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In this Supplementary Material, we provide detailed proofs of the results not given in the

main text due to space constraint. We also provide some details on the immediate extensions

of the proposed AQS method.

Additional Proofs
Proof of Lemma A.3: Proof is simpler using a D}, under the constraint o; = 0.

Proof of (). Let Du(p) = Bn(p)Dy, Da(p) = Bn(p)Dy, Dri(p) = D), (p)Du(p), Di2(p) =
D, (p)Da(p), Da2(p) = D, (p)Dalp) and F(p) = D, (p)Qp, (p)Du(p). Using the inverse formula

of a partioned matrix, one has

_DH(P) Di2(p) -

Diy(p) Daa(p)
Fp) —F 1 (p)D12(p) D3y ()
|—Day (P)Dia(P)F 7 (p)  Day (p) + Dy (0)Dia(p)F 1 (p)Dr2(p) Dy (p)

Plugging this into Qp(p), we obtain after some algebra,

D' (p)D(p)] " =

Qn(p) = Q. (p) — Qo (9)Du(p) [}, (0)Qp, (1)Du(p)] ' D}, (p) Qo (p)- (D.1)

Given the special structure of D,(p), one has Qp_(p) = blkdiag(Ji(p),...,Jr(p)), where
J1(p) = In, and Jy(p) = In, — 15 Bi(p)ln, 500, Bi(p) Be(p)ln, )11, Bi(p) for t = 2,--- ,T. By

ne Nt

Assumption D, the limit of %l’

-1, Bi(p)Bt(p)ly, is bounded away from zero and the elements

of Bi(p)ln,l;,, Bi(p) are uniformly bounded, uniformly in p € A, for each ¢. Therefore, Ji(p)
must be uniformly bounded in both row and column sums, uniformly in p € A, for all ¢.
Hence, Qp, (p) is also uniformly bounded in both row and column sums, uniformly in p € A,,.

We next consider the second term on the RHS of equation (D.1). We denote it as Q(p),
which can be partitioned into T x T blocks with (s,¢)th block being

Qsa(p) = = 7J5(p) Bs(p) Ds[7 32 (_1 DiBi(p)Ji(p) Be(p)De] ' DiBy(p) Je(p).

By assuming B;(p)Ds|+ ST DiBl(p)Ji(p) Bt (p) D) "1 D Bl(p) is uniformly bounded in both

row and column sum norms, uniformly in p € A, for all s and ¢, we have that the row and



column sums of each Qg (p) must have uniform order O(1/T), uniformly in p € A,. As there
are T blocks in each row or in each column of Q(p), we must have Q(p) is bounded in both
row and column sum norms, uniformly in p € A,. Consequently, Qp(p) is bounded in both

row and column sum norms, uniformly in p € A,,.

Proof of (ii). Let Zy(p) = [+X'(p)X(p)]~! with its (j,k)th element being denoted
by zjr(p). From Assumption C(ii), Zn(p) converges to a finite limit uniformly in p €
A,. Therefore, there exists a constant c, such that |z,(p)| < ¢, uniformly in p € A, for
large enough N. Note that X(p) = Qp(p)Bn(p)X. As the elements of X are uniformly
bounded (Assumption C(i)), and Bx(p) and Qp(p) are bounded in both row and column
sum norms, uniformly in p € A,, the elements of X(p) are also uniformly bounded, uni-
formly in p € A,. Hence, there exists a constant ¢, such that |z;.(p)| < ¢, uniformly in
p € A,, where z;,(p) is the (j,k)th element of X(p). Let pji(p) be the (j,1)th element of
Px(p) = %X(p)[%X'(0)X(p)]"1X(p). It follows that uniformly in p € A,, S0, [pa(p)| <
+ Z;V LSk SR s () ()2 (p)] < K2euc for all [ = 1,2,..., N. Similarly, uniformly
in p € A, we have Y, ()] < & S8, Y5 YA Fr(p)ag (Dais(p)] < Kesc? for all
j=1,2,...,N. That is, Px(p) is bounded in both row and column sum norms, uniformly

)
in p € A,. Consequently, Qx(p) = Iy —Px(p) is also bounded in both row and column sum

norms, uniformly in p € A,,. [ |

Proof of Lemma A.4: From the proof of Lemma A.3, the elements of X(p) and the
elements of [X'(p)X(p)]~! are uniformly bounded, uniformly in p € A,. If Ay and By are
bounded in row (column) sum norm, then Ay By is also bounded in row (column) sum norm.
Thus, Lemma A.6 of Lee (2004b) implies that the elements of +X'(p) Ay BnX(p) are uniformly
bounded. It follows that tr[AnPx(p)By] = tr[(+X(p)X(p)) %X (p)ANBnX(p)] = O(1),

uniformly in p € A, because the number of regressors k is fixed. [ |

Proof of Lemma A.6: Firstly, Lemma A.8 of Lee (2004b) implies that tr(HAnN),
tr(AnAYy), tr(HANHAN) and tr(HAyHA)) are all O(%) As N a2 < tr(AnAly),
iak = O(%) These and Lemma A.5 show that E(V'AyV) = tr(HAy) =
O(£) and Var(V'AyV) = SV, a2 [E(v}) — 30f] + tr[HAy(HAY + HAy)] = O(£). As
E[(V'ANV)?] = Var(V/ANV) + E2(V/ANV) = O((%)Q), we have P(4|V/AyV| > M) <
255 ( b )2E[(V/ANV)?] = O(1), by the generalized Chebyshev’s inequality. It follows that
V'ANV = OP(H)' Moreover, by Chebyshev’s inequality, P((%)%|V’ANV —E(V'ANV)| >

we also have N



M) < 3% Var(V/AyV) = O(1). This implies that V/AyV — E(V'ANV) = O,((X)3).

