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Abstract

We propose an M-estimation method for estimating dynamic spatial panel data models

with interactive fixed effects based on (relatively) short panels. Unbiased estimating func-

tions (EF) are obtained by adjusting the concentrated conditional quasi scores, given the

initial values and with the factor loadings being concentrated out, to account for the effects

of conditioning and concentration. Solving the estimating equations gives the M-estimators

of the common parameters and common factors. Under fixed T ,
√
n-consistency and joint

asymptotic normality of the two sets of M-estimators are established. Under T = o(n),

the M-estimators of the common parameters are shown to be
√
nT -consistent and asymp-

totically normal. For inference, difficulty lies in the estimation of the variance-covariance

(VC) matrix of the EF. We decompose the EF into a sum of n nearly uncorrelated terms.

Outer products of these n terms together with a covariance adjustment lead to a consistent

estimator of the VC matrix under both fixed T and T = o(n). Important extensions of the

methods, allowing for unknown heteroskedasticity, time-varying spatial weight matrices,

high-order dynamic and spatial effects, are critically discussed. Monte Carlo results show

that the proposed methods perform well in finite sample.

Key Words: Adjusted quasi scores; Dynamic effects; Initial conditions; Incidental

parameters; Interactive fixed effects; High-order spatial effects.

JEL classifications: C10, C13, C21, C23, C15

1. Introduction

Dynamic spatial panel data (DSPD) model has triggered a fast growing literature due

to its important features of being able to (i) take into account temporal dynamics (time lag

and space-time lag), (ii) capture spatial interaction effects (spatial lag, space-time lag, spatial
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Durbin, and spatial error),1 and (iii) control for unobserved spatiotemporal heterogeneity

(individual-specific and time-specific). The bulk of the literature has focused on the DSPD

models with additive individual and time effects, being treated as fixed effects (Yu et al. 2008;

Lee and Yu 2010, 2014; Su and Yang 2015; Yang 2018, 2021; Li and Yang 2020; Baltagi et

al. 2021), or random effects (Yang et al. 2006; Mutl 2006; Su and Yang 2015), or correlated

random effects (Li and Yang 2021). See Lee and Yu (2015) for a survey on earlier works.

A major recent advancement in the literature of DSPD models is the incorporation of

interactive fixed effects (IFE) (Shi and Lee 2017 or SL; Kuersteiner and Prucha 2020 or KP; Bai

and Li 2021 or BL; Cui et al. 2023; and Higgins 2023). Besides the existing attractive features,

this extended model draws further on the strength of IFE in controlling for the multiple

unobserved time-specific effects ft (the common factors) and the corresponding individual-

specific responses γi (the factor loadings). However, this strand of literature is still quite

sparse and important asymptotic frameworks with fixed or relatively small T have not been

formally considered from likelihood perspective due to technical difficulties caused by IFE.2

SL and BL both adopt conditional QML (CQML) approach, given initial observations, to

estimate similar first-order DSPD-IFE models. Under a simultaneous passage of n and T to∞,

the CQML estimators are consistent but have non-negligible biases of order O( 1
T ) +O( 1

n). A

bias-correction removes these biases but it leaves the asymptotic variance unchanged only when

T
n → c 6= 0 (see Sec. 2 for further details). KP adopt GMM approach to estimate a high-order

DSPD-IFE model (with a different spatial error structure) under a large n and small T setup.

Their method allows several (important) additional features (see Sec. 2 for details). The key

challenges in the estimation of a DSPD-IFE model are (i) the initial values problem (IVP)

and (ii) the incidental parameters problem (IPP). The CQML-based methods handle these

problems through concentrations and after-estimation bias-corrections. The GMM method

handles the IVP by taking use of sequential exogeneity in setting up moments and the IPP

by a novel forward orthogonal deviations (FOD) transformation that eliminates the factor

loadings and at the same time adjusts the degrees of freedom loss. The GMM method does

not require further bias-corrections for valid inferences but does require T to be small. Cui

et al. (2023) propose instrumental variables (IV) estimation of a simple DSPD-IFE model

under Pesaran’s (2006) common correlated effects setup, which is valid for large n and large

T . Higgins (2023) also propose an IV approach to estimate a slightly more general model

1These have a close connection to Manski’s (1993) social interaction framework, where he labeled these
effects as endogenous effects, contextual effects and correlated effects.

2This is in stark contrast to the large literature on regular panel models with IFE; see but a few Ahn et
al. (2001, 2013), Bai (2009), Bai and Ng (2013), Moon and Weidner (2015, 2017). Panel data models with
interactive effects also specify (i) γi as fixed but ft random, (ii) γi as random but ft fixed, and (iii) both
as random (see Hsiao 2018 for details). Case (i) is also of interest in connection with spatial econometrics
literature as it induces error cross-section dependence (CD) as does the spatial error term. Pesaran and Tosetti
(2011) refer to the former as strong CD and the latter as weak CD. They are perhaps the first researchers who
join the two strands in literature in dealing with error cross-section dependence.
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based on a transformation approach, which is valid for small T . Except KP, all the other four

papers discussed above assume first-order spatial effects with time-invariant spatial weights.

The later two papers further restrict the model to be free from spatial errors, which may be

the key for their IV approaches to work. Clearly, these assumptions are too restrictive, in

particular, from perspectives of network effects and social interaction as discussed in KP.

In this paper, we study a general class of DSPD-IFE models similar to that studied by

KP, using likelihood-based methods and focusing on the most important asymptotic scenarios

of (i) T being fixed and (ii) T being large but small relative to n. Scenario (i) serves as an

alternative to KP’s GMM approach. We introduce M-estimation methods, which are valid for

both of these asymptotic scenarios. We obtain a set of unbiased estimating functions (EF) by

adjusting the concentrated conditional quasi scores (CCQS) of the common parameters and

the factor parameters, given initial observations and with factor loadings being concentrated

out, to directly remove the effects of conditioning (or IVP) and concentration (or IPP) before

estimation. Solving the resulting estimating equations gives M-estimators of both sets of

parameters that possess usual asymptotic properties. In particular, under fixed T , they are
√
n-consistent and asymptotically normal with zero mean; under T = o(n), the M-estimators

of the common parameters are
√
nT -consistent and asymptotically normal with zero mean.3

For statistical inference, difficulty lies in the estimation of the variance-covariance (VC)

matrix of the EF. We propose to decompose the EF into a sum of n nearly uncorrelated

terms. Outer products of these n terms together with a covariance adjustment lead to a

consistent estimator of the VC matrix under both cases when T is fixed and T = o(n). The

proposed methods are extended to accommodate unknown heteroskedasticity, time-varying

spatial weight matrices, and high-order dynamic effects, high-order spatial effects, etc.

Our work complements KP’s fixed-T GMM by providing alternative, likelihood-based

methods, which are valid when either T is fixed or T = o(n), covering both of the most

interesting scenarios in spatial panel data analyses. Furthermore, our methods do not require

a transformation but KP’s methods depend critically on the FOD transformation; our methods

allow cross-sectional heteroskedasticity to be of an unknown form but their methods require

it to be a function of a finite number of parameters; their methods allow sequential exogeneity

in spatial weight matrices and some regressors but our methods allow only the endogeneity

of a ‘known form’ (time lags of responses, control functions for endogenous spatial weights

and endogenous regressors, etc.); and finally, Monte Carlo results suggest that M-estimator is

more efficient than GMM estimator under strict exogeneity. Our work also complements those

3The proposed method is related to Yang (2018, 2021) and Li and Yang (2020) on a first-order DSPD model
with additive fixed effects under small T , where unit-specific effects are eliminated by first-differencing. With
the allowance of IFE and large T , the first-differencing or other transformation method is inapplicable. The
proposed methods are in line with the modified equations of maximum likelihood of Neyman and Scott (1948,
Sec. 5), in a search of a systematic method of addressing the incidental parameters problem.
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of SL and BL by providing likelihood-based methods for DSPD-IFE models under the ‘fixed

or relatively small T ’ asymptotic frameworks. However, our methods differ from theirs in that

we adjust the CCQS functions before estimation to correct the IVP due to conditioning and

the IPP due to concentration. As a result, our M-estimators have a bias of order O( 1
n) only,

and hence our inferences for common parameters are valid as long as T/n→ 0.

The rest of the paper goes as follows. Section 2 discusses model specifications. Section 3

introduces M-estimator, its asymptotic properties, and standard error estimation for a first-

order DSPD-IFE model. Section 4 presents M-estimation for extended DSPD-IFE models to

allow for heteroskedasticity, time-varying spatial weight matrices, and higher-order spatial and

dynamic effects in the model. Section 5 presents Monte Carlo results. Section 6 concludes the

paper. All technical proofs are collected in appendix.

2. Model Specifications

The high-order dynamic spatial panel data (DSPD) model with interactive fixed effects

(IFE) recently studied by Kuersteiner and Prucha (2020) is by far the most general DSPD-IFE

model in the literature. The model can be written in a more explicit form:

yt =

p∑
s=1

ρsyt−s +

q1∑
`=1

λ1`W1`tyt +

p∑
s=1

q2∑
`=1

λ2`sW2`,t−syt−s + xtβ + ut,

ut =

q3∑
`=1

λ3`W3`tut + Γft + vt, t = p, . . . , T,

(2.1)

where yt = (y1t, y2t, . . . , ynt)
′ and vt = (v1t, v2t, . . . , vnt)

′ are n × 1 vectors of response values

and idiosyncratic errors; xt is an n × k matrix of regressors’ values; Wν`t, ν = 1, 2, 3, ` =

1, . . . , qν , t = 1, . . . , T , are n × n spatial weight matrices; and ft is a r × 1 vector of common

factors and Γ is the corresponding n× r matrix of factor loadings.

KP propose a GMM for the estimation of the model under the small T setup, assuming

vit ∼ (0, %i(γ)σ2
t ), where %i(γ) are functions with finite number of parameters γ, Wν`t to be

sequentially exogenous, and xt to contain exogenous and sequentially exogenous regressors and

their spatial lags. At the core of KP’s GMM method are (i) the reduced form: B3t(λ3)yt =

B3t(λ3)Rtψ + Γft + vt, where B3t(λ3) = In −
∑q3

`=1 λ3`W3`t, λ3 = (λ31, . . . , λ3q3)′, Rt collects

all the right hand side terms except ut, and ψ collects the corresponding coefficients; and (ii)

the FOD transformation, a (T −r)×T matrix function of {ft} and {σ2
t } that eliminates Γ and

maintains zero correlation of the (transformed) v′its and sequential exogeneity of the variables

and the spatial weight matrices so that linear and quadratic moments are formed.

KP’s model specifies that spatial interactions among model’s disturbances act equally on

their components, Γft and vt. An alternative and perhaps more popular specification may be:
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yt =

p∑
s=1

ρsyt−s +

q1∑
`=1

λ1`W1`tyt +

p∑
s=1

q2∑
`=1

λ2`W2`,t−syt−s + xtβ + Γft + ut,

ut =

q3∑
`=1

λ3`W3`tut + vt, t = p, . . . , T,

(2.2)

which stresses on that spatial interactions occur only in ‘remainder’ errors, not in unobserved

(unshown) individual and time specific effects Γft. However, with this model specification, the

first equation cannot be written in a simple form in Γft + vt but rather in B3t(λ3)Γft + vt or

in Γft + B−1
3t (λ3)vt. Hence, the FOD-based GMM may not be implementable unless B3t(λ3)

is time-invariant so that model’s reduced form has disturbance Γ∗ft + vt, where Γ∗ = B3(λ3)Γ

and FOD can be applied to eliminate Γ∗.

Model (2.1) specifies a single spatial autoregressive (SAR) process for the disturbances that

is driven by factors and idiosyncratic errors, Γft + vt, together, whereas Model (2.2) specifies

a single SAR process that is driven by vt only. A more general model would naturally be that

the disturbances contain two SAR processes, driven independently by Γft and vt:

yt =

p∑
s=1

ρsyt−s +

q1∑
`=1

λ1`W1`tyt +

p∑
s=1

q2∑
`=1

λ2`W2`,t−syt−s + xtβ + εt + ut,

ut =

q3∑
`=1

λ3`W3`tut + vt,

εt =

q4∑
`=1

λ4`W4`tεt + Γft, t = p, . . . , T.

(2.3)

Again, the FOD-based GMM may not be implementable, unless B3t(λ3) and B4t(λ4) are both

time-invariant, where B4t(λ4) = In −
∑q4

`=1 λ4`W4`t and λ4 = (λ41, . . . , λ4q4)′. In this case,

FOD works on Γ�ft + vt, where Γ� = B3(λ3)B−1
4 (λ4)Γ, and GMM proceeds as for (2.1).

Model (2.3) exhibits a great generality and should be highly useful in modeling spatial and

network data, in particular in the era of big data. It contains Model (2.1) as a special case

with q3 = q4, λ3` = λ4` and W3`t = W4`t, and it reduces to Model (2.2) by setting λ4` = 0. A

very interesting special case of Model (2.2) is when p = q1 = q2 = q3 = 1, i.e., the first-order

DSPD-IFE model that will be rigorously studied in this paper:

yt = ρyt−1 + λ1W1tyt + λ2W2tyt−1 + xtβ + Γft + ut,

ut = λ3W3tut + vt, t = 1, 2, . . . , T.
(2.4)

In our study, we view t = 0 as the initial period of data collection but the process may

have started m periods earlier, where m may be finite or infinite. Thus, under Model (2.4), y0

represents the vector of initial observations. SL and BL consider a conditional quasi maximum

likelihood (CQML) approach treating y0 as exogenously given for the estimation of Model (2.4)

assuming W1t = W2t = W and W3t = W̃ with W , W̃ and {xt} being exogenously given. The
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CQML estimation ignores the information contained in y0 about the common parameters and

therefore will be inconsistent when T is fixed (the IVP, see Nickel 1981). Even when both n and

T are large, valid statistical inferences depend on a successful bias correction on the CQML

estimators to remove the first-order biases caused by both IVP and the estimation of Γ and

{ft} (the IPP of Neyman and Scott, 1948). BL allow for cross-sectional heteroskedasticity

explicitly and estimates the individual variances along with the common parameters. SL’s

assume homoskedasticity and their inference methods depends critically on the perturbation

theory that hinders the extension to allow for heteroskedasticity as commented by BL.

The advantages of KP’s FOD-based GMM approach are (i) it offers an easy way to avoid

the effect of IVP, (ii) it allows for sequential exogeneity (of an unknown form) in spatial weight

matrices and regressors, and (iii) it avoids the IPP by eliminating factor loadings through an

innovative FOD transformation. Both (i) and (ii) are realized through skillful choices of

instrumental variables. KP’s GMM is limited to small and fixed T and allows cross-sectional

heteroskedasticity to be a function of finite number of parameters.

As discussed in the introduction, likelihood-based methods with T fixed or T large but

small relative to n have not been given.4 We do so in this paper by introducing M-estimation

and inference methods. We further extend the methods to allow for time-varying spatial

weights, high-order spatial effects, and unknown cross-sectional heteroskedasticity. A distin-

guishing feature of our approach is that we derive a (minimum) set of unbiased and consistent

moment conditions from the conditional concentrated quasi scores. From GMM perspective,

likelihood-based approach can be motivated as a way of reducing the number of moments

available for estimation, and hence the extent of bias . . . (Alvarez and Arellano, 2022).

Notation. | · | denotes the determinant and tr(·) the trace of a square matrix; bdiag(·)
forms a block-diagonal matrix from given matrices, and vec(·) vectorizes a matrix; ⊗ denotes

the Kronecker product; ‖ · ‖ denotes the Frobenius norm, ‖ · ‖sp the spectrum norm, ‖ · ‖1 the

maximum column sum norm and ‖ · ‖∞ the maximum row sum norm; and γmin(·) and γmax(·)
denote, respectively, the smallest and largest eigenvalues of a real symmetric matrix.

3. M-Estimation and Inference: Basic DSPD-IFE Model

For ease of exposition and to fix ideas, we start with a basic model, which is Model (2.4)

with Wν , ν = 1, 2, 3, being time-invariant and exogenously given; {vit} being independent and

identically distributed (iid) across i and t, i.e. vit ∼ iid(0, σ2
v); and {xt} being n×k matrices of

time-varying exogenous variables. The first two assumptions will be relaxed in Sec. 4, where

4Alvarez and Arellano (2022) commented: the GMM is routinely employed in the estimation of autoregressive
models for short panels, because it provides simple estimates that are fixed-T consistent and optimally enforce
the model’s restrictions on the data covariance matrix. Yet they are known to frequently exhibit poor properties
in finite samples and may be asymptotically biased if T is not treated as fixed.
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the model is further extended to allow higher-order spatial and dynamic effects.

In the model, ρyt−1 captures the time dynamic effects; the spatial lag (SL) term λ1W1yt

captures the contemporaneous spatial interactions among cross-sectional units, the space-time

lag (STL) term λ2W2yt−1 captures the dynamic spatial interactions, and the spatial error (SE)

term λ3W3ut captures the pure cross-sectional error dependence. ft is a r × 1 vector of

unobserved time-specific effects (common factors) at time t, and Γ = (γ1, γ2, . . . , γn)′ is an

n × r matrix of unobserved individual-specific effects (factor loadings), whose rows, γ′i, are

individuals’ heterogeneous (interactive) responses to the common shocks ft.

3.1. CQML estimation

Define Bν(λν) = In − λνWν , ν = 1, 3, and B2(ρ, λ2) = ρIn + λ2W2. Let θ = (β′, ρ, λ1, λ2)′,

and ψ = (θ′, λ3, σ
2
v)
′, and F ′ = (f1, . . . , fT ). The quasi Gaussian loglikelihood function

treating y0 as exogenously given, or the conditional quasi loglikelihood (CQL) function, is:

`nT (ψ,Γ, F ) =− nT
2 log(2πσ2

v)− T
2 log |Ω(λ3)|+ T log |B1(λ1)|

− 1
2σ2
v

∑T
t=1[zt(θ)− Γft]

′Ω−1(λ3)[zt(θ)− Γft] (3.1)

=− nT
2 log(2πσ2

v) + T log |B3(λ3)|+ T log |B1(λ1)|

− 1
2σ2
v
tr[(Z(θ)− ΓF ′)′Ω−1(λ3)(Z(θ)− ΓF ′)], (3.2)

where zt(θ) = B1(λ1)yt − B2(ρ, λ2)yt−1 − xtβ, Z(θ) = [z1(θ), z2(θ), . . . , zT (θ)], and Ω(λ3) =

σ−2
v E(utu

′
t) = (B′3(λ3)B3(λ3))−1. Maximizing `nT (ψ,Γ, F ) under a set of constraints on {γi}

and {ft} gives the conditional quasi maximum likelihood (CQML) estimator ψ̂CQML of ψ.5

Solving the first order condition, ∂
∂Γ`nT (ψ,Γ, F ) = 0, using (3.2),6 we obtain the con-

strained CQML estimator of Γ as a matrix function of θ and F :

Γ̃(θ, F ) = Z(θ)F (F ′F )−1. (3.3)

With Z(θ)− Γ̃(θ, F )F ′ = Z(θ)−Z(θ)F (F ′F )−1F ′ ≡ Z(θ)MF , where MF = IT −F (F ′F )−1F ′,

plugging Γ̃(θ, F ) in `nT (ψ,Γ, F ) gives the concentrated CQL (CCQL) function of ψ and F :

`cnT (ψ,F ) = − nT
2 log(2πσ2

v) + T log |B3(λ3)|+ T log |B1(λ1)|

− 1
2σ2
v
tr[MFZ′(θ)Ω−1(λ3)Z(θ)]. (3.4)

Maximizing the CCQL `cnT (ψ,F ) gives the CQML estimators of ψ and F subject to the

constraints imposed on F (details to be given later), and hence the CQML estimator of Γ.

5Under W1 = W2, SL show that ψ̂CQML is consistent only when (n, T ) → ∞, and that
√
nT (ψ̂CQML − ψ0) has

a non-zero asymptotic mean and a bias correction (BC) has to be made for proper inference. BL propose a
BC-CQML estimation of a simpler model but allowing explicitly the cross-sectional heteroskedasticity.

6This is done using the matrix differential formulas of Magnus and Neudecker (2019, p.200): ∂
∂X

tr(AX) = A′,
and ∂

∂X
tr(XAX ′B) = B′XA′ +BXA, where X is a matrix.
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3.2. M-estimation with fixed T

To facilitate the derivation of unbiased and consistent estimating functions, it is convenient

to use the nT × 1 vector Z(θ) = [z′1(θ), z′2(θ), . . . , z′T (θ)]′ = vec(Z(θ)). Working directly with

(3.1) and (3.3), or using the identity tr[MFZ′(θ)Ω−1(λ3)Z(θ)] = Z′(θ)[MF ⊗Ω−1(λ3)]Z(θ) on

(3.4),7 the CCQL function can be written as

`cnT (ψ,F ) = − nT
2 log(2πσ2

v) + T log |B3(λ3)|+ T log |B1(λ1)|

− 1
2σ2
v
Z′(θ)[MF ⊗ Ω−1(λ3)]Z(θ). (3.5)

The ψ-component of the concentrated conditional quasi score (CCQS) can be derived in a

straightforward manner. For the F -component, we note that F enters the CCQL function (3.5)

in the form of PF = F (F ′F )−1F ′. As a result, `cnT (ψ,F ) is invariant to the transformation

F † = FC for any r × r invertible matrix C as PF † = PF . Thus, we are not able to identify

F without restrictions. As an arbitrary r × r invertible matrix has r2 free elements, exactly

r2 restrictions are needed.8 Following Ahn et al. (2013) and Kuersteiner and Prucha (2020),

we normalize F as (F ∗′, Ir)
′, where F ∗ is a (T − r) × r matrix of unrestricted parameters.9

Let φ = vec(F ∗) with elements φs, s = 1, . . . , kφ, where kφ = dim(φ) = (T − r)r. Denote the

CCQL function by `cnT (ψ, φ). One can then derive the CCQS functions of ψ and φ.

Let Y = (y′1, y
′
2, . . . , y

′
T )′ and Y−1 = (y′0, y

′
1, . . . , y

′
T−1)′, the (nT × 1) vectors of response

and lagged response values, and X = (x′1, x
′
2, . . . , x

′
T )′, the nT × k matrix of regressors values.

Let Wν = IT ⊗Wν , ν = 1, 2, 3, Bν(λν) = IT ⊗Bν(λν), ν = 1, 3, and B2(ρ, λ2) = IT ⊗B2(ρ, λ2).

Then, Z(θ) = B1(λ1)Y−B2(ρ, λ2)Y−1−Xβ. Denote Ω(λ3) = IT⊗Ω(λ3) and MF = MF⊗In.

