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Abstract

This paper proposes new tests for the hypothesis of clustered equal predictive ability (C-EPA) in

panels in the case of unknown clusters. The unknown clusters are estimated via kmeans which

are then used to perform the test. To address the problem with testing a hypothesis selected

from data, the selective inference approach as well as a sample splitting solution are adopted. The

proposed framework allows comparing the forecast performance of agents or predictive models. The

asymptotic properties of the tests are studied. Monte Carlo results reveal excellent finite sample

properties, with only negligible size distortions and very high power even under weak deviations

from the C-EPA null. Last, the empirical relevance of our tests is illustrated over a large panel

data set of exchange rate forecasts.
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1. Introduction

Despite the large and ever-growing time series literature,1 testing equal predictive ability (EPA)

using panel data has attracted attention among econometricians only recently. To the best of our

knowledge, the only contributions are those of Akgun et al. (2024, APUY hereafter) and Qu et al. (2024,

QTZ hereafter). Both papers focus on two EPA hypotheses: the overall EPA (O-EPA) hypothesis and

the clustered EPA (C-EPA) hypothesis, where overall refers to the equivalence of two forecasts for a

given loss function on average over all time periods and all panel units, whereas clustered means that

two competing forecasts are equivalent for G clusters of panel units on average over all time periods.

The main contribution of this paper is twofold. First, we develop tests for the C-EPA hypothesis

considered by APUY and QTZ in the case of unknown clusters. These unknown clusters are estimated

from data which are then used to test the C-EPA hypothesis. To address the problem with testing

a hypothesis selected from data, we establish a selective inference framework and a sample splitting

solution based on kmeans estimates of the cluster membership and cluster centers. Second, we propose

conditional panel EPA tests, thus extending to panels the framework by Giacomini and White (2006)

in a time series context, and by Qu et al. (2023) in cross-sections.

Developing tests on the cluster centers which successfully control the Type I error rate following

the estimation of the unknown clusters constitutes the main theoretical contribution of this paper.

Several well-known clustering methods exist, such as hierarchical and kmeans clustering.2 In this

paper, we focus on the kmeans clustering approach which is arguably the most commonly used method

in econometrics (see Lin and Ng, 2012; Bonhomme and Manresa, 2015; Sarafidis and Weber, 2015;

Bonhomme et al., 2022, among others). If the predictive abilities of two forecasters differ so that, while

they are equally good (or bad) within clusters, they differ between clusters, kmeans can detect these

clusters under general conditions. That is, the kmeans estimator of the cluster centers is consistent

if the clusters are well separated. However, under the C-EPA hypothesis, this assumption does not

hold, which implies that there is only one cluster in the population because all clusters are mean zero.

Hence, the problem of C-EPA testing post-clustering falls into the category which is called “double

dipping” (see, for instance Kriegeskorte et al., 2009) to describe the use of the same data to generate a

hypothesis and test it. Recent literature in statistics and econometrics recognizes the consequence of

1See Giacomini (2011), Clark and McCracken (2013), and Rossi (2021) for reviews of the early and more recent
contributions to the area.

2See Ikotun et al. (2023) for a recent review of the kmeans clustering algorithms.
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double dipping in clustering and shows that the Wald tests based on estimated clusters are extremely

anti-conservative, if there are no heterogeneous clusters in the underlying population distribution (Gao

et al., 2024; Chen and Witten, 2023; Patton and Weller, 2023).

A straightforward way to deal with the problem of double dipping is sample splitting. In a cross-

sectional setting, Gao et al. (2024) show that sample splitting does not provide a valid way to test

null hypotheses on cluster centers. However, the time series dimension of a panel provides a solution

to this, as in Patton and Weller (2023) where a split-sample test statistic is proposed to test the

homogeneity of the mean of a panel process among clusters chosen by kmeans. Despite its theoretical

and computational simplicity, sample splitting has its drawbacks. First of all, split-sample test statis-

tics rely on the selection of two sub-samples. One sample is used for the estimation of the clusters

and another for inference on the centers of these estimated clusters. However, this selection can be

arbitrary in practice and there is no guidance in the literature on how to split the sample.3 Second,

the fact that the inference is based on a number of observations smaller than the whole sample may

cause the associated test statistics to have high size distortions or low power. Third, the validity of the

split-sample method is not guaranteed for dependent data (Kuchibhotla et al., 2022). Lunde (2019)

shows that the split-sample approach is valid under weak-dependence conditions but their framework

covers variable selection in a regression model and it is not necessarily valid for clustering. Patton

and Weller (2023) propose a solution to the case where general time series dependence of q ≥ 1 lags

are allowed but impose independence beyond q lags. They show that, in this case, sample splitting

continues to be valid if q periods between the two sub-samples are discarded. This validates the use

of the split-sample tests but makes the drawbacks even more pronounced.

In this paper, we develop an alternative selective inference framework which uses the full sample

of observations for both estimating the unknown clusters and making inference on their centers. Our

framework is motivated by recent papers by Gao et al. (2024) and Chen and Witten (2023), who

propose a selective p-value to test the equality of two cluster means post-clustering which are, however,

based on strong assumptions on the data generating process such as normality, homoskedasticity and

independent observations which we relax in this paper. Furthermore, their testing procedure concerns

with the equality of only two cluster means.

We develop a selective p-value procedure for testing the equality of two cluster centers for het-

eroskedastic, dependent and potentially non-Gaussian panel data. Then we apply a p-value combina-

3For an attempt to answering this question in a related but different context, see Hansen and Timmermann (2012).
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tion method using the p-values of G− 1 pairwise homogeneity tests together with that of an O-EPA

test. To deal with the dependencies in the time series dimension, a heteroskedasticity and autocorrela-

tion robust variance estimator is employed following Sun (2013, 2014). This estimator is then applied

to the cross-sectional averages of the loss differentials which in turn provides a test statistic robust to

arbitrary form and strength of cross-sectional dependence (CD) (see Driscoll and Kraay, 1998).

We derive the limiting theory of the proposed test statistics. In particular, we show that the tests

are correctly sized, and consistent under general alternatives even in the presence of arbitrary weak

time series correlation and strong CD. In order to establish the asymptotic power of the tests, we

prove that the kmeans estimator of the cluster centers remain consistent under strong CD contrary to

the weak dependence assumptions in Bonhomme and Manresa (2015) and Patton and Weller (2023)

which is, to the best of our knowledge, a result which has not previously appeared in the literature.

The small sample properties of the proposed tests are assessed via an extensive Monte Carlo

simulation, and are compared with a set of split-sample test statistics. The results show that our test

statistics have optimal properties even in samples which can be considered very small in potential

applications. In particular, our tests have negligible size distortions in very small samples and have

high power even under weak deviations from the C-EPA null.

The empirical relevance of our proposed methodology is illustrated in an application on model

comparison. Using the data set on the exchange rate forecasts compiled by Spreng and Urga (2023,

SU hereafter), different time series models are compared. The results show that there are exchange

rate clusters for which the predictive ability of different models differ significantly.

The remainder of the paper is organized as follows. Section 2 presents the null and the alternative

hypotheses of interest, and the kmeans estimator of the unknown clusters. Section 3 introduces the test

statistics and presents their asymptotic properties. Section 4 presents essential Monte Carlo results.

An empirical illustration is reported in Section 5. Section 6 concludes. Appendices A-C contain the

proofs of the theoretical results and additional simulation evidence.

Notation. Random variables are denoted by upper-case letters and their realizations by the corre-

sponding lower-case letters. For instance, wNT (·, ·) denotes a particular realization of the test statistic

WNT (·, ·). Further, ∥ · ∥ denotes Euclidean norm, 1{·} is indicator function, diag(·) forms a diagonal

matrix by given elements, [ · ] returns an integer by rounding, ⊗ denotes Kronecker product,
p−→

convergence in probability,
d−→ convergence in distribution, and (T,N) → ∞ the joint passage to

infinity of T and N .
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2. Setup

In this section, we introduce the testing framework, the C-EPA null and alternative hypotheses, and

the assumptions; we then introduce our proposed conditional C-EPA test for predetermined clusters;

finally, we present the kmeans estimator and the associated algorithm.

2.1. Testing framework, hypotheses and assumptions

Let Ŷa,it be the τ -steps ahead, τ ≥ 1, forecast of forecasters a = 1, 2 for the target variable Yit

made at time t− τ , t = 1, 2, . . . , T , for unit i = 1, 2, . . . , N . Here, a represents a forecasting agent such

as IMF, OECD, or a forecasting model. Let L(·, ·) be a generic loss function. This can be a quadratic

loss, an absolute loss or a loss function which is not necessarily in the forecast error form. Define the

loss differentials of the two forecasts as ∆Lit = L(Ŷ1,it, Yit) − L(Ŷ2,it, Yit) which are assumed to be

specified on a complete probability space (Ω ,A,P).

The null and the alternative hypotheses. The null hypothesis of interest is the generalized C-

EPA hypothesis. We call the null of this paper the “generalized C-EPA hypothesis” because it allows

conditioning variables contrary to the null hypotheses considered in recent papers by APUY and QTZ.