Finally, as the elements of ¢y have uniform order O(h,, 1 2), there exists a constant ¢ such

that |c;| < hl% for all j. Hence, we have by the boundedness of || An||1,

Var[(%)2cy A V] = % S8 S S cierajianio?
< (& L o) (T i) (CRsy larl) = O(1).

It follows that dy ANV = Op((%)%), by Chebyshev’s inequality. [ ]

Proof of Corollary 2.1: Note that (%) = I‘}‘V(G)|(979* bmdt A i) A8 O, AN
TNV N T L

and Ay are consistent estimators for 6y, v and &, plugging these estimators into I'} (0) will
not bring additional bias to the estimation of I'};(6y). However, due to incidental parameters
problem, the fi3; component of gE*N is not consistent for the estimation of pg when T is fixed.

The estimation bias caused by replacing ¢ by gE*N can be derived as follow. Recall (2.4),

on(8.8) = Dy ())Dy (p)] Dy (p)Bx () [AN (V)Y — X73].
Thus, the unconstrained estimate of ¢q is just gﬁ}k\] = qBN(ﬁA}"V, 3}‘\[) Note AN(j\’jV)Y — XB;‘V =
ANY — XBy — WY (A% — Ao) — X(B% — o). Applying the MVT on each row of D¢}, with
respect to the pj-element, we have,

Doy = DD (p3)Dx (p3)] ™ Dy (P B () [AN(AR) Y — X (D-2)

= By (/%) Po(px)Br (p3) AN (AN)Y — XB5]

= [By'PoBy — Ry (7)(Px — po)l[AN(AN)Y — XB}]

= Dy + By'PoV — BR'PoBy[WY (A} — Xo) + X(B% — fo)]

— Ry (p)[ANAN)Y = XBX](AN — po),

where p lies between py and pg and changes over the rows of Ry(p), and Ry(p) is given
below (B.4). From its expression, I'§ () is seen to have components that are either linear or

quadratic in D¢. Let dx be a non-stochastic N-vector with elements being of uniform order

O(1) or O(h,;1). Using (D.2), the terms of F}‘V(é}‘v) linear in Dgg*N can be represented as
M ANDON = §rdyDeéo + 5 dy By PV — grdy By PoBy[WY (Af — do) + X (53 — fo)]
T Ay Ry (DIAN ()Y — X335 — po) = 2diy Do + 0(1),

where the last equation holds because of the consistency of é}‘v and Lemma A.6, using Y =



A (n + BR'V). Hence, we can conclude that the terms of T'%(f) linear in ¢y can be
consistently estimated by simply replacing ¢g with é*N
The only term that is quadratic in ¢g is contained in I'}, (6p), which is M%gb{)D’NPéPQ]D) N&o-
940
The plug-in estimator estimates this term by m¢%®’N (NP (08 )P2(08 ) DN (A ) PN - Us-

~

ing (D.2), 63 —6o = 0,(1) and Lemma A.6, we show that this estimator is biased /inconsistent:

e OND (PR )P (53 Pa(63)DN (P5) by

= ﬁmd)D?V(ﬁ?\])Pé(57\/)732(57\])DN(@\7>¢0

+ gz VPoBY B (53) P (03 )P2(33) B (53 By BpV + 0,(1)

= oz, WD PSPaDN G0 + i VPR PLPRPV + 0y(1)

_ ﬁggo%DINPéPQDN% + - tr[P5PaPp] + 0p(1).

We see that the bias term, N%tr[PéPQPDL involves only the common parameters that can be

consistently estimated. Thus, a bias correction can easily be made. Define
Bias}, (0) = N%tr[Pé((S)Pg(é)IP’D(p)]. (D.3)

This gives the bias matrix of T4 (#%), which is a matrix of the same dimension as T%(8%),

and has the sole non-zero element Bias}, (dg) corresponding to the I'§, (éj‘v) component. W

Proof of Corollary 2.2.

Proof of (i). Note: V=By(AxY—7),V =QpV and V = Qp(5%)Bn (75 )[AN(A5)Y —
XBTV] with respective elements {v;},{7;} and {0;}, and Qp has elements {g;n}, j,h =
1,..., N, where j and h are the combined indices fort=1,...,nandt=1,...,T.

Consistency of 4. As Oy N — 00 = op(1) and pj — po = 0,(1), the denominators of 4x

and 7 agree asymptotically. Thus, 4 is consistent if % Zjvzl[{)? — E(@?)] 2,0, or

(a) = 0,02 —E@3)] 50, and  (b) & X0, (02 — %) 0.

