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In this Supplementary Material, we provide detailed proofs of the results not given in the

main text due to space constraint. We also provide some details on the immediate extensions

of the proposed AQS method.

Additional Proofs

Proof of Lemma A.3: Proof is simpler using a D?
α under the constraint α1 = 0.

Proof of (i). Let Dµ(ρ) = BN (ρ)Dµ, Dα(ρ) = BN (ρ)D?
α, D11(ρ) = D′µ(ρ)Dµ(ρ), D12(ρ) =

D′µ(ρ)Dα(ρ), D22(ρ) = D′α(ρ)Dα(ρ) and F(ρ) = D′µ(ρ)QDα(ρ)Dµ(ρ). Using the inverse formula

of a partioned matrix, one has

[D′(ρ)D(ρ)]−1 =

D11(ρ) D12(ρ)

D′12(ρ) D22(ρ)

−1

=

 F−1(ρ) −F−1(ρ)D12(ρ)D−1
22 (ρ)

−D−1
22 (ρ)D′12(ρ)F−1(ρ) D−1

22 (ρ) +D−1
22 (ρ)D′12(ρ)F−1(ρ)D12(ρ)D−1

22 (ρ)

 .
Plugging this into QD(ρ), we obtain after some algebra,

QD(ρ) = QDα(ρ)−QDα(ρ)Dµ(ρ)[D′µ(ρ)QDα(ρ)Dµ(ρ)]−1D′µ(ρ)QDα(ρ). (D.1)

Given the special structure of Dα(ρ), one has QDα(ρ) = blkdiag(J1(ρ), . . . , JT (ρ)), where

J1(ρ) = In1 and Jt(ρ) = Int − 1
nt
Bt(ρ)lnt [

1
nt
l′nt
B′t(ρ)Bt(ρ)lnt ]−1l′nt

B′t(ρ) for t = 2, · · · , T . By

Assumption D, the limit of 1
nt
l′nt
B′t(ρ)Bt(ρ)lnt is bounded away from zero and the elements

of Bt(ρ)lnt l
′
nt
B′t(ρ) are uniformly bounded, uniformly in ρ ∈ ∆ρ for each t. Therefore, Jt(ρ)

must be uniformly bounded in both row and column sums, uniformly in ρ ∈ ∆ρ for all t.

Hence, QDα(ρ) is also uniformly bounded in both row and column sums, uniformly in ρ ∈ ∆ρ.

We next consider the second term on the RHS of equation (D.1). We denote it as Q̄(ρ),

which can be partitioned into T × T blocks with (s, t)th block being

Q̄s,t(ρ) = − 1
T Js(ρ)Bs(ρ)Ds[ 1

T

∑T
t=1D

′
tB

′
t(ρ)Jt(ρ)Bt(ρ)Dt]−1D′

tB
′
t(ρ)Jt(ρ).

By assuming Bs(ρ)Ds[ 1
T

∑T
t=1D

′
tB

′
t(ρ)Jt(ρ)Bt(ρ)Dt]−1D′

tB
′
t(ρ) is uniformly bounded in both

row and column sum norms, uniformly in ρ ∈ ∆ρ, for all s and t, we have that the row and
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column sums of each Q̄s,t(ρ) must have uniform order O(1/T ), uniformly in ρ ∈ ∆ρ. As there

are T blocks in each row or in each column of Q̄(ρ), we must have Q̄(ρ) is bounded in both

row and column sum norms, uniformly in ρ ∈ ∆ρ. Consequently, QD(ρ) is bounded in both

row and column sum norms, uniformly in ρ ∈ ∆ρ.

Proof of (ii). Let ZN (ρ) = [ 1
N X′(ρ)X(ρ)]−1 with its (j, k)th element being denoted

by zjk(ρ). From Assumption C(ii), ZN (ρ) converges to a finite limit uniformly in ρ ∈

∆ρ. Therefore, there exists a constant cz such that |zjk(ρ)| ≤ cz uniformly in ρ ∈ ∆ρ for

large enough N . Note that X(ρ) = QD(ρ)BN (ρ)X. As the elements of X are uniformly

bounded (Assumption C(i)), and BN (ρ) and QD(ρ) are bounded in both row and column

sum norms, uniformly in ρ ∈ ∆ρ, the elements of X(ρ) are also uniformly bounded, uni-

formly in ρ ∈ ∆ρ. Hence, there exists a constant cx such that |xjk(ρ)| ≤ cx uniformly in

ρ ∈ ∆ρ, where xjk(ρ) is the (j, k)th element of X(ρ). Let pjl(ρ) be the (j, l)th element of

PX(ρ) = 1
N X(ρ)[ 1

N X′(ρ)X(ρ)]−1X′(ρ). It follows that uniformly in ρ ∈ ∆ρ,
∑N

j=1 |pjl(ρ)| ≤
1
N

∑N
j=1

∑k
r=1

∑k
s=1 |zrs(ρ)xjr(ρ)xls(ρ)| ≤ k2czc

2
x for all l = 1, 2, . . . , N . Similarly, uniformly

in ρ ∈ ∆ρ, we have
∑N

l=1 |pjl(ρ)| ≤ 1
N

∑N
l=1

∑k
r=1

∑k
s=1 |zrs(ρ)xjr(ρ)xls(ρ)| ≤ k2czc

2
x for all

j = 1, 2, . . . , N . That is, PX(ρ) is bounded in both row and column sum norms, uniformly

in ρ ∈ ∆ρ. Consequently, QX(ρ) = IN − PX(ρ) is also bounded in both row and column sum

norms, uniformly in ρ ∈ ∆ρ. �

Proof of Lemma A.4: From the proof of Lemma A.3, the elements of X(ρ) and the

elements of [ 1
N X′(ρ)X(ρ)]−1 are uniformly bounded, uniformly in ρ ∈ ∆ρ. If AN and BN are

bounded in row (column) sum norm, then ANBN is also bounded in row (column) sum norm.

Thus, Lemma A.6 of Lee (2004b) implies that the elements of 1
N X′(ρ)ANBNX(ρ) are uniformly

bounded. It follows that tr[ANPX(ρ)BN ] = tr[( 1
N X′(ρ)X(ρ))−1 1

N X′(ρ)ANBNX(ρ)] = O(1),

uniformly in ρ ∈ ∆ρ because the number of regressors k is fixed. �

Proof of Lemma A.6: Firstly, Lemma A.8 of Lee (2004b) implies that tr(HAN ),

tr(ANA
′
N ), tr(HANHAN ) and tr(HANHA′N ) are all O( N

hn
). As

∑N
i=1 a

2
ii ≤ tr(ANA

′
N ),

we also have
∑N

i=1 a
2
ii = O( N

hn
). These and Lemma A.5 show that E(V′ANV) = tr(HAN ) =

O( N
hn

) and Var(V′ANV) =
∑N

i=1 a
2
ii[E(v4

i ) − 3σ4
i ] + tr[HAN (HA′N + HAN )] = O( N

hn
). As

E[(V′ANV)2] = Var(V′ANV) + E2(V′ANV) = O(( N
hn

)2), we have P (hn
N |V

′ANV| ≥ M) ≤
1

M2 (hn
N )2E[(V′ANV)2] = O(1), by the generalized Chebyshev’s inequality. It follows that

V′ANV = Op( N
hn

). Moreover, by Chebyshev’s inequality, P ((hn
N )

1
2 |V′ANV − E(V′ANV)| ≥
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M) ≤ 1
M2

hn
N Var(V′ANV) = O(1). This implies that V′ANV − E(V′ANV) = Op(( N

hn
)

1
2 ).