This null hypothesis is stated as

H0 : lim
N→∞

1

ng

N∑
i=1

E(∆Lit | Gt−τ )1{gi = g} = 0, a.s., for all g = 1, 2, . . . , G (1)

where Gt ⊆ A is a conditioning set (see the description below) and ng =
∑N

i=1 1{gi = g} with

gi ∈ {1, 2, . . . , G} being the cluster membership variable stating the cluster which ith unit belongs to.

Typically, the clusters are chosen to be mutually exclusive and exhaustive. That is, for any g ̸= g′,∑N
i=1 1{gi = g} × 1{gi = g′} = 0 and

∑G
g=1

∑N
i=1 1{gi = g} = N . Moreover, ng is assumed to be

diverging to infinity with N (see Assumption 2 below). The alternative hypothesis is

H1 : lim
N→∞

1

ng

N∑
i=1

E(∆Lit | Gt−τ )1{gi = g} ≠ 0, a.s., for at least one g = 1, 2, . . . , G. (2)

In the formulation of the hypotheses, it is implicitly assumed that the conditional expectation of

interest is time invariant almost surely. With a more complicated notation and without much gain of

insight, we could also focus on the averages of these expectations over time.

Two cases covered in the null hypothesis (1) and the corresponding alternative hypothesis are

important. The first null is the unconditional C-EPA hypothesis which is obtained when Gt = {∅,Ω}.
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For predetermined clusters, the tests for this null hypothesis were developed by APUY and QTZ

under different assumptions on the autocorrelation and CD properties of the loss differentials. The

second null hypothesis that we consider is the conditional C-EPA hypothesis. Two sub-cases of the

conditional null are particularly useful. First, let Wt = σ({Wis}Ni=1, s ≤ t), the σ-field generated by the

present and the past of the measurable-A random variables Wit = (Yit, X
′
it)

′ with Xit being a vector

of external predictors used to make the predictions Ŷa,it. Then an interesting null hypothesis of the

form (1) is obtained when Gt = Wt. Second, a researcher may be interested in the conditional EPA

with respect to the realization of a vector of measurable-A common factors Ft. In this case, we let

Ft = σ(Fs, s ≤ t) and Gt = Ft. Some common factors can be particularly useful to model via dummy

variables indicating, for example, the global financial crises, the COVID-19 period, etc. Through a

careful choice of these dummies, our framework makes it possible to focus on local differences in the

predictive abilities of the two forecasters.

The null hypothesis H0 implies that limN→∞ n−1
g

∑N
i=1 E(H̃i,t−τ∆Lit)1{gi = g} = 0, for any

measurable-A vector of random variables H̃it (Giacomini and White, 2006). Let Hit be such a K × 1

vector, called a “testing function” by Giacomini and White (2006) and Zit = Hi,t−τ∆Lit. We define

β0i = E(Zit) which is assumed to be time invariant, and Vit = Zit − β0i . Moreover, θ0g,ng
(γ) =

n−1
g

∑N
i=1 β

0
i 1{gi = g}, θ0g,ng

(γ) ∈ ΘK
g ⊆ RK , for all g, where γ := γN,G = (g1, . . . , gN )′ ∈ ΓN,G ⊆ RN

is the vector of membership variables with G distinct elements. Here, ΘK
g is the parameter space

of the gth cluster center and ΓN,G denotes the set of membership vectors associated to all vectors γ

involving G distinct elements. Then testing H0 is equivalent to testing

H′
0 : lim

N→∞
θ0g,ng

(γ) = 0, for all g = 1, 2, . . . , G. (3)

Let V̄g,ng ,t(γ) = n−1
g

∑N
i=1 Vit1{gi = g} be the cross-sectional mean of the innovations of cluster g,

V̄N,t(γ) = [V̄ ′
1,n1,t

(γ), . . . , V̄ ′
G,nG,t(γ)]

′ with a given γ ∈ ΓN,G where G ≥ 1. We also collect the true

cluster means in θ0(γ) = (θ0′1,n1
(γ), . . . , θ0′G,nG

(γ))′ ∈ ΘGK ⊆ RGK where ΘGK = ΘK
1 × · · · ×ΘK

G . The

following assumptions will be referred to throughout the paper.

Assumption 1. (a) ΘGK is a compact set of RGK , (b) E∥Vit∥4 ≤ C, (c) T−1
∑T

t,s=1 E∥VitV ′
is∥ ≤ C.

Assumption 2. Let γ ∈ ΓN,G with G ≥ 2. Then as N → ∞, ng/N → κg ∈ (0, 1) for each

g = 1, . . . , G.

Assumption 3. Ω(γ)−1/2N 1−ϵT−1/2
∑T

t=1 V̄N,t(γ)
d−→ N(0, IGK) for some ϵ ∈ [1/2, 1] as (T,N) →

∞, for each γ ∈ ΓN,G, with Ω(γ) =
∑∞

s=−∞N 1−ϵE[V̄N,t(γ)V̄
′
N,t−s(γ)]N 1−ϵ being positive definite and
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N = diag(n1, . . . , nG)⊗ IK .

Assumptions 1(a) and 1(b) are standard conditions which ensure that the cluster centers are well

defined and all moments up to the fourth of the innovation process Vit exist. Assumption 1(c) limits

the time series dependence. We do not place any restriction on the CD characteristics of the panel

and allow for both strong and weak CD.

Assumption 2 controls the asymptotic number of units per cluster for a given γ. It is standard in

the econometrics literature of clustering (see, for instance Assumption 2(a) of Bonhomme and Manresa

(2015) and Assumption A1(vii) of Su et al. (2016)). It states that each cluster has a non-negligible

contribution. This assumption can be relaxed at the expense of more complicated notation.

The CLT in Assumption 3 holds under standard mixing conditions. Let Vk,it, k = 1, . . . ,K, be

the kth element of Vit. The sufficient conditions for it to hold are, for all i = 1, . . . , N , Vit is weakly

stationary with Ωi =
∑∞

j=−∞ E[VitV
′
i,t−j ] being positive definite and either (i) E(|Vk,i1|)ζ < ∞ for all

k = 1, . . . ,K and for ζ ≥ 2, (ii) Vit is φ-mixing with
∑∞

l=1 φ
1−1/ζ
l < ∞, or (i) E(|Vk,i1|)ζ < ∞ for

all k = 1, . . . ,K and for ζ > 2, (ii) Vit is α-mixing with
∑∞

l=1 α
1−2/ζ
l < ∞ (Phillips and Durlauf,

1986). Then the same conditions hold for N 1−ϵV̄N,t(γ) because the mixing properties are hereditary.

The scalar ϵ ∈ [1/2, 1] defined in Assumption 3 measures the degree of CD in Vit. The case of ϵ = 1

corresponds to the case of strong CD of the loss differentials and if ϵ = [1/2, 1), they are weakly

cross-sectionally dependent. Weak CD includes the case of independence over i = 1, . . . , N . We refer

to Chudik et al. (2011) for examples of panel models satisfying different cases of CD and Bailey et al.

(2016) for the estimation of the parameter ϵ when ϵ = (1/2, 1].

By Assumption 3, Ω(γ) is positive definite which is a well-known condition for the validity of EPA

testing using Diebold and Mariano (1995) type tests (West, 1996). This assumption means that the

forecasts are made by either non-nested models or they satisfy the conditions of Giacomini and White

(2006) for nested models. In particular, if two models are nested, they need to be made using rolling

window or fixed estimation sample forecasting schemes. An expanding window scheme is ruled out in

the case of nested model comparisons (see McCracken, 2020; Zhu and Timmermann, 2020, for counter

arguments for the validity of fixed estimation sample scheme). For general nested model comparisons,

we refer to the recent paper by Clark and McCracken (2015) and the references therein.

Let θ̂g,ng ,T (γ) = Z̄g,ng ,T (γ) = (ngT )
−1
∑N

i=1

∑T
t=1 Zit1{gi = g} be the sample mean of cluster g,

and θ̂NT (γ) = (θ̂′1,n1,T
(γ), . . . , θ̂′G,nG,T (γ))

′. The following standard result will be used as the basis for

robust EPA testing in this paper.

6



Lemma 1. Under Assumptions 1-3, the following results hold as (T,N) → ∞:

(a) θ̂NT (γ) = θ0(γ) + op(1),

(b) Ω(γ)−1/2N 1−ϵT 1/2(θ̂NT (γ)− θ0(γ))
d−→ N(0, IGK).

Part (a) is a law of large numbers which shows that Assumptions 1-3 are sufficient for the consis-

tency of the sample means for the cluster centers defined by a given γ. Part (b) is the corresponding

central limit theorem. The result concerns with the case of a fixed γ ∈ ΓN,G and does not necessarily

hold with estimated cluster memberships. Below, we will make use of this result in a conditional

framework to obtain the asymptotic properties of our proposed tests with estimated clusters.