To prove (a), note that v; = Zfzvzl ¢;jnvn- Thus, we have,
N [~ ~ N N N N «—N
% Zj:l[U? - E(Uf)] = % Zj:l > h=1 q;’h[v% - E(”i)] + % Zj:l D=1 Zyngﬁ qul%'m”l%m
+ % Z§V=1 ZZ=1 Zjl}é; Z]hvzé_n;,z qimqjiqihvmuvn = K1 + Ko + K3.

First, consider Ky term. By Lemma A.3, Qp is uniformly bounded in both row and column

sums. This implies that the elements of Qp are uniformly bounded. Therefore, there exists a



constant g such that |g;n| < ¢ for all j and h. Given these, we have Z - q]h < Zé\le gjn|® <
23y j=1lajn| < oo. Also note {v;} are iid by Assumption A. Thus, Khinchine’s weak law
of large number (WLLN) (Feller, 1968, pp. 243-244) implies that K converges to zero in
probability as sample size increases.

For the other two terms, we have by switching the order of summations when needed,

Ky = % Zjvzl Zfil Z%ﬂ ququ'm(UZQ — 02)Um + % Z;V:1 Z;\il E]X@fl q]zlqjmagvm,
= 2 (2 = o) (L S i) + e v S g (0F — o),
PR N T S @iimotim,
K3=1yN vm(ZjL St Z?ﬁl Gm @i dinon) = 5 SN gam.

Therefore, we have Ky = Zan:1(91,m + go.m + g3,m) and K3 = % Zﬁzl G4,m, Where

gim = 3(vE —02) 3L, Y g,
= 3Um Zg Dy qjl‘Z]m( vp —03),
g3m =330 Zlfm @19jm Ty Vm,
94,m = Um ZJ 1 Z Z ht qjmqjlq]hvlvh~
Let {Gmn} be the increasing sequence of o-fields generated by (vi,--- ,vj,5 = 1,--- ,m),
m=1,---,N. Then, E[(91,m, 92,m» 93,m> 94,m)|Gm—1] = 0; hence, {(g1,m, 92,m> 93,m> 9a,m)’, Gm }
form a vector martingale difference (M.D.) sequence. As Qp is bounded in row and column
sum norms, by Assumption A, it is easy to see that E|gs.,|'T¢ < oo, for s = 1,2,3,4 and
e > 0. Hence, {g1,m}, {92,m}, {93,m} and {gam} are uniformly integrable, and the WLLN of
Davidson (1994, Theorem 19.7) applies to give Ko —— 0 and K3 — 0.
To prove (b), using the notation V(¢) = Qp(p)Bn(p)[An(A\)Y — X0] in (2.5) where
§=(8,6), we have V = V(&) and V = V(£y). Let S(¢) = 5% V(€), we have

S(¢) = {-X(p), —Y(p), [Qu(p)Bn(p)— Qo(p)M][AN(N)Y — X3},

where expressions of Y(p) and Qp(p) are in (B.1) and (B.4), respectively. Let s5(€) be the
jth row of S(§). We have by the MVT, for each j =1,2,..., N,

05 = 05(€x) = 7j(&) + 55O (€N — &o) = T + V(R — o) + 0p(IIEx — &oll), (D.4)

where ¢ lies between f}"\, and o, and ¢} = plimy_, 5] (€), which is easily shown to be O,(1)

as follow. Consider the first k£ (the number of regressors) elements of 1/);- first. They are the



limits of the jth row of —X(p), which are just the jth row of —X because p L5 po, implied
by pi — po = 0p(1). Hence, we conclude that the first k elements of ¢ are O(1), for each
j=1,2,...,N. For the remaining two elements in each w;-, they are the limits of elements from
the last two columns of S(€). It is easy to see the limits of the last two columns of S(€) are just
~Y and [QpBx—QpM][ANY —X3y]. Using Y = A'n+CH'V, we have —Y = PoByn+PaV
and [QpBy —QpM][ANY — XS] = [QpBy —QpM|Déy+ [QpBy —QpM]BL'V. By Lemma
A.1, we have the elements of PoByn and [QDB ~N —QpM]D¢y are uniformly bounded, and Py
and [QDB N — @DM]ijl are uniformly bounded in both row and column sum norms. Hence,

it is easy to see each element of —Y and [QpBy — QpM][ANY — XSy] are O,(1), i.c., the last

two elements in w} are also Op(1), for each j =1,2,..., N.
As 5; = Op(1), ¢, = Op(1) and & —&o = Oy( i7)» we have by (D.4), 8¢ = 03 +30%(Eh —

&) + op(|I€% — &ol))- Tt follows that

EXN @ - o) = 2N 0 (E — &) + op(lI€k — &oll)
= 30 SN (SN 2 Ex — o)+ op(I€x — €oll) = op(1),

as § Ej'v:l(Z]lcvzl Q?kwg') = (ZkN=1 %21@)%(2?{:1 ¥;) = O(1).

Consistency of iy. As 6 y — 0w = 0p(1) and piy — po = 0p(1), the result follows if

+ Zjvzl [ﬁ;* - E(@;l)] 2., 0. This amounts to show that

() § Xjmi [0 —E(5))] == 0 and (d) 5 Y73, (6 — &) = 0.

