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Abstract

We propose an M-estimation method for estimating the spatial dynamic panel data

models with interactive fixed effects based on short panels. Unbiased estimating function

(EF) is obtained by adjusting the concentrated conditional quasi score, given initial values

and with factor loadings being concentrated out, to account for the effects of conditioning

and concentration. For inference, the EF is decomposed into a sum of n nearly uncor-

related terms. Average of outer products of these n terms together with a covariance

adjustment gives a consistent estimator of the variance-covariance (VC) matrix of the EF

and hence the VC matrix of the M-estimator. Consistency and asymptotic normality of

the proposed estimator are established, and consistency of the VC matrix estimator is

proved. Monte Carlo results show the proposed methods perform very well in finite sam-

ple. Compared with the existing methods, our methods are much simpler, more efficient

in point estimation and more reliable in inference when T is small.
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Initial-condition; Martingale difference; Spatial effects; Short panels.
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1. Introduction

Spatial dynamic panel data (SDPD) model has triggered a fast growing literature due to

its important features of being able to (i) take into account temporal dynamics (time lag and

space-time lag), (ii) capture spatial interaction effects (spatial lag, space-time lag, spatial

Durbin, and spatial error),1 and (iii) control for unobserved spatiotemporal heterogeneity
∗Corresponding author. E-mail: zlyang@smu.edu.sg
1These have a close connection to Manski’s (1993) social interaction framework, where he labeled these

effects as endogenous effects, contextual effects and correlated effects.
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(individual-specific and time-specific). The bulk of the literature has focused on the SDPD

models with additive individual and time effects, being treated as fixed effects (Yu et al. 2008;

Lee and Yu 2010, 2014; Su and Yang 2015; Yang 2018, 2021; Li and Yang 2020; Baltagi et

al. 2021), or random effects (Yang et al. 2006; Mutl 2006; Su and Yang 2015), or correlated

random effects (Li and Yang 2021). See Lee and Yu (2013) for a survey on earlier works.

A major recent advancement in the literature of SDPD model is the incorporation of inter-

active fixed effects (IFE) in the model (Shi and Lee 2017; Kuersteiner and Prucha 2020; and

Bai and Li 2021). Besides the existing attractive features, this extended model specification

draws further on the strength of IFE in controlling for the multiple unobserved time-specific

effects ft (common factors) and the corresponding individual-specific responses γi (factor

loadings). For the large literature on regular panel models with IFE, see, among the others,

Ahn et al. (2001, 2013), Bai (2009), Bai and Ng (2013), Moon and Weidner (2015, 2017).2

Shi and Lee (2017) and Bai and Li (2021) consider a conditional quasi maximum likelihood

(CQML) approach given the initial observations for the estimation of SDPD-IFE models.

The former has richer structures in temporal dynamics and spatial interactions, and the

latter allows the individual variance to vary. Both methods depend critically on the large

n and large T setup, and for valid statistical inferences it is necessary to carry out bias

corrections on the CQML estimators for their asymptotic biases. Kuersteiner and Prucha

(2020) consider a GMM approach under a large n and small T setup, for the estimation

of a larger model with a different spatial error specification. They emphasize on method’s

generality by allowing additional features in the model: weakly exogenous covariates, multiple

time lags, multiple spatial lags, network formation, unknown heteroskedasticity, etc. However,

their methods may face issues of inefficiency and computational complexity when a less general

model specification holds, which may hinder their practical applications. Therefore, it is very

much desirable to have a set of simple and efficient estimation and inference methods for a

fairly general SDPD-IFE model, which are valid when T is small.

In this paper, we propose an M-estimation method for estimating an SDPD-IFE model

with a similar model specification as in Shi and Lee (2017) but under large n and small T
2Panel data models with interactive effects also specify (i) γi as fixed but ft random, (ii) γi as random but

ft fixed, and (iii) both as random (see Hsiao 2018 for details). Case (i) is also of interest in connection with
spatial econometrics literature as it induces error cross-section dependence (CD) as does the spatial error term.
Pesaran and Tosetti (2011) refer to the former as strong CD and the latter as weak CD. They are perhaps the
first researchers who join the two strands in literature in dealing with error cross-section dependence.
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setup. Unbiased estimating functions are obtained by adjusting the concentrated conditional

quasi scores, given initial values and with factor loadings being concentrated out, to account

for the effects of conditioning and concentration. The resulting estimating functions (or

moment conditions) have a close connection to the modified equations of maximum likelihood

(Neyman and Scott 1948, Sec. 5).3 The nature of the proposed estimating functions suggests

that the M-estimator would be more efficient than the GMM estimator of Kuersteiner and

Prucha (2020) if this less general model specification holds. The proposed method extends

that of Yang (2018) for an SDPD model with additive fixed effects (AFE).

For statistical inferences, the vector of estimating functions (EF) is decomposed into a sum

of n nearly uncorrelated terms. Then, the average of outer products of these n terms together

with a covariance adjustment gives a consistent estimator of the variance-covariance (VC)

matrix of the EF and hence the VC matrix of the M-estimator. We establish consistency and

asymptotic normality of the proposed M-estimator, and prove consistency of the VC matrix

estimator. We perform Monte Carlo experiments extensively to investigate the finite sample

performance of the proposed estimation and inference methods. The results indeed show that

when T is not large the proposed point estimation method is more efficient and the proposed

inference method is more reliable, when compared with the existing methods.

The nature of the proposed estimation and inference methods suggests that there is a

great potential for the methods to be extended to allow for multiple lags in time and in space

as in Kuersteiner and Prucha (2020), cross-sectional heteroskedasticity explicitly in the model

as in Bai and Li (2021) for an SDPD-IFE model or implicitly in the model as in Li and Yang

(2020) for an SDPD-AFE model, etc. See Section 6 for further discussions.

The rest of the paper is as follows. Section 2 introduces the model and estimation method.

Section 3 studies the asymptotic properties of the proposed estimator. Section 4 introduces

the method of estimating the VC matrix of the proposed estimator. Section 5 presents Monte

Carlo results. Section 6 concludes the paper. Technical proofs are collected in Appendix.

Notation. | · | denotes the determinant and tr(·) the trace of a square matrix; bdiag(·)

forms a block-diagonal matrix from given matrices and vectors, and vec(·) vectorizes a matrix

by stacking its columns; ⊗ denotes the Kronecker product; ‖ · ‖ denotes the Frobenius norm,
3In a search of a systematic method of addressing the incidental parameters problem, Neyman and Scott

(1948) suggest to modified the likelihood equations (score functions) to remove the effect of estimating the
incidental parameters on the estimation of the common parameters.
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‖·‖1 the maximum column sum norm and ‖·‖∞ the maximum row sum norm; and γmin(·) and

γmax(·) denote, respectively, the smallest and largest eigenvalues of a real symmetric matrix.

2. Model and Estimation

Consider the spatial dynamic panel data (SDPD) model with interactive effects:

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + xtβ + Γft + ut, (2.1)

ut = λ3W3ut + vt, t = 1, 2, . . . , T,

where yt = (y1t, y2t, . . . , ynt)′ and vt = (v1t, v2t, . . . , vnt)′ are n× 1 vectors of response values

and idiosyncratic errors at time t, and {vit} are independent and identically distributed (iid)

across i and t with mean zero and variance σ2
v ; {xt} are n × k matrices of time-varying

exogenous variables; ρyt−1 captures the time dynamic effects; Wr, r = 1, 2, 3, are the given

n×n spatial weight matrices that are used to model spatial dependences; the spatial lag (SL)

term λ1W1yt captures the contemporaneous spatial interactions among cross-sectional units,

the space-time lag (STL) term λ2W2yt−1 captures the dynamic spatial interactions, and the

spatial error (SE) term λ3W3ut captures the pure cross-sectional error dependence; ft is a r×1

vector of unobserved time-specific effects (common factors) at time t, and Γ = (γ1, γ2, . . . , γn)′

is an n× r matrix of unobserved individual-specific effects (factor loadings), whose rows, γ′i,

are individuals’ heterogeneous (interactive) responses to the common shocks ft.

We adopt the fixed effect approach, which allows for arbitrary correlations between the

regressors xit and the interactive effects (common factor component) γ′ift, giving an SDPD

model with interactive fixed effects (IFE). The flexibility of the IFE approach comes at a cost.

Unlike models with additive fixed effects, there is no simple linear transformation to eliminate

the IFE. To control for the IFE, one has to treat factors and factor loadings as parameters

and estimate them together with model’s common parameters. However, estimating the γi

parameters leads to the incidental parameters problem (Neyman and Scott, 1948), and this

problem is greatly amplified by the initial values problem if a likelihood-type approach is

followed. As a result, the CQML estimators of certain common parameters (e.g., ρ, λ and

σ2) are inconsistent when T is fixed and asymptotically biased when T goes large with n.

To solve the issue of small-T estimation and inference for the SDPD-IFE model, we intro-

duce an M-estimation strategy where a set of unbiased and consistent estimating functions
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(EF) of the common parameters and the identifiable part of F is obtained by adjusting the

concentrated conditional quasi score (CCQS) functions treating y0 as exogenously given and

concentrating out Γ. This estimation strategy is naturally also called the adjusted quasi score

(AQS) method for a better connection to the modified equations of maximum likelihood of

Neyman and Scott (1948, Sec. 5). As discussed in the introduction, Kuersteiner and Prucha

(2020) consider the small-T estimation and inference for an SDPD-IFE model based on GMM

approach where they stress on the generality of the method by allowing several additional

features in the model. As such, their general GMM estimation may suffer from efficiency

loss besides the computational complexity. We stress on the efficiency and simplicity of the

method, which roots in a ‘likelihood’ function. Indeed, the Monte Carlo results given in Sec.

5 show that the proposed M-estimator can be much more efficient than the GMM estimator

and is much easier to implement, which greatly benefits applied researchers.

Let Br(λr) = In−λrWr, r = 1, 3, and B2(ρ, λ2) = ρIn+λ2W2. Denote ψ = (β′, σ2
v , ρ, λ

′)′,

the set of common parameters, where λ = (λ1, λ2, λ3)′, and let θ = (β′, ρ, λ1, λ2)′. The joint

quasi Gaussian loglikelihood function treating y0 as exogenously given, referred to as the

conditional quasi loglikelihood (CQL) function in this paper, takes the form:

`nT (ψ,Γ, F ) =− nT
2 log(2πσ2

v)− T
2 log |Ω(λ3)|+ T log |B1(λ1)|

− 1
2σ2

v

∑T
t=1[zt(θ)− Γft]′Ω−1(λ3)[zt(θ)− Γft] (2.2)

=− nT
2 log(2πσ2

v) + T log |B3(λ3)|+ T log |B1(λ1)|

− 1
2σ2

v
tr[(Z(θ)− ΓF ′)′Ω−1(λ3)(Z(θ)− ΓF ′)], (2.3)

where zt(θ) = B1(λ1)yt − B2(ρ, λ2)yt−1 − xtβ, Z(θ) = [z1(θ), z2(θ), . . . , zT (θ)], and Ω(λ3) =

σ−2
v E(utu′t) = (B′

3(λ3)B3(λ3))−1. Maximizing `nT (ψ,Γ, F ) under a set of constraints on {γi}

and {ft} gives the conditional quasi maximum likelihood (CQML) estimator ψ̂CQML of the

common parameters ψ. Shi and Lee (2017) show that ψ̂CQML is consistent only when n and

T are both large, and in this case, the asymptotic distribution of
√
nT (ψ̂CQML − ψ0) has a

non-zero mean – the asymptotic bias. For proper statistical inference, a bias correction (BC)

has to be made on ψ̂CQML. Along the similar ideas, Bai and Li (2021) propose a BC-CQML

estimation of a smaller model (without STL and SE) but allowing explicitly the cross-sectional

heteroskedasticity. The results of both papers depend critically on the large n and large T

setup for a reasonable finite sample performance of their BC-CQML estimators. Shi and Lee’s
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BC-CQML method depends critically on the perturbation theory that hinders the extension

to allow for heteroskedasticity as commented by Bai and Li (2021).

Solving the first order condition, ∂
∂Γ`nT (ψ,Γ, F ) = 0,4 using (2.3), we obtain the con-

strained CQML estimator of Γ as function of θ and F :

Γ̃(θ, F ) = Z(θ)F (F ′F )−1. (2.4)

Plugging Γ̃(θ, F ) in `nT (ψ,Γ, F ) gives the concentrated conditional quasi loglikelihood (CCQL)

function of ψ and F , noting that Z(θ)− Γ̃(θ, F )F ′ = Z(θ)− Z(θ)F (F ′F )−1F ′ ≡ Z(θ)MF :

`cnT (ψ, F ) = − nT
2 log(2πσ2

v) + T log |B3(λ3)|+ T log |B1(λ1)|

− 1
2σ2

v
tr[MFZ′(θ)Ω−1(λ3)Z(θ)]. (2.5)

Maximizing the CCQL `cnT (ψ, F ) gives the CQML estimators of ψ, F , and hence Γ. How-

ever, there are two major issues that render the estimation based on maximizing `cnT (ψ, F )

inconsistent when T is fixed, both inducing the incidental parameters problem of Neyman

and Scott (1948).5 The first is the initial values problem. When y0 is generated in the same

way as the other values of yt, t = 1, . . . , T , it depends on the past values of time-varying

regressors, which are not observable, leading to incidental parameters. Formulating the like-

lihood function (2.3) conditional on y0 ignores the information y0 contains about the common

parameters, causing the CQML estimators to be inconsistent. The second issue relates to

estimating the factors loadings. Concentrating out Γ from (2.3) is the QML estimation of the

n×r matrix of factor loadings, which results in a large number of degrees of freedom loss and

renders the QMLE inconsistent when T is small. The root-cause of the inconsistency problem

is that E[ 1
nT

∂
∂ψ `

c
nT (ψ0, F0)] 6= 0 and plimn→∞

1
nT

∂
∂ψ `

c
nT (ψ0, F0) 6= 0 as seen below, i.e., the

estimating functions derived directly from the CCQL functions are biased and inconsistent,

where (ψ0, F0) are the true values of the parameters (ψ, F ).6 To solve this problem, we adopt

the fundamental idea of Yang (2018) by adjusting the concentrated conditional quasi score

functions to account for the effects of conditioning on the initial values and estimating the

factor loadings, so as to give a set of unbiased estimating functions or moment conditions.
4This is done using the matrix differential formulas of Magnus and Neudecker (2019, p.200): ∂

∂X
tr(AX) =

A′, and ∂
∂X

tr(XAX ′B) = B′XA′ +BXA, where X is a matrix.
5In Neyman and Scott’s terminology, parameters are ‘incidental’ if information about them stops accumu-

lating after a finite number of observations have been taken.
6When T grows with n, as in Shi and Lee (2017) and Bai and Li (2021), the incidental parameters problem

is alleviated since information accumulates in both space and time dimensions and consistent estimation can
be reached. However, asymptotic bias remains and a bias-correction has to be carried out for proper inferences.
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To facilitate the derivation of the unbiased and consistent estimating functions, it is conve-

nient to use the long vector Z(θ) = [z′1(θ), z
′
2(θ), . . . , z

′
T (θ)]′ = vec(Z). Working directly with

(2.2) and (2.4), or using the identity tr[MFZ′(θ)Ω−1(λ3)Z(θ)] = Z ′(θ)[MF ⊗ Ω−1(λ3)]Z(θ),7

the CCQL function can be written as

`cnT (ψ, F ) = − nT
2 log(2πσ2

v) + T log |B3(λ3)|+ T log |B1(λ1)|

− 1
2σ2

v
Z ′(θ)[MF ⊗ Ω−1(λ3)]Z(θ). (2.6)

Let Y = (y′1, y
′
2, . . . , y

′
T )′ and Y−1 = (y′0, y

′
1, . . . , y

′
T−1)

′, the (nT × 1) vectors of response and

lagged response values, and X = (x′1, x
′
2, . . . , x

′
T )′, the nT × k matrix of regressors values.