Finally, as the elements of cN have uniform order O(h−1/2
n ), there exists a constant c̄ such

that |cj | ≤ c̄

h
1/2
n

for all j. Hence, we have by the boundedness of ‖AN‖1,

Var[(hn
N )

1
2 c′NANV] = hn

N

∑N
i=1

∑N
j=1

∑N
k=1 cjckajiakiσ

2
i

≤ c̄2( 1
N

∑N
i=1 σ

2
i )(

∑N
j=1 |aji|)(

∑N
k=1 |aki|) = O(1).

It follows that c′NANV = Op(( N
hn

)
1
2 ), by Chebyshev’s inequality. �

Proof of Corollary 2.1: Note that Γ∗N (θ̂∗N ) = Γ∗N (θ)|(θ=θ̂∗N ,φ=φ̂∗N ,γ=γ̂N ,κ=κ̂N ). As θ̂∗N , γ̂N

and κ̂N are consistent estimators for θ0, γ and κ, plugging these estimators into Γ∗N (θ) will

not bring additional bias to the estimation of Γ∗N (θ0). However, due to incidental parameters

problem, the µ̂∗N component of φ̂∗N is not consistent for the estimation of µ0 when T is fixed.

The estimation bias caused by replacing φN by φ̂∗N can be derived as follow. Recall (2.4),

φ̂N (β, δ) = [D′N (ρ)DN (ρ)]−1D′N (ρ)BN (ρ)[AN (λ)Y −Xβ].

Thus, the unconstrained estimate of φ0 is just φ̂∗N = φ̂N (β̂∗N , δ̂
∗
N ). Note AN (λ̂∗N )Y −Xβ̂∗N =

ANY −Xβ0 −WY(λ̂∗N − λ0)−X(β̂∗N − β0). Applying the MVT on each row of Dφ̂∗N with

respect to the ρ̂∗N -element, we have,

Dφ̂∗N = D[D′N (ρ̂∗N )DN (ρ̂∗N )]−1D′N (ρ̂∗N )BN (ρ̂∗N )[AN (λ̂∗N )Y −Xβ̂∗N ] (D.2)

= B−1
N (ρ̂∗N )PD(ρ̂∗N )BN (ρ̂∗N )[AN (λ̂∗N )Y −Xβ̂∗N ]

= [B−1
N PDBN − RN (ρ̄)(ρ̂∗N − ρ0)][AN (λ̂∗N )Y −Xβ̂∗N ]

= Dφ0 + B−1
N PDV −B−1

N PDBN [WY(λ̂∗N − λ0) + X(β̂∗N − β0)]

− RN (ρ̄)[AN (λ̂∗N )Y −Xβ̂∗N ](ρ̂∗N − ρ0),

where ρ̄ lies between ρ̂∗N and ρ0 and changes over the rows of RN (ρ̄), and RN (ρ) is given

below (B.4). From its expression, Γ∗N (θ) is seen to have components that are either linear or

quadratic in Dφ. Let dN be a non-stochastic N -vector with elements being of uniform order

O(1) or O(h−1
n ). Using (D.2), the terms of Γ∗N (θ̂∗N ) linear in Dφ̂∗N can be represented as

1
N1
d′NDφ̂∗N = 1

N1
d′NDφ0 + 1

N1
d′NB−1

N PDV − 1
N1
d′NB−1

N PDBN [WY(λ̂∗N − λ0) + X(β̂∗N − β0)]

+ 1
N1
d′NRN (ρ̄)[AN (λ̂∗N )Y −Xβ̂∗N ](ρ̂∗N − ρ0) = 1

N1
d′NDφ0 + op(1),

where the last equation holds because of the consistency of θ̂∗N and Lemma A.6, using Y =
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A−1
N (η + B−1

N V). Hence, we can conclude that the terms of Γ∗N (θ0) linear in φ0 can be

consistently estimated by simply replacing φ0 with φ̂∗N .

The only term that is quadratic in φ0 is contained in Γ∗λλ(θ0), which is 1
N1σ2

v0
φ′0D′NP ′2P2DNφ0.

The plug-in estimator estimates this term by 1
N1σ̂∗2v,N

φ̂∗′ND′N (ρ̂∗N )P ′2(δ̂∗N )P2(δ̂∗N )DN (ρ̂∗N )φ̂∗N . Us-

ing (D.2), θ̂∗N−θ0 = op(1) and Lemma A.6, we show that this estimator is biased/inconsistent:

1
N1σ̂∗2v,N

φ̂∗′ND′N (ρ̂∗N )P ′2(δ̂∗N )P2(δ̂∗N )DN (ρ̂∗N )φ̂∗N

= 1
N1σ̂∗2v,N

φ′0D′N (ρ̂∗N )P ′2(δ̂∗N )P2(δ̂∗N )DN (ρ̂∗N )φ0

+ 1
N1σ̂∗2v,N

V′PDB−1′
N B′

N (ρ̂∗N )P ′2(δ̂∗N )P2(δ̂∗N )BN (ρ̂∗N )B−1
N PDV + op(1)

= 1
N1σ2

v0
φ′0D′NP ′2P2DNφ0 + 1

N1σ2
v0

V′PDP ′2P2PDV + op(1)

= 1
N1σ2

v0
φ′0D′NP ′2P2DNφ0 + 1

N1
tr[P ′2P2PD] + op(1).

We see that the bias term, 1
N1

tr[P ′2P2PD], involves only the common parameters that can be

consistently estimated. Thus, a bias correction can easily be made. Define

Bias∗λλ(δ) = 1
N1

tr[P ′2(δ)P2(δ)PD(ρ)]. (D.3)

This gives the bias matrix of Γ∗N (θ̂∗N ), which is a matrix of the same dimension as Γ∗N (θ̂∗N ),

and has the sole non-zero element Bias∗λλ(δ0) corresponding to the Γ∗λλ(θ̂∗N ) component. �

Proof of Corollary 2.2.

Proof of (i). Note: V = BN (ANY−η), Ṽ = QDV and V̂ = QD(ρ̂∗N )BN (ρ̂∗N )[AN (λ̂∗N )Y−

Xβ̂∗N ] with respective elements {vj}, {ṽj} and {v̂j}, and QD has elements {qjh}, j, h =

1, . . . , N , where j and h are the combined indices for i = 1, . . . , nt and t = 1, . . . , T .

Consistency of γ̂N . As σ̂∗v,N −σv0 = op(1) and ρ̂∗N − ρ0 = op(1), the denominators of γ̂N

and γ agree asymptotically. Thus, γ̂N is consistent if 1
N

∑N
j=1[v̂

3
j − E(ṽ3

j )]
p−→ 0, or

(a) 1
N

∑N
j=1[ṽ

3
j − E(ṽ3

j )]
p−→ 0, and (b) 1

N

∑N
j=1(v̂

3
j − ṽ3

j )
p−→ 0.

