsingular on Γ, which follows

if ΣnT (θ0, γ)p = 0 implies p = 0, where p = (p′1, p
′
2, p3), p1 is a 2k × 1 vector, p2 a 2× 1 vector,

and p3 a scalar. The first row block of the linear equation system ΣnT (θ0, γ)p = 0 implies

p1 = −[X′(γ)QnTX(γ)]−1[X′(γ)QnTZ(γ)]p2, while the last row shows p3 = −2σ20S ′
nT (γ)p2.

Substituting them into the remaining equation of the linear system gives us

[ 1
Nσ2

0
Z′(γ)M(γ)Z(γ) + 1

2nT C
[2](γ)]p2 = 0,

where C[2](γ) is the submatrix of C(γ) by deleting its third row and column. As shown before,

the first term in the square bracket is p.s.d.. Also, 1
nT C

[2](γ) is p.s.d. because

1
nT z

′C[2](γ)z = 1
2nT tr[(z1C

s
1 + z2Cs

2(γ))
′(z1Cs

1 + z2Cs
2(γ))] ≥ 0,

for all z = (z1, z2)
′ in R2. Under Assumption H, either 1

NZ′(γ)M(γ)Z(γ) or 1
nT C

[2](γ) is strictly

p.d.. Therefore, we must have p2 = 0 from the above equation, implying both p1 = 0 and

p3 = 0 by the first and last equations of the linear system. Hence, the non-singularity of
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lim
nT→∞

ΣnT (θ0, γ) follows.

To prove (iv), using WY = Z + GV and Ṽ(ϕ0, γ) = QnTV + QnTD(γ0, γ)Hθ20 +

λ20QnTD(γ0, γ)GV and with S∗u
θ,nT (θ0, γ) defined in (2.18), we have

S∗
θ,nT (θ0, γ) = cnT [S

∗u
θ,nT (θ0, γ) +

∑3
r=1Br,nT (γ)] (B.12)

where B1,nT (γ) = −
{
01×2k,

T−1
nT tr[Ḡ(λ0, γ)J],

T−1
nT tr[D(γ)Ḡ(λ0, γ)J], 0

}′
,

B2,nT (γ) = −
{
01×2k, tr(QnT (G(λ0, γ)−G)), tr(QnTD(γ)(G(λ0, γ)−G)), 0

}′
, and

B3,nT (γ) =



1
σ2
0
X′(γ)QnT [D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV],

1
σ2
0
(Z+GV)′QnT [D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV],

1
σ2
0
[Z+GV]′D(γ)QnT [D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV]

1
2σ4

0
[D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV]′QnT [2V +D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV].

As cnT = O(1), it is sufficient to show that (nT )τ−1S∗u
θ,nT (θ0, γ) and (nT )τ−1Br,nT (γ), r =

1, 2, 3 are all bounded for any γ. By Lemma A.3 and Lemma B.1, S∗u
θ,nT (θ0, γ) = Op(

√
nT ),

uniformly in γ ∈ Γ. Since τ ∈ (0, 12), (nT )
τ−1S∗u

θ,nT (θ0, γ) = (nT )τ−
1
2√

nT
S∗u
θ,nT (θ0, γ) = op(1). As

for B3,nT (γ), note that θ20 = (nT )−τδ0, where δ0 = (b′0, l0)
′, by Assumption F. Thus, it is easy

to see that (nT )τ−1B3,nT (γ) = Op(1) uniformly in γ ∈ Γ. We show the third component of

B3,nT (γ) for example as the others can be shown similarly. By Lemma A.4,

(nT )τ−1

σ2
0

[Z+GV]′D(γ)QnT [D(γ0, γ)Hθ20 + λ20D(γ0, γ)GV]

= 1
σ2
0nT

[Z+GV]′D(γ)QnT [D(γ0, γ)Hδ0 + l0D(γ0, γ)GV]

= 1
σ2
0nT

E[Z′D(γ)QnTD(γ0, γ)Hδ0 +V′G′D(γ)QnTD(γ0, γ)GVl0] + op(1) = Op(1).

Similarly, we also have (nT )τ−1B2,nT (γ) = Op(1) uniformly in γ ∈ Γ. We show one of the two

non-zero elements in B2,nT (γ) for example, as the other can be shown similarly. Noting that

G(λ0, γ)−G = G(λ0, γ)(InT −A(λ0, γ)A
−1) = λ20G(λ0, γ)D(γ, γ0)G, one has

(nT )τ−1tr(QnTD(γ)(G(λ0, γ)−G))

= l0
nT tr(QnTD(γ)G(λ0, γ)D(γ, γ0)G) = Op(1). (B.13)

Finally, we show (nT )τ−1B1,nT (γ) = op(1). Note that the nonzero elements in B1,nT (γ) is

either O(T ) or Op(T ) so that elements of (nT )τ−1B1,nT (γ) is either O( T τ

n1−τ ) or Op(
T τ

n1−τ ). As

T
n → c <∞ and τ ∈ (0, 12),

T τ

n1−τ = cτ

n1−2τ = o(1). Thus, the desired result holds.

Proof of (b): Note that

(nT )2τ

nT [ℓ∗cnT (λ̂nT , γ̂nT )−ℓ∗cnT (λ0, γ0)] = − (nT )2τ

2 [ln σ̂2nT−ln σ̂2nT (λ0, γ0)]+
(nT )2τ

nT ln |A(λ̂nT , γ̂nT )A
−1|.

For simplicity, we denote λ̂†nT = ((λ0 − λ̂nT )
′, λ20)

′ and ϕ̂†nT = ((λ0 − λ̂nT )
′, θ′20)

′. By (a) and
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Assumption F, ϕ̂†nT , λ̂
†
nT = O((nT )−τ ). Thus, using (B.3) and σ̂2nT ≡ σ̂2nT (λ̂nT , γ̂nT ), we have

σ̂2nT − σ̂2nT (λ0, γ0) =
2
NV′QnTKV(γ̂nT )λ̂

†
nT + 1

N λ̂
†′
nTK

′
V(γ̂nT )QnTKV(γ̂nT )λ̂

†
nT

+ 1
N ϕ̂

†′
nTK

′
H(γ̂nT )M(γ̂nT )KH(γ̂nT )ϕ̂

†
nT + op((nT )

−2τ ), (B.14)

where KH(γ) = (Z(γ), D(γ0, γ)H) and KV(γ) = (V(γ),D(γ0, γ)GV).

By Theorem 2.8 of Hall (2015), we have ln |A(λ̂nT , γ̂nT )A
−1| = tr[ln(A(λ̂nT , γ̂nT )A

−1)] =

tr
[∑∞

m=1(−1)m+1 (A(λ̂nT ,γ̂nT )A−1−InT )m

m

]
. By further using A(λ̂nT , γ̂nT )A

−1 = In + (λ10 −

λ̂1,nT )G+ (λ20 − λ̂2,nT )D(γ̂nT )G+ λ20D(γ0, γ̂nT )G and λ̂†nT = O((nT )−τ ), we have

1
nT ln |A(λ̂nT , γ̂nT )A

−1| = G′
2,nT (γ̂nT )λ̂

†
nT − 1

2 λ̂
†′
nTG2,nT (γ̂nT )λ̂

†
nT + op((nT )

−2τ ), (B.15)

where G2,nT (γ) =
1
nT

{
tr(G), tr(D(γ)G), tr(D(γ0, γ)G)

}′
, and

G2,nT (γ) =
1
nT


tr(G2), tr(D(γ)G2), tr(D(γ0, γ)G

2),

∼, tr((D(γ)G)2), tr(D(γ0, γ)GD(γ)G),

∼, ∼, tr((D(γ0, γ)G)2),

 .
Before proceeding with the subsequent derivation, we recall G1,nT (γ) and G1,nT (γ) in (B.9).