The CCQS functions of ψ and φ, ScnT (ψ, φ) = ( ∂
∂ψ′ `

c
nT (ψ, φ), ∂

∂φ′ `
c
nT (ψ, φ))′, take the form:

ScnT (ψ, φ) =



1
σ2
v
X′MFΩ−1(λ3)Z(θ),

1
σ2
v
Z′(θ)MFΩ−1(λ3)Y−1,

1
σ2
v
Z′(θ)MFΩ−1(λ3)W1Y − tr[W1B

−1
1 (λ1)],

1
σ2
v
Z′(θ)MFΩ−1(λ3)W2Y−1,

1
σ2
v
Z′(θ)MFB′3(λ3)W3Z(θ)− tr[W3B

−1
3 (λ3)],

1
2σ4
v
Z′(θ)MFΩ−1(λ3)Z(θ)− nT

2σ2
v
,

1
σ2
v
Z′(θ)[MF Ḟs(F

′F )−1F ′ ⊗ Ω−1(λ3)]Z(θ), s = 1, . . . , kφ,

(3.6)

7This follows from, e.g., Magnus and Neudecker (2019, p.36): for conformable matrices A,B,C and D such
that ABCD is defined and square, tr(ABCD) = vec(D′)′(C′ ⊗A)vec(B) = vec(D)′(A⊗ C′)vec(B′).

8This is equivalent to the so-called “rotation problem” in factor models, which says that it is impossible to
identify Γ and F separately without restrictions as ΓCC−1F ′ = ΓF ′ for any r × r non-singular matrix C.

9This is obtained through the rotation. Denote F = (F ′1, F
′
2)′ with F2 being r × r and invertible, and take

C = F−1
2 . Then, FC = FF−1

2 = (F ′−1
2 F ′1, Ir)

′, and therefore F ∗ = F1F
−1
2 . Ahn et al. (2013) use the same

normalization in their study of a regular panel data model with IFE under short T . The choice of normalization
is not important because we are interested in controlling for the IFE, not interpreting them. However, in our
paper, this normalization leads to a simpler way of establishing the set of unbiased and consistent estimating
functions. See Bai and Ng (2013) for a detailed discussion of alternative normalizations.
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where Ḟs = ∂
∂φs

F , a T × r matrix with elements 1 at the φs-position and 0 elsewhere. Under

mild conditions, maximizing (3.4) w.r.t. ψ and φ is equivalent to solving ScnT (ψ, φ) = 0.

However, we show that the (σ2
v , ρ, λ) components of limn→

1
nT E[ScnT (ψ0, φ0)] and more

seriously these of plimn→∞
1
nT S

c
nT (ψ0, φ0) are generally not zero at the true ψ0 and φ0. Thus,

the CQML estimator of (ψ, φ) cannot be consistent as a necessary condition for consistent

estimation is violated. To see these, the following basic assumptions are required.

Assumption A. Process started at t = −m (m ≥ 0) and data collection started at t = 0:

(i) y0 is independent of {vt, t ≥ 1}, and (ii) time-varying regressors {xt, t = 0, 1, . . . , T}, fac-

tors F and factor loadings Γ are independent of the idiosyncratic errors {vt, t = 0, 1, . . . , T}.

From now on, we view that Model (2.4) holds only at the true parameters, and the usual

expectation and variance operators E(·) and Var(·) correspond to the true model. Denote a

parametric quantity evaluated at the true parameters by dropping its arguments and then

adding a subscript “0”, e.g., B10 = B1(λ10), and Ω0 = Ω(λ30), except zt = zt(θ0). Define

B0 = B(ρ0, λ10, λ20) ≡ B−1
1 (λ10)B2(ρ0, λ20). The first equation of (2.4) under time-invariance

of Wν is written as yt = B0yt−1 +B−1
10 xtβ0 +B−1

10 zt. Backward substitution gives

yt = Bt0y0 +
t−1∑
s=0

Bs0B−1
10 xt−sβ0 +

t−1∑
s=0

Bs0B−1
10 zt−s, t = 1, . . . , T. (3.7)

This leads to the following simple but important representations for Y and Y−1:

Y = Qy0 + η + DZ and Y−1 = Q−1y0 + η−1 + D−1Z, (3.8)

where y0 = 1T ⊗ y0, 1T is a T × 1 vector of ones, Z = Z(θ0), η = DXβ0, η−1 = D−1Xβ0,

Q = bdiag(B0,B2
0, . . . ,BT0 ), Q−1 = bdiag(In,B0, . . . ,BT−1

0 ),

D =



In 0 · · · 0 0

B0 In · · · 0 0

B2
0 B0 · · · 0 0

...
...

. . .
...

...

BT−1
0 BT−2

0 · · · B0 In


B−1

10 and D−1 =



0 0 · · · 0 0

In 0 · · · 0 0

B0 In · · · 0 0
...

...
. . .

...
...

BT−2
0 BT−3

0 · · · In 0


B−1

10 .

Based on the representation (3.8), we obtain under Assumption A with {vit} being iid,

E[ScnT (ψ0, φ0)] =



0k,

tr(MF0D−1),

tr(MF0W1D)− tr(W1B
−1
10 ),

tr(MF0W2D−1),

tr(MF0W3B
−1
30 )− tr(W3B

−1
30 ),

n(T−r)
2σ2
v0
− nT

2σ2
v0
,

0kφ ,

(3.9)
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where 0m denotes an m×1 vector of zeros, and some details on the φ-part are given at the end

of this subsection. The result of (3.9) clearly reveals that 1
nT E[ScnT (ψ0, φ0)] 6= 0 and does not

even converge to 0 when only n approaches to ∞, and therefore plimn→∞
1
nT S

c
nT (ψ0, φ0) 6= 0.

Note that E[ScnT (ψ0, φ0)] is a parametric vector free from initial conditions, process start-

ing time and factor loadings. Therefore, it can be used to adjust (3.6) to give a set of adjusted

quasi score (AQS) functions or EFs for (ψ, φ), free from m, Γ and the conditions on y0:

S∗nT (ψ, φ) =



1
σ2
v
X′MFΩ−1(λ3)Z(θ),

1
σ2
v
Z′(θ)MFΩ−1(λ3)Y−1 − tr[MFD−1(ρ, λ1, λ2)],

1
σ2
v
Z′(θ)MFΩ−1(λ3)W1Y − tr[MFW1D(ρ, λ1, λ2)],

1
σ2
v
Z′(θ)MFΩ−1(λ3)W2Y−1 − tr[MFW2D−1(ρ, λ1, λ2)],

1
σ2
v
Z′(θ)MFB′3(λ3)W3Z(θ)− tr[MFW3B

−1
3 (λ3)],

1
2σ4
v
Z′(θ)MFΩ−1(λ3)Z(θ)− n(T−r)

2σ2
v
,

1
σ2
v
Z′(θ)[MF Ḟs(F

′F )−1F ′ ⊗ Ω−1(λ3)]Z(θ), s = 1, . . . , kφ.

(3.10)

Clearly, E[S∗nT (ψ0, φ0)] = 0. One can further show that plimn→∞
1
nT S

∗
nT (ψ0, φ0) = 0. Thus,

S∗nT (ψ, φ) gives a set of unbiased and consistent estimating functions, which paves the way for

a consistent estimation of ψ and φ. Our AQS or M-estimators ψ̂M and φ̂M of ψ and φ are

therefore defined as the solution of the estimating equations: S∗nT (ψ, φ) = 0.

A computational note. Given ψ, Model (2.4) reduces to a pure factor model. The con-

strained M-estimator of F or φ can be obtained by maximizing 1
nT tr[PFZ

′(θ)Ω−1(λ3)Z(θ)],10

and the solution is the eigenvector matrix of 1
nT Z

′(θ)Ω−1(λ3)Z(θ) corresponding to the r

largest eigenvalues.11 Denoting the ψ-component of S∗nT (ψ, φ) by S∗nT,ψ(ψ,F ), the computa-

tion of the M-estimators can simply be done as follows:

1. Given F , compute the estimator of ψ: ψ̂(F ) = arg{S∗nT,ψ(ψ,F ) = 0},

2. Given ψ, compute the estimator of F : F̂ (ψ), which is the matrix of eigenvectors corre-

sponding to the r largest eigenvalues of the T × T matrix 1
nT Z

′(θ)Ω−1(λ3)Z(θ),12

3. Iterate between 1. and 2. until convergence, to give ψ̂M and φ̂M = vec(F̂1(ψ̂M)F̂
−1
2 (ψ̂M)).

See Footnote 9, Kiefer (1980), Ahn, et al. (2001, 2013), and Bai (2009), for more discussions.

The root-finding process in Step 1 can be further simplified. First solving the first two sets

of equations for β and σ2, we obtain analytical solutions in terms of δ = (ρ, λ′, φ′)′:

β̂(δ) = [X′MFΩ−1(λ3)X]−1X′MFΩ−1(λ3)[B1(λ1)Y −B2(λ2)Y−1], and (3.11)

σ̂2
v(δ) = 1

n(T−r) Ẑ
′(δ)MFΩ−1(λ3)Ẑ(δ), (3.12)

10This is equivalent to the objective function of the least square estimation of a pure factor model, B3Z =
B3ΓF ′ + V, after the factor loadings Γ being concentrated out, where V = (v1, . . . , vT ). See, e.g., Bai (2009).

11See Magnus and Neudecker (2019, Ch. 17) and Ahn et al. (2013) for more details.
12When T is fixed, 1

n
Z′Ω−1Z→ ΣZ = FΣΓ∗F ′ + Σv, where ΣΓ∗ and Σv are the limits of Γ′B′30B30Γ/n and

V′V/n, respectively. If Σv = σ2
v0IT , the matrix of the first r eigenvectors of ΣZ is a rotation of F . See Bai

(2009) and Chamberlain and Rothschild (1982) for more detailed discussions.
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where Ẑ(δ) = B1(λ1)Y − B2(λ2)Y−1 − Xβ̂(δ). Substituting β̂(δ) and σ̂2
v(δ) back into the

(ρ, λ)-components of S∗nT,ψ(ψ, φ) gives the concentrated AQS function (detailed expression is

given in Appendix B). Then, solving the concentrated AQS equations gives the constrained

(given F ) estimators of ρ and λ, and thus the constrained estimators (given F ) of β and σ2.

Before moving to the study of the asymptotic properties of the proposed M-estimator,

some important remarks on the proposed M-estimation strategy are as follows.

Remark 3.1. The proposed method is likelihood-based, and also the method of moments

under just identified situation. From a GMM perspective, likelihood-based estimation can be

motivated as a way of reducing the number of moments available for the estimation, and hence

the extent of bias in second-order or double asymptotics (Alvarez and Arellano, 2022).

Remark 3.2. The importance of the joint EF, S∗nT (ψ, φ), also lies in the fact that it leads

to a simple way to establish the joint asymptotic distribution of ψ̂M and φ̂M, and a simple and

reliable way to obtain the VC matrix estimate as seen in the subsequent sections.

Remark 3.3. It is interesting to note that the (β0, σ
2
0, φ0)-components of S∗nT (ψ0, φ0) re-

main unbiased and consistent under cross-sectional heteroskedasticity.13 Therefore, if we are

able to adjust the (ρ0, λ0)-components of S∗nT (ψ0, φ0) so that they possess the same property, we

then obtain a set of AQS functions and hence M-estimators that are robust against unknown

cross-sectional heteroskedasticity. See Section 4 for details.

Remark 3.4. When Γft = γ+ ft1n where γ is an n× 1 vector and ft is a scalar, we have

a DSPD model with additive fixed effects. In this case, our method provides an alternative

to Yang (2018). The advantage of our method is that it does not require a transformation to

eliminate γ and thus can accommodate time-varying spatial weights. See Section 4 for details.

Remark 3.5. Setting λ1 = λ2 = λ3 = 0 and F = 1T , Model (2.4) reduces to a regular

dynamic panel data model with individual FE only, and our M-estimator reduces to the bias-

corrected conditional score estimator under small-T proposed by Alvarez and Arellano (2022).

Finally, it is useful to give some details for the φ-component of S∗nT (ψ, φ). With Ḟs defined

in (3.6), we have ṖF,s = ∂
∂φs

PF = MF Ḟs(F
′F )−1F ′ + F (F ′F )−1Ḟ ′sMF , s = 1, . . . , kφ. Then,

the CCQS component corresponding to φs, s = 1, . . . , kφ, is

∂
∂φs

`cnT (ψ, φ) = 1
2σ2
v
Z′(θ)[ṖF,s ⊗ Ω−1(λ3)]Z(θ)

= 1
σ2
v
Z′(θ)[MF Ḟs(F

′F )−1F ′ ⊗ Ω−1(λ3)]Z(θ).
(3.13)

Let v = (v′1, . . . , v
′
T )′, we can write Z = vec(Γ0F

′
0) + B−1

30 v. Under Assumption A and the

13Suppose Var(vit) = σ2
vhn,i, such that hn,i > 0 and 1

n

∑n
i=1 hn,i = 1. Let H = diag(hn,1, . . . , hn,n).

Then, Var(v) = σ2
v0IT ⊗ H, and for the φ-component, E{Z′[MF Ḟs0(F ′0F0)−1F ′0 ⊗ In]Z} = σ2

v0tr{(IT ⊗
H)[MF Ḟs0(F ′0F0)−1F ′0 ⊗ In]} = σ2

v0tr{[MF Ḟs0(F ′0F0)−1F ′0] ⊗ H} = σ2
v0tr(H)tr[MF Ḟs0(F ′0F0)−1F ′0] = 0. It

is much easier to verify that the same holds for the (β, σ2)-components.
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assumptions on the errors, we have, for s = 1, . . . , kφ, noting that F ′0MF0 = 0,

E[ ∂
∂φs

`cnT (ψ0, φ0)] = 1
σ2
v0

E{[v + B30vec(Γ0F
′
0)]′[MF0Ḟs0(F ′0F0)−1F ′0 ⊗ In][v + B30vec(Γ0F

′
0)]}

= 1
σ2
v0

E{v′[MF Ḟs0(F ′0F0)−1F ′0 ⊗ In]v}+ 1
σ2
v0
vec(Γ0F

′
0)′[MF Ḟs0(F ′0F0)−1F ′0 ⊗ Ω−1

0 ]vec(Γ0F
′
0)

= n tr[MF0Ḟs0(F ′0F0)−1F ′0] + 1
σ2
v0

tr[MF0Ḟs0Γ′0B
′
30B30Γ0F

′
0] = 0.

This shows that the φ-component of the CCQS function is unbiased. Further, one shows

that plimn→∞
1
nT

∂
∂φs

`cnT (ψ0, φ0) = 0, s = 1, . . . , kφ. Therefore, we do not need to adjust these

CCQS components. In another word, given ψ, maximizing the CCQL function in (3.5) gives

a consistent estimate of φ, and therefore gives a consistent estimate of (a rotation of) F .

3.3. Asymptotic properties of M-estimator with fixed T

Rigorous studies on the asymptotic properties of the proposed M-estimator require the

following basic regularity conditions. Denote δ = (ρ, λ′, φ′)′, the set of parameters that appear

in the AQS function nonlinearly (i.e., their AQS equations cannot be solved analytically).

Assumption B. The innovations vit are iid for all i and t with E(vit) = 0, Var(vit) = σ2
v0,

and E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption C. (i) The parameter space ∆ of δ is compact, and the true parameter

vector δ0 lies in its interior; (ii) The number of factors r0 is constant and less than T . The

elements of Γ0 and F0 are uniformly bounded. F0 has full column rank.

Assumption D. The elements of the time-varying regressors {xt, t = 1, . . . , T} are uni-

formly bounded, and the limit limn→∞
1
nT X′MFX exists and is nonsingular.

Assumption E. (i) For ν = 1, 2, 3, the elements wν,ij of Wν are at most of order h−1
n ,

uniformly in all i and j, and wν,ii = 0 for all i; (ii) hn/n→ 0 as n→∞; (iii) {Wν , ν = 1, 2, 3}
and {B−1

ν0 , ν = 1, 3} are uniformly bounded in both row and column sum norms; (iv) For

Bν = Bν(λν) with ν = 1, 3, either ‖B−1
ν ‖∞ or ‖B−1

ν ‖1 is bounded, uniformly in λν in a compact

parameter space Λν , and 0 < cν ≤ infλν∈Λν γmin(B′νBν) ≤ supλν∈Λν
γmax(B′νBν) ≤ c̄ν <∞.

Assumption F. For an n×n matrix Φ uniformly bounded in either row or column sums,

with elements of uniform order h−1
n , and an n × 1 vector b with elements of uniform order

h
−1/2
n , (i) hn

n y
′
0Φy0 = Op(1); (ii) hn

n [y0−E(y0)]′b = op(1); (iii) hn
n [y′0Φy0−E(y′0Φy0)] = op(1).

Assumption B assumes that the idiosyncratic error vit to be independent over cross sec-

tion and time. Cross sectional and time correlations are not a major concern in the present

context as they are dealt with by the spatial lag, time lag, space-time lag, spatial error terms.

Assumption C(i) is standard for establishing the consistency of the M-estimator δ̂M of δ. The

consistency of β̂M and σ̂2
v,M follows from that of δ̂M and Assumption D. Assumption E im-

poses standard assumptions on the spatial weight matrices. It parallels Assumption E of Yang
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(2018) and relates to Lee (2004). Allowing hn to grow with n but at a slower rate is useful as

it corresponds to an important spatial layout where the degree of spatial dependence increases

with n, see Lee (2004) and Yang (2015) for related discussions. Assumption F is of low level,

to ensure the initial observations to have a proper stochastic behavior. It is satisfied if the

process has evolved according to (2.4) since it started and if
∑∞

i=0 Bi0 exists and is uniformly

bounded in both row and column sums, as in Yu et al. (2008) and Lee and Yu (2014).

Given δ, solving the AQS equations for β and σ2
v from (3.10), we obtain the constrained M-

estimators β̂(δ) and σ̂2
v(δ) as in (3.11) and (3.12). Now, substituting β̂(δ) and σ̂2

v(δ) back into

the δ-component of S∗nT (ψ, φ) gives the concentrated AQS function S∗cnT (δ) (detailed expression

is given in Appendix B). Similarly, let S̄∗cnT (δ) be the population counterpart of the concentrated

AQS function (see Appendix B). It is easy to see that S∗cnT (δ̂M) = 0, and S̄∗cnT (δ0) = 0. By

Theorem 5.9 of van der Vaart (1998), δ̂M will be consistent for δ0 if supδ∈∆
1
nT

∥∥S∗cnT (δ) −
S̄∗cnT (δ)

∥∥ p−→ 0, and the following identification condition holds.

Assumption G. infδ d(δ,δ)≥ε
∥∥S̄∗cnT (δ)

∥∥ > 0 for every ε > 0, where d(δ, δ0) is a measure of

distance between δ and δ0.

Theorem 3.1. Suppose Assumptions A-G hold. Assume further that (i) γmax[Var(Y)]

and γmax[Var(Y−1)] are bounded, and (ii) infδ∈∆ γmin

[
Var(B1Y − B2Y−1)

]
≥ cy > 0. We

have as n→∞, δ̂M
p−→ δ0. It follows that β̂M

p−→ β0, and σ̂2
v,M

p−→ σ2
v0.

Let ψ = (ψ′, φ′)′. To establish joint asymptotic normality of ψ̂M, we have by (3.8) at ψ0,

S∗nT (ψ0) =



Π′1Z

Z′Ψ1y0 + Z′Φ1Z + Π′2Z− µρ0 ,

Z′Ψ2y0 + Z′Φ2Z + Π′3Z− µλ10 ,

Z′Ψ3y0 + Z′Φ3Z + Π′4Z− µλ20 ,

Z′Φ4Z− µλ30 ,

Z′Φ5Z− µσ2
v0
,

Z′Φ5+sZ, s = 1, 2, . . . , kφ,

(3.14)

where Π1 = 1
σ2
v0

(MF0 ⊗ Ω−1
0 )X, Π2 = 1

σ2
v0

(MF0 ⊗ Ω−1
0 )η−1, Π3 = 1

σ2
v0

(MF0 ⊗ Ω−1
0 )W1η, and

Π4 = 1
σ2
v0

(MF0 ⊗ Ω−1
0 )W2η−1; Φ1 = 1

σ2
v0

(MF0 ⊗ Ω−1
0 )D−1, Φ2 = 1

σ2
v0

(MF0 ⊗ Ω−1
0 )W1D,

Φ3 = 1
σ2
v0

(MF0 ⊗ Ω−1
0 )W2D−1, Φ4 = 1

σ2
v0

(MF0 ⊗B′30W3), Φ5 = 1
2σ4
v0

(MF0 ⊗ Ω−1
0 ), and

Φ5+s = 1
σ2
v0

[MF0Ḟs0(F ′0F0)−1F ′0 ⊗ Ω−1
0 ], s = 1, . . . , kφ; Ψ1 = 1

σ2
v0

(MF0 ⊗ Ω−1
0 )Q−1,

Ψ2 = 1
σ2
v0

(MF0 ⊗ Ω−1
0 )W1Q, and Ψ3 = 1

σ2
v0

(MF0 ⊗ Ω−1
0 )W2Q−1; µσ2

v
= n(T−r)

2σ2
v

,

µρ = tr(MF0D−1), µλ1 =tr(MF0W1D), µλ2 =tr(MF0W2D−1), and µλ3 =tr(MF0W3B
−1
30 ).

Using the relation Z = B−1
30 v + vec(Γ0F

′
0), the AQS vector at true ψ0, S∗nT (ψ0), is further

expressed as linear combinations of terms linear or quadratic in v and bilinear in v and y0;

see (B.7). This leads to a simple way for establishing the asymptotic normality of S∗nT (ψ0),
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and the asymptotic normality of ψ̂M through a first-order expansion of S∗nT (ψ̂M) at ψ0.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have, as n→∞,

√
nT
(
ψ̂M −ψ0

)
D−→ N

(
0, lim
n→∞

H−1
nT (ψ0)ΣnT (ψ0)H ′−1

nT (ψ0)
)
,

where HnT (ψ0) = − 1
nT E[ ∂

∂ψ′S
∗
nT (ψ0)] and ΣnT (ψ0) = 1

nT Var[S∗nT (ψ0)], both assumed to exist

and HnT (ψ0) to be positive definite, for sufficiently large n.

3.4. Robust VC matrix estimation with fixed T

While Theorems 3.1 and 3.2 provide theoretical foundations for fixed-T inferences based

on the DSPD-IFE model, empirical applications of the results depend on the availability of

consistent estimators of the two matrices HnT (ψ0) and ΣnT (ψ0). The former can be consis-

tently estimated by its observed counterpart, HnT (ψ̂M) = − 1
nT

∂
∂ψ′S

∗
nT (ψ̂M). The analytical

expression of ∂
∂ψ′S

∗
nT (ψ) is given in Appendix B. Unfortunately, the estimation of the latter is

not straightforward. From (3.14) we see that the joint AQS function S∗nT (ψ0) contains three

types of elements, Π′Z, Z′Ψy0, and Z′ΦZ, where Π, Ψ and Φ are non-stochastic vectors or

matrices. The traditional plug-in method requires the closed-form expression of ΣnT (ψ0), but

the variance of Z′Ψy0 and its covariances with Π′Z and Z′ΦZ involve the unconditional dis-

tribution of y0 and the factor loadings Γ0. The distribution of y0 depends on the past values

of the regressors and the process starting positions, which are unobserved,14 and a consistent

estimate of the n × r matrix Γ0 is impossible to obtain when T is fixed. Thus, the plug-in

method based on the analytical expression of ΣnT (ψ0) does not work in this case.

To overcome the difficulties induced by the initial conditions, Yang (2018) proposed an

outer-product-of-martingale-difference (OPMD) method for estimating the VC matrix of an

DSPD-AFE model. The central idea behind this method is to decompose the AQS functions

into a sum of n terms, which form a martingale difference (MD) sequence so that the average

of the outer products of the MDs gives a consistent estimate of the VC matrix of that AQS

function. While this OPMD method does not directly apply to our DSPD-IFE model due to

the fact that the original errors vt are not estimable,15 the idea of decomposition prevails!