To prove (a), note that ṽj =
∑N

h=1 qjhvh. Thus, we have,

1
N

∑N
j=1[ṽ

3
j − E(ṽ3

j )] = 1
N

∑N
j=1

∑N
h=1 q

3
jh[v3

h − E(v3
h)] + 3

N

∑N
j=1

∑N
l=1

∑N
m6=l
m=1

q2jlqjmv
2
l vm

+ 6
N

∑N
j=1

∑N
m=1

∑N
l6=m
l=1

∑N
h6=m,l
h=1

qjmqjlqjhvmvlvh ≡ K1 +K2 +K3.

First, consider K1 term. By Lemma A.3, QD is uniformly bounded in both row and column

sums. This implies that the elements of QD are uniformly bounded. Therefore, there exists a
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constant q̄ such that |qjh| ≤ q̄ for all j and h. Given these, we have
∑N

j=1 q
3
jh ≤

∑N
j=1 |qjh|3 ≤

q̄2
∑N

j=1 |qjh| < ∞. Also note {vi} are iid by Assumption A. Thus, Khinchine’s weak law

of large number (WLLN) (Feller, 1968, pp. 243-244) implies that K1 converges to zero in

probability as sample size increases.

For the other two terms, we have by switching the order of summations when needed,

K2 = 3
N

∑N
j=1

∑N
l=1

∑N
m6=l
m=1

q2jlqjm(v2
l − σ2

v)vm + 3
N

∑N
j=1

∑N
l=1

∑N
m6=l
m=1

q2jlqjmσ
2
vvm,

= 3
N

∑N
m=1(v

2
m − σ2

v)(
∑N

j=1

∑m−1
l=1 q2jmqjlvl) + 3

N

∑N
m=1 vm[

∑N
j=1

∑m−1
l=1 q2jlqjm(v2

l − σ2
v)],

+ 3
N

∑N
m=1

∑N
j=1

∑N
l6=m
l=1

q2jlqjmσ
2
vvm,

K3 = 18
N

∑N
m=1 vm(

∑N
j=1

∑m−1
l=1

∑m−1
h6=l
h=1

qjmqjlqjhvlvh) ≡ 1
N

∑N
m=1 g4,m.

Therefore, we have K2 = 1
N

∑N
m=1(g1,m + g2,m + g3,m) and K3 = 1

N

∑N
m=1 g4,m, where

g1,m = 3(v2
m − σ2

v)
∑N

j=1

∑m−1
l=1 q2jmqjlvl,

g2,m = 3vm
∑N

j=1

∑m−1
l=1 q2jlqjm(v2

l − σ2
v),

g3,m = 3
∑N

j=1

∑N
l6=m
l=1

q2jlqjmσ
2
vvm,

g4,m = vm
∑N

j=1

∑m−1
l=1

∑m−1
h6=l
h=1

qjmqjlqjhvlvh.

Let {Gm} be the increasing sequence of σ-fields generated by (v1, · · · , vj , j = 1, · · · ,m),

m = 1, · · · , N . Then, E[(g1,m, g2,m, g3,m, g4,m)|Gm−1] = 0; hence, {(g1,m, g2,m, g3,m, g4,m)′,Gm}

form a vector martingale difference (M.D.) sequence. As QD is bounded in row and column

sum norms, by Assumption A, it is easy to see that E|gs,m|1+ε < ∞, for s = 1, 2, 3, 4 and

ε > 0. Hence, {g1,m}, {g2,m}, {g3,m} and {g4,m} are uniformly integrable, and the WLLN of

Davidson (1994, Theorem 19.7) applies to give K2
p−→ 0 and K3

p−→ 0.

To prove (b), using the notation Ṽ(ξ) = QD(ρ)BN (ρ)[AN (λ)Y − Xβ] in (2.5) where

ξ = (β′, δ′)′, we have Ṽ = Ṽ(ξ0) and V̂ = Ṽ(ξ̂∗N ). Let S(ξ) = ∂
∂ξ′ Ṽ(ξ), we have

S(ξ) = {−X(ρ), −Y(ρ), [Q̇D(ρ)BN (ρ)−QD(ρ)M][AN (λ)Y −Xβ]},

where expressions of Y(ρ) and Q̇D(ρ) are in (B.1) and (B.4), respectively. Let s′j(ξ) be the

jth row of S(ξ). We have by the MVT, for each j = 1, 2, . . . , N ,

v̂j ≡ ṽj(ξ̂∗N ) = ṽj(ξ0) + s′j(ξ̄)(ξ̂
∗
N − ξ0) = ṽj + ψ′j(ξ̂

∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖), (D.4)

where ξ̄ lies between ξ̂∗N and ξ0, and ψ′j = plimN→∞s
′
j(ξ̄), which is easily shown to be Op(1)

as follow. Consider the first k (the number of regressors) elements of ψ′j first. They are the

5



limits of the jth row of −X(ρ̄), which are just the jth row of −X because ρ̄
p−→ ρ0, implied

by ρ̂∗N − ρ0 = op(1). Hence, we conclude that the first k elements of ψ′j are O(1), for each

j = 1, 2, . . . , N . For the remaining two elements in each ψ′j , they are the limits of elements from

the last two columns of S(ξ̄). It is easy to see the limits of the last two columns of S(ξ̄) are just

−Y and [Q̇DBN−QDM][ANY−Xβ0]. Using Y = A−1
N η+C−1

N V, we have−Y = P2BNη+P2V

and [Q̇DBN−QDM][ANY−Xβ0] = [Q̇DBN−QDM]Dφ0+[Q̇DBN−QDM]B−1
N V. By Lemma

A.1, we have the elements of P2BNη and [Q̇DBN −QDM]Dφ0 are uniformly bounded, and P2

and [Q̇DBN −QDM]B−1
N are uniformly bounded in both row and column sum norms. Hence,

it is easy to see each element of −Y and [Q̇DBN −QDM][ANY−Xβ0] are Op(1), i.e., the last

two elements in ψ′j are also Op(1), for each j = 1, 2, . . . , N .

As ṽj = Op(1), ψ′j = Op(1) and ξ̂∗N−ξ0 = Op( 1√
N1

), we have by (D.4), v̂3
j = ṽ3

j +3ṽ2
jψ

′
j(ξ̂

∗
N−

ξ0) + op(‖ξ̂∗N − ξ0‖). It follows that

1
N

∑N
j=1(v̂

3
j − ṽ3

j ) = 3
N

∑N
j=1 ṽ

2
jψ

′
j(ξ̂

∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖)

= 3σ2
v

N

∑N
j=1(

∑N
k=1 q

2
jkψ

′
j)(ξ̂

∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖) = op(1),

as 1
N

∑N
j=1(

∑N
k=1 q

2
jkψ

′
j) = (

∑N
k=1 q

2
jk)

1
N (

∑N
j=1 ψ

′
j) = O(1).

Consistency of κ̂N . As σ̂∗v,N − σv0 = op(1) and ρ̂∗N − ρ0 = op(1), the result follows if
1
N

∑N
j=1[v̂

4
j − E(ṽ4

j )]
p−→ 0. This amounts to show that

(c) 1
N

∑N
j=1[ṽ

4
j − E(ṽ4

j )]
p−→ 0 and (d) 1

N

∑N
j=1(v̂

4
j − ṽ4

j )
p−→ 0.