Note that G1,nT (γ) = G2,nT (γ) + Op(
1
n), (nT )

τ [G1,nT (γ)− G2,nT (γ)] = Op(
T τ

n1−τ ) = op(1). Simi-

larly, G1,nT (γ) = G3,nT (γ) +Op(
1
n), where

G3,nT (γ) =
1
nT

T∑
t=1


tr(GG′), tr(D(γ)GG′), tr(D(γ0, γ)GG′),

∼, tr(D(γ)GG′), tr(D(γ0, γ)GG′d(γ)),

∼, ∼, tr(D(γ0, γ)GG′),

 .
Then, using the Taylor expansion for logarithm and plugging in (B.14) and (B.15), we have

− (nT )2τ

2 [ln σ̂2nT − ln σ̂2nT (λ0, γ0)] +
(nT )2τ

nT ln |A(λ̂nT , γ̂nT )A
−1|

= − (nT )2τ

Nσ2
0
V′QnTKV(γ̂nT )λ̂

†
nT − (nT )2τ

2Nσ2
0
λ̂†′nTK

′
V(γ̂nT )QnTKV(γ̂nT )λ̂

†
nT

− (nT )2τ

2Nσ2
0
ϕ̂†′nTK

′
H(γ̂nT )M(γ̂nT )KH(γ̂nT )ϕ̂

†
nT + [ (nT )τ

Nσ2
0
V′QnTKV(γ̂nT )λ̂

†
nT ]

2

+ (nT )2τG′
2,nT (γ̂nT )λ̂

†
nT − (nT )2τ

2 λ̂†′nTG2,nT (γ̂nT )λ̂
†
nT + op(1), (B.16)

where we use the facts that σ̂2nT (λ0, γ0)− σ20 = Op(N
−1/2) and σ̂2nT (λ0, γ0) appears multiplica-

tively. Consider the combination of the first and fifth terms,

− (nT )2τ

σ2
0

[ 1NV′QnTKV(γ̂nT )− σ20G′
2,nT (γ̂nT )]λ̂

†
nT

= − (nT )2τ

σ2
0

[ 1NV′QnTKV(γ̂nT )− σ20G′
1,nT (γ̂nT ) + σ20(G′

1,nT (γ̂nT )− G′
2,nT (γ̂nT ))]λ̂

†
nT = op(1),

as 1
NV′QnTKV(γ)−σ20G′

1,nT (γ) is Op(N
−1/2) uniformly in γ ∈ Γ, which can be shown similarly

to Lemma B.1, λ̂†nT = Op((nT )
−τ ), and (nT )τ [G1,nT (γ)− G2,nT (γ)] = op(1).
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Then, for the second term, we have 1
NK′

V(γ)QnTKV(γ) = σ20G1,nT (γ)+op(1) = σ20G3,nT (γ)+

op(1), uniformly in γ ∈ Γ. These together lead to

(nT )2τ

nT [ℓ∗cnT (λ̂nT , γ̂nT )− ℓ∗cnT (λ0, γ0)]

= − (nT )2τ

2 λ̂†′nT [G2,nT (γ̂nT ) +G3,nT (γ̂nT )− 2G2,nT (γ̂nT )G′
2,nT (γ̂nT )]λ̂

†
nT

− (nT )2τ

2Nσ2
0
ϕ̂†′nTK

′
H(γ̂nT )M(γ̂nT )KH(γ̂nT )ϕ̂

†
nT + op(1). (B.17)

First, we note that G2,nT (γ) + G3,nT (γ) − 2G2,nT (γ)G′
2,nT (γ) = 1

2C(γ), which is p.s.d. as

1
2z

′C(γ)z = 1
2nT tr[(z1C

s
1 + z2Cs

2(γ) + z3Cs
3(γ))

′(z1Cs
1 + z2Cs

2(γ) + z3Cs
3(γ))] ≥ 0 for all z =

(z1, z2, z3)
′ in R3. Second, for any comformable vector d, d′[ 1NK′

H(γ)M(γ)KH(γ)]d can be writ-

ten into the form of a′Qa with some nT ×1 vector a and nT ×nT idempotent matrix Q, so that

the second term of (B.17) is also non-positive. Therefore, we have lim
nT→∞

(nT )2τ

nT [ℓ∗cnT (λ̂nT , γ̂nT )−

ℓ∗cnT (λ0, γ0)] ⩽ 0. By Theorem 5 of Smith (1992) and under Assumption H(i), we have

ρmin

(
1
NK′

H(γ̂nT )M(γ̂nT )KH(γ̂nT )
)
≥ ρmin

(
1
NH′(γ̂nT )QnTH(γ̂nT )

)
≥ c|γ̂nT − γ0|.

It follows that

(nT )2τ

nT [ℓ∗cnT (λ̂nT , γ̂nT )− ℓ∗cnT (λ0, γ0)] ≤ − 1
2σ2

0
c|γ̂nT − γ0|∥(nT )τ ϕ̂†nT ∥2 + op(1).

By the definition of (λ̂nT , γ̂nT ), we have
(nT )2τ

nT (ℓ∗cnT (λ̂nT , γ̂nT )−ℓ∗cnT (λ0, γ0)) ≥ 0. Hence, we must

have that |γ̂nT−γ0| = op(1). Similarly, Assumption H(ii) can also guarantee that γ̂nT−γ0
p−→ 0.

■

Proof of Theorem 2.3: We first show that (nT )τ (θ̂nT − θ0) = op(1). Given the results

(i)-(iv) from the proof of Theorem 2.2, we only need to show that (nT )τ−1B2,nT (λ0, γ̂nT ) and

(nT )τ−1B3,nT (θ0, γ̂nT ) are both op(1), which is directly implied by the consistency of γ̂nT .

Then, let B, k, l and NnT be defined in Lemma B.4, and m̄ ≡ max
(
k, l, ∥δ0∥, |l0|, 1, σ20

)
.

Pick η, ι > 0 small enough such that max(η, ι) < m̄ and

M0 ≡ −1
2 T̄ k −

k
σ2
0+ι

+ 1
2(m̄η + 6m̄3ι) + 1

σ2
0−ι

(4m̄η + 8m̄2η + 18m̄3ι+ 4m̄4ι) < 0.

Let EnT be the joint event such that (1) |γ̂nT − γ0| ⩽ B, (2) T τ

n1−τ < ι, (3) (nT )τ |θ̂nT − θ0| ⩽ ι,

(4) inf
γ∈NnT

Dr,nT (γ)
|γ−γ0| > (1 − η)k, (5) sup

γ∈NnT

∥Fs,nT (γ)∥
|γ−γ0| < (1 + η)l, (6) sup

γ∈NnT

|Ks,nT (γ)|
|γ−γ0| < (1 + η)l,

(7) sup
γ∈NnT

|Lr,nT (γ)|
|γ−γ0| < (1 + η)l, (8) sup

γ∈NnT

∥Pr,nT (γ)∥
|γ−γ0| < η, (9) sup

γ∈NnT

∥Js,nT (γ,γ0)∥√
anT |γ−γ0| < η,

for s = 1, 2 and r = 1, 2, 3, and (10) will be established later.

To use the result (nT )τ (θ̂nT − θ0) = op(1), we let ℓ‡nT (γ) = ℓ∗nT (θ̂nT , γ), which must have a

unique maximizer, γ = γ̂nT . We have,

38



1
cnT

[ℓ‡nT (γ)− ℓ‡nT (γ0)] =
1

cnT
[ln |A(λ̂nT , γ)| − ln |A(λ̂nT , γ0)|]

− 1
2σ̂2

nT
[V′(ϕ̂nT , γ)QnTV(ϕ̂nT , γ)−V′(ϕ̂nT , γ0)QnTV(ϕ̂nT , γ0)]. (B.18)

For the first differenced term, we have, by Theorem 2.8 of Hall (2015),

1
cnT

[ln |A(λ̂nT , γ)| − ln |A(λ̂nT , γ0)|]

= λ̂2,nT T̄tr
[
D(γ0, γ)G(λ̂nT , γ0)

]
− 1

2 λ̂
2
2,nT T̄tr

{
[D(γ0, γ)G(λ̂nT , γ0)]

2
}
+Rem

= λ̂2,nT T̄tr
[
D(γ0, γ)G

]
− 1

2 λ̂
2
2,nT T̄tr{[D(γ0, γ)G]2}+Rem,

= A1(γ) +A2(γ) +A3(γ), (B.19)

where A3(γ) = Rem is the remainder term. Noting that G(λ̂nT , γ0)−G = G(λ̂nT , γ0)[(λ̂1,nT −

λ10)G + (λ̂2,nT − λ20)D(γ0)G], the elements of [D(γ0, γ)G(λ̂nT , γ0)]
r, r ≥ 1, are uniformly

bounded by Lemma A.1, and λ̂2,nT = Op((nT )
−τ ), implied by λ̂2,nT − λ20 = op(1) and λ20 =

O((nT )−τ ), we see A3(γ) is of smaller order relative to A2(γ), uniformly in γ ∈ Γ.

For the second differenced term in (B.18), QnTV(ϕ̂nT , γ) = QnT [A(λ̂nT , γ)Y−X(γ)β̂nT ] =

QnT [V +H(γ0)(ϕ0 − ϕ̂nT ) +D(γ0, γ)Hθ̂2,nT + V(γ0)(λ0 − λ̂nT ) + λ̂2,nTD(γ0, γ)GV]. Thus,

V′(ϕ̂nT , γ)QnTV(ϕ̂nT , γ)−V′(ϕ̂nT , γ0)QnTV(ϕ̂nT , γ0)

= [V(ϕ̂nT , γ) +V(ϕ̂nT , γ0)]
′QnT [V(ϕ̂nT , γ)−V(ϕ̂nT , γ0)] ≡

∑9
s=1 Bs(γ) (B.20)

where Bs(γ), s = 1, . . . , 9, respectively, takes the following forms, 2V′QnTD(γ0, γ)Hθ̂2,nT ,

2λ̂2,nTV
′QnTD(γ0, γ)GV, θ̂′2,nTH

′D(γ0, γ)QnTD(γ0, γ)Hθ̂2,nT ,

2λ̂2,nT θ̂
′
2,nTH

′D(γ0, γ)QnTD(γ0, γ)GV, 2(ϕ0 − ϕ̂nT )
′H′(γ0)QnTD(γ0, γ)Hθ̂2,nT ,

2λ̂2,nT (ϕ0 − ϕ̂nT )
′H′(γ0)QnTD(γ0, γ)GV, 2(λ0 − λ̂nT )

′V′(γ0)QnTD(γ0, γ)Hθ̂2,nT ,

2λ̂2,nT (λ0 − λ̂nT )
′V′(γ0)QnTD(γ0, γ)GV, and λ̂22,nTV

′G′D(γ0, γ)QnTD(γ0, γ)GV.