Denote Wr = IT ⊗Wr,Br = IT ⊗Br, r = 1, 2, 3, Ω(λ3) = IT ⊗ Ω(λ3), and MF = MF ⊗ In.

We have the ψ-component of the concentrated conditional quasi score (CCQS):

∂
∂ψ `

c
nT (ψ, F ) =



1
σ2

v
X′MFΩ−1(λ3)Z(θ),

1
2σ4

v
Z(θ)′MFΩ−1(λ3)Z(θ)− nT

2σ2
v
,

1
σ2

v
Z ′(θ)MFΩ−1(λ3)Y−1,

1
σ2

v
Z(θ)′MFΩ−1(λ3)W1Y − tr(B−1

1 (λ1)W1),
1
σ2

v
Z ′(θ)MFΩ−1(λ3)W2Y−1,

1
σ2

v
Z ′(θ)MFB′

3(λ3)W3Z(θ)− tr(B−1
3 (λ3)W3).

(2.7)

We derive the expectation of the ψ-component of the CCQS function at true parameter

values ψ0 and F0, and show that the (σ2
v , ρ, λ) components of 1

nT E[ ∂∂ψ `
c
nT (ψ0, F0)] are generally

not zero, and more seriously the (σ2
v , ρ, λ) components of plimn→∞

1
nT

∂
∂ψ `

c
nT (ψ0, F0) are not

zero. Thus, the CQML estimator of ψ cannot be consistent as a necessary condition for

consistent estimation is violated. To proceed, the following basic assumptions are required.

Assumption A. Process started at t = −m (m ≥ 0) and data collection started at t = 0:

(i) y0 is independent of {vt, t ≥ 1}, and (ii) time-varying regressors {xt, t = 0, 1, . . . , T}, fac-

tors F and factor loadings Γ are independent of the idiosyncratic errors {vt, t = 0, 1, . . . , T}.

From now on, we view that Model (2.1) holds only at the true parameters, and the usual

expectation and variance operators E(·) and Var(·) correspond to the true model. Denote a

parametric quantity evaluated at the true parameters by dropping its arguments and then

adding a subscript “0”, e.g., B10 = B1(λ10), and Ω0 = Ω(λ30), except zt = zt(θ0). Define
7This follows from, e.g., Magnus and Neudecker (2019, p.36): for conformable matrices A,B,C and D such

that ABCD is defined and square, tr(ABCD) = vec(D′)′(C′ ⊗A)vec(B) = vec(D)′(A⊗ C′)vec(B′).
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B0 = B(ρ0, λ10, λ20) ≡ B−1
1 (λ10)B2(ρ0, λ20). Backward substitution on (2.1) gives

yt = Bt0y0 +
t∑

s=0

Bs0B−1
10 xt−sβ0 +

t∑
s=0

Bs0B−1
10 zt−s, t = 1, . . . , T. (2.8)

This leads to the following simple but important representations for Y and Y−1:

Y = Qy0 + η + DZ and Y−1 = Q−1y0 + η−1 + D−1Z, (2.9)

where y0 = 1T ⊗ y0, Z = Z(θ0), η = DXβ0, η−1 = D−1Xβ0, Q = bdiag(B0,B2
0, . . . ,BT0 ),

Q−1 = bdiag(In,B0, . . . ,BT−1
0 ),

D =



In 0 · · · 0 0
B0 In · · · 0 0
B2

0 B0 · · · 0 0
...

...
. . .

...
...

BT−1
0 BT−2

0 · · · B0 In


B−1

10 , and D−1 =



0 0 · · · 0 0
In 0 · · · 0 0
B0 In · · · 0 0
...

...
. . .

...
...

BT−2
0 BT−3

0 · · · In 0


B−1

10 .

Based on the representations given in (2.9), we obtain under Assumption A and the
assumption that the errors {vit} in Model (2.1) are iid (0, σ2

v0) across i and t,

E[ ∂∂ψ `
c
nT (ψ0, F0)] =



0,
n(T−r)

2σ2
v0

− nT
2σ2

v0
,

tr(MF0D−1),

tr(MF0W1D)− tr(B−1
10 W1),

tr(MF0W2D−1),

(T − r)tr(B−1
30 W3)− T tr(B−1

30 W3).

(2.10)

From (2.10), we see that E[ ∂∂ψ `
c
nT (ψ0, F0)] 6= 0 and plimn→∞

1
nT

∂
∂ψ `

c
nT (ψ0, F0) 6= 0. A neces-

sary condition for consistency is violated, and the CQML estimators cannot be consistent.

Note that E[ ∂∂ψ `
c
nT (ψ0, F0)] is a parametric vector free from the initial conditions, the

process starting time and the loadings. Therefore, it can be used to adjust/center (2.7) to

give a set of unbiased estimating functions for ψ, free from m, Γ and the conditions on y0:

S∗nT,ψ(ψ, F ) =



1
σ2

v
X′MFΩ−1(λ3)Z(θ),

1
2σ4

v
Z(θ)′MFΩ−1(λ3)Z(θ)− n(T−r)

2σ2
v
,

1
σ2

v
Z ′(θ)MFΩ−1(λ3)Y−1 − tr[MFD−1(ρ, λ1, λ2)],

1
σ2

v
Z(θ)′MFΩ−1(λ3)W1Y − tr[MFW1D(ρ, λ1, λ2)],

1
σ2

v
Z ′(θ)MFΩ−1(λ3)W2Y−1 − tr[MFW2D−1(ρ, λ1, λ2)],

1
σ2

v
Z ′(θ)MFB′

3(λ3)W3Z(θ)− (T − r)tr[B−1
3 (λ3)W3].

(2.11)
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We have E[S∗nT,ψ(ψ0, F0)] = 0, and one can show that plimn→∞
1
nT S

∗
nT,ψ(ψ0, F0) = 0. Thus,

given F , the common parameters ψ can be consistently estimated by solving S∗nT,ψ(ψ, F ) = 0.

It remains to derive the F -component of the AQS function. Notice that F enters the

CCQL function (2.6) and the AQS function (2.11) in the form of PF = F (F ′F )−1F ′. As

a result, both (2.6) and (2.11) are invariant to the transformation F † = FC for any r × r

invertible matrix C as PF † = PF . Thus, we are not able to identify F without restrictions. As

an arbitrary r × r invertible matrix has r2 free elements, exactly r2 restrictions are needed.8

Following Ahn and Schmidt (2013), we normalize F such that F = (F ∗′, Ir)′, where F ∗ is

a (T − r) × r matrix of unrestricted parameters.9 Collect all the free parameters of F in a

vector φ = vec(F ∗), with its sth elements denoted by φs, s = 1, . . . , kφ, where kφ = dim(φ) =

(T − r)r. Then, we derive the CCQS components corresponding to the free parameters F ∗,

and we show that adjustments are not needed for these components.

Let Ḟs = ∂
∂φs

F , we have ṖF,s = ∂
∂φs

PF = MF Ḟs(F ′F )−1F ′ + F (F ′F )−1Ḟ ′sMF , s =

1, . . . , kφ. Then, the CCQS component corresponding to φs, s = 1, . . . , kφ, is

∂
∂φs

`cnT (ψ, φ) = 1
2σ2

v
Z ′(θ)[ṖF,s ⊗ Ω−1(λ3)]Z(θ)

= 1
σ2

v
Z ′(θ)[MF Ḟs(F ′F )−1F ′ ⊗ Ω−1(λ3)]Z(θ).

(2.12)

Let v = (v′1, . . . , v
′
T )′, we can write Z = vec(Γ0F

′
0) + B−1

30 v. Under Assumption A and the

assumptions on the errors, we have, for s = 1, . . . , kφ,

E[ ∂
∂φs

`cnT (ψ0, φ0)]

= 1
σ2

v0
E{[v + B30vec(Γ0F

′
0)]

′[MF0Ḟs0(F ′0F0)−1F ′0 ⊗ In][v + B30vec(Γ0F
′
0)]}

= 1
σ2

v0
E{v′[MF Ḟs0(F ′0F0)−1F ′0 ⊗ In]v}+ 1

σ2
v0
vec(Γ0F

′
0)
′[MF Ḟs0(F ′0F0)−1F ′0 ⊗ Ω−1

0 ]vec(Γ0F
′
0)

= n tr[MF0Ḟs0(F
′
0F0)−1F ′0] + 1

σ2
v0

tr[MF0Ḟs0Γ
′
0B

′
30B30Γ0F

′
0] = 0.

This shows that the φ-component of the CCQS function is unbiased. Further, one shows

that plimn→∞
1
nT

∂
∂φs

`cnT (ψ0, φ0) = 0, s = 1, . . . , kφ. Therefore, we do not need to adjust these

CCQS components. In another word, given ψ, maximizing the CCQL function in (2.6) gives
8This is equivalent to the so-called “rotation problem” in factor models, which says that it is impossible to

identify Γ and F separately without restrictions as ΓCC−1F ′ = ΓF ′ for any r× r non-singular matrix C. See
Bai (2009) and Bai and Ng (2013) for detailed discussions.

9This is obtained, if we denote F = (F1, F2)
′ where F2 is r × r and is invertible, through the rotation:

F † = FC = FF−1
2 = (F ′−1

2 F ′1, Ir)
′ = (F ∗′, Ir)

′. Ahn and Schmidt (2013) use the same normalization in their
study of a regular panel data model with IFE under short T . The choice of normalization is not important
because we are interested in controlling for the IFE, not interpreting them. However, in our paper, this
normalization leads to a simpler way of establishing the set of unbiased and consistent estimating functions.
See Bai and Ng (2013) for a detailed discussion of alternative normalizations.
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a consistent estimate of φ, and therefore gives a consistent estimate of (a rotation of) F .

Combining the ψ components (2.11) and the φ components (2.12), we obtain the following

important joint estimating function or adjusted quasi score function for (ψ, φ):

S∗nT (ψ, φ) =



1
σ2

v
X′MFΩ−1(λ3)Z(θ),

1
2σ4

v
Z(θ)′MFΩ−1(λ3)Z(θ)− n(T−r)

2σ2
v
,

1
σ2

v
Z ′(θ)MFΩ−1(λ3)Y−1 − tr[MFD−1(ρ, λ1, λ2)],

1
σ2

v
Z(θ)′MFΩ−1(λ3)W1Y − tr[MFW1D(ρ, λ1, λ2)],

1
σ2

v
Z ′(θ)MFΩ−1(λ3)W2Y−1 − tr[MFW2D−1(ρ, λ1, λ2)],

1
σ2

v
Z ′(θ)MFB′

3(λ3)W3Z(θ)− (T − r)tr[B−1
3 (λ3)W3]

1
σ2

v
Z ′(θ)[MF Ḟs(F ′F )−1F ′ ⊗ Ω−1(λ3)]Z(θ), s = 1, . . . , kφ.

(2.13)

Solving the estimating equations: S∗nT (ψ, φ) = 0, leads to the AQS or M-estimators ψ̂M

and φ̂M of ψ and φ. As E[S∗nT (ψ0, φ0)] = 0, one can show that plimn→∞
1
nT S

∗
nT (ψ0, φ0) = 0,

i.e., a key condition for the consistency of ψ̂M and φ̂M is satisfied.

Remark 2.1. The importance of the joint EF, S∗nT (ψ, φ), also lies in the fact that it leads

to a simpler way to establish the joint asymptotic distribution of ψ̂M and φ̂M, and a simpler

and reliable way to obtain the VC matrix estimate as seen in the subsequent sections.

Remark 2.2. It is interesting to note that the (β0, σ
2
0, φ0)-components of S∗nT (ψ0, φ0)

remain unbiased and consistent under cross-sectional heteroskedasticity.10 Therefore, if we

are able to adjust the (ρ0, λ0)-components of S∗nT (ψ0, φ0) so that they possess the same prop-

erty, we then obtain a set of AQS functions and hence M-estimators that are robust against

unknown heteroskedasticity. See Section 6 for more discussions.

A computational note. Given ψ, Model (2.1) reduces to a pure factor model. The con-

strained M-estimator of F or φ can be obtained by maximizing 1
nT tr[PFZ′(θ)Ω−1(λ3)Z(θ)],11

and the solution is the eigenvector matrix of 1
nT Z′(θ)Ω−1(λ3)Z(θ) corresponding to the r

largest eigenvalues.12 Thus, the computation of the M-estimators can simply be done by a
10Suppose Var(vit) = σ2

vhn,i, such that hn,i > 0 and 1
n

Pn
i=1 hn,i = 1. Let H = diag(hn,1, . . . , hn,n). Then,

Var(v) = σ2
v0IT ⊗ H, and E{v′[MF Ḟs0(F

′
0F0)

−1F ′0 ⊗ In]v} = σ2
v0tr{(IT ⊗ H)[MF Ḟs0(F

′
0F0)

−1F ′0 ⊗ In]} =
σ2

v0tr{[MF Ḟs0(F
′
0F0)

−1F ′0]⊗H} = σ2
v0tr(H)tr[MF Ḟs0(F

′
0F0)

−1F ′0] = 0, for the φ-component. It is much easier
to verify that the same holds for the (β, σ2)-components.

11This is equivalent to the objective function of the least square estimation of a pure factor model, B3Z =
B3ΓF

′ + V, after the factor loadings Γ being concentrated out, where V = (v1, . . . , vT ). See Connor and
Korajzcyk (1986), Stock and Watson (2002), and Bai (2003, 2009).

12See Magnus and Neudecker (2019, Ch. 17) and Ahn et al. (2013) for more details.
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recursive process: iterating between Steps 1. and 2. until results converge:

1. Given F , the constrained M-estimator of ψ is ψ̂∗nT (F ) = arg{S∗nT,ψ(ψ, F ) = 0},

2. Given ψ, the estimator of F is the matrix of eigenvectors corresponding to the r largest

eigenvalues of the T × T matrix 1
nT Z′(θ)Ω−1(λ3)Z(θ).13

See, for more discussions, Kiefer (1980), Ahn, et al. (2001, 2013), and Bai (2009). The

root-finding process in Step 1. can be further simplified by first solving the first two sets

of equations for β and σ2 to obtain analytical solutions, and then solving the equations

corresponding to the concentrated AQS functions (see Sec. 3 for details).

3. Asymptotic Properties of the M-Estimator

Rigorous studies on the asymptotic properties of the proposed M-estimator require the

following basic regularity conditions. Denote δ = (ρ, λ′, φ′)′, the set of parameters that appear

in the AQS function nonlinearly (i.e., their AQS equations cannot be solved analytically).

Assumption B. The innovations vit are iid for all i and t with E(vit) = 0, Var(vit) =

σ2
v0, and E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption C. (i) The parameter space ∆ of δ is compact, and the true parameter

vector δ0 lies in its interior; (ii) The number of factors r0 is constant and less than T . The

elements of Γ0 and F0 are uniformly bounded.

Assumption D. The elements of the time-varying regressors {xt, t = 1, . . . , T} are uni-

formly bounded, and the limit limn→∞
1
nTX′MFX exists and is nonsingular.