Inspired by the OPMD method, we decompose the AQS function as S∗nT (ψ0) =
∑n

i=1 gi,

where {gi} are defined in terms of zit and some nonstochastic quantities that depend on ψ0

and Wν , ν = 1, 2, 3. Based on this, a feasible estimator of ΣnT (ψ0) may be obtained through

the following, taking the advantage that {gi} are nearly an MD sequence and are ‘estimable’:

ΣnT (ψ0) = 1
nT E[S∗nT (ψ0)S∗′nT (ψ0)] = 1

nT

∑n
i=1 E(gig

′
i) + 1

nT

∑n
i=1

∑
j 6=i E(gig

′
j). (3.15)

14A valid model for y0, as that in Su and Yang (2015) for an DSPD model with SE only, is very difficult (if
not impossible) to formulate due to the existence of spatial lag terms, as commented by Yang (2018).

15This is seen from the relation zt = B−1
3 vt + Γft, where zt can be consistently estimated by ẑt, but the

factor loadings Γ and hence vt cannot be consistently estimated when T is fixed.
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The first term in (3.15) can be estimated by its sample analogue 1
nT

∑n
i=1 ĝiĝ

′
i, where ĝi

is a plug-in estimate of gi. The full analytical expression of Υ(ψ0) =
∑n

i=1

∑
j 6=i E(gig

′
j) is

derived. Due to the way {gi} are constructed, the (k+5+kφ)×(k+5+kφ) matrix Υ(ψ0) does

not involve the initial conditions or factor loadings and it depends only on ψ0. Therefore, the

covariance term Υ(ψ0) can be consistently estimated using the plug-in method. The estimator

of the VC matrix of the estimating functions is given by the following

Σ̂nT = 1
nT

∑n
i=1 ĝiĝ

′
i + 1

nT Υ(ψ̂M). (3.16)

For this we term our method of VC matrix estimation as the extended OPMD method.

Now, we present the details of the decomposition, S∗nT (ψ0) =
∑n

i=1 gi, and derive the

correction term Υ(ψ0). Recall that components of the joint AQS vector S∗nT (ψ0) are lin-

ear combinations of three types of terms Π′Z, Z′Ψy0, and Z′ΦZ, we decompose each type

separately into
∑n

i=1 gΠi,
∑n

i=1 gΨi and
∑n

i=1 gΦi. Then, we can use the linear combinations

of gri, r = Π,Ψ,Φ to construct the vector gi. And naturally, elements of E(gig
′
j) are lin-

ear combinations of E(grigνi), r, ν = Π,Ψ,Φ. To proceed, for a square matrix A, let Au, Al

and Ad be, respectively, its upper-triangular, lower-triangular, and diagonal matrix such that

A = Au + Al + Ad. Denote by Πt,Φts and Ψts the submatrices of Π,Φ and Ψ partitioned

according to t, s = 1, . . . , T . Similarly, for a vector K, let Kt denote its subvectors partitioned

according to t = 1, . . . , T . Denote the partial sum of time-indexed quantities using the ‘+’

notation: e.g., Ψt+ =
∑T

s=1 Ψts,Ψ+s =
∑T

t=1 Ψts, Ψ++ =
∑T

t=1

∑T
s=1 Ψts, and similarly for

Φts,Πt and other time-indexed quantities.

First, consider a linear term Π′Z.16 Write Π′Z = Π∗′v + Π′vec(Γ0F
′
0), where Π∗ = B−1′

3 Π.

From (3.14), we see that Π takes the form MF0K for a suitably defined nonstochastic vector

K involving ψ0, X, or Wr, r = 1, 2, 3. Therefore, the second term of Π′Z equals 0. This is seen

as follows. Using Π = MF0K and letting K be such that K = vec(K), we have by the matrix

result in Footnote 7, Π′vec(Γ0F
′
0) = K ′(MF0 ⊗ In)vec(Γ0F

′
0) = tr(Γ0F

′
0MF0K′) = 0. Thus,

Π′Z = Π∗′v. This leads to the following decomposition for any Π term defined in (3.14):

Π′Z = Π∗′v =
∑n

i=1(
∑T

t=1 Π∗itvit) ≡
∑n

i=1 gΠ,i, (3.17)

where Π∗it is the ith element of Π∗t . Clearly, {gΠ,i} are uncorrelated under this decomposition

and it is easy to see that they constitute an MD sequence.

Next, consider a bilinear term Z′Ψy0, which can be separated into Z′Ψy0 = v′Ψ∗y0 +

vec(Γ0F
′
0)′Ψy0, where Ψ∗ = B−1′

3 Ψ. Similarly, the second term equals zero,17 and thus

Z′Ψy0 = v′Ψ∗y0. With E(v′Ψ∗y0) = 0 due to the independence between y0 and {vt, t ≥ 1},
16Without loss of generality, assume Π is a vector (nT × 1), as if not we can work on each column of it.
17By the expressions of Ψ given in (3.14), each nT × 1 vector Ψy0 can be written in the form Ψy0 = MF0K

for a suitably defined vector K involving y0, ψ0, and Wr, r = 1, 2, 3.

15



we have the following MD decomposition of a bilinear term for any Ψ defined in (3.14):

Z ′Ψy0 = v′Ψ∗y0 =
∑n

i=1

∑T
t=1 vitξit ≡

∑n
i=1 gΨ,i, (3.18)

where {ξit} = ξt = Ψ∗t+y0, {gΨ,i} are uncorrelated, and gΨ,i is uncorrelated with gΠ,j , i 6= j.

Finally, for a quadratic term Z′ΦZ, we separate the first Z into two parts to give Z′ΦZ =

v′Φ∗Z+vec(Γ0F
′
0)′ΦZ, where Φ∗ = B−1′

3 ΦB−1
3 . Again, the second term equals zero.18 There-

fore, Z′ΦZ = v′Φ∗Z and the latter can be decomposed for any Φ defined in (3.14) as,

v′Φ∗Z =
∑T

t=1

∑T
s=1 v

′
tΦ
∗
tszs

=
∑T

t=1

∑T
s=1 v

′
tΦ
∗u
ts zs +

∑T
t=1

∑T
s=1 v

′
tΦ
∗`
tszs +

∑T
t=1

∑T
s=1 v

′
tΦ
∗d
ts zs

=
∑n

i=1(
∑T

t=1 vitϕit +
∑T

t=1 vitz
d
it),

(3.19)

where {ϕit} = ϕt =
∑T

s=1(Φ∗uts + Φ∗`ts)zs, and {zdit} = zdt =
∑T

s=1 Φ∗dts zs. By Assumptions A

and B, E(vitϕit) = 0 and E(vitz
d
it) = σ2

v0Φii,tt ≡ dit, where Φii,tt is the ith diagonal element of

Φtt. These lead to the following decomposition for a quadratic term:

v′Φ∗Z− E(v′Φ∗Z) =
∑n

i=1[
∑T

t=1 vitϕit +
∑T

t=1(vitz
d
it − dit)] ≡

∑n
i=1 gΦ,i. (3.20)

While {gΦ,i} are correlated, gΦ,i is uncorrelated with gΠ,j and gΨ,j , i 6= j, as shown below.

The decompositions of the three types of quantities given by (3.17)-(3.20) lead immediately

to the decomposition S∗nT (ψ0) =
∑n

i=1 gi, where

gi =



gΠ1,i

gΠ2,i + gΦ1,i + gΨ1,i

gΠ3,i + gΦ2,i + gΨ2,i

gΠ4,i + gΦ3,i + gΨ3,i

gΦ4,i

gΦ5,i

gΦ5+s,i, s = 1, 2, . . . , kφ

(3.21)

gΠr,i is defined according to (3.17) for each Πr, r = 1, 2, 3, 4; gΨr,i according to (3.18) for each

Ψr, r = 1, 2, 3; and gΦr,i according to (3.20) for each Φr, r = 1, 2, . . . , 5 + kφ, defined in (3.14).

This decomposition result in gi that contains many uncorrelated terms. Moreover, this

particular decomposition allow us to utilise the MF structure embedded in Π, Ψ, and Φ, so

that when we replace vit by zit, the factor component is cancelled out in sum of g′igi. These

features open up a simple way to consistently estimate the VC matrix of the AQS function.

From its general form given in (3.15), the first term 1
nT

∑n
i=1 E(gig

′
i) can be estimated by its

sample analogue 1
nT

∑n
i=1 ĝiĝ

′
i, where ĝi is obtained by replacing both vit and zit in (3.21) by

ẑit, and replacing ψ0 by ψ̂M. This is justified in the proof of Theorem 3.3, where we show that

18From (3.14), we see that ΦZ∗ can also be written in the form MFK for a suitably defined vector K involving
ψ0, Z, and Wr, r = 1, 2, 3.
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∑n
i=1 g∗i g

∗′
i =

∑n
i=1 gig

′
i, where g∗i is obtained by replacing vit by zit in (3.21).

To derive the analytical form of Υ(ψ0) =
∑n

i=1

∑
j 6=i E(gig

′
j). Note that the expectations

of gΠr,i, gΨr,i and gΦr,i in (3.21) are all zero, for all r. First, by Assumptions A and B and the

expressions (3.17) and (3.18), we show that (gΠr,i, gΨν ,i) are uncorrelated, i.e., E(gΠr,igΠν ,j),

E(gΨr,igΨν ,j) and E(gΠr,igΨν ,j) are all zero, for i 6= j, r = 1, 2, 3, 4, and ν = 1, 2, 3. Next, by

(3.17)-(3.20) and Assumptions A and B, we have, for i 6= j (= 1, . . . , n),

E(gΦr,igΠν ,j) = E{[
∑T

t=1 vitϕr,it +
∑T

t=1(vitz
d
r,it − dr,it)](

∑T
t=1 Πν,jtvjt)}

= E[(
∑T

t=1 vitϕr,it)(
∑T

t=1 Πν,jtvjt)] + E[
∑T

t=1(vitz
d
r,it − dr,it)(

∑T
t=1 Πν,jtvjt)] = 0;

(3.22)

E(gΦr,igΨν ,j) = E{[
∑T

t=1 vitϕr,it +
∑T

t=1(vitz
d
r,it − dr,it)](

∑T
t=1 vjtξν,jt)}

= E[(
∑T

t=1 vitϕr,it)(
∑T

t=1 vjtξν,jt)] + E[
∑T

t=1(vitz
d
r,it − dr,it)(

∑T
t=1 vjtξν,jt)] = 0.

(3.23)

Therefore, gΦr,i is uncorrelated with gΠν ,j and gΨν ,j , i 6= j. These results show that the

covariance between gi and gj comes only from the covariance between gΦr,i and gΦν ,j , i 6= j,

and r, ν = 1, 2, . . . , 5 + kφ. Let a′its be the ith row of the n× n matrix Φu
ts + Φ`

ts, and aijts be

the jth element of a′its. Under Assumptions A and B, we have for i 6= j,

E(gΦr,igΦν ,j) = E[(
∑T

t=1 vitϕr,it)(
∑T

s=1 vjsϕν,jt)]

=
∑T

t=1

∑T
s=1 E[vitvjs(

∑T
p=1 a

′
r,itpz

∗
p)(
∑T

p=1 a
′
ν,jspz

∗
p)]

=
∑T

t=1

∑T
s=1 E[vit(

∑T
p=1 a

′
ν,jspz

∗
p)]E[vjs(

∑T
p=1 a

′
r,itpz

∗
p)]

=
∑T

t=1

∑T
s=1 E(vita

′
ν,jstz

∗
t )E(vjsa

′
r,itsz

∗
s )

=
∑T

t=1

∑T
s=1 E(aν,jistvitz

∗
it)E(ar,ijtsvjsz

∗
js)

= σ4
v0

∑T
t=1

∑T
s=1 aν,jistar,ijts.

(3.24)

Collecting all the results above, we have the non-zero elements of Υ(ψ0) as follows,

Υk+r,k+ν(ψ0) =
∑n

i=1

∑n
j 6=i E(gΦr,igΦν ,j)

=
∑n

i=1

∑n
j 6=i σ

4
v0

∑T
t=1

∑T
s=1 aν,jistar,ijts

= σ4
v0tr(ΦrΦν)− σ4

v0

∑n
i=1

∑T
t,s=1 Φνii,stΦrii,ts,

(3.25)

for r, ν = 1, 2, . . . 5 + kφ. These show that the covariance matrix Υ(ψ0) has a simple form

and depends only on ψ0. Thus, it can be consistently estimated by plugging in a consistent

estimate of ψ0. Finally, the consistency of the proposed estimator of the variance of the

estimating functions, Σ̂nT = 1
nT

∑n
i=1 ĝiĝ

′
i + 1

nT Υ(ψ̂M), is proved in the following theorem.

Theorem 3.3. Under the assumptions of Theorem 3.1, we have, as n→∞

Σ̂nT − Σ(ψ0) =
1

nT

n∑
i=1

[ĝiĝ
′
i − E(gig

′
i)] +

1

nT
[Υ(ψ̂M)−Υ(ψ0)]

p−→ 0,

and hence H−1
nT (ψ̂M)Σ̂nTH

′−1
nT (ψ̂M)−H−1

nT (ψ0)ΣnT (ψ0)H ′−1
nT (ψ0)

p−→ 0.
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3.5. Number of factors under fixed T

So far we have assumed that the true number of factors r0 is known. In fact, ψ could be

consistently estimated with a choice of r not less than r0. From the AQS function in (3.10),

we see that, when r < r0, rank(MF (φ)) < r0 and thus MF (φ) cannot completely remove

Γ0F
′
0 from Z(θ). Therefore, no φ can satisfy E[S∗nT (ψ, φ)] = 0. On the other hand, when

rank(MF (φ)) > r0, there are infinitely many φ such that MF (φ) can completely remove ΓF ′.

While φ is not identified when r > r0, ψ is, because E[S∗nT (ψ, φ)] = 0 holds only at ψ = ψ0.

To see this, write Z(θ) = Z(θ0) −
∑k+3

p=1 Xp(βp − βp0), where Xp is the pth column of

X, p = 1, · · · , k, Xk+1 = Y−1,Xk+2 = W1Y, and Xk+3 = W2Y−1, with βk+1 = ρ, βk+2 = λ1,

and βk+3 = λ2. Then, for example, the β1-component of the AQS function can be written as

1
σ2
v
X′1MF (φ)Ω−1(λ3)Z(θ) = 1

σ2
v
X′1MF (φ)Ω−1(λ3)vec(Γ0F

′
0)

+ 1
σ2
v
X′1MF (φ)B′30(λ3)v − 1

σ2
v

∑k+3
p=1 X′1MF (φ)Ω−1(λ3)Xk(βp − βp0).

(3.26)

The expectation of the second term is always zero by Assumption A. When r < r0, the first

term cannot be zero as there is no φ such that MF (φ)vec(Γ0F
′
0) = 0. When r > r0, there

are infinitely many φ’s such that the first term is zero. The third term is zero only when

βp = βp0. Similar arguments are made in Ahn et al. (2013). This feature is also discussed

in Moon and Weidner (2015) for regular panel models, and in Shi and Lee (2017) for DSPD

models. Kuersteiner and Prucha (2020), on the other hand, requires r to be correctly specified

for their estimator to be consistent. A formal study on this issue is beyond the scope of the

paper. We instead provide simulation results for the misspecified case r > r0 in Sec. 5.

Although the proposed M-estimator remains consistent when r > r0, its limiting distri-

bution is derived under the premise that number of factors is correctly specified. Ahn et al.

(2013) propose to estimate r0 for (non-spatial) short panels with IFE by the following Bayesian

information criteria (BIC):

r̂ = argmin
0≤r≤T−1

ln(σ̂2
v(r)) + g(r)f(n)

where g(r) = ar, f(n) = lnn
n , a is an arbitrarily chosen positive number, and σ̂2

v(r) is the

estimated error variance based a chosen r. Under BIC, we have nf(n) → ∞, and f(n) → 0

as n → ∞, where the first condition ensures that plimn→∞ Pr (r̂ > r0) = 0, and the second

condition is to ensure plimn→∞ Pr (r̂ < r0) = 0.

The above BIC may also be used in our case and a similar study would be interesting for

our short DSPD-IFE models but is beyond scope of the paper. Finally, it is very interesting

to note that our AQS functions may provide a potential framework for the construction of

a formal M-test for the identification of a subset of factors that are significant, and thus the

identification of the true r0. This would be an interesting topic for future research.
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3.6. M-estimation with relatively small T

As mentioned in the introduction, the asymptotic framework with T = o(n), i.e., T in-

creases with n but at a slower rate, is of great practical interest but has not been formally

studied due to technical difficulty. As T increases the dimension of the factor parameters φ

(and of the corresponding AQS vector) increases. Therefore, it may not be possible to study

the asymptotic behavior of ψ̂M = (ψ̂M, φ̂M)
′ jointly. We focus on the M-estimator ψ̂M of the

common parameters ψ. We show that, under T = o(n), the M-estimation process remains

largely unchanged, ψ̂M is now
√
nT -consistent, and the variance of ψ̂M can be estimated by the

ψ-ψ block of H−1
nT (ψ̂M)Σ̂nTH

′−1
nT (ψ̂M) given in Theorem 3.3. These show that for inference on

ψ the finite-T asymptotics still apply when T is large but smaller than n. We further show

that the elements of φ̂M only have
√
n consistency rate, and inference for a finite number of

linear contrasts of φ can be made based on the φ-φ block of H−1
nT (ψ̂M)Σ̂nTH

′−1
nT (ψ̂M).

Which these results seem to be quite intuitive, the asymptotic arguments leading them

are much more complicated than the case of fixed T . Now ψ = (ψ′, φ′)′ is a high-dimensional

parameter, so is the AQS function (3.10) and the asymptotic orders of entries corresponds to

ψ and φ are distinct. Directly studying the joint AQS function can be troublesome. Instead,

we consider the concentrated AQS function with φ being ‘concentrated’ out:

S̃∗nT (ψ) = S∗nT,ψ
(
ψ, φ̂(ψ)

)
, (3.27)

where φ̂(ψ) = vec[F̂1(ψ)F̂−1
2 (ψ)] and (F̂ ′1(ψ), F̂ ′2(ψ))′ = F̂ (ψ) = eigvr

(
1
nT Z

′(θ)Ω−1(λ3)Z(θ)
)
,

the eigenvectors corresponding to the r largest eigenvalues. Note that ψ̂M is the solution to

S̃∗nT (ψ) = 0. It suffices to derive the asymptotic properties of the concentrated AQS and its

derivatives at true parameters. To concentrate out φ, one needs an analytical expression of

F̂ (ψ) (orMF̂ (ψ)), which is not possible. To overcome this difficulty, we employ the perturbation

theory for linear operators (Kato 2013) to obtain an asymptotic expansion of MF̂ (ψ) around

ψ0, so as to give an approximation to MF̂ (ψ) using the leading term(s). This method greatly

helps in analyzing the asymptotic behavior of the concentrated AQS function, but it still faces

a great challenge. If we allow T to go to infinity at a very slow rate compared to n, the

leading terms of MF̂ (ψ) can be too many, which complicate the analysis greatly. To simplify

the analysis, we follow Bai (2003) to restrict n/T 2 → 0 and further assume the following.

To proceed, we impose an assumption on the n× T matrix of idiosyncratic errors .

Assumption H. Arrange the idiosyncratic errors vit into an n × T matrix V. Assume

||V||sp = Op(
√
n+ T ), ||VV′ − Tσ2

v0In||sp = Op(
n
T ), and ||V′V− nσ2

v0IT ||sp = Op(
T
n ).

Assumption H bounds spectrum norm of matrices related to the idiosyncratic errors. This

is a standard assumption in factor analysis literature. Similar assumptions also appear in

Moon and Weidner (2015) and Miao et al. (2020). If vit’s are sub-Gaussian, we can prove
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these properties under Assumption A.19 The corollary below summarizes the desired results.

Corollary 3.1. Suppose Assumptions A-H hold, (n, T )→∞ and T
n +

√
n
T → 0. Then,

(i) ψ̂M − ψ0 = Op
(

1√
nT

)
and φ̂s,M − φs0 = Op(

1√
n

), for each s = 1, . . . , kφ;

(ii)
√
nT
(
ψ̂M − ψ0

) D−→ N
(

0, lim
(n,T )→∞

H̃−1
nT (ψ0)Σ̃nT (ψ0)H̃ ′−1

nT (ψ0)
)
,

where H̃nT (ψ0) = − 1
nT E

[
∂
∂ψ′ S̃

∗
nT (ψ0)

]
and Σ̃nT (ψ0) = 1

nT Var
[
S̃∗nT (ψ0)

]
, both assumed to exist

and H̃nT (ψ0) to be positive definite for large enough (n, T ).

Corollary 3.1 shows that ψ̂M is consistent with
√
nT rate. On top of that, there are no

asymptotic bias terms that may affect the inference. In contrast, the QML estimator of

Bai and Li (2021) has three asymptotic bias terms and bias correction has to be made after

estimation for valid inference. For inference, Corollary 3.1 indicates that we can further find

the limit of the covariance matrix and proposes a new consistent estimator. However, this will

lead to a different inference procedure compared to the fixed T framework. In practice, one

has to determine which inference procedure to use which will largely complicate the inference

procedure. To address this issue, we have carefully studied the asymptotic property of Σ̂nT as

in (3.16) and found a delightful fact: the covariance estimator proposed in Sec. 3.4 continues

to valid. More specifically, the ψ-ψ block of the covariance matrix given in Theorem 3.3 still

consistently estimates the covariance matrix of ψ̂M under the large T framework.

Corollary 3.2. Suppose Assumptions A-H hold. We have as (n, T )→∞ and T
n+

√
n
T → 0,[

H−1
nT (ψ̂M)Σ̂nTH

′−1
nT (ψ̂M)

]
ψψ
− H̃−1

nT (ψ0)Σ̃nT (ψ0)H̃ ′−1
nT (ψ0) −→ 0,

where [ · ]ψψ takes the ψ-ψ block of the given matrix.

Corollary 3.2 confirms the inference procedure on the finite-dimensional parameter vector

ψ is valid for both the case of fixed T and the case of T = o(n).20 Establishing the Corollary

is challenging as we have to deal with high-dimensional matrices. While the target matrix is

of fixed dimension, two inverses of high-dimensional matrices are involved in the analysis. In

addition, the entries corresponding to ψ and φ are of different asymptotic orders. We need to

handle these two issues carefully in the proofs of the results.

Statistical inference for φs or a finite number of linear contrasts Cφ of φ might be of

interest. With
√
nT consistent rate of ψ̂M, the estimate of factor is asymptotically equivalent

to that obtained from a pure factor model (Bai 2003). We can also show that, inference on

Cφ0 can be carried out based on the result:
√
nC(φ̂s,M − φs0)

D−→ N(0, Ω), where Ω can be

consistently estimated by C
[
H−1
nT (ψ̂M)Σ̂nTH

′−1
nT (ψ̂M)

]
φφ
C ′.