2.2. Generalized clustered EPA tests with predetermined clusters

The tests for the unconditional C-EPA hypothesis have been developed by APUY and QTZ for pre-

determined clusters. When Gt = {∅,Ω}, the C-EPA null reduces to limN→∞ n−1
g

∑N
i=1 E(∆Lit)1{gi =

g} = 0 for all g = 1, 2, . . . , G and we obtain the unconditional C-EPA hypothesis. APUY suggested

several test statistics under different assumptions on the dependence structure of the loss differen-

tials. Here, we generalize their methodology to the case of Gt ̸= {∅,Ω} together with a small sample

adjustment to their test statistics. Let γ be a vector of predetermined cluster membership variables

implying ng ≥ 1 for all g = 1, 2, . . . , G. The case of ng = 0 for some g is trivial and leads only to the

reduction of the number of groups. The hypothesis in (3) can be tested using

WNT (Hi,t−τ , γ) =
B −GK + 1

GKB
T θ̂′NT (γ)Ω̂

−1
NT (γ)θ̂NT (γ), (4)

where Ω̂NT (γ) is an orthonormal series (OS) estimator of Ω(γ) which we introduce below in (5),

and B is the number of orthonormal basis functions used in its estimation. The first factor in (4),

(B −GK + 1)/GKB, is a small-sample correction which will allow us to use the connection between

Hotelling’s T 2 distribution and the F distribution together with an appropriate variance estimator.

APUY and QTZ suggest kernel type estimators as in Newey and West (1987) and Andrews (1991).

APUY show that their test statistics are asymptotically distributed as a χ2 variate. For better small

sample properties, we propose using the following OS estimator:

Ω̂NT (γ) =
1

B

B∑
j=1

Λ̂j(γ)Λ̂
′
j(γ),

Λ̂j(γ) =

√
2

T

T∑
t=1

[
Z̄N,t(γ)− θ̂NT (γ)

]
cos

[
πj

(
t− 1/2

T

)]
,

(5)
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with Z̄N,t(γ) = [Z̄ ′
1,n1,t

(γ), . . . , Z̄ ′
G,nG,t(γ)]

′, Z̄g,ng ,t(γ) = n−1
g

∑N
i=1 Zit1{gi = g}.

The general class of OS estimators of a long-run variance (LRV) was first proposed by Phillips

(2005). Different OS were then used to construct estimators by Müller (2007), Sun (2011, 2013,

2014), among others. Under the results of Lemma 1 and following Sun (2013), it is easy to show

that N 1−ϵΩ̂NT (γ)N 1−ϵ − Ω(γ) = op(1) (see Lemma A.3 in Appendix A). This implies that the

variance estimator is consistent if ϵ = 1 and it is proportional to the true value if ϵ ∈ [1/2, 1). It

follows that T θ̂′NT (γ)Ω̂
−1
NT (γ)θ̂NT (γ)

d−→ T2
GK,B for B fixed, where T2

v1,v2 denotes the Hotelling’s T 2

distribution with v1 and v2 being its degrees of freedoms. The connection between Hotelling’s T 2

distribution and the F distribution then implies that WNT (Hi,t−τ , γ)
d−→ FGK,B−GK+1 under the

null, where Fv1,v2 denotes the F distribution with numerator and denominator degrees of freedom of

v1 and v2, respectively. When B → ∞, a generalization of the usual results of APUY hold such that

T θ̂′NT (γ)Ω̂
−1
NT (γ)θ̂NT (γ)

d−→ χ2
GK . The results of Sun (2013) show that when B is not too large, using

the FGK,B−GK+1 critical values instead of (scaled) χ2
GK critical values results in better size properties.

With some abuse of notation, let pNT [wNT (Hi,t−τ , γ)] = PH0 [FGK,B−GK+1 ≥ wNT (Hi,t−τ , γ)] be the p-

value associated with wNT (Hi,t−τ , γ). Here, as in the rest of the paper, we do not show the dependency

of pNT [ · ] to the reference distribution for the sake of simplicity. Moreover, we simply write PH0 [ · ]

to mean the null hypothesis of interest even if different statistics may test different nulls. These will

be clear from the context as we establish the asymptotic distribution of each test, and the respective

p-values are defined by this asymptotic distribution under the respective null. Using this p-value, a

level-α test rejects the null hypothesis if pNT [wNT (Hi,t−τ , γ)] ≤ α where α ∈ (0, 1) is the predetermined

Type I error rate.

2.3. kmeans estimators of cluster membership and centers

If there is no a priori information allowing us to specify the cluster membership variables gi ∈

{1, 2, . . . , G}, testing the C-EPA hypothesis becomes non-trivial. However, under suitable assumptions,

it is possible to estimate them from data. Namely, it is required that β0i = E(Zit) is homogeneous

within clusters but heterogeneous between them which we formalize in the following assumption.

Assumption 4. β0i =
∑G0

g=1 θ
0
g(γ

0)1{g0i = g} where θ0g(γ
0) with ∥θ0g(γ0)∥ > 0 is the true cluster center

of the gth cluster, γ0 = (g01, . . . , g
0
N )′ ∈ ΓN,G0 ⊆ RN , and θ0(γ0) = (θ0′1 (γ

0), . . . , θ0′G(γ
0))′ ∈ ΘG0K ⊆

RG0K be the true cluster centers.

For a given G, the kmeans estimators of the cluster membership and centers are defined as the

8



solution to the following optimization problem:

(θ̂NT , γ̂NT ) = argmin
(θ,γ)∈ΘGK×ΓN,G

N∑
i=1

T∑
t=1

∥Zit − θgi∥
2 . (6)

This optimization problem is usually solved by an iterative algorithm such as Lloyd (1982) or Hartigan

(1975). Below, we provide an iterative algorithm which is a generalization of that of Lloyd’s. To see

how this iteration is implemented, we define the estimator of the cluster membership variables gi for

any given θ = (θ′1, . . . , θ
′
G)

′ and panel unit i ∈ {1, . . . , N} as

ĝi(Z, θ) = argmin
g∈{1,...,G}

T∑
t=1

∥Zit − θg∥2 . (7)

Using this estimator, the kmeans estimator of the cluster centers θ0 can then be written as

θ̂NT (γ̂NT ) = argmin
θ∈ΘGK

N∑
i=1

T∑
t=1

∥∥Zit − θĝi(Z,θ)
∥∥2 , (8)

which shows that the kmeans estimator of the center of cluster g is the sample mean of that clus-

ter: θ̂g,n̂g ,T (γ̂NT ) = Z̄g,n̂g ,T (γ̂NT ) = (n̂gT )
−1
∑N

i=1

∑T
t=1 Zit1{ĝi = g}, where n̂g =

∑N
i=1 1{ĝi = g}.

Following these lines, using the NT × K matrix Z = (Z ′
1, . . . , Z

′
N )′ where Zi = (Z ′

i1, . . . , Z
′
iT )

′, the

kmeans estimates of the cluster membership variables and the cluster centers can be calculated using

the following algorithm.

Algorithm 1: Iterative algorithm for panel data

Input: Data matrix Z, number of clusters G.

Output: Cluster membership variables g
(m)
i , i = 1, . . . , N , calculated at each iteration

m = 1, 2, . . .

1. Initialize the GK × 1 vector of cluster centers θ(0) by randomly sampling G observations from
the time averages Z̄i,T = T−1

∑T
t=1 Zit, i = 1, . . . , N , without replacement.

2. Compute g
(0)
i (Z, θ(0)) = argming∈{1,...,G}

∑T
t=1

∥∥∥Zit − θ
(0)
g

∥∥∥2 for all i = 1, . . . , N .

3. Initialize m = 0.

a. Update centers: θ
(m+1)
g = (n

(m)
g T )−1

∑N
i=1

∑T
t=1 Zit1{g(m)

i = g}, g = 1, . . . , G, where

n
(m)
g =

∑N
i=1 1{g

(m)
i = g}.

b. Update assignment: g
(m+1)
i (Z, θ(m+1)) = argming∈{1,...,G}

∑T
t=1

∥∥∥Zit − θ
(m+1)
g

∥∥∥2,
i = 1, . . . , N .

c. Stop if g
(m+1)
i = g

(m)
i for all i = 1, . . . , N and save M = m+ 1, the number of iterations.

Otherwise, Set m = m+ 1 and go to Step a..
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Algorithm 1 is a panel data generalization of Lloyd’s kmeans algorithm as used by Chen and Witten

(2023). A similar iterative algorithm is used in panel data econometrics by Bonhomme and Manresa

(2015). The difference lies in the choice of the initial cluster centers θ(0) given in the first step. While

Bonhomme and Manresa (2015) are agnostic about how to choose these values, our conditional testing

framework is crucially dependent on the choice. Although other initialization methods can be used,

this would potentially change the derivations in Appendix B. To establish the asymptotic properties

of the kmeans estimator, we make following assumptions.

Assumption 5. Let G0 ≥ 2. Then for all g, g′ ∈ {1, . . . , G0}, g ̸= g′, there exists Cg,g′ > 0 such that

∥θ0g(γ0)− θ0g′(γ
0)∥2 ≥ Cg,g′.

Assumption 6. There exist constants a1 > 0 and b1 > 0 such that, for all i = 1, . . . , N , Vit is

α-mixing with mixing coefficients α[t] ≤ e−a1tb1 . Moreover, there exist constants a2 > 0 and b2 > 0

such that P(|Vk,it| > C) ≤ e1−(C/a2)b2 for all k, i, t and C > 0.