Assumption E. (i) For r = 1, 2, 3, the elements wr,ij of Wr are at most of order h−1
n ,

uniformly in all i and j, and wr,ii = 0 for all i; (ii) hn/n→ 0 as n→∞; (iii) {Wr, r = 1, 2, 3}

and {B−1
r0 , r = 1, 3} are uniformly bounded in both row and column sums; (iv) For r = 1, 3,

either ‖B−1
r ‖∞ or ‖B−1

r ‖1 is bounded, uniformly in λr in a compact parameter space Λr, and

0 < cr ≤ infλr∈Λr γmin(B′
rBr) ≤ supλr∈Λr

γmax(B′
rBr) ≤ c̄r <∞, where Br = Br(λr).

Assumption F. For an n×n matrix Φ uniformly bounded in either row or column sums,

with elements of uniform order h−1
n , and an n × 1 vector b with elements of uniform order

13When T is fixed 1
n

Z′Ω−1Z → ΣZ = FΣΓ∗F
′ + Σv, where ΣΓ∗ and Σv are the limits of Γ∗′B′30B30Γ/n and

V′V/n. If Σv = σ2
v0IT , the matrix of the first r eigenvectors of ΣZ is a rotation of F . See Bai (2009) and

Chamberlain and Rothschild (1982) for more detailed discussions.
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h
−1/2
n , (i) hn

n y
′
0Φy0 = Op(1); (ii) hn

n [y0−E(y0)]′b = op(1); (iii) hn
n [y′0Φy0−E(y′0Φy0)] = op(1).

Assumption B assumes that the idiosyncratic error vit to be independent over cross section

and time. Cross sectional and time correlations are not a major concern in the present scenario

as they are dealt with by the spatial lag term, the spatial error term and the dynamic term.

Assumption C(i) is standard for establishing the consistency of δ̂. The consistency of β̂ and

σ̂2
v follows from that of δ̂ and Assumption D. Assumption E imposes standard assumptions

on the spatial weight matrices. It parallels Assumption E of Yang (2018) and relates to Lee

(2004). Allowing hn to grow with n but at a slower rate is useful as it corresponds a spatial

layout where the degree of spatial dependence increases with n. See Lee (2004) and Yang

(2015) for related discussions. Assumption F ensures that the initial observations y0 have

proper stochastic behavior. If the process evolves according to (2.1), Assumption F is satisfied

by the assumption:
∑∞

i=0 Bi0 exists and is uniformly bounded in both row and column sums,

which parallels Assumption 6 in Yu et al. (2008) and Lee and Yu (2014).

Solving the AQS equations in (2.13) for β and σ2
v given δ, we obtain the constrained M-

estimators β̂(δ) = [X′MFΩ−1(λ3)X]−1X′MFΩ−1(λ3)[B1(λ1)Y − B2(λ2)Y−1], and σ̂2
v(δ) =

1
n(T−r) Ẑ

′(δ)MFΩ−1(λ3)Ẑ(δ), where Ẑ(δ) = B1(λ1)Y − B2(λ2)Y−1 − Xβ̂(δ). Substituting

β̂(δ) and σ̂2
v(δ) back into the δ-components of S∗nT (ψ, φ) gives the concentrated AQS func-

tions S∗cnT (δ) (details are presented in Appendix B). Similarly, let S̄∗cnT (δ) be the population

counterpart of the concentrated AQS functions (see Appendix B). It is easy to see that

S∗cnT (δ̂) = 0, and S̄∗cnT (δ0) = 0. By Theorem 5.9 of van der Vaart (1998), δ̂ will be consistent

for δ0 if supδ∈∆
1
nT

∥∥S∗cnT (δ)− S̄∗cnT (δ)
∥∥ p−→ 0, and the following identification condition holds.

Assumption G. infδ d(δ,δ)≥ε
∥∥S̄∗cnT (δ)

∥∥ > 0 for every ε > 0, where d(δ, δ0) is a measure

of distance between δ and δ0.

Theorem 3.1. Suppose Assumptions A-G hold. Assume further that (i) γmax[Var(Y )]

and γmax[Var(Y−1)] are bounded, and (ii) infδ∈∆ γmin

[
Var(B1Y − B2Y−1)

]
≥ cy > 0. We

have as n→∞, δ̂M
p−→ δ0. It follows that β̂M

p−→ β0, and σ̂2
v,M

p−→ σ2
v0.

So far we have assumed that the true number of factors r0 is known. In fact, ψ could

be consistently estimated with a choice of r not less than r0. From the AQS function in

(2.13), we see that, when r < r0, rank(MF (φ)) < r0 and thus MF (φ) cannot completely

remove Γ0F
′
0 from Z(θ). Therefore, no φ can satisfy E[S∗nT (ψ, φ)] = 0. On the other hand,
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when rank(MF (φ)) > r0, there are infinitely many φ such that MF (φ) can completely remove

ΓF ′. While φ is not identified when r > r0, ψ is, because E[S∗nT (ψ, φ)] = 0 holds only at

ψ = ψ0. To see this, write Z(θ) = Z(θ0)−
∑k+3

p=1 Xk(βp−βp0), where Xp is the p th column of

X, p = 1, · · · , k, Xk+1 = Y−1, Xk+2 = W1Y , and Xk+3 = W2Y−1, with βk+1 = ρ, βk+2 = λ1,

and βk+3 = λ2. Take the β1-component of the AQS function as an example, we have

1
σ2

v
X ′

1MF (φ)Ω−1(λ3)Z(θ)

= 1
σ2

v
X ′

1MF (φ)Ω−1(λ3)Z(θ0)− 1
σ2

v

∑k+3
p=1 X

′
1MF (φ)Ω−1(λ3)Xk(βp − βp0)

= 1
σ2

v
X ′

1MF (φ)Ω−1(λ3)vec(ΓF ′) + 1
σ2

v
X ′

1MF (φ)Ω−1(λ3)v

− 1
σ2

v

∑k+3
p=1 X

′
1MF (φ)Ω−1(λ3)Xk(βp − βp0).

(3.1)

The expectation of the second term is always zero by Assumption A. When r < r0, the first

term cannot be zero as there is no φ such that MF (φ)vec(ΓF ′) = 0. When r > r0, there

are infinitely many φ’s such that the first term is zero. The third term is zero only when

βp = βp0. Similar arguments are made in Ahn and Schmidt (2013). This feature is also

discussed in Moon and Weidner (2015) for regular panel models, and in Shi and Lee (2017)

for SDPD models. We provide simulation results for the misspecified case r > r0 in Sec. 5.14

Next, we establish the asymptotic normality of the proposed M-estimator ψ̂M of ψ =

(ψ′, φ′)′. We expand S∗nT (ψ̂M) at ψ0 and study the asymptotic behaviour of S∗nT (ψ0) and
∂
∂ψ′S

∗
nT (ψ̄), for some ψ̄ lying between ψ̂M and ψ0 elementwise. Using the representations

given in (2.9) and letting Z∗ = B30Z, the AQS vector at ψ0 can be written as follows

S∗nT (ψ0) =



Π′
1Z

∗

Z∗′Φ1Z
∗ − µσ2

v0
,

Z∗′Ψ1y0 + Z∗′Φ2Z
∗ + Π′

2Z
∗ − µρ0 ,

Z∗′Ψ2y0 + Z∗′Φ3Z
∗ + Π′

3Z
∗ − µλ10 ,

Z∗′Ψ3y0 + Z∗′Φ4Z
∗ + Π′

4Z
∗ − µλ20 ,

Z∗′Φ5Z
∗ − µλ30 ,

Z∗′Φ5+sZ
∗, s = 1, 2, . . . , kφ,

(3.2)

14Although the proposed M-estimator remains consistent when r > r0, its limiting distribution is derived
under the premise that number of factors is correctly specified. Ahn and Schmidt (2013) propose to estimate
r0 for short panels with IFE by the following information criteria which can also be used in our case:

r̂ = argmin
0≤r≤T−1

ln(σ̂2
v(r)) + g(r)f(n)

where g(r) = ar, f(n) = ln n
n

, and a is an arbitrarily chosen positive number. Under BIC, we have nf(n) →∞,
and f(n) → 0 as n → ∞, where the first condition ensures that plimn→∞ Pr (br > ro) = 0, and the second
condition is to ensure plimN→∞ Pr (r̂ < r0) = 0. See Ahn and Schmidt (2013) for detailed discussions.
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where Π1 = 1
σ2

v0
(MF0 ⊗ B30)X, Π2 = 1

σ2
v0

(MF0 ⊗ B30)η−1, Π3 = 1
σ2

v0
(MF0 ⊗ B30)W1η,

and Π4 = 1
σ2

v0
(MF0 ⊗ B30)W2η−1; Φ1 = 1

2σ4
v0

MF0, Φ2 = 1
σ2

v0
(MF0 ⊗ B30)D−1B−1

30 , Φ3 =
1
σ2

v0
(MF0 ⊗ B30)W1DB−1

30 , Φ4 = 1
σ2

v0
(MF0 ⊗ B30)W2D−1B−1

30 , Φ5 = 1
σ2

v0
(MF0 ⊗ W3B

−1
30 ),

and Φ5+s = 1
σ2

v0
[MF0Ḟs0(F ′0F0)−1F ′0 ⊗ In], s = 1, . . . , kφ; Ψ1 = 1

σ2
v0

(MF0 ⊗ B30)Q−1, Ψ2 =
1
σ2

v0
(MF0 ⊗ B30)W1Q, and Ψ3 = 1

σ2
v0

(MF0 ⊗ B30)W2Q−1; µσ2
v

= n(T−r)
2σ2

v
, µρ = tr(MFD−1),

µλ1 = tr(MFW1D), µλ2 = tr(MFW2D−1), and µλ3 = (T − r)tr(B−1
3 W3).

Using the relation Z∗ = v + vec(B30Γ0F
′
0), the components of S∗nT,ψ(ψ0) can be further

expressed as linear combinations of terms linear or quadratic in v and bilinear in v and y0

(see Appendix B). These lead to a simple way for establishing the asymptotic normality of

the AQS vector and thus the asymptotic normality of the proposed estimator.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have, as n→∞
√
nT

(
ψ̂M −ψ0

)
D−→ N

(
0, lim
n→∞

H−1
nT (ψ0)ΣnT (ψ0)H ′−1

nT (ψ0)
)
,

where HnT (ψ0) = − 1
nT E[ ∂

∂ψ′S
∗
nT (ψ0)] and ΣnT (ψ0) = 1

nT Var[S∗nT (ψ0)], both assumed to exist

and HnT (ψ0) to be positive definite, for sufficiently large n.

4. Robust VC Matrix Estimation

While Theorems 3.1 and 3.2 provide theoretical foundations for small-T inferences based

on the SDPD-IFE model, empirical applications of the results depend on the availability of

consistent estimators of the two matrices HnT (ψ0) and ΣnT (ψ0). The former can be consis-

tently estimated by its observed counterpart, HnT (ψ̂M) = − 1
nT

∂
∂ψ′S

∗
nT (ψ̂M). The analytical

expression of ∂
∂ψ′S

∗
nT (ψ) is given in Appendix B. Unfortunately, the estimation of the latter

is not straightforward. From (3.2) we see that the joint AQS function S∗nT (ψ0) contains three

types of elements, Π′Z∗, Z∗′Ψy0, and Z∗′ΦZ∗, where Π, Ψ and Φ are non-stochastic vectors

or matrices. The traditional plug-in method requires the closed-form expression of ΣnT (ψ0),

but the variance of Z∗′Ψy0 and its covariances with Π′Z∗ and Z∗′ΦZ∗ involve the uncondi-

tional distribution of y0 and the factor loadings Γ0. The distribution of y0 depends on the

past values of the regressors and the process starting positions, which are unobserved,15 and

a consistent estimate of the n × r matrix Γ0 is impossible to obtain when T is fixed. Thus,
15A valid model for y0, as that in Su and Yang (2015) for an SDPD model with SE only, is very difficult (if

not impossible) to formulate due to the existence of spatial lag terms, as commented by Yang (2018).
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the plug-in method based on the analytical expression of ΣnT (ψ0) does not work in this case.

To overcome the difficulties induced by the initial conditions, Yang (2018) proposed an

outer-product-of-martingale-difference (OPMD) method for estimating the VC matrix of an

SDPD-AFE model. The central idea behind this method is to decompose the AQS functions

into a sum of n terms, which form a martingale difference (MD) sequence so that the average

of the outer products of the MDs gives a consistent estimate of the VC matrix of that AQS

function. While this OPMD method does not directly apply to our SDPD-IFE model due to

the fact that the original errors vt are not estimable,16 the idea of decomposition prevails!

Inspired by the OPMD method, we decompose the AQS function as S∗nT (ψ0) =
∑n

i=1 gi,

where {gi} are defined in terms of z∗it and some nonstochastic quantities that depend on ψ0

and Wr, r = 1, 2, 3, taking full use of the independence of z∗it across i and the fact that T is

small and fixed. Based on our decomposition, {gi} are nearly an MD sequence, which are

‘estimable’ and thus lead to a feasible estimator for ΣnT (ψ0) through the average of the outer

products of gi and their analytical covariances:

ΣnT (ψ0) = 1
nT E[S∗nT (ψ0)S∗′nT (ψ0)] = 1

nT

∑n
i=1 E(gig′i) + 1

nT

∑n
i=1

∑
j 6=i E(gig′j). (4.1)

The first term in (4.1) can be estimated by its sample analogue 1
nT

∑n
i=1 ĝiĝ′i, where ĝi

a plug-in estimate of gi. The full analytical expression of Υ(ψ0) =
∑n

i=1

∑
j 6=i E(gig′j) is

derived. Due to the way {gi} are constructed, the (k+5+kφ)×(k+5+kφ) matrix Υ(ψ0) does

not involve the initial conditions or factor loadings and it depends only on ψ0. Therefore,

the covariance term Υ(ψ0) can be consistently estimated using the plug-in method. The

estimator of the VC matrix of the estimating functions is given by the following

Σ̂nT = 1
nT

∑n
i=1 ĝiĝ′i +

1
nT Υ(ψ̂M). (4.2)

For this we term our method of VC matrix estimation as the extended OPMD method.

Now, we present the details of the decomposition, S∗nT (ψ0) =
∑n

i=1 gi, and derive the

correction term Υ(ψ0). Recall that components of the joint AQS vector S∗nT (ψ0) are linear

combinations of three types of terms Π′Z∗, Z∗′Ψy0, and Z∗′ΦZ∗, we decompose each type

separately into
∑n

i=1 gΠi,
∑n

i=1 gΨi and
∑n

i=1 gΦi. Then, we can use the linear combinations

of gri, r = Π,Ψ,Φ to construct the vector gi. And naturally, elements of E(gig′j) are linear

16This is seen from the relation z∗t = vt + B3Γft, where z∗t can be consistently estimated by ẑ∗t , but the
factor loadings Γ and hence vt cannot be consistently estimated when T is fixed.
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combinations of E(grigνi), r, ν = Π,Ψ,Φ. To proceed, for a square matrix A, let Au, Al and

Ad be, respectively, its upper-triangular, lower-triangular, and diagonal matrix such that

A = Au + Al + Ad. Denote by Πt,Φts and Ψts the submatrices of Π,Φ and Ψ partitioned

according to t, s = 1, . . . , T . Similarly, for a vector K, let Kt denote its subvectors partitioned

according to t = 1, . . . , T . Denote the partial sum of time-indexed quantities using the ‘+’

notation: e.g., Ψt+ =
∑T

s=1 Ψts,Ψ+s =
∑T

t=1 Ψts Ψ++ =
∑T

t=1

∑T
s=1 Ψts, and similarly for

Φts,Πt and other time-indexed quantities. Recall Z∗ = v + vec(B30Γ0F
′
0).