19For a detailed discussion, one can look up the book Vershynin (2018).
20The restrictive assumption

√
n
T
→ 0 is only of technical reasons and the cost of removing it may be just

many extra lines in the proofs. The Monte Carlo simulation results show that this assumption is not necessary.
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4. M-Estimation of Extended DSPD-IFE Models

In this section, we present some critical details on the following extensions: (i) DSPD-

IFE model with time-varying spatial weight matrices, (ii) DSPD-IFE model with unknown

cross-sectional heteroskedasticity, and (iii) High-order DSPD-IFE models. We also give some

discussions on the potential applications of our methods to estimate DSPD-IFE models with

endogenous spatial weights and additional endogenous regressors.

(i) Time-varying spatial weight matrices. First, consider Model (2.4) but with W3t =

W3. The model has the reduced form: yt = Btyt−1 + B−1
1t0xtβ0 + B−1

1t0zt, t = 1, . . . , T , where

Bt = B−1
1t0B2t0, B1t0 = In − λ10W1t and B2t0 = ρ0In + λ20W2t. Define Wν = bdiag(Wνt, t =

1, . . . , T ), ν = 1, 2, B1(λ1) = InT −λ1W1, and B2(ρ, λ2) = ρInT +λ2W2. The representations

for Y and Y−1 given in (3.8) still hold with redefined Q, Q−1, D, and D−1:

Q = bdiag(B1, B1B2, . . . , B1 · · · BT ), Q−1 = bdiag(In, B1, . . . , B1 · · · BT−1),

D =


In 0 . . . 0 0

B2 In . . . 0 0

B2B3 B2 . . . 0 0
...

...
. . .

...
...

B2 · · · BT B2 · · · B(T−1) . . . B2 In

B−1
10 , and (4.1)

D−1 =


0 0 . . . 0 0

In 0 . . . 0 0

B2 In . . . 0 0
...

...
. . .

...
...

B2 · · · B(T−1) B2 · · · B(T−2) . . . In 0

B−1
10 . (4.2)

Then, with Z(θ) = B1(λ1)Y − B2(ρ, λ2)Y−1 −Xβ, we see that the AQS function takes the

form identical to (3.10), and M-estimation proceeds.

Next, we further allow W3 to be time varying and define B3t0 = In − λ30W3t, W3 =

bdiag(W3t, t = 1, . . . , T ) and B3(λ3) = InT − λ3W3. With time varying W3t, concentrating

out the factor loadings Γ from the CQL function in (3.1) is no longer straightforward. Let

Γv = vec(Γ), we can rewrite the CQL function as

`nT (ψ,Γv, F ) = −nT
2 log(2πσ2

v)− log |B3(λ3)|+ log |B1(λ1)|

− 1
2σ2
v

∑T
t=1[z′t(θ)Ω

−1
t (λ3)zt(θ)− 2Γ′v(ft ⊗ Ω−1

t (λ3))zt(θ) + Γ′v(ft ⊗ Ω−1
t (λ3))Γv], (4.3)

where Ωt(λ3) = (B′3t(λ3)B3t(λ3))−1. Solving the first order condition, ∂
∂Γv

`nT (ψ,Γv, F ) = 0

gives the constrained CQML estimator of Γv

Γ̃v(θ, λ3, F ) = [
∑T

t=1(ftf
′
t ⊗ Ω−1

t )]−1[
∑T

t=1(ft ⊗ Ω−1
t )zt(θ)]. (4.4)

Then we obtain the CCQL function by plugging Γ̃v(θ, λ3, F ) into `nT (ψ,Γv, F ) as
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`cnT (ψ, F ) =− nT
2 log(2πσ2

v)− log |B3(λ3)|+ log |B1(λ1)|

− 1
2σ2
v
Z′(θ)B′3(λ3)MF †(F, λ3)B3(λ3)Z(θ), (4.5)

where MF †(F, λ3) = InT − F†(F†′F†)−1F†′ and F† = B3(F ⊗ In). It can been verified easily

that (4.5) reduces to (3.5) when W3 is time-invariant. The CCQS functions of ψ and φ defined

in (3.6) now becomes

ScnT (ψ, φ) =



1
σ2
v
X′B′3(λ3)MF †B3(λ3)Z(θ),

1
σ2
v
Z′(θ)B′3(λ3)MF †B3(λ3)Y−1,

1
σ2
v
Z′(θ)B′3(λ3)MF †B3(λ3)W1Y − tr[W1B

−1
1 (λ1)],

1
σ2
v
Z′(θ)B′3(λ3)MF †B3(λ3)W2Y−1,

1
σ2
v
Z′(θ)B′3(λ3)MF †W3Z(θ)− tr[W3B

−1
3 (λ3)],

1
2σ4
v
Z′(θ)B′3(λ3)MF †B3(λ3)Z(θ)− nT

2σ2
v
,

1
σ2
v
Z′(θ)B′3(λ3)As(φ, λ3)B3(λ3)Z(θ), s = 1, . . . , kφ,

(4.6)

where As = MF † [Ḟ
†
s(F†′F†)−1F†′], and Ḟ†s = ∂

∂φs
F† = B3(Ḟs ⊗ In).

With D and D−1 defined in (4.1) and (4.2), defining M∗
F †

= B3MF †B
−1
3 , the AQS function

can be written as

S∗nT (ψ, φ) =



1
σ2
v
X′B′3(λ3)MF †B3(λ3)Z(θ),

1
σ2
v
Z′(θ)B′3(λ3)MF †B3(λ3)Y−1 − tr[M∗

F †
D−1(ρ, λ1, λ2)],

1
σ2
v
Z′(θ)B′3(λ3)MF †B3(λ3)W1Y − tr[M∗

F †
W1D(ρ, λ1, λ2)],

1
σ2
v
Z′(θ)B′3(λ3)MF †B3(λ3)W2Y−1 − tr[M∗

F †
W2D−1(ρ, λ1, λ2)],

1
σ2
v
Z′(θ)B′3(λ3)MF †W3Z(θ)− tr[MF †W3B

−1
3 (λ3)],

1
2σ4
v
Z′(θ)B′3(λ3)MF †B3(λ3)Z(θ)− n(T−r)

2σ2
v
,

1
σ2
v
Z′(θ)B′3(λ3)As(φ, λ3)B3(λ3)Z(θ), s = 1, . . . , kφ.

(4.7)

The above AQS functions, allowing all three weight matrices being time varying, take similar

form as these in (3.10). Our proposed M-estimation and inference methods proceed as before.

(ii) Cross-sectional heteroskedasticity. An interesting extension to consider is to allow

for cross-sectional heteroskedasticity in the error vector v. For ease of exposition, we extend

the model considered in Sec. 3 by allowing v ∼ (0, σ2
v0H) where H = (IT ⊗H) (see Remark

3.3 and Footnote 13). It is easy to verify the following results:

σ−2
v0 E(Z′MF0Ω

−1
0 Y−1) = tr(D−1MF0B

−1
30 HB30), (4.8)

σ−2
v0 E(Z′MF0Ω

−1
0 W1Y) = tr(DMF0B

−1
30 HB30W1), (4.9)

σ−2
v0 E(Z′MF0Ω

−1
0 W2Y−1) = tr(D−1MF0B

−1
30 HB30W2), (4.10)

σ−2
v0 E(Z′MF0B

′
30W3Z) = tr(MF0B

−1
30 HW3). (4.11)
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Therefore, the ρ and λ components E[ ∂∂ψ `
c
nT (ψ0, φ0)] are no longer functions of only (ψ0, φ0);

they contain the unknown heteroskedasticity matrix H.

While this makes the direct adjustment method as in the paper infeasible, the idea of AQS

prevails, showing the generality and flexibility of the AQS method. As in Li and Yang (2020)

for an DSPD model with additive FE, instead of directly subtracting the expectation, we can

find a set of quadratic terms in Z with expectations being identical to (4.8)-(4.11):

σ−2
v0 E(Z′Ω−1

0 D−1MF0Z) = tr(D−1MF0B
−1
30 HB30), (4.12)

σ−2
v0 E(Z′Ω−1

0 W1DMF0Z) = tr(DMF0B
−1
30 HB30W1), (4.13)

σ−2
v0 E(Z′Ω−1

0 W2D−1MF0Z) = tr(D−1MF0B
−1
30 HB30W2), (4.14)

σ−2
v0 E{Z′B′30[IT ⊗ diag(W3B

−1
30 )]B30MF0Z} = tr(MF0B

−1
30 HW3). (4.15)

Taking the differences between these two sets and drop the expectations lead to a set of

unbiased estimating functions for ρ and λ, robust against unknown H. The φ-component

of the EF vector given in (3.10) is naturally robust against unknown H as shown in Foot-

note 13. Moreover the β′ and σ2
v components also do not need further adjustment under

heteroskedasticity. Therefore, a full set of EFs robust against unknown H is given as follows.

SrnT (ψ, φ) =



X′MFΩ−1(λ3)Z(θ),

Z′(θ)MFΩ−1(λ3)Y−1 − Z′(θ)Ω−1(λ3)D−1(ρ, λ1, λ2)MFZ(θ),

Z′(θ)MFΩ−1(λ3)W1Y − Z′(θ)Ω−1(λ3)W1D(ρ, λ1, λ2)MFZ(θ),

Z′(θ)MFΩ−1(λ3)W2Y−1 − Z′(θ)Ω−1(λ3)W2D−1(ρ, λ1, λ2)MFZ(θ),

Z′(θ)MFB′3(λ3)
{
W3 − [IT ⊗ diag(W3B

−1
3 (λ3))]B3(λ3)

}
Z(θ),

1
2σ2
v
Z′(θ)MFΩ−1(λ3)Z(θ)− n(T−r)

2 ,

Z′(θ)[MF Ḟs(F
′F )−1F ′ ⊗ Ω−1(λ3)]Z(θ), s = 1, . . . , kφ.

(4.16)

We have E[SrnT (ψ0, φ0)] = 0. We further show that plimn→∞
1
nT S

r
nT (ψ0, φ0) = 0. There-

fore, solving SrnT (ψ, φ) = 0 would give consistent M-estimators of ψ and φ robust against

unknown H. The two-step computation approach still works under heteroskedasticity (see

footnote 11 for details). With the EF vector (4.16), our M-estimation method will go through

as before and remain valid. Our inference method will go through as well provided that either

the Γ term or the λ3 term ‘exists’. When both terms are absent, the H-robust inference for σ2
0

faces difficulty. This suggests one should work with SrnT (ψ, φ) without the σ2-component for

H-robust inference. This is particularly meaningful as the subvector is free from σ2. While

the fundamental ideas are clear, these extensions require additional complicated algebra and

rigorous proofs, and can only be handled by a separate research.

The same set of results can also be worked out for KP’s type of model given in (2.1)

with exogenous spatial weights and regressors, where all spatial weight matrices are allowed
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to change with time in light of the remarks given at the end of (i). Extensions to high-order

DSPD-IFE models are possible. See the discussions below.

(iii) High-order DSPD-IFE models. Our methods can also be extended to allow for

multiple space and time lags as in Models (2.1), (2.2), and (2.3). First, for Model (2.1) with

p = 1 and spatial weights and regressors being exogenous. Let λν = (λν1, . . . , λν,qν )′, ν =

1, 2, 3. Define Bνt(λν) = In−
∑qν

`=1 λν`Wν`t, ν = 1, 3, and B2t(ρ, λ2) = ρIn+
∑q2

`=1 λ2`W2`,t−1.

Then, Model (2.1) can be written in the following compact form:

B1t(λ1)yt = B2t(ρ, λ2)yt−1 + xtβ +B−1
3t (λ3)(Γft + vt), t = 1, . . . , T.

Redefine zt(θ) = B3t(λ1)[B1t(λ1)yt − B2t(ρ, λ2)yt−1 − xtβ], and let Z(θ) = [z1(θ), . . . , zT (θ)].

Referring to (3.1) and (3.2), the only component in the quasi Gaussian loglikelihood that

involves ΓF ′ has the form: − 1
2σ2 tr[(Z(θ) − ΓF ′)′(Z(θ) − ΓF ′)]. With this new Z(θ), the

CQML estimate of Γ, Γ̃(θ, F ), has an identical form as (3.3). The rest of the derivations for

the M-estimation can be done in a manner similar to Sec. 3. For Model (2.2), if further

B3t(λ3) = B3(λ3), then, the quasi Gaussian loglikelihood remain the same as (3.1) and (3.2).

The rest of derivations is similar to those in Sec. 3, although much more tedious due to the

existence of multiple spatial lag effects of three different forms. For Model (2.3), combining the

above ideas, if both B3t(λ3) and B4t(λ4) are time-invariant, and the spatial weight matrices

and regressors are exogenous, our M-estimation method will go through.

We end this section by offering some comments on the DSPD-IFE models with endogenous

spatial weights and regressors. Our methods have potential to be extended to cover the cases

where the spatial weights and some regressors are generated by some endogenous economic

variables through some functional relationship as in Qu et al. (2017). In this case, we are able

to derive the CQL function, and thereby the adjustments, and so on.

5. Monte Carlo Study

Extensive Monte Carlo experiments are run to investigate the finite sample performance

of the proposed M-estimator of the DSPD-IFE model and the extended OPMD estimator of

its VC matrix. We use the following two data generating processes (DGPs):

DGP1: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + xtβ + Γft + ut, ut = λ3W3ut + vt;

DGP2: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + xtβ + Γft + vt.

To substantiate our claim that the proposed methods are superior when T is small, comparisons

are made with (i) the bias corrected CQML estimator (BC-CQMLE) of Shi and Lee (2017)

using DGP1, and (ii) the GMM estimator in Kuersteiner and Prucha (2020) using DGP2.

The former is designed for large T and the latter is valid for small T .
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The exogenous time varying regressors xt, the T × r matrix of unobserved factors F and

their n × r loadings matrix Γ are generated in a similar fashion as Shi and Lee (2017). xt =

(x1,t, x2,t) is an n× 2 matrix of regressors, whose elements are generated according to x1,it =

0.25(γ′ift + (γ′ift)
2 + 1′γi + 1′ft) + η1,it, and x2,it = cη2,it. The elements of γi, ft, η1it, and η2,it

are generated independently from standard normal distribution, and c is a constant. We use

c = 1 for DGP1 and c = 2 for DGP2 as the numerical stability of the GMM method requires a

significantly larger signal-to-noise ratio. The spatial weight matrices are generated according

to the following schemes: Rook contiguity, Queen contiguity, or group interaction.21

The error (vt) distribution can be (i) normal, (ii) normal mixture (10%N(0, 4), 90%N(0, 1)),

or (iii) chi-squared with degrees of freedom 3. In both (ii) and (iii), the generated errors are

standardized to have mean zero and variance σ2
v . We choose β1 = β2 = σ2

v = 1, ρ= 0.3, and

λ1 = λ2 = λ3 = 0.2. The number of factors r= 1 or 2. We set the processes starting time at

t = −10 (m = 10), n = 50, 100, 200, 400 for T = 3, and n = 25, 50, 100, 200 for T = 10. Each

set of Monte Carlo results, under a set of values of (n, T, ρ, λ′s), is based on 2000 samples.

Monte Carlo (empirical) mean and standard deviation (sd) are reported for the proposed

M-estimator, along with r̂se, the empirical average of the robust standard errors (ses) based

on the VC matrix estimate H−1
nT (ψ̂M)Σ̂nTH

−1
nT (ψ̂M), which should be compared with the corre-

sponding empirical sd. Similar types of Monte Carlo results are also reported for BC-QMLE

for direct comparisons. Due to the issues of numerical stability and code availability of the

GMM estimator, a smaller scale of comparison is made.

The results show an excellent finite sample performance of the proposed M-estimator and

the OPMD-type estimator of the VC matrix of the M-estimator, irrespective of the spatial

layouts, the error distributions, the number of factors, etc. The proposed estimation and

inference methods clearly dominate, in terms of bias and efficiency, the bias-corrected CQML

method of Shi and Lee (2017),22 and the GMM method of Kuersteiner and Prucha (2020).23

Table 1 presents the results with T = 3, r = r0 = 1 and Rook contiguity spatial layout.

The M-estimator of the dynamic parameter is nearly unbiased, whereas the corresponding

BC-CQMLE can be quite biased and as n increases it does not show a sign of convergence.

This shows that their bias correction does not address the initial values problem when T is

small. The M-estimators of the spatial parameters λ1 and λ2 also show an excellent finite

sample performance, whereas that of λ3 shows some small bias when errors are drawn from

the chi-squared distribution. The BC-CQMLE of λ1 performs quite well, but these of λ2 and

λ3 are slightly biased. While the biases of the BC-CQMLEs of λ2 and λ3 are not severe, the

21The Rook and Queen schemes are standard. For group interaction, we first generate k = nα groups of sizes
ng ∼ U(.5n̄, 1.5n̄), g = 1, · · · , k, where 0 < α < 1 and n̄ = n/k, and then adjust ng so that

∑k
g=1 ng = n. The

reported results correspond to α = 0.5. See Yang (2015) for details in generating these spatial layouts.
22We thank the authors for making their codes available at https://www.w-shi.net/research.html.
23We thank the authors for the codes at http://econweb.umd.edu/%7Ekuersteiner/research_UMD.html.
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standard error estimate performs poorly. In contrast, the robust ses (rses) of M-estimator are

on average very close to the corresponding Monte Carlo sds, showing the robustness and good

finite sample performance of the proposed VC matrix estimate, leading to reliable inferences.

Table 2 presents the results with T = 3, r = r0 = 1, group interaction for W1 and W2,

and Queen contiguity W3. Under these much denser spatial layouts, the proposed robust M-

estimators continue to perform very well, whereas the BC-CQMLEs for ρ and λ′s deteriorate

significantly, which can be severely biased and show a clear pattern of inconsistency. More-

over, the rses of our M-estimator still perform quite well and are generally very close to the

corresponding Monte Carlo sds, whereas the ses of BC-CQMLE again show large biases.

Table 3 presents the results with T = 3, r = r0 = 2, and Rook contiguity spatial weight

matrices. Compared with Table 1, the M-estimators have slightly larger bias and sds when

the number of factors increases as expected, but their performance is still satisfactory and

more importantly the sign of convergence is clear. Moreover, the rses are also generally close

to the corresponding Monte Carlo sds. The BC-CQMLEs, on the other hand, are severely

biased under this setting, especially for ρ and λ1. The associated standard error estimates of

the BC-CQMLEs perform even worse.

Tables 4 and 5 present the results with T = 10, r = r0 = 1, under Rook contiguity

spatial layouts and a combination of group interaction and Queen spatial layouts, respectively.

Results show that increasing T further improves performance of the M-estimators and their

robust standard error estimates. Increasing T significantly improves the performance of the

BC-CQML estimators so that they become comparable with the M-estimators except the BC-

CQMLE of the error variance. Further, the standard errors estimates of the BC-CQMLEs are

still noticeably biased, whereas the proposed rses of the M-estimators are very accurate.

Table 6 presents the results when number of factors is misspecified. The true number of

factor is r0 = 1 but number of factor assumed in the estimation is r = 2. The proposed

M-estimators perform reasonably well under misspecification. The M-estimator of σ2
v show

slightly larger bias than that in the correctly specified case while the M-estimators of the

other parameters show similar performance in terms of bias as in Table 1. The sds are slightly

larger than that in the correctly specified cases. As expected, the rses show some bias as the

asymptotic distribution of the AQS estimator is established based on true number of factor.

The BC-CQMLE performs poorly with much larger bias as compared to the M-estimators.

Table 7 presents the estimation results under DGP2, for the purpose of comparing our M-

estimator with the GMM estimator of Kuersteiner and Prucha (2020) when spatial weights and

covariates are strictly exogenous. From the results we see that (i) both estimators show clear

patterns of convergence, (ii) both perform well in terms of bias with M-estimator being slightly

better, and (iii) the proposed M-estimator is more efficient than the GMM estimator as shown
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by the empirical sds for all sample sizes and all error distributions considered. Furthermore,

our Monte Carlo experiments show that the GMM estimator requires a larger signal-to-noise

ratio for numerical stability. These suggest that when extra conditions (strict exogeneity) are

met, the proposed likelihood-type estimator can be more efficient than the more general GMM

estimator of Kuersteiner and Prucha (2020) which are valid when spatial weights and (some)

regressors are sequentially exogenous. The Monte Carlo results for GMM estimator do not

include r̂se, based on the code we received from the authors. It would be interesting to study

the efficiency of the proposed estimator from theoretical perspective, but it is clearly beyond

the scope of current paper. We plan to carry out such a study in a future research.

6. Conclusion

This paper proposes a set of new estimation and inference methods for spatial dynamic

panel data models with interactive fixed effect based on fixed and relatively large T set up,

the adjusted quasi score (AQS) or M-estimation method and the extended outer-product-of-

martingale-difference method. The advantage of the proposed AQS estimation methodology

is that it adjusts the conditional concentrated quasi score functions to remove the effects of

conditioning and concentration before the start of estimation process, rendering the estimators

possessing the usual asymptotic properties, i.e., consistency and asymptotic normality with

zero mean. Thus, it is free from the initial conditions, the process starting time and the factor

loadings. It is simple and reliable, preserving the efficiency properties of the likelihood-type

of estimation, and leading naturally to a simple method for standard error estimation.

The proposed set of estimation and inferences methods constitute an important set of

econometric tools relevant to applied researchers dealing with a broad class of pertinent issues,

such as spatial spillovers, endogenous social effects, social interactions, network effects, time

persistence, spatial diffusion, common factors, cross-sectional dependence, cross-sectional het-

eroskedasticity, etc. In addition, the nature of the proposed estimation and inference methods

suggests that there is a great potential for further extensions to allow for even more features

in the model. A rigorous comparison of various estimators for the DSPD models with IFE, in

particular between M-estimator and GMM estimator, would be an interesting topic of future

research. Specification tests for identifying the number of factors based on our AQS functions

would be another interesting topic of future research. These (proposed methods and planned

research) are of a great relevance in the era of machine learning with big data,
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Appendix A: Some Basic Lemmas

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two sequences

of n × n matrices that are uniformly bounded in both row and column sums. Let Cn be a

sequence of conformable matrices whose elements are uniformly O(h−1
n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(h−1
n ).

Lemma A.2. (Lee, 2004, p.1918): For W1 and B1 defined in Model (2.4), if ‖W1‖ and

‖B−1
10 ‖ are uniformly bounded, where ‖ · ‖ is a matrix norm, then ‖B−1

1 ‖ is uniformly bounded

in a neighborhood of λ10.

Lemma A.3. (Lee, 2004, p.1918): Let Xn be an n × p matrix. If the elements Xn are

uniformly bounded and limn→∞
1
nX
′
nXn exists and is nonsingular, then Pn = Xn(X ′nXn)−1X ′n

and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma A.4. (Lemma A.4, Yang, 2018): Let {An} be a sequence of n× n matrices that are

uniformly bounded in either row or column sums. Suppose that the elements an,ij of An are

O(h−1
n ) uniformly in all i and j. Let vn be a random n-vector of iid elements with mean zero,

variance σ2 and finite 4th moment, and bn a constant n-vector of elements of uniform order

O(h
−1/2
n ). Then

(i) E(v′nAnvn) = O( n
hn

), (ii) Var(v′nAnvn) = O( n
hn

),

(iii) Var(v′nAnvn + b′nvn) = O( n
hn

), (iv) v′nAnvn = Op(
n
hn

),

(v) v′nAnvn − E(v′nAnvn) = Op((
n
hn

)
1
2 ), (vi) v′nAnbn = Op((

n
hn

)
1
2 ),

and (vii), the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn

such that {E(b2ni)} are of uniform order O(h−1
n ).