To prove (c), we have

1
N

∑N
j=1 ṽ

4
j − 1

N

∑N
j=1 E(ṽ4

j )

= 1
N

∑N
j=1

∑N
h=1 q

4
jh[v4

h − E(v4
h)] + 3

N

∑N
j=1

∑N
l=1

∑N
m6=l
m=1

q2jlq
2
jm(v2

l v
2
m − σ4

v)

+ 4
N

∑N
j=1

∑N
l=1

∑N
m6=l
m=1

q3jlqjmv
3
l vm + 6

N

∑N
j=1

∑N
l=1

∑N
m6=l
m=1

∑N
h6=m,l
m=1

q2jlqjmqjhv
2
l vmvh

+ 1
N

∑N
j=1

∑N
l=1

∑N
m6=l
m=1

∑N
h6=m,l
m=1

∑N
p 6=m,l,h

m=1

qjlqjmqjhqjpvlvmvhvp ≡
∑5

r=1Rr.

By using WLLN of Davidson (1994, Theorem 19.7) for M.D. arrays as in the proof of (a),

we have Rr = op(1) for r = 1, 3, 4, 5. For R2, noting that v2
l v

2
m − σ4

v = (v2
l − σ2

v)(v
2
m − σ2

v) +

σ2
v(v

2
m − σ2

v) + σ2
v(v

2
l − σ2

v), we have

R2 = 6
N

∑N
l=1(v

2
l − σ2

v)[
∑N

j=1

∑l−1
m=1 q

2
jlq

2
jm(v2

m − σ2
v)]

+ 6
N

∑N
l=1[

∑N
j=1

∑N
m6=l
m=1

q2jlq
2
jmσ

2
v(v

2
l − σ2

v)] ≡ 6
N

∑N
l=1(fl + f2,l).
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Since E[fl|Gl−1] = 0 and {f2,l} are independent, it is easy to see they both form an M.D.

sequence. In addition, it is easily seen that E|fs,l|1+ε <∞, for s = 1, 2 and ε > 0, so that {fl}

and {f2,l} are uniformly integrable. Therefore, the WLLN of Davidson (1994, Theorem 19.7)

also implies that 6
N

∑N
l=1 fl = op(1) and 6

N

∑N
l=1 f2,l = op(1).

To prove (d), we have by (D.4) v̂4
j = ṽ4

j +4ṽ3
jψ

′
j(ξ̂

∗
N − ξ0)+ op(‖ξ̂∗N − ξ0‖). It follows that

1
N

∑N
j=1(v̂

4
j − ṽ4

j ) = 4
N

∑N
j=1 ṽ

3
jψ

′
j(ξ̂

∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖)

= 4σ3
vγ

N

∑N
j=1(

∑N
k=1 q

3
jkψ

′
j)(ξ̂

∗
N − ξ0) + op(‖ξ̂∗N − ξ0‖) = op(1).

Proof of (ii). The consistency of Σ̂∗N to Σ∗N (θ0) can be shown similarly as what we do

in the proof of Theorem 2.2 for results (b) and (c). For Γ̂∗N − Γ∗N (θ0)
p−→ 0, we only need to

show that Bias∗(δ̂∗N )− Bias∗(δ0) = op(1), based on Corollary 2.1. That is to show

1
N1
{tr[P ′2(δ̂∗N )P2(δ̂∗N )PD(ρ̂∗N )]− tr(P ′2P2PD)} = op(1),

which can be easily proved by using the MVT as we do for 1
N1

[H∗NS
λλ (δ̄) − H∗NS

λλ (δ0)] in the

proof of Theorem 2.2 (b). �

Proof of Theorem 3.2. Applying the MVT on each row of S�N (ξ̂�N ), we have,

0 = 1√
N1
S�N (ξ̂�N ) = 1√

N1
S�N (ξ0) +

[
1

N1

∂
∂ξ′S

�
N (ξ)

∣∣∣
ξ=ξ̄r in rth row

]√
N1(ξ̂�N − ξ0),

where {ξ̄r} are on the line segment between ξ̂�N and ξ0. The result of the theorem follows if

(a) 1√
N1
S�N (ξ0)

D−→ N [0, limN→∞Γ�N (ξ0)],

(b) 1
N1

[
∂

∂ξ′S
�
N (ξ)

∣∣
ξ=ξ̄r in rth row

− ∂
∂ξ′S

�
N (ξ0)

]
= op(1), and

(c) 1
N1

[
∂

∂ξ′S
�
N (ξ0)− E( ∂

∂ξ′S
�
N (ξ0))

]
= op(1).

Proof of (a). From (3.6), we see that the elements of S�N (ξ0) are linear-quadratic forms

in V. Thus, for every non-zero (k + 2)× 1 vector of constants a, a′S�N (ξ0) has form:

a′S�N (ξ0) = b′NV + V′ΦNV − σ2
vtr(ΦN ),

for suitably defined non-stochastic vector bN and matrix ΦN . Again, by Assumptions A-F

it is easy to verify that bN and matrix ΦN satisfy the conditions of the CLT for LQ form of

Kelejian and Prucha (2001), and hence the asymptotic normality of 1√
N1
a′S�N (ξ0) follows. By

Cramér-Wold device, 1√
N1
S�N (ξ0)

D−→ N [0, limN→∞ Γ�N (θ0)], where Γ�N (θ0) is given in (3.7).

Proof of (b). The Hessian matrix H�
N (ξ) = ∂

∂ξ′S
�
N (ξ) is given in (C.1). As F̄′Nλ(δ0),
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F̄′Nρ(δ0) and ḠNρ(ρ0) are diagonal matrices with uniformly bounded elements, it is easy to

see that 1
N1
H�

N (ξ0) = Op(1) by Lemma A.6, and hence, 1
N1
H�

N (ξ̄) = Op(1). Here again for

ease of exposition we simply use H�
N (ξ̄) to denote ∂

∂ξ′S
�
N (ξ)

∣∣
ξ=ξ̄r in rth row

. As H�
N (ξ̄) is linear

or quadratic in β̄ and nonlinear in δ̄, we have by applying the MVT on the δ̄-components:

1
N1
H�

N (ξ̄)− 1
N1
H�

N (ξ0) = 1
N1

∂
∂δ′H

�
N (β̄, δ̇)(δ̄ − δ0) + 1

N1
[H�

N (β̄, δ0)−H�
N (θ0)].

Similar to the proof of Theorem 2.2 (b), we show that 1
N1

∂
∂δ′H

�
N (β̄, δ̇) = Op(1). The second

term is seen to contain elements either linear or quadratic in β̄ − β0 with the matrices in the

linear or quadratic terms being Op(1). Hence, the desired result follows as ξ̄ − ξ0 = op(1).

Proof of (c). Since Y = A−1
N (η + B−1

N V), all components of H�
N (ξ0) are linear or

quadratic in V. Thus, under the assumptions of the theorem the result (c) is proved using

Lemma A.6. We provide details of the proof using the most complicate term, H�
ρρ(ξ0). Let

ΞN = −G′
N ḠN + ḠNρ + ḠNGN . By Lemma A.1, it is easy to see that ΞN is uniformly

bounded in both row and column sums in absolute value. Hence, we have

1
N1

[H�
ρ0ρ0

(ξ0)− E(H�
ρ0ρ0

(ξ0))]

= 1
N1

[V′QDR1NQDV − E(V′QDR1NQDV)]− 1
N1

(ANY −Xβ0)′B′
NΞNQDV

+ 1
N1

E[(ANY −Xβ0)′B′
NΞNQDV]

= 1
N1

[V′QDR1NQDV − E(V′QDR1NQDV)]− 1
N1

[φ′0D′NΞNQDV − E(φ′0D′NΞNQDV)]

− 1
N1

[V′ΞNQDV − E(V′ΞNQDV)] = op(1).