To prove (c), we have

¥ Xm0 — x 55 B(T))
:% Zj:l Zh:l q;lh[vfl - E(’Ué)] + % Zjvzl Z;L Z]r:rlzﬂ q?lq‘]zm(v?v?n — o)
& 00 Xty St @hgm v vm + f 30500 Yty St Skt @gm @t vm U
+ % Z;-V:l S Z%ﬁ Z%ZT Z]z%g,h U1 GimAindjpVivmUnp = Yoy Ry
By using WLLN of Davidson (1994, Theorem 19.7) for M.D. arrays as in the proof of (a),

we have R, = 0p(1) for r=1,3,4,5. For Ry, noting that v?v2, — o = (v? — 02)(v2, — 02) +

v v m

02(v2, — 02) + 02(v? — 02), we have

Ry= %N (0f =o)X, S0k 2?02, — 02)]
+ % 25\41[23:1 anii quqjm%(vzz —0y)] = % leil(fl + f2,1)-



Since E[fj|Gi—1] = 0 and {f3;} are independent, it is easy to see they both form an M.D.
sequence. In addition, it is easily seen that E|fs;|'T¢ < oo, for s = 1,2 and € > 0, so that {f;}

and {f;} are uniformly integrable. Therefore, the WLLN of Davidson (1994, Theorem 19.7)
also implies that < ZZJL fi=o0p(1) and & Zl 1 fag = 0p(1).

To prove (d), we have by (D.4) f);-l = f);-l —1—417?1#9 ({}"V — &) +0p(|]£7\, —&ol|)- It follows that

NZJ ((0f —3F) = NZ] 1 ﬂl/(fN &) + 0p([I€x — &oll)
= 40157 Zj:I(Zk:I qjk%‘)(f}kv — &) + op(JI€8 — &oll) = op(1).

Proof of (ii). The consistency of f]’]‘v to X3 (6p) can be shown similarly as what we do
in the proof of Theorem 2.2 for results (b) and (c). For IA“"]‘V — T (60) -2 0, we only need to
show that Bias*(8%) — Bias*(dp) = 0,(1), based on Corollary 2.1. That is to show

- {ET[P5(03) Pa(6% )Pn(p3)] — tr(PsPaPp)} = 0p(1),

which can be easily proved by using the MVT as we do for §-[H3N*(8) — Hy\*(%)] in the
proof of Theorem 2.2 (b). [ ]

Proof of Theorem 3.2. Applying the MVT on each row of S%; (f}’v), we have,

0= ArSh(E) = At + | A k(o) | vms - o).

£=£, in rth row
where {£,} are on the line segment between éy\, and &y. The result of the theorem follows if
(a) i S5 (€0) = N[O, limy—oaI'%(€0)],
(b)

1
Ny

6 o) _

% ’{ £, in rth row 375’5?\/(50)] - Op(l)’ and
0.g

og¢’

) — E(25%(60))] = 0p(1)-

C

Proof of (a). From (3.6), we see that the elements of S} (£y) are linear-quadratic forms

in V. Thus, for every non-zero (k + 2) x 1 vector of constants a, a’S%;(&) has form:
a'S% (&) = UV + V'ONV — o2tr(Dy),

for suitably defined non-stochastic vector by and matrix ®. Again, by Assumptions A-F
it is easy to verify that by and matrix &5 satisfy the conditions of the CLT for LQ form of
Kelejian and Prucha (2001), and hence the asymptotic normality of F a’' S, (&) follows. By
Cramér-Wold device, #SN(&) — N[0, limy_.o I'{(60)], where I'S;(6p) is given in (3.7).

VN1
Proof of (b). The Hessian matrix HR (§) = 865’50 (&) is given in (C.1). As Fy,(do),



Fy ,(00) and Gnp(po) are diagonal matrices with uniformly bounded elements, it is easy to
see that N%HX,(&)) = Op(1) by Lemma A.6, and hence, %H}{,(f_) = Op(1). Here again for

ease of exposition we simply use HX,(E) to denote T 5’° ‘ €=E, in rth row’ As HX,(E) is linear

or quadratic in 4 and nonlinear in §, we have by applying the MVT on the j-components:
N HR(€) = 3 HR:(60) = 525 H:(8,0)(8 — 60) + 5 [HF (B 60) — HR:(60)]-
Similar to the proof of Theorem 2.2 (b), we show that - a%, H,(8,8) = O,(1). The second

term is seen to contain elements either linear or quadratic in  — 3y with the matrices in the

linear or quadratic terms being O,(1). Hence, the desired result follows as £ — £y = 0,(1).

Proof of (c). Since Y = Ay (n + By'V), all components of H% (&) are linear or
quadratic in V. Thus, under the assumptions of the theorem the result (c) is proved using
Lemma A.6. We provide details of the proof using the most complicate term, H;p(fo). Let
ENy = —G’NGN + @Np + GnyGy. By Lemma A.l, it is easy to see that =y is uniformly

bounded in both row and column sums in absolute value. Hence, we have

o [Hpopo (€0) — B(HS, , (€0))]
= 4 [VQRinQpV — E(V'QRinQD V)] — - (ANY — X[3) ByENQpV
+ 7 E[(ANY — X)) ByENQp V]
= 5 [VQRinQpV — E(VQRinQ V)] - 57 [0 DYVENQDV — E(¢)DyENQp V)]

— 3 [VENQV - E(VENQV)] = o,(1).