First, consider a linear term Π′Z∗. We have Π′Z∗ = Π′v + Π′vec(B30Γ0F
′
0). From (3.2),

we see that Π takes the form MF0K for a suitably defined nonstochastic vector or matrix K

involving ψ0, X, and Wr, r = 1, 2, 3. Without loss of generality, assume Π is a vector (nT ×1)

and so is K, as if not we can work on each column of it. Using Π = MF0K and letting K

be such that K = vec(K), we have by the matrix result in Footnote 7, Π′vec(B30Γ0F
′
0) =

K ′(MF0 ⊗ In)vec(B30Γ0F
′
0) = tr(B30Γ0F

′
0MF0K′) = 0. Therefore, Π′Z∗ = Π′v, and we have

the following decomposition for any Π defined in (3.2), noting that E(Π′v) = 0:

Π′Z∗ = Π′v =
∑n

i=1(
∑T

t=1 Π′
itvit) ≡

∑n
i=1 gΠ,i, (4.3)

where Π′
it be the ith row of Πt. Clearly, {gΠ,i} are uncorrelated.

Next, consider a bilinear term Z∗′Ψy0. Again we separate Z∗ into two parts and write

Z∗′Ψy0 = v′Ψy0 + vec(B30Γ0F
′
0)
′Ψy0. By the expressions of Ψ given in (3.2), each nT ×

1 vector Ψy0 can be written in the form Ψy0 = MF0K for a suitably defined vector K

involving y0, ψ0, and Wr, r = 1, 2, 3. Again, by the matrix result in Footnote 7, we show

that vec(B30Γ0F
′
0)
′Ψy0 = vec(B30Γ0F

′
0)
′MF0K = 0. Therefore, Z∗′Ψy0 = v′Ψy0. With

E(v′Ψy0) = 0 due to the independence between y0 and {vt, t ≥ 1}, we have the following

decomposition of a bilinear term for any Ψ defined in (3.2):,

Z∗′Ψy0 = v′Ψy0 =
∑n

i=1

∑T
t=1 vitξit ≡

∑n
i=1 gΨ,i, (4.4)

where {ξit} = ξt = Ψt+y0, {gΨ,i} are uncorrelated, and gΨ,i is uncorrelated with gΠ,j , i 6= j.

Finally, for a quadratic term Z∗′ΦZ∗, we separate the first Z∗ into two parts and write

Z∗′ΦZ∗ = v′ΦZ∗ + vec(B30Γ0F
′
0)
′ΦZ∗. From (3.2), we see that ΦZ∗ can also be written

in the form MFK for a suitably defined vector K involving ψ0, Z, and Wr, r = 1, 2, 3.

Thus, vec(B30Γ0F
′
0)
′ΦZ∗ = vec(B30Γ0F

′
0)
′MF0K = 0, by the matrix result in Footnote 7.
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Therefore, Z∗′ΦZ∗ = v′ΦZ∗, and the latter can be decomposed for any Φ defined in (3.2) as,

v′ΦZ∗ =
∑T

t=1

∑T
s=1 v

′
tΦtsz

∗
s

=
∑T

t=1

∑T
s=1 v

′
tΦ

u
tsz

∗
s +

∑T
t=1

∑T
s=1 v

′
tΦ

l
tsz

∗
s +

∑T
t=1

∑T
s=1 v

′
tΦ

d
tsz

∗
s

=
∑n

i=1(
∑T

t=1 vitϕit +
∑T

t=1 vitz
d
it),

(4.5)

where {ϕit} = ϕt =
∑T

s=1(Φ
u
ts + Φ`

ts)z
∗
s , and {zdit} = zdt =

∑T
s=1 Φd

tsz
∗
s . By Assumptions A

and B, E(vitϕit) = 0 and E(vitzdit) = σ2
v0Φii,tt ≡ dit, where Φii,tt is the ith diagonal element

of Φtt. These lead to the following decomposition for a quadratic term:

v′ΦZ∗ − E(v′ΦZ∗) =
∑n

i=1[
∑T

t=1 vitϕit +
∑T

t=1(vitz
d
it − dit)] ≡

∑n
i=1 gΦ,i. (4.6)

While {gΦ,i} are correlated, gΦ,i is uncorrelated with gΠ,j and gΨ,j , i 6= j, as shown below.

The decompositions of the three types of quantities given by (4.3)-(4.6) lead immediately

to a decomposition of S∗nT (ψ0). For for each Πr, r = 1, 2, 3, 4 defined in (3.2), define gΠr,i

according to (4.3); for each Ψr, r = 1, 2, 3 defined in (3.2), define gΨr,i according to (4.4); and

for each Φr, r = 1, 2, . . . , 5 + kφ defined in (3.2), define gΦr,i according to (4.6). Define,

gi =



gΠ1,i

gΦ1,i

gΠ2,i + gΦ2,i + gΨ1,i

gΠ3,i + gΦ3,i + gΨ2,i

gΠ4,i + gΦ4,i + gΨ3,i

gΦ5,i

gΦ5+s,i, s = 1, 2, . . . , kφ

(4.7)

Then, the AQS vector at the true parameter value is S∗nT (ψ0) =
∑n

i=1 gi. The {gi} are nearly

uncorrelated as seen from (4.3)-(4.6), and the details given below.

The nature of such decompositions (many terms are uncorrelated) opens up a simple way

for a consistent estimate of the VC matrix of the AQS function. From its general form given in

(4.1), the first term 1
nT

∑n
i=1 E(gig′i) can be estimated by its sample analogue 1

nT

∑n
i=1 ĝiĝ′i,

where ĝi is obtained by replacing both vit and z∗it in (4.7) by ẑ∗it, and replacing ψ0 by ψ̂. This

is justified by the results Π′Z∗ = Π′v, Z∗′Ψy0 = v′Ψy0, and Z∗′ΦZ∗ = v′ΦZ∗ given above,

and the consistency of the M-estimator ψ̂M. See the proof of Theorem 4.1 for details.

To derive the analytical form of Υ(ψ0) =
∑n

i=1

∑
j 6=i E(gig′j). Note that the expectations

of gΠr,i, gΨr,i and gΦr,i in (4.7) are all zero, for all r. First, by Assumptions A and B and

the expressions (4.3) and (4.4), we show that (gΠr,i, gΨν ,i) are uncorrelated, i.e., E(gπr,igπν ,j),

E(gΨr,igΨν ,j) and E(gπr,igΨν ,j) are all zero, for i 6= j, r = 1, 2, 3, 4, and ν = 1, 2, 3. Next, by
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(4.3)-(4.6) and Assumptions A and B, we have, for i 6= j (= 1, . . . , n),

E(gΦr,igΠν ,j) = E{[
∑T

t=1 vitϕr,it +
∑T

t=1(vitz
d
r,it − dr,it)](

∑T
t=1 Πν,jtvjt)}

= E[(
∑T

t=1 vitϕr,it)(
∑T

t=1 Πν,jtvjt)] + E[
∑T

t=1(vitz
d
r,it − dr,it)(

∑T
t=1 Πν,jtvjt)] = 0;

(4.8)

E(gΦr,igΨν ,j) = E{[
∑T

t=1 vitϕr,it +
∑T

t=1(vitz
d
r,it − dr,it)](

∑T
t=1 vjtξν,jt)}

= E[(
∑T

t=1 vitϕr,it)(
∑T

t=1 vjtξν,jt)] + E[
∑T

t=1(vitz
d
r,it − dr,it)(

∑T
t=1 vjtξν,jt)] = 0.

(4.9)

Therefore, gΦr,i is uncorrelated with gΠν ,j and gΨν ,j , i 6= j. These results show that the

covariance between gi and gj comes only from the covariance between gΦr,i and gΦν ,j , i 6= j,

and r, ν = 1, 2, . . . , 5 + kφ. Let a′its be the ith row of the n× n matrix Φu
ts + Φ`

ts, and aijts be

the jth element of a′its. Under Assumptions A and B, we have for i 6= j,

E(gΦr,igΦν ,j) = E[(
∑T

t=1 vitϕr,it)(
∑T

s=1 vjsϕν,jt)]

=
∑T

t=1

∑T
s=1 E[vitvjs(

∑T
p=1 a

′
r,itpz

∗
p)(

∑T
p=1 a

′
ν,jspz

∗
p)]

=
∑T

t=1

∑T
s=1 E[vit(

∑T
p=1 a

′
ν,jspz

∗
p)]E[vjs(

∑T
p=1 a

′
r,itpz

∗
p)]

=
∑T

t=1

∑T
s=1 E[vita′ν,jstz

∗
t )]E[vjsa′r,itsz

∗
s )]

=
∑T

t=1

∑T
s=1 E[aν,jistvitz∗it)]E[ar,ijtsvjsz∗js)]

= σ4
v0

∑T
t=1

∑T
s=1 aν,jistar,ijts.

(4.10)

Collecting all the results above, we have the non-zero elements of Υ(ψ0) as follows,

Υk+r,k+ν(ψ0) =
∑n

i=1

∑n
j 6=i E(gΦr,igΦν ,j)

=
∑n

i=1

∑n
j 6=i σ

4
v0

∑T
t=1

∑T
s=1 aν,jistar,ijts

= σ4
v0tr(ΦrΦν)− σ4

v0

∑n
i=1

∑T
t,s=1 aν,iistar,iits,

(4.11)

for r, ν = 1, 2, . . . 5 + kφ. These show that the covariance matrix Υ(ψ0) has a simple form

and depends only on ψ0. Thus, it can be consistently estimated by plugging in a consistent

estimate of ψ0. Finally, the consistency of the proposed estimator of the variance of the

estimating functions, Σ̂nT = 1
nT

∑n
i=1 ĝiĝ′i +

1
nT Υ(ψ̂M), is proved in the following theorem.

Theorem 4.1. Under the assumptions of Theorem 3.1, we have, as n→∞

Σ̂nT − Σ(ψ0) =
1
nT

n∑
i=1

[ĝiĝ′i − E(gig′i)] +
1
nT

[Υ(ψ̂M)−Υ(ψ0)]
p−→ 0,

and hence H−1
nT (ψ̂M)Σ̂nTH

−1′
nT (ψ̂M)−H−1

nT (ψ0)ΣnT (ψ0)H−1′
nT (ψ0)

p−→ 0.

18



5. Monte Carlo Study

Extensive Monte Carlo experiments are run to investigate the finite sample performance

of the proposed M-estimator of the SDPD-IFE model and the extended OPMD estimator of

its VC matrix. We use the following two data generating processes (DGPs):

DGP1: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + xtβ + Γft + ut, ut = λ3W3ut + vt;

DGP2: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + xtβ + Γft + vt.

To substantiate our claim that the proposed methods are superior when T is small, compar-

isons are made with (i) the bias corrected CQML estimator (BC-CQMLE) of Shi and Lee

(2017) using DGP1,17 and (ii) the GMM estimator in Kuersteiner and Prucha (2020) using

DGP2.18 The former is designed for large T and the latter is valid for small T .

The exogenous time varying regressors xt, the T × r matrix of unobserved factors F

and their n × r loadings matrix Γ are generated in a similar fashion as Shi and Lee (2017).

xt = (x1,t, x2,t) is an n × 2 matrix of regressors, whose elements are generated according to

x1,it = 0.25(γ′ift + (γ′ift)
2 + 1′γi + 1′ft) + η1,it, and x2,it = cη2,it. The elements of γi, ft, η1it,

and η2,it are generated independently from standard normal distribution, and c is a constant.

We use c = 1 for DGP1 and c = 2 for DGP2 as the numerical stability of the GMM method

requires a significantly larger signal-to-noise ratio. The spatial weight matrices are generated

according to the following schemes: Rook contiguity, Queen contiguity, or group interaction.19

The error (vt) distribution can be (i) normal, (ii) normal mixture (10%N(0, 4), 90%N(0, 1)),

or (iii) chi-squared with degrees of freedom 3. In both (ii) and (iii), the generated errors are

standardized to have mean zero and variance σ2
v . We choose β1 = β2 = σ2

v = 1, ρ= 0.3, and

λ1 =λ2 =λ3 = 0.2. The number of factors r= 1 or 2. We set the processes starting time at

t = −10 (m = 10), n = 50, 100, 200, 400 for T = 3, and n = 25, 50, 100, 200 for T = 10. Each

set of Monte Carlo results, under a set of values of (n, T, ρ, λ′s), is based on 2000 samples.

Monte Carlo (empirical) mean and standard deviation (sd) are reported for the proposed

M-estimator, along with r̂se, the empirical average of the robust standard errors (ses) based

on the VC matrix estimate H−1
nT (ψ̂M)Σ̂nTH

−1
nT (ψ̂M). r̂se should be compared with the corre-

17We thank the authors for making their codes available at https://www.w-shi.net/research.html.
18We thank the authors for codes at http://econweb.umd.edu/%7Ekuersteiner/research_UMD.html.
19The Rook and Queen schemes are standard. For group interaction, we first generate k = nα groups of

sizes ng ∼ U(.5n̄, 1.5n̄), g = 1, · · · , k, where 0 < α < 1 and n̄ = n/k, and then adjust ng so that
Pk

g=1 ng = n.
The reported results correspond to α = 0.5. See Yang (2015) for details in generating these spatial layouts.
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sponding empirical sd. The ses of the M-estimator, ŝe and s̃e, based on Σ̂nT only and on ĤnT

only are also computed, and the results (unreported to conserve space) show that they are

not robust. A subset of results are reported in Tables 1-7. Monte Carlo results involved in the

discussions but unreported due to space constraint can be found online through Appendix C.

The results show an excellent finite sample performance of the proposed M-estimator and

the OPMD-type estimator of the VC matrix of the M-estimator, irrespective of the spatial

layouts, the error distributions, the number of factors, etc. The proposed estimation and

inference methods clearly dominant, in terms of bias and efficiency, the bias-corrected CQML

method of Shi and Lee (2017) valid under large T (Tables 1-6), and the GMM method of

Kuersteiner and Prucha (2020) under a more general setup (Table 7).

Table 1 presents the results with T = 3, r = r0 = 1 and Rook contiguity spatial layout.

The M-estimator of the dynamic parameter is nearly unbiased, whereas the corresponding

BC-QMLE can be quite biased and as n increases it does not show a sign of convergence. This

shows that their bias correction does not address the initial values problem when T is small.

The M-estimators of the spatial parameters λ1 and λ2 also show an excellent finite sample

performance, whereas that of λ3 shows some small bias when errors are drawn from the chi-

squared distribution. The BC-QMLE of λ1 performs quite well, but these of λ2 and λ3 are

slightly biased. While the biases of the BC-QMLEs of λ2 and λ3 are not severe, the standard

error estimate (reported in Appendix C) performs poorly. In contrast, the robust ses (rses)

of M-estimator are on average very close to the corresponding Monte Carlo sds, showing the

robustness and good finite sample performance of the proposed VC matrix estimate.

Table 2 presents the results with T = 3, r = r0 = 1, group interaction for W1 and W2,

and Queen contiguity W3. Under these much denser spatial layouts, the proposed robust

M-estimators continue to perform very well, whereas the BC-QMLEs for ρ and λ′s deteri-

orate significantly, which can be severely biased and show a clear pattern of inconsistency.