The proofs for the other terms are done in a similar manner, and the details are omitted. �

Proof of Corollary 3.1: Just like the homoskedasiticiy case, plugging φ̂�N in Γ�N (ξ)

induces a bias for terms quadratic in φ, and a bias correction is necessary. From (3.7), we

see that the terms of Γ�N (ξ) that are quadratic in φ are the (λ, ρ) terms and are of the form:

φ′D′N (ρ)L′a(δ)HLb(δ)DN (ρ)φ, a, b = λ, ρ, recalling η = Xβ0 + Dφ0 and D(ρ)BN (ρ)D.

By applying the MVT on ρ̂�N -variable in the key quantity Dφ̂�N , we have after some algebra,

Dφ̂�N = Dφ0 + B−1
N PDV −B−1

N PDBN [WY(λ̂�N − λ0) + X(β̂�N − β0)]

− RN (ρ̇)[AN (λ̂�N )Y −Xβ̂�N ](ρ̂�N − ρ0),

where ρ̇ lies between ρ̂�N and ρ0. Plugging Dφ̂�N and other parameter estimates in these

quadratic terms, we have,
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1
N1
φ̂�′ND′N (ρ̂�N )L′a(δ̂�N )HLb(δ̂�N )DN (ρ̂�N )φ̂�N

= 1
N1
φ′0D′N (ρ̂�N )L′a(δ̂�N )HLb(δ̂�N )DN (ρ̂�N )φ0

+ 1
N1

V′PDB−1′
N B′

N (ρ̂�N )L′a(δ̂�N )HLb(δ̂�N )BN (ρ̂�N )B−1
N PDV + op(1)

= 1
N1
φ′0D′NL′aHLbDNφ0 + 1

N1
tr

[
HPDL′aHLbPD

]
+ op(1),

Define

Bias�ab(δ,H) = 1
N1

tr
[
HPD(ρ)L′a(δ)HLb(δ)PD(ρ)

]
,

for a, b = λ, ρ. Hence, the bias matrix for Γ�N (ξ̂�N ) can be written as

Bias�φ(δ0,H) =


0 0 0

0 Bias�λλ(δ0,H) Bias�λρ(δ0,H)

0 Bias�ρλ(δ0,H) Bias�ρρ(δ0,H)

 ,
leading to the result of Corollary 3.1. �

Proof of Lemma 3.1: Using Ṽ(ξ) = QD(ρ)BN (ρ)[AN (λ)Y − Xβ] defined in (2.5),

let Ṽ = Ṽ(ξ0) and V̂ = Ṽ(ξ̂�N ) and denote their elements by {ṽj} and {v̂j}, respectively.

Following (D.4), we have v̂j ≡ ṽj(ξ̂�N ) = ṽj +ψ′j(ξ̂
�
N − ξ0) + op(‖ξ̂�N − ξ0‖), and in vector form,

V̂ = Ṽ + ΨN (ξ̂�N − ξ0) + op(‖ξ̂�N − ξ0‖),

where ΨN = (ψ1, ψ2, . . . , ψN )′, with ψj being defined below (D.4).

Define Π̇N (ρ) = ∂
∂ρΠN (ρ) = −2ΠN (ρ)[Q̇D(ρ) � QD(ρ)]ΠN (ρ). It is easy to see that

‖Π̇N (ρ)‖1 and ‖Π̇N (ρ)‖∞ are bounded in a neighborhood of ρ0. Let Πjh and Π̇jh be the

respective elements of ΠN and Π̇N . Hence, we have by the MVT, for each j, h = 1, 2, . . . , N ,

Πjh(ρ̂�N ) = Πjh +Π̇jh(ρ̄)(ρ̂�N −ρ0) = Πjh +Π̇jh(ρ̂�N −ρ0)+op(‖ρ̂�N −ρ0‖), where ρ̄ lies between

ρ̂�N and ρ0. In matrix form, we have

ΠN (ρ̂�N ) = ΠN + Π̇N (ρ̂�N − ρ0) + op(‖ρ̂�N − ρ0‖).

Define ĥ = (σ̂2
1, σ̂

2
2, . . . , σ̂

2
N )′ = ΠN (ρ̂�N )(V̂ � V̂) and h̃ = ΠN (Ṽ � Ṽ). As the elements of Ṽ

are Op(1), rows of ΨN are Op(1), elements of ΠN and Π̇N are O(1), and ξ̂∗N − ξ0 = Op( 1√
N1

),

we have,

ĥ = h̃+ 2ΠN (Ṽ �ΨN (ξ̂�N − ξ0)) + Π̇N (Ṽ � Ṽ)(ρ̂�N − ρ0) + op(‖ξ̂�N − ξ0‖). (D.5)
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Proof of (i). Let cN = (c11, · · · , cNN )′ and h = (σ2
1, σ

2
2, . . . , σ

2
N )′. We have,

1
N [tr(ĤCN )− tr(HCN )] = 1

N c
′
N (ĥ− h) = 1

N c
′
N (ĥ− h̃) + 1

N c
′
N (h̃− h).

The result follows if both terms above are op(1). For the first term, we have, using (D.5),

1
N c̄

′
N (ĥ− h̃) = 2

N c̄
′
NΠN (Ṽ �ΨN (ξ̂�N − ξ0)) + 1

N c̄
′
N Π̇N (Ṽ � Ṽ)(ρ̂�N − ρ0) + op(‖ξ̂�N − ξ0‖)

= 2
N

∑N
j=1 cjj(

∑N
h=1 Πjhṽhψ

′
h)(ξ̂�N − ξ0) + 1

N

∑N
j=1 cjj(

∑N
h=1 Π̇jh

∑N
k=1 q

2
hkσ

2
k)(ρ̂

�
N − ρ0)

+ op(‖ξ̂�N − ξ0‖) = op(1).

For the second term, we have after some algebra,

h̃ = ΠN [(QD �QD)(V �V) + ζ] = V �V + ΠNε, (D.6)

where ε is an N×1 vector with j-th element εj =
∑N

k=1 vkζjk, where ζjk = 2qjk
∑k−1

l=1 qjlvl, k ≥

2, and ζj1 = 0. As ζjk is (v1, . . . vk−1)-measurable, {vkζjk} form an M.D. sequence. Thus,

each εj is a sum of M.D.s. Hence, we have

1
N c̄

′
N (h̃− h) = 1

N c̄
′
N (V �V − h) + 1

N c̄
′
NΠNζ = op(1),

where 1
N c̄

′
N (V � V − h) = op(1) by Lemma A.6(v) and 1

N c̄
′
NΠNζ = op(1) by WLLN of

Davidson (1994, Theorem 19.7) for M.D. arrays.