The proofs for the other terms are done in a similar manner, and the details are omitted. ®

Proof of Corollary 3.1: Just like the homoskedasiticiy case, plugging q@})\, in I'(6)
induces a bias for terms quadratic in ¢, and a bias correction is necessary. From (3.7), we
see that the terms of I'S;(§) that are quadratic in ¢ are the (A, p) terms and are of the form:
¢/ Dy (p)L,(8)HLy(5)Dx (), a,b = A, p, recalling 5 = Xl + Dgy and D(p)Bu (p)D.

By applying the MVT on p%-variable in the key quantity D(;AS?V, we have after some algebra,

D¢% = Déo + By'PpV — By PuBy[WY (A% — Ao) + X (5% — 5o)]
~ Ry (D)[ANAR)Y = XB(A% — po),

where p lies between p%, and py. Plugging DgZAij and other parameter estimates in these

quadratic terms, we have,



TN (% )L (03 HILy (63D (53,) 0%
= = 0D (A% )L, (03 ) HLy (03D (53,) b0
+ £ VPB Bl (5%, (03 ) HLy(0%) By (53BN PV + 0p(1)

=~ GoDY L HLy Dy o + §-tr [HPp L, HLyPp | + 0,(1),

Define
Biasg, (6, H) = 5-tr[HPp(p)L,(6)HLy(8)Pp(p)],

for a,b = A, p. Hence, the bias matrix for Fj)v(éfv) can be written as

0 0 0
Biasg(do, H) = |0 Bias}, (o, H) Bias}, (0o, H)| ;
0 Bias), (0o, H) Bias;,(do, H)

leading to the result of Corollary 3.1. [

Proof of Lemma 3.1: Using V(¢) = Qp(p)Bn(p)[An(A)Y — Xf] defined in (2.5),
let V.= V(&) and V = V(£%) and denote their elements by {3;} and {©;}, respectively.

Following (D.4), we have 9; = 9;(£%) = 0, + Y (&% — &0) + 0, (/€% — &oll), and in vector form,
V=V 4+ Un(E - &) + 0, (I — &ol),

where Uy = (Y1, 2, ...,¢¥n)’, with ; being defined below (D.4).

Define Iy(p) = a%H]\/(p) = —20x(p)[Qn(p) © Qu(p)|In(p). It is easy to see that
ITIx(p)]l1 and ||TIx(p)[lec are bounded in a neighborhood of pg. Let IL;; and ILj be the
respective elements of ITy and IIy. Hence, we have by the MVT, for each j,h =1,2,..., N,

I (5%) = Win + 1Lk (5) (5% — po) = ik + 1L (5% — po) + 0p([|A% — pol|), where p lies between

p% and po. In matrix form, we have

Iy (p%) = Iy + N (p% — po) + op([15% — poll)-

Define b = (6%,62,...,6%) = Tn(p%)(V ©® V) and h = TIy(V © V). As the elements of V

are O, (1), rows of Uy are Op(1), elements of Iy and Iy are O(1), and é}"v — & = Op(ﬁ),
we have,
h=h+20n(V O WN(E — &) + TN (V O V(3 — po) + 0, (€5 — &l)- (D.5)



Proof of (i). Let ey = (c11, - ,enn) and h = (02,03,...,0%). We have,
Lltr(HON) — tr(HON)] = ey (h — h) = Ly (h —h) + &y (h — h).
The result follows if both terms above are op,(1). For the first term, we have, using (D.5),
Non(h—h) = FRTIN(V © Un (£ — &) + ¥ TNV © V) (5% — po) + op(II€R — Soll)
=2 S i (T Tt ) (6% — €0) + & o0y ¢ (s Iin Soney 420 (A% — po)
+0p (163 = &oll) = 0p(1).
For the second term, we have after some algebra,
h=TIN[(Qo © Q) (VO V) +(] = VOV +Iye, (D-6)

where € is an N x 1 vector with j-th element ¢; = chvzl viCjk, where (i = 2q; Zf;ll g, k >
2, and (j1 = 0. As (i is (vi,...vg—1)-measurable, {vy(j;} form an M.D. sequence. Thus,
each ¢; is a sum of M.D.s. Hence, we have

Non(h—h) = 3ey (VO V —h) + 1 TInG = 0p(1),
where &y (V ® V — h) = o0p(1) by Lemma A.6(v) and 1\ IIn¢ = 0,(1) by WLLN of
Davidson (1994, Theorem 19.7) for M.D. arrays.

Proof of (ii). Note that tr(HANyHBN) = h/(Ax ® Bx)h. We have,

L tr(ﬁANﬁBN) — %tr(HANHBN) = %B,(AN ® BN)]Al — %h/(AN ® BN)h

=z

=L (W (An @ Bn)h — W (Ax @ By)h) + 4 (W' (Ax © By)h — W' (Ax © By)h). (D.7)
The first term of (D.7) can be written as
L(W(Ax ® By)h — F(Ax © By)h) =T + o+ T,

where 71 = L (h—h) (AN ®By)(h—h), T = & (h—h) (AN®BN)h, and T3 = & (h—h) (Ax®
By)' h. Note that Apn and By are uniformly bounded in both row and column sum norms,
AN © By is also uniformly bounded in both row and column sum norms. Hence, using (D.5),
V = 0,(1), Uy = Oy(1) and & — & = Op(ﬁ)’ we can easily show that 7, = o,(1), for
r=1,2,3, as we show %E’N(ﬁ — h) = 0y(1) in the proof of (i). Thus, the first term in (D.7)

is op(1).
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For the second term in (D.7), we have similarly to the first term,
(W (Ay @ By)h — W(Any © By)h) = Ta + T5 + T,

where T = £ (h—h)'(Ax ® By)(h—h), Ty = & (h—h)(Ax ©By)h and T = & (h—h) (AN ©
By)'h. For the 75 term, we have by (D.6),

