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This Supplementary Material contains additional appendices: Appendix B presents
some basic lemmas, Appendix C proofs of the main results in Section 3, Appendix D proofs

of the main results in Section 4, and Appendix E a complete set of Monte Carlo results.

Appendix B: Some Basic Lemmas

The following lemmas are essential to the proofs of the main results in this paper. Lem-

mas B.1, B.2 and B.5 are taken from the literature and thus their proofs are omitted.

Lemma B.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {Anx} and { By} be two sequences
of N x N matrices that are bounded in both row and column sum norms. Let Cy be a sequence
of conformable matrices whose elements are uniformly O(h; ). Then,

(i) the sequence {AxBn} are uniformly bounded in both row and column sums,

(i1) the elements of An are uniformly bounded and tr(Ax) = O(N), and

(iii) the elements of AxCy and CxAn are uniformly O(h,').

Lemma B.2. (Lemma A.3, Lee, 2004): For W and An(\) defined in Model (3.1), if ||W/||



and ||AN| are uniformly bounded, where || -|| is a matriz norm, then ||Ay(N)|| is uniformly

bounded in a neighborhood of \g.

Lemma B.3. Under Assumptions C-E and H, we have
(i) Qnl(p) is bounded in both row and column sum norms, uniformly in p € A,;

(i1) Qx(p) is bounded in both row and column sum norms, uniformly in p € A,.

Proof of Lemma B.3: Proof is simpler using a D} under the constraint ay = 0.
Proof of (i). Recall D(p) = [D,(p),Da(p)] with D,(p) = By(p)D, and D,(p) =

By(p)Dy. Denote Dii(p) = D (p)Du(p), Dr2(p) = D (p)Dalp), Da2(p) = D, (p)Dalp).

Using the inverse formula of a partitioned matrix, we have

, ) Fp) —F Y (p)Dr2(p) D35 (p)
[D'(p)D(p)] ™" = )
~Dy, (P)Dia(p)F ' (p) Dia (p) + Do (p)Pia(p)F " (p)D12(p) P2z ()

where F(p) = D11(p) — D12(p)Day (p) D}y (p). Plugging this into Qp(p), we obtain,

Qo(p) = Qu, (p) — Q. (P)Du(P)[D,,(0) Qo (P)Du(p)] ' D}, (p) Qo ()- (B.1)

Given the special structure of D,(p), one has Qp,_(p) = blkdiag(Ji(p),...,Jr(p)), where
Ji(p) = In, and Jy(p) = In, — - Be(p)ln, [0, Bi(p) Be(p)ln) 11, Bi(p) for t = 2,--- | T. By
Assumption D, the limit of nitl;th(p)Bt(p)lm is bounded away from zero and the elements
of By(p)ln,l;,, Bi(p) are uniformly bounded, uniformly in p € A, for each ¢. Therefore, J;(p)
must be uniformly bounded in both row and column sums, uniformly in p € A,, V¢. Hence,
Q. (p) is also uniformly bounded in both row and column sums, uniformly in p € A,

We next consider the second term on the RHS of equation (B.1). We denote it as Q(p),

which can be partitioned into 7" x T" blocks with (s,#)th block being

Qui(p) = =+ Ju(p) Bs(p) Dl X1, Dy Bi(p)Je(p) Be(p) De) " D, Bi(p) Ji(p).-
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By assuming B;(p) D;[+ ST, DiBip)Ji(p) Bi(p) D)~ DiBl(p) is uniformly bounded in both
row and column sum norms, uniformly in p € A,, for all s and ¢, we have that the row and
column sums of each Q,,(p) must have uniform order O(1/T), uniformly in p € A,. As
there are T' blocks in each row or in each column of Q(p), we must have Q(p) is bounded in
both row and column sum norms, uniformly in p € A,. Consequently, Qp(p) is bounded in

both row and column sum norms, uniformly in p € A,.

Proof of (ii). Let Zy(p) = [+X'(p)X(p)]~" with its (j, k)th element being denoted by
Zik(p). From Assumption C(ii), Zy(p) converges to a finite limit uniformly in p € A,.
Therefore, there exists a constant ¢, such that |zj,(p)] < ¢, uniformly in p € A, for
large enough N. Note that X(p) = Qp(p)Bn(p)X. As the elements of X are uniformly
bounded (Assumption C(7)), and By(p) and Qp(p) are bounded in both row and column
sum norms, uniformly in p € A,, the elements of X(p) are also uniformly bounded, uni-
formly in p € A,. Hence, there exists a constant ¢, such that |z;,(p)| < ¢, uniformly in
p € A,, where x,(p) is the (j, k)th element of X(p). Let pji(p) be the (j,{)th element of
Px(p) = +X(p)[+X'(p)X(p)]'X'(p). It follows that uniformly in p € A, Zjvzl Ipii(p)| <
~ Zjvzl S S zas(p)re(p)ais(p)| < K2euc? for all 1 =1,2,... N. Similarly, uniformly
in p € A, we have S, Ipu()l < & 50 S5 25 s (an (0)as(0)] < B for al
j=1,2,...,N. That is, |Px(p)|1 and ||Px(p)|/ are bounded, uniformly in p € A,. Conse-

quently, || Qx(p)|lx and ||Qx(p)|~ are bounded, uniformly in p € A, O

Lemma B.4. Suppose that {Ax} and {Bn} are two sequences of N x N matrices that
are uniformly bounded in either row or column sums. Under Assumptions C-E and H,

tr[AnPx(p)Bn] = O(1), uniformly in p € A,.



Proof of Lemma B.4: From the proof of Lemma B.3, the elements of X(p) and the
elements of [+X'(p)X(p)]~! are uniformly bounded, uniformly in p € A,. If Ay and By
are bounded in row (column) sum norm, then Ay By is also bounded in row (column) sum
norm. Thus, Lemma A.6 of Lee (2004) implies that the elements of +X'(p)AyByX(p) are
uniformly bounded. It follows tr[AyPx(p)By] = tr[(+X'(p)X(p)) '+ X (p) AnByX(p)] =

O(1), uniformly in p € A, because the number of regressors k is fixed. O

Lemma B.5. (Lemma A.2, Lin and Lee, 2010; Lemma A.3, Liu and Yang, 2015): Let
Ay = la;j] and By = [b;j] be two square matrices of dimension N and cy be an N x 1
vector of elements ¢;. Assume that innovations {v;} are independent with zero mean, i.e.

!/

v; ~ inid(0,03). Letting H = diag{o?{,--- 0%} and V = (v1,--- ,on)', we have,

(i) E(V'ANV) =tr(HAy) = 3N ay0?,
(i1) B(V'ANV -&yV) =V aucE(wd),
(iii) E(V'ANV-V'ByV) = SN by [E(v}) =304 +tr(HAy)tr(HBy) +tr(HAyHBY,),

(iv) Var(V/ANV) = 2N a2[BE(v}) — 304] + tr(HAYHAR,).

=1 it

Lemma B.6. (Lemma A.3, Lin and Lee, 2010, extended): Let {An} be a sequence of N x N
matrices such that either ||An||oo or ||An||1 is bounded. Suppose that the elements of Ax are

O(h ') uniformly in all i and j. Let innovation vector V be defined as in Lemma B.5. Let

cy be an N x 1 vector with elements of uniform order O(h;l/Q). Then

(i) B(V'AxV) =0(X), (i) Var(V'AyV) = O(),
(ii)) VIANV = Op(£),  (iv) VANV —E(V'ANV) = O,((&)7),
(v) ANV = O0,((2)2), if ||[Ax]ls is bounded.

Proof of Lemma B.6: Firstly, Lemma A.8 of Lee (2004) implies that tr(HAy), tr(AxAY),

tr(HAyHAy) and tr(HAyHA)Y) are all O(;%). As SV a2 < tr(AyAly), we also have
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ZiN:1 az = O(%) These and Lemma B.5 show that E(V/AyV) = tr(HAy) = O(&) and

hn

=1 11

Var(VIANV) = S| a2 [B(vf) — 30|+ tr[HAy(HAy +HAy)] = O(X). AsE[(V'AyV)?] =
Var(V' Ay V)+E*(V' AN V) = O((3%)?), we have P(%2 [V' AN V] > M) < 35 (52)°E[(V'ANV)?] =
O(1), by the generalized Chebyshev’s inequality. It follows that V' ANV = OP(%). More-
over, by Chebyshev’s inequality, P((Wn) V' ANV=E(V'ANV)| > M) < 52 Var(VVAYV) =

O(1). This implies that VANV — E(V'AyV) = Op((%)%). Finally, as the elements of cy

have uniform order O(h, /2y there exists a constant ¢ such that le;] < hf/z for all j. Hence,

by the boundedness of ||Ay]|1,

1 N N N
Var[(Be )2y AnV] = Be 5700, 300, Doy ¢ekaiario;

< 52(% vaﬂ U?)(Z?fﬂ |aji|)(zg:1 lai]) = O(1).

It follows that ¢y ANV = Op((%)%), by Chebyshev’s inequality. O

Appendix C: Proofs for Section 3

Proofs use the following facts: (i) the eigenvalues of a projection matrix are either
0 or 1; (i) the eigenvalues of a positive definite (p.d.) matrix are strictly positive; (i)
Ymin(A)tr(B) < tr(AB) < Ymaz(A)tr(B) for symmetric matrix A and positive semi-definite
(p.s.d.) matrix B; (i) Ymaz(A + B) < Ymaz(A) + Ymaz (B) for symmetric matrices A and B;

and (v) Ymaz(AB) < Ymaz(A)Ymaz(B) for p.s.d. matrices A and B.

Identification Uniqueness: Here, we provide the low-level conditions for the justifica-
tion of Assumption G. We have ;% (6) = 7-7' A Qy () On(6)AR'n + %tr[(@m(p)(f]v(é)],
where 1) = X[ + Do, Qn(d) = Qx(p)Qu(p)Cn(9), Cn(d) = Cn(6)(CyCx)~'Cly(4) and
Cn(0) = By(p)An(N). A sufficient condition for Assumption G to hold is either (a) or (b)
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holds, where

(a) 7*2 O n'F\ By (p)On(6) ANy + tr[ﬁzgio(&)Pl(é) — Py(6)] # 0, for & # oy,
(b) mn’A’F%@)GN(p)Qw@ N1+ x5 Pa(p)Cn (9) = Ps(p)] # 0, for & # do,

with P1(6) = Cly Ciy(9)Qo(p)Ba(p)F B3t P2(0) = Qo) By(p)Fx (B3 (p), and Py(p) =
Qu(p)Gn(p)Qu(p). As On(do)Ay'n =0, Cn(d) = Iy and 5,2 (6y) = o), the two quantities
in (a) and (b) are both 0 at the true parameter values.

Under Assumption H, Lemma B.3 shows that ||Qp(p)|l1 and |[|Qp(p)||~ are bounded
uniformly in p € A,, which greatly facilitates the study of the asymptotic properties of M-
estimators of spatial parameters. It is in fact not restrictive as it holds for balanced panels.
For a balanced panel with a time-invariant and row-normalized spatial weight matrix, we
have for all ¢, ny = n, D, = I,,, My = M, and By(p) = I, — pM = B(p). As M x I, = I,
Ji(p) = I, — 2,0, t = 2,...,T. Thus, By(p)Ds[+ Zthl D;B}(p)Ji(p)B:(p)D¢| ' D, Bi(p) =
(I, — %lnl;)_l. As I, — %lnl; is strictly diagonally dominant in rows and columns, its

inverse is bounded in row and column sum norms (Varah, 1975).

Proof of Theorem 1: By theorem 5.9 of Van der Vaart (1998), we only need to show

supée(;Nil |55(8) — Sxe(9)]] 5 0 under the assumptions in Theorem 1. From (3.9) and

(3.10), the consistency of 6% follows from:

(a) infsead;?y(9) is bounded away from zero,

(b) supsen |75 (0) — G325 (0)| = 0p(1),

(¢) supsen n; [YWB(p)V(6) — E[Y'WBY (p)V(6)]| = 0,(1),



Qu(p)Bx(p)X and Qo(p) is idempotent. Thus, V(3) = Qu(p)Cx(9)Y — X(p)i(5) =
Qx(p)Qo(p)Cx(6)Y + Px(p)Qo(p)C(8)[Y — E(Y)]. Noting Qx(p)Px(p) = 0 and Y =

AL (n+ BR'V), we have,

BIY'Q()Y] + #E{[Y - E(Y)I'P(5)[Y - E(Y)]} (C.1)
= E(Y)YQOE(Y) + % E{[Y - E(Y)/[Q() + P(8)][Y — E(Y)]}

= HE(Y)YQEOE(Y) + % E{[Y — B(Y)['CL(5)Qu(p)Cn (9)[Y — E(Y)]}

ST AT QAR + F2tr[Qu(p)Cr (5)],

where Q(9) = Ci(8)@b(p)Qx(p)Qs(p)Cn(8) and P(5) = Cly(8)Qs(p)Px(p)Qn(p)Ci(9).

The first term can be written in the form of a’(d)a(d) for an N x 1 vector function of 4, and

thus is non-negative, uniformly in 0 € A. For the second term,

202 [Q(p)Cn(8)] = 2 Yumin[Cx ()62 [Qn ()] = 0% Ymin[Cr ()]

> 0-12)07max(A/NAN>_1’YmaX(B§VBN>_1’Ymin [A/N()‘)AN(A)]’Ymm [B§V<p)BN(p)] > 07
uniformly in § € A, by Assumption E(iii). It follows that infsead;%y(0) > 0.

Proof of (b). From (3.8), we can write 8% (8) = [X'(p)X(p)]"X'(p)Qu(p)Cn(5)Y.
Then, V() = Qo(p)Br(p)[Av(N)Y = X3 (0)] = Qx(p)Qo(p)Cn(0)Y and 673 (6) =

FY'Q(0)Y. From (C.1), 5:%(6) = - E[Y'Q(0)Y] + "vatr[c’];lP(a)C;V ]. Thus,

1

M
6 (0) — B (0) = HIY'QE)Y — B(Y'QE)Y)] - §eex[CR'P(3)CY]

For the second term, 0 < 3-t7[Cy ' P(O)CR'] < 3 max [Cn ()72 Qo ()] ex [P ()] =

o(1), because tr[Px(p)] = k, Ymax|Qn(p)] = 1 and, by Assumption E(iii),

“Ymax [CN((S)] S ’Ymin(A/NAN)_LYmin(BINBN)_l'VmaX [AIN()‘)AN(/\)],YmaX [BIN (p)BN(P)] < 00.

7



Therefore, one has supsea \%tr[C’]\}lP(é)C]’VIH = o(1). For the first term, we have,

M [Y'QO)Y - E(Y'Q(9)Y)]
= 7 (1 + By VYAG'Q(O)AY (n + By'V) — 1 E[(n + By VYAR'Q(O) Ay (n + By'V)]

= % V'CY'QO)AY D + 5 [V'CH'Q(O)CH'V — oftr(CR/Q(I)CR)-

By Assumption E, and Lemmas B.1 and B.3, one shows that Cy"Q(5)A " and C"Q(8)Cy'
are bounded in both row and column sum norms, for each 6 € A. Further, the elements
of n are uniformly bounded. Thus, the pointwise convergence of the first term follows from
Lemma B.6 (v), and the pointwise convergence of the second term follows from Lemma B.6
(1v). Therefore, N%[Y'Q((S)Y —E(Y'Q(6)Y)] = 0, for each § € A.

Next, let §; and &2 be in A. We have by the mean value theorem (MVT):
7 Y'Q(0)Y — :-Y'Q(6)Y = Y[z Q)] Y (52 — 1),

where ¢ lies between §; and &5. It follows that N%Y’ Q(4)Y is stochastically equicontinuous
if supsea NLIY’[%Q((S)]Y = 0p(1), @ = A, p. We only show supsca - Y’[ 2Q(0]Y = 0,(1)

as the proof of supsca N%Y’[B%Q((S)]Y = O,(1) is similar and simpler. Note that

%Q(fg) = — Cy(6)Gx(0)Qn(p)Qx(p)Qu(p)Cn (8) + Cy(5)Qn(p)Qx(p)Qn(p) C ()
+ Cy(5)Qo(p)Qx(p)Qo(p)Cn (5) + Ciy (8)Qp(p)Qx(p) Qo (p)Cr (9)
— Cy(0)Qn(p)Qx(p)Q(p)Gn(p)Cn(9),

where Qx(p) = a%@x(p). Using (A.1), we have after some algebra, X(p) = (%X(p) =

Gn(p)X(p) where Gy(p) = Pp(p)Gy(p) — Qn(p)Gn(p), which gives

QX(P) = _PX(p)GlN(p)@X( ) — Qx(p)Gn(p)Px(p). (C.2)



For a conformable vector a and taking use (A.1) and (C.2), we have after some algebra,
#12Q0)a = ~20Q()a (©3)

where Q(§) = QN (0)Gn(p)On() and On(d) = Qx(p)Qn(p)Cy (). Rearranging leads to
Q(5) = O ()Mo () Dx(p)Ax (), where @n(p) = I — DD (p)D(p)] "D'(p)Bu(p) and
Qx(p) = In — X[X'(p)X(p)] " X'(p)Qn(p)Bn(p). Following exactly the same way of proving
Lemma B.3, we show that Qp(p) and Qx(p) are also bounded in both row and column sum
norms, uniformly in p € A,. Thus, ||Q(d)|; and ||Q(d)]|« are bounded uniformly in § € A.