Moreover, the rses of our M-estimator still performs quite well and are generally very close

to the corresponding Monte Carlo sds, whereas the ses of BC-QMLE again show large biases.

Table 3 presents the results with T = 3, r = r0 = 2, and Rook contiguity spatial weight

matrices. Compared with Table 1, the M-estimators have slightly larger bias and sds when

the number of factors increases as expected, but their performance is still satisfactory and

more importantly the sign of convergence is clear. Moreover, the rses are also generally close
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to the corresponding Monte Carlo sds. The BC-QMLEs, on the other hand, are severely

biased under this setting, especially for ρ and λ1. The associated standard error estimates of

the BC-QMLEs perform even worse (see Appendix C).

Tables 4 and 5 present the results with T = 10, r = r0 = 1, under Rook contiguity

spatial layouts and a combination of group interaction and Queen spatial layouts, respectively.

Results show that increasing T further improves performance of the M-estimators and their

robust standard error estimates. Increasing T significantly improves the performance of the

BC-CQML estimators so that they become comparable with the M-estimators except the BC-

CQMLE of the error variance. Further, the standard errors estimates of the BC-CQMLEs

are still noticeably biased, whereas the proposed rses of the M-estimators are very accurate.

Table 6 presents the results when number of factors is misspecified. The true number

of factor is r0 = 1 but number of factor assumed in the estimation is r = 2. The proposed

M-estimators perform reasonably well under misspecification. The M-estimator of σ2
v show

slightly larger bias than that in the correctly specified case while the M-estimators of the

other parameters show similar performance in terms of bias as in Table 1. The sds are slightly

larger than that in the correctly specified cases. As expected, the rses show some bias as the

asymptotic distribution of the AQS estimator is established based on true number of factor.

The BC-QMLE performs poorly with much larger bias as compared to the M-estimators.

Table 7 presents the estimation results under DGP2, for the purpose of comparing our

M-estimator with the GMM estimator of Kuersteiner and Prucha (2020). From the results

we see that (i) both estimators show clear patterns of convergence, (ii) both perform well in

terms of bias with M-estimator being slightly better, and (iii) the M-estimator is much more

efficient than the GMM estimator as shown by the empirical sds, for all sample sizes and

all error distributions considered. Furthermore, our Monte Carlo experiments show that the

GMM estimator requires a larger signal-to-noise ratio for numerical stability. These confirm

the general statements made in the introduction: the proposed strategy focuses on efficiency

and simplicity, whereas that of Kuersteiner and Prucha (2020) stresses on generality.

6. Conclusion and Discussion

This paper proposes a set of new estimation and inference methods for spatial dynamic

panel data models with interactive fixed effect based on short panels, the adjusted quasi

21



score (AQS) or M-estimation method and the extended outer-product-of-martingale-difference

method. The advantage of the proposed AQS estimation methodology is that it adjusts the

conditional concentrated quasi score functions to remove the effects of conditioning and

concentration. Thus, it is free from the initial conditions, the process starting time and the

factor loadings. It is simple and reliable, preserving the efficiency properties of the likelihood-

type of estimation, and leading naturally to a simple method for standard error estimation.

In contrast, the existing methods are either invalid under short panels or inefficient and

computationally complicated due to the use of GMM method under a more general model

setup. In addition, the nature of the proposed estimation and inference methods suggests

that there is a great potential for extensions to allow for additional features in the model.

Extensions. An interesting extension to consider is to allow for cross-sectional het-

eroskedasticity in the error terms, as discussed in Remark 2.2 and specified in Footnote 10.

Letting H = (IT ⊗H), it is easy to verify the following results:

E(Z ′MF0Ω−1
0 Y−1) = σ2

v0tr(D−1MF0B−1
30 HB30), (6.1)

E(Z ′MF0Ω−1
0 W1Y ) = σ2

v0tr(DMF0B−1
30 HB30W1), (6.2)

E(Z ′MF0Ω−1
0 W2Y−1) = σ2

v0tr(D−1MF0B−1
30 HB30W2), (6.3)

E(Z ′MF0B′
30W3Z) = (T − r)σ2

v0tr(B
−1
30 HW3). (6.4)

Therefore, the ρ and λ components E[ ∂∂ψ `
c
nT (ψ0, φ0)] are no longer functions of only (ψ0, φ0);

they contain the unknown heteroskedasticity matrix H.

While this makes the direct adjustment method as in the paper infeasible, the idea of

AQS prevails, showing the generality and flexibility of the AQS method. As in Li and Yang

(2019) for an SDPD model with additive FE, instead of directly subtracting the expectation,

we can find a set of quadratic terms in Z with expectations being identical to (6.1)-(6.4):

E(Z ′Ω−1
0 D−1MF0Z) = σ2

v0tr(D−1MF0B−1
30 HB30), (6.5)

E(Z ′Ω−1
0 W1DMF0Z) = σ2

v0tr(DMF0B−1
30 HB30W1), (6.6)

E(Z ′Ω−1
0 W2D−1MF0Z) = σ2

v0tr(D−1MF0B−1
30 HB30W2), (6.7)

E[Z ′B′
30[IT ⊗ diag(W3B

−1
30 )]B30MF0Z] = (T − r)σ2

v0tr(B
−1
30 HW3). (6.8)

Modifying the CCQS with the set of quadratic terms above will lead to a set of unbiased

estimating equations robust against unknown H. Note that the φ-component of the AQS is
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naturally robust against unknown H as shown in Footnote 10, and the two step computation

approach still works under heteroskedasticity (see footnote 11 for details). Moreover the

β′ and σ2
v components also do not need further adjustment under heteroskedasticity. After

the adjustment, our estimation and inference method will go through as before and remain

valid. While the fundamental ideas are clear, these extensions require additional complicated

algebra and proofs, and can only be handled by a separate research.

Our methods can also be extended to allow for multiple time lags and multiple spatial

lags as in Kuersteiner and Prucha (2020), to give the following high-order SDPD-IFE model:

yt = ρ1yt−1 + ρ2yt−2 +
∑p1

`=1 λ1`W1`yt +
∑p2

`=1 λ2`W2`yt−1 + xtβ + Γft + ut, (6.9)

ut =
∑p3

`=1 λ3`W3`ut + vt, t = 1, 2, . . . , T.

Our AQS estimation and OPMD-type inference processes can be extended by letting λr =

(λr1, . . . , λr,pr)′, r = 1, 2, 3, B1(λ1) = In −
∑p1

`=1 λ1`W1`, B2(ρ1, λ2) = ρ1In +
∑p2

`=1 λ2`W2`,

and B3(λ3) = In−
∑p3

`=1 λ3`W3`. It would also be interesting to extend our methods to allow

for endogenous spatial weights as in Kuersteiner and Prucha (2020) in future works.

A very interesting and important extension to consider in future research is to ‘unify’

the small-T and large-T estimation and inference for the SDPF-IFE models. It is clear

that under large T , our joint EF or AQS function for ψ and φ given in (2.13) remain valid,

except that the φ parameters become incidental. Estimation and inference concern ψ. Thus,

if the impact (if any) of estimating φ on the estimation of ψ can be ‘removed’ to give an

asymptotically consistent marginal AQS function of ψ, the resulting estimation method would

be valid whether T is small or grows with n. To extend our inference method to cater the

case of large T , the idea of decomposition can still be followed, but it would be necessary to

decompose the marginal AQS function of ψ into nT terms instead of n terms. The averaged

outer products of these terms together with a covariance calculation may still provide a simple

and consistent estimator of the VC matrix of the AQS estimator of ψ.
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Appendix A: Some Basic Lemmas

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two se-

quences of n× n matrices that are uniformly bounded in both row and column sums. Let Cn

be a sequence of conformable matrices whose elements are uniformly O(h−1
n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(h−1
n ).

Lemma A.2. (Lee, 2004, p.1918): For W1 and B1 defined in Model (2.1), if ‖W1‖ and

‖B−1
10 ‖ are uniformly bounded, where ‖ ·‖ is a matrix norm, then ‖B−1

1 ‖ is uniformly bounded

in a neighbourhood of λ10.

Lemma A.3. (Lee, 2004, p.1918): Let Xn be an n × p matrix. If the elements Xn are

uniformly bounded and limn→∞
1
nX

′
nXn exists and is nonsingular, then Pn = Xn(X ′

nXn)−1X ′
n

and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma A.4. (Lemma A.4, Yang, 2018): Let {An} be a sequence of n×n matrices that

are uniformly bounded in either row or column sums. Suppose that the elements an,ij of An

are O(h−1
n ) uniformly in all i and j. Let vn be a random n-vector of iid elements with mean

zero, variance σ2 and finite 4th moment, and bn a constant n-vector of elements of uniform

order O(h−1/2
n ). Then

(i) E(v′nAnvn) = O( n
hn

), (ii) Var(v′nAnvn) = O( n
hn

),

(iii) Var(v′nAnvn + b′nvn) = O( n
hn

), (iv) v′nAnvn = Op( n
hn

),

(v) v′nAnvn − E(v′nAnvn) = Op(( n
hn

)
1
2 ), (vi) v′nAnbn = Op(( n

hn
)

1
2 ),

and (vii), the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn

such that {E(b2ni)} are of uniform order O(h−1
n ).

Lemma A.5. (Lemma A.5, Yang, 2018): Let {Φn} be a sequence of n × n matrices

with row and column sums uniformly bounded, and elements of uniform order O(h−1
n ). Let

vn = (v1, · · · , vn)′ be a random vector of iid elements with mean zero, variance σ2
v, and finite

(4 + 2ε0)th moment for some ε0 > 0. Let bn = {bni} be an n× 1 random vector, independent

of vn, such that (i) {E(b2ni)} are of uniform order O(h−1
n ), (ii) supiE|bni|2+ε0 < ∞, (iii)

hn
n

∑n
i=1[φn,ii(bni − Ebni)] = op(1) where {φn,ii} are the diagonal elements of Φn, and (iv)
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hn
n

∑n
i=1[b

2
ni − E(b2ni)] = op(1). Define the bilinear-quadratic form: Qn = b′nvn + v′nΦnvn −

σ2
vtr(Φn), and let σ2

Qn
be the variance of Qn. If limn→∞h

1+2/ε0
n /n = 0 and {hn

n σ
2
Qn
} are

bounded away from zero, then Qn/σQn

d−→ N(0, 1).

Appendix B: Proofs for Section 3 and 4

To simplify the notation, a parametric quantity (scalar, vector or matrix) evaluated

at the general values of the parameters is denoted by dropping its arguments, e.g., B1 ≡

B1(λ1),B1 ≡ B1(λ1), and Ω(λ3) ≡ Ω. In proving the theorems, the following matrix re-

sults are used: (i) eigenvalues of a projection matrix are either 0 or 1; (ii) eigenvalues of

a positive definite matrix are strictly positive; (iii) for symmetric matrix A and positive

semidefinite (p.s.d.) matrix B, γmin(A)tr(B) ≤ tr(AB) ≤ γmax(A)tr(B); (iv) for symmetric

matrices A and B, γmax(A+B) ≤ γmax(A) + γmax(B); and (v) for p.s.d. matrices A and B,

γmax(AB) ≤ γmax(A)γmax(B). See, e.g, Bernstein (2009).

Proof of Theorem 3.1: Under Assumption G, by Theorem 5.9 of van der Vaart (1998)

the consistency of δ̂ follows if supδ∈∆
1
nT ‖S

∗c
nT (δ)− S̄∗cnT (δ)‖ p−→ 0 as n→∞, where S∗cnT (δ) is

the concentrated AQS function for δ and S̄∗cnT (δ) is its population counterpart. Both quantities

are defined above Theorem 3.1 and their exact expressions are given below:

S∗cnT (δ) =



1
σ̂2

v(δ)
Ẑ ′(δ)MFΩ−1Y−1 − tr(MFD−1),

1
σ̂2

v(δ)
Ẑ(δ)′MFΩ−1W1Y − tr(MFW1D),

1
σ̂2

v(δ)
Ẑ ′(δ)MFΩ−1W2Y−1 − tr(MFW2D−1),

1
σ̂2

v(δ)
Ẑ ′(δ)MFB′

3W3Ẑ(δ)− (T − r)tr(B−1
3 W3),

1
σ̂2

v(δ)
Ẑ ′(δ)[MF Ḟs(F ′F )−1F ′ ⊗ Ω−1]Ẑ(δ), s = 1, . . . , kφ.

(B.1)

S̄∗cnT (δ) =



1
σ̄2

v(δ)
E[Z̄ ′(δ)MFΩ−1Y−1]− tr(MFD−1),

1
σ̄2

v(δ)
E[Z̄ ′(δ)MFΩ−1W1Y ]− tr(MFW1D),

1
σ̄2

v(δ)
E[Z̄ ′(δ)MFΩ−1W2Y−1]− tr(MFW2D−1),

1
σ̄2

v(δ)
E[Z̄ ′(δ)MFB′

3W3Z̄(δ)]− (T − r)tr(B−1
3 W3),

1
σ̄2

v(δ)
E{Z̄ ′(δ)[MF Ḟs(F ′F )−1F ′ ⊗ Ω−1]Z̄(δ)}, s = 1, . . . , kφ,

(B.2)
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where σ̄2
v(δ) = 1

n(T−r)E
[
Z̄(δ)′MFΩ−1Z̄(δ)

]
, Z̄(δ) = Z(θ)|β=β̄(δ) = B1Y − B2Y−1 −Xβ̄(δ),

and β̄(δ) = (X′MFΩ−1X)−1X′MFΩ−1(B1EY−B2EY−1). With (B.1) and (B.2), the proof

of consistency of δ̂ boils down to the proofs of the following:

(a) infδ∈∆ σ̄2
v(δ) is bounded away from zero,

(b) supδ∈∆

∣∣σ̂2
v(δ)− σ̄2

v(δ)
∣∣ = op(1),

(c) supδ∈∆
1
nT

∣∣Ẑ ′(δ)MFΩ−1Y−1 − E[Z̄ ′(δ)MFΩ−1Y−1]
∣∣ = op(1),

(d) supδ∈∆
1
nT

∣∣Ẑ ′(δ)MFΩ−1W1Y − E[Z̄ ′(δ)MFΩ−1W1Y ]
∣∣ = op(1),

(e) supδ∈∆
1
nT

∣∣Ẑ ′(δ)MFΩ−1W2Y−1 − E[Z̄ ′(δ)MFΩ−1W2Y−1]
∣∣ = op(1),

(f) supδ∈∆
1
nT

∣∣Ẑ ′(δ)MFB′
3W3Ẑ(δ)− E[Z̄ ′(δ)MFB′

3W3Z̄(δ)]
∣∣ = op(1),

(g) supδ∈∆
1
nT

∣∣Ẑ ′(δ)[MF Ḟs(F ′F )−1F ′⊗Ω−1]Ẑ(δ)−E{Z̄ ′(δ)[MF Ḟs(F ′F )−1F ′⊗Ω−1]Z̄(δ)}
∣∣

= op(1), s = 1, . . . , kφ.