From (B.19) and (B.20), we have

ℓ‡nT (γ)− ℓ‡nT (γ0)

cnTanT (γ − γ0)
⩽ −

∑9
s=1 Bs(γ)− 2σ̂2nTA1(γ)

2σ̂2nTanT (γ − γ0)
+

A2(γ)

anT (γ − γ0)
+

A3(γ)

anT (γ − γ0)
. (B.21)

As is shown latter, A2(γ)
anT (γ−γ0)

are uniformly bounded on the set EnT . This implies that A3(γ)
anT (γ−γ0)

will shrink to zero as sample increase. Therefore, we let A3(γ)
anT (γ−γ0)

⩽ ι be the event (10) of EnT .

Fix ϵ > 0, one can choose v̄ for large enough (n, T ) such that P(EnT ) ⩾ 1 − ϵ, by Theorem

2.2, Assumption E, (nT )τ (θ̂nT − θ0) = op(1) shown at the beginning and Lemma B.4. Suppose

γ ∈ [γ0 + v̄/anT , γ0 + B] and EnT holds. Let l̂nT = (nT )τ λ̂2,nT and b̂nT = (nT )τ β̂2,nT so that

∥δ̂nT − δ0∥ ⩽ ι, where δ̂nT = (l̂′nT , b̂nT )
′, by event (3). Besides, we have σ20 − ι ⩽ σ20 − ι(nT )−τ ⩽

σ̂2nT ⩽ σ20 + ι(nT )−τ ⩽ σ20 + ι. Given these, we are going to study each term on the right-hand

side of inequality (B.21).
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By events (1), (3), (4) and (7), we have

A2(γ)

anT (γ − γ0)
=− λ220T̄tr[(D(γ0, γ)G)2]

2anT (γ − γ0)
−

(λ̂2,nT − λ20)(λ̂2,nT + λ20)T̄tr[(D(γ0, γ)G)2]

2anT (γ − γ0)

⩽−
T̄D3,nT (γ)

2(γ − γ0)
+

|l̂nT − l0||l̂nT + l0||L2,nT (γ)|
2(γ − γ0)

⩽− 1

2
T̄ (1− η)k +

1

2
ι(2|l0|+ ι)(1 + η)l ⩽ −1

2
T̄ k +

1

2
(m̄η + 6m̄3ι).

By events (1), (2), (3), (7) and (9), we have

−
B1(γ) + B2(γ)− 2σ̂2nTA1(γ)

2σ̂2nTanT (γ − γ0)

=−
V′QnTD(γ0, γ)Hθ̂2,nT

σ̂2nTanT (γ − γ0)
−
λ̂2,nT

{
V′QnTD(γ0, γ)GV − σ20tr[QnTD(γ0, γ)G]

}
σ̂2nTanT (γ − γ0)

+
σ20T̄ λ̂2,nTtr[D(γ0, γ)GJ]

σ̂2nTnanT (γ − γ0)
−

(σ20 − σ̂2nT )T̄ λ̂2,nTtr[D(γ0, γ)G]

σ̂2nTanT (γ − γ0)

⩽
∥δ̂nT ∥∥J1,nT (γ, γ0)∥
σ̂2nT

√
anT (γ − γ0)

+
|l̂nT |∥J2,nT (γ, γ0)∥
σ̂2nT

√
anT (γ − γ0)

+
T τ |l̂nT |σ20|L3,nT (γ)|
n1−τ σ̂2nT (γ − γ0)

+
ι|l̂nT ||L1,nT (γ)|
σ̂2nT (γ − γ0)

⩽
(∥δ0∥+ ι)η + (|l0|+ ι)[η + ισ20(1 + η)l + ι(1 + η)l]

σ̂2nT
⩽

4m̄η + 4m̄3ι+ 4m̄4ι

σ20 − ι
.

Next, by events (1), (3), (4), and (5), we have

− B3(γ)

2σ̂2nTanT (γ − γ0)
=− θ′20H

′D(γ0, γ)QnTD(γ0, γ)Hθ20
2σ̂2nTanT (γ − γ0)

−
(θ̂2,nT − θ20)

′H′D(γ0, γ)QnTD(γ0, γ)H(θ̂2,nT + θ20)

2σ̂2nTanT (γ − γ0)

⩽−
D1,nT (γ)

2σ̂2nT (γ − γ0)
+ ∥δ̂nT − δ0∥∥δ̂nT + δ0∥

F1,nT

2σ̂2nT (γ − γ0)

⩽
−(1− η)k + ι(2∥δ0∥+ ι)(1 + η)l

2σ̂2nT
⩽ − k

2σ20 + 2ι
+

3m̄3ι

σ20 − ι
.

Similarly, we have, by events (1), (3) and (8),

−B4(γ) + B6(γ) + B7(γ)

2σ̂2nTanT (γ − γ0)
⩽ ∥δ̂nT ∥|l̂nT |

∥P1,nT (γ)∥
σ̂2nT (γ − γ0)

+ ι
|l̂nT |∥P2,nT (γ)∥+ ∥δ̂nT ∥∥P3,nT (γ)∥

σ̂2nT (γ − γ0)

⩽
(∥δ0∥+ ι)(|l0|+ ι)η + ι(|l0|+ ι)η + ι(∥δ0∥+ ι)η

σ̂2nT
⩽

8m̄2η

σ20 − ι
.

Then, we show that by events (1), (3), (5) and (6),

− B5(γ) + B8(γ)

2σ̂2nTanT (γ − γ0)
⩽
ι∥δ̂nT ∥∥F2,nT (γ)∥
σ̂2nT (γ − γ0)

+
ι|l̂nT |∥K2,nT (γ)∥
σ̂2nT (γ − γ0)

⩽
ι[(∥δ0∥+ ι) + (|l0|+ ι)](1 + η)l

σ̂2nT
⩽

8m̄3ι

σ20 − ι
.
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Finally, by events (1), (3), (4) and (7), we have

− B9(γ)

2σ̂2nTanT (γ − γ0)
=−

[λ220 + (λ̂2,nT − λ20)(λ̂2,nT + λ20)]V
′G′D(γ0, γ)QnTD(γ0, γ)GV

2σ̂2nTanT (γ − γ0)

⩽−
D2,nT (γ)

2σ̂2nT (γ − γ0)
+

|l̂nT − l0||l̂nT + l0||K1,nT (γ)|
2σ̂2nT (γ − γ0)

⩽− k

2σ20 + 2ι
+
ι(2|l0|+ ι)(1 + η)l

2σ20 − 2ι
⩽ − k

2σ20 + 2ι
+

3m̄3ι

σ20 − ι
.

Together, we show that

ℓ‡nT (γ)− ℓ‡nT (γ0)

cnTanT (γ − γ0)
⩽ M0 < 0.

Thus, we have shown that on the set EnT with probability large than 1−ϵ, if γ ∈ [γ0+v̄/anT , γ0+

B], then ℓ‡nT (γ) − ℓ‡nT (γ0) < 0. We can similarly show that if γ ∈ [γ0 − B, γ0 − v̄/anT ] then

ℓ‡nT (γ) − ℓ‡nT (γ0) < 0. Since ℓ‡nT (γ̂nT ) − ℓ‡nT (γ0) ⩾ 0, this implies that |γ̂nT − γ0| ⩽ v̄/anT is

with probability larger than 1− ϵ. That is, anT (γ̂nT − γ0) = Op(1). ■

Proof of Theorem 2.4: Recall Br,nT (γ), r = 1, 2, 3, defined in (B.12).

Proof of Result (i): Using (B.11) and (B.12), we have

√
N(θ̂nT − θ0) =

[
1
nTH

∗
nT (θ̄, γ̂nT )

]−1 1√
N
[S∗u

θ,nT (θ0, γ̂nT ) +
∑3

r=1Br,nT (γ̂nT )].

From the proof of Theorem 2.2, we see that 1
nTH

∗
nT (θ̄, γ̂nT ) − ΣnT = op(1) as γ̂nT − γ0

p−→ 0

and θ̄ − θ0
p−→ 0 implied by θ̂nT − θ0 = op(1). Lemma A.3 and Lemma B.1 imply that

1√
N
S∗u
θ,nT (θ0, γ̂nT ) converges to a mean zero Gaussian distribution with variance 1

NVar(S∗u
θ,nT ),

again due to γ̂nT − γ0
p−→ 0. The derivation of Var(S∗u

θ,nT ) is straightforward following Lemma

B.5 of Yang (2015a), but is complicated when compared with ΣnT (θ0, γ0) is given in (2.20).