T = % (VOV —h)(Ay © By)h+ 4eTIn(Ay © By)h = 0,(1),

by Lemma A.6(v) and WLLN for M.D. arrays of Davidson (1994, Theorem 19.7). The 7g
term is similar to 75 and the result follows, i.e., 76 = o0,(1).

Thus, it is left to study the limit of 74. Again, by (D.6) we have,

Ty

L(VOV —h)(Ay © By)lIye + (VO V — h)(Ay © By)'TIne (D.8)

N
++(VOV -h)(Ay ©BN)(VOV —h) + 1ely(Ay © By)lne
o

a+ Tap + Tae + Tuq.
Consider first the term 74,. Denote Q = (Ay © By)Ily with elements {wj;}. We have,
Tio= £ X0 TN e (0 — o)
o DD N Wil Z%ﬁ Wikgjidjm(V — o7 v,
:% 22\7:1((01% - ‘713) Z§V=1 Zf:_f legi Wik qj19imVIVm)
+ % Z?;(UZ Z;Vﬂ 22;11 ZE%/; ijleQjm”m(”}% - U}%))
+ & Y (0 = Eod) 32000 S0 wikdgndjmvm)
+ % Yomer (Vm 001 S wikikgim (0 — Evj))
+ % Zﬁ:l(vm Zj-vzl Z]’“Zi? wjkqijjm(Evz - ‘71%)%

which is seen to be the average of M.D. sequence and thus is 0, (1) by Theorem 19.7 of Davidson
(1994). Similarly, we show that Ta, = (V © V — h)/(Ay ® By)'Ilye = 0,(1).
For the term Ty, as E(V ®@ V) = h, we have E(7y.) = +tr((Ay © By)Var(Vo V)) = 0.
Thus, Lemma A.6(iv) implies that T3 = (V©V — h)/(Ay © By)(V® V — h) )
Now, for the last term of (D.8), Tyq = %5’HN(AN ® By)IIye, we have by taking the

advantage that each element of ¢ is a sum of an M.D. sequence,

E(ec’) = 2(QpHQp) © (QpHQp) — 2(Qp © Qp)HH(Qp © Qp). (D.9)
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This gives,

E(e’;‘/HN(AN O) BN)HN{;‘) = 2tr((AN © BN)HNA(H)HN) — 2tr((AN O] BN)H2), (D.lO)
= 2tr((Ay © By)IINA(H)IIy),
where A(H) = (QpHQp) © (QpHQp), and the last equation takes use of the fact that the
diagonal elements of Ay and By are zero.
Finally, to show that 745 — E(744) = 0p(1), denote xn = Hn(Any @ By )IIy with elements
{x;jr}. It is easy to show that {x;x} are uniformly bounded, and let |x;m,| < x < co. We have,
Var(a’HN(AN ® BN)HN{f)
N N N N N N N N
=38 Zj:l Zk:l Zl:l Zm:l Zh:l zﬁﬁ Zs:l Z:Zi
A s 2,2 2 2
X]kle%hQJpQZthkaSriQmsCerE(UhUpUS'UT)
9_ N N N N N
< 872X D et (= Il =y lanr D22y i) (o h=y lainl)

(Cpet lip D (5l lams ) (0L g )
= O(N),

where the inequality holds because E(vjvZv3v?) equals either E(viv?)E(v3v?) or E(viv?)E(v3v3)

since h # p and s # r, and either of them is less than a constant ¢ < oo, e.g., E(viv?) <

E%(v,‘i)E%(vf ) < c. Therefore, by Chebyshev’s inequality,
P(+|eTn(An ® By)llye — E(e'TIn(Any ® By)llye)| > M)
< s Var(eTy (Ay © By)Ilye) = o(1).

It follows that %5’HN(AN © By)IIye — %E(e’HN(AN ©® By)Iye) 0. Therefore, we have
shown that 7y = £tr((Any © By)IINAH)IIN) + 0y(1). It follows that

Ltr(HANVHBY,) — Ltr(HANHBY) = Y0 7,
:%tr((AN ® BN)HNA(H)HN) + Op(l),
completing the proof of Lemma 3.1. [ |
Proof of Corollary 3.2: The consistency of f]?\, to X{(&o) is implied by results (b) and
(¢) in the proof of Theorem 3.2. To show f?\, — T (&) - 0, we argue as follows:

(a) The transition from T' (£, do, H) to T, (€%, ¢o, H) does not incur cost asymptotically;
(b) The cost of transition from F?V(éfv, ¢o0, H) to I'; (ffv, ng})v, H) is captured by Bias;’s(&v, H);
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(¢) The effect of replacing H in N%tr(H]LaH]LO) a,b = A, p, is captured by - 7 tr((Le ©
Lo) Ty A(E)Ty ), a,b = A,

(d) It is left to show that the cost of transition from Biasjb(c??\,,H) to Biasi;(c?f\,,ﬂ) is
captured by —N%tr((IP’DL; O LyPp)IINA(H)IIN), a,b = A, p.