Assumption 5 formalizes the situation where H0 fails because there are clusters in the population

which differ in terms of their expectations. It simply states that the true cluster centers are well

separated. Although it implies that the C-EPA null hypothesis fails, this cluster separation assumption

is not necessary (but sufficient) for our tests to have power. As documented in the next section, even

if G0 = 1, that is there is only one cluster in the population, our proposed tests have power if the

population overall mean is different from zero.

Assumption 6 places additional constraints on dependence properties and tail probabilities of the

process {Vit}t over Assumption 1. These conditions are imposed for the consistent estimation of cluster

membership and the asymptotic equivalence of the cluster center estimators based on kmeans to the

one based on true clusters.

We have the following result which summarizes the asymptotic properties of the kmeans estimator.

Lemma 2. Under Assumptions 1-5 and if G = G0, as (T,N) → ∞,

(a) θ̂NT (γ̂NT ) = θ0(γ0) + op(1).

If Assumption 6 also holds, for all ξ > 0,

(b) P(supi∈{1,...,N}|ĝi − g0i | > 0) = o(1) + o(NT−ξ),

(c) θ̂NT (γ̂NT ) = θ̂NT (γ
0) + op(T

−ξ),

10



(d) if also N/T ξ → 0, Ω(γ0)−1/2N 1−ϵT 1/2(θ̂NT (γ̂NT )− θ0(γ0))
d−→ N(0, IGK).

Based on this result, a naive attempt to test the null hypothesis of C-EPA would be to estimate

the unknown clusters using the kmeans estimator and then to use these estimates to construct a Wald

test statistic. Let WNT (Hi,t−τ , γ̂NT ) be the test statistic of the form (4) calculated using the kmeans

estimates obtained using the above algorithm. Consider the test which rejects the associated null

if pNT [w(Hi,t−τ , γ̂NT )] ≤ α for α ∈ (0, 1). The problem with this approach is that the clusters are

estimated from the data which are then used to test the null hypothesis of C-EPA. It is now well known

in the literature that testing the null hypothesis of homogeneity (that is no clusters exist), following

a clustering method such as kmeans or hierarchical clustering leads to extremely anti-conservative

test statistics, as the results of Gao et al. (2024), Patton and Weller (2023), Chen and Witten (2023)

show. As explained in Section 3 below, the null hypothesis of these studies is a sub-hypothesis of the

null in our paper, hence, the naive tests of EPA suffer from the same problem. We demonstrate the

consequences of this naive approach in Appendix C.1.

3. Clustered EPA Tests with Unknown Clusters

In this section, we develop the valid tests of the C-EPA null hypothesis with clusters estimated

by kmeans. As is shown in the previous section, using the estimated clusters for testing in a naive

manner results in over rejection of the null hypothesis. Here, first the selective inference approach will

be employed to control for the Type I error rate by conditioning on the estimated clusters. Then a

more straightforward sample splitting solution will be considered.

To begin, we first break down the C-EPA hypothesis into its sub-hypotheses of homogeneity and

O-EPA. Namely, the implication (3) of the null hypothesis of interest (1) can be written as H′
0 :

Hhomo
0

⋂
Hoepa

0 , with

Hhomo
0 :

⋂
g∈{2,...,G}

[
lim

N→∞
θ01,n1

(γ) = lim
N→∞

θ0g,ng
(γ)

]
, (9)

being the homogeneity hypothesis and

Hoepa
0 : lim

N→∞

1

N

G∑
g=1

ngθ
0
g,ng

(γ) = 0, (10)

the O-EPA hypothesis, as named by APUY. Both Hhomo
0 and Hoepa

0 are of particular empirical rel-

evance. The tests of the unconditional O-EPA hypothesis are studied by APUY under different
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assumptions on the dependence structure of the loss differentials. The empirical importance of testing

the homogeneity hypothesis Hhomo
0 goes beyond EPA testing (see, in particular, the applications of

Patton and Weller, 2023, and the discussion therein).

In Section 3.1, we first develop a selective inference framework to test the homogeneity of a pair

of clusters selected by kmeans. Then we propose a p-value combination test of Hhomo
0 . In Section 3.2,

an O-EPA test and the main test statistic of H0 are presented. Section 3.3 contains a split-sample

test based on Patton and Weller (2023) as an alternative method. Finally, in Section 3.4 we cover the

case of an unknown number of clusters and develop a method for its estimation.

3.1. Testing the null of homogeneity

The homogeneity null Hhomo
0 is the intersection of G − 1 pairwise homogeneity hypotheses. For

each of these pairwise homogeneity nulls, we define the following test statistic:

Dg,NT (Hi,t−τ ) =
√
T
∥∥∥σ̂−1/2

1,g,NT (γ̂NT )[θ̂1,n̂1,T (γ̂NT )− θ̂g,n̂g ,T (γ̂NT )]
∥∥∥ ,

where σ̂21,g,NT (γ̂NT ) = ω̂1,1,NT (γ̂NT ) + ω̂g,g,NT (γ̂NT ) − 2ω̂1,g,NT (γ̂NT ) with ω̂g,g′,NT (γ̂NT ) being the

{g, g′}th K ×K block of Ω̂NT (γ̂NT ). For notational simplicity, we ignore showing the dependence of

the test statistic on γ̂NT as it does not risk confusion, i.e. Dg,NT (Hi,t−τ ) := Dg,NT (Hi,t−τ , γ̂NT ). It is

easily seen that, this test statistic is the square root of a Wald test of the equality of two estimated

cluster centers. Hence, under appropriate conditions, Dg,NT (Hi,t−τ , γ)
d−→ χK as T → ∞, where χK

is a random variable distributed as a χ variate with K degrees of freedom. However, as discussed in the

previous section, the associated critical values lose their validity when used with estimated clusters.

We define the following asymptotic selective Type I error rate which will be the basis for valid C-EPA

testing with unknown clusters.

Definition 1. Let g, g′ ∈ {1, . . . , G} be two cluster indexes such that g ̸= g′ and define the following

null hypothesis:

Hg,g′

0 : lim
N→∞

θ0g,ng
(γ̂NT ) = lim

N→∞
θ0g′,ng′

(γ̂NT ).

Then a test of Hg,g′

0 controls the selective Type I error rate asymptotically as (T,N) → ∞ if, under

Hg,g′

0 ,

lim
(T,N)→∞

PH0

[
Reject Hg,g′

0 at level α

∣∣∣∣∣
N⋂
i=1

{ĝi(Z, θ) = ĝi(z, θ)}

]
≤ α, ∀α ∈ (0, 1), (11)

where ĝi(Z, θ), i = 1, . . . , N is the output of Algorithm 1 and ĝi(z, θ) is its sample counterpart associ-
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ated with the realization z of Z.

The definition states that a valid test of the pairwise equality hypothesis Hg,g′

0 is the one that

controls the selective Type I error rate given the clusters estimated by the kmeans algorithm. More

specifically, the conditioning event in (11) implies that Hg,g′

0 should be rejected if the probability of

obtaining a test statistic as large as the one in hand does not exceed α among all realizations of Z

which result in the same clustering as the one obtained using the realization z. As stated by Chen and

Witten (2023), characterising this condition is not trivial but we can instead condition on the clusters

estimated at all m = 1, . . . ,M steps of the algorithm. Hence, following Gao et al. (2024) and Chen

and Witten (2023), we define the asymptotic p-value

pg,∞(dg,NT (Hi,t−τ ))

= lim
(T,N)→∞

PH0

[
Dg,NT (Hi,t−τ ) ≥ dg,NT (Hi,t−τ )

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i (Z, θ) = g

(m)
i (z, θ)

}
,

ΠgZ = Πgz, dir(σ̂
1/2
1,g,NT (γ̂NT )Z

′ν̂g) = dir(σ̂
1/2
1,g,NT (γ̂NT )z

′ν̂g)

]
,

(12)

for g ∈ {2, . . . , G} where Πg = INT − ν̂gν̂
′
g/∥ν̂g∥2, ν̂g = (ν̂ ′g,1, . . . , ν̂

′
g,N )′, ν̂g,i = ιT δ̂g,i, ιT being a

T -vector of ones, δ̂g,i = 1{ĝi = 1}/n̂1 − 1{ĝi = g}/n̂g. Notice that Z ′ν̂g = θ̂1,n̂1,T (γ̂NT )− θ̂g,n̂g ,T (γ̂NT )

and ∥ν̂g∥2 = (n̂1T )
−1 + (n̂gT )

−1.

The first condition in (12) is the most crucial to the selective inference framework. It states that

the cluster to which each panel unit i assigned in every iteration m of the kmeans algorithm using the

realization z, namely g
(m)
i (z), corresponds to the cluster obtained using Z, that is g

(m)
i (Z). In other

words, as required by Definition 1, we focus on the realization of the random matrix Z resulting in

the same clustering as the one results from the application of the kmeans algorithm applied to the

particular realization z in hand. The next two conditions allow us to remove the nuisance parameters

ΠgZ and dir(σ̂
1/2
1,g,NT (γ̂NT )Z

′ν̂g). These are standard conditions in selective inference literature (see

Fithian et al., 2014; Gao et al., 2024; Chen and Witten, 2023).