AsY = A (n+ By'V), Lemma B.1 and Lemma B.6 imply

MY [5Q0Y = -2 Y'QU)Y = - (n + By V)AL Q)AL (n+ By'V)

N1
= 29 AIQO)AV ) — = AGIQ(S)CHV — 2 V'CLIQ(0)CHV = 0,(1)

N, TN NTT— T AN N ™M N N p\L)
uniformly in 6 € A. Thus, supseca N%Y’ [a% (0)]Y = O,(1). Following a similar analysis, one
shows supgea NLIY’[%Q((S)]Y = Op(1). With the pointwise convergence of N%[Y’Q((S)Y -
E(Y'Q(0)Y)] to zero for each § € A and the stochastic equicontinuity of NilY’Q(é)Y, the

uniform convergence result, supsea |NL1[Y’Q(5)Y —E(Y'Q(0)Y)]| = 0,(1), follows (Andrews

(1992)). Therefore, supsca [052(6) — 732 (0)] = 0,(1).
Proof of (c). By the expressions of V()) and V() given above, we have
3 Y'WBY(p)V () — 5 E[Y'W'By () V(6)]
= % Y'WBY (0)Qn(6)Y — E(Y'W'BY (p)Qn(0)Y)] - 50tx[CH W'BY () Px(5)CR],
where Py (d) = Px(p)Qp(p)Cn(0). The first term is similar in form to N%[Y’Q((S)Y -

E(Y'Q()Y)] from (b) and its uniform convergence is shown in a similar way. Furthermore,

by Lemma B.4, it is easy to see that the second term is o(1) uniformly in 6 € A.
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Proof of (d). Again, using the expressions of V() and V (), we have

% V()G (0)V(9) = 3 EIV'(9)Gr(p)V(9)]
= £[Y'Q)Y — B(Y'Q(8)Y)] - 52tr[CF Py (5) G (p) Qn(5)CF/]
“atr (Ol Pl ()G ()P (0) ).
Therefore, the uniform convergence of the first term can be shown in a similar way as we do

for N%[Y/Q((S)Y — E(Y'Q(9)Y)] due to their similar forms. By Lemma B.4, the remaining

two terms are easily seen to be o(1), uniformly in § € A. O
Proof of Theorem 2: Applying the MVT to each element of S% (6% ), we have

0= \/;Nils}kV(e}kV) - \/LNilS;/(QO) [ ; 100 SN )|0:§r in rth row} v Nl(a}k\f B 90)’ (04)
where {0,} are on the line segment between é}"v and 6. The result follows if

() —A=S%(60) 2y N[0, limy-yo0 T (65)],
(b) [86’ S* )‘Gzér in rth row 8?9/ Sh <00)} - Op(l)’ and

() 77 [59S8 (00) — E 55 Sk (0))] = 0,(1).
Proof of (a). Asseen from (3.11), the elements of S} () are linear-quadratic forms in

V. Thus, for every non-zero (k + 3) x 1 constant vector a, a’Sx(6p) is of the form:
a' Sy (0y) = by V +V'OyV — o2tr(dy),

for suitably defined non-stochastic vector by and matrix ®5. Based on Assumptions A-
F, it is easy to verify (by Lemma B.1 and Lemma B.3(i)) that by and matrix &y sat-
isfy the conditions of the CLT for LQ form of Kelejian and Prucha (2001), and hence the
asymptotic normality of —&= a'Sy(6p) follows. By Cramér-Wold device, \/LNflS}"V(QO) 2
N[0, limy 00 Iy (60)], where elements of I%,(6y) are given in Appendix A.
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Proof of (b). The Hessian matrix Hy () = 53,5%(0) is given in Appendix A. By
Assumptions D and E, and Lemma B.1 and Lemma B.3(i), Ry(po), Rin(po) and Ron(po)
are all bounded in row and column sum norms. With these and Y = A (n + By'V),
Lemma B.6 leads to N%H}i,(eo) = O,(1). Thus, N%H}{,(é) = 0,(1) since § 2 6, due to
0% - 6, where for simplicity, H% (f) is used to denote %S}*\[(Q)b:@ b o DS T RN

02y, we have 6, = o,J + 0,(1), for r = 2,4,6. As o," appears in Hjx(#) multiplicatively,

N%Hj{,(@) = N%H]{,(B, A, p,02,) + 0,(1). Thus, the proof of (b) is equivalent to that of
NLI[H]*V(Bv 5‘7@ 012)0) - HX/(HU)] — 0,

or the proofs of N%[H}(}S(B, X, 7, 02%) — HiE(69)] == 0 and N%[H]*\}“S(S) — H3(8)] - 0, where
H3? and H3® denote, respectively, the stochastic and non-stochastic parts of Hj,.

For the stochastic part, we see that all the components of Hx (3, \, p,c2,) are linear,
bilinear or quadratic in § and A, but nonlinear in p. Hence, with an application of the MV'T

on Hy(8, X, p,02) w.rt g, we can write -[HF (B, A, p,05) — H5P (60)] as
N%[a%HES(Ba 5‘7 pa ‘730)](/7 - pO) + NLI[H]*VS<Bv 5‘7 Po, 030) - HX/S(90>]7
where p lies between p and pg. Therefore, it suffices to show

(i) 3 5, HR (B, A, py0%) = Op(1) and  (id) 5 [HF (B, X, po, a2o) — HP (60)] = 0,(1)-

We do so for the most complicated term, H3(0) = —U—ng’(p)G?V(p)V(ﬁ, ). We have,

M a8, 03y) = w2 Y () Ran () Qo()Bu () (AN (N)Y — X5),

MR (B po, o) — H3(00)] = 5z YGRY (A = Ao) + 57z YGRX(B — fo).

By Lemmas B.1 and B.6, it is easy to show that N%Y’G?VY = 0,(1) and N%Y'G?VX = 0,(1).
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Therefore, (7i) holds. To prove (i), we have

Y'(9)Rin (9)Qo(p)Br () (AN(N)Y — XB)

= (AM'n+ C' V)N (D) [AN(NAY' D + Ax(A)CR'V — X5,

where Hy(p) = W'B (9)Qp(p)Rin (9)Qn(p)Br(p). Lemma B.2 implies By'(p) embedded
in Hy(p) is uniformly bounded in both row and column sums since p— py = 0,(1). It follows
by Lemma B.6 that the above equation is O,(N), and then the result (i) follows.

For the non-stochastic part, we illustrate the proof using the most complicated A\-term.
Noting that the non-stochastic part is nonlinear in both A and p, we have by the MVT,

;R (0) — H3P(00)] = — ;42 [Qo(p) By ()F 3 (M)BY' (5) — QoByFR By ]

= — (A= Xo) = t[2Qu(p) By ())FX (N)BR (9)] — (7 — po) 3=t [FR (VRN (p)],

where A lies between A and Ao and p lies between p and py. Again, by Lemma B.2, we
conclude that both A3'(\) and B3!(p) are uniformly bounded in both row and column
sums. Therefore, the terms inside the trace both have elements that are uniformly bounded.
As § — &y = 0,(1), we have N%[Hﬂs(g) — H¥3(00)] = 0,(1).

Proof of (c). Since Y = Ay'(n+ By'V), the Hessian matrix at true 6, are seen to be
linear combinations of terms linear or quadratic in V, and constants. The constant terms

are canceled out. Other terms are shown to be 0,(1) based on Lemma B.6. For example,

~; 5, (p0) = E(Hj (p0))] = 5752 [V QoRinQpV = E(V'QoRinQo V)] = 0,(1). 0

Corollary C.1. Under Assumptions A-G, we have,
I (0%) = Ty (6) + Bias™ () + 0,(1),

where Bias*(dg) is a matriz having a sole non-zero element NthI'(PéPQ]PD) at the A-\ entry.

12



Proof of Corollary C.1: Note that I (0%) = I'%(0) As 6%,

| (0=0% ,0=¢x K3=R3,N Ka=Ra N)"

ks n and k4 are consistent estimators for 6y, k3 and k4, plugging these estimators into
'y (6) will not bring additional bias to the estimation of I'§(6y). However, due to incidental
parameters problem, the i3, component of (ﬁ*N is not consistent for the estimation of pg when

T is fixed. To estimate the bias caused by replacing ¢y by ¢%, recall (3.3),
on(8,6) = D' (p)D(p)] D' (p)Bn (p)[AN (VY — X5,

Thus, the unconstrained estimate of ¢ is just ¢% = on (0%, 0%). Note Ay(A5)Y — XG5 =
ANY — X5y — WY(X}‘V —Xo) — X(B]*V — o). Applying the MVT on each row of D(ﬁ}‘v with

respect to the pj-element, we have,

Doy = DD (53)D(px)] D' (53 ) B (P AN (MY — X5 (C.5)
= By (PV)Po(03)Br (73 [AN (AR Y — X53]
= [By'PuBy — Ry (p) (5 — po)|[Av(AR)Y — X3]
= D¢ + By'PpV — BR'PpBy[WY (MY — Ao) + X(Bxy — So)]
—Ry(p)[AN(AR)Y — XBR](Px — po).
where p lies between p} and pg and changes over the rows of Ry(p), and Ry(p) is given in
the appendix of the main text. From its expression, I'4(6) is seen to have components linear

or quadratic in D¢. Let dy be a non-stochastic N-vector with elements being of uniform

order O(1) or O(h;Y). Using (C.5), the terms of % (6% ) linear in D% are represented as
7 INDOy = FdyDoo + g dyBy PoV — 5y By PoBy[WY (Af — Xo) + X (5% — fho)]
T ARy (P) AN (S)Y — XB31(53 — po) = 2-d Do + 0,(1),

where the last equation holds because of the consistency of é}“v and Lemma B.6, using Y =

13



Ay (n + By'V). Hence, we can conclude that the terms of I () linear in ¢y can be
consistently estimated by simply replacing ¢ with ngS"]‘V
The only term that is quadratic in ¢ is contained in I'}, (6o), M#%ID)’ PiPD¢y. The

plug-in estimator estimates this term by M&%Mgzgj‘\’,D’(ﬁ}*V)Péw )P (0% )D(py )¢y Using
(C.5), 6% — 6y = 0,(1) and Lemma B.6, we show that this estimator is biased/inconsistent:

T DR (D) Py (03) Pa(S3)D (P3P

= waem S0l (B3 )P (03) Pa(03) D (53 )6

ke VESBR Bl (54 P4 (53 P53 Ba (i By BV + 0,(1)

= mqﬁgD’PéPQD% + ﬁagoV’PDP{PQ]PDV + 0,(1)

= ﬁagogb{)D'Pépngbo + N%tr[PéPgIP)D] + 0p(1).
We see that the bias term, Niltr[PépglP’D], involves only the common parameters that can
be consistently estimated. Thus, a bias correction can easily be made. Define

Bias},(0) = w7 tr[P3(0)P2(0)Po(p)]. (C.6)

This gives the bias matrix of I (0%), which is a matrix of the same dimension as ' (6% ),

and has the sole non-zero element Bias}, (d) corresponding to the T'%, (%) component. [
Corollary C.2. Under Assumptions A-G, we have, as N — 00,
(Z) /%37]\] i) R3.0 and /%47]\] L) R4.0; (ZZ) i},—z%(go) i) 0 and f*N—F}‘V(QQ) i) 0

and therefore S5 THSH — 5571 (0T (6) S5 (6y) — 0.
Proof of Corollary C.2.

Proof of (i). Note: V= By(AyY—7), V =QpV and V = Qp(p%)Bn(5%)[Av(AL)Y —
X 3%] with respective elements {v;},{;} and {o;}, and Qp has elements {g;5}, j,h =
1,..., N, where j and h are the combined indices fort=1,...,n;and t =1,...,T.
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Consistency of i3 . As 6, y — 0,0 = 0,(1) and py — po = 0,(1), the denominators of

ksn and k3 agree asymptotically. Thus, Az y is consistent if & Z] 1[ E(f}?)] %50, or

(a) L3V [0 —E(@})] >0 and (b)) 3% (02 — o) 0.

N £-j=1 j=1

To prove (a), noting that 0; = Z,ZLVZI ¢;nvn, we have,

% Z;Vﬂ[ﬁ? - E@?)] = % Z;Vﬂ ZhN:1 q?h[“l% - E(vi)] + % Z;V:I Z;L Z];\gji QJQ‘ZQjmvlzvm
+5 Z;'Vzl St Z]l}fjf Z]f%gl imiqinvmvion = K1 + Ko + K.

First, consider K; term. By Lemma B.3, Qp is uniformly bounded in both row and
column sums. This implies that the elements of Qp are uniformly bounded. Therefore, there
exists a constant ¢ such that |g;,| < ¢ for all j and h. Given these, we have Zjvzl qj-’h <
Z;.Vzl lgin® < @* Zjvzl |gjn| < 0o. Also note {v;} are iid by Assumption A. Thus, Khinchine’s
weak law of large number (WLLN) (Feller, 1967, pp. 243-244) implies that K converges to
zero in probability as the sample size increases.

For the other two terms, we have by switching the order of summations when needed,

N N N
Ky = % Zj:l >t szi qul%'m( — 03U + N Z] 1 Zl 1 zm# quQJmU Um
N N m—1 m—1
= % > (V5 — 03)(23‘:1 pyi q?mqﬂvl) + % Zm:l Um[ijl pIy q?lqjm( v —o7)]
N N N N
X Dmmt Ljmt 2t GilimOe0m = § Yt (91m + G2m + g3.m), and

=¥ Zm 1 Um(Z] Dy Z hal QJmCIJIQJhUth) = % Zﬁ:l 94,m5

where g1, = 3(v2,—0?) Zjvzl St GGVl G2,m = 3Unm Zjvzl St 2 jm (V2 —02), Gsm =
3 Z] 1 Zl#m 0515m O3 Vm, and gam = Un, Z] i Y h#l qjmj19jnVIVp.-

Let {G,,} be the increasing sequence of o-fields generated by (vy,--- ,v;,7 =1,--- ,m),
m=1,---,N. Then, E[(g1m, 92.m> 93,m: 9am)|Gm-1] = 0; hence, {(g1,m, 92.m> gs,m> Gam)', G}

form a vector martingale difference (M.D.) sequence. As Qp is bounded in row and column
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sum norms, by Assumption A, it is easy to see that E|gs.,|'"¢ < oo, for s = 1,2,3,4 and
e > 0. Hence, {g1.m}, {92.m}, {93.m} and {gs,,} are uniformly integrable, and the WLLN of
Davidson (1994, Theorem 19.7) applies to give Ko 50 and K3 2 0.

To prove (b), using the notation V(¢) = Qp(p)Bn(p)[An(A)Y — X] in (3.4) where

¢ = (8,0, we have V = V(&) and V = V(£5). Let S(¢§) = 2 V(¢), and we have

S(€) = {-X(p), —Y(p), [Qu(p)Bn(p) — Qu(p)M][AN(NY — X5},

where the expression of Qp(p) is in (A.1) and Y(p) = Qu(p)Bn(p)WY. Let s5(§) be the

jth row of S(§). We have by the MVT, for each j =1,2,..., N,
05 = (€)= 5(%) + 55 (Ex — &) = 55+ ¥ (Ex — &) + op(IEx — Goll), (C.7)

where ¢ lies between €% and &, and ¢ = plimy_,.s5(€), which is easily shown to be O,(1)
as follows. Consider the first & (the number of regressors) elements of ¢} first. They are the
limits of the jth row of —X(p), which are just the jth row of —X because 5 —= po, implied
by p — po = 0p(1). Hence, we conclude that the first k elements of ¢ are O(1), for each j =

1,2,...,N. For the remaining two elements in each @D;-, they are the limits of elements from

the last two columns of S(§). It is easy to see the limits of the last two columns of S(&) are just
~Y and [QpBy — QuM][ANY — X3o]. Using Y = Ay'n+ CyV, we have =Y = P,Byn +
P2V and [QoBy — QoM][ANY — X)) = [QoBy — QoM]Dgy + [QoBy — QoM]BR'V.
By Lemma B.1, we have the elements of P,Byn and [QDBN — QpM]D¢y are uniformly
bounded, and P, and [QDB N — (@]D)M]B]_\,1 are uniformly bounded in both row and column

sum norms. Hence, it is easy to see each element of —Y and [QDB v — QpMJ[ANY — X[5]

are Op(1), i.e., the last two elements in ¢} are also O,(1), for each j =1,2,..., N.

As U5 = Opy(1), ¥ = Oy(1) and éj*v —& = Op(\/}v—l), we have by (C.7), @5? = 175-’ +
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3020 (Ex — &) + 0p(II€x — &oll). Tt follows that

¥ 2 (0 = T3) = % L BUHER — &) + op(IEx — Goll)
o1 (20l G (Ex — o) + 0p([I€x — &oll) = 0,(1),

as % ZL(ZL q]2k¢3> = (25:1 qfk)%(zyﬂ 1/’3) = 0(1).
Consistency of iy n. As 6) y — 0y = 0,(1) and piy — po = 0,(1), the result follows if
Z?f:l[@? — E(5%)] - 0. This shows that
(6) % o310} = B(@)] = 0 and (d) § 3L, (0f ) 0.
To prove (c), we have
N e U — % i E())
= % Z;V:1 Zthl q?h [U% - E(“ﬁ)] + % Z;V:1 Z;L Z%ﬁ Q?ZQJZm<U?U3n - Ug)
+% Zjvﬂ Z;\il Z%ﬁ 05105mV; Vm + ¥ Zjvzl Zl]\il Z%ﬂ Z]’%gl 0510m 4V VmUn
8 e Dy Xt Do Yt Gilim iy UiUm Oty = 300y R
By using WLLN of Davidson (1994, Theorem 19.7) for M.D. arrays as in the proof of
(a), we have R, = 0,(1) for r =1,3,4,5. For Ry, we have
Ry = % Zl]\;(vf - )[Z] IZm quIQJm( rzn - 012))]
F TN, Sk ot — )] = & XN (fua+ ),
noting that v?v2, —oh = (v} —02)(v2, —02) +02(v2, — 02) +o2(vi — 02). Since E[f1,/G-1] =0

and {fo;} are independent, both {f;} and {fs;} form M.D. sequences. It is easy to see that
E|fsi|'T¢ < oo, for s = 1,2 and € > 0, so that {fi;} and {f2;} are uniformly integrable.