Lemma A.5. (Lemma A.5, Yang, 2018): Let {Φn} be a sequence of n × n matrices with

row and column sums uniformly bounded, and elements of uniform order O(h−1
n ). Let vn =

(v1, · · · , vn)′ be a random vector of iid elements with mean zero, variance σ2
v, and finite (4 +

2ε0)th moment for some ε0 > 0. Let bn = {bni} be an n × 1 random vector, independent

of vn, such that (i) {E(b2ni)} are of uniform order O(h−1
n ), (ii) supiE|bni|2+ε0 < ∞, (iii)

hn
n

∑n
i=1[φn,ii(bni − Ebni)] = op(1) where {φn,ii} are the diagonal elements of Φn, and (iv)

hn
n

∑n
i=1[b2ni − E(b2ni)] = op(1). Define the bilinear-quadratic form: Qn = b′nvn + v′nΦnvn −

σ2
vtr(Φn), and let σ2

Qn
be the variance of Qn. If limn→∞h

1+2/ε0
n /n = 0 and {hnn σ

2
Qn
} are

bounded away from zero, then Qn/σQn
d−→ N(0, 1).
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Appendix B: Proofs of Theorems

To simplify notation, a parametric quantity (scalar, vector or matrix) evaluated at parame-

ters’ general values is denoted by dropping its arguments, e.g., B1 ≡ B1(λ1),B1 ≡ B1(λ1), and

Ω(λ3) ≡ Ω. The following matrix results are repeatedly used: (i) eigenvalues of a projection

matrix are either 0 or 1; (ii) eigenvalues of a positive definite matrix are strictly positive; (iii)

for symmetric matrix A and positive semidefinite (p.s.d.) matrix B, γmin(A)tr(B) ≤ tr(AB) ≤
γmax(A)tr(B); (iv) for symmetric matrices A and B, γmax(A+B) ≤ γmax(A) + γmax(B); and

(v) for p.s.d. matrices A and B, γmax(AB) ≤ γmax(A)γmax(B). See, e.g, Bernstein (2009).

Proof of Theorem 3.1: Under Assumption G, by Theorem 5.9 of van der Vaart (1998) the

consistency of δ̂ follows if supδ∈∆
1
nT ‖S

∗c
nT (δ)− S̄∗cnT (δ)‖ p−→ 0 as n→∞, where S∗cnT (δ) is the

concentrated AQS function for δ and S̄∗cnT (δ) is its population counterpart. Both quantities

are defined above Theorem 3.1 and their exact expressions are given below:

S∗cnT (δ) =



1
σ̂2
v(δ)

Ẑ′(δ)MFΩ−1Y−1 − tr(MFD−1),

1
σ̂2
v(δ)

Ẑ(δ)′MFΩ−1W1Y − tr(MFW1D),

1
σ̂2
v(δ)

Ẑ′(δ)MFΩ−1W2Y−1 − tr(MFW2D−1),

1
σ̂2
v(δ)

Ẑ′(δ)MFB′3W3Ẑ(δ)− (T − r)tr(B−1
3 W3),

1
σ̂2
v(δ)

Ẑ′(δ)[MF Ḟs(F
′F )−1F ′ ⊗ Ω−1]Ẑ(δ), s = 1, . . . , kφ,

(B.1)

where recall Ẑ(δ)(= B1Y −B2Y−1 −Xβ̂(δ)), σ̂2
v(δ) and β̂(δ) from (3.11) and (3.12);

S̄∗cnT (δ) =



1
σ̄2
v(δ)

E[Z̄′(δ)MFΩ−1Y−1]− tr(MFD−1),

1
σ̄2
v(δ)

E[Z̄′(δ)MFΩ−1W1Y]− tr(MFW1D),

1
σ̄2
v(δ)

E[Z̄′(δ)MFΩ−1W2Y−1]− tr(MFW2D−1),

1
σ̄2
v(δ)

E[Z̄′(δ)MFB′3W3Z̄(δ)]− (T − r)tr(B−1
3 W3),

1
σ̄2
v(δ)

E{Z̄′(δ)[MF Ḟs(F
′F )−1F ′ ⊗ Ω−1]Z̄(δ)}, s = 1, . . . , kφ,

(B.2)

where σ̄2
v(δ) = 1

n(T−r)E
[
Z̄(δ)′MFΩ−1Z̄(δ)

]
, Z̄(δ) = Z(θ)|β=β̄(δ) = B1Y − B2Y−1 − Xβ̄(δ),

and β̄(δ) = (X′MFΩ−1X)−1X′MFΩ−1(B1EY −B2EY−1). With (B.1) and (B.2), the proof

of consistency of δ̂ boils down to the proofs of the following:

(a) infδ∈∆ σ̄2
v(δ) is bounded away from zero,

(b) supδ∈∆

∣∣σ̂2
v(δ)− σ̄2

v(δ)
∣∣ = op(1),

(c) supδ∈∆
1
nT

∣∣Ẑ′(δ)MFΩ−1Y−1 − E[Z̄′(δ)MFΩ−1Y−1]
∣∣ = op(1),

(d) supδ∈∆
1
nT

∣∣Ẑ′(δ)MFΩ−1W1Y − E[Z̄′(δ)MFΩ−1W1Y]
∣∣ = op(1),

(e) supδ∈∆
1
nT

∣∣Ẑ′(δ)MFΩ−1W2Y−1 − E[Z̄′(δ)MFΩ−1W2Y−1]
∣∣ = op(1),
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(f) supδ∈∆
1
nT

∣∣Ẑ′(δ)MFB′3W3Ẑ(δ)− E[Z̄′(δ)MFB′3W3Z̄(δ)]
∣∣ = op(1),

(g) supδ∈∆
1
nT

∣∣Ẑ′(δ)[MF Ḟs(F
′F )−1F ′⊗Ω−1]Ẑ(δ)−E{Z̄′(δ)[MF Ḟs(F

′F )−1F ′⊗Ω−1]Z̄(δ)}
∣∣

= op(1), s = 1, . . . , kφ.

Denote A = MFΩ−1 = MF ⊗ (B′3B3), and let A
1
2 be a square-root matrix of A. Define

Z̄†(δ) = A
1
2 Z̄(δ), Ẑ†(δ) = A

1
2 Ẑ(δ), and B†ν = A

1
2 Bν , r = 1, 2. Let Y◦ = Y−E(Y) and Y◦−1 =

Y−1−E(Y−1). Further define the projection matrices: M = InT −A
1
2 X(X′AX)−1X′A

1
2 and

P = InT −M. Then, we can write:

Z̄†(δ) = M(B†1YY −B†2Y−1) + P(B†1Y
◦ −B†2Y

◦
−1), (B.3)

Ẑ†(δ) = M(B†1Y −B†2Y−1). (B.4)

Proof of (a). Using the expression (B.3) and by the orthogonality between M and P, we

can write σ̄2
v(δ) = 1

n(T−r)E[Z̄†′(δ)Z̄†(δ)] as follows:

σ̄2
v(δ) = 1

n(T−r)tr[Var(B†1Y −B†2Y−1)] + 1
n(T−r)(B†1EY −B†2EY−1)′M(B†1EY −B†2EY−1).

By Assumption E(iv) and the assumptions given in the theorem, we have for the first term,

infδ∈∆
1

n(T−r)tr[AVar(B1Y − B2Y−1)] ≥ 1
n(T−r) infδ∈∆γmin[Var(B1Y − B2Y−1)]tr(MF ⊗

B′3B3) ≥ 1
ncyinfλ3∈Λ3tr(B′3B3) ≥ 1

ncyn[infλ3∈Λ3γmin(B′3B3)] ≥ cyc3 > 0. The second term

is non-negative uniformly in δ ∈∆ as M is positive semi-definite (p.s.d). It follows that

infδ∈∆σ̄
2
v(δ) > c > 0, and result (a) is proved.

Proof of (b). Using (B.3) and (B.4), we can decompose σ̂2
v(δ)− σ̄2

v(δ) into four terms

σ̂2
v(δ)− σ̄2

v(δ) = (Q1 − EQ1) + (Q2 − EQ2)− 2(Q3 − EQ3)− EQ4. (B.5)

where Q1 = 1
n(T−r)Y

′B†′1 MB†1Y, Q2 = 1
n(T−r)Y

′
−1B

†′
2 MB†2Y−1, Q3 = 2

n(T−r)Y
′B†′1 MB†2Y−1

and Q4 = 1
n(T−r)(B†1Y

◦−B†2Y
◦
−1)′P(B†1Y

◦−B†2Y
◦
−1). The result in (b) follows if Qj−EQj

p→
0, j = 1, 2, 3, and EQ4 → 0, uniformly in δ ∈∆.

Recall from (3.8): Y = Qy0 + η + DZ and Y−1 = Q−1y0 + η−1 + D−1Z. By B30Z =

v + vec(B30Γ0F
′
0), we can further write Y = Qy0 + η∗ + DB−1

30 v, and Y−1 = Q−1y0 +

η∗−1 + D−1B
−1
30 v, where η∗ = η + Dvec(Γ0F

′
0) and η∗−1 = η−1 + D−1vec(Γ0F

′
0). Using these

expressions and letting M† = A
1
2 MA

1
2 , we can write

Q1 =
∑5

`=1Q1,` + 1
n(T−r)η

∗′B′1M
†B1η

∗,

Q2 =
∑5

`=1Q2,` + 1
n(T−r)η

∗′
−1B

′
2M
†B2η

∗
−1,

Q3 =
∑8

`=1Q3,` + 2
n(T−r)η

∗′B′1M
†B2η

∗
−1,

where Qk` takes one of the forms: 1
n(T−r)y

′
0R1y0, 1

n(T−r)v
′R2v, 1

n(T−r)y
′
0R3v, 1

n(T−r)y
′
0R4,

and 1
n(T−r)v

′R5. R1,R2, and R3 are nT × nT matrices while R4 and R5 are nT × 1 vectors.

These parametric quantities Rs, s = 1, . . . , 5 depend on δ through B1, B2 and M†, and involve
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Q, Q−1, D, D−1, η∗ and η∗−1, which are all matrix or vector functions of true parameters.

By Assumptions D, E and Lemma A.1, the nT × nT matrices Q, Q−1, D, and D−1 are

uniformly bounded in both row and column sums, and the elements of the nT × 1 vectors

η∗ and η∗−1 are uniformly bounded. By Assumptions D, E(iii) and Lemmas A.1, A.2, and

A.3, B1, B2 and M† are uniformly bounded in both row and column sums. Therefore, by

Lemma A.1(i) matrices R`, ` = 1, 2, 3 are uniformly bounded in both row and column sums

and by Lemma A.1(iii) elements of vectors R4 and R5 are uniformly bounded. Hence, by

Assumption F, we immediately have the results that 1
n(T−r) [y′0R1y0 − E(y′0R1y0)] = op(1),

and 1
n(T−r) [y′0R4 − E(y′0)R4] = op(1). The pointwise convergence of the quadratic terms

1
n(T−r)v

′R2v, and the bilinear term 1
n(T−r)y

′
0R3v, can be established by Assumptions B,

E and results (v) and (vi) in Lemma A.4. The pointwise convergence of the linear terms

1
n(T−r)v

′R5 can be proved using Chebyshev’s inequality. Therefore, for k = 1, 2, 3, and all `,

Qk,`(δ)− EQk,`(δ)
p−→ 0, for each δ ∈∆.

Now, all the Qk,`(δ) terms are linear or quadratic in ρ, λ1 and λ2, and it is easy to show

that supδ∈∆ | ∂∂ωQk,`(δ)| = Op(1), for ω = ρ, λ1, λ2. For λ3 and φ, they only enter Qk,`(δ)

through A in matrix M†. For ω = λ3, φs, s = 1, . . . , kφ, some algebra leads to the fol-

lowing expression d
dωM† = G′ȦωG, where G = InT − X(X′AX)−1X′A, Ȧλ3 = ∂

∂λ3
A =

MF ⊗ (B′3W3 + W ′3B3), and Ȧφs = ∂
∂φs

A = −ṖF,s ⊗ (B′3B3). By Assumption E(iv), we

have supδ∈∆ γmax(Ȧλ3) = supδ∈∆ γmax(B′3W3 + W ′3B3) < c. Moreover, supδ∈∆ γmax(G) =

supδ∈∆ γmax(X(X′AX)−1X′A) = supδ∈∆ γmax(A
1
2 X(X′AX)−1X′A

1
2 ) = 1. By applying

Lemmas A.1, A.4, and Assumption F repeatedly, we can show that, for k = 1, 2, 3, and

all `, supδ∈∆ | ∂∂λ3
Qk,`(δ)| = Op(1). For example, for | ∂∂λ3

Q1,1(δ)|,

supδ∈∆

∣∣ ∂
∂λ3

Q1,1(δ)
∣∣ = supδ∈∆

∣∣ 1
n(T−r)

∂
∂λ3

y′0Q
′B′1M

†B1Qy′0
∣∣

6 supδ∈∆ γmax(Ȧλ3)γmax(G′G)γmax(B′1B1) 1
n(T−r)

∣∣y′0Q′Qy′0
∣∣ = Op(1).

Recall ṖF,s = MF Ḟs(F
′F )−1F ′ + F (F ′F )−1Ḟ ′sMF , by Assumptions C and E(iv), it is easy to

see that γmax(Ȧφs) is uniformly bounded. Therefore by Lemmas A.1, A.4, and Assumption F,

we have for k = 1, 2, 3, and all `, supδ∈∆ | ∂∂φsQk,`(δ)| = Op(1), s = 1, 2, . . . , kφ. It follows that

Qk,`(δ) are stochastically equicontinuous. By Theorem 2.1 of Newey (1991), the pointwise

convergence and stochastic equicontinuity therefore lead to,

Qk,`(δ)− EQk,`(δ)
p−→ 0, uniformly in δ ∈∆.

It left to show that EQ4(δ) = 1
n(T−r)E[(B∗1Y

◦ − B∗2Y
◦
−1)′P(B∗1Y

◦ − B∗2Y
◦
−1)] → 0, uni-

formly in δ ∈ ∆. By Assumption D, γmin

(
X′AX
nT

)
> cx. We have by the assumptions in

Theorem 3.1 and Assumption D, EQ4 = 1
n(T−r)tr[AX(X′AX)−1X′AVar(B1Y −B2Y−1)] ≤

1
n(T−r)γ

2
max(A)γ−1

min

(
X′AX
nT

)
c̄y

1
nT tr(X′X) = O(n−1). Hence, σ̂2

v(δ)− σ̄2
v(δ)

p−→ 0, uniformly in
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δ ∈∆, completing the proof of (b).

Proofs of (c)-(g). Using the expressions (B.3) and (B.4) and the representations of Y

and Y−1 in (3.8), all the quantities inside | · | in (c)-(g) can all be expressed in the forms

similar to (B.5). Thus, the proofs of (c)-(g) follow the proof of (b). �

Proof of Theorem 3.2: By applying the mean value theorem (henceforth MVT) to each

element of S∗nT (ψ̂), we have,

1
nT S

∗
nT (ψ̂) = 1

nT S
∗
nT (ψ0) +

[
1
nT

∂
∂ψ′S

∗
nT (ψ)|ψ=ψ̄r in rth row

]
(ψ̂M −ψ0) = 0, (B.6)

where {ψ̄r} are between ψ̂ and ψ0 elementwise. The result of the theorem follows if

(a) 1√
nT
S∗nT (ψ0)

D−→ N
[
0, limn→∞ΣnT (ψ0)

]
,

(b) 1
nT

[
∂
∂ψ′S

∗
nT (ψ|ψ=ψ̄r in rth row)− ∂

∂ψ′S
∗
nT (ψ0)

] p−→ 0, and

(c) 1
nT

[
∂
∂ψ′S

∗
nT (ψ0)− E

(
∂
∂ψ′S

∗
nT (ψ0)

)] p−→ 0.

Proof of (a). In (3.14), we write the AQS vector as linear combinations of terms linear

or quadratic in Z and bilinear in Z and y0. Using Z = B−1
30 v + vec(Γ0F

′
0), and the matrix

multiplication result vec(Γ0F
′
0)′MF0K = 0 for any nT × 1 vector K, the AQS vector at the

true parameters can be written as follows:

S∗nT (ψ0) =



Π†′1 v

v′Ψ†1y0 + v′Φ†1v + Π†′2 v − µρ0

v′Ψ†2y0 + v′Φ†2v + Π†′3 v − µλ10

v′Ψ†3y0 + v′Φ†3v + Π†′4 v − µλ20

v′Φ†4v − µλ30

v′Φ†5v − µσ2
v0

v′Φ†5+sv + Π†′4+sv, s = 1, . . . , kφ

(B.7)

where Π†1 = 1
σ2
v0

(MF0 ⊗B30)X, Π†2 = 1
σ2
v0

(MF0 ⊗B30)η∗−1, Π†3 = 1
σ2
v0

(MF0 ⊗B30)W1η
∗,

Π†4 = 1
σ2
v0

(MF0⊗B30)W2η
∗
−1, Π†4+s = 1

σ2
v0

(MF0Ḟs0(F ′0F0)−1F0⊗B30)vec(Γ0F
′
0), s = 1, . . . , kφ;

Φ†1 = 1
σ2
v0

(MF0⊗B30)D−1B
−1
30 , Φ†2 = 1

σ2
v0

(MF0⊗B30)W1DB−1
30 , Φ†3 = 1

σ2
v0

(MF0⊗B30)W2D−1B
−1
30 ,

Φ†4 = 1
σ2
v0

(MF0⊗W3B
−1
30 ), Φ†5 = 1

2σ4
v0

MF0 , Φ†5+s= 1
σ2
v0

[MF0Ḟs0(F ′0F0)−1F ′0⊗In], s=1, . . . , kφ;

Ψ†1 = 1
σ2
v0

(MF0 ⊗B30)Q−1, Ψ†2 = 1
σ2
v0

(MF0 ⊗B30)W1Q, and Ψ†3 = 1
σ2
v0

(MF0 ⊗B30)W2Q−1.

By Assumptions C, E, and Lemma A.1, the nT × nT matrices Φ† and Ψ† are uniformly

bounded in both row and column sums, and elements of vectors Π† are uniformly bounded.

For every non-zero (k + 5 + kφ)× 1 vector of constants `, we can express,

`′S∗nT (ψ0) =
∑T

t=1

∑T
s=1 v

′
tAtsvs +

∑T
t=1 v

′
tg(y0)− `′µ,

for suitably defined non-stochastic matrices Ats, vector µ, and functions g(y0) that are linear
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in y0, where µ = (0′k, µσ2
v
, µρ, µλ1 , µλ2 , µλ3 , 0

′
kγ

)′. As {y0, v1, . . . , vT } are independent, the

asymptotic normality of 1√
nT
`′S∗nT (ψ0) follows from Lemma A.5. The Cramér-Wold devise

leads to the joint asymptotic normality of 1√
nT
S∗nT (ψ0).

Proof of (b). Let the nT × 1 vector XXp, p = 1, · · · , k, be the pth column of X. Denote

nT × 1 vectors, Xk+1 = Y−1, Xk+2 = W1Y, Xk+3 = W2Y−1. Further, denote βk+1 = ρ,

βk+2 = λ1, and βk+3 = λ2. The Hessian matrix, H(ψ) = ∂
∂ψ′S

∗
nT (ψ), has the elements:

Hβpβq = − 1
σ2
v
X′p(MF ⊗ Ω−1)Xq − µ̇βp,βq , Hβpλ3 = − 1

σ2
v
X′p[MF ⊗ (W ′3B3 +B′3W3)]Z(θ)

Hβpσ2
v

= − 1
σ4
v
X′p(MF ⊗ Ω−1)Z(θ), Hσ2

vσ
2
v

= − 1
σ6
v
Z′(θ)(MF ⊗ Ω−1)Z(θ) + n(T−r)

2σ4
v

Hσ2
vλ3

= − 1
σ4
v
Z′(θ)(MF ⊗W ′3B3)Z(θ), Hσ2

vβp
= Hβpσ2

v
, Hλ3βp = Hβpλ3 , Hλ3σ2

v
= Hσ2

vλ3

Hλ3λ3 = − 1
σ2
v
Z′(θ)(MF ⊗W ′3W3)Z(θ)− (T − r)tr(B−1

3 W3B
−1
3 W3)

Hβpφs = − 1
σ2
v
X′p(ṖF,s ⊗ Ω−1)Z′(θ)− µ̇βp,φs Hσ2

vφs
= − 1

2σ4
v
Z′(θ)(ṖF,s ⊗ Ω−1)Z(θ)

Hλ3φs = − 1
σ2
v
Z′(θ)(ṖF,s ⊗B′3W3)Z(θ), Hφsβp = − 1

σ2
v
X′p(ṖF,s ⊗ Ω−1)Z′(θ)

Hφsσ2
v

= Hσ2
vφs
, Hφsλ3 = Hλ3φs , Hφsφ` = − 1

σ2
v
Z′(θ)(Ȧs,` ⊗ Ω−1)Z(θ).

where p, q = 1, . . . , k + 3, s, ` = 1, . . . , kφ, As = MF Ḟs(F
′F )−1F ′, Ȧs,` = ∂

∂φ`
As, µ̇βp,βq =

∂
∂βq

µβp , and µ̇βp,φs = ∂
∂φs

µβp , where µβp = 0 for p ≤ k, and defined under (3.14) for p > k.

First, it is easy to show that 1
nTH(ψ̄) = Op(1) by Lemmas A.1, A.4 and the model

assumptions, where we use H(ψ̄) to denote ∂
∂ψ′S

∗
nT (ψ|ψ=ψ̄r in rth row) for notation simplicity.

As σ−rv , r = 2, 4, 6, appear in H(ψ) multiplicatively, we have 1
nTH(ψ̄) = 1

nTH(λ̄, β̄, ρ̄, σ2
v0) +

op(1) as σ̄−rv = σ−rv0 + op(1). Consider the term Hβpβq(λ̄, β̄, ρ̄, γ̄, σ
2
v0). By MVT we have,

X′p[MF (φ̄)⊗ Ω−1(λ̄3)]Xq

= X′p(MF0 ⊗ Ω−1
0 )Xq + X′p[MF (φ̃)⊗ (B′3(λ̃3)W3 +W ′3B3(λ̃3))]Xq(λ̄3 − λ30)

−
∑kφ

s=1 X′p[ṖF,s(φ̃)⊗ Ω−1(λ̃3)](φ̄s − φs0),

where (λ̃3, φ̃
′) is between (λ̄3, φ̄

′) and (λ30, φ
′
0). By (3.8), Assumptions C, E, F, Lemmas A.1,

A.4, and the consistency of ψ̂, 1
nT X′p[MF (φ̄)⊗ Ω−1(λ̄3)]Xq = 1

nT X′p(MF0 ⊗ Ω−1
0 )Xq + op(1).