The p-value pg,∞(dg,NT (Hi,t−τ )) is based on the selective inference methodology of Chen and

Witten (2023) but it generalizes it in several ways. First of all, here, we have double indexed random

variables Zit, i = 1, . . . , N , t = 1, . . . , T . Second, their study does not allow for dependencies between

Zit and Zjs, for either i ̸= j and t ̸= s, but only across different variables of the same observation,

i.e. between Zk,it and Zk′,it, the kth and the k′th elements of Zit. Whereas, we allow for arbitrary

autocorrelation and CD as well as dependencies between different elements of Zit. Third, their method
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depends crucially on the normality of the data generating process, whereas we make use of the CLT

in Lemma 1 by exploiting the time series dimension of the data. The following lemma shows how to

calculate a p-value in observed samples following this definition.

Lemma 3. Let g ∈ {2, . . . , G} with G ≥ 2 given, and B → ∞ as (T,N) → ∞ such that B/T → 0.

Under Assumptions 1-3 and H1,g
0 , a p-value following the asymptotic principle (12) can be calculated

using

pg,NT (dg,NT (Hi,t−τ )) = 1− FχK [dg,NT (Hi,t−τ );S] , (13)

where FχK ( · ;S) denotes the cumulative distribution function of a χK random variable truncated to

the set S with

S =

{
ϕ ∈ R :

M⋂
m=0

N⋂
i=1

g
(m)
i (z(ϕ), θ) = g

(m)
i (z, θ)

}
, (14)

and

z(ϕ) = z − ∥z′ν̂g∥
∥ν̂g∥2

ν̂g[dir(z
′ν̂g)]

′ + ϕ
ν̂g√

T∥ν̂g∥2
∥z′ν̂g∥

∥σ̂−1/2
1,g,NT (γ̂NT )z′ν̂g∥

[dir(z′ν̂g)]
′. (15)

The equation in (15) defines a perturbation z(ϕ) of the original data matrix z. Depending on

ϕ, z(ϕ) is a version of z such that the two clusters g and 1 are either pushed towards each other

or pulled further apart. If ϕ = dg,NT (Hi,t−τ ) then z(ϕ) = z. If ϕ > dg,NT (Hi,t−τ ) then the two

clusters are pulled apart. If instead ϕ < dg,NT (Hi,t−τ ), the two clusters are pushed towards each

other and in the extreme case of ϕ = 0, their centers correspond to each other. Hence, the variable

ϕ measures the degree of perturbation (see, Figure 2 of Chen and Witten, 2023). We document the

steps of the calculation of this p-value in Appendix B through a characterization of the truncation set

S. The following result establishes the asymptotic validity of pg,NT (dg,NT (Hi,t−τ )) for the pairwise

null hypothesis H1,g
0 defined in Definition 1.

Proposition 1. Let g ∈ {2, . . . , G} with G ≥ 2 given, and B → ∞ as (T,N) → ∞ such that

B/T → 0.

(a) Under Assumptions 1-3, and H1,g
0 ,

lim
(T,N)→∞

P[pg,NT (Dg,NT (Hi,t−τ )) ≤ α] = α, ∀α ∈ (0, 1).

(b) Suppose now that G = G0 ≥ 2 and N/T ξ → 0. Under Assumptions 1-6, and if H1,g
0 fails,

lim
(T,N)→∞

P[pg,NT (Dg,NT (Hi,t−τ )) ≤ α] = 1, ∀α ∈ (0, 1).
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Part (a) of the proposition states that the random variable pg,NT (Dg,NT (Hi,t−τ )) satisfies the

definition of a p-variable of Vovk and Wang (2020) asymptotically, under the null of pairwise cluster

equality. The p-value pg,NT (dg,NT (Hi,t−τ )) is a realization of this p-variable. Following the common

practice, hereafter we refer to both of these quantities as p-values. In Part (b), it is shown that

Dg,NT (Hi,t−τ ) is consistent whenever H1,g
0 fails. Here, it is required that the number of clusters G

is correctly chosen to be equal to G0. We relax this assumption in Section 3.4 by proposing an

information criterion to estimate G0.

Now, using the fact that each G − 1 pairwise cluster equality p-values pg,NT (Dg,NT (Hi,t−τ )) are

asymptotically uniform under their corresponding null, we can define a p-value combination test statis-

tic for the homogeneity null (9) as follows:

W homo
NT (Hi,t−τ ) =

1

G− 1

 G∑
g=2

pg,NT (Dg,NT (Hi,t−τ ))
−r

1/r

, r ∈ (1,∞), (16)

The test statistic combines G − 1 p-values following the methodology developed by Vovk and Wang

(2020). Another recent application of this methodology to EPA testing, in particular to multi-

variate predictive ability comparison, is proposed by SU. Alternative p-value combination methods

such as Fisher (1932) are not necessarily suitable to the problem in hand because the p-values

pg,NT (Dg,NT (Hi,t−τ )) use overlapping samples through their dependence on Cluster 1 by construc-

tion. Proposition 2 of SU shows that a pseudo p-value associated with the test statistic W homo
NT can

be calculated as

pNT (w
homo
NT (Hi,t−τ )) = min

(
r

r − 1

1

whomo
NT (Hi,t−τ )

, 1

)
. (17)

As discussed by SU, the variable pNT (W
homo
NT (Hi,t−τ )) can be interpreted as a p-value although it is

not distributed uniformly. However, it satisfies the desired properties of a p-value. These properties

are summarized in the following theorem.

Theorem 1. Let G ≥ 2 be given, and B → ∞ as (T,N) → ∞ such that B/T → 0.

(a) Under Assumptions 1-3, and Hhomo
0 ,

lim sup
(T,N)→∞

pNT (W
homo
NT (Hi,t−τ )) ≤ α, ∀α ∈ (0, 1).

(b) Suppose now that G = G0 ≥ 2 and N/T ξ → 0. Under Assumptions 1-6, and if Hhomo
0 fails,

lim
(T,N)→∞

P[pNT (W
homo
NT (Hi,t−τ )) ≤ α] = 1, ∀α ∈ (0, 1).
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Although non-crucial for the development of our C-EPA test statistic with unknown clusters, the

test statistic W homo
NT is of particular empirical importance as it is a strong alternative to the split-

sample homogeneity test proposed by Patton and Weller (2023). Part (a) of the theorem shows that

the test statistic controls for the Type I error rate asymptotically whereas Part (b) shows that it is

consistent if at least one of the pairwise equality null hypothesis H1,g
0 fails.

3.2. The overall EPA test and the main result

The second sub-hypothesis of the C-EPA hypothesis (1), namely the O-EPA hypothesisHoepa
0 states

that the two forecasts are equally good on average given past information. To test this sub-hypothesis,

consider the test statistic

W oepa
NT (Hi,t−τ ) =

B −K + 1

KB
TZ̄ ′

o,NT Ω̂
−1
o,NT Z̄o,NT , (18)

where Z̄o,NT = T−1
∑T

t=1 Z̄N,t, Z̄N,t = N−1
∑N

i=1 Zit, and Ω̂o,NT is given by

Ω̂o,NT =
1

B

B∑
j=1

Λ̂o,jΛ̂
′
o,j ,

Λ̂o,j =

√
2

T

T∑
t=1

[Z̄N,t − Z̄o,NT ] cos

[
πj

(
t− 1/2

T

)]
.

(19)

The asymptotic properties of this test statistic are summarized in the following proposition.

Proposition 2. Suppose that Assumptions 1 and 3 hold with γ = (1, . . . , 1), that is G = 1. Then,

for B fixed as (T,N) → ∞, the following results hold.

(a) Under Hoepa
0 , W oepa

NT (Hi,t−τ )
d−→ FK,B−K+1.

(b) Suppose that Hoepa
0 fails. Then, for any C > 0, P[W oepa

NT (Hi,t−τ ) > C] → 1.

The test rejects the null of O-EPA if pNT (w
oepa
NT (Hi,t−τ )) = PH0

[
FK,B−K+1 ≥ woepa

NT (Hi,t−τ )
]
≤ α

where α ∈ (0, 1) is the predetermined Type I error rate. When B = T and K = 1, the test statistic

becomes a Wald-type statistic which is robust to arbitrary CD but does not control for autocorrelation.

It becomes then a special case of the S
(3)
NT test of APUY where the bandwidth parameter of the kernel

function is chosen to ignore potential autocorrelation.

We now turn to our main test statistic for the C-EPA null H0. As in the previous section, we

propose the following p-value combination statistic which uses the p-values associated with the G− 1
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pairwise homogeneity tests and the O-EPA test:

WSI
NT (Hi,t−τ ) =

1

G

pNT (W
oepa
NT (Hi,t−τ ))

−r +
∑

g∈{2,...,G}

pg,NT (Dg,NT (Hi,t−τ ))
−r

1/r

, (20)

for any r ∈ (1,∞). Again, for notational simplicity, we ignore showing the dependence of the test

statistic on γ̂NT , i.e. W
SI
NT (Hi,t−τ ) :=WSI

NT (Hi,t−τ , γ̂NT ). The associated pseudo p-value is given by

pNT (w
SI
NT (Hi,t−τ )) = min

(
r

r − 1

1

wSI
NT (Hi,t−τ )

, 1

)
. (21)

As in the case of (17), pNT (W
SI
NT (Hi,t−τ )) is not a p-value because it is not necessarily uniform under

the associated null. However, it can be interpreted as one as the following main result of the paper

summarizes its desired asymptotic properties.