Therefore, the WLLN of Davidson (1994, Theorem 19.7) implies that % Zl]il fir = o0,(1)

and % 3201, foa = 0p(1).
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To prove (d), 0} = 0 + 4039/ (& — &) + 0,(|€x — &lI) by (C.7). It follows that
¥ 500 =5 = 5 55 T — &) + oy — &l
= 2 L (T ) — &)+ 0u((1€5 — &ll) = 0,(1).
Proof of (ii). The consistency of 3% to 3% (f) can be shown similarly as what we do

in the proof of Theorem 2 for results (b) and (c¢). For f}} —T%(60) - 0, we only need to

show that Bias*(d%) — Bias*(dy) = 0,(1), based on Corollary C.1. That is to show
w4 {Er (PS03 Pa(03)Po(p)) — tr(PaPaPo)} = o(1),

which can be proved as that for N%[Hﬂs(é_) — H\%(dp)] in the proof of Theorem 2 (b). [

Appendix D: Proofs for Section 4

Identification Uniqueness: Let S%,(3,8) = E[S%(,9)] be the population robust AQS
functions. Then, the S-component of S$(3,d) = 0 is solved at 5%(8) = B3 (0) given below

(3.10). Upon substitution, we obtain the population counterpart of S{¢(9):

] E[Y'Cly (8)[F (6) — Fy ()] V()].
S3(6) = (D.1)

E{[AN(N)Y = XB5(0))Biy(p)[Gn(p) — Gn(p)]V(9) },
where V(8) = V(B3(6),0). As S3(8%) and S53¢(6,) are both zero, by Theorem 5.9 of Van der
Vaart (1998) 63, will be consistent if supse a5 [|S3(6) — S3¢(8)|] = 0 and Assumption G’
holds. Next, we show Assumption G holds if either of the following conditions holds:
(a) " Al Cy(9)[Fy(8) — Fiy(8)]Qn(0) AN + tr[Qu(p)CH (5) (Fiy (8) — Fy(d))] # 05 or
(b) ' A Cy (0)My () [G (p)-Gn (p)] Qn () AR n+1x[Qo(p)CR (8) (G ()G (p))] #0,

for § # o, where C%(§) = Cn(0)Cx HCRYCly(6) and My (p) = In—Bn (p)X[X' (p)X(p)] 71X ().

As Ch(0p) = H and Qn(dg)Ax'n = 0, the two quantities in (a) and (b) are 0 at .
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Validity of the assumptions on IIy(p) in Lemma D.1 under a balanced panel:

Following the first part in Appendix C, we have Qp(p) = (I7 — %) ® (I, — %), where

® denotes the Kronecker product. Thus, [Qp(p) ® Qp(p)] ™! exists if T > 2 by Schur product

theorem. Further, |(Qs(p) © Qo(p))i| =3, |(Qo(p) © Qo(p));y| = LREUEAT2E
c>0,Vi, T > 2. As Qp(p) ® Qp(p) is symmetric, we conclude it is strictly diagonally
dominant in both rows and columns. Hence, Theorem 1 and Corollary 1 of Varah (1975)
imply that ||IIy(p)||; and ||IIy(p)||s are both bounded.
Proof of Theorem 3. Consistency of 5% follows that of 6% under Assumptions C and E.
Thus, we only need to prove the consistency of 5?\/ By theorem 5.9 of Van der Vaart (1998),
0% will be consistent for dy if supsen || S3¢(8) — S()|| = 0.

Let La(6) = Qo(p)[Fn(8) — Fx(d)], Ly(p) = Qo(p)[Ch(p) — Gy(p)] and Ny(p) =
Iy =My (p). Note that By (p)[An(A)Y —X33(6)] = My (p)Cx(6)Y and By (p)[An(\)Y —
X33(6)] = Mn(p)Cn(6)Y + Ny (p)Cn(8)[Y — E(Y)]. Recall V(§) = Qu(d)Y and V(5) =
On(0)Y + Pn(8)[Y — E(Y)]. With Assumption G/, consistency of 4%, follows if:

(i) supsea NL1|Y'QQ(5)Y —E[Y'Q!)Y]| = 0,(1), forr=1,2;

(1) supsen S0tr[Cy PH(S)CHY = o(1), for s =1,2,3;
where Q}(6) = Ciy (6)L(5) @ (6). Q4(6) = Ciy (DM (p)Ly(7) O (6). P1(3) = Ci()L4(5)P (6)
P4(6) = Ch(0)Ly(p)Px(5) and Ph(®) = Ci(0)Ny (p)Ly(r) O (0).

Note that Q} () = Ciy(0)[F)y(6)—Fy (9)]Qn(9) = W'Bly (p) Qu(8) — Cy (9)F (0) Qv (9)-
As 'y (6) is a diagonal matrix which is naturally bounded in both row and column sums,

uniformly in § € A, we conclude Q”(§) is bounded in both row and column sum norms, uni-
formly in § € A, by Lemma B.1. Similarly, Q¥(§) = Ci\(6)M/y (p)[Gn(p) — Gn(p)]Qn(6) =

Q(0) — Cy ()M (p)Gn(p)Qn(0) is also bounded in both row and column sum norms, uni-
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formly in 6 € A. Hence, Q%(d) and Q%(8) have forms similar to Q(8). The proof of (i) thus
follows that of Theorem 1 (b). For (ii), noting that Py () = Px(p)Qp(p)Cn(5), we have
SUDsea UT’%ftr[C’glPZ(d)C]’\,l] =o0(1),s =1,2, by Lemma B.4. For the final result,
M Er[CYPE(O)CY] = —5;tr[Cly(9)NY (p)L,(p) Qu (8) Var(Y))]

= — 3 tr[(F X (0)X(0) " (7 X Bl (p)L,(0)Qux(p) Qo (p)C (8)X(p)) ]
Assumption C implies that the elements of [N%X’ (p)X(p)]~! are uniformly bounded for large
enough N, uniformly in p € A,. Lemma B.1 and Lemma B.3 together imply the term
between X' and X(p) are uniformly bounded in both row and column sums, uniformly in
0 € A. Hence, the elements of the second part in the trace are also uniformly bounded. As
the number of regressors k is finite, the quantity %tr[CEng(é)C;] will shrink to zero as

N goes large, uniformly in § € A. These complete the proof. ]

Proof of Theorem 4. Applying the MVT on each row of va(éfv), we have,

0= A-S%(E) = A5 (60) + [ S5O o voud VILER — &),

where {,} are on the line segment between gf\, and &. The result follows if

(@) 5% (%) == N[O, limy el ()],

(5) &[22 ee 1o s — 2S3(60)] = 0p(1), and

() 7 [25% (&) — E(z5%(60))] = 0p(1).

Proof of (a). It is easy to see that the elements of S% (&) are linear-quadratic forms in

V. Thus, for every non-zero (k + 2) x 1 vector of constants a, a’'S% (&) has form:
'S (&) = by V + V'ONV — oltr(Dy),

for suitably defined non-stochastic vector by and matrix ®,. By Assumptions A-F, we verify

that by and matrix ®y satisfy the conditions of the CLT for LQ form of Kelejian and Prucha

20



(2001), and hence the asymptotic normality of a’S$ (&) follows. By Cramér-Wold device,
\/LN—lS}Q(SO) N N[0, limp 00 'Y (00)], where IS (6p) is in (4.5).

Proof of (b). The Hessian matrix Hy(§) = H‘Z,SO (€) is given in Appendix A. As
Fiyx(60), Fiy,(d0) and Gy,(po) are diagonal matrices with uniformly bounded elements, we

show that N%va(go) = O,(1) by Lemma B.6, and hence, N%HX,(E) = O,(1). Here again we

simply use H3(€) to denote -2 5% (¢

2 }5:51 b row: S H$,(€) is linear or quadratic in 3 and

nonlinear in §, we have by applying the MVT on the §-components:
N HY(E) = 3 HR (60) = 3 a3 H3(B,0)(8 — 80) + 5 [H: (B, 60) — H(60)]:

Similar to the proof of Theorem 2.2 (b), we show that -

N ayHQ (B, 5) O,(1). The second

term is seen to contain elements either linear or quadratic in 3 — B, with the matrices in the

linear or quadratic terms being O,(1). Hence, the desired result follows as & — & = o0,(1).

Proof of (c). Since Y = Ay'(n+ By'V), all components of HY (&) are linear or
quadratic in V. Thus, under the assumptions of the theorem, the result (c) is proved using
Lemma B.6. We provide details of the proof using the most complicated term, Hy (£p). The
proofs for the other terms are similar and thus are omitted.

Let =y = —G’N@N—l—@]\;p—i—GNGN. By Lemma B.1, it is easy to see that =y is uniformly

bounded in both row and column sums in absolute value. Hence, we have,
Ny 0 (60) — E(H, (60))]
= % [VQRinQV — E(VQRinQ V)] — 3 (ANY — X53) By EvQpV
+ 7 E[(ANY = X5)ByEvQo V]
= N%[V/QDRWQDV —E(VQpRinQp V)] — N%[%D/EN@DV — E(¢D'EnQpV)]

— 7 [VExQpV — E(VEyQpV)] = o,(1),
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completing the proof or Theorem 4. O]

Corollary D.1. Under the assumptions of Theorem 4, we have,
L% (€ O, H) = Ty(€) + Biasj (do, H) + 0,(1),

where Bias (00, H) is a (k +2) x (k4 2) matriz with all the B-related entries being zero and
the 0 entry of the elements: N%tr(HJP’DLfLHLb]P’D), for a,b =\, p.
Proof: Just like the homoskedasiticiy case, plugging ¢E}§, in I'{,(€) induces a bias for terms
quadratic in ¢, and a bias correction is necessary. From (4.5), we see that only the (A, p)
components of I'{;(£) contain terms quadratic in ¢: ¢'IY'(p)L! (§)HIL,(5)D(p)p, a,b = X, p.

Applying MVT on DQAS})V w.r.t. pf%, for p between p%; and py, DQAS?V = D¢y + By'PpV —
By'PoBy[WY (A} — Xo) +X(5% — )] = Rw(p)[AN(AR)Y — XBR](0 — po). Thus,

N ORDY (5L (65 HILy (03 D (0595 = 7 06D/ (3)ILi (05 HLL (03 )D(45 ) o
+ 5 VP By By (5% L ! (0% )HLy(6%)Bn (5%) By PoV + 0,(1)
= - 0L HL, D¢y + 5-tr [HPpL, HL,Pp] + 0,(1),

after plugging D¢% and other parameter estimates. Therefore, +tr [HPp(p)L,(6)HLy(6)Pp(p)],

for a,b = A, p, gives the non-zero elements in the bias matrix Biasj;(éo, H) for I'%,(£%). O

Lemma D.1. Assume Ily(p) = [Qn(p) © Qu(p)|~" ewists for p in a neighborhood of po, and
is bounded in both row and column sum norms. Let Ay = |a;;] and By = [bi;] be square
matrices of dimension N with zero diagonals and bounded row and column sum norms. Let
Cn = [cij] be an N x N matriz with diagonal elements being uniformly bounded. We have,
(i) Ltr(HCy) — Ltr(HCN) = 0,(1),
(i4) Ltr(HANHBY) — 2tr((Ay © By)IyAH)Iy) — Ltr(HANHBY) = 0,(1),
where Ty = Ty (po), AH) = {(¢jHaqr)*} =y, and g} is the jth row of Qp.
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The assumptions on [1y(p) in Lemma D.1 always hold for a balanced panel, and typically
hold for a general unbalanced panel. To see the invertibility, we have, Qp(p) ® Qp(p) =
Iy —2Iy © Pp(p) + Pp(p) © Pp(p). By Schur’s product theorem, the last term is positive
semi-definite. In addition, when T is not too small, Iy — 2y @ Pp(p) is positive definite,
because the diagonal elements of Pp(p) are of order O,(1/T") (see the proof of Lemma B.3).
These are mainly for theoretical considerations and in practice, a generalized inverse can
simply be used. The bias term in Corollary D.1 needs a further correction when H is
replaced by H as it contains elements of the form tr(HAyHBy) with diagonal elements
of Ay and By not strictly zero. However, the effect of non-zero diagonals is shown to be
negligible due to the existence of a lower ranked matrix Pp orthogonal to Qp.

Proof of Lemma D.1: Using V(£) = Qp(p)Bn(p)[An(\)Y — X3] defined in (3.4), let

V = V(&) and V = V(%) and denote their elements by {;} and {0;}, respectively.

Following (C.7), we have 0; = 0; (éfv) =0; + w;(éﬁf — &)+ op(||€]’§, —&l|)- In vector form,
V =V 4+ Uy (& — &) + 0, (1€ — &ll),

where Uy = (91,9, ..., ¢¥n)’, with ¢; being defined below (C.7).

Define Ily(p) = S ln(p) = —2Iy(p) [@o(p) © Qu(p)Tn(p). 1Tt is easy to see that
ITIx(p)||; and ||TIx(p)|le are bounded in a neighborhood of py. Let II;, and II;, be the
respective elements of Iy and IIy. We have by the MVT, for each j,h = 1,2,..., N,
T (p3%) = Wi + 1L (9) (9% — po) = Wyn+TLin(p% — po) + 0p(|| 53 — poll), where f lies between

p% and po. In matrix form,

My (p%) = My + v (% — po) + 0p([15% — pol)-

Define h = (62,62,...,62%) =Ix(p3)(V® V) and h = Iy (V ® V). As the elements of V
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are O,(1), rows of ¥y are O,(1), elements of Iy and ITy are O(1), and £ —& = O,(—2=),

VNL
h=h+20y(V e Uy — &)+ T (Vo V(3% — o) + op([I€5 — &ll). (D.2)
Proof of Result (i). Let cxy = (11, -+ ,cny) and h = (0%,03,...,0%). We have,

Llex(HC) — tr(HCy)] = heh(h = ) = 3y (h = B) + Sex (= )

The result follows if both terms above are o0,(1). For the first term, we have, using (D.2),
(b =h) = ZeNTIN(V O Un(ER = &) + TNV © V)3 — o) + 0,(1€R — &ll)
= 230 i (e Tndnth ) (6% — &0) + % 2orms € (Cny in Yohey @02) (P — po)

+ 0I5 — &ll) = (D).
For the second term, we have after some algebra,

h=TIN[(QpOQp)(VOV)+(=VoV+Iye, (D.3)

where ¢ is an NV x 1 vector with j-th element €; = Z,ivzl vk, where (i, = 2q; Z;:ll giu, k>
2, and (1 = 0. As (i is (vq,...vg—1)-measurable, {vx(;;} form an M.D. sequence. Thus,

each ¢; is a sum of M.D.s. Hence, we have
Nen(h—h) = 3E(V OV = h) + yeylin¢ = 0,(1),
by Lemma B.6(v) and WLLN of Davidson (1994, Theorem 19.7) for M.D. arrays.
Proof of Result (ii). Note that tr(HAyHBy) = h/(Ay ® Bx)h. We have,

—tr(ﬁANﬁBN) — %tr(HANHBN) = ItL/(AN ® BN)}Al — h,(AN ® BN>h

1 1
N N

=% (W(Ay © By)h = I'(Ay @ By)h) + (W (Ay © By)h — W/(Axy © By)h).  (D.4)
The first term of (D.4) can be written as
%(h’(AN ® By)h — h(Ay © By)h) =T+ To + Ts,

where T; = 3(h — h)/(Ay © By)(h — h), To = §(h — h)(Ay © Bx)h, and T5 = %(h —
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ﬁ)’ (Ay ®By)' h. As Ay and By are uniformly bounded in both row and column sum norms,
An ® By is also uniformly bounded in both row and column sum norms. Hence, using (D.2),
V = 0,(1), Uy = O,(1) and & — & = Op(\/LNfI), we show that 7, = 0,(1),r = 1,2,3, in
a way similar to the proof of %E’N(ﬁ — h) = 0,(1) in the proof of (i) above. Thus, the first
term in (D.4) is 0,(1).
For the second term in (D.4), we have similarly to the first term,
L(W(An ® By)h — W(Ay @ By)h) = Ta+ T5 + To,

where T = £ (h—h) (Ay®By)(h—h), Ts = £ (h—h)' (Ax®By)h, and Ts = & (h—h) (Ax©®
By)'h. For T; term, we have by (D.3), Ts = +(VOV —h) (Ay© By )h+ Ty (Ay©By)h =
0p(1), by Lemma B.6(v) and WLLN for M.D. arrays of Davidson (1994, Theorem 19.7). The

Ts term is similar to 75 and the result follows, i.e., Ts = 0,(1). Finally for 74, we have again,
Ta = Taa + Tap + Tac + Taa (D.5)

by (D.3), where Ti, = ~(VOV —h)'(Ay © By)llye, Ty = +(VOV = h)(Ay ® By)'ly,

Tie=x(VOV =h)(Ay ©By)(VOV —h), and Tig = +£'TIn(Ay ® By)ly. Consider

first the term 74,. Denote 2 = (Ay @ By)IIy with elements {w;}. We have,

N N
Taa = % Dim1 2okt Wik (Vi — o) = E] DIAED Il vaﬂ Wikdj1qjm (Vi = OF)Vivm,

which is further decomposed into:

% Z]kvz1(( - Uk) ZJ 1 Z m#l ngqglq]mvzvm)
~ Zl (g Z] 1 Z Zmik wjkqjl%mvm(vl% - Uk;))

+ 23 (v} — Ev}) Zj:l S Wik GjmUm)

+ 23 (0 Y0 S Wik (0F — E}))

N N N
+ X Lo (Vm 251 Dok wikikdim (B — 0F)).

25



Each term is the average of an M.D. sequence and thus is 0,(1) by Theorem 19.7 of Davidson
(1994). Similarly, we show that Ta = (V © V — h)'(Ay © By)'TIye = 0,(1).

For the term Ta., as E(V ®'V) = h, we have E(Ta.) = ~tr((Ay @ By)Var(VOV)) = 0.
Thus, Lemma B.6(iv) implies that Toe = (VO V — h)(Ay ® By)(VOV — h) = 0.

Now, for the last term of (D.5), Tyq = %5’HN(AN ® By)Iye, we have by taking the
advantage that each element of € is a sum of an M.D. sequence,

E(ee’) = 2(QpHQp) © (QpHQp) — 2(Qp © Qp)HH(Qp ® Qp). (D.6)

Let A(H) = (QpHQp) ® (QpHQp). As Ay and By have zero diagonal elements, we have

E[e'lIn(Ay ® By)llye] = 2tr[(Ay ® By)INAH)IIy] — 2tr[(Ay ® By)H?], (D.7)

= 2tr[(Ay © By)IINA(H)y].

Finally, to show that Tyq —E(744) = 0,(1), denote xny = IIy(Ay ® By)Ily with elements
{x;jr}- It is easy to show that {x;i} are uniformly bounded. Let x| < x < co. We have,

Var(e'lly(Ay @ By)lye)
=831 Dk i St Lo Lo 3y Do Xk Xim i Qi is G s Gons B (0300307
< 87X ey (T ms kD) (s lawr D2 i) (ass L)) (205 anl) (225 1)) (3L [imr])
which is seen to be = O(N). The inequality holds because E(vivivZv?) equals either

E(viv2)E(viv?) or E(viv?)E(viv?) since h # p and s # r. Both terms are bounded since,

e.g., E(viv?) < E%(vﬁ)E%(vf) < ¢ < 0o. Therefore, by Chebyshev’s inequality,
P(%\g’HN(AN ® BN)HNéT — E(&T,HN(AN ® BN)HN€)| Z M)
< 3wz Var(e'Tly (Ay © By)Ilye) = o(1).