Some intermediate results are useful to derive the final expression. We focus on the variance of

one specific quadratic term, as the derivations for the other variances or covariances are similar

or less difficult. Let κ4 be the excess kurtosis of the idiosyncratic errors. Hence, the variance of

1√
N
V′G′QnTV can be written as

κ4σ4
0

N E[diagv(QnTG)′diagv(QnTG)]+
σ4
0

N E[tr(QnTGQnTG+

QnTGG′)] by Yang (2015a). After some algebra, we have 1
N diagv(QnTG)′diagv(QnTG) =

T̄ 2

N diagv(G)′diagv(G) +Op(
1
n),

1
N tr(QnTGQnTG) = 1

nT tr(GG) + 1
NT 2

∑T
t=1

∑T
k=1 tr[(Gt −

Gk)Gt] +Op(
1
n) and

1
N tr(QnTGG′) = 1

nT

∑T
t=1 tr(GG′)+Op(

1
n). With these results, we have

1
NVar(S∗u

θ,nT ) = ΩnT (θ0, γ0) + o(1), where ΩnT (θ0, γ0) is given in (2.21).

Next, we see that 1√
N
B1,nT (λ0, γ̂nT ) −

√
T
n bθ,nT

p−→ 0 as γ̂nT − γ0
p−→ 0. Hence, it is left

to show that 1√
N
B3,nT (θ0, γ̂nT ) = op(1) and

1√
N
B2,nT (λ0, γ̂nT ) = op(1). For B3,nT (θ0, γ̂nT ), by

θ20 = (nT )−τδ0 and λ20 = (nT )−τ l0, the 3rd component of 1√
N
B3,nT (θ0, γ̂nT ) equals to

(nT )τ−1/2√cnT anT

σ2
0nT

[Z+GV]′D(γ̂nT )QnT [D(γ0, γ̂nT )Hδ0 +D(γ0, γ̂nT )GVl0].
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Note that these terms in anT
nT [Z + GV]′D(γ̂nT )QnT [D(γ0, γ̂nT )Hδ0 + D(γ0, γ̂nT )GVl0] have

forms similar to FnT (v̂nT ) or KnT (v̂nT ) from Lemma B.2 and γ̂nT = γ0 + v̂nT /anT by Theorem

2.3, and therefore we can show that they are all Op(1) following the proof of Lemma B.2. As

(nT )τ−1/2 = o(1) by Assumption F, the 3rd component of 1√
N
B3,nT (θ0, γ̂nT ) is op(1). Similarly,

the 4th component of 1√
N
B3,nT (θ0, γ̂nT ) equals to

1
2
√
N

[
anT
nT δ

′
0H

′D(γ0, γ̂nT )QnTD(γ0, γ̂nT )Hδ0 +
anT
nT l

2
0V

′G′D(γ0, γ̂nT )QnTD(γ0, γ̂nT )GV

+
2
√
anT√
nT

V′QnTD(γ0, γ̂nT )Hδ0 +
2anT
nT l0V

′G′D(γ0, γ̂nT )QnTD(γ0, γ̂nT )Hδ0

+ (nT )τ 2anT
nT V′QnTD(γ0, γ̂nT )GVl0

]
.

The first two terms in the square bracket are Op(1) by Lemma B.2, the third is Op(1) by

Lemma B.3, and the fourth and the fifth (without the factor (nT )τ ) can be shown to be Op(1)

following the proof of Lemma B.2. Therefore, the 4th component of 1√
N
B3,nT (θ0, γ̂nT ) is also

op(1). Similarly, the other components of 1√
N
B3,nT (θ0, γ̂nT ) are shown to be op(1).

Finally, we show all the components of 1√
N
B2,nT (λ0, γ̂nT ) are also op(1). Consider its second

non-zero element for example; the proofs of others are simpler. Similar to (B.13),

− 1√
N
tr[QnTD(γ̂nT )(G(λ0, γ̂nT )−G)]

= (nT )−τ l0√
N

tr[QnTD(γ̂nT )G(λ0, γ̂nT )D(γ0, γ̂nT )G)]

= (nT )τ−1/2√cnT l0anT
nT tr[QnTD(γ̂nT )G(λ0, γ̂nT )D(γ0, γ̂nT )G] = op(1),

because (nT )τ−1/2 = o(1), and l0anT
nT tr[QnTD(γ̂nT )G(λ0, γ̂nT )D(γ0, γ̂nT )G] has similar form to

LnT (v̂nT ) from Lemma B.2 and thus can be shown to be Op(1) in a similar manner. By the

continuous mapping theorem (CMT), the result in (i) follows.

Proof of Result (ii): When γ0 were known, it is easy to see that the AQMLE θ̂nT (γ0) is

consistent to θ0. Thus, by the mean value theorem, we also have

√
N(θ̂nT (γ0)− θ0) =

[
1
nTH

∗
nT (θ̇, γ0)

]−1 1√
N
(S∗u

θ,nT +
∑3

r=1Br,nT ),

whereH∗
nT (θ̇, γ) denotes −

∂
∂θ′S

∗
θ,nT (θ, γ)

∣∣
θ=θ̇r in rth row

and {θ̇r} are on the line segment between

θ̂nT (γ0) and θ0. As θ̇ − θ0
p−→ 0 implied by θ̂nT (γ0) − θ0 = op(1),

1
nTH

∗
nT (θ̇, γ0) − ΣnT =

op(1). Thus, it is equivalent to showing that 1√
N
[S∗u

θ,nT (θ0, γ̂nT ) − S∗u
θ,nT ] = op(1), because

1√
N
B2,nT (λ0, γ̂nT ) and

1√
N
B3,nT (θ0, γ̂nT ) are both op(1), shown in (i) and 1√

N
[B1,nT (λ0, γ̂nT )−

B1,nT ] = op(1) is directly implied by γ̂nT − γ0 = op(1). For the non-zero components of

1√
N
[S∗u

θ,nT (θ0, γ̂nT )− S∗u
θ,nT ], they are Op(

1√
anT

) by Lemma B.3, completing the proof. ■

Proof of Theorem 2.5: Let QnT (v) = 1
cnT

[ℓ‡nT (γ0 + v/anT ) − ℓ‡nT (γ0)] and Q(v) =

1
2σ2

0
[−Ξ1f |v|+ 2

√
σ20ΞfW (v)]. We first show QnT (v) ⇒ Q(v) on any compact set Υ = [−v̄, v̄].
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For ease of presentation, we follow the notations used in the proof of Theorem 2.3 and

define B∗
s(v) = Bs(γ0 + v/anT ), for s = 1 to 9, and A∗

m(v) = Am(γ0 + v/anT ), for m =

1, 2, 3. Recalling the notations defined in Lemma B.4, the proof of Lemma B.2 implies that

F2,nT (γ0+v/anT ), K2,nT (γ0+v/anT ), L1,nT (γ0+v/anT ) and L3,nT (γ0+v/anT ) are all Op(
1

anT
),

and Pr,nT (γ0 + v/anT ) for r = 1, 2, 3 are all op(
1

anT
). Given these, we see that B∗

s(v) for

s = 4 to 8, that involve these above quantities, are all op(1), since (nT )τ (ϕ̂nT − ϕ0) = op(1) by

Theorem 2.4 and (nT )τθ20 = O(1) by Assumption F. Similarly, we have B∗
3(v) = FnT (v)+op(1),

B∗
9(v) = KnT (v) + op(1), A∗

2(v) = −1
2 T̄LnT (v) + op(1), A∗

3(v) = op(1), and finally

B∗
1(v) + B∗

2(v)− 2σ̂2nTA∗
1(v)

= 2V′QnTD(γ0, γ0 + v/anT )Hθ̂2,nT + 2λ̂2,nTV
′QnTD(γ0, γ0 + v/anT )GV

− 2σ̂2nT λ̂2,nT T̄tr[D(γ0, γ0 + v/anT )G]

= − 2RnT (v)− 2l̂nT (nT )
τ (σ̂2nT − σ20)T̄ anTL1,nT (γ0 + v/anT )

− 2l̂nT
T τ

n1−τ σ̂
2
nTanT T̄L3,nT (γ0 + v/anT ) + op(1) = −2RnT (v) + op(1),

where we use T τ

n1−τ = o(1) by Assumption E.

Then, from (B.18), (B.19) and (B.20), we have

QnT (v) = − 1
2σ̂2

nT
[
∑9

s=1 B∗
s(v)− 2σ̂2nTA∗

1(v)] +A∗
2(v) +A∗

3(v)

= − 1
2σ̂2

nT
[FnT (v) +KnT (v)− 2RnT (v)]− T̄

2LnT (v) + op(1).