Theorem 2. Let G ≥ 2 be given, and B → ∞ as (T,N) → ∞ such that B/T → 0.

(a) Under Assumptions 1-3, and H0,

lim sup
(T,N)→∞

pNT (W
SI
NT (Hi,t−τ )) ≤ α, ∀α ∈ (0, 1).

(b) Suppose now that G = G0 ≥ 2 and N/T ξ → 0. Under Assumptions 1-6, and if either Hhomo
0 or

Hoepa
0 fails, then,

lim
(T,N)→∞

P[pNT (W
SI
NT (Hi,t−τ )) ≤ α] = 1, ∀α ∈ (0, 1).

The asymptotic result shows that the proposed selective inference test successfully controls the

Type I error rate and it is consistent as its power approaches one when either Hhomo
0 or Hoepa

0 fails.

The finite sample properties of the test statistic are investigated in Section 4 where the simulation

results confirm these theoretical expectations.

3.3. Split-sample test statistic

In the previous subsection, the selective inference approach was adopted to condition on the esti-

mated cluster memberships. An alternative and more straightforward method is sample splitting in

the time dimension. The current section develops a testing procedure similar to the homogeneity tests

developed by Patton and Weller (2023).

Let R and P be two mutually exclusive but not necessarily exhaustive subsets of T = {1, . . . , T}

given by R = {1, 2, . . . , S − q + 1} and P = {S + 1, S + 2, . . . , T} where q ≥ 1. We denote R :=
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S − q + 1 = card(R) and P = card(P). Let γ̂NR = (ĝ1,NR, . . . , ĝN,NR)
′ be the vector of the estimated

cluster membership variables obtained from the kmeans estimator given in (6) using the sample of N

cross-sectional units and the subsample R. We define θ̂NP (γ̂NR) = [θ̂′1,n̂1,P
(γ̂NR), . . . , θ̂

′
G,n̂G,P (γ̂NR)],

θ̂g,n̂g ,P (γ̂NR) = P−1
∑T

t=S+1 Z̄g,n̂g ,t(γ̂NR), Z̄g,n̂g ,t(γ̂NR) = n̂−1
g

∑N
i=1 Zit1{ĝi,NR = g}. A split-sample

test statistic for H0 is

WSS
NT (Hi,t−τ , γ̂NR) =

B −GK + 1

GKB
Pθ̂′NP (γ̂NR)Ω̂

−1
NP (γ̂NR)θ̂NP (γ̂NR), (22)

Ω̂NP (γ̂NR) =
1

B

B∑
j=1

Λ̂j(γ̂NR)Λ̂
′
j(γ̂NR),

Λ̂j(γ̂NR) =

√
2

P

T∑
t=S+1

[
Z̄N,t(γ̂NR)− θ̂NP (γ̂NR)

]
cos

[
πj

(
t− 1/2

P

)]
.

(23)

The asymptotic properties of the split-sample test crucially depends on the following assumption.

Assumption 7. Vit is independent of all measurable-Gt−q random variables for some q ≥ 1 and for

all t = 1, . . . , T , i = 1, . . . , N .

According to Assumption 7, time series dependence in the process {Vit}t is limited such that Vit

is independent of Vjs whenever |t− s| ≥ q for all i and j. This assumption is somewhat restrictive as

it rules out many mixing processes for {Vit}t. We can now state the following result which is similar

to Theorem 6 of Patton and Weller (2023) with the differences we discuss in the remarks below.

Theorem 3. Suppose that Assumptions 1-3 and 7 hold. Then, for B fixed, R,P → ∞ as (T,N) → ∞,

the following results hold.

(a) Under H0, W
SS
NT (Hi,t−τ , γ̂NR)

d−→ FGK,B−GK+1.

(b) Suppose now that G = G0 ≥ 2. Under Assumptions 1-5 and 7, and if H0 fails, then, for any

C > 0, P[WSS
NT (Hi,t−τ , γ̂NR) > C] → 1.

The result above leads us to the following remarks. First, the split-sample test statistics rely on

the selection of the two sub-samples R and P which can be arbitrary in practice. Furthermore, the

fact that the inference is based on P observations may cause the associated test statistics to have

low power. However, we note that the selective inference approach has extra conditioning due to the

nuisance parameters discussed above. Hence, the comparative power of the split-sample statistics is

an empirical question which we investigate with simulations. Second, here, we apply a small sample
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correction contrary to the asymptotic tests of Patton and Weller (2023). Third, our framework allows

for strong CD which is ruled out by the authors. Finally, their testing procedure focuses only on

homogeneity of the panel whereas we test if each cluster has zero mean.

3.4. Estimating the number of clusters under the alternative

When the researcher wishes to learn the number of clusters under the alternative from data,

the sample in hand can be used to obtain an estimate of it. For this purpose, Patton and Weller

(2023) suggest to use a multiple testing procedure based on the Bonferroni correction. An adaptation

of their proposal would be calculating the p-value associated to the test statistic (20) or (22) for

G = 2, . . . , Gmax and applying the usual Bonferroni correction to these p-values. The test rejects H0

if the Bonferroni p-value does not exceed the predetermined Type I error rate. As an alternative, we

propose an information criterion (IC) to estimate the number of clusters. Consider the following IC:

ICNT (G) = log

[
det

(
1

NT

N∑
i=1

T∑
t=1

V̂it(G)V̂
′
it(G)

)]
+ (GK +N)

ς log(NT )

NT
,

where V̂it(G) = Zit − θ̂G,ĝi with θ̂G,ĝi being the solution to (6) with G clusters, and ς is a tuning

constant. In our simulations we found that ς = 3 works well, as was also suggested by the results of

Lumsdaine et al. (2023). The IC estimate of the number of clusters is given by

ĜNT = argmin
G∈{2,...,Gmax}

ICNT (G). (24)

For the split-sample test, this IC can be adapted by using only the R portion of the data. This IC

is denoted as ICNR(G). Penalty functions other than the one used here can also be employed (see, for

instance Bai and Ng, 2002, for different penalties for determination of the number of factors in factor

models). Our IC is an adaptation of the one used by Lumsdaine et al. (2023) to our multivariate

framework. It is easy to see that the ĜNT is consistent for G0 ≥ 2 under Assumptions 1-5 if N and T

diverge at the same rate. We explore the finite sample properties of this estimator in Section 4 with

numerical experiments.

The main advantage of using an information criterion instead of a Bonferroni p-value is its compu-

tational efficiency. Although the extra computational burden is negligible in the case of split-sample

test statistics, it is quite important for the selective inference tests. This is because the computation

of the conditioning set S is time consuming, and contrary to the Bonferroni p-value, an information

criterion requires only the kmeans estimates for different values of G and not S.
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4. Monte Carlo Study

4.1. Design

To investigate the small sample properties of the proposed test statistics, we generate samples from

the following models under different parameter constraints:

DGP1: ∆Lit = d+ µi + λ1iF1,t−1 + λ2iF2,t−1 + U1,it

DGP2: ∆Lit = d+ µi + λ1iF1,t−1 + U1,it

DGP3: ∆Lit = µi + λ1iF1,t−1 + λ2iF2,t−1 + U1,it

DGP4: ∆Lit = d+ µi + λ1iF1,t−1 + U2,it

DGP5: ∆Lit = d+ µi + λ1iF1,t−1 + λ2iF2,t−1 + U2,it

where F1t, F2t ∼ iidN(0, 1). For all experiments, the loadings of F2t are drawn once as λ2i ∼

iidN(0, 0.2) for all i so they are fixed. We also set their variance to be exactly 0.2 for each experiment.

The error terms are generated as U1,it ∼ iidN(0, 1) and U2,it = U1,it + 0.5U1,i,t−1. The parameter

d controls the distance between the clusters. We consider values d ∈ {0, 0.125, 0.25, 0.375, 0.5}. The

number of true clusters is G = 1 for size experiments and G = 2 otherwise. When G = 2, we have

gi = 1 for i = 1, . . . , N/2 and gi = 2 for i = N/2 + 1, . . . , N . The number of replications is 2000. For

the main experiment we have N ∈ {50, 100} and T ∈ {20, 50, 100, 200}. In a relatively limited set of

robustness checks, we set N = 50, T ∈ {50, 100} and d = 0.25. We evaluate the performance of the

tests by setting either Hi,t−1 = 1 or Hi,t−1 = F1,t−1. These correspond to unconditional and condi-

tional C-EPA tests, respectively. The parameter constraints particular to these cases are reported in

Table 1.