Denote A = MFΩ−1 = MF ⊗ (B′
3B3), and let A

1
2 be a square-root matrix of A. Define

Z̄†(δ) = A
1
2 Z̄(δ), Ẑ†(δ) = A

1
2 Ẑ(δ), and B†

r = A
1
2 Br, r = 1, 2. Let Y ◦ = Y −E(Y ) and Y ◦

−1 =

Y−1−E(Y−1). Further define the projection matrices: M = InT −A
1
2 X(X′AX)−1X′A

1
2 and

P = InT −M. Then, we can write:

Z̄†(δ) = M(B†
1Y −B∗

2Y−1) + P(B∗
1Y

◦ −B†
2Y

◦
−1), (B.3)

Ẑ†(δ) = M(B†
1Y −B†

2Y−1). (B.4)

Proof of (a). Using the expression (B.3) and by the orthogonality between M and P,

we can write σ̄2
v(δ) = 1

n(T−r)E[Z̄†′(δ)Z̄†(δ)] as follows:

σ̄2
v(δ) = 1

n(T−r)tr[Var(B†
1Y −B†

2Y−1)] + 1
n(T−r)(B

†
1EY −B†

2EY−1)′M(B†
1EY −B†

2EY−1).

By Assumption E(iv) and the assumptions given in the theorem, we have for the first

term, infδ∈∆
1

n(T−r)tr[AVar(B1Y −B2Y−1)] ≥ 1
n(T−r) infδ∈∆γmin[Var(B1Y −B2Y−1)]tr(MF⊗

B′
3B3) ≥ 1

ncyinfλ3∈Λ3tr(B
′
3B3) ≥ 1

ncyn[infλ3∈Λ3γmin(B′
3B3)] ≥ cyc3 > 0. The second term

is non-negative uniformly in δ ∈ ∆ as M is positive semi-definite (p.s.d). It follows that

infδ∈∆σ̄
2
v(δ) > c > 0, and result (a) is proved.

Proof of (b). Using (B.3) and (B.4), we can decompose σ̂2
v(δ)− σ̄2

v(δ) into four terms

σ̂2
v(δ)− σ̄2

v(δ) = (Q1 − EQ1) + (Q2 − EQ2)− 2(Q3 − EQ3)− EQ4. (B.5)

where Q1 = 1
n(T−r)Y

′B†′
1 MB†

1Y , Q2 = 1
n(T−r)Y

′
−1B

†′
2 MB†

2Y−1, Q3 = 2
n(T−r)Y

′B†′
1 MB†

2Y−1
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and Q4 = 1
n(T−r)(B

†
1Y

◦−B†
2Y

◦
−1)

′P(B†
1Y

◦−B†
2Y

◦
−1). The result in (b) follows if Qj−EQj

p→

0, j = 1, 2, 3, and EQ4 → 0, uniformly in δ ∈ ∆.

Recall from (2.9): Y = Qy0 + η + DZ and Y−1 = Q−1y0 + η−1 + D−1Z. By B30Z =

v + vec(B30Γ0F
′
0), we can further write Y = Qy0 + η∗ + DB−1

30 v, and Y−1 = Q−1y0 +

η∗−1 + D−1B−1
30 v, where η∗ = η+ Dvec(Γ0F

′
0) and η∗−1 = η−1 + D−1vec(Γ0F

′
0). Using these

expressions and letting M† = A
1
2 MA

1
2 , we can write

Q1 =
∑5

`=1Q1,` + 1
n(T−r)η

∗′B′
1M

†B1η
∗,

Q2 =
∑5

`=1Q2,` + 1
n(T−r)η

∗′
−1B

′
2M

†B2η
∗
−1,

Q3 =
∑8

`=1Q3,` + 2
n(T−r)η

∗′B′
1M

†B2η
∗
−1,

where Qk` takes one of the forms: 1
n(T−r)y

′
0R1y0, 1

n(T−r)v
′R2v, 1

n(T−r)y
′
0R3v, 1

n(T−r)y
′
0R4,

and 1
n(T−r)v

′R5. R1,R2, and R3 are nT ×nT matrices while R4 and R5 are nT × 1 vectors.

These parametric quantities Rs, s = 1, . . . , 5 depend on δ through B1, B2 and M∗, and involve

Q, Q−1, D, D−1, η∗ and η∗−1, which are all matrix or vector functions of true parameters.

By Assumptions D, E and Lemma A.1, the nT × nT matrices Q, Q−1, D, and D−1 are

uniformly bounded in both row and column sums, and the elements of the nT × 1 vectors η∗

and η∗−1 are uniformly bounded. By Assumptions D, E(iii) and Lemmas A.1 and A.3, B1, B2

and M∗ are uniformly bounded in both row and column sums. Therefore, by Lemma A.1(i)

matrices R`, ` = 1, 2, 3 are uniformly bounded in both row and column sums and by Lemma

A.1(iii) elements of vectors R4 and R4 are uniformly bounded. Hence, by Assumption F,

we immediately have the results that 1
nT [y′0R1y0 − E(y′0R1y0)] = op(1), and 1

nT [y′0R4 −

E(y′0)R4] = op(1). The point wise convergence of the quadratic terms 1
nT v′R2v, and the

bilinear term 1
nT y′0R3v, can be established by Assumptions B, E and results (v) and (vi) in

Lemma A.4. The point wise convergence of the linear terms 1
nT v′R5 can be easily proved

using Chebyshev’s inequality. Therefore, for k = 1, 2, 3, and all `,

Qk,`(δ)− EQk,`(δ)
p−→ 0, for each δ ∈ ∆.

Now, all the Qk,`(δ) terms are linear or quadratic in ρ, λ1 and λ2, and it is easy to

show that supδ∈∆ | ∂∂ωQk,`(δ)| = Op(1), for ω = ρ, λ1, λ2. For λ3 and φ, they only enter

Qk,`(δ) through A in matrix M†. For ω = λ3, φs, s = 1, . . . , kφ, some algebra leads to the

following expression d
dωM† = G′ȦωG, where G = InT −X(X′AX)−1X′A, Ȧλ3 = ∂

∂λ3
A =

MF ⊗ (B′
3W3 + W ′

3B3), and Ȧφs = ∂
∂φs

A = −ṖF,s ⊗ (B′
3B3). By Assumption E(iv), we
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have supδ∈∆ γmax(Ȧλ3) = supδ∈∆ γmax(B′
3W3 + W ′

3B3) < c. Moreover, supδ∈∆ γmax(G) =

supδ∈∆ γmax(X(X′AX)−1X′A) = supδ∈∆ γmax(A
1
2 X(X′AX)−1X′A

1
2 ) = 1. By applying

Lemmas A.1, A.4, and Assumption F repeatedly, we can show that, for k = 1, 2, 3, and all `,

supδ∈∆ | ∂∂λ3
Qk,`(δ)| = Op(1). For example, for | ∂∂λ3

Q1,1(δ)|,

supδ∈∆

∣∣ ∂
∂λ3

Q1,1(δ)
∣∣ = supδ∈∆

∣∣ 1
n(T−r)

∂
∂λ3

y′0Q
′B′

1M
†B1Qy′0

∣∣
6 supδ∈∆ γmax(Ȧλ3)γmax(G′G)γmax(B′

1B1) 1
n(T−r)

∣∣y′0Q′Qy′0
∣∣ = Op(1).

Recall ṖF,s = MF Ḟs(F ′F )−1F ′+F (F ′F )−1Ḟ ′sMF , by Assumptions C and E(iv), it is easy to

see that γmax(Ȧφs) is uniformly bounded. Therefore by Lemmas A.1, A.4, and Assumption F,

we have for k = 1, 2, 3, and all `, supδ∈∆ | ∂∂φs
Qk,`(δ)| = Op(1), s = 1, 2, . . . , kφ. It follows that

Qk,`(δ) are stochastically equicontinuous. By Theorem 2.1 of Newey (1991), the pointwise

convergence and stochastic equicontinuity therefore lead to,

Qk,`(δ)− EQk,`(δ)
p−→ 0, uniformly in δ ∈ ∆.

It left to show that EQ4(δ) = 1
n(T−r)E[(B∗

1Y
◦−B∗

2Y
◦
−1)

′P(B∗
1Y

◦−B∗
2Y

◦
−1)] → 0, uniformly

in δ ∈ ∆. By Assumption D, γmin

(
X′AX
nT

)
> cx. Therefore, we have by the assumptions in

Theorem 3.1 and Assumption D,

EQ4 = 1
n(T−r)tr[AX(X′AX)−1X′AVar(B1Y −B2Y−1)]

≤ 1
n(T−r)γ

2
max(A)γ−1

min

(
X′AX
nT

)
c̄y

1
nT tr(X′X) = O(n−1).

Hence, σ̂2
v(δ)− σ̄2

v(δ)
p−→ 0, uniformly in δ ∈ ∆, completing the proof of (b).

Proofs of (c)-(g). Using the expressions (B.3) and (B.4) and the representations of Y

and Y−1 in (2.9), all the quantities inside | · | in (c)-(g) can all be expressed in the forms

similar to (B.5). Thus, the proofs of (c)-(g) follow the proof of (b). �

Proof of Theorem 3.2: By applying the mean value theorem (henceforth MVT) to

each element of S∗nT (ψ̂), we have,

1
nT S

∗
nT (ψ̂) = 1

nT S
∗
nT (ψ0) +

[
1
nT

∂
∂ψ′S

∗
nT (ψ)|ψ=ψ̄r in rth row

]
(ψ̂M −ψ0) = 0, (B.6)

where {ψ̄r} are between ψ̂ and ψ0 elementwise. The result of the theorem follows if

(a) 1√
nT
S∗nT (ψ0)

D−→ N
[
0, limn→∞ ΣnT (ψ0)

]
,

(b) 1
nT

[
∂
∂ψ′S

∗
nT (ψ|ψ=ψ̄r in rth row)− ∂

∂ψ′S
∗
nT (ψ0)

] p−→ 0, and

(c) 1
nT

[
∂
∂ψ′S

∗
nT (ψ0)− E

(
∂
∂ψ′S

∗
nT (ψ0)

)] p−→ 0.

28



Proof of (a). In (3.2), we write the AQS vector as linear combinations of terms linear

or quadratic in Z∗ and bilinear in Z∗ and y0. Using Z∗ = v + vec(B30Γ0F
′
0), and the matrix

multiplication result vec(B30Γ0F
′
0)
′MF0K = 0 for any nT × 1 vector K, the AQS vector at

the true parameters can be written as follows:

S∗nT (ψ0) =



Π′
1v

v′Φ1v − µσ2
v0

v′Ψ1y0 + v′Φ2v + Π∗′
2 v − µρ0

v′Ψ2y0 + v′Φ3v + Π∗′
3 v − µλ10

v′Ψ3y0 + v′Φ4v + Π∗′
4 v − µλ20

v′Φ5v − µλ30

v′Φ5+sv, s = 1, . . . , kφ

(B.7)

where Π∗
2 = 1

σ2
v0

(MF0 ⊗B30)η∗−1, Π∗
3 = 1

σ2
v0

(MF0 ⊗B30)W1η
∗, Π∗

4 = 1
σ2

v0
(MF0 ⊗B30)W2η

∗
−1.

By Assumptions C, E, and Lemma A.1, the nT × nT matrices Φ and Ψ are uniformly

bounded in both row and column sums, and elements of vectors Π or Π∗ are uniformly

bounded. For every non-zero (k + 5 + kφ)× 1 vector of constants `, we can express,

`′S∗nT (ψ0) =
∑T

t=1

∑T
s=1 v

′
tAtsvs +

∑T
t=1 v

′
tg(y0)− `′µ,

for suitably defined non-stochastic matrices Ats, vector µ, and functions g(y0) that are linear

in y0, where µ = (0′k, µσ2
v
, µρ, µλ1 , µλ2 , µλ3 , 0

′
kγ

)′. As {y0, v1, . . . , vT } are independent, the

asymptotic normality of 1√
nT
`′S∗nT (ψ0) follows from Lemma A.5. The Cramér-Wold devise

leads to the joint asymptotic normality of 1√
nT
S∗nT (ψ0).

Proof of (b). Let the nT × 1 vector Xp, p = 1, · · · , k, be the pth column of X. Denote

nT × 1 vectors, Xk+1 = Y−1, Xk+2 = W1Y , Xk+3 = W2Y−1. Further, denote βk+1 = ρ,

βk+2 = λ1, and βk+3 = λ2. The Hessian matrix, H(ψ) = ∂
∂ψ′S

∗
nT (ψ), has the elements:

Hβpβq = − 1
σ2

v
X ′
p(MF ⊗ Ω−1)Xq − µ̇βp,βq , Hβpλ3 = − 1

σ2
v
X ′
p[MF ⊗ (W ′

3B3 +B′
3W3)]Z(θ)

Hβpσ2
v

= − 1
σ4

v
X ′
p(MF ⊗ Ω−1)Z(θ), Hσ2

vσ
2
v

= − 1
σ6

v
Z ′(θ)(MF ⊗ Ω−1)Z(θ) + n(T−r)

2σ4
v

Hσ2
vλ3

= − 1
σ4

v
Z ′(θ)(MF ⊗W ′

3B3)Z(θ), Hσ2
vβp

= Hβpσ2
v
,Hλ3βp = Hβpλ3 ,Hλ3σ2

v
= Hσ2

vλ3

Hλ3λ3 = − 1
σ2

v
Z ′(θ)(MF ⊗W ′

3W3)Z(θ)− (T − r)tr(B−1
3 W3B

−1
3 W3)

Hβpφs = − 1
σ2

v
X ′
p(ṖF,s ⊗ Ω−1)Z ′(θ)− µ̇βp,φs Hσ2

vφs
= − 1

2σ4
v
Z ′(θ)(ṖF,s ⊗ Ω−1)Z(θ)

Hλ3φs = − 1
σ2

v
Z ′(θ)(ṖF,s ⊗B′

3W3)Z(θ), Hφsβp = − 1
σ2

v
X ′
p(ṖF,s ⊗ Ω−1)Z ′(θ)

Hφsσ2
v

= Hσ2
vφs
, Hφsλ3 = Hλ3φs , Hφsφ`

= − 1
σ2

v
Z ′(θ)(Ȧs,` ⊗ Ω−1)Z(θ).

where p, q = 1, . . . , k + 3, s, ` = 1, . . . , kφ, As = MF Ḟs(F ′F )−1F ′, Ȧs,` = ∂
∂φ`

As, µ̇βp,βq =
∂
∂βq

µβp , and µ̇βp,φs = ∂
∂φs

µβp , where µβp = 0 for p ≤ k, and defined under (3.2) for p > k.
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First, it is easy to show that 1
nTH(ψ̄) = Op(1) by Lemmas A.1, A.4 and the model

assumptions, where we use H(ψ̄) to denote ∂
∂ψ′S

∗
nT (ψ|ψ=ψ̄r in rth row) for notation simplicity.

As σ−rv , r = 2, 4, 6, appear in H(ψ) multiplicatively, we have 1
nTH(ψ̄) = 1

nTH(λ̄, β̄, ρ̄, σ2
v0) +

op(1) as σ̄−rv = σ−rv0 + op(1). Consider the term Hβpβq(λ̄, β̄, ρ̄, γ̄, σ
2
v0). By MVT we have,

X ′
p[MF (φ̄)⊗ Ω−1(λ̄3)]Xq

= X ′
p(MF0 ⊗ Ω−1

0 )Xq +X ′
p[MF (φ̃)⊗ (B′

3(λ̃3)W3 +W ′
3B3(λ̃3))]Xq(λ̄3 − λ30)

−
∑kφ

s=1X
′
p[ṖF,s(φ̃)⊗ Ω−1(λ̃3)](φ̄s − φs0),

where (λ̃3, φ̃
′) is between (λ̄3, φ̄

′) and (λ30, φ
′
0). By (2.9), Assumptions C, E, F, Lemmas A.1,

A.4, and the consistency of ψ̂, 1
nTX

′
p[MF (φ̄)⊗ Ω−1(λ̄3)]Xq = 1

nTX
′
p(MF0 ⊗ Ω−1

0 )Xq + op(1).