Using Lemma B.2, Lemma B.3 and σ̂2nT − σ20 = op(1), we finally get QnT (v) ⇒ Q(v).

By Theorem 2.3, anT (γ̂nT − γ0) = argmax
v

QnT (v) = Op(1). The functional Q(v) is continu-

ous and has a unique maximum; lim|v|→∞Q(v) = −∞ almost surely since limv→∞B(v)/v = 0

almost surely. Therefore, the conditions of Theorem 2.7 of Kim and Pollard (1990) are satisfied,

which implies that

anT (γ̂nT − γ0)
D−→ argmax

−∞<v<∞
Q(v).

Making a change-of-variable v =
σ2
0
f

Ξ
Ξ2
1
r, the asymptotic distribution is then rewritten as

argmax
−∞<v<∞

Q(v) = argmax
−∞<v<∞

[−Ξ1f |v|+ 2
√
σ20ΞfW (v)]

=
σ2
0
f

Ξ
Ξ2
1

argmax
−∞<r<∞

[−σ2
0Ξ
Ξ1

|r|+ 2
√
σ20ΞfW (

σ2
0
f

Ξ
Ξ2
1
r)]

=
σ2
0
f

Ξ
Ξ2
1

argmax
−∞<r<∞

[−σ2
0Ξ
Ξ1

|r|+ 2
σ2
0Ξ
Ξ1
W (r)]

=
σ2
0
f

Ξ
Ξ2
1

argmax
−∞<r<∞

[− |r|
2 +W (r)].
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■

Proof of Theorem 2.6: By Theorem 2.3, we can write γ̂nT = γ0 +
v̂nT
anT

. Note that

LRnT (γ0) =
2

cnT
[ℓ∗cnT (γ̂nT )− ℓ∗cnT (γ0)]

= 2
cnT

[ℓ∗nT (θ̂nT , γ̂nT )− ℓ∗nT (θ̂nT (γ0), γ0)]

= 2
cnT

[ℓ∗nT (θ̂nT , γ̂nT )− ℓ∗nT (θ̂nT , γ0)] + op(1) (Theorem 2.4)

= 2QnT (v̂nT ) + op(1)
D−→ 2sup

v
Q(v).

This limiting distribution equals, by the change-of-variable v =
σ2
0
f

Ξ
Ξ2
1
r,

1
σ2
0
sup
v
[−Ξ1f |v|+ 2

√
σ20ΞfW (v)] = 1

σ2
0
sup
r
[−Ξ1f |

σ2
0
f

Ξ
Ξ2
1
r|+ 2

√
σ20ΞfW (

σ2
0
f

Ξ
Ξ2
1
r)]

= Ξ
Ξ1

sup
r
[−|r|+ 2W (r)] = ϖ2 0.

To find the distribution of 0, note that 0 = 2max(01,02), where 01 = sup
r⩽0

[−|r|/2 +W (r)]

and 01 = sup
r⩾0

[−|r|/2+W (r)]. 01 and 02 are iid exponential random variables with distribution

function P(01 ⩽ x) = 1 − e−x. It follows that P(0 ⩽ x) = P(2max(01,02) ⩽ x) = P(01 ⩽

x/2)P(02 ⩽ x/2) = (1− e−x/2)2. ■

Proof of Theorem 3.1: Applying the MVT to each element of S∗
θ,nT (θ̂nT (γ), γ), one has

0 = S∗
θ,nT (θ̂nT (γ), γ) = S∗

θ,nT (θ0, γ) +
[

∂
∂θ′S

∗
θ,nT (θ, γ)

∣∣
θ=θ̄r in rth row

]
(θ̂nT (γ)− θ0),

where {θ̄r} are on the line segment between θ̂nT (γ) and θ0. In the following arguments, we

use H∗
nT (θ̄, γ) to denote − ∂

∂θ′S
∗
θ,nT (θ, γ)

∣∣
θ=θ̄r in rth row

for simplicity, where the components of

H∗
nT (θ, γ) are in the proof of Theorem 2.2. Note that θ̄ − θ0

p−→ 0, as θ̂bcnT (γ) − θ0
p−→ 0

implied by Theorem 2.4. These together with Lemma A.4 imply that the limit of 1
nTH

∗
nT (θ̄, γ)

is equivalent to that of Σ∗
nT (γ, γ), where

Σ∗
nT (γ1, γ2) =


1

Nσ2
0
E[X′(γ1)QnTX(γ2)], 1

Nσ2
0
E[X′(γ1)QnTZ(γ2)], 02k×1,

1
Nσ2

0
E[Z′(γ1)QnTX(γ2)], Σ∗

22,nT (γ1, γ2),
1
σ2
0
ESnT (γ1),

∼, 1
σ2
0
ES ′

nT (γ2),
1

2σ4
0
,

 , (B.22)

Σ∗
22,nT (γ1, γ2) = 1

Nσ2
0
E[Z′(γ1)QnTZ(γ2)] + E[S∗nT (γ1, γ2)], SnT (γ) is in (2.20) and

S∗nT (γ1, γ2) = 1
nT

{
tr(GGs), tr[G◦(γ1)G

s]; tr[G◦s(γ2)G], tr[G◦(γ1)G
◦s(γ2)]

}
.

Thus, by (B.12) and 1√
N
B1,nT (γ)−

√
T
n bθ,nT (λ̂nT (γ), γ)

p−→ 0, we have

√
N(θ̂bcnT (γ)− θ0) = Σ∗−1

nT (γ, γ) 1√
N
[S∗u

θ,nT (θ0, γ) +B2,nT (γ) +B3,nT (γ)] + op(1). (B.23)

By Lemma B.1, we have 1√
N
S∗u
θ,nT (θ0, γ) ⇒ Sθ(γ), a Gaussian process with mean zero and
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covariance kernel lim
nT→∞

Ω∗
nT (γ1, γ2), where

Ω∗
nT (γ1, γ2) = Σ∗

nT (γ1, γ2) + Γ∗
nT (γ1, γ2), (B.24)

Γ∗
nT (γ1, γ2) =


02k×2k,

T̄ κ3
Nσ0

E[X′(γ1)QnTR(γ2)], 02k×1

T̄ κ3
Nσ0

E[R′(γ1)QnTZ(γ2)], Γ∗
22,nT (γ1, γ2),

κ4T̄ 2

2Nσ2
0
E[R′(γ1)lnT ]

∼, κ4T̄ 2

2Nσ2
0
E[l′nTR(γ2)],

κ4T̄
4σ4

0

 ,
Γ∗
22,nT (γ1, γ2) = 2κ3T̄

Nσ0
E[Z′(γ1)QnTR(γ2)] + κ4T̄ 2

N E[R′(γ1)R(γ2)] + E[B∗
nT (γ1, γ2)], B∗

nT (γ1, γ2) =

[B11,nT , B12,nT (γ2); B21,nT (γ1),
1

NT 2

∑T
t=1

∑T
k=1 tr[(dt(γ1)Gt−dk(γ1)Gk)dt(γ2)Gt], and B11,nT ,

B12,nT (γ) and B21,nT (γ) are given below (2.21).

By Lemma A.4 and under the alternatives, one shows that
√
nT
N [B2,nT (γ) + B3,nT (γ)] =

[Σ∗
nT (γ, γ0)− Σ∗

nT (γ, γ)]Lc+ op(1). With (B.23), L′θ0 = θ20,
√
nTθ20 = c and c = L′Lc,

√
NL′θ̂bcnT (γ) =

√
NL′θ0 + L′[ 1

nTH
∗
nT (θ̄, γ)

]−1
√
N

nT S
∗
θ,nT (θ0, γ)

=
√
T̄L′Lc+ L′Σ∗−1

nT (γ, γ) 1√
N
S∗u
θ,nT (θ0, γ)

+
√
T̄L′Σ∗−1

nT (γ, γ)[Σ∗
nT (γ, γ0)− Σ∗

nT (γ, γ)]Lc+ op(1)

⇒ L′Σ∗−1(γ, γ)Sθ(γ) + Σ̄(γ)c.

Given the uniform convergence of θ̂∗nT (γ) to θ0, it is also standard to show Q̂nT (γ, γ)−Q(γ, γ)
p−→

0, based on the proof of Theorem 2.2. Therefore, we have WnT (γ) ⇒W c(γ) by the CMT. ■

Proof of Proposition 1: We only need to show that S̃b
θ,nT (γ) converges weakly in FnT to

a Gaussian process with covariance Ω∗(γ1, γ2). For this, we define

S∗b
θ,nT (γ) =



1
σ2
0
X′(γ)SṼb

N ,

1
σ2
0
[η(β10, λ10) +G1SṼ

b
N ]′SṼb

N − tr[QnTG1],

1
σ2
0
[η(β10, λ10) +G1SṼ

b
N ]′D(γ)SṼb

N − tr[QnTD(γ)G1],

1
2σ4

0
Ṽb′

NṼb
N − N

2σ2
0
.