For the convergence of µ̇βp,βq , consider µρ,ρ(ψ̄) = tr[( ∂∂ρD−1(ρ̄, λ̄))MF (φ̄)] for example. By

the expression of D−1 in (3.8) it is easy to see that blocks of ∂
∂ρD−1 are products of matrices

B−1
1 , B2, and W2, which are bounded in both row and column sums for (ρ, λ) in a neighborhood

of (ρ0, λ0) by Lemma A.2 and Assumptions C and E. So, the derivatives of µρ,ρ(ψ̄) with

respect to ρ , λ and φ are the traces of matrices that are products of MF , B−1
1 , B2, W1, and

W2, and are bounded in both row and column sums by Lemma A.1, A.2 and Assumption C.

Hence, by the MVT and consistency of ψ̂M we have 1
nT µρ,ρ(ψ̄) = 1

nT µρ,ρ(ψ0) + op(1). For

p, q = 1, · · · k+ 3, the convergence of µ̇βp,βq(ψ̄) can be shown similarly. So we have established

that 1
nTHβpβq(ψ̄) = 1

nTHβpβq(ψ)+op(1). Using Z̄ = Z−
∑k+3

p=1 Xp(β̄p−βp0) and representations

for Y and Y−1 given in (3.8), the convergence of other terms in H(ψ) that involve Z(θ) can

be shown similarly by repeatedly applying the MVT and Assumptions C, E, F, Lemmas A.1
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and A.4, and the consistency of ψ̂M.

Proof of (c). By the representations given in (3.8), the elements of Hessian matrix can be

written as linear combinations of quadratic and linear terms of v, quadratic and linear terms

of y0, bilinear terms of v and y0. Thus, the results follow by repeatedly applying Assumption

F, Lemma A.1, and Lemma A.4. �

Proof of Theorem 3.3: First, the result HnT (ψ̂M)−HnT (ψ0)
p−→ 0 is implied by result (b)

in the proof of Theorem 3.2. Next, the result Σ̂nT − ΣnT (ψ0)
p−→ 0 follows from

(a) 1
nT

∑n
i=1[ĝiĝ

′
i − E(gig

′
i)] = op(1), and (b) 1

nT [Υ(ψ̂)−Υ(ψ0)] = op(1).

By the expression of Υ presented in Section 4, the proof of (b) is straightforward by the MVT

and consistency of ψ̂M. We focus on the proof of (a), which follows if

(i) 1
nT

∑n
i=1(ĝiĝ

′
i − g∗i g

∗′
i )

p−→ 0,

(ii)
∑n

i=1 g∗i g
∗′
i =

∑n
i=1 gig

′
i, and

(iii) 1
nT

∑n
i=1[gig

′
i − E(gig

′
i)]

p−→ 0.

The proof of (i) is straightforward by MVT. We focus on the proof of (ii) and (iii).

Proof of (ii): Recall that g∗ri = g∗Πi, g
∗
Ψi, g

∗
Φi is obtained by replacing vit by z∗it in gri =

gΠi, gΨi, gΦi presented in (3.17), (3.18) and (3.20). It suffices to show that, for r = 1, . . . , 4,

ν = 1, 2, 3, and ι = 1, . . . , 5 + kφ,∑n
i=1 g

∗
κ,ig
∗′
$,i =

∑n
i=1 gκ,ig

′
$,i, for κ,$ = Πr,Ψν ,Φι.

First, we show that
∑n

i=1 g
∗
Πr,i

g∗Πν ,i =
∑n

i=1 gΠr,igΠν ,i for r, ν = 1, . . . , 4. Assuming with-

out loss of generality Πit are scalars and letting b′i is the ith row of B30, we have by (3.17),

g∗Πr,i =
∑T

t=1 Πr,itvit +
∑T

t=1 Πr,itb
′
i(Γ0ft0) = gΠr,i +

∑T
t=1 Πr,itb

′
i(Γ0ft0),

Let diag(A) be the diagonal matrix formed by the diagonal elements of A. We can write∑n
i=1 g

∗
Πr,i

g∗Πν ,i =
∑n

i=1 gΠr,igΠν ,i +
∑n

i=1 gΠr,i

[∑T
t=1 Πν,itb

′
i(Γ0ft0)

]
+
∑n

i=1 gΠν ,i

[∑T
t=1 Πr,itb

′
i(Γ0ft0)

]
+
∑n

i=1

[∑T
t=1 Πr,itb

′
i(Γ0ft0)

][∑T
s=1 Πν,itb

′
i(Γ0fs0)

]
=
∑n

i=1(gΠr,igΠν ,i) + g′Πrdiag(DΠ,νF0Γ′0B
′
30) + g′Πνdiag(DΠ,rF0Γ′0B

′
30)

+ diag(DΠ,rF0Γ′0B
′
30)′diag(DΠ,νF0Γ′0B

′
30),

where DΠ,r = (Πr,1,Πr,2, . . . ,Πr,T ) is a n × T matrix whose tth column corresponds to Πr,t,

the subvectors of Πr corresponding to t = 1, . . . , T . According to the expressions of Πr in

(3.2), DΠ,r can be written as DΠ,r = KrMF0 , where Kr are some n × T matrices constructed

from X,W`, ` = 1, 2, 3 and ψ0. Therefore we have DΠ,rF0Γ′0B
′
30 = KrMF0F0Γ′0B

′
30 = 0n×n.

Hence the result
∑n

i=1 g
∗
Πr,i

g∗Πν ,i =
∑n

i=1 gΠr,igΠν ,i follows.
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Second, we show that
∑n

i=1 g
∗
Ψr,i

g∗Ψν ,i =
∑n

i=1 gΨr,igΨν ,i, for r, ν = 1, 2, 3. By (3.18), the

bilinear term g∗Ψr,i can be written as,

g∗Ψr,i =
∑T

t=1 ξr,itvit +
∑T

t=1 ξr,itb
′
i(Γ0ft0) = gΨr,i +

∑T
t=1 ξr,itb

′
i(Γ0ft0).

So, we can write
∑n

i=1 g
∗
Ψr,i

g∗Ψν ,i as∑n
i=1 g

∗
Ψr,i

g∗Ψν ,i =
∑n

i=1 gΨr,igΨν ,i +
∑n

i=1 gΨr,i

[∑T
t=1 ξν,itb

′
i(Γ0ft0)

]
+
∑n

i=1 gΨν ,i

[∑T
t=1 ξr,itb

′
i(Γ0ft0)

]
+
∑n

i=1

[∑T
t=1 ξr,itb

′
i(Γ0ft0)

][∑T
s=1 ξν,itb

′
i(Γ0fs0)

]
=
∑n

i=1 gΨr,igΨν ,i + g′Ψrdiag(Dξ,νF0Γ′0B
′
30) + g′Ψνdiag(Dξ,rF0Γ′0B

′
30)

+ diag(Dξ,rF0Γ′0B
′
30)′diag(Dξ,νF0Γ′0B

′
30),

where Dξ,r is a n×T matrix whose t-th column is ξr,t = Ψr,t+y0. According to the expressions

of Ψr given in (3.2), Dξ,r can also be written as KrMF0 , where Kr are some n × T matrices

constructed from y0,X,W`, ` = 1, 2, 3 and ψ0. Therefore we have DΨ,rF0Γ′0B
′
30 = 0n×n, and

the result
∑n

i=1 g
∗
Ψr,i

g∗Ψν ,i =
∑n

i=1 gΨr,igΨν ,i follows.

Third, we show that
∑n

i=1 g
∗
Φr,i

g∗Φν ,i =
∑n

i=1 gΦr,igΦν ,i for r = 1, . . . , 5 + kγ . By (3.20),

the quadratic term g∗Φr,i can be written as

g∗Φr,i =
∑T

t=1 z
∗
itϕr,it +

∑T
t=1(z∗itz

d
r,it − dit)

=
∑T

t=1 vitϕr,it +
∑T

t=1(vitz
d
r,it − dit) +

∑T
t=1 b

′
i(Γ0ft0)(ϕr,it + zdr,it)

= gΦr,i +
∑T

t=1 b
′
i(Γ0ft0)(ϕr,it + zdr,it)

= gΦr,i +
∑T

t=1 b
′
i(Γ0ft0)ϕ∗r,it

where ϕ∗r,it = ϕr,it + zdr,it. Then, we can write∑n
i=1 g

∗
Φr,i

g∗Φν ,i

=
∑n

i=1 gΦr,igΦν ,i +
∑n

i=1[gΦr,i
∑T

s=1 b
′
i(Γ0fs0)ϕ∗ν,is] +

∑n
i=1[gΦν ,i

∑T
t=1 b

′
i(Γ0ft0)ϕ∗r,it]

+
∑n

i=1 [
∑T

t=1 b
′
i(Γ0ft0)ϕ∗r,it][

∑T
s=1 b

′
i(Γ0fs0)ϕ∗ν,is]

=
∑n

i=1 gΦr,igΦν ,i + g′Φrdiag(Dϕ,νF0Γ′0B
′
30) + g′Φνdiag(Dϕ,rF0Γ′0B

′
30)

+ diag(Dϕ,rF0Γ′0B
′
30)′diag(Dϕ,νF0Γ′0B

′
30) =

∑n
i=1 gΦr,igΦν ,i

where Dϕ,r is a n×T matrix whose tth column is ϕr,t =
∑T

s=1 Φr,tsz
∗
s . Similarly, by the expres-

sions of Φr in (3.2), we have Dϕ,rF0Γ′0B
′
30 = 0n×n. Hence,

∑n
i=1 g

∗
Φr,i

g∗Φν ,i =
∑n

i=1 gΦr,igΦν ,i.

Fourth, we examine the cross-product terms. Similarly to the early cases, we have∑n
i=1 g

∗
Πr,i

g∗Ψν ,i =
∑n

i=1 gΠr,igΨν ,i +
∑n

i=1 gΠr,i[
∑T

t=1 ξν,itb
′
i(Γ0ft0)]

+
∑n

i=1 gΨν ,i[
∑T

t=1 Πr,itb
′
i(Γ0ft0)] +

∑n
i=1[
∑T

t=1 Πr,itb
′
i(Γ0ft0)][

∑T
s=1 ξν,itb

′
i(Γ0fs0)]

=
∑n

i=1 gΠr,igΨν ,i + g′Πrdiag(Dξ,νF0Γ′0B
′
30) + g′Ψνdiag(DΠ,rF0Γ′0B

′
30)

+ diag(DΠ,rF0Γ′0B
′
30)′diag(Dξ,νF0Γ′0B

′
30) =

∑n
i=1 gΠr,igΨν ,i.

35



∑n
i=1 g

∗
Πr,i

g∗Φν ,i =
∑n

i=1 gΠr,igΦν ,i +
∑n

i=1 gΠr,i[
∑T

t=1 b
′
i(Γ0ft0)ϕ∗ν,it]

+
∑n

i=1 gΦν ,i[
∑T

t=1 b
′
i(Γ0ft0)Πr,it] +

∑n
i=1[
∑T

t=1 b
′
i(Γ0ft0)Πr,it][

∑T
t=1 b

′
i(Γ0ft0)ϕ∗ν,it]

=
∑n

i=1 gΠr,igΦν ,i + g′Πrdiag(Dϕ,νF0Γ′0B
′
30) + g′Φνdiag(DΠ,rF0Γ′0B

′
30)

+ diag(DΠ,rF0Γ′0B
′
30)diag(Dϕ,νF0Γ′0B

′
30) =

∑n
i=1 gΠr,igΦν ,i,∑n

i=1 g
∗
Ψr,i

g∗Φν ,i =
∑n

i=1 gΨr,igΦν ,i +
∑n

i=1 gΨr,i[
∑T

t=1 b
′
i(Γ0ft0)ϕ∗ν,it]

+
∑n

i=1 gΦν ,i[
∑T

t=1 b
′
i(Γ0ft0)ξr,it] +

∑n
i=1[
∑T

t=1 b
′
i(Γ0ft0)ξr,it][

∑T
t=1 b

′
i(Γ0ft0)ϕ∗ν,it]

=
∑n

i=1 gΨr,igΦν ,i + g′Ψrdiag(Dϕ,νF0Γ′0B
′
30) + g′Φνdiag(Dξ,rF0Γ′0B

′
30)

+ diag(Dξ,rF0Γ′0B
′
30)′diag(Dϕ,νF0Γ′0B

′
30) =

∑n
i=1 gΨr,igΦν ,i.

Summarizing all the results above, we have
∑n

i=1 g∗i g
∗′
i =

∑n
i=1 gig

′
i.

Proof of (iii). To show 1
nT

∑n
i=1[gig

′
i − E(gig

′
i)]

p−→ 0, it suffices to show that

1
nT

∑n
i=1[gκ,ig

′
$,i − E(gκ,ig

′
$,i)]

p−→ 0, for κ,$ = Πr,Ψν ,Φι,

where r = 1, . . . , 4, ν = 1, 2, 3, and ι = 1, . . . , 5 + kφ.

First, we show 1
nT

∑n
i=1[gΠrigΠν i−E(gΠrigΠν i)]

p−→ 0. Letting vi· = (vi1, vi2, . . . , viT )′ and

Πr,i· be similarly defined, we can write

1
nT

∑n
i=1[gΠrigΠν i − E(gΠrigΠν i)] = 1

nT

∑n
i=1 Π′r,i·(vi·v

′
i· − σ2

v0IT )Πν,i· ≡ 1
nT

∑n
i=1 Un,i.

By Assumptions A and B, Un,i are independent across i. Elements of Πr, r = 1, . . . , 4 are

uniformly bounded by Assumptions C, D, E, and Lemma A.1. Then, it is straightforward to

show that 1
nT

∑n
i=1 Un,i = op(1) by Chebyshev’s inequality.

Second, we show 1
nT

∑n
i=1[gΨrigΨν i−E(gΨrigΨν i)]

p−→ 0, r, ν = 1, 2, 3. By (3.18), we have

1
nT

∑n
i=1[gΨrigΨν i − E(gΨrigΨν i)]

= 1
nT

∑n
i=1 ξ

′
r,i·(vi·v

′
i· − σ2

v0IT )ξν,i· +
σ2
v0
nT

∑n
i=1[ξ′r,i·ξν,i· − E(ξ′r,i·ξν,i·)]

= 1
nT

∑n
i=1 U1n,i + 1

nT

∑n
i=1 U2n,i.

Let {Gn,i} be the increasing sequence of σ -fields generated by (vj1, . . . , vjT , j = 1, . . . , i), i =

1, . . . , n, n ≥ 1. Let Fn,0 be the σ -field generated by (v0, y0) , and define Fn,i = Fn,0 ⊗ Gn,i.
Clearly, Fn,i−1 ⊆ Fn,i for each n ≥ 1, i.e., {Fn,i}ni=1 is an increasing sequence of σ-fields.

As ξ′r,i· is Fn,i−1 -measurable, E (U1n,i | Fn,i−1) = 0. Thus, {U1n,i,Fn,i} form a M.D. array.

Using Assumptions A, B, E, and F, it is easy to see that E
∣∣∣U1+ε

1n,i

∣∣∣ ≤ Kv < ∞, for some

ε > 0. Thus, {U1n,i} is uniformly integrable. With constant coefficients 1
nT , the other two

conditions of weak law of large numbers (WLLN) for MD array of Theorem 19.7 of Davidson

(1994, p .299) are satisfied. Thus, 1
nT

∑n
i=1 U1n,i

p−→ 0. The convergence of the second term

1
nT

∑n
i=1 U2n,i

p−→ 0 follows from Assumption F.
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Third, we show 1
nT

∑n
i=1[gΦrigΦν i − E(gΦrigΦν i)]

p−→ 0, r, ν = 1, . . . , 5 + kφ, without loss

of generality we show 1
nT

∑n
i=1[g2

Φri
− E(g2

Φri
)]

p−→ 0, for r = 1, . . . , 5 + kφ. Recall expression

(4.7), gΦ,i =
∑T

t=1 vitϕit +
∑T

t=1(vitz
d
it − dit), where {ϕit} = ϕt =

∑T
s=1

(
Φu
ts + Φ`

ts

)
z∗s , and{

zdit
}

= zdt =
∑T

s=1 Φd
tsz
∗
s , further recall that z∗t = vt +B30Γ0ft0, we can write,

gΦri =
∑T

t=1 vitϕr,it +
∑T

t=1(vitz
d
r,it − dr,it)

=
∑T

t=1 vitϕ
v
r,it +

∑T
t=1(vitv

∗
r,it − dr,it) +

∑T
t=1 vitcr,it

= v′i·ϕ
v
r,i· + v′i·v

∗
r,i· − 1′Tdr,i· + v′i·cr,i·

where {ϕvr,it} = ϕvt =
∑T

s=1

(
Φu
r,ts + Φ`

r,ts

)
vs, {v∗r,it} = v∗t =

∑T
s=1 Φd

tsvs, and {cr,it} = cr,t =∑T
s=1 Φr,tsB30Γ0fs0. It follows that for r = 1, . . . , 5 + kφ,

1
nT

∑n
i=1[g2

Φri
− E(g2

Φri
)] =

∑9
k=1 Uk,

where U9 = 2
nT

∑n
i=1{(v′i·v∗r,i·)(v′i·cr,i·)− E[(v′i·v

∗
r,i·)(v

′
i·cr,i·)]},

U1 = 1
nT

∑n
i=1{(v′i·ϕvr,i·)2 − E[(v′i·ϕ

v
r,i·)

2]}, U2 = 1
nT

∑n
i=1{(v′i·v∗r,i·)2 − E[(v′i·v

∗
r,i·)

2]},
U3 = 1

nT

∑n
i=1{(v′i·cr,i·)2 − E[(v′i·cr,i·)

2]}, U4 = 2
nT

∑n
i=1(v′i·ϕ

v
r,i·)(v

′
i·v
∗
r,i·),

U5 = − 2
nT

∑n
i=1(v′i·ϕ

v
r,i·)(1

′
Tdr,i·), U6 = 2

nT

∑n
i=1(v′i·ϕ

v
r,i·)(v

′
i·cr,i·)

U7 = − 2
nT

∑n
i=1(v′i·v

∗
r,i·)(1

′
Tdr,i·), U8 = − 2

nT

∑n
i=1(v′i·cr,i·)(1

′
Tdr,i·).

For U1, we can write (v′i·ϕ
v
i·)

2 = (
∑T

t=1 vitϕ
v
it)

2 =
∑T

t=1(vitϕ
v
it)

2 +
∑T

t=1

∑
s 6=t vitϕ

v
itvisϕ

v
is.

The second term can be written as
∑T

t=1 vitκit, where κit =
∑

s6=t ϕ
v
itvisϕ

v
is. By Assumptions

A and B, κit is independent of vit. Recall that a′its is the ith row of the n × n matrix

Φu
ts + Φ`

ts, we have E(κ2
it) = σ6

v0

∑
t

∑
s a
′
itsaits, which equals the (i, i) element of matrix

A = (Φu + Φ`)(Φu + Φ`)′. By Assumption E and Lemma A.1, A is uniformly bounded in both

row and column sums with elements of uniform order O
(
h−1
n

)
. So, by Lemma A.4, we have

1
nT

∑n
i=1

∑T
t=1 vitκit = op(1). For the first term, as vit is independent of ϕvit, we have,∑T

t=1{(vitϕvit)2 − E[(vitϕ
v
it)

2]} =
∑T

t=1{v2
it(φ

u
it + φ`it)

2 − E[(vitϕ
v
it)

2]}

=
∑T

t=1(v2
it − σ2

v0)φu
2

it +
∑T

t=1(v2
it − σ2

v0)φ`
2

it + 2
∑T

t=1 v
2
itφ

u
itφ

`
it + σ2

v0

∑T
t=1[φu

2

it − E(φu
2

it )]

+ σ2
v0

∑T
t=1[φ`

2

it − E(φ`
2

it )] ≡
∑5

r=1Hrn,i,

where φuit =
∑T

s=1 a
u′
itsvs, φ

`
it =

∑T
s=1 a

`′
itsvs, and au′its, and a`′its are the ith rows of Φu

ts, and Φ`
ts.

First, we consider H1n,i. By Assumptions A and B, we have E(H1n,i) = 0, and for i 6= j,

E(H1n,iH1n,j) = E[φu′i· (vi·v
′
i· − σ2

v0IT )φui·][φ
u′
j· (vj·v

′
j· − σ2

v0IT )φuj·] = 0.

Therefore, {H1n,i} are uncorrelated across i with 0 mean. By Assumptions A and B, we have,

E(H2
1n,i) =

∑T
t=1 E[(v2

it − σ2
v0)2φu

4

it ] =
∑T

t=1{E[(v2
it − σ2

v0)2]E(φu
4

it )}

= (µ
(4)
v0 − σ4

v0)
∑T

t=1 E[(
∑T

s=1 a
u′
itsvs)

4], and
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∑T
t=1 E[(

∑T
s=1 a

u′
itsvs)

4] =
∑T

t=1 E[
∑T

p=1

∑T
q=1(au′itpvp)

2(au′itqvq)
2 +

∑T
s=1(au′itsvs)

4]

=
∑T

t=1{σ4
v0(
∑T

p=1 a
u′
itpa

u
itp)(

∑T
q=1 a

u′
itqa

u
itq) +

∑T
s=1 E[(au′itsvs)

4]}

=
∑T

t=1{σ4
v0(
∑T

p=1 a
u′
itpa

u
itp)

2 +
∑T

s=1[σ4
v0(au′itsa

u
its)

2 + µ
(4)
v0 (
∑n

j=1 a
u4

its,j)]}

= σ4
v0

∑T
t=1(

∑T
s=1 a

u′
itsa

u
its)

2 + σ4
v0

∑T
t=1

∑T
s=1(au′itsa

u
its)

2 + µ
(4)
v0

∑T
t=1

∑T
s=1

∑n
j=1 a

u4

its,j ,

where auits,j is the jth element of auits, which is, by Assumption E and Lemma A.1 uniformly

bounded. au′itsa
u
its is the (i, i) element of Φu

tsΦ
u′
ts, which is, by Assumption E and Lemma

A.1, uniformly bounded. So, as T is fixed and small, we have
∑T

t=1(
∑T

s=1 a
u′
itsa

u
its)

2 ≤
C < ∞,

∑T
t=1

∑T
s=1(au′itsa

u
its)

2 ≤ C < ∞, and
∑n

j=1 a
u4

its,j ≤ maxj |a2
its,j |

∑n
j=1 a

u2

its,j =

maxj |a2
its,j |(au′itsauits) ≤ C < ∞. Thus, we have E(H2

1n,i) ≤ C < ∞. Therefore, by the

WLLN we have 1
nT

∑n
i=1H1n,i = op(1).

Next, consider H2n,i =
∑T

t=1(v2
it − σ2

v0)φ`
2

it . As φ`it =
∑

s a
`′
itsvs is Gn,i−1-measurable, we

have E(H2n,i|Gn,i−1) = 0. Thus {H2n,i,Gn,i} form a M.D. array. Similar to H1n,i, we show

E(H2
2n,i) ≤ C <∞. With constant coefficients 1

nT , the other two conditions of WLLN for MD

array of Theorem 19.7 of Davidson (1994, p .299) are satisfied. Thus, 1
nT

∑n
i=1H2n,i = op(1).