For the convergence of µ̇βp,βq , consider µρ,ρ(ψ̄) = tr[( ∂∂ρD−1(ρ̄, λ̄))MF (φ̄)] for example.

By the expression of D−1 in (2.9) it is easy to see that blocks of ∂
∂ρD−1 are products of

matrices B−1
1 , B2, and W2, which are bounded in both row and column sums for (ρ, λ) in a

neighborhood of (ρ0, λ0) by Lemma A.2 and Assumptions C and E. So, the derivatives of

µρ,ρ(ψ̄) with respect to ρ , λ and φ are the traces of matrices that are products of MF , B−1
1 ,

B2, W1, and W2, and are bounded in both row and column sums by Lemma A.1, A.2 and

Assumption C. Hence, by the MVT and consistency of ψ̂M we have 1
nT µρ,ρ(ψ̄) = 1

nT µρ,ρ(ψ0)+

op(1). For p, q = 1, · · · k+3, the convergence of µ̇βp,βq(ψ̄) can be shown similarly. So we have

established that 1
nTHβpβq(ψ̄) = 1

nTHβpβq(ψ) + op(1). Using Z̄ = Z −
∑k+3

p=1 Xp(β̄p− βp0) and

representations for Y and Y−1 given in (2.9), the convergence of other terms in H(ψ) that

involve Z(θ) can be shown similarly by repeatedly applying the MVT and Assumptions C,

E, F, Lemmas A.1 and A.4, and the consistency of ψ̂M.

Proof of (c). By the representations given in (2.9), the elements of Hessian matrix can

be written as linear combinations of quadratic and linear terms of v, quadratic and linear

terms of y0, bilinear terms of v and y0. Thus, the results follow by repeatedly applying

Assumption F, Lemma A.1, and Lemma A.4. �

Proof of Theorem 4.1: The proof is given online with information in Appendix C. �

Appendix C: Supplementary Data

Supplementary material containing the proof of Theorem 4.1 and additional Monte Carlo

results are given online at http://www.mysmu.edu.sg/faculty/zlyang/SubPages/research.htm
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Table 1. Empirical Mean(sd)[r̂se] of BC-CQMLE and M-Estimator: DGP1, T = 3, m = 10
W1 = W2 = W3: Rook Contiguity, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 50

1 .9746(.103) .9982(.100)[.100] .9770(.103) .9998(.100)[.098] .9736(.104) .9955(.104)[.098]

1 .9744(.106) .9925(.103)[.099] .9691(.110) .9890(.107)[.099] .9782(.112) .9965(.109)[.099]

1 .5801(.088) .9007(.141)[.132] .5674(.167) .8832(.212)[.202] .5752(.123) .8930(.200)[.177]

.3 .2427(.072) .2959(.062)[.062] .2407(.083) .2930(.068)[.065] .2435(.073) .2953(.060)[.061]

.2 .1766(.141) .1929(.129)[.124] .1741(.136) .1936(.121)[.127] .1720(.133) .1904(.125)[.120]

.2 .2219(.076) .2028(.079)[.077] .2224(.075) .2062(.077)[.078] .2210(.078) .2032(.078)[.080]

.2 .1881(.200) .1931(.195)[.181] .1835(.195) .1869(.187)[.187] .1896(.191) .1892(.190)[.180]

n = 100

1 .9994(.076) .9988(.075)[.073] 1.0005(.078) 1.0004(.078)[.072] 1.0009(.080) 1.0012(.078)[.074]

1 .9929(.073) .9984(.072)[.072] .9892(.075) .9960(.073)[.072] .9934(.076) .9993(.075)[.073]

1 .6306(.065) .9497(.099)[.095] .6196(.134) .9341(.195)[.185] .6300(.098) .9493(.150)[.141]

.3 .3117(.058) .2996(.046)[.047] .3146(.064) .2990(.050)[.051] .3137(.062) .3016(.049)[.050]

.2 .1956(.092) .1936(.091)[.091] .2062(.085) .2032(.084)[.087] .1960(.093) .1957(.092)[.089]

.2 .1869(.079) .1989(.073)[.073] .1829(.081) .1959(.075)[.076] .1877(.079) .1994(.074)[.074]

.2 .1921(.133) .1971(.133)[.132] .1799(.127) .1899(.127)[.130] .1939(.134) .1983(.133)[.130]

n = 200

1 .9851(.051) 1.0003(.053)[.052] .9852(.052) 1.0002(.054)[.052] .9811(.051) .9963(.053)[.051]

1 .9792(.051) .9997(.052)[.051] .9798(.053) .9995(.054)[.051] .9812(.054) 1.0014(.054)[.051]

1 .6252(.046) .9756(.075)[.072] .6210(.092) .9688(.143)[.140] .6262(.072) .9773(.119)[.107]

.3 .2571(.031) .3003(.034)[.033] .2583(.034) .3002(.036)[.036] .2577(.033) .3009(.037)[.035]

.2 .1874(.065) .1974(.065)[.064] .1903(.067) .2000(.064)[.064] .1937(.065) .2012(.064)[.064]

.2 .2007(.048) .1996(.052)[.051] .1995(.047) .1983(.050)[.050] .1990(.049) .1997(.051)[.050]

.2 .1993(.091) .1980(.090)[.089] .1980(.091) .1976(.090)[.089] .1960(.088) .1960(.087)[.087]

n = 400

1 .9951(.036) .9985(.036)[.036] .9964(.036) .9997(.036)[.035] .9971(.036) .9999(.036)[.036]

1 .9861(.037) 1.0005(.037)[.036] .9858(.038) 1.0000(.037)[.036] .9837(.037) .9980(.036)[.037]

1 .6425(.032) .9899(.050)[.051] .6367(.068) .9891(.105)[.105] .6424(.051) .9980(.081)[.078]

.3 .2593(.027) .2999(.023)[.023] .2595(.031) .3001(.027)[.027] .2595(.029) .3000(.025)[.024]

.2 .1993(.048) .1994(.048)[.048] .1985(.049) .1999(.047)[.047] .2008(.049) .2002(.048)[.048]

.2 .2057(.030) .2001(.031)[.031] .2046(.030) .1998(.032)[.032] .2041(.030) .1999(.031)[.032]

.2 .1954(.065) .1995(.066)[.066] .1994(.068) .1994(.066)[.066] .1915(.066) .1982(.066)[.066]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 2. Empirical Mean(sd)[r̂se] of BC-CQMLE and M-Estimator: DGP1, T = 3, m = 10
W1 = W2: Group Interaction; W3: Queen Contiguity, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 50

1 .9637(.109) .9988(.116)[.116] .9624(.108) .9971(.116)[.112] .9599(.112) .9934(.119)[.112]

1 .9811(.109) 1.0012(.109)[.107] .9753(.108) .9973(.109)[.102] .9745(.111) .9964(.111)[.104]

1 .6111(.096) .9072(.144)[.137] .6096(.179) .9064(.237)[.232] .6114(.135) .9134(.201)[.185]

.3 .2601(.064) .3011(.070)[.069] .2590(.067) .3005(.072)[.069] .2555(.065) .2977(.071)[.068]

.2 .1403(.135) .1716(.126)[.132] .1366(.137) .1768(.130)[.119] .1360(.136) .1685(.121)[.118]

.2 .2141(.099) .2062(.092)[.093] .2093(.099) .2004(.091)[.086] .2100(.101) .2028(.091)[.087]

.2 .1477(.162) .1908(.178)[.188] .1547(.155) .1797(.187)[.180] .1451(.154) .1849(.174)[.179]

n = 100

1 .9691(.079) .9987(.081)[.079] .9729(.080) 1.0017(.085)[.081] .9674(.079) .9956(.083)[.080]

1 .9577(.083) .9973(.080)[.079] .9594(.087) .9966(.082)[.079] .9601(.083) .9995(.080)[.079]

1 .6444(.068) .9554(.104)[.099] .6406(.135) .9497(.200)[.181] .6447(.100) .9557(.145)[.141]

.3 .2638(.050) .3005(.053)[.052] .2637(.059) .2993(.061)[.060] .2648(.055) .3010(.059)[.058]

.2 .0689(.084) .1877(.089)[.086] .0686(.085) .1867(.090)[.085] .0687(.089) .1816(.085)[.086]

.2 .3473(.086) .2174(.083)[.080] .3447(.085) .2190(.089)[.082] .3403(.086) .2110(.085)[.082]

.2 .2132(.117) .1917(.127)[.125] .2093(.122) .1845(.125)[.124] .2212(.110) .1887(.123)[.124]

n = 200

1 .9918(.042) .9988(.041)[.042] .9909(.044) .9980(.043)[.043] .9933(.043) 1.0002(.043)[.042]

1 .9935(.052) .9979(.050)[.049] .9957(.050) .9999(.049)[.049] .9939(.050) .9989(.049)[.049]

1 .6683(.048) .9744(.071)[.069] .6708(.097) .9779(.136)[.134] .6694(.075) .9780(.103)[.100]

.3 .3105(.031) .3001(.028)[.028] .3118(.044) .3004(.039)[.037] .3096(.036) .2992(.032)[.032]

.2 .0408(.037) .1894(.063)[.062] .0392(.039) .1894(.065)[.062] .0414(.035) .1894(.061)[.062]

.2 .3381(.031) .2095(.056)[.056] .3378(.032) .2082(.059)[.057] .3367(.032) .2115(.057)[.057]

.2 .2178(.096) .1948(.085)[.085] .2194(.096) .1898(.087)[.085] .2161(.092) .1927(.086)[.085]

n = 400

1 .9561(.036) 1.0005(.036)[.036] .9607(.036) .9997(.036)[.036] .9558(.036) .9989(.036)[.036]

1 .9481(.041) 1.0001(.036)[.036] .9508(.046) .9991(.037)[.036] .9467(.043) .9997(.037)[.036]

1 .6382(.033) .9866(.051)[.050] .6315(.066) .9897(.110)[.109] .6375(.049) .9898(.083)[.082]

.3 .1532(.047) .2999(.023)[.023] .1618(.064) .3001(.028)[.027] .1527(.054) .2995(.025)[.024]

.2 .1161(.048) .2004(.057)[.056] .1181(.048) .1981(.054)[.055] .1126(.047) .1979(.057)[.056]

.2 .2611(.063) .2001(.043)[.043] .2664(.060) .2008(.045)[.045] .2551(.060) .2007(.046)[.046]

.2 .1880(.083) .1991(.059)[.059] .1968(.078) .1989(.058)[.059] .1843(.083) .1977(.060)[.059]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 3. Empirical Mean(sd)[r̂se] of BC-QMLE and M -Estimator: DGP1, T = 3, m = 10
W1 = W2 = W3: Rook Contiguity, r0 = 2, r = 2

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 50

1 .7616(.106) 1.0201(.200)[.165] .7876(.132) 1.0404(.208)[.167] .7760(.122) 1.0350(.205)[.165]

1 .6464(.141) .9876(.172)[.159] .6812(.173) .9923(.178)[.160] .6705(.145) .9965(.177)[.165]

1 .2120(.046) .7848(.176)[.170] .2017(.061) .7828(.184)[.177] .2104(.052) .7481(.189)[.179]

.3 -.1793(.108) .2698(.110)[.098] -.1395(.170) .2616(.115)[.110] -.1591(.132) .2520(.119)[.113]

.2 .2638(.177) .1941(.190)[.188] .2488(.168) .1931(.198)[.190] .2487(.164) .1898(.197)[.190]

.2 .2348(.151) .2133(.143)[.142] .2202(.147) .2266(.143)[.140] .2174(.154) .2166(.147)[.141]

.2 .0139(.272) .1674(.309)[.303] .0476(.263) .1621(.310)[.298] .0374(.266) .1706(.311)[.297]

n = 100

1 .7475(.135) .9699(.141)[.144] .7750(.149) .9817(.142)[.142] .7556(.143) .9789(.144)[.147]

1 .7796(.104) .9863(.105)[.109] .7989(.119) .9729(.106)[.109] .7881(.109) .9724(.110)[.114]

1 .2053(.031) .8981(.115)[.121] .1968(.041) .9023(.149)[.146] .2024(.036) .8468(.133)[.136]

.3 -.0547(.123) .2906(.097)[.093] -.0094(.169) .2991(.101)[.092] -.0454(.137) .2897(.100)[.102]

.2 .1294(.254) .1964(.160)[.163] .1234(.241) .1950(.163)[.166] .1123(.237) .1933(.164)[.167]

.2 .1771(.208) .2011(.098)[.095] .1797(.194) .2024(.114)[.110] .1675(.199) .1987(.114)[.117]

.2 .1992(.302) .1902(.202)[.201] .2117(.288) .1845(.204)[.207] .2263(.287) .1951(.212)[.215]

n = 200

1 .9759(.176) 1.0102(.087)[.087] 1.0022(.167) 1.0021(.088)[.087] .9866(.168) 1.0014(.089)[.088]

1 .9668(.137) 1.0071(.071)[.072] .9769(.123) 1.0055(.070)[.072] .9739(.131) 1.0087(.074)[.075]

1 .2973(.029) .9489(.083)[.087] .2837(.046) .9640(.096)[.099] .2920(.036) .9348(.103)[.104]

.3 .2091(.192) .3011(.050)[.049] .2346(.181) .3061(.051)[.049] .2251(.184) .3051(.051)[.049]

.2 .1786(.103) .1982(.083)[.084] .1808(.094) .1983(.084)[.084] .1754(.106) .1981(.090)[.091]

.2 .1900(.063) .1993(.060)[.059] .1858(.063) .1994(.061)[.062] .1843(.068) .1982(.067)[.069]

.2 .1933(.139) .1994(.125)[.123] .1839(.126) .1980(.127)[.129] .1926(.138) .1978(.131)[.131]

n = 400

1 .9289(.047) .9996(.028)[.028] .9290(.048) .9989(.031)[.031] .9301(.048) .9984(.029)[.030]

1 .8905(.091) .9963(.049)[.050] .8978(.089) .9983(.051)[.051] .8925(.089) .9865(.048)[.049]

1 .3138(.022) .9893(.071)[.071] .3073(.034) .9888(.084)[.085] .3095(.027) .9833(.083)[.083]

.3 .1682(.180) .2996(.030)[.030] .1970(.185) .2988(.031)[.032] .1807(.182) .2983(.034)[.034]

.2 .1662(.043) .1994(.031)[.031] .1680(.046) .1960(.032)[.033] .1662(.044) .1973(.032)[.033]

.2 .2073(.032) .2003(.026)[.026] .1999(.035) .1970(.028)[.029] .2041(.032) .2000(.027)[.028]

.2 .1910(.078) .1996(.074)[.075] .1982(.076) .1961(.075)[.076] .1930(.078) .1962(.076)[.076]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 4. Empirical Mean(sd)[r̂se] of BC-CQMLE and M -Estimator: DGP1, T = 10, m=10
W1 = W2 = W3: Rook Contiguity, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 25

1 .9958(.069) .9957(.069)[.065] .9995(.070) .9994(.070)[.065] .9991(.069) .9990(.069)[.066]

1 .9966(.070) .9967(.070)[.066] .9926(.072) .9927(.072)[.066] .9995(.069) .9996(.069)[.065]

1 .8256(.078) .9176(.087)[.085] .8199(.186) .9112(.193)[.170] .8265(.133) .9186(.147)[.136]