Let P∗ and E∗ denote the probability and expectation, respectively, under the bootstrap em-

pirical distribution FnT , conditional on the observed data. We use op∗(1) to denote a sequence

of random variables that converges to zero in probability, and Op∗(1) to denote a sequence that

is bounded in probability, both under the bootstrap distribution conditional on the original

sample. Furthermore, ⇒∗ denotes weak convergence under FnT , with respect to the uniform

metric on Γ. Thus, it suffices to show that, under the null hypothesis and uniformly in γ ∈ Γ,

the following two conditions hold:

(a) 1√
N
S̃b
θ,nT (γ)−

1√
N
S∗b
θ,nT (γ) = op∗(1) and (b) 1√

N
S∗b
θ,nT (γ) ⇒∗ Sθ(γ).
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To show (a), we observe that the difference between Sb
θ,nT (γ) and S̃∗b

θ,nT (γ) arises from

the replacement of θ10 with θ̂1,nT . We only show the result for the third component as the

others can be shown more easily. The proof of Theorem 3.1 implies that θ̂1,nT − θ10 =

Op∗((N)−1/2). Thus, as σ̂−2
nT−σ

−2
0 = op∗(1) and σ

−2 appears multiplicatively, we only need show

that (i) 1√
N
[η(β̂1,nT , λ̂1,nT )− η(β10, λ10)]

′D(γ)SṼb
N = op∗(1) and (ii) 1√

N
{ 1
σ2
0
[G1(λ̂1,nT )SṼ

b
N −

G1SṼ
b
N ]′D(γ)SṼb

N − tr[QnTD(γ)(G1(λ̂1,nT )−G1)]} = op∗(1).

For (i), recall η(β1, λ1) = G1(λ1)(PnTA1(λ1)Y+QnTXβ1) and note that G1(λ̂1,nT )−G1 =

G1(λ̂1,nT )(InT −A1(λ̂1,nT )A
−1
1 ) = (λ̂1,nT − λ10)G1(λ̂1,nT )G1. Thus, we have,

1√
N
[η(β̂1,nT , λ̂1,nT )− η(β10, λ10)]

′D(γ)SṼb
N

= 1√
N
[(λ̂1,nT − λ10)G1(λ̂1,nT )G1(PnTA1Y +QnTXβ10)]

′D(γ)SṼb
N

− 1√
N
[(λ̂1,nT − λ10)PnTWY −QnTX(β̂1,nT − β10)]

′G′
1(λ̂1,nT )D(γ)SṼb

N .

We show the first term for example, as the second term can be shown similarly. Firstly, we have
√
N(λ̂1,nT − λ10) = Op∗(1), implied by the proof of Theorem 3.1. Secondly, we note that Ṽb

N is

a random sample drawn from centered Ṽ∗(ϕ̂nT , γ̂nT ) = S′Ṽ(ϕ̂nT , γ̂nT ), which is a “consistent”

estimator for S′V whose elements are iid normal if {vit} are iid normal, and are uncorrelated

if {vit} are iid. Therefore, as B goes to infinity and the value of Y is treated as constant

during bootstrap draws, we have 1
N [G1(PnTA1Y +QnTXβ10)]

′D(γ)SṼb
N = op∗(1), given the

exogeneity of regressors and the threshold variable in Assumption B, uniformly in γ ∈ Γ.

For (ii), the left-hand side of the equation can be written as

√
N(λ̂1,nT − λ10)

1
N { 1

σ2
0
Ṽb′

NS′G′
1G

′
1(λ̂1,nT )D(γ)SṼb

N − tr[QnTD(γ)G1(λ̂1,nT )G1]},

which is also op∗(1) as
√
N(λ̂1,nT − λ10) = Op∗(1) and the remain quantity is op∗(1) implied by

Lemma A.4. Thus, we have shown (a).

To prove (b), we first show that 1√
N
S∗b
θ,nT (γ) is asymptotically a mean-zero Gaussian process

with covariance kernel Ω∗(γ, γ) in FnT under H0. The result then follows by establishing the

tightness of the convergence. For the former result, we express S∗b
θ,nT (γ) in terms of the linear

and quadratic forms of Ṽb
N . As A1Y = Xβ10 +Cψ0 +V, the third component of S∗b

θ,nT (γ) for

example can be written as

S∗b
λ2,nT (γ) =

1
σ2
0
[G1(PnTA1Y +QnTXβ10) +G1SṼ

b
N ]′D(γ)SṼb

N − tr[QnTD(γ)G1]

= 1
σ2
0
(G1PnTV)′D(γ)SṼb

N + { 1
σ2
0
(G1SṼ

b
N )′D(γ)SṼb

N − tr[QnTD(γ)G1]}

+ 1
σ2
0
[G1(Cψ0 +Xβ10)]

′D(γ)SṼb
N ≡ Π1(γ) + Π2(γ) + Π3(γ). (B.25)

As Y (or V) are treated as constant during bootstrap draws, we have that Ṽb
N are resampled
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independently of V under FnT . Therefore, the above expression is simply a linear and quadratic

form of Ṽb
N , which is a “consistent” estimation for S′V. As the sample size and B go to infinity,

we can verify that (B.25) satisfies the conditions of the CLT in Lemma A.3 for each γ ∈ Γ, as

the vectors and matrix corresponding to linear and quadratic terms are bounded as required,

by Lemma A.1. Similarly, the other components of S∗b
θ,nT (γ) satisfy the same conditions. These

ensure the asymptotic normality of 1√
N
S∗b
θ,nT (γ), which can then be extended to any finite

collection of γ to establish the convergence of finite-dimensional distributions.

We next verify that the 1
NE∗[S∗b

θ,nT (γ1)S
∗b′
θ,nT (γ2)] = Ω∗

nT (γ1, γ2)|θ20=0+o(1). For illustration,

we focus on verifying 1
NE∗[S∗b

λ2,nT
(γ1)S

∗b′
λ2,nT

(γ2)] = Ω∗
λ2λ2

(γ1, γ2)|θ20=0+o(1), where Ω
∗
λ2λ2

(γ1, γ2)

represents the λ2-λ2 element of the covariance matrix, as the remaining elements can be estab-

lished similarly. That is to show 1
N [E∗(Π1(γ1)Π1(γ2))+E∗(Π2(γ1)Π2(γ2))+E∗(Π3(γ1)Π3(γ2))+

2E∗(Π1(γ1)Π2(γ2))+2E∗(Π2(γ1)Π3(γ2))+2E∗(Π1(γ1)Π3(γ2))] = Ω∗
λ2,λ2

(γ1, γ2)|θ20=0+o(1). Ac-

cording to the derivations in the proof of Theorem 2.1, 1
N [E∗(Π1(γ1)Π1(γ2))+E∗(Π2(γ1)Π2(γ2))] =

1
nT E

∗[tr(G◦(γ)G◦s(γ))]|λ20=0+
κ4T̄ 2

N E∗[diagv(G1)
′D(γ)diagv(G1)]+E∗[B22,nT (γ)]|λ20=0+o(1)

and 1
NE∗(Π3(γ1)Π3(γ2)) =

1
NE∗[Z′D(γ)QnTD(γ)Z]|θ20=0 + o(1). Besides, the covariance terms

yield 2
NE∗(Π2(γ)Π3(γ)) =

2κ3T̄
Nσ0

E∗[Z′D(γ)QnTD(γ)diagv(G1)]|θ20=0+o(1),
2
NE∗(Π1(γ)Π2(γ)) =

o(1) and 2
NE∗(Π1(γ)Π3(γ)) = o(1). Thus, we have shown the desired result. The other elements

of 1
NVar∗[S∗b

θ,nT (γ)] can be shown similarly. Subsequently, the stochastic equicontinuity can be

established by similar arguments to the proof of Lemma B.1. This completes the proof of (b).

Finally, as Σ̃∗
nT (γ, γ) − Σ∗(γ, γ)|θ20=0 = op∗(1) and Ω̃∗

nT (γ, γ) − Ω∗(γ, γ)|θ20=0 = op∗(1),

uniformly in γ ∈ Γ, shown in the proof of Theorem 3.1, the final result follows from the CMT.

■

Supplementary Material

The Supplementary Material contains the detailed proofs of Lemma B.1−B.4, and can be

found online at http://www.mysmu.edu.sg/faculty/zlyang/SubPages/research.htm.
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Table 1: Empirical bias(sd)[ŝd] of the estimators for FE-SPR model with threshold effects;
Wt=Queen Contiguity; error = 1(normal), 2(normal mixture), 3(chi-square).