It follows that %E'HN(AN ©® By)Ilye — %E(s’HN(AN ® By)Ilye) 24 0. Therefore, we have
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shown that Ty = £tr((Ay © By)INA(H)IIy) + 0,(1). It follows that
Ler(HANHBY,) — 2tr(HAVHBS) = Y0, T, = 2tr((Ay © By)INA(H)IIy) + 0,(1),

completing the proof of Lemma D.1. O

Corollary D.2. Under the assumptions of Theorem /, as N — oo, i]}i, —¥%(&) 250 and
% — % (&) = 0. Therefore, S35 TR EY" — S5 (60) T3 (&) 2371 (&) — 0.
Proof: The consistency of $% to $%(&) is implied by results (b) and (c) in the proof of
Theorem 4. To show fﬁv —T%(&) == 0, it is easy to argue that:

e transition from I'%, (&, ¢, H) to T'% (€%, ¢, H) is asymptotically costless:

e cost of transition from ', (€3, ¢o, H) to I'3(£%, ¢%, H) is captured by Biasi;(g?\,, H);

e effect of replacing H by H in N%tr(HIL,aHILg) is captured by Nlltr((LaQLg)HNA(H)HN);
for a,b = A, p. It is left to show that the cost of transition from Bias:;(gf\,, H) to Biasj;(gj}v, H)
is captured by —z=tr((Ppli, © LyPp)lIyA(H)IIy),a,b = A, p.

The non-zero entries in Biasj(do, H) are of the form N%tr(HIP’DL;HLbPD), for a,b =\, p,

as given in Corollary D.1. Applying result (D.7) with Ay = Ppl! and By = L;Pp, we have,
7 67 [Po (AR )L, (03 ) HILy (0%, ) Py (63 )H — PplL, HL, Py H]
= tr [Pl HL,PpH — P, HL,PyH] + 0,(1) (by the MVT)
=1 [(PplL), © LyPp) TINA(H)TIy] + 7-tr [(Poli, © LyPp)H?] + 0,(1),
for a,b = A, p. Although the diagonal elements of PplL], ® L,Pp are not zero identically, they

are shown to be small under Assumption F and therefore §-tr((Ppl, © LyPp)H?) is o(1).

The detail is tedious and thus is omitted. The result of Corollary D.2 thus follows. O]
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Appendix E: The Full Set of Monte Carlo Results

These Monte Carlo experiments are conducted to investigate (i) the finite sample perfor-
mance of the proposed M-estimators and the corresponding standard error estimators, and
(77) the consequence of choosing a wrong estimator, i.e., choosing naive or QML estimator
instead of the proposed M-estimator. The naive estimator is the M-estimator based on the

balanced panel obtained by deleting units without full presence.

E.1 First-order Models

We consider two data generating processes (DGP): GU-SPD-FE models with SL (spatial
lag) and SE (spatial error) or with SL and SD (spatial Durbin). The DGP with all the spatial
effects (SL, SE and SD) is not considered due to the potential identification issues (Anselin
et al., 2008 and Lee and Yu, 2016). Fort =1,...,T,

DGP 1: Y, = A\W.Y, + XyB1 + Dipe + ayly, + Uy, Uy = pMU, + Vi,

DGP 2: Y, = A\W,Y; + X, 51 + Wi Xi 2 + Dy + ayly,, + V.
To be self-contained, the descriptions given in the main text are repeated and more added.
We choose n = 50, 100, 200,400, and T" = 5,10. The parameters values are set at A = 0.2,
1 =1 p=202forDGP 1 and A = 0.2, §; = 1, B = 0.5 for DGP 2. X|s are generated
independently from N(0,2%I,), and individual effects are set to be p = %EthlXt + e, where
e ~ N(0,1,). The time fixed effects a are generated from N (0, I7). The number of Monte
Carlo runs is 1000.

The spatial weight matrices can be Rook contiguity, Queen contiguity, or Group interac-
tion. To generate W; under Rook, randomly permute the indices {1,2,...,n} for n spatial

units and then allocate them into a lattice of k x m squares. Let W,,;;; = 1 if the index j is in

28



a square that is immediately left or right, above, or below the square that contains the index
1. Similarly, W,; under Queen is generated with additional neighbors sharing a common
vertex with the unit ¢. To generate W, under Group, let Wy, ;; = 1 if units ¢ and j belong
to the same group. The distribution of the idiosyncratic errors {v;;} can be (i) normal,
(1) standardized normal mixture (10% N(0,4?) and 90% N(0,1)), or (i) standardized
chi-square with 3 degrees of freedom. See Yang (2015) for details.

We consider both homoskedasticity and heteroskedasticity cases, with o2 = 1 for the
homoskedastic case and the average of error variances 1 for the heteroskedastic. Two types
of Group interaction weights are used: the groups’ sizes are increasing with n with the
number of groups K(n) = Round(n’®) (Group-I), or fixed by starting with six groups of
fixed sizes (3, 5, 7, 9, 11, 15) and then replicating (Group-1II). In the latter case, the variation
in group sizes does not shrink to zero as n increases. As a result, the M-estimation would
not be consistent under heteroskedasticity (Liu and Yang, 2015, 2020). In this case, the
heteroskedasticity is generated as follows: for each group, if the group size is larger than the
mean group size, then the variance is set to be the same as the group size, otherwise, the
variance is the square of the inverse of the group size (Lin and Lee, 2010).

The selection matrices D; in DGP 1 and DGP 2 are generated as follows: for each t,
associate with each row of I, a uniform (0, 1) random number, and the rows with random
numbers smaller than p; € (0, 1) are deleted, which corresponds to the 100p;% non-presence
units. We fix the overall unbalancedness percentage at 10%. To generate spatial panel data
with GU, we first generate the full vectors/matrices (V;*, u, X;, W}, M;) for each ¢, then do
deletions according to the generated D, to give V; = D,V)*, X, = DX}, W, = DW}D;,

and M; = D;M;D;, and then generate Y; according to DGP 1 or DGP 2. Monte Carlo
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(empirical) means and standard deviations (sd, shown in parentheses) are recorded for the
naive estimator, QULE, M-estimator (M-Est), and RM-estimator (RM-Est). The empirical
averages of the standard error estimates (se, shown in square brackets) are also recorded for
the naive estimator, M-Est and RM-Est, based on the VC matrix estimates introduced in
Sections 3 and 4.

Tables 1a and 1b report Monte Carlo results for the GU-USPD-FE model with SL and
SE effects and homoscedastic errors, for different spatial weights combinations. The results
show an excellent finite performance of the proposed M-Est and RM-Est, and their standard
error estimators. The proposed M-Est performs uniformly much better than the QMLE in the
estimation of o2, ), and p, irrespective of the values of n and T'. Our M-Est exhibits a good
performance even when the sample size is as small as n = 50 and T' = 5, and improves on
average when the sample expands, regardless of the error distributions. Nonnormality does
not have much effect on the performance of the estimators. The \/N;-consistency of the
M-Est is clearly demonstrated by the Monte Carlo sds. Moreover, the robust estimates of
standard errors sd’s are on average very close to the corresponding Monte Carlo standard
errors. By comparing the results of M-Est and RM-Est, we cannot see which one beats
the other in terms of bias and efficiency for these homoscedastic models. By comparing
the results of Table la and Table 1b, we see that a denser spatial weight matrix (e.g., W =
Group-I vs W = Rook) can slow down the convergence.

Table 1c reports Monte Carlo results for the naive estimator for the model with SL and
SE effects and homoskedastic errors. The results show that the naive estimators for spatial
parameters are uniformly more biased than the other estimators, regardless of the sample

size, as the connectivity structures of those deleted units are totally ignored.
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Tables 2a and 2b present Monte Carlo results for the GU-USPD-FE model with SL and SD
effects and homoskedastic errors, for W being Queen and Group-I, respectively. The results
again show an excellent performance of the proposed set of estimation and inference methods.
As in the case of the SL-SE model, the M-Est and RM-Est give quite similar results, and
both show a clear convergence as the sample size increases. Their corresponding standard
error estimates also perform very well. In contrast, the QMLE can perform poorly.

Tables 3a and 3b report Monte Carlo results for the model with SL-SE effects and het-
eroskedastic errors, for different spatial weights. The results show an excellent finite sample
performance of the proposed RM-Est and their estimated standard errors. In contrast, the
QUMLE and M-Est typically provide worse estimates for spatial parameters than RM-Est. Our
RM-Ests perform well even when the sample size is quite small, and show convergence to the
true value as the sample size increases. In addition, sds are very close to sds for our RM-Est,
consistent with our theoretical expectation. Together with simulation results in Tables la
and 1b, we conclude that in real applications, when homoskedasticity holds either M-Est or
RM-Est can be used, but when it is in doubt one should use the RM-Est.

Table 4 presents Monte Carlo results for the model with SL-SD effects and heteroskedastic
errors. The weight matrix is specified as Group-II. The results show a much better finite

sample performance of the RM-Est than QMLE and M-Est in terms of bias and standard error.

E.2 Second-order Models

Following are Monte Carlo results for high-order models (p = ¢ = 2). The data-

generating processes (DGP) we consider is

DGP 3: Y, = M\WhYs + MoWoi Yy + Xy 81 + Dept + ouly, + U, Uy = pi My + po Mo Uy + V4,
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fort =1,...,T. We choose \; = p; = 0.2, \y = po = 0.3. The other parameters and the
combination of n and T are set the same as DGP 1 in section .

For homoskedasticity model, we set {W3;} and {My,;} as time-varying Queen contiguity,
and {Wy} and {Ms,;} time-varying Rook contiguity. For heteroskedasticity model, we gen-
erate {W1;} and {My,} based on time-varying Group-II interaction, and {Wy} and { My}
time-varying Rook contiguity. All the other settings and the way of generating spatial panel
data with GU are the same as first order models.

Table 5 reports Monte Carlo results for the second-order GU-USPD-FE model with SL and
SE effects and homoscedastic errors. The results based on M-Est and RM-Est are still very
close, and both of them perform uniformly much better than the QMLE in the estimation of
spatial parameters and variance parameters for all the combinations of n and T'. This holds
for all of the error distributions. In addition, the robust estimates of standard errors sd’s
are uniformly close to the corresponding empirical standard errors.

Table 6 reports Monte Carlo results for the second-order model with SL-SE effects and
heteroskedastic errors. The results also show an excellent finite sample performance of the
proposed RM-Est and their estimated standard errors. The convergence to the true value as
the sample size increases is clear for the proposed RM-Est. In contrast, the QULE and M-Est
can perform poorly even when the sample size is large enough. In addition, sds are very
close to sds for our RM-Est, which is in line with our theoretical expectation. Again, one

should use the RM-Est in practice whenever homoskedasticity is in doubt.
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Table 1a: Empirical mean(sd)[se| of QMLE, M-estimator and RM-estimator:
homoskedasticity, Unbalancedness percentage = 10%, (83, \, p, 02) =

= Rook and M = Queen.

DGP1 with

(1,0.2,0.2,1), and W

T=5 T=10
QMLE M-Est RM-Est QMLE M-Est RM-Est

n = 50; error = 1, 2, 3, for the three panels below
B .9998(.039) 1.0007(.039)[.039] 1.0007(.039)[.039] | 1.0019(.026) 1.0008(.026)[.026] 1.0008(.026)[.026]
A .1848(.063)  .1999(.063)[.062]  .1999(.063)[.062] | .1820(.039)  .1976(.039)[.040]  .1976(.039)[.040]
p A112(.152)  .1868(.146)[.148]  .1867(.146)[.146] | .1239(.093)  .1974(.091)[.091]  .1974(.092)[.091]
o2 .7394(.083)  .9829(.110)[.107 — .8641(.062)  .9930(.071)[.071 —
B1 .9981(.038)  .9989(.038)[.039 .9989(.038)[.038] | 1.0006(.026)  .9995(.026)[.026 .9995(.026)[.026]
A .1849(.061)  .1998(.061)[.062]  .1999(.061)[.060] | .1849(.039)  .2004(.039)[.040]  .2004(.039)[.039]
p JA1179(.149)  .1933(.143)[.148]  .1932(.144)[.140] | .1203(.093)  .1941(.091)[.092]  .1940(.091)[.089]
o2 .7358(.172)  .9780(.228)[.215 — .8625(.144)  .9912(.166)[.156 —
B1 .9981(.038)  .9990(.038)[.039 .9990(.038)[.038] | 1.0019(.026) 1.0008(.026)[.026] 1.0008(.026)[.026]
A 1825(.061)  .1976(.061)[.062]  .1976(.061)[.061] | .1819(.040)  .1976(.040)[.040]  .1976(.040)[.040]
p J1165(.150)  .1919(.144)[.148]  .1917(.144)[.143] | .1194(.094)  .1931(.093)[.091]  .1931(.093)[.090]
o2 7421(.128)  .9864(.169)[.161] — .8667(.105)  .9962(.121)[.113] —

n = 100; error = 1, 2, 3, for the three panels below
B/ 1.0010(.027) 1.0011(.026)[.027] 1.0011(.026)[.027] | 1.0001(.018)  .9997(.018)[.018]  .9997(.018)[.01§]
A .1922(.043)  .1993(.043)[.042]  .1994(.043)[.042] | .1924(.027)  .1993(.027)[.027]  .1993(.027)[.027]
p 1565(.099)  .1906(.096)[.100]  .1906(.096)[.099] | .1600(.063)  .1952(.062)[.063]  .1952(.062)[.063]
o2 7617(.060)  .9942(.078)[.076 — .8792(.044)  .9986(.050)[.050 —
B1 .9993(.028)  .9994(.028)[.027 .9994(.028)[.027] | 1.0005(.018) 1.0000(.018)[.018] 1.0000(.018)[.018]
A 1923(.042)  .1994(.042)[.042]  .1994(.042)[.042] | .1932(.027)  .2001(.027)[.027]  .2000(.027)[.027]
p 1623(.102)  .1962(.099)[.099]  .1962(.099)[.096] | .1634(.062)  .1985(.061)[.063]  .1985(.061)[.062]
o2 7624(.128)  .9951(.167)[.160 — 8773(.102)  .9964(.116)[.112 —
B1 .9983(.027)  .9984(.027)[.027 .9984(.027)[.027] | 1.0005(.018) 1.0001(.018)[.018] 1.0001(.018)[.018]
A 1937(.043)  .2009(.043)[.042]  .2009(.043)[.042] | .1923(.027)  .1992(.027)[.027]  .1992(.027)[.027]
p .1621(.100)  .1961(.097)[.099]  .1961(.097)[.098] | .1609(.064)  .1961(.063)[.063]  .1961(.063)[.063]
o2 7625(.092)  .9951(.120)[.118] — .8782(.073)  .9975(.083)[.082] —

n = 200; error = 1, 2, 3, for the three panels below
B/ 1.0002(.019) 1.0001(.019)[.019] 1.0001(.019)[.019] | 1.0004(.013) 1.0001(.013)[.013] 1.0001(.013)[.013]
A .1964(.028)  .1998(.028)[.029]  .1998(.028)[.029] | .1961(.018)  .1994(.018)[.019]  .1994(.018)[.019]
p J1805(.071)  .1947(.069)[.068]  .1948(.069)[.068] | .1823(.044)  .1985(.044)[.044]  .1986(.044)[.044]
o2 .7703(.042)  .9958(.054)[.053 — .8826(.030)  .9973(.034)[.035 —
B1 .9997(.019)  .9996(.019)[.019 .9996(.019)[.019] | 1.0002(.013)  .9999(.013)[.013 .9999(.013)[.013]
A .1969(.029)  .2003(.029)[.029]  .2003(.029)[.028] | .1960(.018)  .1993(.018)[.019]  .1993(.018)[.019]
p .1850(.069)  .1991(.067)[.068]  .1991(.067)[.067] | .1821(.043)  .1984(.043)[.044]  .1984(.043)[.044]
o2 7679(.089)  .9927(.115)[.114 — .8820(.071)  .9967(.080)[.080 —
B/ 1.0007(.019) 1.0006(.019)[.019] 1.0006(.019)[.019] | .9996(.012)  .9993(.012)[.013 .9993(.012)[.013]
A .1968(.028)  .2002(.028)[.029]  .2002(.028)[.029] | .1968(.019)  .2000(.019)[.019]  .2000(.019)[.019]
p .1840(.069)  .1981(.067)[.068]  .1981(.067)[.067] | .1818(.044)  .1980(.043)[.044]  .1980(.043)[.044]
o2 .7688(.063)  .9939(.082)[.083] — .8842(.053)  .9992(.060)[.058] —

n = 400; error = 1, 2, 3, for the three panels below
/1 1.0003(.014) 1.0003(.014)[.013] 1.0003(.014)[.013] | 1.0004(.009) 1.0003(.009)[.009] 1.0003(.009)[.009]
A .1985(.019)  .2001(.019)[.019]  .2001(.019)[.019] | .1982(.014)  .1998(.014)[.014]  .1999(.014)[.014]
p 1936(.049)  .1982(.048)[.047]  .1982(.048)[.047] | .1918(.033)  .1989(.032)[.031]  .1989(.032)[.031]
o2 .7738(.028)  .9966(.036)[.038 — .8854(.022)  .9982(.024)[.025 —
/1 1.0001(.013) 1.0000(.013)[.013] 1.0000(.013)[.013] | .9998(.009)  .9997(.009)[.009 .9997(.009)[.009]
A .1985(.019)  .2001(.019)[.020]  .2001(.019)[.019] | .1983(.013)  .1999(.013)[.014]  .2000(.013)[.014]
p 1937(.048)  .1983(.047)[.048]  .1983(.047)[.047] | .1931(.031)  .2001(.030)[.031] .2001( 030)[.031]
o2 .7782(.063) 1.0023(.081)[.082 — .8847(.050)  .9974(.056)[.057
/1 1.0001(.013) 1.0001(.013)[.013] 1.0001(.013)[.013] | .9995(.009)  .9994(.009)[.009 .9994(.009)[.009]
A .1972(.020)  .1988(.020)[.020]  .1987(.020)[.019] | .1978(.013)  .1994(.013)[.014]  .1996(.013)[.014]
P .1944(.050)  .1990(.049)[.047]  .1990(.049)[.047] | .1931(.031)  .2002(.031)[.031]  .2002(.031)[.031]
o2 .7743(.049)  .9973(.063)[.060] — .8873(.038) 1.0004(.043)[.042] —

Note: error = 1(normal),

2(normal mixture),

3(chi-square).The following tables also apply.
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Table 1b: Empirical mean(sd)[se] of QMLE, M-estimator and RM-estimator:
homoskedasticity, Unbalancedness percentage = 10%, (83, \, p, 02) =

= Group-I and M = Queen.