Table 1: Constraints in Monte Carlo Design

Test type Size (d = 0) Power (d ̸= 0)

Unc. tests (Hi,t−1 = 1) µi = 0 µi = −d for i = 1, . . . , N/2, µi = d otherwise
λ1i = 0 λ1i = 0

Con. tests (Hi,t−1 = F1,t−1) µi = 0 µi = −d for i = 1, . . . , N/2, µi = d otherwise
λ1i = 0 λ1i = −d for i = 1, . . . , N/2, λ1i = d otherwise

DGP1 is considered the main experiment of the Monte Carlo study and the others to be robustness

checks, as dictated by the lengthy computations. DGP1 corresponds to the case where we have
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cross-sectionally dependent but serially uncorrelated loss differentials. DGP2 imposes cross-sectional

independence by setting λ2i = 0 for all i. As seen in Table 1 λ1i ̸= 0 only for conditional tests but

they condition on F1,t−1 hence, the independence holds conditionally. DGP3 is a particular case of

DGP1 where the O-EPA hypothesis is satisfied even when the C-EPA hypothesis fails. When d = 0,

DGP3 is identical to DGP1 so we omit the associated results in Table 3. DGP4 and DGP5 are used

to check the effect of autocorrelation in loss differentials.

Our main interest is in the test statistics WSI
NT , W

SS
NT computed with G = 2 as well as the same

statistics computed using the IC-based estimate, Ĝ, of the number of clusters. For the latter we use

Gmax = 5. As a benchmark, we also report the unfeasible testWNT which is computed using gi = 1 for

i = 1, . . . , N/2 and gi = 2 for i = N/2+1, . . . , N so it is based on the true clusters under the alternative.

We omit the results of the naive tests as they are clearly invalid in the light of Figure 2. Split-sample

tests are computed by splitting the sample into two equally sized parts as R = {1, 2, . . . , T/2− q+1}

and P = {T/2 + 1, T/2 + 2, . . . , T}. In DGP1, DGP2 and DGP3, we set B = T , q = 1. In the other

DGPs with autocorrelation, we set q = 2, and B = 2max (⌊(GK + 4)/2⌋, 1) which provides tests with

the best size properties in the simulation study of Sun (2013).

4.2. Results

Main Results. The main results on the empirical size of the test statistics are reported in Table

2. The first observation which we draw is that all tests have excellent size properties in small samples

under DGP1. In particular, all unconditional tests are correctly sized with the exception of very small

size distortions for the split-sample tests when T is small. We note that the Monte Carlo results of

APUY as well as Qu et al. (2024) show that the Wald tests of the C-EPA display important size

distortions. Our results on the comparable test statistic with known clusters show that the small

sample correction using the OS LRV estimator together with the p-values calculated from the F

distribution works perfectly. Furthermore, the uncertainty due to the estimation of the clusters does

not change the conclusions.

The findings are only marginally different for the conditional tests. One particular observation

here is that, in certain cases, WSI
NT and WSI

NT [IC] tests are slightly undersized whereas WSS
NT and

WSS
NT [IC] are oversized as before. The size of both classes of tests reaches to the nominal value with

increases in T . We conclude by noting that these small deviations may be due to the limited number

of replications dictated by the computational capacity. Further research may shed light on this issue.
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Table 2: Empirical Size of the Test Statistics–Main Results

N T WNT [Known] WSI
NT WSI

NT [IC] WSS
NT WSS

NT [IC]

Unconditional Tests (Hi,t−1 = 1)

50 20 0.06 0.06 0.07 0.07 0.07
50 50 0.05 0.06 0.06 0.05 0.05
50 100 0.05 0.04 0.05 0.06 0.06
50 200 0.05 0.04 0.05 0.05 0.05

100 20 0.07 0.06 0.05 0.07 0.07
100 50 0.05 0.04 0.05 0.05 0.05
100 100 0.06 0.06 0.05 0.05 0.05
100 200 0.05 0.04 0.04 0.05 0.05

Conditional Tests (Hi,t−1 = F1,t−1)

50 20 0.05 0.05 0.05 0.06 0.06
50 50 0.05 0.04 0.04 0.05 0.05
50 100 0.05 0.04 0.04 0.05 0.05
50 200 0.05 0.04 0.05 0.05 0.05

100 20 0.06 0.04 0.04 0.06 0.07
100 50 0.05 0.04 0.05 0.05 0.05
100 100 0.06 0.05 0.04 0.05 0.05
100 200 0.05 0.04 0.04 0.05 0.05
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The power properties of the test statistics are reported in Figure 1. The overall conclusion is

that all test statistics are consistent. The first and the second columns of the figure let us analyze

the power loss due to the estimation of the number of clusters. We can conclude that this effect

of estimation uncertainty is negligible. One particularly important comparison is the power of the

conditional selective inference and conditional split-sample tests. We see that the selective inference

tests are more powerful than their split-sample counterparts for small T .

Alternative DGPs and additional results. The results on the empirical power and size of the test

statistics for DGP2 to DGP5 are reported in Table 3. First, let us focus on the size and power of

the unconditional tests for different DPGs. In DGP2, which differs from the main experiment in that

it does not contain CD, we show that our tests display only minor size distortions. They reach the

power of 100% in the sample sizes and the deviations from the null that we consider.

We remind that DPG3 is identical to DGP1 when d = 0. So we discuss only its power properties.

A particularly important finding arises in this case as for both unconditional and conditional tests the

power of WSI
NT and WSI

NT [IC] is low when the O-EPA fails, although it increases with the sample size.

In this DGP, when the O-EPA hypothesis fails, split-sample tests seem to be the reliable choice.

With DGP4 and DGP5, we analyze the effect of autocorrelation in the loss differentials on the

small sample properties of the test statistics. In this case, both conditional and unconditional WSI
NT

and WSI
NT [IC] tests are slightly oversized whereas the WSS

NT and WSS
NT [IC] show no particular size

distortions. Both sets of tests have their power increased with sample size, as expected. We see in

particular that, in the case of autocorrelation, selective inference based tests have superior power to

the split-sample tests, although this superiority might be due to the slight size distortions of WSI
NT and

WSI
NT [IC] in this particular case.

Some supporting Monte Carlo evidence is reported in Tables 5-7. Measures on the performance

of the kmeans estimator and the proposed IC are presented in Table 5 where we set N = 50 and

T ∈ {20, 50, 100, 200}, as above. In particular, for each DGP and d ̸= 0, we report the recovery

probability (abbreviated as Rec.) which is the percentage of Monte Carlo replications which result

in the true clusters, and the Rand Index (abbreviated as Rand. Ind.) which is a measure of the

similarity between the estimated clusters and the true clusters. This index varies between 0 and 1

with the latter signifying perfect recovery of the true clusters. Finally, this table also reports the

average of the estimated number of clusters by the IC over 2000 replications. The results can be

summarized as follows. First, as expected the performance of the kmeans estimator increases with T
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Figure 1: Empirical Power of the Test Statistics–DGP1
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Table 3: Empirical Size and Power of the Test Statistics–Alternative DGPs

T d DGP WNT [Known] WSI
NT WSI

NT [IC] WSS
NT WSS

NT [IC]

Unconditional Tests (Hi,t−1 = 1)

50 0 2 0.05 0.06 0.06 0.07 0.07
100 0 2 0.05 0.05 0.05 0.05 0.05
50 0 4 0.06 0.10 0.09 0.05 0.05
100 0 4 0.04 0.09 0.09 0.05 0.05
50 0 5 0.05 0.09 0.08 0.05 0.05
100 0 5 0.05 0.09 0.09 0.06 0.06

50 0.25 2 1.00 1.00 1.00 1.00 1.00
100 0.25 2 1.00 1.00 1.00 1.00 1.00
50 0.25 3 1.00 0.54 0.51 1.00 1.00
100 0.25 3 1.00 0.87 0.83 1.00 1.00
50 0.25 4 1.00 1.00 1.00 0.99 0.96
100 0.25 4 1.00 1.00 1.00 1.00 1.00
50 0.25 5 1.00 0.80 0.72 0.80 0.71
100 0.25 5 1.00 0.98 0.96 0.99 0.95

Conditional Tests (Hi,t−1 = F1,t−1)

50 0 2 0.04 0.04 0.05 0.05 0.05
100 0 2 0.05 0.05 0.04 0.05 0.06
50 0 4 0.05 0.06 0.06 0.04 0.04
100 0 4 0.05 0.07 0.06 0.05 0.05
50 0 5 0.05 0.06 0.06 0.05 0.05
100 0 5 0.04 0.06 0.05 0.05 0.05

50 0.25 2 1.00 1.00 1.00 1.00 1.00
100 0.25 2 1.00 1.00 1.00 1.00 1.00
50 0.25 3 1.00 0.32 0.31 0.96 0.96
100 0.25 3 1.00 0.83 0.83 1.00 1.00
50 0.25 4 1.00 1.00 1.00 0.97 0.97
100 0.25 4 1.00 1.00 1.00 1.00 1.00
50 0.25 5 0.96 0.64 0.64 0.68 0.68
100 0.25 5 1.00 0.96 0.97 0.96 0.96
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as well as the distance between the true clusters measured by d. Second, especially in the alternative

DGPs that we consider, both the kmeans estimator and the IC perform better in the conditional

setting. The low performance is most apparent in DGP4 with T = 50 in unconditional case where

the true clusters are never correctly recovered by kmeans and the IC overestimates the true number

of clusters with average estimated number being 2.86. However, in general, the estimators have very

good small sample properties.