Proof of (ii). Note that tr(HANHBN ) = h′(AN �BN )h. We have,

1
N tr(ĤANĤBN )− 1

N tr(HANHBN ) = 1
N ĥ

′(AN �BN )ĥ− 1
N h

′(AN �BN )h

= 1
N (ĥ′(AN �BN )ĥ− h̃′(AN �BN )h̃) + 1

N (h̃′(AN �BN )h̃− h′(AN �BN )h). (D.7)

The first term of (D.7) can be written as

1
N (ĥ′(AN �BN )ĥ− h̃′(AN �BN )h̃) = T1 + T2 + T3,

where T1 = 1
N (ĥ− h̃)′(AN�BN )(ĥ− h̃), T2 = 1

N (ĥ− h̃)′(AN�BN )h̃, and T3 = 1
N (ĥ− h̃)′(AN�

BN )′h̃. Note that AN and BN are uniformly bounded in both row and column sum norms,

AN �BN is also uniformly bounded in both row and column sum norms. Hence, using (D.5),

Ṽ = Op(1), ΨN = Op(1) and ξ̂∗N − ξ0 = Op( 1√
N1

), we can easily show that Tr = op(1), for

r = 1, 2, 3, as we show 1
N c̄

′
N (ĥ − h̃) = op(1) in the proof of (i). Thus, the first term in (D.7)

is op(1).
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For the second term in (D.7), we have similarly to the first term,

1
N (h̃′(AN �BN )h̃− h′(AN �BN )h) = T4 + T5 + T6,

where T4 = 1
N (h̃−h)′(AN�BN )(h̃−h), T5 = 1

N (h̃−h)′(AN�BN )h and T6 = 1
N (h̃−h)′(AN�

BN )′h. For the T5 term, we have by (D.6),

T5 = 1
N (V �V − h)′(AN �BN )h+ 1

N ε
′ΠN (AN �BN )h = op(1),

by Lemma A.6(v) and WLLN for M.D. arrays of Davidson (1994, Theorem 19.7). The T6

term is similar to T5 and the result follows, i.e., T6 = op(1).

Thus, it is left to study the limit of T4. Again, by (D.6) we have,

T4 = 1
N (V �V − h)′(AN �BN )ΠNε+ 1

N (V �V − h)′(AN �BN )′ΠNε (D.8)

+ 1
N (V �V − h)′(AN �BN )(V �V − h) + 1

N ε
′ΠN (AN �BN )ΠNε

≡ T4a + T4b + T4c + T4d.

Consider first the term T4a. Denote Ω = (AN �BN )ΠN with elements {ωjk}. We have,

T4a = 1
N

∑N
j=1

∑N
k=1 ωjkεj(v2

k − σ2
k)

= 1
N

∑N
j=1

∑N
k=1

∑N
l=1

∑N
m6=l
m=1

ωjkqjlqjm(v2
k − σ2

k)vlvm

= 1
N

∑N
k=1((v

2
k − σ2

k)
∑N

j=1

∑k−1
l=1

∑k−1
m6=l
m=1

ωjkqjlqjmvlvm)

+ 2
N

∑N
l=1(vl

∑N
j=1

∑l−1
k=1

∑l−1
m6=k
m=1

ωjkqjlqjmvm(v2
k − σ2

k))

+ 2
N

∑N
k=1((v

3
k − Ev3

k)
∑N

j=1

∑k−1
m=1 ωjkqjkqjmvm)

+ 2
N

∑N
m=1(vm

∑N
j=1

∑m−1
k=1 ωjkqjkqjm(v3

k − Ev3
k))

+ 2
N

∑N
m=1(vm

∑N
j=1

∑N
k 6=m
k=1

ωjkqjkqjm(Ev3
k − σ2

k)),

which is seen to be the average of M.D. sequence and thus is op(1) by Theorem 19.7 of Davidson

(1994). Similarly, we show that T4b = 1
N (V �V − h)′(AN �BN )′ΠNε = op(1).

For the term T4c, as E(V�V) = h, we have E(T4c) = 1
N tr((AN �BN )Var(V�V)) = 0.

Thus, Lemma A.6(iv) implies that T4c = 1
N (V �V − h)′(AN �BN )(V �V − h)

p−→ 0.

Now, for the last term of (D.8), T4d = 1
N ε

′ΠN (AN � BN )ΠNε, we have by taking the

advantage that each element of ε is a sum of an M.D. sequence,

E(εε′) = 2(QDHQD)� (QDHQD)− 2(QD �QD)HH(QD �QD). (D.9)
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This gives,

E(ε′ΠN (AN �BN )ΠNε) = 2tr((AN �BN )ΠNΛ(H)ΠN )− 2tr((AN �BN )H2), (D.10)

= 2tr((AN �BN )ΠNΛ(H)ΠN ),

where Λ(H) = (QDHQD) � (QDHQD), and the last equation takes use of the fact that the

diagonal elements of AN and BN are zero.

Finally, to show that T4d−E(T4d) = op(1), denote χN = ΠN (AN �BN )ΠN with elements

{χjk}. It is easy to show that {χjk} are uniformly bounded, and let |χlm| ≤ χ̄ <∞. We have,

Var(ε′ΠN (AN �BN )ΠNε)

= 8
∑N

j=1

∑N
k=1

∑N
l=1

∑N
m=1

∑N
h=1

∑N
p 6=h
p=1

∑N
s=1

∑N
r 6=s
r=1

χjkχlmqjhqjpqlhqlpqksqkrqmsqmrE(v2
hv

2
pv

2
sv

2
r )

≤ 8q̄2χ̄c
∑N

m=1(
∑N

j=1 |χjk|)(
∑N

k=1 |qkr|)(
∑N

l=1 |qlp|)(
∑N

h=1 |qlh|)

(
∑N

p=1 |qjp|)(
∑N

s=1 |qms|)(
∑N

r=1 |qmr|)

= O(N),

where the inequality holds because E(v2
hv

2
pv

2
sv

2
r ) equals either E(v2

hv
2
s)E(v2

pv
2
r ) or E(v2

hv
2
r )E(v2

pv
2
s)

since h 6= p and s 6= r, and either of them is less than a constant c < ∞, e.g., E(v2
hv

2
r ) ≤

E
1
2 (v4

h)E
1
2 (v4

r ) ≤ c. Therefore, by Chebyshev’s inequality,

P ( 1
N |ε

′ΠN (AN �BN )ΠNε− E(ε′ΠN (AN �BN )ΠNε)| ≥M)

≤ 1
M2

1
N2 Var(ε′ΠN (AN �BN )ΠNε) = o(1).

It follows that 1
N ε

′ΠN (AN �BN )ΠNε− 1
N E(ε′ΠN (AN �BN )ΠNε)

p−→ 0. Therefore, we have

shown that T4 = 2
N tr((AN �BN )ΠNΛ(H)ΠN ) + op(1). It follows that

1
N tr(ĤANĤB◦N )− 1

N tr(HANHB◦N ) =
∑6

r=1 Tr

= 2
N tr((AN �BN )ΠNΛ(H)ΠN ) + op(1),

completing the proof of Lemma 3.1. �

Proof of Corollary 3.2: The consistency of Σ̂�N to Σ�N (ξ0) is implied by results (b) and

(c) in the proof of Theorem 3.2. To show Γ̂�N − Γ�N (ξ0)
p−→ 0, we argue as follows:

(a) The transition from Γ�N (ξ0, φ0,H) to Γ�N (ξ̂�N , φ0,H) does not incur cost asymptotically;

(b) The cost of transition from Γ�N (ξ̂�N , φ0,H) to Γ�N (ξ̂�N , φ̂
�
N ,H) is captured by Bias�φ(δ̂�N ,H);
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(c) The effect of replacing H in 1
N1

tr(HLaHL◦b), a, b = λ, ρ, is captured by 2
N1

tr((La �

L◦b)ΠNΛ(H)ΠN ), a, b = λ, ρ;

(d) It is left to show that the cost of transition from Bias�φ(δ̂�N ,H) to Bias�φ(δ̂�N , Ĥ) is

captured by − 2
N1

tr((PDL′a � LbPD)ΠNΛ(H)ΠN ), a, b = λ, ρ.