DGP1 with

(1,0.2,0.2,1), and W

T=5 T=10
QMLE M-Est RM-Est QMLE M-Est RM-Est

n = 50; error = 1, 2, 3, for the three panels below
B1 .9976(.038)  .9986(.038)[.038]  .998G(.038)[.038] | .9993(.025)  .9989(.025)[.026]  .9989(.025)[.026]
A .1666(.077)  .1885(.075)[.075]  .1887(.076)[.074] | .1780(.046)  .1971(.045)[.045]  .1971(.046)[.045]
p 1101(.147)  .1889(.141)[.150]  .1889(.141)[.147] | .1210(.093)  .1927(.092)[.091]  .1927(.092)[.091]
o2 .7390(.082)  .9828(.109)[.106 — .8641(.063)  .9936(.072)[.071 —
B1 .9980(.038)  .9989(.038)[.038 .9989(.038)[.038] | .9986(.025)  .9982(.025)[.026 .9982(.025)[.025]
A .1689(.076)  .1909(.074)[.074]  .1909(.074)[.072] | .1779(.047)  .1968(.046)[.045]  .1969(.047)[.045]
p 1121(.148)  .1915(.143)[.150]  .1913(.143)[.143] | .1235(.093)  .1951(.091)[.091]  .1950(.091)[.089]
o2 7420(.176)  .9867(.234)[.218 — .8641(.138)  .9935(.158)[.156 —
B1 .9980(.038)  .9990(.037)[.038 .9990(.037)[.038] | 1.0003(.026)  .9999(.026)[.026 .9999(.026)[.026]
A .1688(.078)  .1907(.076)[.074]  .1908(.076)[.073] | .1771(.046)  .1960(.045)[.045]  .1961(.045)[.045]
p .1104(.150)  .1894(.145)[.150]  .1894(.145)[.146] | .1211(.093)  .1928(.091)[.091]  .1928(.092)[.090]
o2 .7380(.129)  .9814(.171)[.161] — .8615(.101)  .9906(.116)[.113] —

n = 100; error = 1, 2, 3, for the three panels below
£1 1.0015(.029) 1.0009(.029)[.029] 1.0009(.029)[.028] | 1.0004(.018) 1.0004(.018)[.017] 1.0004(.018)[.017]
A .1842(.055)  .1960(.055)[.054]  .1961(.055)[.053] | .1817(.040)  .1963(.039)[.039]  .1964(.039)[.039]
p 1626(.104)  .1954(.101)[.099]  .1954(.101)[.098] | .1638(.064) .1988(.063)[.063]  .1989(.063)[.063]
o2 .7604(.058)  .9928(.076)[.076 — .8787(.046)  .9981(.052)[.050 —
51 1.0015(.029) 1.0009(.029)[.029] 1.0009(.029)[.028] | 1.0001(.018) 1.0000(.018)[.017] 1.0000(.018)[.017]
A .1829(.055)  .1948(.054)[.054]  .1948(.054)[.053] | .1838(.040) 1983(.040)[.039]  .1983(.040)[.039]
p .1588(.100)  .1917(.097)[.099]  .1916(.097)[.097] | .1601(.063) 1952(.062)[.063]  .1952(.062)[.062]
o2 .7674(.128) 1.0019(.167)[.161 — .8780(.101) 9973(.115)[.113 —
£1 1.0000(.028)  .9994(.028)[.029 .9994(.028)[.028] | .9998(.018)  .9998(.018)[.017 .9998(.018)[.017]
A .1831(.056)  .1950(.055)[.054]  .1950(.055)[.053] | .1834(.041)  .1979(.040)[.039]  .1979(.040)[.039]
p .1599(.098)  .1928(.095)[.099]  .1929(.096)[.097] | .1618(.064) .1969(.063)[.063]  .1969(.063)[.062]
o2 7636(.091)  .9970(.118)[.118] — .8763(.072)  .9954(.082)[.082] —

n = 200; error = 1, 2, 3, for the three panels below
51 1.0002(.020) 1.0001(.020)[.020] 1.0001(.020)[.019] | .9996(.013)  .9996(.013)[.012]  .9996(.013)[.012]
A 1856(.049)  .1955(.049)[.048]  .1955(.049)[.048] | .1883(.033)  .1986(.033)[.033]  .1986(.033)[.033]
p .1829(.069)  .1970(.068)[.068]  .1970(.068)[.068] | .1834(.044) .1997(.043)[.044] .1997(.043)[. 044]
o2 .7708(.040)  .9966(.052)[.053 — .8836(.031)  .9986(.035)[.035
51 1.0001(.020)  .9999(.020)[.020 .9999(.020)[.019] | .9998(.013)  .9997(.013)[.012 .9997(.013)[.012]
A 1851(.049)  .1950(.049)[.048]  .1950(.049)[.048] | .1876(.033)  .1979(.033)[.033]  .1980(.033)[.033]
p .1864(.068)  .2004(.066)[.068]  .2004(.066)[.067] | .1808(.045)  .1972(.044)[.044]  .1972(.044)[.044]
o2 7701(.091)  .9956(.118)[.114 — .8825(.075)  .9973(.084)[.081 —
51 1.0002(.019) 1.0000(.019)[.020] 1.0000(.019)[.020] | 1.0005(.012) 1.0005(.012)[.012] 1.0005(.012)[.012]
A 1861(.049)  .1960(.048)[.048]  .1960(.048)[.048] | .1878(.033)  .1981(.033)[.033]  .1982(.033)[.033]
p .1832(.070)  .1973(.068)[.068]  .1973(.068)[.067] | .1834(.046)  .1997(.046)[.044]  .1997(.046)[.044]
o2 .7736(.066) 1.0002(.085)[.085] — .8829(.051)  .9978(.057)[.058] —

n = 400; error = 1, 2, 3, for the three panels below
/1 1.0003(.013) 1.0003(.013)[.013] 1.0003(.013)[.013] | 1.0001(.009) 1.0000(.009)[.009] 1.0000(.009)[.009]
A JA1875(.041)  .1949(.040)[.042]  .1949(.040)[.042] | .1922(.027)  .1987(.027)[.026]  .1989(.027)[.026]
p .1953(.049)  .1999(.048)[.047]  .1999(.048)[.047] | .1915(.033)  .1986(.033)[.031]  .1986(.033)[.031]
o2 .7734(.029)  .9961(.037)[.038 — .8853(.022)  .9982(.024)[.025 —
51 1.0007(.013) 1.0007(.013)[.013] 1.0007(.013)[.013] | 1.0001(.009) 1.0000(.009)[.009] 1.0000(.009)[.009]
A .1899(.041)  .1972(.041)[.042]  .1972(.041)[.042] | .1913(.027)  .1978(.027)[.026]  .1981(.027)[.026]
p .1922(.048)  .1969(.047)[.047]  .1969(.047)[.047] | .1905(.032)  .1976(.032)[.031]  .1976(.032)[.031]
o2 .7767(.062) 1.0004(.080)[.082 — .8851(.051)  .9979(.057)[.057 —
B1 .9999(.013)  .9999(.013)[.013 .9999(.013)[.013] | .9997(.009)  .9996(.009)[.009 .9996(.009)[.009]
A 1921(.042)  .1994(.041)[.042]  .1994(.041)[.042] | .1926(.026)  .1991(.026)[.026]  .1993(.026)[.026]
p .1924(.049)  .1970(.048)[.047]  .1970(.048)[.047] | .1907(.032)  .1978(.031)[.031]  .1978(.031)[.031]
o2 .7729(.046)  .9955(.059)[.060] — .8881(.036) 1.0013(.041)[.042] —
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Table 1c: Empirical mean(sd)[se| of the naive estimator: DGP1 with homoskedastic-
ity, Unbalancedness percentage = 10%, (3, A, p,02) = (1,0.2,0.2,1), and W = Rook and M =
Queen.

n = 50 n = 100 n = 200 n = 400
error = 1, 2, 3, for the three panels below
T=5 f .9978(.047)[.049]  .9989(.034)[.035] 1.0012(.024)[.025] 1.0083(.017)[.018]
A .0909(.064)[.073]  .1183(.048)[.055]  .0928(.026)[.029]  .0989(.021)[.023]
P 0128(.121)[.176]  .0132(.097)[.128]  .0238(.063)[.076]  .0247(.048)[.058]
o? 1.0183(.145)[.144] 1.0559(.097)[.097] 1.0746(.073)[.073] 1.0787(.051)[.049]
£ 1.0011(.048)[.050]  .9987(.034)[.035]  .9997(.025)[.025] 1.0064(.018)[.018]
A .0869(.069)[.078]  .1199(.050)[.054]  .0944(.026)[.029]  .0999(.022)[.023]
p .0232(.129)[.185]  .0113(.102)[.129]  .0228(.061)[.077]  .0272(.048)[.058]
o2 1.0133(.322)[.285] 1.0480(.213)[.194] 1.0819(.155)[.154] 1.0713(.099)[.103]
J6] .9981(.050)[.050]  .9990(.034)[.035]  .9999(.024)[.025] 1.0060(.018)[.018]
A .0898(.064)[.075]  .1161(.048)[.054]  .0938(.027)[.029]  .1014(.021)[.023]
P .0215(.119)[.180] ~ .0178(.100)[.127] ~ .0220(.062)[.076]  .0232(.046)[.058]
o2 1.0317(.236)[.214] 1.0536(.153)[.146] 1.0724(.120)[.112] 1.0768(.079)[.076]
error = 1, 2, 3, for the three panels below
T=10 [ 1.0025(.039)[.040] 1.0036(.026)[.026] 1.0039(.020)[.020] 1.0040(.014)[.016]
A .0733(.043)[.047]  .0750(.031)[.031]  .0594(.021)[.023]  .0632(.016)[.017]
P .0363(.094)[.117]  .0291(.064)[.073]  .0251(.045)[.053]  .0145(.031)[.039]
o2 1.0656(.119)[.113] 1.0570(.077)[.074] 1.0738(.057)[.059] 1.0835(.047)[.045]
£ 1.0008(.038)[.040] 1.0000(.027)[.026] 1.0040(.019)[.020] 1.0040(.015)[.015]
A 0711(.043)[.047]  .0769(.029)[.031]  .0579(.022)[.023]  .0648(.016)[.017]
p .0345(.093)[.117] ~ .0247(.062)[.073]  .0242(.043)[.052]  .0162(.029)[.039]
o2 1.0809(.254)[.235] 1.0688(.168)[.161] 1.0811(.128)[.129] 1.0813(.104)[.098]
I6; .9999(.040)[.040] 1.0016(.027)[.026] 1.0038(.019)[.020] 1.0033(.015)[.016]
A 0715(.042)[.047]  .0768(.029)[.031]  .0582(.020)[.023]  .0632(.015)[.017]
p 0425(.094)[.117]  .0307(.064)[.073]  .0263(.039)[.052]  .0158(.029)[.039]
o2 1.0625(.180)[.169] 1.0727(.122)[.118] 1.0809(.098)[.095] 1.0853(.073)[.072]
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Table 2a: Empirical mean(sd)[se| of QMLE, M-estimator and RM-estimator:
homoskedasticity, Unbalancedness percentage = 10%, (51, B2, A, 02) =

DGP2 with

(1,0.5,0.2,1), and

W = Queen.
T=5 T=10
QMLE M-Est RM-Est QMLE M-Est RM-Est
n = 50; error = 1, 2, 3, for the three panels below
By 1.0056(.041)  .9999(.041)[.041] .9999(.041)[.041] | 1.0072(.026) 1.0014(.026)[.027] 1.0014(.026)[.027]
Bo  .5898(.194)  .5147(.195)[.194]  .5146(.195)[.193] | .5823(.122)  .5074(.123)[.124]  .5073(.123)[.125]
A 1276(.125)  .1862(.125)[.123]  .1863(.125)[.122] | .1368(.078)  .1935(.078)[.080]  .1935(.079)[.081]
o2 .7390(.082)  .9779(.109)[.106 — .8604(.060)  .9889(.069)[.070 —
B, 1.0081(.040) 1.0024(.040)[.041] 1.0024(.040)[.040] | 1.0069(.027) 1.0011(.027)[.027] 1.0011(.027)[.027]
Bo  .5909(.196)  .5158(.197)[.195]  .5156(.197)[.189] | .5850(.122)  .5104(.123)[.124]  .5104(.123)[.124]
A 1235(.122)  .1822(.122)[.124]  .1823(.123)[.120] | .1354(.080)  .1918(.080)[.079]  .1919(.080)[.079]
o2 .7410(.180)  .9806(.238)[.216 — .8674(.140)  .9970(.161)[.158 —
B 1.0066(.041) 1.0009(.041)[.041] 1.0009(.041)[.041] | 1.0068(.027) 1.0010(.027)[.027] 1.0010(.027)[.027]
Be  .5904(.192)  .5151(.193)[.195]  .5151(.194)[.192] | .5827(.124)  .5082(.125)[.124]  .5079(.125)[.125]
A 1252(.123)  .1840(.123)[.124]  .1841(.123)[.122] | .1364(.080)  .1929(.080)[.079]  .1931(.080)[.080]
o2 .7436(.128)  .9841(.169)[.160] — .8607(.105)  .9893(.120)[.113] —
n = 100; error = 1, 2, 3, for the three panels below
B1 1.0047(.030) 1.0016(.030)[.031] 1.0016(.030)[.031] | 1.0024(.019)  .9997(.019)[.018]  .9997(.019)[.018]
Bo  .5502(.135)  .5114(.135)[.133]  .5114(.135)[.138] | .5381(.083)  .5025(.083)[.083]  .5025(.083)[.086]
A .1621(.085)  .1908(.085)[.084]  .1908(.085)[.088] | .1697(.055)  .1982(.055)[.055]  .1982(.055)[.057]
o2 7618(.059)  .9903(.076)[.075 — .8765(.043)  .9956(.049)[.050 —
51 1.0053(.031) 1.0021(.031)[.031] 1.0021(.031)[.031] | 1.0036(.018) 1.0008(.018)[.018] 1.0008(.018)[.018]
Be  .5551(.130)  .5163(.130)[.133]  .5162(.130)[.136] | .5403(.083)  .5046(.083)[.083]  .5045(.083)[.086]
A .1585(.084)  .1872(.084)[.084]  .1872(.084)[.087] | .1678(.056) 1963( 056)[.055]  .1963(.056)[.057]
o2 7675(.129)  .9977(.168)[.159 — 8771(.101)  .9963(.115)[.113 —
£1 1.0032(.030) 1.0001(.030)[.030] 1.0001(.030)[.031] | 1.0029(.018) 1.0001(.018)[.018] 1.0001(.018)[.018]
Bo  .5535(.136)  .5149(.136)[.133]  .5150(.136)[.136] | .5381(.083)  .5024(.083)[.083]  .5024(.083)[.086]
A .1598(.086)  .1884(.085)[.084]  .1883(.085)[.087] | .1686(.055)  .1971(.055)[.055]  .1971(.055)[.057]
o2 7616(.091)  .9900(.119)[.116] — .8755(.074)  .9944(.084)[.081] —
n = 200; error = 1, 2, 3, for the three panels below
51 1.0020(.021) 1.0006(.021)[.020] 1.0006(.021)[.021] | 1.0017(.013) 1.0003(.013)[.013] 1.0003(.013)[.013]
Ba  .5244(.096)  .5056(.096)[.094]  .5056(.096)[.097] | .5218(.061)  .5034(.061)[.060]  .5034(.061)[.062]
A .1824(.058)  .1962(.059)[.057]  .1962(.059)[.060] | .1827(.039)  .1972(.039)[.039]  .1972(.039)[.040]
o2 .7713(.041)  .9948(.053)[.053 — .8835(.032)  .9979(.036)[.035 —
51 1.0013(.020)  .9999(.020)[.020 .9999(.020)[.021] | 1.0018(.013) 1.0005(.013)[.013] 1.0005(.013)[.013]
Bo  .5269(.093)  .5082(.093)[.093]  .5081(.093)[.097] | .5202(.060) .5017(.060)[.060]  .5018(.060)[.062]
A 1808(.057)  .1945(.057)[.057]  .1946(.057)[.060] | .1838(.040)  .1982(.040)[.039]  .1982(.040)[.040]
o2 7726(.091)  .9964(.118)[.114 — .8816(.073)  .9958(.082)[.080 —
£1 1.0017(.020) 1.0002(.020)[.020] 1.0002(.020)[.021] | 1.0017(.013) 1.0003(.013)[.013] 1.0003(.013)[.013]
Bo  .5248(.094)  .5060(.094)[.094]  .5060(.094)[.097] | .5220(.060) .5035(.060)[.060]  .5035(.060)[.062]
A 1826(.056)  .1963(.056)[.057]  .1963(.056)[.060] | .1834(.039)  .1978(.039)[.039]  .1978(.039)[.040]
o2 7741(.065)  .9984(.083)[.084] — .8837(.052)  .9981(.059)[.058] —
n = 400; error = 1, 2, 3, for the three panels below
£1 1.0012(.014) 1.0005(.014)[.014] 1.0005(.014)[.014] | 1.0007(.009) 1.0000(.009)[.009] 1.0000(.009)[.010]
Ba  .5120(.065)  .5028(.065)[.064]  .5028(.065)[.067] | .5101(.043)  .5004(.043)[.044]  .5004(.043)[.046]
A .1909(.041)  .1980(.041)[.041]  .1980(.041)[.043] | .1918(.026)  .1990(.026)[.028]  .1989(.026)[.029]
o2 .7761(.030)  .9992(.039)[.038 — .8851(.022)  .9980(.025)[.025 —
£1 1.0011(.014) 1.0004(.014)[.014] 1.0004(.014)[.014] | 1.0006(.009)  .9998(.009)[.009 .9998(.009)[.010]
Ba  .5116(.064)  .5024(.064)[.064]  .5024(.064)[.067] | .5086(.043)  .4989(.043)[.044]  .5018(.060)[.062]
A .1004(.042)  .1975(.042)[.041]  .1975(.042)[.043] | .1934(.026)  .2006(.026)[.028]  .1982(.040)[.040]
o2 .7730(.062)  .9952(.080)[.081 — .8867(.052)  .9998(.059)[.058 —
£1 1.0010(.014) 1.0003(.014)[.014] 1.0003(.014)[.014] | 1.0009(.009) 1.0002(.009)[.009] 1.0003(.013)[.013]
Bo  .5101(.063)  .5009(.063)[.064]  .5009(.063)[.067] | .5127(.042)  .5030(.042)[.044]  .5035(.060)[.062]
.1013(.040)  .1984(.040)[.041]  .1984(.040)[.043] | .1913(.026)  .1984(.026)[.028]  .1978(.039)[.040]
o2 7764(.047)  .9996(.061)[.060] — .8840(.037)  .9967(.042)[.041] —
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Table 2b: Empirical mean(sd)[se] of QMLE, M-estimator and RM-estimator: DGP2 with
homoskedasticity, Unbalancedness percentage = 10%, (531, 82, A, 02) = (1,0.5,0.2,1), and