.3 .2979(.038) .2987(.038)[.035] .3018(.037) .3015(.037)[.035] .2986(.038) .2994(.038)[.035]

.2 .1941(.076) .1949(.076)[.073] .1971(.074) .1971(.074)[.071] .1978(.072) .1976(.072)[.071]

.2 .2020(.064) .2011(.064)[.061] .1982(.063) .1974(.063)[.061] .1976(.063) .1968(.063)[.061]

.2 .2064(.120) .2027(.121)[.117] .1983(.113) .2033(.115)[.113] .1975(.110) .2028(.112)[.113]

n = 50

1 .9978(.044) .9979(.044)[.042] .9992(.045) .9993(.045)[.043] .9996(.046) .9997(.046)[.043]

1 .9985(.046) .9985(.046)[.047] .9997(.048) .9997(.048)[.046] 1.0007(.049) 1.0007(.049)[.047]

1 .8610(.059) .9568(.066)[.064] .8686(.136) .9653(.141)[.139] .8649(.098) .9611(.109)[.103]

.3 .2985(.026) .2994(.026)[.026] .2991(.027) .3000(.027)[.027] .2979(.026) .2998(.026)[.026]

.2 .1973(.060) .1974(.060)[.059] .1980(.060) .1981(.060)[.059] .1952(.059) .1983(.059)[.059]

.2 .2000(.042) .1997(.042)[.041] .1986(.044) .1988(.044)[.042] .2017(.042) .2013(.042)[.042]

.2 .1984(.087) .2012(.088)[.086] .1963(.087) .2011(.087)[.085] .1987(.084) .2013(.084)[.084]

n = 100

1 .9995(.029) .9995(.029)[.030] 1.0000(.032) 1.0000(.032)[.032] 1.0003(.031) 1.0009(.031)[.030]

1 1.0013(.033) 1.0004(.033)[.033] 1.0016(.034) 1.0006(.034)[.033] .9971(.033) .9981(.033)[.033]

1 .8837(.041) .9841(.046)[.046] .8843(.098) .9848(.107)[.105] .8821(.071) .9882(.078)[.075]

.3 .2997(.018) .3002(.018)[.018] .2985(.019) .2998(.019)[.018] .2999(.018) .3001(.018)[.018]

.2 .1961(.038) .1986(.038)[.037] .1990(.038) .1989(.038)[.037] .1998(.038) .1997(.038)[.037]

.2 .2014(.029) .2001(.029)[.029] .2006(.029) .2001(.029)[.029] .1983(.029) .1989(.029)[.029]

.2 .2006(.056) .2006(.056)[.057] .1982(.058) .2002(.058)[.057] .1982(.058) .2003(.058)[.057]

n = 200

1 .9990(.023) .9998(.023)[.023] 1.0005(.024) 1.0003(.024)[.024] .9997(.023) 1.0002(.023)[.023]

1 .9990(.022) .9997(.022)[.023] .9996(.023) .9998(.023)[.023] 1.0009(.023) 1.0001(.023)[.023]

1 .8901(.030) .9989(.033)[.033] .8905(.070) .9981(.076)[.076] .8886(.051) .9980(.057)[.056]

.3 .2978(.013) .2999(.013)[.013] .2971(.014) .2999(.014)[.014] .2975(.014) .2998(.014)[.014]

.2 .2006(.028) .2001(.028)[.028] .1991(.029) .1988(.029)[.029] .1985(.029) .1982(.029)[.029]

.2 .2003(.021) .1999(.021)[.021] .2015(.021) .2001(.021)[.021] .2001(.021) .1996(.021)[.021]

.2 .1974(.042) .1997(.042)[.042] .2006(.043) .2001(.043)[.043] .2011(.043) .2002(.043)[.043]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 5. Empirical Mean(sd)[r̂se] of BC-CQMLE and M -Estimator: DGP1, T = 10, m=10
W1 = W3: Queen Contiguity, W2: Group Interaction, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 25

1 1.0018(.071) 1.0015(.071)[.065] 1.0015(.070) 1.0013(.070)[.065] 1.0000(.070) .9999(.070)[.066]

1 .9966(.069) .9965(.069)[.064] 1.0007(.067) 1.0005(.067)[.063] 1.0017(.066) 1.0015(.066)[.065]

1 .8284(.078) .9208(.087)[.085] .8161(.180) .9071(.200)[.169] .8347(.130) .9278(.145)[.131]

.3 .2970(.037) .2982(.037)[.035] .2970(.037) .2981(.037)[.036] .2937(.039) .2949(.039)[.036]

.2 .1950(.081) .1949(.082)[.075] .1956(.079) .1952(.078)[.074] .1975(.078) .1971(.078)[.075]

.2 .1995(.051) .1992(.051)[.049] .1960(.053) .1957(.053)[.048] .1951(.052) .1947(.052)[.048]

.2 .1888(.140) .1888(.145)[.146] .1798(.141) .1795(.145)[.150] .1851(.136) .1864(.141)[.146]

n = 50

1 .9956(.046) .9960(.046)[.043] 1.0012(.046) 1.0010(.046)[.044] 1.0014(.045) 1.0009(.045)[.042]

1 .9999(.046) 1.0001(.046)[.047] .9995(.047) .9997(.047)[.047] 1.0012(.047) 1.0022(.047)[.047]

1 .8663(.059) .9628(.066)[.063] .8676(.137) .9643(.152)[.140] .8673(.100) .9640(.111)[.102]

.3 .3017(.023) .3004(.023)[.022] .3001(.025) .2988(.025)[.023] .2990(.022) .2977(.023)[.022]

.2 .1999(.043) .2003(.043)[.044] .1989(.045) .1992(.045)[.043] .1956(.046) .1959(.046)[.044]

.2 .1986(.028) .1993(.028)[.026] .1986(.028) .1987(.028)[.027] .2004(.027) .2005(.027)[.026]

.2 .1869(.090) .1942(.092)[.091] .1896(.090) .1890(.092)[.090] .1945(.091) .1948(.092)[.090]

n = 100

1 1.0006(.031) 1.0005(.031)[.030] 1.0004(.031) 1.0004(.031)[.030] 1.0001(.030) 1.0001(.030)[.030]

1 1.0002(.034) 1.0002(.034)[.033] 1.0000(.033) 1.0000(.033)[.033] .9996(.032) .9986(.032)[.033]

1 .8836(.042) .9928(.047)[.046] .8795(.095) .9773(.105)[.102] .8807(.070) .9786(.078)[.075]

.3 .2993(.018) .2998(.018)[.018] .3012(.018) .3006(.018)[.018] .2992(.018) .2987(.018)[.018]

.2 .1964(.041) .1986(.041)[.040] .1976(.040) .1997(.040)[.040] .1957(.040) .1959(.040)[.040]

.2 .1997(.033) .1999(.033)[.033] .1976(.033) .1997(.033)[.033] .1984(.033) .2003(.033)[.033]

.2 .2005(.069) .2001(.070)[.069] .1962(.067) .1978(.068)[.068] .1992(.067) .2007(.067)[.068]

n = 200

1 .9994(.021) .9997(.021)[.021] .9990(.021) .9993(.021)[.021] .9993(.021) .9995(.021)[.021]

1 .9999(.023) .9999(.023)[.023] .9986(.023) .9996(.023)[.023] .9994(.024) .9995(.024)[.024]

1 .8909(.029) .9902(.032)[.033] .8927(.071) .9923(.075)[.075] .8944(.049) .9941(.055)[.055]

.3 .3002(.012) .2999(.012)[.012] .3008(.013) .2999(.013)[.013] .3001(.013) .2999(.013)[.013]

.2 .1986(.028) .1996(.028)[.028] .1994(.026) .1996(.026)[.026] .1998(.029) .2000(.029)[.029]

.2 .1992(.027) .1998(.027)[.027] .1984(.026) .1998(.026)[.026] .1979(.028) .1983(.028)[.026]

.2 .1986(.050) .1998(.050)[.049] .1963(.047) .1995(.048)[.048] .1953(.048) .2001(.048)[.048]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 6. Empirical Mean(sd)[r̂se] of BC-CQMLE and M-Estimator: DPG1, T = 3, m = 10
W1 = W2 = W3: Rook Contiguity, r0 = 1, r = 2

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 50

1 .7243(.174) .9988(.154)[.151] .7857(.196) .9895(.142)[.137] .7507(.185) .9899(.155)[.151]

1 .7370(.181) .9838(.172)[.160] .8110(.199) .9965(.154)[.148] .7728(.190) .9877(.162)[.157]

1 .1701(.039) .6797(.144)[.147] .1607(.048) .6254(.195)[.155] .1653(.043) .6560(.180)[.155]

.3 -.1715(.210) .2939(.107)[.102] -.0564(.262) .2932(.096)[.090] -.1249(.234) .2885(.100)[.102]

.2 .0957(.282) .1870(.190)[.191] .1202(.246) .1806(.171)[.167] .1032(.264) .1622(.183)[.191]

.2 .1705(.246) .2053(.143)[.150] .1852(.209) .2024(.121)[.126] .1716(.234) .1899(.135)[.147]

.2 .1402(.356) .1876(.303)[.301] .1377(.329) .1767(.290)[.284] .1523(.345) .1980(.307)[.315]

n = 100

1 .8124(.195) .9979(.111)[.119] .8778(.179) .9943(.109)[.110] .8396(.192) .9967(.106)[.118]

1 .8458(.149) .9950(.107)[.115] .8929(.150) .9986(.105)[.109] .8674(.161) .9924(.113)[.122]

1 .2444(.033) .7933(.103)[.119] .2243(.052) .7402(.178)[.158] .2360(.042) .7570(.144)[.139]

.3 .1514(.258) .2972(.076)[.077] .2215(.228) .2999(.073)[.073] .1780(.253) .2965(.073)[.083]

.2 .1662(.177) .1997(.147)[.149] .1676(.162) .1961(.135)[.140] .1666(.176) .2028(.136)[.160]

.2 .1957(.149) .1976(.124)[.135] .1806(.142) .1973(.120)[.123] .1877(.142) .1985(.119)[.140]

.2 .1591(.243) .1921(.206)[.224] .1900(.214) .1930(.197)[.212] .1819(.248) .1960(.207)[.233]

n = 200

1 .8223(.069) .9987(.081)[.087] .8431(.084) .9986(.076)[.087] .8371(.078) 1.0006(.079)[.085]

1 .7641(.076) .9978(.078)[.086] .7966(.102) .9985(.073)[.085] .7788(.088) .9971(.078)[.085]

1 .2247(.025) .8775(.088)[.100] .2199(.035) .8154(.140)[.145] .2229(.028) .8644(.115)[.123]

.3 -.0425(.074) .2982(.060)[.060] -.0077(.120) .2998(.057)[.063] -.0255(.098) .2987(.059)[.065]

.2 .1351(.143) .1993(.101)[.112] .1421(.133) .1976(.099)[.109] .1467(.133) .2011(.101)[.111]

.2 .1101(.101) .1999(.094)[.095] .1249(.104) .1996(.082)[.093] .1195(.100) .1996(.089)[.096]

.2 .1984(.185) .2003(.131)[.152] .1959(.170) .1968(.130)[.151] .1922(.168) .1963(.138)[.151]

n = 400

1 .9381(.056) .9991(.055)[.060] .9462(.057) .9994(.053)[.060] .9397(.058) .9995(.053)[.060]

1 .9412(.058) .9980(.055)[.059] .9548(.056) .9986(.052)[.059] .9449(.058) .9981(.053)[.064]

1 .2859(.022) .9591(.059)[.070] .2745(.035) .9230(.108)[.118] .2811(.028) .9025(.085)[.088]

.3 .2165(.082) .2993(.036)[.039] .2236(.078) .2993(.038)[.046] .2217(.083) .2973(.039)[.036]

.2 .2168(.072) .2002(.069)[.078] .2034(.071) .1992(.070)[.074] .2047(.076) .1977(.072)[.084]

.2 .2156(.049) .2001(.048)[.054] .2166(.046) .2005(.047)[.053] .2150(.047) .2008(.049)[.058]

.2 .1888(.096) .1998(.097)[.108] .1989(.099) .1998(.098)[.106] .1960(.105) .2008(.102)[.118]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 7. Empirical Mean(sd)[r̂se] of GMM and M Estimators: DGP2, T = 3, m = 10
W1 = W2: Rook Contiguity, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ KP-GMM M-Est KP-GMM M-Est KP-GMM M-Est

n = 50

1 .9907(.084) .9992(.050)[.049] .9922(.082) .9992(.053)[.048] .9880(.083) .9991(.052)[.048]

1 .9651(.106) .9984(.050)[.048] .9656(.098) .9998(.051)[.047] .9724(.097) 1.0011(.049)[.048]

.2 .1951(.073) .1995(.034)[.034] .1990(.070) .1992(.035)[.034] .1951(.070) .2010(.035)[.033]

.2 .1890(.104) .1960(.056)[.054] .1985(.104) .1985(.055)[.053] .1903(.103) .1958(.055)[.053]

.2 .1993(.094) .2006(.051)[.048] .1973(.091) .2020(.049)[.047] .1966(.089) .1979(.050)[.047]

n = 100

1 .9694(.063) .9986(.037)[.037] .9722(.061) 1.0012(.038)[.037] .9728(.064) 1.0007(.038)[.036]

1 .9772(.059) .9999(.037)[.036] .9813(.057) 1.0010(.037)[.036] .9836(.060) 1.0007(.038)[.036]

.2 .1855(.064) .1998(.026)[.026] .1886(.063) .2024(.027)[.027] .1856(.062) .2007(.026)[.026]

.2 .2048(.074) .1999(.041)[.041] .2054(.067) .1989(.039)[.040] .2031(.067) .1980(.042)[.041]

.2 .2148(.082) .2022(.044)[.044] .2073(.078) .2002(.045)[.043] .2086(.075) .1996(.045)[.043]

n = 200

1 .9968(.040) 1.0001(.027)[.026] .9976(.038) 1.0003(.025)[.026] .9978(.040) 1.0008(.027)[.026]

1 .9935(.042) .9975(.027)[.025] .9949(.041) .9991(.026)[.025] .9937(.042) .9997(.026)[.026]

.2 .1962(.033) .1999(.019)[.019] .1968(.032) .2003(.020)[.019] .1966(.033) .2006(.020)[.019]

.2 .1996(.048) .2008(.031)[.030] .2005(.049) .1991(.031)[.030] .2016(.049) .2006(.030)[.030]

.2 .1974(.053) .1984(.031)[.030] .1985(.054) .1992(.030)[.029] .2013(.053) .2000(.030)[.030]

n = 400

1 .9986(.029) .9990(.019)[.019] .9892(.029) .9988(.019)[.019] .9921(.029) .9999(.018)[.018]

1 1.0063(.028) 1.0002(.017)[.018] 1.0062(.027) .9999(.018)[.018] 1.0076(.028) 1.0000(.017)[.018]

.2 .2104(.020) .2000(.013)[.013] .2092(.020) .1991(.013)[.013] .2092(.020) .1990(.014)[.013]

.2 .1982(.035) .1995(.021)[.021] .1920(.037) .2004(.022)[.022] .1892(.036) .2001(.021)[.021]

.2 .2063(.037) .2004(.021)[.021] .2067(.036) .1997(.023)[.023] .2071(.036) .1997(.022)[.023]

Note: 1. ψ = (β′, ρ, λ1, λ2)′; 2. r0 = true number of factor, r = assumed number of factor.
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