The non-zero entries in Bias�φ(δ0,H) are of the form 1
N1

tr(HPDL′aHLbPD), for a, b = λ, ρ,

as given in Corollary 3.1. Applying result (D.10) with AN = PDL′a and BN = LbPD, we have,

1
N1

tr
[
PD(ρ̂�N )L′a(δ̂�N )ĤLb(δ̂�N )PD(ρ̂�N )Ĥ− PDL′aHLbPDH

]
= 1

N1
tr

[
PDL′aĤLbPDĤ− PDL′aHLbPDH

]
+ op(1) (by the MVT)

= 2
N1

tr((PDL′a � LbPD)ΠNΛ(H)ΠN ) + 1
N tr((PDL′a � LbPD)H2) + op(1),

= 2
N1

tr((PDL′a � LbPD)ΠNΛ(H)ΠN ) + op(1),

for a, b = λ, ρ. Although the diagonal elements of PDL′a � LbPD may not be zero uniformly,

their magnitudes are typically small so that the second term of the second last equation is

negligible.11 Then, it follows that Σ̂�−1
N Γ̂�N Σ̂�−1

N − Σ�−1
N (ξ0)Γ�N (ξ0)Σ�−1

N (ξ0)
p−→ 0. �

Extensions of Unbalanced SPD Models and AQS Method

As discussed in the introduction and conclusion sections, the unbalanced SPD (USPD)

models and the associated AQS methods are quite general in that they can be extended to

allow for additional features in the model or to different types of unbalanced SPD models.

For illustration, we extend the current model to allow errors to be serially correlated, and

consider models with random effects (RE). We present some details on the following four

extensions: (i) USPD model with two-way FE and serial correlation, (ii) USPD model with

two-way FE, heteroskedasticity and serial correlation, (iii) USPD model with two-way RE

and serial correlation, and (iv) USPD model with two-way RE, heteroskedasticity and serial

correlation. For serial correlation, we assume that the model errors follow a stationary AR(1),

i.e., vit = %vi,t−1 +eit with |%| < 1. Cases (i), (ii) and (iv) all encounter incidental parameters

problem, the standard methods for balanced panels cannot be applied, and the proposed AQS

method needs to be called for. Case (iii) illustrates the simplicity of the proposed modeling

strategy in controlling the random effects in the unbalanced SPD models with general time-
11The detail is tedeous and thus are omitted. Under balanced panel data model considered in footnote 7, we

can easily show diag(LaPD) = O( 1
n
) for a = λ, ρ.
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varying spatial weight matrices and serial correlation.

(i) USPD Model with Two-Way FE and Serial Correlation

Assume vit = %vi,t−1+eit with |%| < 1, and eit ∼ iid(0, σ2
e). Denote K = blkdiag(D1, . . . , DT ).

It is easy to see that Var(V) = σ2
eK(ΩV (%)⊗ In)K′ ≡ σ2

eΥN (%), where

ΩV (%) =
1

1− %2


1 % · · · %T−1

% 1 · · · %T−2

...
...

. . .
...

%T−1 %T−2 1

 .

Denote UN (ρ, %) = Υ−1
N (%)−Υ−1

N (%)D(ρ)[D′(ρ)Υ−1
N (%)D(ρ)]−1D′(ρ)Υ−1

N (%). Let θ = (β′, σ2
e , δ)

′,

where δ = (λ, ρ, %)′. The concentrated quasi Gaussian loglikelihood function (with φ being

concentrated) of θ takes the form:

`cN (θ) = −N
2 ln 2π − N

2 lnσ2
e − 1

2 ln |ΥN (%)|+ ln |AN (λ)|+ ln |BN (ρ)| − 1
2σ2

e
Ṽ′(β, δ)Ṽ(β, δ),

where Ṽ(β, δ) = UN (ρ, %)BN (ρ)[AN (λ)Y−Xβ]. Hence, the concentrated quasi score (CQS)

functions Sc
N (θ) = ∂

∂θ `
c
N (θ) is given as

Sc
N (θ) =



1
σ2

e
X′B′

N (ρ)U′N (ρ, %)Ṽ(β, δ),

1
2σ4

e
[Ṽ′(β, δ)Ṽ(β, δ)−Nσ2

e ],

1
σ2

e
Y′W′B′

N (ρ)U′N (ρ, %)Ṽ(β, δ)− tr[FN (λ)],

1
σ2

e
Ṽ(β, δ)′GN (ρ)ΥN (%)Ṽ(β, δ)− tr[GN (ρ)],

1
2σ2

e
Ṽ(β, δ)′Υ̇N (%)Ṽ(β, δ)− 1

2tr[Υ
−1
N (%)Υ̇N (%)],

where Υ̇N (%) = ∂
∂%ΥN (%). To remove the effect from estimating FEs, we correct Sc

N (θ) using

S∗N (θ0) = Sc
N (θ0)− E[Sc

N (θ0)], which takes the form at the general θ:

S∗N (θ) =



1
σ2

e
X′B′

N (ρ)U′N (ρ, %)Ṽ(β, δ),

1
2σ4

e
[Ṽ′(β, δ)Ṽ(β, δ)− σ2

etr(UN (ρ, %))],

1
σ2

e
Y′W′B′

N (ρ)U′N (ρ, %)Ṽ(β, δ)− tr[BN (ρ)FN (λ)B−1
N (ρ)ΥN (%)U2

N (ρ, %)],

1
σ2

e
Ṽ(β, δ)′GN (ρ)ΥN (%)Ṽ(β, δ)− tr[GN (ρ)ΥN (%)UN (ρ, %)],

1
2σ2

e
Ṽ(β, δ)′Υ̇N (%)Ṽ(β, δ)− 1

2tr[Υ̇N (%)UN (ρ, %)].