W = Group-I.
T=5 T=10
QMLE M-Est RM-Est QMLE M-Est RM-Est

n = 50; error = 1, 2, 3, for the three panels below
51 1.0130(.043) 1.0060(.043)[.043] 1.0060(.043)[.042] | 1.0083(.029) 1.0016(.029)[.028] 1.0016(.029)[.028]
Ba  .6567(.251)  .5636(.241)[.231]  .5637(.242)[.228] | .6090(.159)  .5238(.152)[.149]  .5237(.152)[.149]
A 1103(.131)  .1644(.125)[.119]  .1643(.126)[.117] | .1357(.081)  .1861(.078)[.075]  .1861(.078)[.075]
o2 .7398(.081)  .9793(.108)[.106 — .8607(.062)  .9894(.071)[.071 —
By 1.0101(.044) 1.0032(.044)[.042] 1.0031(.044)[.042] | 1.0099(.028) 1.0032(.027)[.028] 1.0032(.027)[.028]
Bo  .6426(.238)  .5504(.229)[.229]  .5497(.230)[.220] | .6074(.156)  .5223(.150)[.149]  .5224(.150)[.148]
A 1130(.124)  .1668(.119)[.119]  .1673(.120)[.114] | .1355(.079)  .1858(.075)[.075]  .1857(.075)[.073]
o2 7413(.171)  .9812(.226)[.215 — .8686(.143)  .9984(.164)[.159 —
£ 1.0113(.043) 1.0044(.042)[.042] 1.0044(.042)[.042] | 1.0069(.028) 1.0003(.028)[.028] 1.0003(.028)[.028]
Ba  .6385(.242)  .5463(.232)[.229]  .5458(.234)[.225] | .6057(.153)  .5208(.147)[.148]  .5209(.147)[.148]
A J1183(.126)  .1719(.121)[.118]  .1723(.122)[.116] | .1370(.078)  .1872(.074)[.074]  .1871(.074)[.074]
o2 7411(.130)  .9809(.172)[.158] — .8575(.101)  .9857(.116)[.112] —

n = 100; error = 1, 2, 3, for the three panels below
£1 1.0038(.027) 1.0012(.027)[.027] 1.0012(.027)[.027] | 1.0033(.019)  .9999(.019)[.019]  .9999(.019)[.019]
Bo  .5879(.180)  .5307(.175)[.173]  .5306(.176)[.177] | .5815(.135)  .5142(.130)[.127]  .5140(.131)[.128]
A .1466(.095)  .1808(.093)[.092]  .1808(.093)[.094] | .1528(.069) .1927(.067)[.065] .1928(.067)[.066]
o2 .7630(.058)  .9921(.075)[.075 — .8766(.044)  .9958(.050)[.050 —
£1 1.0043(.027) 1.0016(.027)[.027] 1.0016(.027)[.027] | 1.0036(.019) 1.0002(.019)[.019] 1.0002(.019)[.019]
Bo  .5956(.189)  .5384(.183)[.173]  .5385(.183)[.175] | .5882(.133)  .5207(.128)[.128]  .5206(.128)[.128]
A .1433(.100)  .1775(.097)[.092]  .1774(.097)[.093] | .1480(.069)  .1881(.066)[.066] .1882(.066)[.066]
o2 .7644(.129)  .9940(.167)[.159]  — 8752(.101)  .9942(.114)[113]  —
By 1.0044(.027) 1.0017(.027)[.027] 1.0017(.027)[.027] | 1.0045(.019) 1.0011(.019)[.019] 1.0011(.019)[.019]
Bo  .5859(.180)  .5285(.175)[.173]  .5283(.175)[.176] | .5853(.131)  .5179(.127)[.127]  .5179(.126)[.128]
A .1465(.096)  .1808(.093)[.092]  .1810(.093)[.094] | .1488(.068) .1889(.066)[.066]  .1889(.066)[.066]
o2 7676(.095)  .9981(.123)[.118] — .8755(.075)  .9945(.086)[.081] —

n = 200; error = 1, 2, 3, for the three panels below
51 1.0027(.020) 1.0011(.020)[.020] 1.0011(.020)[.020] | 1.0023(.013) 1.0007(.013)[.013] 1.0007(.013)[.013]
Bo  .5722(.170)  .5257(.165)[.157]  .5257(.165)[.160] | .5592(.109)  .5124(.106)[.104]  .5124(.106)[.106]
A .1597(.083)  .1858(.081)[.079]  .1859(.081)[.080] | .1653(.055)  .1926(.054)[.054]  .1925(.054)[.055]
o2 .7726(.041)  .9949(.053)[.053 — .8837(.032)  .9983(.036)[.035 —
51 1.0026(.020) 1.0011(.020)[.020] 1.0011(.020)[.020] | 1.0021(.013) 1.0005(.013)[.013] 1.0005(.013)[.013]
Bo  .5687(.160)  .5224(.156)[.157]  .5222(.156)[.158] | .5580(.106)  .5112(.103)[.104]  .5110(.103)[.106]
A .1605(.080)  .1866(.078)[.079]  .1867(.078)[.079] | .1661(.055)  .1933(.053)[.054]  .1934(.053)[.055]
o2 .7740(.089)  .9967(.114)[.113 — .8839(.072)  .9985(.082)[.081 —
£1 1.0033(.019) 1.0018(.019)[.020] 1.0018(.019)[.020] | 1.0019(.013) 1.0004(.013)[.013] 1.0004(.013)[.013]
Bo  .5759(.164)  .5293(.160)[.158]  .5293(.160)[.159] | .5581(.107)  .5113(.104)[.104]  .5112(.104)[.106]
A .1564(.082)  .1827(.080)[.079]  .1827(.080)[.080] | .1670(.054)  .1942(.053)[.054]  .1943(.053)[.055]
o2 7726(.067)  .9950(.087)[.083] — .8844(.051)  .9991(.057)[.058] —

n = 400; error = 1, 2, 3, for the three panels below
£1 1.0012(.014) 1.0005(.014)[.014] 1.0005(.014)[.014] | 1.0012(.009) 1.0004(.009)[.009] 1.0004(.009)[.009]
Ba  .5526(.142)  .5197(.139)[.136]  .5196(.139)[.138] | .5476(.100)  .5120(.098)[.091]  .5121(.098)[.093]
A 1702(.069)  .1890(.067)[.067]  .1891(.067)[.068] | .1732(.049)  .1935(.048)[.046]  .1934(.048)[.047]
o2 .7759(.029)  .9989(.038)[.038 — .8867(.023)  .9998(.026)[.025 —
£1 1.0010(.014) 1.0003(.014)[.014] 1.0003(.014)[.014] | 1.0007(.009)  .9999(.009)[.009 .9999(.009)[.009]
Ba  .5553(.141)  .5224(.139)[.136]  .5225(.139)[.138] | .5444(.093)  .5088(.091)[.091]  .5088(.091)[.092]
A .1682(.070)  .1870(.069)[.067]  .1870(.069)[.068] | .1753(.047)  .1955(.046)[.046]  .1956(.046)[.047]
o2 .7756(.064)  .9986(.082)[.082 — .8853(.051)  .9983(.058)[.057 —
51 1.0012(.014) 1.0004(.014)[.014] 1.0004(.014)[.014] | 1.0012(.009) 1.0003(.009)[.009] 1.0003(.009)[.009]
Bo  .5551(.140)  .5223(.138)[.136]  .5222(.138)[.138] | .5489(.094)  .5131(.092)[.092]  .5131(.092)[.093]
A .1692(.068)  .1879(.066)[.067]  .1880(.067)[.068] | .1726(.048)  .1930(.047)[.046]  .1930(.047)[.047]
o2 .7763(.048)  .9996(.061)[.060] — .8864(.036)  .9996(.041)[.042] —
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Table 3a: Empirical mean(sd)[se] of QMLE, M-estimator and RM-estimator: DGP1 with
heteroskedasticity, Unbalancedness percentage = 10%, (1, A, p, 02) = (1,0.2,0.2,1), and
W =M= Group-II.

T=5 T=10
QMLE M-Est M-Est QMLE M-Est RM-Est

n = 50; error = 1, 2, 3, for the three panels below
By 1.0001(.042) 1.0001(.042)[.041] .9993(.042)[.042] | 1.0015(.025) 1.0012(.025)[.025] 1.0009(.025)[.024]
A 1878(.070)  .1944(.068)[.098]  .1973(.080)[.080] | .1899(.039)  .1953(.038)[.054]  .1987(.043)[.042]
p  -.0161(.209) .0905(.177)[.199]  .1016(.272)[.247] | .0447(.119)  .1342(.106)[.117]  .1660(.146)[.139]
o2 .7664(.102) 1.0237(.136)[.150 — .8647(.073)  .9940(.083)[.093 —
£1 1.0012(.042) 1.0013(.042)[.040] 1.0005(.043)[.041] | .9997(.025)  .9995(.025)[.025 .9992(.025)[.024]
A J1873(.072)  .1938(.069)[.098]  .1956(.082)[.080] | .1900(.039)  .1954(.037)[.054]  .1990(.042)[.042]
p  -.0008(.198) .1036(.168)[.198]  .1235(.248)[.232] | .0425(.118)  .1324(.105)[.119]  .1636(.145)[.137]
o2 .7606(.217) 1.0154(.290)[.274]  — 8715(.175) 1.0019(.201)[.192]  —
B1 .9986(.041) .9986(.042)[.041 .0978(.042)[.041] | 1.0011(.025) 1.0009(.025)[.025] 1.0006(.025)[.024]
A .1843(.070)  .1911(.067)[.099]  .1928(.081)[.080] | .1898(.039)  .1952(.037)[.054]  .1987(.042)[.042]
p  -.0072(.205)  .0980(.174)[.198]  .1144(.260)[.238] | .0461(.115)  .1355(.102)[.117]  .1682(.139)[.138]
o2 7727(.158)  1.0319(.211)[.212] — .8646(.125)  .9940(.144)[.141] —

n = 100; error = 1, 2, 3, for the three panels below
B1 1.0005(.028) 1.0005(.028)[.028] 1.0002(.028)[.028] | .9994(.018)  .9995(.018)[.018]  .9996(.018)[.018]
A 1927(.049)  .1954(.048)[.064]  .1992(.056)[.054] | .1901(.034)  .1936(.034)[.043]  .1980(.040)[.038]
p .0883(.131)  .1304(.120)[.127]  .1573(.167)[.160] | .1077(.082)  .1470(.077)[.080]  .1809(.106)[.101]
o2 7572(.071)  .9925(.093)[.105 — .8663(.053)  .9860(.060)[.067 —
B1 1.0004(.029) 1.0004(.029)[.028] 1.0001(.029)[.028] | .9991(.018)  .9992(.018)[.018 .9992(.018)[.018]
A 1921(.049)  .1948(.048)[.063]  .1985(.055)[.053] | .1902(.033)  .1937(.032)[.043]  .1978(.038)[.038]
p .0884( 129)  .1305(.118)[.128]  .1578(.165)[.157] | .1106(.078)  .1497(.073)[.080]  .1848(.101)[.099]
o2 .7554(.155)  .9901(.203)[.199 — .8659(.124)  .9855(.141)[.139 —
B1 .9997(.029)  .9997(.029)[.028 .9995(.029)[.028] | .9999(.018) 1.0000(.018)[.018] 1.0000(.018)[.018]
A .1914(.049)  .1941(.048)[.063]  .1979(.055)[.054] | .1922(.033)  .1957(.032)[.043]  .2005(.037)[.038]
p .0877(.130)  .1299(.119)[.128]  .1566(.167)[.159] | .1077(.079)  .1470(.074)[.080]  .1808(.102)[.100]
o2 .7614(.115)  .9979(.150)[.152] — .8630(.088)  .9822(.100)[.102] —

n = 200; error = 1, 2, 3, for the three panels below
B1 .9991(.019)  .9991(.019)[.019]  .9990(.019)[.019] | .9999(.013) 1.0000(.013)[.013] 1.0000(.013)[.013]
A .1950(.034)  .1962(.034)[.044]  .2000(.040)[.040] | .1938(.026)  .1951(.026)[.030]  .1976(.030)[.029]
p 1272(.086)  .1441(.082)[.084]  .1763(.112)[.107] | .1420(.057)  .1601(.055)[.055]  .1955(.071)[.069]
o2 .7657(.050)  .9907(.065)[.073 — .8932(.038)  1.0097(.043)[.048 —
B1 .9996(.019) .9996(.019)[.019 .9995(.019)[.019] | .9999(.013) 1.0000(.013)[.013] 1.0000(.013)[.013]
A .1939(.035)  .1951(.035)[.044]  .1984(.041)[.040] | .1958(.026)  .1972(.025)[.030]  .2000(.029)[.029]
p .1345(.083)  .1511(.079)[.083]  .1857(.106)[.105] | .1399(.056)  .1581(.054)[.055]  .1926(.070)[.069]
o2 7704(.111)  .9967(.144)[.143]  — 8939(.089) 1.0105(.101)[.101]  —
B1 .9996(.019) .9996(.019)[.019 .9996(.019)[.019] | .9993(.013)  .9993(.013)[.013 .9993(.013)[.013]
A .1947(.035)  .1959(.035)[.044]  .1996(.041)[.040] | .1955(.026)  .1969(.026)[.030]  .1998(.029)[.029]
p .1290(.085)  .1459(.081)[.084]  .1787(.110)[.106] | .1379(.057)  .1561(.055)[.055]  .1903(.071)[.070]
o2 .7646(.080)  .9893(.104)[.106] — .8916(.063)  1.0080(.072)[.074] —

n = 400; error = 1, 2, 3, for the three panels below
B1 0 .9999(.014)  .9999(.014)[.013]  .9999(.014)[.014] | 1.0003(.009) 1.0009(.009)[.009] 1.0003(.009)[.009]
A .1966(.026)  .1970(.026)[.031]  .1998(.030)[.030] | .1974(.016)  .2490(.018)[.019]  .2010(.018)[.018]
p .1491(.060)  .1550(.058)[.058]  .1892(.075)[.074] | .1533(.037)  .1210(.028)[.037]  .1959(.046)[.047]
o2 .7849(.034) 1.0110(.044)[.052 — .8923(.027)  1.0063(.030)[.034 —
51 .9998(.014)  .9998(.014)[.013 .9998(.014)[.014] | .9995(.009) 1.0001(.009)[.009 .9995(.009)[.009]
A 1968(.027)  .1972(.027)[.031]  .1998(.031)[.030] | .1965(.017)  .2493(.019)[.019]  .1997(.019)[.018]
p .1509(.061)  .1568(.059)[.058]  .1914(.075)[.074] | .1562(.038)  .1232(.029)[.037]  .1996(.048)[.047]
o2 .7878(.079) 1.0148(.102)[.103 — .8933(.061) 1.0075(.069)[.072 —
£1 1.0000(.013) 1.0000(.013)[.013] 1.0000(.014)[.014] | .9998(.009) 1.0004(.009)[.009 .9998(.009)[.009]
A .1949(.027)  .1953(.027)[.031]  .1980(.031)[.030] | .1968(.017)  .2485(.018)[.019]  .2003(.019)[.018]
p .1500(.059)  .1559(.057)[.058]  .1904(.073)[.074] | .1531(.038)  .1208(.029)[.037]  .1958(.047)[.047]
o2 .7869(.059) 1.0136(.076)[.078] — .8960(.045) 1.0105(.051)[.053] —
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Table 3b: Empirical mean(sd)[se] of QMLE, M-estimator and RM-estimator: DGP1 with
heteroskedasticity, Unbalancedness percentage = 10%, (31, A, p, 02) = (1,0.2,0.2,1), and
W = Group-II, M = Queen.