For H3n,i, we can write H3n,i =
∑T

t=1 v
2
it(
∑T

p=1 a
u′
itpvp)(

∑T
s=1 a

`′
itsvs) =

∑T
s=1 v

′
sκis, where

κis =
∑T

t=1

∑T
p=1 a

`
itsa

u′
itpvpv

2
it. So we can write 1

nT

∑n
i=1H3n,i = 1

nT

∑T
t=1 v

′
t(
∑n

i=1 κit), which

is a bilinear form. By Assumptions A, B, E and Lemma A.1, we can verify the conditions of

Lemma A.4 (vi) holds. Therefore we have 1
nT

∑n
i=1H3n,i = op(1).

Finally, the proof for convergence of H4n,i and H5n,i are the same. So, we only show the

proof for H4n,i. Write,

1
nT

∑n
i=1H4n,i = 1

nT

∑n
i=1

∑T
t=1(

∑T
p=1 a

u′
itpvp)(

∑T
q=1 a

u′
itqvq)

= 1
nT

∑T
t=1

∑T
p=1

∑T
q=1 v

′
p

∑n
i=1(auitpa

u′
itq)vq

= 1
nT

∑T
t=1

∑T
p=1

∑T
q=1 v

′
pΦ

u′
tpΦ

u
tqvq = 1

nT v′Φu′Φuv

By Lemma A.1 and Assumption E, Φu′Φu is uniformly bounded in either row or column sums.

Thus, the result 1
nT

∑n
i=1H4n,i = op(1), and 1

nT

∑n
i=1H5n,i = op(1) follow from Lemma A.4.

Combining the results above, we have U1 = op(1).

The Ur, r = 2, 3, 7, 8, 9, are the means of n independent terms, therefore their convergence

can be shown using WLLN similarly as in the proof of 1
nT

∑n
i=1H1n,i = op(1) in U1.

The proof of Ur, r = 4, 5, 6, are similar, and hence only the proof for U4 is given. Write

U4 = 2
nT

∑n
i=1(v′i·ϕ

v
i·)(v

′
i·v
∗
i·)

= 2
nT

∑n
i=1[v′i·(φ

u
i· + φ`i·)](v

′
i·v
∗
i·)

= 2
nT

∑n
i=1(v′i·φ

u
i·)(v

′
i·v
∗
i·) + 2

nT

∑n
i=1(v′i·φ

`
i·)(v

′
i·v
∗
i·)

= 2
nT

∑n
i=1 φ

u′
i· (vi·v

′
i·v
∗
i· − µ

(3)
v0 di·) + 2

nT

∑n
i=1 φ

`′
i·(vi·v

′
i·v
∗
i· − µ

(3)
v0 di·) +

2µ
(3)
v0
nT

∑n
i=1 ϕ

v′
i· di·.

The first term is the mean of n uncorrelated terms, its convergence can be shown using WLLN
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similarly as in the proof of 1
nT

∑n
i=1H1n,i = op(1) in U1. The second term is the mean of a

M.D. array , its convergence can be shown using WLLN for MD array similarly as in the proof

of 1
nT

∑n
i=1H2n,i = op(1) in U1. The convergence of the third term can be shown similarly as

in the proof of 1
nT

∑n
i=1H4n,i = op(1) in U1.

Subsequently, the cross-product terms: 1
nT

∑n
i=1[gΠigΦi − E(gΠigΦi)],

1
nT

∑n
i=1[gΠigΨi −

E(gΠigΨi)] and 1
nT

∑n
i=1[gΨigΦi − E(gΨigΦi)] can all be decomposed in a similar manner, and

the convergence of each of the decomposed terms can be proved in a similar way. These

complete the proof of Theorem 3.3. �

Proof of Corollary 3.1: The proof of part (i) relies on Lemmas C.1-C.3 in Appendix C in

Supplementary Material. The main task of our analysis is to find the leading terms of the

concentrated score function and its derivative with respect to coefficients at true parameters.

Note that F̂ (ψ) is not the true factor matrix F0. It contains eigenvectors of Z′(θ)Ω−1(λ3)Z(θ),

which is of high dimension as T →∞. And it enters the AQS functions in MF̂ (ψ0). We need an

explicit expression of MF̂ (ψ0). To this end, we employ Lemma C.1, which gives an expansion

of MF̂ (ψ) around ψ0. Then we plug in the expression and find the asymptotic order of each

term. Finally, analysis of the leading terms helps establishing the desired results.

(i) We first write out the AQS functions explicitly. Let S̃∗nT,j(ψ) denote the jth entry of

the AQS function. We have the following expressions:

S̃∗nT,j(ψ) = 1
σ2
v

tr[X ′jB3(λ3)′B3(λ3)Z(θ)MF̂ (ψ)], for j = 1, · · · , k,

S̃∗nT,k+1(ψ) = 1
σ2
v

tr[Y ′−1B3(λ3)′B3(λ3)Z(θ)MF̂ (ψ)]− tr[MF̂ (ψ)D−1(ρ, λ1, λ2)],

S̃∗nT,k+2(ψ) = 1
σ2
v

tr[(W1Y )′B3(λ3)′B3(λ3)Z(θ)MF̂ (ψ)]− tr[MF̂ (ψ)W1D(ρ, λ1, λ2)],

S̃∗nT,k+3(ψ) = 1
σ2
v

tr[(W2Y−1)′B3(λ3)′B3(λ3)Z(θ)MF̂ (ψ)]− tr[MF̂ (ψ)W2D−1(ρ, λ1, λ2)],

S̃∗nT,k+4(ψ) = 1
σ2
v

tr[Z(θ)′B3(λ3)′W3Z(θ)MF̂ (ψ)]− (T − r) tr[W3B
−1
3 (λ3)],

S̃∗nT,k+5(ψ) = 1
2σ4
v

tr[Z(θ)′B3(λ3)′B3(λ3)Z(θ)MF̂ (ψ)]−
n(T−r)

2σ2
v
.

The estimate F̂ (ψ) are eigenvectors of Z′(θ)Ω−1(λ3)Z(θ), which is of high dimension as T →∞.

Lemma C.1 gives an asymptotic expansion of the projection matrix MF̂ (ψ0). Lemma C.2

expands the concentrated AQS function at true parameter ψ0 as

S̃∗nT (ψ0) = S̃nT + oP (
√
nT ),

with the detailed expression of S̃nT being given therein, and further verifies that E(S̃∗nT (ψ0)) =

o(
√
nT ) and S̃∗nT (ψ0) = Op(

√
nT ). Lemma C.3 studies the Hessian matrix and shows it is

invertible at true parameters. These lead to the result ψ̂ − ψ0 = Op(1/
√
nT ).

As F̂ are eigenvectors of Z′(θ̂)Ω−1(λ̂3)Z(θ̂), we can follow a similar analysis in Bai (2003)

to show that φ̂s has
√
n convergence rate.
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(ii) In Appendix C, we show that S̃nT has the following representation:

S̃nT =



Π̃′1v

v′Ψ̃1y0 + v′Φ̃1v + Π̃′2v − σ2
v0 tr(Φ̃1)

v′Ψ̃2y0 + v′Φ̃2v + Π̃′3v − σ2
v0 tr(Φ̃2)

v′Ψ̃3y0 + v′Φ̃3v + Π̃′4v − σ2
v0 tr(Φ̃3)

v′Φ̃4v − σ2
v0 tr(Φ̃4)

v′Φ̃5v − σ2
v0 tr(Φ̃5),

where the detailed expressions of the Π̃, Φ̃ and Ψ̃ quantities being given therein. Based on this

representation, We show that lim(n,T )→∞Var(S̃nT /
√
nT ) = lim(n,T )→∞ Σ̃nT in Lemma C.4.

Similar to the proof of Theorem 3.2, we can show that S̃nT /
√
nT

D−→ N(0, lim(n,T )→∞ Σ̃nT ).

Lemma C.3 finds the leading term of the Hessian matrix, which is denoted as H̃nT . It follows

that
√
nT (ψ̂ − ψ0)

D−→ N(0, lim
(n,T )→∞

H̃−1
nT Σ̃nT H̃

−1
nT ),

by Slutsky’s Theorem. �

Proof of Corollary 3.2: The Hessian matrix H̃nT is studied in Lemma C.3 and the VC

matrix Σ̃nT is studied in Lemma C.4. These together give the leading term of H̃−1
nT Σ̃nT H̃

−1
nT .

Next, we show that the VC matrix estimator H−1
nT (ψ̂M)Σ̂nTH

−1′
nT (ψ̂M) is still valid for infer-

ence on ψ. That is, its ψ-ψ sub-matrix [H−1
nT (ψ̂M)Σ̂nTH

−1′
nT (ψ̂M)]ψψ does not differ asymptoti-

cally from H̃−1
nT Σ̃nT H̃

−1
nT in probability. It is chanllaenging to prove this result as with large T ,

the matrices HnT (ψ̂M) and Σ̂nT are both of high dimension and their entries are not all Op(1).

Partition the two high-dimensional matrices according to ψ and φ, we can write

Σ̂nT =

Σ̂nT,ψψ Σ̂nT,ψφ

Σ̂nT,φψ Σ̂nT,φφ

 and H−1
nT (ψ̂M) =

[H−1
nT (ψ̂M)]ψψ [H−1

nT (ψ̂M)]ψφ

[H−1
nT (ψ̂M)]φψ [H−1

nT (ψ̂M)]φφ

 ,
and we have that [H−1

nT (ψ̂M)Σ̂nTH
−1′
nT (ψ̂M)]ψψ is the summation of the following four terms:

(i) [H−1
nT (ψ̂M)]ψψΣ̂nT,ψψ[H−1

nT (ψ̂M)]
′
ψψ; (ii) [H−1

nT (ψ̂M)]ψψΣ̂nT,ψφ[H−1
nT (ψ̂M)]

′
ψφ;

(iii) [H−1′
nT (ψ̂M)]ψφΣ̂nT,φψ[H−1

nT (ψ̂M)]
′
ψψ; (iv) [H−1

nT (ψ̂M)]ψφΣ̂nT,φφ[H−1
nT (ψ̂M)]

′
ψφ.

Our task is to find the asymptotic leading order of the above four terms. We present the key

steps here with detailed arguments given in Appendix C:

1. Study the asymptotic properties of Σ̂nT , with (n, T )→∞. Under large T , only entries of

Σ̂nT,ψψ are of order Op(1) and entries of the other three sub-matrices of Σ̂nT are of order

op(1). However, as Σ̂nT,ψφ has O(T ) terms and Σ̂nT,φφ has O(T 2) terms, their influence

on terms (ii-iv) of [H−1
nT (ψ̂M)Σ̂nTH

−1′
nT (ψ̂M)]ψψ are not negligible. Therefore, their leading
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terms must be studied even if they are elementwise op(1). The detailed analysis is given

in Lemma C.5 of Appendix C.

2. Study the asymptotic properties of HnT (ψ̂M) and its inverse, with (n, T ) →∞. Similar

to the last step, we find the leading terms of the inverse of HnT (ψ̂M). To study H−1
nT (ψ̂M),

we have an additional challenge, we need to find a closed-form expression of H−1
nT (ψ̂M).

We first partition HnT according to ψ and φ:

HnT =

HnT,ψψ HnT,ψφ

HnT,ψφ HnT,φφ

 .
where HnT,ψψ is (k+ 5)× (k+ 5) and HnT,φφ is (rT − r2)× (rT − r2). Then we use the

inverse formula for partition matrices to obtain:

H−1
nT =

 H−1
nT,∗ −H−1

nT,∗HnT,ψφH
−1
nT,ψψ

−H−1
nT,φφHnT,φψH

−1
nT,∗ H−1

nT,φφ +H−1
nT,φφHnT,φψH

−1
nT,∗HnT,ψφH

−1
nT,φφ

 ,
where HnT,∗ = HnT,ψψ −HnT,ψφ(HnT,φφ)−1HnT,φψ. We show that HnT,φφ and HnT,∗ are

invertible and find their leading terms. In Lemma C.6 (i-iv), we give the leading term

of HnT ’s entries. And in Lemma C.6 (v) we show that HnT,φφ has a nice closed form,

which assists in finding its inverse. Then we find the leading term of HnT,∗ and show it

is asymptotically equal to H̃nT . Details of the analysis can be found in Lemma C.6 of

Appendix C.

3. Use the leading terms of H−1
nT (ψ̂M) and Σ̂nT , studied in the first two steps to find the

asymptotic leading terms of [H−1
nT (ψ̂M)Σ̂nTH

−1′
nT (ψ̂M)]ψψ. And show it is asymptotically

equal to H̃−1
nT Σ̃nT H̃

−1
nT . The proof of this result is given in Lemma C.7.

Thus, we have shown that the inference method given in Section 3.4 continues to be valid

when T is large but small relatively to n. �

Supplementary Material

The Supplementary Material contains additional lemmas for the proofs of Corollaries

3.1 and 3.2, and can be found online at http://www.mysmu.edu/faculty/zlyang/.
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Table 1. Empirical Mean(sd)[r̂se] of BC-CQMLE and M-Estimator: DGP1, T = 3, m = 10

W1 = W2 = W3: Rook Contiguity, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 50

1 .9746(.103)[.075] .9982(.100)[.100] .9770(.103)[.073] .9998(.100)[.098] .9736(.104)[.075] .9955(.104)[.098]

1 .9744(.106)[.078] .9925(.103)[.099] .9691(.110)[.077] .9890(.107)[.099] .9782(.112)[.077] .9965(.109)[.099]

1 .5801(.088)[ − ] .9007(.141)[.132] .5674(.167)[[ − ] .8832(.212)[.202] .5752(.123)[ − ] .8930(.200)[.177]

.3 .2427(.072)[.047] .2959(.062)[.062] .2407(.083)[.045] .2930(.068)[.065] .2435(.073)[.046] .2953(.060)[.061]

.2 .1766(.141)[.099] .1929(.129)[.124] .1741(.136)[.097] .1936(.121)[.127] .1720(.133)[.098] .1904(.125)[.120]

.2 .2219(.076)[.057] .2028(.079)[.077] .2224(.075)[.057] .2062(.077)[.078] .2210(.078)[.057] .2032(.078)[.080]

.2 .1881(.200)[.135] .1931(.195)[.181] .1835(.195)[.135] .1869(.187)[.187] .1896(.191)[.135] .1892(.190)[.180]

n = 100

1 .9994(.076)[.057] .9988(.075)[.073] 1.0005(.078)[.056] 1.0006(.078)[.072] 1.0009(.080)[.057] 1.0012(.078)[.074]

1 .9929(.073)[.058] .9984(.072)[.072] .9892(.075)[.057] .9960(.073)[.072] .9934(.076)[.058] .9993(.075)[.073]

1 .6306(.065)[ − ] .9497(.099)[.095] .6196(.134)[ − ] .9341(.204)[.185] .6300(.098)[ − ] .9493(.150)[.141]

.3 .3117(.058)[.030] .2996(.046)[.047] .3146(.064)[.030] .2990(.050)[.051] .3137(.062)[.030] .3016(.049)[.050]

.2 .1956(.092)[.072] .1936(.091)[.091] .2062(.085)[.070] .2023(.084)[.087] .1960(.093)[.072] .1947(.092)[.089]

.2 .1869(.079)[.056] .1989(.073)[.073] .1829(.081)[.055] .1959(.075)[.076] .1877(.079)[.055] .1994(.074)[.074]

.2 .1921(.133)[.101] .1971(.133)[.132] .1799(.127)[.101] .1899(.127)[.130] .1939(.134)[.101] .1983(.133)[.130]

n = 200

1 .9851(.051)[.041] 1.0003(.053)[.052] .9852(.052)[.040] 1.0002(.054)[.052] .9811(.051)[.041] .9963(.053)[.051]

1 .9792(.051)[.040] .9997(.052)[.051] .9798(.053)[.040] .9995(.054)[.051] .9812(.054)[.040] 1.0014(.054)[.051]

1 .6252(.046)[ − ] .9756(.075)[.072] .6210(.092)[ − ] .9688(.143)[.140] .6262(.072)[ − ] .9773(.119)[.107]

.3 .2571(.031)[.024] .3003(.034)[.033] .2583(.034)[.024] .3002(.036)[.036] .2577(.033)[.024] .3009(.037)[.035]

.2 .1874(.065)[.054] .1974(.065)[.064] .1903(.067)[.053] .2000(.064)[.064] .1937(.065)[.054] .2012(.064)[.064]

.2 .2007(.048)[.037] .1996(.052)[.050] .1995(.047)[.037] .1983(.050)[.050] .1990(.049)[.037] .1997(.052)[.050]

.2 .1993(.091)[.074] .1980(.090)[.089] .1980(.091)[.073] .1976(.090)[.089] .1960(.088)[.074] .1960(.087)[.089]

n = 400

1 .9951(.036)[.029] .9985(.036)[.036] .9964(.036)[.029] .9997(.036)[.035] .9971(.036)[.029] .9999(.036)[.036]

1 .9861(.037)[.029] 1.0005(.037)[.036] .9858(.038)[.029] 1.0000(.037)[.036] .9837(.037)[.029] .9980(.036)[.037]

1 .6425(.032)[ − ] .9899(.050)[.051] .6367(.068)[ − ] .9891(.105)[.105] .6424(.051)[ − ] .9880(.081)[.078]

.3 .2593(.027)[.018] .2999(.023)[.023] .2595(.031)[.018] .3001(.027)[.027] .2595(.029)[.018] .3000(.025)[.024]

.2 .1993(.048)[.040] .1994(.048)[.048] .1985(.049)[.040] .1999(.048)[.047] .2008(.049)[.040] .2002(.048)[.048]

.2 .2057(.030)[.024] .2001(.031)[.031] .2046(.030)[.023] .1998(.032)[.032] .2041(.030)[.024] .1999(.031)[.032]

.2 .1954(.065)[.054] .1995(.066)[.066] .1994(.068)[.054] .2035(.066)[.066] .1915(.066)[.054] .1982(.066)[.066]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 2. Empirical Mean(sd)[r̂se] of BC-CQMLE and M-Estimator: DGP1, T = 3, m = 10

W1 = W2: Group Interaction; W3: Queen Contiguity, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 50

1 .9637(.109)[.088] .9988(.116)[.116] .9624(.108)[.087] .9971(.116)[.112] .9599(.112)[.088] .9934(.119)[.112]

1 .9811(.109)[.084] 1.0012(.109)[.107] .9753(.108)[.083] .9973(.109)[.102] .9745(.111)[.084] .9964(.111)[.104]

1 .6111(.096)[ − ] .9072(.144)[.137] .6096(.179)[ − ] .9064(.237)[.232] .6114(.135)[ − ] .9134(.201)[.185]

.3 .2601(.064)[.049] .3011(.070)[.069] .2590(.067)[.049] .3005(.072)[.069] .2555(.065)[.049] .2977(.071)[.068]

.2 .1403(.135)[.082] .1716(.126)[.132] .1366(.137)[.082] .1768(.130)[.119] .1360(.136)[.082] .1685(.121)[.118]

.2 .2141(.099)[.069] .2062(.092)[.093] .2093(.099)[.069] .2004(.091)[.086] .2100(.101)[.070] .2028(.091)[.087]

.2 .1477(.162)[.130] .1908(.178)[.188] .1547(.155)[.130] .1797(.187)[.180] .1451(.154)[.130] .1849(.174)[.179]

n = 100

1 .9691(.079)[.061] .9987(.081)[.079] .9729(.080)[.060] 1.0017(.085)[.081] .9674(.079)[.060] .9956(.083)[.080]

1 .9577(.083)[.063] .9973(.080)[.079] .9594(.087)[.063] .9966(.082)[.079] .9601(.083)[.063] .9995(.080)[.079]

1 .6444(.068)[ − ] .9554(.104)[.099] .6406(.135)[ − ] .9497(.209)[.181] .6447(.100)[ − ] .9557(.1545)[.141]

.3 .2638(.050)[.035] .3005(.053)[.052] .2637(.059)[.034] .2993(.061)[.060] .2648(.055)[.035] .3010(.059)[.058]

.2 .0689(.084)[.075] .1881(.089)[.086] .0686(.085)[.075] .1867(.090)[.085] .0687(.089)[.075] .1816(.085)[.086]

.2 .3473(.086)[.066] .2174(.083)[.080] .3447(.085)[.066] .2190(.089)[.082] .3403(.086)[.066] .2110(.085)[.082]

.2 .2132(.117)[.091] .1917(.127)[.125] .2093(.122)[.091] .1845(.125)[.124] .2212(.110)[.091] .1887(.123)[.124]

n = 200

1 .9918(.042)[.035] .9988(.041)[.042] .9909(.044)[.035] .9980(.043)[.043] .9933(.043)[.035] 1.0002(.043)[.042]

1 .9935(.052)[.041] .9979(.050)[.049] .9957(.050)[.041] .9999(.049)[.049] .9939(.050)[.041] .9989(.049)[.049]

1 .6683(.048)[ − ] .9744(.071)[.069] .6708(.097)[ − ] .9779(.136)[.134] .6694(.075)[ − ] .9780(.103)[.100]

.3 .3105(.031)[.020] .3001(.028)[.028] .3118(.044)[.020] .3004(.039)[.037] .3096(.036)[.020] .2992(.032)[.032]

.2 .0408(.037)[.059] .1894(.063)[.062] .0392(.039)[.059] .1894(.065)[.062] .0414(.035)[.059] .1894(.061)[.062]

.2 .3381(.031)[.051] .2095(.056)[.056] .3378(.032)[.051] .2082(.059)[.057] .3367(.032)[.051] .2115(.057)[.057]

.2 .2178(.096)[.065] .1948(.085)[.085] .2194(.096)[.065] .1898(.087)[.085] .2161(.092)[.065] .1927(.086)[.085]

n = 400

1 .9561(.036)[.027] 1.0005(.036)[.036] .9607(.036)[.027] .9997(.036)[.036] .9558(.036)[.027] .9989(.036)[.036]

1 .9481(.041)[.029] 1.0001(.037)[.036] .9508(.046)[.029] .9991(.037)[.036] .9467(.043)[.029] .9997(.037)[.036]

1 .6382(.033)[ − ] .9866(.051)[.050] .6315(.066)[ − ] .9797(.110)[.109] .6375(.049)[ − ] .9898(.083)[.082]

.3 .1532(.047)[.015] .2999(.023)[.023] .1618(.064)[.015] .3001(.028)[.027] .1527(.054)[.014] .2995(.025)[.024]

.2 .1161(.048)[.048] .2004(.057)[.056] .1181(.048)[.047] .1981(.054)[.055] .1126(.047)[.048] .1979(.057)[.056]

.2 .2611(.063)[.040] .2001(.043)[.043] .2664(.060)[.039] .2008(.045)[.045] .2551(.060)[.039] .2007(.046)[.046]

.2 .1880(.083)[.047] .1997(.060)[.059] .1968(.078)[.047] .1989(.058)[.059] .1843(.083)[.048] .1977(.060)[.059]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 3. Empirical Mean(sd)[r̂se] of BC-CQMLE and M-Estimator: DGP1, T = 3, m = 10

W1 = W2 = W3: Rook Contiguity, r0 = 2, r = 2

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 50

1 .7616(.106)[.064] 1.0212(.200)[.165] .7876(.132)[.062] 1.0404(.208)[.167] .7760(.122)[.063] 1.0350(.205)[.155]

1 .6464(.141)[.072] .9876(.172)[.159] .6812(.173)[.070] .9923(.178)[.160] .6705(.145)[.072] .9965(.177)[.155]

1 .2120(.046)[ − ] .7848(.176)[.170] .2017(.061)[ − ] .7028(.184)[.177] .2104(.052)[ − ] .7481(.189)[.179]