2SLS AQML bc-AQML 2SLS AQML bc-AQML

(a) (n, T ) = (50, 5) (b) (n, T ) = (50, 10)

β1 .0380(2.629) .0032(.075)[.071] -.0005(.075)[.071] .0241(0.084) -.0002(.049)[.050] -.0010(.049)[.050]

β2 -.0313(2.644) -.0072(.111)[.112] -.0022(.111)[.112] -.0561(0.159) -.0011(.083)[.083] -.0013(.083)[.083]

λ1 .1803(15.798) -.0257(.060)[.059] -.0083(.060)[.059] -.1339(0.638) -.0229(.045)[.042] -.0044(.044)[.042]

λ2 -.2001(15.856) .0125(.052)[.054] .0116(.052)[.054] .2380(0.931) .0048(.037)[.037] .0038(.037)[.037]

σ2 .1887(0.127) -.0208(.093)[.098] -.0233(.093)[.098] .1611(0.083) -.0103(.065)[.067] -.0126(.065)[.067]

γ .6503(2.117) .0093(.147)[ - - ] .0093(.147)[ - - ] .3965(1.424) -.0129(.121)[ - - ] -.0129(.121)[ - - ]

β1 .0436(0.893) .0015(.071)[.070] -.0022(.071)[.070] .0192(0.077) .0029(.048)[.050] .0021(.048)[.050]

β2 -.0472(0.923) -.0049(.110)[.111] .0000(.110)[.111] -.0501(0.146) -.0047(.082)[.083] -.0048(.082)[.083]

λ1 -.0338(9.795) -.0233(.061)[.059] -.0059(.061)[.059] -.1508(0.539) -.0244(.046)[.042] -.0059(.046)[.042]

λ2 .1028(9.870) .0117(.053)[.054] .0109(.053)[.054] .2234(0.839) .0073(.039)[.037] .0063(.039)[.037]

σ2 .1921(0.244) -.0157(.225)[.206] -.0183(.224)[.206] .1573(0.166) -.0003(.164)[.150] -.0027(.163)[.150]

γ .6024(2.135) -.0120(.155)[ - - ] -.0120(.155)[ - - ] .4129(1.409) -.0268(.141)[ - - ] -.0268(.141)[ - - ]

β1 .0572(0.453) .0032(.068)[.071] -.0004(.068)[.071] .0204(0.077) .0008(.054)[.050] .0001(.054)[.050]

β2 -.0553(0.515) -.0041(.113)[.111] .0009(.113)[.111] -.0518(0.144) .0015(.089)[.083] .0014(.089)[.083]

λ1 .0110(3.326) -.0225(.060)[.058] -.0052(.060)[.058] -.1459(0.524) -.0203(.045)[.041] -.0019(.045)[.041]

λ2 -.0074(3.561) .0067(.054)[.053] .0060(.054)[.053] .2112(0.850) .0045(.038)[.037] .0036(.038)[.037]

σ2 .1830(0.183) -.0279(.152)[.150] -.0304(.151)[.150] .1562(0.120) -.0109(.111)[.108] -.0133(.111)[.108]

γ .5347(2.145) -.0010(.149)[ - - ] -.0010(.149)[ - - ] .4080(1.412) -.0332(.144)[ - - ] -.0332(.144)[ - - ]

(c) (n, T ) = (50, 20) (d) (n, T ) = (50, 40)

β1 .0134(0.066) .0017(.032)[.032] .0009(.032)[.032] .0080(0.025) .0013(.021)[.021] .0007(.021)[.021]

β2 -.0217(0.097) -.0020(.054)[.054] -.0014(.054)[.054] -.0227(0.052) .0009(.036)[.037] .0008(.036)[.037]

λ1 .0028(0.432) -.0209(.032)[.031] -.0016(.032)[.031] -.0342(0.159) -.0223(.022)[.022] -.0028(.022)[.022]

λ2 .0208(0.616) .0027(.032)[.032] .0012(.032)[.032] .0992(0.305) .0022(.023)[.024] .0019(.023)[.024]

σ2 .1125(0.054) -.0033(.045)[.046] -.0056(.045)[.046] .0800(0.038) -.0023(.033)[.032] -.0044(.033)[.032]

γ -.4050(1.158) -.0226(.122)[ - - ] -.0226(.122)[ - - ] -.1565(0.944) -.0027(.060)[ - - ] -.0027(.060)[ - - ]

β1 .0095(0.062) -.0005(.031)[.032] -.0012(.031)[.032] .0100(0.030) .0003(.022)[.021] -.0003(.022)[.021]

β2 -.0132(0.103) -.0011(.054)[.054] -.0004(.054)[.054] -.0245(0.051) .0015(.039)[.037] .0014(.039)[.037]

λ1 -.0016(0.374) -.0242(.033)[.032] -.0049(.033)[.032] -.0200(0.314) -.0196(.023)[.022] -.0001(.023)[.022]

λ2 -.0080(0.659) .0077(.030)[.032] .0061(.030)[.032] .0737(0.419) .0017(.023)[.024] .0013(.023)[.024]

σ2 .1124(0.117) -.0069(.109)[.107] -.0090(.109)[.107] .0807(0.084) -.0033(.071)[.076] -.0055(.071)[.076]

γ -.3896(1.094) -.0135(.128)[ - - ] -.0135(.128)[ - - ] -.1893(0.991) .0025(.072)[ - - ] .0025(.072)[ - - ]

β1 .0107(0.063) .0015(.032)[.032] .0007(.032)[.032] .0087(0.027) .0006(.021)[.021] .0000(.021)[.021]

β2 -.0213(0.091) .0005(.053)[.054] .0011(.053)[.054] -.0223(0.054) .0009(.039)[.037] .0009(.039)[.037]

λ1 .0058(0.427) -.0227(.032)[.031] -.0034(.032)[.031] -.0119(0.356) -.0223(.023)[.022] -.0028(.023)[.022]

λ2 .0192(0.567) .0050(.029)[.031] .0034(.029)[.031] .0637(0.519) .0048(.024)[.024] .0044(.024)[.024]

σ2 .1142(0.086) -.0046(.078)[.077] -.0068(.078)[.077] .0797(0.059) -.0020(.055)[.055] -.0041(.055)[.055]

γ -.3495(1.091) -.0241(.124)[ - - ] -.0241(.124)[ - - ] -.1670(0.995) .0037(.081)[ - - ] .0037(.081)[ - - ]

Note: (i) Error distributions: error = 1, 2, 3, for the three panels under each (n, T );

(ii) True parameter values: β1 = 1, λ1 = 0.2, γ = 0, and β2 = λ2 = (nT )−0.2.

(iii) Empirical bias(sd) for QMLE of σ2 under the three error distributions:

(a) {−.2323(.073),−.2283(.177),−.2379(.119)}; (b) {−.1271(.057),−.1183(.145),−.1276(.098)}
(c) {−.0721(.042),−.0754(.102),−.0733(.072)}; (d) {−.0467(.031),−.0477(.068),−.0464(.053)}
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Table 1 (Cont’d): Empirical bias(sd)[ŝd] of the estimators for FE-SPR model with threshold effects;
Wt=Queen Contiguity; error = 1(normal), 2(normal mixture), 3(chi-square).

2SLS AQML bc-AQML 2SLS AQML bc-AQML

(e) (n, T ) = (100, 5) (f) (n, T ) = (100, 10)

β1 .0306(0.221) -.0010(.047)[.045] -.0021(.047)[.045] .0089(0.058) .0007(.030)[.032] .0006(.030)[.032]

β2 -.0094(0.356) .0029(.086)[.081] .0029(.086)[.081] -.0342(0.117) -.0017(.055)[.055] -.0025(.055)[.055]

λ1 -.0986(0.802) -.0132(.043)[.042] -.0054(.042)[.042] -.0402(0.525) -.0118(.032)[.030] -.0023(.032)[.030]

λ2 .1955(1.555) .0119(.049)[.052] .0120(.049)[.052] .0753(0.821) .0039(.027)[.026] .0038(.027)[.026]

σ2 .0781(0.080) -.0146(.072)[.070] -.0156(.071)[.070] .1021(0.054) -.0083(.046)[.047] -.0094(.046)[.047]

γ -.7348(1.432) -.0438(.204)[ - - ] -.0438(.204)[ - - ] .3430(1.497) .0243(.080)[ - - ] .0243(.080)[ - - ]

β1 -.0160(2.345) .0011(.045)[.045] .0000(.045)[.045] .0096(0.061) -.0007(.032)[.032] -.0008(.032)[.032]

β2 .0317(2.350) .0037(.083)[.081] .0037(.083)[.081] -.0323(0.110) -.0005(.055)[.055] -.0013(.055)[.055]

λ1 -.0078(7.182) -.0105(.044)[.043] -.0028(.044)[.043] -.0489(0.583) -.0115(.030)[.030] -.0020(.030)[.030]

λ2 .0885(7.232) .0049(.049)[.052] .0050(.049)[.052] .0951(0.873) .0004(.026)[.026] .0003(.026)[.026]

σ2 .0736(0.159) -.0052(.154)[.151] -.0062(.154)[.151] .1040(0.117) -.0098(.108)[.106] -.0108(.108)[.106]

γ -.7482(1.460) -.0262(.202)[ - - ] -.0262(.202)[ - - ] .2983(1.554) .0236(.079)[ - - ] .0236(.079)[ - - ]