T=5 T=10
QMLE M-Est RM-Est QMLE M-Est RM-Est

n = 50; error = 1, 2, 3, for the three panels below
B1 .9974(.039)  .9978(.039)[.040]  .9979(.039)[.039] | 1.0024(.026) 1.0007(.026)[.026]  .9999(.026)[.025]
A 1311(.086)  .1735(.083)[.106]  .1894(.089)[.090] | .1677(.036)  .1880(.035)[.047]  .1973(.037)[.037]
p 1077(.147)  .1845(.141)[.145]  .1889(.141)[.142] | .1290(.092)  .2001(.091)[.090]  .1988(.091)[.089]
o2 7717(.102)  1.0264(.136)[.150 — .8737(.074)  1.0030(.085)[.094 —
B1 .9980(.039)  .9985(.039)[.040 .9985(.039)[.038] | 1.0015(.025)  .9998(.025)[.025 .9989(.025)[.025]
A .1343(.083)  .1757(.080)[.105]  .1915(.085)[.088] | .1686(.035)  .1888(.034)[.047]  .1981(.036)[.037]
p .1086(.146)  .1853(.140)[.146]  .1894(.140)[.135] | .1284(.092)  .1995(.090)[.090]  .1980(.089)[.087]
o2 7695(.221) 1.0234(.294)[.277 — .8744(.173)  1.0037(.198)[.193 —
B1 .9980(.040)  .9984(.040)[.040 .9985(.040)[.039] | 1.0021(.025) 1.0004(.025)[.026 .9995(.025)[.025]
A .1316(.084)  .1737(.081)[.106]  .1896(.087)[.089] | .1677(.035)  .1881(.035)[.047]  .1974(.036)[.037]
p JA1113(.144)  .1878(.138)[.145]  .1919(.138)[.139] | .1280(.092)  .1992(.090)[.090]  .1981(.090)[.088]
o2 .7744(.161) 1.0300(.214)[.210]  — 8751(.123) 1.0047(.141)[.144]  —

n = 100; error = 1, 2, 3, for the three panels below
£1 1.0003(.025) 1.0005(.025)[.026] 1.0006(.025)[.026] | .9996(.018)  .9994(.018)[.018]  .9992(.018)[.018]
A 1733(.045)  .1849(.045)[.054]  .1960(.046)[.048] | .1760(.034)  .1889(.033)[.038]  .2000(.035)[.035]
p .1665(.095)  .1995(.093)[.095]  .1980(.092)[.094] | .1627(.066)  .1979(.065)[.064]  .1979(.065)[.064]
o2 .7706(.070)  .9985(.090)[.102 — 8717(.054)  .9931(.062)[.067 —
B1 .9994(.026)  .9996(.026)[.026 .9997(.026)[.026] | 1.0003(.019) 1.0001(.019)[.018 .9999(.019)[.018]
A 1736(.045)  .1851(.045)[.054]  .1960(.046)[.047] | .1746(.034)  .1875(.033)[.038]  .1985(.035)[.035]
p .1668(.093)  .1997(.090)[.095]  .1984(.090)[.090] | .1605(.066)  .1957(.065)[.064]  .1957(.065)[.063]
o2 .7648(.153)  .9910(.198)[.194 — .8736(.125)  .9953(.143)[.139 —
B1 .9996(.026)  .9998(.026)[.026 .9999(.026)[.026] | .9997(.019)  .9995(.019)[.018 .9993(.019)[.018]
A 1739(.045)  .1854(.045)[.054]  .1964(.047)[.047] | .1738(.033)  .1867(.033)[.038]  .1977(.035)[.035]
p 1656(.097)  .1985(.095)[.095]  .1971(.094)[.093] | .1607(.066)  .1958(.065)[.064]  .1958(.064)[.063]
o2 .7646(.112)  .9907(.145)[.146] — .8760(.091)  .9981(.104)[.103] —

n = 200; error = 1, 2, 3, for the three panels below
B1 .9987(.020)  .9988(.020)[.019]  .9989(.020)[.019] | 1.0004(.013) 1.0001(.013)[.013]  .9997(.013)[.013]
A .1784(.035)  .1853(.034)[.042]  .1980(.036)[.037] | .1833(.022)  .1892(.022)[.026]  .1997(.023)[.023]
p 1862(.071)  .2006(.070)[.068]  .1996(.069)[.069] | .1830(.045)  .1995(.044)[.044]  .1999(.044)[.044]
o2 .7647(.051)  .9883(.065)[.073 — .8922(.036)  1.0082(.041)[.048 —
51 .9992(.019) .9993(.019)[.019 .9994(.019)[.019] | 1.0007(.012) 1.0005(.012)[.013] 1.0000(.012)[.013]
A A773(.035)  .1842(.034)[.042]  .1968(.036)[.037] | .1821(.022)  .1880(.022)[.026]  .1985(.023)[.023]
p 1816(.071)  .1960(.069)[.068]  .1952(.069)[.068] | .1798(.045)  .1964(.045)[.044]  .1968(.045)[.044]
o2 .7660(.110) .9899(.142)[.141]  — 8912(.090) 1.0070(.102)[.100]  —
51 .9987(.019) .9988(.019)[.019 .9990(.019)[.019] | 1.0006(.013) 1.0003(.013)[.013 .9999(.013)[.013]
A .1782(.035)  .1851(.034)[.042]  .1978(.036)[.037] | .1830(.023)  .1890(.023)[.026]  .1996(.024)[.023]
p .1840(.070)  .1984(.069)[.068]  .1975(.068)[.068] | .1784(.043)  .1949(.043)[.044]  .1953(.043)[.044]
o2 .7664(.081)  .9905(.104)[.106] — .8956(.065) 1.0121(.074)[.074] —

n = 400; error = 1, 2, 3, for the three panels below
/1 1.0000(.013) 1.0000(.013)[.013] 1.0000(.013)[.013] | .9997(.009)  .9997(.009)[.009]  .9994(.009)[.009]
A 1862(.024)  .1894(.024)[.028]  .2002(.025)[.026] | .1860(.016)  .1888(.016)[.018]  .1991(.016)[.017]
p .1945(.047)  .1990(.046)[.047]  .1991(.046)[.047] | .1924(.032)  .1995(.031)[.031]  .2001(.031)[.032]
o2 .7839(.034) 1.0096(.044)[.052 — .8913(.028)  1.0049(.031)[.034 —
51 .9994(.013)  .9994(.013)[.013 .9994(.013)[.013] | 1.0003(.009) 1.0003(.009)[.009] 1.0000(.009)[.009]
A .1835(.025)  .1866(.025)[.028]  .1973(.026)[.026] | .1871(.016)  .1900(.016)[.018]  .2004(.017)[.017]
p .1959(.048)  .2003(.047)[.047]  .2004(.047)[.047] | .1914(.031)  .1985(.030)[.031]  .1991(.030)[.031]
o2 .7842(.080) 1.0100(.103)[.103 — .8923(.063)  1.0060(.071)[.071 —
51 1.0005(.014) 1.0005(.014)[.013] 1.0005(.014)[.013] | 1.0003(.009) 1.0002(.009)[.009] 1.0000(.009)[.009]
A 1861(.024)  .1893(.024)[.028]  .2001(.025)[.026] | .1864(.016)  .1892(.016)[.018]  .1996(.016)[.017]
p .1955(.047)  .1999(.046)[.047]  .2001(.046)[.047] | .1922(.031)  .1993(.031)[.031]  .1999(.031)[.032]
o2 .7854(.059) 1.0116(.076)[.078] — .8950(.047)  1.0090(.053)[.053] —
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Table 4: Empirical mean(sd)[se] of QMLE, M-estimator and RM-estimator: DGP2 with
heteroskedasticity, Unbalancedness percentage = 10%, (1, B2, \,02%) = (1,0.5,0.2,1),
and W = Group-II.

T=5 T=10
QMLE M-Est RM-Est QMLE M-Est RM-Est
n = 50; error = 1, 2, 3, for the three panels below
B 1.0113(.045) 1.0054(.045)[.042] 1.0033(.045)[.044] | 1.0134(.028) 1.0058(.028)[.027] 1.0024(.028)[.029]
Bo  .7304(.237)  .6103(.223)[.277]  .5672(.256)[.269] | .6962(.153)  .5798(.143)[.172]  .5278(.167)[.190]
A .0569(.146)  .1317(.137)[.152]  .1583(.159)[.165] | .0811(.089)  .1517(.084)[.096]  .1831(.099)[.114]
o2 .7704(.102) 1.0208(.135)[.148 — .8676(.074)  .9945(.085)[.093 —
By 1.0124(.045) 1.0065(.044)[.042] 1.0045(.045)[.043] | 1.0130(.028) 1.0054(.028)[.027] 1.0021(.028)[.028]
Bo  .7306(.230)  .6121(.216)[.276]  .5705(.247)[.261] | .6972(.151)  .5811(.141)[.172]  .5302(.166)[.187]
A .0572(.141)  .1310(.132)[.151]  .1566(.153)[.160] | .0805(.089)  .1508(.083)[.096]  .1816(.099)[.112]
o2 .7664(.224) 1.0156(.297)[.273 — .8662(.171)  .9930(.196)[.189 —
£ 1.0084(.044) 1.0025(.044)[.043] 1.0003(.044)[.043] | 1.0127(.028) 1.0051(.028)[.027] 1.0017(.029)[.029]
Be  .7193(.232)  .5998(.218)[.276]  .5557(.249)[.266] | .6969(.156)  .5804(.146)[.172]  .5285(.171)[.189]
A .0627(.143)  .1373(.134)[.152]  .1645(.155)[.164] | .0809(.092)  .1514(.086)[.096]  .1828(.102)[.113]
o2 7771(.166) 1.0297(.219)[.211] — .8710(.122)  .9984(.140)[.142] —
n = 100; error = 1, 2, 3, for the three panels below
£1 1.0090(.032) 1.0056(.032)[.030] 1.0028(.032)[.032] | 1.0080(.020) 1.0045(.020)[.019] 1.0011(.020)[.021]
Bo  .6379(.166)  .5817(.161)[.185]  .5351(.185)[.201] | .6174(.106)  .5644(.102)[.118]  .5130(.120)[.125]
A 1149(.095)  .1497(.092)[.103]  .1785(.109)[.119] | .1250(.063)  .1588(.061)[.066] .1914(.073)[.077]
o2 .7609(.070)  .9942(.091)[.105 — .8659(.052)  .9843(.060)[.067 —
£1 1.0081(.031) 1.0047(.031)[.029] 1.0019(.031)[.032] | 1.0080(.020) 1.0045(.020)[.019] 1.0012(.020)[.021]
Be  .6336(.161)  .5778(.156)[.185]  .5313(.179)[.196] | .6179(.104)  .5650(.101)[.118]  .5141(.118)[.124]
A 1168(.092)  .1513(.089)[.102]  .1801(.105)[.116] | .1247(.063)  .1584(.061)[.067]  .1907(.072)[.076]
o2 .7653(.160)  .9998(.209)[.200 — .8667(.119)  .9853(.136)[.138 —
£1 1.0081(.031) 1.0048(.031)[.030] 1.0020(.031)[.032] | 1.0077(.020) 1.0042(.020)[.019] 1.0009(.021)[.021]
Be  .6370(.163)  .5810(.158)[.185]  .5348(.182)[.200] | .6186(.106)  .5656(.103)[.118]  .5150(.121)[.124]
A 1150(.095)  .1497(.092)[.103]  .1782(.108)[.118] | .1238(.064) .1575(.062)[.067]  .1897(.075)[.076]
o2 7629(.115)  .9968(.150)[.152] — .8691(.090)  .9880(.102)[.102] —
n = 200; error = 1, 2, 3, for the three panels below
51 1.0067(.021) 1.0050(.021)[.021] 1.0017(.022)[.023] | 1.0053(.015) 1.0036(.015)[.014] 1.0005(.015)[.015]
Bo  .5960(.117)  .5690(.116)[.129]  .5193(.133)[.146] | .5831(.077)  .5563(.076)[.082]  .5074(.086)[.093]
A 1412(.067)  .1573(.066)[.068]  .1869(.077)[.085] | .1485(.044)  .1651(.044)[.046] .1953(.051)[.055]
o2 .7670(.051)  .9909(.066)[.073 — .8830(.039)  .9979(.044)[.047 —
By 1.0056(.021) 1.0038(.021)[.021] 1.0005(.022)[.023] | 1.0051(.014) 1.0034(.014)[.014] 1.0003(.015)[.015]
Bo  .5952(.113)  .5683(.111)[.129]  .5179(.127)[.144] | .5807(.075)  .5540(.073)[.083]  .5048(.083)[.093]
A .1438(.064)  .1598(.063)[.068]  .1898(.074)[.084] | .1495(.043)  .1660(.043)[.046] .1964(.050)[.055]
o2 7684(.110)  .9926(.143)[.141 — .8814(.088)  .9962(.099)[.099 —
By 1.0062(.022) 1.0044(.021)[.021] 1.0011(.022)[.023] | 1.0049(.015) 1.0032(.015)[.014] 1.0001(.015)[.015]
Bo  .5952(.116)  .5682(.114)[.129]  .5180(.131)[.145] | .5839(.077)  .5572(.076)[.083]  .5081(.086)[.093]
A .1434(.066)  .1595(.065)[.068]  .1893(.076)[.084] | .1487(.044)  .1652(.043)[.046] .1956(.051)[.055]
o2 .7646(.082)  .9878(.105)[.106] — .8848(.063)  1.0000(.071)[.074] —
n = 400; error = 1, 2, 3, for the three panels below
£1 1.0049(.015) 1.0040(.015)[.014] 1.0006(.015)[.016] | 1.0039(.010) 1.0030(.010)[.010] 1.0000(.010)[.011]
Bo  .5716(.079)  .5582(.078)[.086]  .5083(.090)[.103] | .5631(.051)  .5498(.051)[.057]  .5031(.057)[.065]
A .1562(.046)  .1643(.046)[.048]  .1947(.054)[.062] | .1616(.030)  .1698(.030)[.032]  .1987(.034)[.039]
o2 .7778(.036)  .9995(.046)[.052 — .8933(.027) 1.0073(.031)[.034 —
51 1.0048(.014) 1.0040(.014)[.014] 1.0006(.015)[.015] | 1.0041(.010) 1.0032(.010)[.010] 1.0003(.010)[.010]
Ba  .5695(.080)  .5561(.079)[.086]  .5057(.091)[.103] | .5627(.051)  .5495(.051)[.057]  .5030(.057)[.065]
A 1579(.047)  .1660(.047)[.048]  .1968(.055)[.061] | .1609(.030)  .1691(.029)[.032]  .1979(.034)[.039]
o2 .7778(.078)  .9995(.100)[.102 — .8948(.064) 1.0089(.072)[.072 —
£1 1.0047(.014) 1.0038(.014)[.014] 1.0005(.014)[.015] | 1.0038(.010) 1.0030(.010)[.010] 1.0000(.010)[.010]
Bo  .5714(.078)  .5580(.077)[.086]  .5084(.089)[.103] | .5615(.050)  .5483(.049)[.057]  .5017(.056)[.065]
1560(.046)  .1641(.046)[.048]  .1944(.054)[.062] | .1620(.029)  .1701(.029)[.032]  .1990(.033)[.039]
o2 7777(.057)  .9993(.073)[.076] — .8905(.047)  1.0041(.053)[.053] —
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Table 5: Empirical mean(sd)[se] of QMLE, M-estimator and RM-estimator: DGP3
with homoskedasticity, Unbalancedness percentage = 10%, (81, A1, A2, p1, p2,02) =
(1,0.2,0.3, 02,03, 1), W, =M = Queen, Wy = My = Rook.

QMLE M-Est M-Est QMLE M-Est RM-Est
n = 50; error = 1, 2, 3, for the three panels below

B1 .9990(.037) .9968(.037)[.038] .9969(.037)[.037] | .9989(.023)  .9986(.023)[.024]  .9986(.023)[.024]
A1 .2018(.079) .1855(.085)[.081] .1858(.085)[.080] | .1983(.046)  .1962(.050)[.048]  .1964(.050)[.048]
Ay .2985(.061) .2932(.061)[.061] .2933(.061)[.061] | .2981(.036) .2988(.037)[.038]  .2988(.037)[.038]
p1 .0492(.253) .2017(.211)[.185] .2018(.212)[.182] | .1003(.117)  .1983(.115)[.108]  .1982(.116)[.108]
p2 .3037(.178) .3122(.153)[.141] .3126( 153)[.140] | .2714(.091)  .2979(.087)[.083]  .2980(.087)[.083]
o2 .7134(.082) .9489(.108)[.106] .8601(.060)  .9820(.069)[.071] —

B1 .9972(.038) .9949(.038)[.038] .9951(.038)[.037] | .9989(.024)  .9983(.024)[.024]  .9983(.024)[.023]
A1 .2012(.076) .1861(.083)[.081] .1864(.083)[.080] | .1998(.048)  .1955(.052)[.048]  .1958(.051)[.047]
Ay .2994(.060) .2943(.059)[.060] .2949(.059)[.059] | .2975(.037)  .2971(.038)[.038]  .2970(.038)[.037]
p1 .0657(.239) .2118(.208)[.184] .2122(.209)[.180] | .0928(.122)  .1996(.127)[.109]  .1993(.125)[.106]
p2 .3045(.170) .3144(.148)[.138] .3135( 147)[.136] | .2775(.088)  .3064(.090)[.083] .3069( 090)[.081]
o2 .7210(.177) .9575(.236)[.210] .8579(.139)  .9800(.159)[.154]

B1 .9970(.038) .9952(.038)[.038] .9952(.038)[.037] | .9985(.023)  .9981(.023)[.024] .9981(.023)[.024]
A1 .2007(.077) .1853(.084)[.082] .1854(.084)[.080] | .1992(.044)  .1962(.049)[.049]  .1960(.049)[.048]
Ay .2980(.063) .2931(.060)[.060] .2932(.060)[.060] | .2981(.037)  .2980(.039)[.038]  .2981(.039)[.038]
p1 .0455(.246) .1978(.212)[.185] .1994(.212)[.182] | .0948(.116)  .1961(.119)[.110]  .1965(.119)[.108]
p2 .3019(.176) .3099(.150)[.140] .3107(.149)[.138] | .2765(.087)  .3041(.087)[.083]  .3039(.087)[.082]
o2 .7221(.134) .9609(.178)[.159] — .8639(.105)  .9862(.121)[.115] —

n = 100; error = 1, 2, 3, for the three panels below

B .9979(.027) .9977(.027)[.028] .9977(.027)[.028] | .9995(.018)  .9995(.018)[.018]  .9995(.018)[.018]
A1 .1998(.053) .1953(.055)[.052] .1954(.055)[.052] | .1981(.036) .1967(.037)[.037]  .1966(.037)[.036]
Ay .2970(.044) .2982(.043)[.042] .2983(.044)[.042] | .2996(.029)  .3002(.030)[.029]  .3003(.030)[.029]
p1 -1573(.156) .1988(.131)[.122] .1987(.131)[.121] | .1568(.081)  .1969(.076)[.076]  .1972(.076)[.075]
p2 .3417(.119) .2968(.100)[.096] .2972( 100)[.095] | .3034(.064) .2997(.059)[.059] .2998( 059)[.058]
o2 .7451(.062) .9794(.080)[.077] .8734(.045)  .9907(.051)[.050]

B .9992(.029) .9990(.029)[.028] .9990(.029)[.028] | .9980(.018)  .9980(.018)[.018]  .9980(.018)[.017]
A1 .1989(.052) .1946(.054)[.052] .1943(.054)[.051] | .2006(.035)  .1994(.036)[.036]  .1994(.036)[.036]
Ay .2976(.041) .2990(.040)[.042] .2992(.040)[.041] | .2990(.028)  .2999(.029)[.029]  .2999(.029)[.029]
p1 .1438(.157) .1877(.129)[.123] .1881(.130)[.122] | .1535(.082)  .1937(.076)[.076]  .1938(.076)[.075]
p2 .3457(.114) .2988(.096)[.095] .2989( 096)[.093] | .3011(.065)  .2973(.060)[.059] .2976( 060)[.058]
o2 .7443(.124) .9787(.163)[.158] .8723(.102)  .9895(.116)[.112]