The non-zero entries in Biasé(&o, H) are of the form Niltr(HIP’D}LleILb]P’D), for a,b =\, p,
as given in Corollary 3.1. Applying result (D.10) with Ay = PplL], and By = LyPp, we have,

7t [P (5% )L, (6% HLy (6% )Po(p3, ) H — PpL, HL,PpH]

aotr [Pl HLPpH — PplL,HL,PpH] + 0,(1) (by the MVT)

5 tr((Poll, © LyPp)IINA(H)TIN) + ytr((Poly, © LyPp)H?) + 0,(1),
(

N tr (P]D)]L @LbP]D))HNA( )HN) + Op(l),

for a,b = A, p. Although the diagonal elements of PplL], ® LyPp may not be zero uniformly,
their magnitudes are typically small so that the second term of the second last equation is

negligible.'! Then, it follows that i?lfﬁvi}vl — 2?1(50)3)\/(50)2?\7_1(50) P.0. -

Extensions of Unbalanced SPD Models and AQS Method

As discussed in the introduction and conclusion sections, the unbalanced SPD (USPD)
models and the associated AQS methods are quite general in that they can be extended to
allow for additional features in the model or to different types of unbalanced SPD models.
For illustration, we extend the current model to allow errors to be serially correlated, and
consider models with random effects (RE). We present some details on the following four
extensions: (i) USPD model with two-way FE and serial correlation, (i) USPD model with
two-way FE, heteroskedasticity and serial correlation, (ii¢) USPD model with two-way RE
and serial correlation, and (iv) USPD model with two-way RE, heteroskedasticity and serial
correlation. For serial correlation, we assume that the model errors follow a stationary AR(1),
i.e., viy = pvi—1+e; with |p| < 1. Cases (i), (#4) and (4v) all encounter incidental parameters
problem, the standard methods for balanced panels cannot be applied, and the proposed AQS
method needs to be called for. Case (ii7) illustrates the simplicity of the proposed modeling

strategy in controlling the random effects in the unbalanced SPD models with general time-

" The detail is tedeous and thus are omitted. Under balanced panel data model considered in footnote 7, we
can easily show diag(LaPp) = O(2) for a = A, p.
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varying spatial weight matrices and serial correlation.

(i) USPD Model with Two-Way FE and Serial Correlation
Assume v;; = ov; —1+e; with |o| < 1, and e ~ iid(0, 02). Denote K = blkdiag(Dy, ..., Dr).
It is easy to see that Var(V) = 02K (Qy (0) ® I, )K' = 02T y(0), where

1 o 1 o'
-QT—I QT_2 1 |

Denote Un(p, 0) = T (0) =T (Q)D(p) [’ (0) T i (0)D(p)] "D (p) T ' (0). Let 8 = (8,02, 6),
where § = (A, p,0)’. The concentrated quasi Gaussian loglikelihood function (with ¢ being

concentrated) of 6 takes the form:
(5(0) = =5 m2r — Flno? — §1n|Tw(o)| + n|An(A)| +In By (p)| — 552 V(8,0 V(8. 9),

where V(3,6) = Un(p, 0)Bn(p)[AN(N)Y — X0]. Hence, the concentrated quasi score (CQS)

functions S§(0) = &¢5,(9) is given as

= X'Bly())Uy (p. )V (5,9).

2 [V/(8,8)V(8,6) — Nog],

Sn(0) = %;Y’W’Bwp)w;v(p, OV (8,6) - tr[Fn(N)],
LV(8,0)Gn(p)Yn(0)V(B,6) — tr[Gn(p)],

|22 V(8,0)Tn(0)V(8.6) - 3ex[T ' ()T (o)),

where Ty (0) = 5 Yn(0). To remove the effect from estimating FEs, we correct S5 (6) using
S%(00) = S%(00) — E[S%(60)], which takes the form at the general 6:
HX'Biy(p)Uly(p, 0)V(8,9),
57 [V'(8,0)V(8,6) = otx(Un(p, 0)]
Sx(0) = § HY'WBY (o) Ul (p, o)V (8,6) — tx[Br(0)Ex (NBR () T (0)U% (1, 0],
SV (8,8)Gn(p) TN () V(8,6) - tx[Gn (p) YN (0)Un (p, 0)],

522 V(8,8) Tn(0)V(5,0) — 3tr[Tn(2)Un(p, 0)]-

Solving the AQS equations: S} (0) = 0, gives the AQS estimator of 6.
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(ii) USPD Model with Two-Way FE, Heteroskedasticity and Serial Correlation
Now, we consider the case that errors are heteroskedastic across individuals and serially
correlated across time, i.e., vy = pvit—1 + e with |p] < 1 and e ~ inid(O,U?). Let h =
diag(o?,...,02). In this case, we have Var(V) = HY y(0), where H = blkdiag(hy, ..., hr)
and h; is obtained from h by omitting the rows and columns corresponding to the missing

units at time t. Following the similar derivations as we do in Section 3.1, we obtain the desired

AQS functions robust against the unknown heteroskedasticity:

;

X'Bly (p)Uy (p, ) V(8,6),
YAl (Bl (0)[Fy (0 p) — Py (8)]V(5.5).