β1 .0385(0.555) -.0023(.045)[.044] -.0033(.045)[.044] .0080(0.057) -.0010(.034)[.032] -.0011(.034)[.032]

β2 -.0390(0.596) .0099(.083)[.081] .0100(.083)[.081] -.0323(0.098) -.0012(.057)[.056] -.0021(.057)[.056]

λ1 -.0934(1.867) -.0115(.044)[.042] -.0038(.044)[.042] -.0370(0.547) -.0087(.029)[.029] .0008(.029)[.029]

λ2 .1126(2.126) .0037(.052)[.052] .0038(.052)[.052] .0628(0.825) .0023(.026)[.026] .0022(.026)[.026]

σ2 .0804(0.122) -.0196(.110)[.107] -.0205(.110)[.107] .0963(0.084) -.0018(.086)[.079] -.0029(.086)[.079]

γ -.7584(1.465) -.0354(.235)[ - - ] -.0354(.235)[ - - ] .4271(1.516) .0130(.078)[ - - ] .0130(.078)[ - - ]

(g) (n, T ) = (200, 5) (h) (n, T ) = (200, 10)

β1 .0008(0.082) -.0005(.036)[.035] -.0009(.036)[.035] -.0127(0.056) .0006(.022)[.023] .0005(.022)[.023]

β2 -.0277(0.210) .0041(.064)[.060] .0043(.064)[.060] -.0016(0.076) -.0014(.039)[.039] -.0015(.039)[.039]

λ1 -.0918(0.529) -.0050(.033)[.033] .0003(.033)[.033] -.0648(0.167) -.0053(.024)[.022] -.0001(.024)[.022]

λ2 .1848(1.113) .0020(.032)[.032] .0020(.032)[.032] .0913(0.210) .0005(.021)[.021] .0006(.021)[.021]

σ2 .0933(0.058) -.0053(.049)[.050] -.0059(.049)[.050] .0850(0.037) -.0038(.035)[.033] -.0044(.035)[.033]

γ .3477(1.342) -.0167(.114)[ - - ] -.0167(.114)[ - - ] .2709(0.854) -.0013(.055)[ - - ] -.0013(.055)[ - - ]

β1 .0040(0.078) .0015(.035)[.035] .0011(.035)[.035] -.0032(0.136) .0002(.022)[.023] .0001(.022)[.023]

β2 -.0336(0.141) -.0042(.060)[.060] -.0040(.060)[.060] -.0126(0.148) .0000(.038)[.039] -.0001(.038)[.039]

λ1 -.0546(0.589) -.0084(.033)[.033] -.0031(.033)[.033] -.0260(0.801) -.0072(.022)[.022] -.0020(.022)[.022]

λ2 .1443(0.900) .0052(.031)[.032] .0052(.031)[.032] .0511(0.825) .0027(.020)[.021] .0029(.020)[.021]

σ2 .0925(0.118) -.0093(.112)[.107] -.0099(.111)[.107] .0868(0.082) -.0040(.072)[.076] -.0046(.073)[.076]

γ .4237(1.344) -.0148(.104)[ - - ] -.0148(.104)[ - - ] .2858(0.936) -.0013(.044)[ - - ] -.0013(.044)[ - - ]

β1 -.0001(0.070) -.0009(.034)[.035] -.0013(.034)[.035] -.0041(0.073) .0010(.024)[.023] .0008(.024)[.023]

β2 -.0256(0.130) -.0002(.058)[.060] .0000(.058)[.060] -.0117(0.109) -.0014(.041)[.039] -.0016(.040)[.039]

λ1 -.0943(0.522) -.0039(.031)[.033] .0014(.031)[.033] -.0351(0.366) -.0059(.022)[.022] -.0007(.022)[.022]

λ2 .1759(0.837) -.0008(.033)[.032] -.0008(.033)[.032] .0547(0.433) .0001(.021)[.021] .0002(.021)[.021]

σ2 .0890(0.090) -.0058(.085)[.079] -.0064(.085)[.079] .0855(0.060) -.0032(.056)[.055] -.0038(.056)[.055]

γ .4289(1.338) -.0194(.132)[ - - ] -.0194(.132)[ - - ] .2572(0.949) -.0006(.055)[ - - ] -.0006(.055)[ - - ]

Note: (i) Error distributions: error = 1, 2, 3, for the three panels under each (n, T );

(ii) True parameter values: β1 = 1, λ1 = 0.2, γ = 0, and β2 = λ2 = (nT )−0.2.

(iii) Empirical bias(sd) for QMLE of σ2 under three error distributions:

(e) {−.2196(.057),−.2121(.122),−.2235(.087)}; (f) {−.1164(.041),−.1177(.096),−.1106(.076)}
(g) {−.2082(.039),−.2114(.089),−.2086(.067)}; (h) {−.1079(.031),−.1081(.065),−.1074(.050)}
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Table 2: Confidence interval coverage probability for γ based on LR test at 5% level;
Wt=Queen Contiguity.

n T Normal error Normal mixture Chi-square

50 5 95.20% 95.80% 96.80%

10 98.40% 95.00% 96.60%

20 97.20% 97.80% 96.40%

40 97.60% 96.20% 95.60%

100 5 96.80% 93.60% 95.00%

10 98.20% 96.00% 96.60%

200 5 96.40% 98.00% 97.80%

10 97.80% 97.40% 96.00%

Table 3: Rejecting frequency of tests for threshold effects at 0.01, 0.05, and 0.10 levels;
Wt = Queen Contiguity; error = 1 (normal), 2 (normal mixture), 3 (chi-square).

error n T
λ2 = β2 = 0 λ2 = β2 = 2/

√
nT λ2 = β2 = 10/

√
nT

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

1 50 5 .171 .092 .030 .546 .424 .196 1.000 1.000 1.000

10 .124 .079 .018 .464 .356 .162 1.000 1.000 1.000

20 .114 .038 .018 .402 .288 .110 1.000 1.000 1.000

40 .096 .038 .008 .374 .262 .116 1.000 1.000 1.000

100 5 .164 .112 .038 .338 .240 .090 1.000 1.000 1.000

10 .097 .046 .013 .322 .214 .104 1.000 1.000 1.000

200 5 .104 .064 .017 .398 .276 .114 1.000 1.000 1.000

10 .096 .034 .006 .356 .266 .108 1.000 1.000 1.000

2 50 5 .229 .150 .069 .624 .502 .266 1.000 1.000 1.000

10 .176 .122 .054 .496 .390 .230 1.000 1.000 1.000

20 .158 .100 .032 .414 .310 .164 1.000 1.000 1.000

40 .138 .078 .024 .430 .294 .138 1.000 1.000 1.000

100 5 .198 .150 .056 .382 .282 .118 1.000 1.000 1.000

10 .157 .101 .038 .336 .212 .080 1.000 1.000 1.000

200 5 .132 .078 .025 .400 .302 .142 1.000 1.000 1.000

10 .130 .080 .022 .384 .292 .116 1.000 1.000 1.000

3 50 5 .210 .140 .055 .568 .440 .232 1.000 1.000 1.000

10 .133 .090 .041 .432 .316 .152 1.000 1.000 1.000

20 .136 .070 .022 .402 .276 .114 1.000 1.000 1.000

40 .124 .076 .022 .406 .284 .124 1.000 1.000 1.000

100 5 .140 .096 .038 .352 .272 .104 1.000 1.000 1.000

10 .122 .072 .027 .322 .228 .086 1.000 1.000 1.000

200 5 .096 .042 .014 .418 .304 .134 1.000 1.000 1.000

10 .122 .068 .024 .356 .254 .114 1.000 1.000 1.000
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Table 4: Estimates of spatial competitions in government investments among Chinese cities.

Government Investments Model 1 Model 2

Mayor: old vs all Mayor: old vs old

Threshold estimate:

Threshold (γ) 55.33 54.58

95% confidence interval [50.00, 57.92] [54.25, 57.92]

Spatial effects:

Base effect (λ1) -0.033 (.034) -0.041 (.036)

Threshold effect (λ2) 0.105∗∗∗ (.035) 0.137∗∗∗ (.038)

Impact of covariates:

Fiscal revenue 0.308∗∗∗ (.061) 0.312∗∗∗ (.061)

Fiscal expenditure 0.129∗∗∗ (.043) 0.123∗∗∗ (.043)

Population 0.023 (.035) 0.025 (.035)

manufacturing ratio 0.767∗∗∗ (.062) 0.769∗∗∗ (.062)

GDP per capita -0.131∗∗∗ (.048) -0.134∗∗∗ (.048)

Provincial fiscal revenue 0.259∗∗∗ (.077) 0.273∗∗∗ (.077)

Provincial fiscal expenditure -0.126 (.080) -0.135∗ (.080)

Public capital investment -0.007 (.015) -0.013 (.015)

Note: Significance levels: ∗:10%, ∗∗:5%, and ∗∗∗: 1%. Standard errors are in parentheses.
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