B .9990(.027) .9988(.027)[.028] .9988(.027)[.027] | 1.0003(.018) 1.0003(.018)[.018] 1.0003(.018)[.017]
A1 .2033(.052) .1987(.055)[.051] .1988(.055)[.051] | .2007(.035)  .1994(.036)[.036]  .1995(.036)[.036]
Ay .2970(.043) .2985(.042)[.043] .2986(.042)[.042] | .2982(.027)  .2990(.028)[.029]  .2989(.028)[.029]
p1 .1454(.150) .1892(.127)[.122] .1896(.127)[.121] | .1554(.081)  .1952(.075)[.076]  .1951(.075)[.075]
p2 .3504(.115) .3031(.097)[.096] .3033(.097)[.094] | .3002(.061)  .2966(.057)[.059]  .2968(.057)[.059]
o2 .7462(.094) .9811(.123)[.116] — .8720(.070)  .9892(.080)[.081] —
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Table 5: Cont’d
T=5 T=10
QMLE M-Est RM-Est QMLE M-Est RM-Est
n = 200; error = 1, 2, 3, for the three panels below

B .9991(.020)  .9991(.020)[.019]  .9991(.020)[.019] | .9994(.013)  .9994(.013)[.012]  .9994(.013)[.012]
A1 .2013(.034)  .1993(.035)[.034]  .1993(.035)[.033] | .1995(.025)  .1986(.026)[.026]  .1986(.026)[.025]
Ay .2071(.026)  .2992(.026)[.027]  .2992(.026)[.027] | .2993(.018)  .2999(.019)[.019]  .2999(.019)[.019]
p1 o -1980(.103)  .1969(.093)[.083]  .1970(.094)[.083] | .1907(.056)  .2014(.052)[.053]  .2014(.052)[.053]
p2 .3660(.075)  .2988(.068)[.065] 2991( 068)[.065] | .3163(.045)  .2974(.042)[.040] .2975( 042)[.041]
o2 .7528(.044)  .9902(.057)[.055] .8763(.033)  .9942(.037)[.036]

B .9998(.019)  .9997(.019)[.019] 9997( 019)[.019] | .9996(.012)  .9996(.012)[.012] .9996( 012)[.012]
A1 .1999(.033)  .1978(.035)[.033]  .1977(.035)[.033] | .2002(. 025) .1993(.025)[.025]  .1993(.025)[.025]
Ao .2984(.026)  .3003(.026)[.027]  .3003(.026)[.027] | .2987(.019) .2992(.019)[.019]  .2993(.019)[.019]
p1 .2026(.098)  .2013(.091)[.082]  .2016(.091)[.081] | .1867(.056)  .1978(.052)[.053]  .1980(.052)[.053]
pa .3694(.077)  .3025(.070)]. 065] 3027( 070)[.064] | .3186(.045)  .2994(.041)[.041] .2994( 041)[.040]
o2 .7504(.091)  .9873(.119)[.114] .8766(.069)  .9946(.078)[.080]

B .9991(.019)  .9990(.019)[.019] .9991(.019)[.019] .9997(.013)  .9997(.013)[.012]  .9997(.013)[.012]
A1 .1992(.033)  .1965(.037)[.034]  .1965(.037)[.033] | .2017(.026)  .2009(.027)[.025]  .2009(.027)[.025]
A .2983(.027)  .2998(.027)[.027]  .2997(.027)[.027] | .2992(.018)  .2998(.018)[.019]  .2999(.018)[.019]
p1 .2008(.105)  .2018(.099)[.082]  .2018(.099)[.082] | .1870(.060)  .1980(.056)[.054]  .1981(.056)[.053]
p2 .3637(.074)  .2990(.070)[.065]  .2990(.070)[.065] | .3169(.043)  .2978(.040)[.041]  .2978(.040)[.040]
o2 .7530(.065)  .9902(.086)|. 084] — 8771(.052)  .9951(.059)[.058] —

= 400; error = 1, 2, 3, for the three panels below

B .9995(.014)  .9998(.014)[. 014] .9998(.014)[.013] | .9998(.009)  .9999(.009)[.009]  .9999(.009)[.009]
A1 .1999(.025)  .2000(.025)[.024]  .2000(.025)[.024] | .1987(.018)  .2001(.018)[.018]  .1999(.018)[.018]
Ay .2964(.019)  .2997(.019)[.019]  .2996(.019)[.019] | .2974(.013)  .2999(.014)[.014]  .3000(.014)[.014]
p1 -2236(.071)  .1972(.061)[.058]  .1973(.061)[.057] | .2058(.041)  .1996(.038)[.037]  .1997(.038)[.037]
p2 .3791(.053)  .2994(.046)[.045]  .2995(.046)[.045] | .3446(.031)  .3001(.028)[.028]  .3001(.028)[.028]
o2 7577(.031)  .9946(.040)[.039] — .8735(.023)  .9983(.025)[.025] —

G .9995(.014)  .9997(.014)[.014]  .9997(.014)[.013] | 1.0001(.009) 1.0002(.009)[.009] 1.0002(.009)[.009]
A .1082(.025)  .1983(.025)[.024]  .1983(.025)[.024] | .2001(.018)  .1997(.018)[.019]  .1997(.018)[.018]
Ay .2965(.018)  .2998(.018)[.019]  .2999(.018)[.019] | .2985(.013)  .2991(.014)[.014]  .2991(.014)[.014]
p1 -2273(.070)  .2003(.060)[.058]  .2004(.059)[.057] | .2129(.039)  .2010(.038)[.038]  .2010(.038)[.037]
pa .3792(.052)  .2996(.045)[.045] 2999( 045)[.045] | .3332(.033)  .3015(.029)[.029]  .3016(.028)[.029]
o2 .7583(.063)  .9955(.082)[.082] .9054(.052)  1.0001(.057)[.059] —

B .9999(.014) 1.0002(.014)[.014] 1. 0002( 014)[.013] | .9994(.009)  .9994(.009)[.009]  .9994(.009)[.009]
A1 .2003(.024)  .2007(.024)[.024]  .2007(.024)[.024] | .2001(.017)  .1996(.018)[.018]  .1996(.018)[.018]
Ao .2967(.019)  .3001(.019)[.019]  .3002(.019)[.019] | .2987(.013)  .2995(.014)[.014]  .2993(.014)[.014]
p1 .2221(.068)  .1954(.057)[.058]  .1955(.057)[.058] | .1966(.041)  .1998(.038)[.037]  .1995(.037)[.036]
p2 .3774(.054)  .2978(.046)[.045]  .2977(.046)[.045] | .3345(.029)  .3001(.028)[.029]  .3004(.028)[.029]
o2 .7580(.047)  .9949(.061)[.060] — .8696(.036)  .9985(.041)[.040] —
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Table 6: Empirical mean(sd)[se] of QMLE, M-estimator and RM-estimator: DGP3
with heteroskedasticity, Unbalancedness percentage = 10%, (81,1, A2, p1, po,02) =
(1,0.2,0.3,0.2,0.3,1), Wy = M; = Group-II, Wy = My = Rook.

T=5 T=10
QMLE M-Est M-Est QMLE M-Est RM-Est
n = 50; error = 1, 2, 3, for the three panels below

B .9976(.043) .9983(.043)[.041]  .9984(.044)[.043] | 1.0011(.025) 1.0006(.025)[.026] 1.0004(.025)[.025]
A1 .1758(.065) .1855(.065)[.080]  .1952(. 082)[ 085] | .1789(.033)  .1885(.032)[.045]  .1998(.037)[.038]
Ay .2953(.054) .2977(.055)[.064]  .2977(.055)[.058] | .2964(.038)  .2993(.039)[.038]  .2987(.039)[.038]
p1 -0559(.180) .0933(.126)[.174]  .1236(.276)[.301] | -.0199(.103)  .0963(.087)[.116]  .1584(.175)[.173]
p2  .3181(.175) .2991(.143)[.143]  .2935(.140)[.137] | .2851(.090)  .2999(.082)[.084]  .3008(.082)[.083]
o2 .7162(.099) .9576(.130)[.137] — .8419(.074)  .9665(.085)[.091] —

61 .9975(.043) .9979(.043)[.041]  .9982(.044)[.042] | 1.0006(.026) 1.0000(.026)[.026]  .9999(.026)[.025]
A1 .1724(.068) .1806(.068)[.081]  .1890(.086)[.086] | .1785(.031)  .1878(.031)[.045]  .1998(.036)[.037]
Ay .2932(.059) .2942(.060)[.064]  .2948(.059)[.058] | .2963(.037)  .2991(.038)[.038]  .2987(.038)[.038]
p1 -0532(.192) .1052(.131)[.175]  .1498(.271)[.289] | -.0263(.103)  .0923(.086)[.119]  .1527(.171)[.172]
p2 .3222(.173) .3065(.145)[.143]  .3000(.138)[.133] | .2824(.089)  .2974(.083)[.084] 42982( 082)[.081]
o2 .7260(.221) .9706(.295)[.264] — .8433(.175)  .9682(.201)[.189]

B .9995(.044) .9999(.043)[.041] 1.0004(.044)[.043] | .9997(.024) .9991(.024)[.026]  .9988(.025)[.025]
A1 .1734(.068) .1813(.067)[.082]  .1925(.081)[.086] | .1795(.033)  .1885(.032)[.045]  .1988(.039)[.039]
Ao .2923(.058) .2931(.060)[.064]  .2936(.059)[.058] | .2956(.039)  .2982(.040)[.038]  .2978(.040)[.038]
p1 -.0582(.176) .0990(.137)[.174]  .1315(.277)[.299] | -.0179(.098)  .0994(.086)[.117]  .1653(.172)[.174]
p2  .3168(.174) .3035(.146)[.144]  .2968(.139)[.135] | .2849(.090)  .3008(.084)[.083] .3012( 083)[.082]
o2 .7227(.155) .9665(.207)[.197] — .8414(.123)  .9659(.141)[.139]

n = 100; error = 1, 2, 3, for the three panels below

B .9980(.029) .9972(.029)[.028]  .9983(.030)[.029] | .9992(.018) 1.0000(.018)[.018]  .9999(.018)[.018]
A1 .1922(.044) .1856(.046)[.061]  .1963(.054)[.052] | .1942(.027)  .1950(.022)[.032]  .2003(.025)[.025]
Ay .2966(.038) .2952(.041)[.039]  .2964(.039)[.040] | .2974(.028)  .2995(.028)[.028]  .2993(.028)[.029]
p1 .0382(.191) .1294(.130)[.111]  .1754(.193)[.178] | .0534(.177)  .1284(.071)[.076]  .1843(.109)[.104]
p2 .3479(.109) .3069(.109)[.091]  .3036(.100)[.092] | .3080(.066)  .2983(.057)[.059]  .2977(.057)[.059]
o2 .7486(.076) .9790(.100)[.102] — .8728(.055)  .9914(.061)[.067] —

B .9986(.028) .9976(.029)[.028]  .9987(.030)[.029] | .9991(.018)  .9996(.018)[.018]  .9995(.018)[.018]
A1 .1893(.042) .1832(.047)[.061]  .1945(.054)[.053] | .1926(.025)  .1940(.022)[.032]  .1994(.025)[.025]
Ay .2964(.038) .2945(.041)[.038]  .2955(.040)[.039] | .2977(.029)  .2997(.029)[.028]  .2995(.029)[.029]
p1 .0434(.179) .1324(.135)[.114]  .1797(.202)[.177] | .0577(.148)  .1251(.070)[.077]  .1801(.107)[.103]
p2  .3518(.105) .3131(.110)[.092] .3088( 099)[.090] | .3121(.064)  .3020(.059)[.059] .3015( 059)[.057]
o2 7517(.161) .9832(.211)[.205] .8678(.128)  .9865(.145)[.142]

B .9986(.028) .9973(.029)[.028]  .9984(.029)[.029] | .9986(.018)  .9992(.017)[.018]  .9991(.017)[.018]
A1 .1895(.043) .1822(.047)[.060]  .1933(.054)[.052] | .1926(.025)  .1943(.022)[.032]  .1998(.024)[.024]
Ay .2945(.039) .2923(.042)[.038]  .2934(.041)[.039] | .2964(.028)  .2983(.028)[.028]  .2981(.028)[.029]
p1 -0390(.183) .1313(.135)[.112]  .1770(.197)[.176] | .0570(.146)  .1233(.069)[.077]  .1774(.106)[.104]
p2 .3531(.109) .3144(.112)[.091] .3105( 101)[.090] | .3087(.064)  .2991(.057)[.059] .2987( 057)[.058]
o2 .7448(.115) .9742(.150)[.150] .8696(.093)  .9885(.105)[.103]
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Table 6: Cont’d.

T=5 T=10
QMLE M-Est RM-Est QMLE M-Est RM-Est
n = 200; error = 1, 2, 3, for the three panels below

1.0009(.019) 1.0012(.019)[.020] 1.0011(.019)[.019] | 1.0002(.012) 1.0003(.012)[.012] 1.0001(.012)[.012]
.1982(.029)  .1970(.027)[.033]  .2013(.030)[.031] | .1926(.016)  .1937(.016)[.022]  .1993(.018)[.019]
.2065(.028)  .3004(.028)[.028]  .3001(.028)[.028] | .2987(.019)  .3001(.019)[.020]  .3000(.019)[.019]
.1005(.144)  .1290(.069)[.074]  .1809(.103)[.104] | .1014(.072)  .1268(.050)[.054]  .1885(.076)[.075]
3721(.076)  .2970(.064)[.065]  .2981(.065)[.064] | .3236(.044)  .3010(.041)[.041]  .2999(.041)[.041]
7581(.048)  .9924(.061)[.066] — .8739(.039)  .9914(.044)[.048] —
.9977(.020)  .9982(.019)[.020]  .9981(.019)[.019] | .9997(.013)  .9998(.012)[.012]  .9996(.012)[.012]
1976(.031)  .1964(.028)[.033]  .2007(.031)[.031] | .1931(.017)  .1942(.017)[.022]  .1997(.019)[.019]
.2952(.028)  .2994(.028)[.028]  .2990(.029)[.028] | .2994(.018)  .3007(.018)[.020]  .3007(.018)]. 019}
.0956(.143)  .1252(.069)[.076]  .1756(.102)[.103] | .1036(.063)  .1278(.049)[.055]  .1900(.074)[.074]
.3733(.073)  .2976(.061)[.065]  .2993(.062)[.064] | .3218(.044)  .2994(.041)[.041]  .2985(.041)[.040]
7607(.105)  .9956(.137)[.137] — 8711(.093)  .9882(.105)[.103] —
.9991(.019)  .9996(.019)[.020]  .9994(.019)[.019] | 1.0003(.012) 1.0003(.012)[.012] 1.0001(.012)[.012]
1962(.031)  .1949(.029)[.033]  .1987(.032)[.031] | .1933(.016)  .1945(.016)[.022]  .1999(.018)[.019]
.2978(.029)  .3015(.029)[.028]  .3012(.029)[.028] | .2992(.020)  .3004(.020)[.020]  .3003(.020)[.019]
.0992(.139)  .1284(.074)[.075]  .1795(.108)[.103] | .1067(.054)  .1297(.050)[.054]  .1931(.076)[.074]
3707(.077)  .2972(.067)[.065]  .2982(.066)[.064] | .3212(.045)  .2991(.041)[.041]  .2982(.041)[.040]
.7539(.075)  .9866(.098)[.100] — .8728(.064)  .9901(.073)[.075] —

n = 400; error = 1, 2, 3, for the three panels below

.9979(.013)  .9986(.013)[.013]  .9988(.013)[.013] | 1.0017(.009) 1.0017(.009)[.009]  .9999(.009)[.009]
1936(.021)  .1924(.018)[.023]  .2004(.020)[.020] | .1913(.012)  .1919(.016)[.016]  .2002(.013)[.014]
.2032(.021)  .2981(.020)[.020]  .2987(.020)[.020] | .2990(.015)  .3002(.015)[.014]  .3006(.015)[.014]
.0852(.146)  .1030(.053)[.055]  .1873(.098)[.094] | .1310(.035)  .1364(.037)[.036]  .1976(.050)[.049]
.3966(.056)  .3051(.049)[.047]  .3020(.048)[.047] | .3134(.033)  .2853(.030)[.029]  .3008(.029)[.029]
.7592(.036) 1.0021(.047)[.052] — 8776(.026)  .9944(.033)[.034] —
.9986(.014)  .9991(.014)[.013]  .9994(.014)[.013] | 1.0019(.009) 1.0020(.009)[.009]  .9994(.009)[.009]
.1924(.018)  .1917(.017)[.023]  .1996(.020)[.020] | .1977(.013)  .1977(.016)[.016]  .1996(.013)[.014]
.2946(.020)  .2994(.020)[.020]  .3000(.020)[.020] | .2920(.016)  .2929(.015)[.014]  .2995(.015)[.014]
.0950(.118)  .1058(.051)[.055]  .1925(.091)[.092] | .1392(.037)  .1451(.037)[.037]  .1987(.050)[.049]
.3916(.055)  .3016(.049)[.047]  .2983(.047)[.046] | .3375(.034)  .3078(.030)[.029]  .2990(.029)[.029]
.7599(.082)  1.0027(.107)[.108] — .8666(.064)  .9827(.072)[.072] —
.9992(.014)  .9998(.013)[.013] 1.0001(.013)[.013] | .9993(.009)  .9994(.009)[.009]  .9994(.009)[.009]
1921(.020)  .1912(.018)[.023]  .1995(.020)[.020] | .1955(.014)  .1958(.016)[.016]  .1997(.013)[.014]
.2937(.019)  .2986(.019)[.020]  .2990(.019)[.020] | .2924(.015)  .2937(.015)[.014]  .2999(.015)[.014]
.0872(.140)  .1028(.047)[. 055} .1882(.088)[.093] | .1227(.038)  .1292(.037)[.037]  .1964(.050)[.050]
.3917(.056)  .3007(.047)[.047]  .2983(.047)[.046] | .3392(.031)  .3086(.030)[.029]  .3007(.029)[.029]
.7628(.059)  1.0066(.077)[.081] — .8581(.044)  .9732(.052)[.049] —
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