[AN(NY = XBBly(p)[Gn(p, 0) — Gn(p, 0)]V(3,9),

{[AN(V)Y = XBBy (p)[On(p: ) = Un(p, 0)]V(5.9),

where Fy (X, p) = By (p)Fy (\)Bly (p), Fiy (8) = T' (0)diag[Tn (0)Fy (8)Un (p, 0)ldiag[Un (p, 0)] .

G (p,0) = Un(p,0)Gn(p)Tn(0), Gn(p, 0) = Tn' (0)diag[Yn (0)Gn(p, 0)Un(p, 0)ldiag[Un(p, 0)]

Un(p, 0) = Un(p,0)Tn(0), and Un(p, 0) = T ' (0)diag[Tn(e)Un(p, 0)Un(p, 0)]diag[Un(p, 0)] 7.
Solving the robust AQS equations: SR%;(5,0) = 0, gives the AQS estimators of § and 0,

Sx(8,0) =

robust against unknown heteroskedasticity, and allowing serial correlation of AR(1) form.

(iii) USPD Model with Two-Way RE and Serial Correlation
Assume p; ~ iid(0, Ji), ay ~iid(0,02), and they are mutually independent and indepen-

dent of e;;. Then the covariance matrix of the composite error term is
Un(61) = 02Du(p) + 02Dalp) + 02N (0),

with 61 = (p, 0.0%.02,62)", Du(p) = B (p)DuD,Bly(p) and Du(p) = By (p)DuD,Bi ().

er“wYa

Thus, the quasi Gaussian loglikelihood function of 8 = (', A, 0})" is
£ (8) = ~¥ 2 — LIn O (60)] + In[An (V)] + In (B ()] — V(B A, )R 0V (5, A, ),

where V(8, A, p) = By (p)[An(A\)Y —Xf]. The direct QML estimator g of 6 maximizes the

above equation ¢ (6), and its consistency and asymptotic normality can be easily established.

(iv) USPD Model with Two-Way RE, Heteroskedasticity and Serial Correlation

We now extend the model in (iii) to allow heteroskedasticity in the errors as in (ii) above.
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Denote V(0) = U3 (61)V(B, A, p). The quasi score functions assuming homoskedasticity are:

V(O TN (V(0) — 3tr[Tn ()T (61)],
LV (0)D,(p)V (6) — 3ex[D, (p)OR (601)],
sV (0)Da(p)V(0) — St[Da(p)Uy' (61))-

Ve

It is easy to see that E[S§(0y)] # 0 when €],s are heteroskedastic. Therefore, some adjustments
on the above quasi score functions are necessary in order to have consistent estimation. Denote
02 = (p,0,00,08), &€ = (8,A,65), Un(02) = 0.Dulp) + 03Dalp) + Tn(0) and V(€) =
Uy H(02)V(B, A, p). Alone the similar ideas of Section, some tedious algebra leads to the AQS
functions robust against the unknown heteroskedasticity and allowing serial correlation of

AR(1) form:
(X'Bly(0)V (),

YAl (VB (0)[Fy (A, p) = Fiy (A, )1V (€) = tx[Fn (X, p) = Fx (X, 62)),

52 (6) = V'(3,X,p)[Gn(02) — Gy (62)]V(€) — tr[Gn (02) — Gn(02)],
N - ~ _ _
V'(3, X, p)[Un(02) — Un(62)]V(€) — tr[Un(02) — Un(62)],
V'(3, X, p)[S,(02) — S,u(02)]V (€) — £x[S,.(62) — Spu(62)],
V'(3, A, p)[Sa(02) — Sa(02)]V(€) — tr[Sa(02) — Sa(62)],
where Fy (A, p) :BEM(P)F’N()\)B’ (), F?v(/\ﬁz) v (0)diag[Tn (0)Fy (0)Uy" (62)]diag[Uy (A2)]
Gy (02) = Uy (02)Gn(p)Tn(0), Gn(02) = T (0)diag[Yn(0)Gn(02)Uy (02)]diaglUy' (62)] 7,
Un(02) = U3 (62) T (o), UN(92)=T?v( )diag[Y n(0)Un(62)Uy (02)]diag[Uy' (62)] 72,
Sw(f2) = Uy'(02)Des(p), and S () = Yy (0)diag[Y n(0)Sw(02)Uy' (A2)]diaglUy' (62)] 7,

for w = por a.
Solving the robust AQS equations: S (§) = 0, gives the AQS estimator of &, robust
against unknown heteroskedasticity, and allowing serial correlation of AR(1) form.
Asymptotic properties of the AQS estimators in cases (i) and (i7) can be studied in a similar
way as that in the main text of the paper, and inferences methods can be developed along
the same line. However, formal studies on these cases are still quite involved, and can only be

done in a future research work. For the cases (7i7) and (iv), we do not foresee any difficulties
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in establishing the asymptotic properties of the QML and AQS estimators, but developments
of the inference methods may encounter some difficulties due to the involvement of three error
components which may be all non-normal, and the allowance of unknown heteroskedasticity.

Formal studies on these cases are in our future research agenda.
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