.3 -.1793(.108)[.045] .2698(.110)[.098] -.1395(.170)[.043] .2616(.115)[.110] -.1591(.132)[.045] .2520(.119)[.113]

.2 .2638(.177)[.090] .1941(.190)[.188] .2488(.168)[.088] .1931(.198)[.190] .2487(.164)[.091] .1898(.197)[.190]

.2 .2348(.151)[.085] .2133(.143)[.142] .2282(.147)[.079] .2266(.143)[.140] .2174(.154)[.083] .2166(.147)[.141]

.2 .0139(.272)[.133] .1574(.329)[.303] .0476(.263)[.131] .1521(.310)[.294] .0374(.266)[.134] .1706(.311)[.297]

n = 100

1 .7475(.135)[.066] .9699(.141)[.144] .7750(.149)[.063] .9817(.142)[.142] .7556(.143)[.065] .9759(.144)[.147]

1 .7796(.104)[.051] .9863(.105)[.109] .7989(.119)[.050] .9729(.106)[.109] .7881(.109)[.051] .9724(.110)[.114]

1 .2053(.031)[ − ] .8981(.115)[.121] .1968(.041)[ − ] .9023(.149)[.146] .2024(.036)[ − ] .7435(.133)[.136]

.3 -.0547(.123)[.043] .2906(.097)[.093] -.0094(.169)[.040] .2991(.101)[.092] -.0454(.137)[.042] .2837(.100)[.102]

.2 .1294(.254)[.095] .1964(.160)[.163] .1234(.241)[.089] .1950(.163)[.166] .1123(.237)[.094] .1833(.164)[.167]

.2 .1771(.208)[.075] .2011(.098)[.095] .1797(.194)[.069] .2024(.114)[.110] .1675(.199)[.073] .1987(.114)[.117]

.2 .1992(.302)[.109] .1902(.202)[.201] .2117(.288)[.105] .1845(.204)[.207] .2263(.287)[.108] .1951(.212)[.215]

n = 200

1 .9759(.176)[.037] 1.0102(.087)[.087] 1.0022(.167)[.036] 1.0021(.088)[.087] .9866(.168)[.037] 1.0014(.089)[.088]

1 .9668(.137)[.039] 1.0071(.071)[.072] .9769(.123)[.038] 1.0055(.070)[.072] .9739(.131)[.038] 1.0087(.074)[.075]

1 .2973(.029)[ − ] .9489(.083)[.087] .2837(.046)[ − ] .9640(.096)[.099] .2920(.036)[ − ] .9348(.103)[.104]

.3 .2091(.192)[.022] .3011(.050)[.048] .2346(.181)[.021] .3061(.051)[.049] .2251(.184)[.022] .3175051(.051)[.049]

.2 .1786(.103)[.052] .1982(.083)[.084] .1808(.094)[.050] .1983(.084)[.084] .1754(.106)[.051] .1981(.090)[.091]

.2 .1900(.063)[.034] .1993(.060)[.059] .1858(.063)[.033] .1994(.061)[.062] .1843(.068)[.033] .1982(.067)[.069]

.2 .1933(.139)[.073] .1994(.125)[.123] .1839(.126)[.072] .1980(.127)[.129] .1926(.138)[.073] .1978(.131)[.147]

n = 400

1 .9289(.047)[.019] .9996(.028)[.028] .9290(.048)[.018] .9989(.031)[.031] .9301(.048)[.018] .9984(.029)[.030]

1 .8905(.091)[.029] .9963(.049)[.050] .8978(.089)[.029] .9983(.051)[.051] .8925(.089)[.029] .9865(.048)[.049]

1 .3138(.022)[ − ] .9893(.071)[.071] .3073(.034)[ − ] .9888(.084)[.085] .3095(.027)[ − ] .9833(.083)[.083]

.3 .1682(.180)[.020] .2996(.030)[.030] .1970(.185)[.019] .2988(.031)[.032] .1807(.182)[.019] .2983(.034)[.034]

.2 .1662(.043)[.026] .1994(.031)[.031] .1680(.046)[.025] .1960(.032)[.033] .1662(.044)[.026] .1973(.032)[.033]

.2 .2073(.032)[.018] .2003(.026)[.028] .1999(.035)[.018] .1970(.028)[.029] .2041(.032)[.018] .2000(.027)[.028]

.2 .1910(.078)[.045] .1996(.074)[.075] .1982(.076)[.045] .1961(.075)[.076] .1930(.078)[.045] .1962(.076)[.076]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 4. Empirical Mean(sd)[r̂se] of BC-CQMLE and M-Estimator: DGP1, T = 10, m = 10

W1 = W2 = W3: Rook Contiguity, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 25

1 .9958(.069)[.062] .9957(.069)[.065] .9995(.070)[.062] .9994(.070)[.065] .9991(.069)[.062] .9990(.069)[.066]

1 .9966(.070)[.063] .9967(.070)[.066] .9926(.072)[.062] .9927(.072)[.065] .9995(.069)[.062] .9996(.069)[.065]

1 .8256(.078)[ − ] .9176(.087)[.085] .8199(.186)[ − ] .9112(.207)[.170] .8265(.133)[ − ] .9186(.147)[.136]

.3 .2979(.038)[.034] .2987(.038)[.035] .3018(.037)[.034] .3015(.037)[.035] .2986(.038)[.034] .2994(.038)[.035]

.2 .1941(.076)[.069] .1940(.076)[.073] .1971(.074)[.069] .1971(.074)[.071] .1978(.072)[.069] .1976(.072)[.071]

.2 .2020(.064)[.058] .2011(.064)[.061] .1982(.063)[.057] .1974(.063)[.061] .1976(.063)[.057] .1968(.063)[.061]

.2 .2064(.120)[.101] .2017(.121)[.117] .1983(.113)[.101] .2033(.115)[.113] .1975(.110)[.101] .2028(.112)[.113]

n = 50

1 .9978(.044)[.041] .9979(.044)[.042] .9992(.045)[.041] .9993(.045)[.043] .9996(.046)[.041] .9997(.046)[.043]

1 .9985(.046)[.045] .9985(.046)[.047] .9997(.048)[.045] .9997(.048)[.046] 1.0007(.049)[.045] 1.0007(.049)[.047]

1 .8610(.059)[ − ] .9568(.066)[.064] .8686(.136)[ − ] .9653(.141)[.139] .8649(.098)[ − ] .9611(.103)[.101]

.3 .2985(.026)[.024] .2994(.026)[.026] .2991(.027)[.024] .3000(.027)[.027] .2979(.026)[.024] .2998(.026)[.026]

.2 .1973(.060)[.055] .1974(.060)[.059] .1980(.060)[.055] .1981(.060)[.059] .1952(.059)[.055] .1983(.059)[.059]

.2 .2000(.042)[.038] .1997(.042)[.041] .1986(.044)[.038] .1988(.044)[.042] .2017(.042)[.038] .2013(.042)[.042]

.2 .1984(.087)[.078] .2012(.088)[.086] .1963(.087)[.078] .2011(.087)[.085] .1987(.084)[.078] .2013(.084)[.084]

n = 100

1 .9995(.029)[.028] .9995(.029)[.030] 1.0000(.032)[.028] 1.0000(.032)[.032] 1.0009(.031)[.028] 1.0009(.031)[.030]

1 1.0013(.033)[.031] 1.0004(.033)[.033] 1.0016(.034)[.031] 1.0016(.034)[.033] .9981(.033)[.031] .9971(.033)[.033]

1 .8837(.041)[ − ] .9841(.046)[.046] .8843(.098)[ − ] .9848(.107)[.105] .8821(.071)[ − ] .9882(.078)[.075]

.3 .2997(.018)[.017] .3002(.018)[.018] .2985(.019)[.017] .2992(.019)[.018] .2999(.018)[.017] .3001(.018)[.018]

.2 .1961(.038)[.035] .1986(.038)[.037] .1990(.038)[.035] .1989(.038)[.037] .1998(.038)[.035] .1997(.038)[.037]

.2 .2014(.029)[.027] .2001(.029)[.029] .2006(.029)[.027] .2001(.029)[.029] .1983(.029)[.027] .1989(.029)[.029]

.2 .2006(.056)[.053] .2006(.056)[.057] .1982(.058)[.053] .2002(.058)[.057] .1982(.058)[.053] .2003(.058)[.057]

n = 200

1 .9990(.023)[.022] .9998(.023)[.023] 1.0005(.024)[.022] 1.0003(.024)[.024] .9997(.023)[.022] 1.0002(.023)[.023]

1 .9990(.022)[.022] .9997(.022)[.023] .9996(.023)[.022] .9998(.023)[.023] 1.0009(.023)[.022] 1.0001(.023)[.023]

1 .8901(.030)[ − ] .9989(.033)[.033] .8905(.070)[ − ] .9981(.076)[.076] .8886(.051)[ − ] .9880(.057)[.054]

.3 .2978(.013)[.012] .2999(.013)[.013] .2971(.014)[.012] .2999(.014)[.014] .2975(.014)[.012] .2998(.014)[.014]

.2 .2006(.028)[.027] .2001(.028)[.028] .1991(.029)[.027] .1988(.029)[.029] .1985(.029)[.027] .1982(.029)[.029]

.2 .2003(.021)[.020] .1999(.021)[.021] .2015(.021)[.020] .2001(.021)[.021] .2001(.021)[.020] .1996(.021)[.021]

.2 .1974(.042)[.040] .1997(.042)[.042] .2006(.043)[.040] .2003(.043)[.043] .2011(.043)[.040] .2002(.043)[.043]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 5. Empirical Mean(sd)[r̂se] of BC-CQMLE and M-Estimator: DGP1, T = 10, m = 10

W1 = W3: Rook Contiguity; W2: Group Interaction, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 25

1 1.0018(.071)[.062] 1.0017(.071)[.065] 1.0015(.070)[.062] 1.0013(.070)[.065] 1.0000(.070)[.062] .9999(.070)[.066]

1 .9966(.069)[.062] .9965(.069)[.064] 1.0007(.067)[.061] 1.0005(.067)[.063] 1.0017(.066)[.062] 1.0015(.066)[.065]

1 .8284(.078)[ − ] .9208(.087)[.085] .8161(.180)[ − ] .9071(.200)[.169] .8347(.130)[ − ] .9278(.145)[.129]

.3 .2970(.037)[.033] .2982(.037)[.035] .2970(.037)[.032] .2981(.037)[.036] .2937(.039)[.033] .2949(.039)[.036]

.2 .1950(.081)[.071] .1949(.082)[.075] .1956(.079)[.070] .1952(.078)[.074] .1975(.078)[.071] .1971(.078)[.075]

.2 .1995(.051)[.046] .1992(.051)[.049] .1960(.053)[.046] .1957(.053)[.048] .1951(.052)[.046] .1947(.052)[.048]

.2 .1888(.140)[.117] .1888(.145)[.146] .1798(.141)[.117] .1795(.145)[.150] .1851(.136)[.118] .1844(.141)[.146]

n = 50

1 .9956(.046)[.041] .9960(.046)[.043] 1.0012(.046)[.041] 1.0010(.046)[.044] 1.0014(.045)[.041] 1.0009(.045)[.042]

1 .9999(.046)[.045] 1.0001(.046)[.047] .9995(.047)[.045] .9997(.047)[.047] 1.0020(.047)[.045] 1.0022(.047)[.047]

1 .8663(.059)[ − ] .9628(.066)[.063] .8676(.137)[ − ] .9643(.152)[.140] .8673(.100)[ − ] .9640(.111)[.102]

.3 .3017(.023)[.021] .3004(.023)[.022] .3001(.025)[.021] .2988(.025)[.023] .2990(.022)[.021] .2977(.023)[.022]

.2 .1999(.043)[.042] .2003(.043)[.044] .1989(.045)[.042] .1992(.045)[.043] .1956(.046)[.042] .1959(.046)[.044]

.2 .1986(.028)[.026] .1993(.028)[.026] .1986(.028)[.026] .1987(.028)[.027] .2004(.027)[.026] .2005(.027)[.026]

.2 .1869(.090)[.081] .1942(.092)[.091] .1896(.090)[.081] .1890(.092)[.090] .1945(.091)[.081] .1948(.092)[.090]

n = 100

1 1.0006(.031)[.028] 1.0005(.031)[.030] 1.0004(.031)[.028] 1.0004(.031)[.030] 1.0001(.030)[.028] 1.0001(.030)[.030]

1 1.0002(.034)[.031] 1.0002(.034)[.033] 1.0000(.033)[.031] 1.0000(.033)[.033] .9986(.032)[.031] .9986(.032)[.033]

1 .8836(.042)[ − ] .9928(.047)[.046] .8795(.095)[ − ] .9773(.105)[.102] .8807(.070)[ − ] .9786(.078)[.075]

.3 .2993(.018)[.016] .2998(.018)[.018] .3012(.018)[.016] .3006(.018)[.018] .2992(.018)[.016] .2987(.018)[.018]

.2 .1964(.041)[.038] .1986(.041)[.040] .1976(.040)[.038] .1997(.040)[.040] .1957(.040)[.038] .1959(.040)[.040]

.2 .1997(.033)[.031] .1999(.033)[.033] .1976(.033)[.031] .1997(.033)[.033] .1984(.033)[.031] .2003(.033)[.033]

.2 .2005(.069)[.063] .2001(.070)[.069] .1962(.067)[.063] .1978(.068)[.068] .1992(.067)[.063] .2007(.067)[.068]

n = 200

1 .9994(.021)[.020] .9996(.021)[.021] .9990(.021)[.020] .9993(.021)[.021] .9993(.021)[.020] .9995(.021)[.021]

1 .9999(.023)[.022] .9999(.023)[.023] .9986(.023)[.022] .9996(.023)[.023] .9994(.024)[.022] .9995(.024)[.023]

1 .8909(.029)[ − ] .9902(.032)[.033] .8927(.071)[ − ] .9923(.079)[.075] .8944(.049)[ − ] .9941(.055)[.055]

.3 .3002(.012)[.012] .2999(.012)[.012] .3008(.013)[.012] .2999(.013)[.013] .3001(.013)[.012] .2999(.013)[.012]

.2 .1986(.028)[.026] .1996(.028)[.028] .1994(.026)[.026] .1996(.026)[.026] .1998(.029)[.026] .2000(.029)[.028]

.2 .1992(.027)[.025] .1998(.027)[.026] .1984(.026)[.025] .1988(.026)[.026] .1979(.028)[.025] .1983(.028)[.026]

.2 .1986(.050)[.045] .1998(.050)[.049] .1963(.047)[.045] .1995(.048)[.048] .1953(.048)[.045] .2001(.048)[.048]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.
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Table 6. Empirical Mean(sd)[r̂se] of BC-CQMLE and M-Estimator: DGP1, T = 3, m = 10

W1 = W2 = W3: Rook Contiguity, r0 = 1, r = 2

Normal Error Normal Mixture Chi-Square

ψ BC-CQMLE M-Est BC-CQMLE M-Est BC-CQMLE M-Est

n = 50

1 .7243(.174)[.063] .9988(.154)[.151] .7857(.196)[.061] .9895(.142)[.137] .7507(.185)[.062] .9899(.155)[.151]

1 .7370(.181)[.076] .9838(.172)[.160] .8110(.199)[.071] .9965(.154)[.148] .7728(.190)[.074] .9877(.162)[.157]

1 .1701(.039)[ − ] .6797(.144)[.147] .1607(.048)[ − ] .6254(.195)[.155] .1653(.043)[ − ] .6560(.180)[.155]

.3 -.1715(.210)[.054] .2939(.107)[.102] -.0564(.262)[.049] .2932(.096)[.090] -.1249(.234)[.052] .2885(.100)[.102]

.2 .0957(.282)[.130] .1870(.190)[.191] .1202(.246)[.114] .1806(.171)[.167] .1032(.264)[.124] .1622(.183)[.191]

.2 .1705(.246)[.111] .2053(.143)[.150] .1852(.209)[.093] .2024(.121)[.126] .1716(.234)[.103] .1899(.135)[.147]

.2 .1402(.356)[.151] .1876(.303)[.301] .1377(.329)[.142] .1767(.290)[.284] .1523(.345)[.147] .1980(.307)[.315]

n = 100

1 .8124(.195)[.055] .9979(.111)[.119] .8778(.179)[.052] .9943(.109)[.110] .8396(.192)[.053] .9967(.106)[.118]

1 .8458(.149)[.055] .9950(.107)[.115] .8929(.150)[.052] .9886(.105)[.109] .8674(.161)[.053] .9924(.113)[.122]

1 .2444(.033)[ − ] .7933(.103)[.119] .2243(.052)[ − ] .7402(.178)[.158] .2360(.042)[ − ] .7570(.144)[.139]

.3 .1514(.258)[.040] .2972(.076)[.077] .2215(.228)[.035] .2999(.073)[.073] .1780(.253)[.038] .2965(.073)[.083]

.2 .1662(.177)[.091] .1997(.147)[.149] .1676(.162)[.079] .1961(.135)[.140] .1666(.176)[.085] .2028(.136)[.160]

.2 .1957(.149)[.067] .1976(.124)[.135] .1806(.142)[.060] .1973(.120)[.123] .1877(.142)[.065] .1985(.119)[.140]

.2 .1591(.243)[.111] .1921(.206)[.224] .1900(.214)[.104] .1930(.197)[.212] .1819(.248)[.106] .1960(.207)[.233]

n = 200

1 .8223(.069)[.037] .9987(.081)[.087] .8431(.084)[.036] .9986(.076)[.087] .8371(.078)[.037] 1.0006(.079)[.085]

1 .7641(.076)[.038] .9978(.078)[.086] .7966(.102)[.037] .9985(.073)[.085] .7788(.088)[.038] .9971(.078)[.085]

1 .2247(.025)[ − ] .8775(.088)[.100] .2199(.035)[ − ] .8154(.140)[.145] .2229(.028)[ − ] .8644(.115)[.123]

.3 -.0425(.074)[.029] .2982(.060)[.060] -.0077(.120)[.028] .2998(.057)[.063] -.0255(.098)[.029] .2987(.059)[.065]

.2 .1351(.143)[.068] .1993(.101)[.112] .1421(.133)[.065] .1976(.099)[.109] .1467(.133)[.066] .2017(.101)[.111]

.2 .1101(.101)[.055] .1999(.094)[.095] .1249(.104)[.051] .1996(.082)[.093] .1195(.100)[.053] .1996(.089)[.096]

.2 .1984(.185)[.082] .2003(.131)[.152] .1959(.170)[.080] .1966(.130)[.151] .1922(.168)[.081] .1963(.138)[.151]

n = 400

1 .9381(.056)[.029] .9991(.055)[.060] .9462(.057)[.028] .9994(.053)[.060] .9397(.058)[.028] .9995(.053)[.065]

1 .9412(.058)[.028] .9980(.055)[.059] .9548(.056)[.028] .9986(.052)[.059] .9449(.058)[.028] .98941(.053)[.063]

1 .2859(.022)[ − ] .9591(.059)[.070] .2745(.035)[ − ] .9230(.108)[.118] .2811(.028)[ − ] .9025(.085)[.088]

.3 .2165(.082)[.017] .2993(.036)[.039] .2236(.078)[.017] .2990(.038)[.046] .2217(.083)[.017] .2973(.039)[.036]

.2 .2168(.072)[.040] .2002(.069)[.078] .2034(.071)[.039] .1992(.070)[.074] .2047(.076)[.039] .1977(.071)[.084]

.2 .2156(.049)[.025] .2001(.048)[.054] .2166(.046)[.024] .2005(.047)[.053] .2150(.047)[.025] .2008(.047)[.058]

.2 .1888(.096)[.054] .1998(.097)[.108] .1989(.099)[.053] .1998(.098)[.106] .1960(.105)[.054] .2008(.101)[.117]

Note: 1. ψ = (β′, σ2
v , ρ, λ

′)′; 2. r0 = true number of factor, r = assumed number of factor.

50



Table 7. Empirical Mean(sd)[r̂se] of GMM and M Estimators: DGP2, T = 3, m = 10
W1 = W2: Rook Contiguity, r0 = 1, r = 1

Normal Error Normal Mixture Chi-Square

ψ KP-GMM M-Est KP-GMM M-Est KP-GMM M-Est

n = 50

1 .9907(.084) .9992(.050)[.049] .9922(.082) .9992(.053)[.048] .9880(.083) .9991(.052)[.048]

1 .9651(.106) .9984(.050)[.048] .9656(.098) .9998(.051)[.047] .9724(.097) 1.0011(.049)[.048]

.2 .1951(.073) .1995(.034)[.034] .1990(.070) .1992(.035)[.034] .1951(.070) .2010(.035)[.033]

.2 .1890(.104) .1960(.056)[.054] .1985(.104) .1985(.055)[.053] .1903(.103) .1958(.055)[.053]

.2 .1993(.094) .2006(.051)[.048] .1973(.091) .2020(.049)[.047] .1966(.089) .1979(.050)[.047]

n = 100

1 .9694(.063) .9986(.037)[.037] .9722(.061) 1.0012(.038)[.037] .9728(.064) 1.0007(.038)[.036]

1 .9772(.059) .9999(.037)[.036] .9813(.057) 1.0010(.037)[.036] .9836(.060) 1.0007(.038)[.036]

.2 .1855(.064) .1998(.026)[.026] .1886(.063) .2024(.027)[.027] .1856(.062) .2007(.026)[.026]

.2 .2048(.074) .1999(.041)[.041] .2054(.067) .1989(.039)[.040] .2031(.067) .1980(.042)[.041]

.2 .2148(.082) .2022(.044)[.044] .2073(.078) .2002(.045)[.043] .2086(.075) .1996(.045)[.043]

n = 200

1 .9968(.040) 1.0001(.027)[.026] .9976(.038) 1.0003(.025)[.026] .9978(.040) 1.0008(.027)[.026]

1 .9935(.042) .9975(.027)[.025] .9949(.041) .9991(.026)[.025] .9937(.042) .9997(.026)[.026]

.2 .1962(.033) .1999(.019)[.019] .1968(.032) .2003(.020)[.019] .1966(.033) .2006(.020)[.019]

.2 .1996(.048) .2008(.031)[.030] .2005(.049) .1991(.031)[.030] .2016(.049) .2006(.030)[.030]

.2 .1974(.053) .1984(.031)[.030] .1985(.054) .1992(.030)[.029] .2013(.053) .2000(.030)[.030]

n = 400

1 .9986(.029) .9990(.019)[.019] .9892(.029) .9988(.019)[.019] .9921(.029) .9999(.018)[.018]

1 1.0063(.028) 1.0002(.017)[.018] 1.0062(.027) .9999(.018)[.018] 1.0076(.028) 1.0000(.017)[.018]

.2 .2104(.020) .2000(.013)[.013] .2092(.020) .1991(.013)[.013] .2092(.020) .1990(.014)[.013]

.2 .1982(.035) .1995(.021)[.021] .1920(.037) .2004(.022)[.022] .1892(.036) .2001(.021)[.021]

.2 .2063(.037) .2004(.021)[.021] .2067(.036) .1997(.023)[.023] .2071(.036) .1997(.022)[.023]

Note: 1. ψ = (β′, ρ, λ1, λ2)′; 2. r0 = true number of factor, r = assumed number of factor.
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