Solving the AQS equations: S∗N (θ) = 0, gives the AQS estimator of θ.
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(ii) USPD Model with Two-Way FE, Heteroskedasticity and Serial Correlation

Now, we consider the case that errors are heteroskedastic across individuals and serially

correlated across time, i.e., vit = %vi,t−1 + eit with |%| < 1 and eit ∼ inid(0, σ2
i ). Let h =

diag(σ2
1, . . . , σ

2
n). In this case, we have Var(V) = HΥN (%), where H = blkdiag(h1, . . . , hT )

and ht is obtained from h by omitting the rows and columns corresponding to the missing

units at time t. Following the similar derivations as we do in Section 3.1, we obtain the desired

AQS functions robust against the unknown heteroskedasticity:

S�N (β, δ) =



X′B′
N (ρ)U′N (ρ, %)Ṽ(β, δ),

Y′A′
N (λ)B′

N (ρ)[F̄′N (λ, ρ)− F̄′N (δ)]Ṽ(β, δ),

[AN (λ)Y −Xβ]′B′
N (ρ)[ḠN (ρ, %)− ḠN (ρ, %)]Ṽ(β, δ),

[AN (λ)Y −Xβ]′B′
N (ρ)[ŪN (ρ, %)− ŪN (ρ, %)]Ṽ(β, δ),

where F̄′
N (λ, ρ) = B−1′

N (ρ)F′
N (λ)B′

N (ρ), F̄′
N (δ) = Υ−1

N (%)diag[ΥN (%)F̄′
N (δ)UN (ρ, %)]diag[UN (ρ, %)]−1,

ḠN (ρ, %) = UN (ρ, %)GN (ρ)ΥN (%), ḠN (ρ, %) = Υ−1
N (%)diag[ΥN (%)ḠN (ρ, %)UN (ρ, %)]diag[UN (ρ, %)]−1,

ŪN (ρ, %) = UN (ρ, %)Υ̇N (%), and ŪN (ρ, %) = Υ−1
N (%)diag[ΥN (%)ŪN (ρ, %)UN (ρ, %)]diag[UN (ρ, %)]−1.

Solving the robust AQS equations: S�N (β, δ) = 0, gives the AQS estimators of β and δ,

robust against unknown heteroskedasticity, and allowing serial correlation of AR(1) form.

(iii) USPD Model with Two-Way RE and Serial Correlation

Assume µi ∼ iid(0, σ2
µ), αt ∼ iid(0, σ2

α), and they are mutually independent and indepen-

dent of eit. Then the covariance matrix of the composite error term is

0N (θ1) = σ2
µDµ(ρ) + σ2

αDα(ρ) + σ2
eΥN (%),

with θ1 = (ρ, %, σ2
e , σ

2
µ, σ

2
α)′, Dµ(ρ) = BN (ρ)DµD′

µB
′
N (ρ) and Dα(ρ) = BN (ρ)DαD′

αB′
N (ρ).

Thus, the quasi Gaussian loglikelihood function of θ = (β′, λ, θ′1)
′ is

`N (θ) = −N
2 ln 2π − 1

2 ln |0N (θ1)|+ ln |AN (λ)|+ ln |BN (ρ)| − 1
2V

′(β, λ, ρ)0−1
N (θ1)V(β, λ, ρ),

where V(β, λ, ρ) = BN (ρ)[AN (λ)Y−Xβ]. The direct QML estimator θ̂QML of θ maximizes the

above equation `N (θ), and its consistency and asymptotic normality can be easily established.

(iv) USPD Model with Two-Way RE, Heteroskedasticity and Serial Correlation

We now extend the model in (iii) to allow heteroskedasticity in the errors as in (ii) above.
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Denote Ṽ(θ) = 0−1
N (θ1)V(β, λ, ρ). The quasi score functions assuming homoskedasticity are:

SN (θ) =



X′B′
N (ρ)Ṽ(θ),

Y′W′B′
N (ρ)Ṽ(θ)− tr[FN (λ)],

σ2
eṼ

′(θ)GN (ρ)ΥN (%)Ṽ(θ)− σ2
etr[GN (ρ)ΥN (%)0−1

N (θ1)],

σ2
e

2 Ṽ′(θ)Υ̇N (%)Ṽ(θ)− σ2
e

2 tr[Υ̇N (%)0−1
N (θ1)],

1
2Ṽ

′(θ)ΥN (%)Ṽ(θ)− 1
2tr[ΥN (%)0−1

N (θ1)],

1
2Ṽ

′(θ)Dµ(ρ)Ṽ(θ)− 1
2tr[Dµ(ρ)0−1

N (θ1)],

1
2Ṽ

′(θ)Dα(ρ)Ṽ(θ)− 1
2tr[Dα(ρ)0−1

N (θ1)].

It is easy to see that E[Sc
N (θ0)] 6= 0 when e′its are heteroskedastic. Therefore, some adjustments

on the above quasi score functions are necessary in order to have consistent estimation. Denote

θ2 = (ρ, %, σ2
µ, σ

2
α)′, ξ = (β′, λ, θ′2)

′, 0N (θ2) = σ2
µDµ(ρ) + σ2

αDα(ρ) + ΥN (%) and Ṽ(ξ) =

0−1
N (θ2)V(β, λ, ρ). Alone the similar ideas of Section, some tedious algebra leads to the AQS

functions robust against the unknown heteroskedasticity and allowing serial correlation of

AR(1) form:

S�N (ξ) =



X′B′
N (ρ)Ṽ(ξ),

Y′A′
N (λ)B′

N (ρ)[F̄′
N (λ, ρ)− F̄′

N (λ, θ2)]Ṽ(ξ)− tr[F̄N (λ, ρ)− F̄N (λ, θ2)],

V′(β, λ, ρ)[ḠN (θ2)− ḠN (θ2)]Ṽ(ξ)− tr[ḠN (θ2)− ḠN (θ2)],

V′(β, λ, ρ)[ŪN (θ2)− ŪN (θ2)]Ṽ(ξ)− tr[ŪN (θ2)− ŪN (θ2)],

V′(β, λ, ρ)[S̄µ(θ2)− S̄µ(θ2)]Ṽ(ξ)− tr[S̄µ(θ2)− S̄µ(θ2)],

V′(β, λ, ρ)[S̄α(θ2)− S̄α(θ2)]Ṽ(ξ)− tr[S̄α(θ2)− S̄α(θ2)],

where F̄′
N (λ, ρ) = B−1′

N (ρ)F′
N (λ)B′

N (ρ), F̄′
N (λ, θ2) = Υ−1

N (%)diag[ΥN (%)F̄′
N (δ)0−1

N (θ2)]diag[0−1
N (θ2)]−1,

ḠN (θ2) = 0−1
N (θ2)GN (ρ)ΥN (%), ḠN (θ2) = Υ−1

N (%)diag[ΥN (%)ḠN (θ2)0−1
N (θ2)]diag[0−1

N (θ2)]−1,

ŪN (θ2) = 0−1
N (θ2)Υ̇N (%), ŪN (θ2) = Υ−1

N (%)diag[ΥN (%)ŪN (θ2)0−1
N (θ2)]diag[0−1

N (θ2)]−1,

S̄$(θ2) = 0−1
N (θ2)D$(ρ), and S̄$(θ2) = Υ−1

N (%)diag[ΥN (%)S̄$(θ2)0−1
N (θ2)]diag[0−1

N (θ2)]−1,

for $ = µ or α.

Solving the robust AQS equations: S�N (ξ) = 0, gives the AQS estimator of ξ, robust

against unknown heteroskedasticity, and allowing serial correlation of AR(1) form.

Asymptotic properties of the AQS estimators in cases (i) and (ii) can be studied in a similar

way as that in the main text of the paper, and inferences methods can be developed along

the same line. However, formal studies on these cases are still quite involved, and can only be

done in a future research work. For the cases (iii) and (iv), we do not foresee any difficulties
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in establishing the asymptotic properties of the QML and AQS estimators, but developments

of the inference methods may encounter some difficulties due to the involvement of three error

components which may be all non-normal, and the allowance of unknown heteroskedasticity.

Formal studies on these cases are in our future research agenda.
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