Finally, Tables 6 and 7 focus on the performance of the components of the selective inference tests,

i.e. W oepa
NT and W homo

NT . Table 6 reports the performance of these tests under DGP1. First, we see that

both tests have excellent size control even in smallest samples. The biggest size distortion is observed

when the number of clusters is estimated for unconditional homogeneity testing W homo
NT which results

in a size of 9% when N = 50 and T = 20. However, this seems to be an exceptional case as no other

setting results in a size superior to 6%. Second, we see that the power of the O-EPA test approaches

1 very rapidly with d. Even when N = 50 and T = 20 it has a power of 87% when d = 0.25 for the

unconditional test. Although it has in general lower power than W oepa
NT , this observation applies to

W homo
NT as well.

Among the results of the alternative DGPs reported in Table 7, two findings stand out. First, in

the DGPs with autocorrelation, W homo
NT tests display some size distortions which is not the case for

W oepa
NT . Hence, the size distortions observed in Table 3 are due to the fact that the selective inference

component of the WSI
NT test uses the χ distribution instead of the F distribution. Second, the low

power of WSI
NT in DGP3 discussed above is entirely due to the fact that the O-EPA hypothesis holds,

as in this case W homo
NT still has high power.

5. Empirical Illustration

In this section, we present an empirical illustration of the usage of our test statistics for the

comparison of predictive models. For this purpose, we use the data set constructed by SU on a large

set of daily exchange rates. The complete data set contains 84 exchange rates with the longest time

series spanning between January 4, 2011 and April 1, 2021. These contain 39 currencies against the

USD, 23 currencies against the EUR, and 22 currencies against the GBP. The time series for the

currencies against the USD are observed for a total number of 2558 days, against the GBP for 2590

days, and against the EUR for 2622 days.

For our illustration, we use the out-of-sample forecasts generated by 4 different time series models.

26



These are given by

RW: Yit = Yi,t−1 + Uit

AR1: Yit = βi,1Yi,t−1 + Uit

AR2: Yit = βi,1Yi,t−1 + βi,2Yi,t−2 + Uit

TVP: Yit = ψitYi,t−1 + Uit, ψit = ρiψi,t−1 + εit

where Yit is the first difference of the natural logarithm of exchange rate i at day t. Using the

Matlab codes made available by the authors,4 we generate the one-step ahead forecasts with a rolling

estimation window of 750 days. This results in 1806, 1870 and 1838 time series observations for the

exchange rates against the USD, EUR and GBP, respectively. Our focus is on the balanced portion of

the data set after leaving out the COVID-19 period, i.e. before 1st of January 2020. The final forecast

errors data set contains T = 1517 observations of each of the N = 84 exchange rates.

For each model above, we compute the quadratic loss differentials as ∆Lit = (Ŷ1,it−Yit)2− (Ŷ2,it−

Yit)
2 where Ŷ2,it denoting the RW forecasts. We compare each of the 3 other models with RW using

the test statistics WNT [Known], WNT [Naive], WSI
NT , and W

SS
NT for both the unconditional and the

conditional EPA hypotheses. The tests with predetermined clusters, noted WNT [Known], use the

base exchange rate, that is G = 3 for USD, EUR, and GBP. The conditional tests are evaluated

using Hi,t−1 = ∆Li,t−1. For the kmeans estimates, the number of random initial observations and the

maximum number of iterations in the kmeans algorithm are chosen as 10. We set G = 3 for WNT

[Naive], and for the tests taking into account the estimation of the clusters, the number is chosen

by IC with Gmax = 5. The split-sample statistics are calculated using R = {1, 2, . . . , T/2 − q + 1}

and P = {T/2 + 1, T/2 + 2, . . . , T} with q = 2. All tests are robust to autocorrelation with B =

2max (⌊(GK + 4)/2⌋, 1) as in the Monte Carlo simulations. Following SU, we set r = 20 for the

calculation of the p-value combination tests.

The results are reported in Table 4. The first observation is that all tests conclude that each of

AR1, AR2 and TVP models have significantly different predictive power compared to the RW model

at 5% level. In fact, unreported results show that, for any exchange rate series that we observe, the

RW model produces a higher root mean squared error. Therefore, we conclude that all alternative

models have significantly better forecast performance than the RW.

As expected, in each comparison, naive tests result in very small p-values. In all cases except one,

4The data set and the Matlab codes are available in https://doi.org/10.1080/07350015.2022.2067545.
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Table 4: p-values of Test Statistics Comparing Exchange Rate Forecasts

Model Compared WNT WNT [Naive] WSI
NT [IC] WSS

NT [IC]

Unconditional Tests (Hi,t−1 = 1)

AR1 0.020 0.012 0.025a 0.025
AR2 0.020 0.007 0.025a 0.025
TVP 0.010 0.048 0.045 0.030

Conditional Tests (Hi,t−1 = ∆Li,t−1)

AR1 0.015 0.000 0.021c 0.033a

AR2 0.014 0.000 0.023b 0.031b

TVP 0.006 0.002 0.044 0.029a

Note: a, b and c signify ĜNT = 3, ĜNT = 4 and ĜNT = 5, respec-
tively. Otherwise IC chooses ĜNT = 2.

namely unconditional TVP comparison, selective inference tests give larger p-values than the naive

tests. This is similar for split-sample test statistics. One important observation is on the estimated

number of clusters: we see that using the full sample (selective inference tests) and the first half

of the sample (split-sample tests) result in different estimations, the exceptions being unconditional

TVP comparison (ĜNT = 2), and conditional AR2 comparison (ĜNT = 4). We finally note that,

in unreported results of W oepa
NT and W homo

NT tests, we find that the inferiority of the RW forecasts is

due to the overall differences instead of heterogeneity, except in one case for which the homogeneity

hypothesis is rejected using the W homo
NT test with a p-value of 0.027. This is the conditional AR2

comparison which results in the estimated exchange rate clusters given in Table 8.

6. Conclusion

This paper developed a statistical framework for testing a linear hypothesis on the cluster centers

of a panel process after having estimated these clusters using the kmeans estimator. This statistical

framework was then applied to conditional C-EPA testing in order to compare the forecast perfor-

mance of agents or predictive models. In particular, we developed two distinct strategies to deal with

the problem of what is sometimes called “double dipping” in recent statistical literature. Our pro-

posed method is a conditional testing procedure based on recent developments in the area of selective

inference. The main idea behind the methodology is to compute a p-value for the C-EPA hypothesis

which can be thought as the percentage of rejections of a true null among all realizations of the panel

process which result in the same clustering obtained using kmeans with the realization in hand. The
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second strategy resulted in a set of more straightforward split-sample tests. The two methodologies

were then compared theoretically as well as in Monte Carlo experiments.

Our simulation results show that both testing strategies work very well in small samples. They are

correctly sized even in very small samples and they have power against viable alternative hypotheses. In

particular, selective inference tests perform very well and together with their theoretical and practical

advantages, they stand out as the preferred methodology.

Finally, to illustrate the empirical validity of our tests, we compared several time series models

with random walk forecasts in terms of their predictive ability, using a large data set of 84 exchange

rates. The results showed that all alternative models are have superior predictive power over the

random walk, and there is some evidence on exchange rate clusters for which the predictive ability of

alternative models differs significantly.

Appendices

A. Proofs

A.1. Proof of Lemma 1

To prove Part (a), we will show that eachK×1 component of θ̂NT (γ) satisfies θ̂g,ng ,T (γ) = θ0g,ng
(γ)+

op(1). By definition, Zit = β0i + Vit and E(Vit) = 0. Since θ̂g,ng ,T (γ) = (ngT )
−1
∑N

i=1

∑T
t=1 Zit1{gi =

g}, we have

θ̂g,ng ,T (γ)− θ0g,ng
(γ) =

1

ngT

N∑
i=1

T∑
t=1

Vit1{gi = g}, (25)

which gives E(θ̂g,ng ,T (γ)− θ0g,ng
(γ)) = 0. Turning to the variance, we have∥∥∥E[(θ̂g,ng ,T (γ) − θ0g,ng

(γ))(θ̂g,ng ,T (γ)− θ0g,ng
(γ))′]

∥∥∥
=

∥∥∥∥∥∥ 1

(ngT )2

N∑
i,j=1

T∑
t,s=1

E(VitV
′
js)1{gi = g}1{gj = g}

∥∥∥∥∥∥
≤ 1

n2gT

N∑
i,j=1

 1

T

T∑
t,s=1

E∥VitV ′
js∥

1{gi = g}1{gj = g}

≤ 1

n2gT

N∑
i,j=1

 1

T

T∑
t,s=1

E∥VitV ′
js∥

 = O

(
1

κ2gT

)
,

(26)
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by Assumptions 1 and 2 which concludes Part (a). For Part (b), we write

Ω(γ)−1/2N 1−ϵT 1/2(θ̂NT (γ)− θ0(γ)) = Ω(γ)−1/2N 1−ϵT−1/2
T∑
t=1

V̄N,t(γ),

and the result follows from Assumption 3.

A.2. Proof of Lemma 2

Let Q̂(θ, γ) = (NT )−1
∑N

i=1

∑T
t=1∥Zit − θgi∥2, be the objective function of the kmeans estima-

tor divided by NT , and Q̃(θ, γ) = N−1
∑N

i=1∥θ0g0i − θgi∥2 + (NT )−1
∑N

i=1

∑T
t=1∥Vit∥2, the auxiliary

objective function. We also define the Hausdorff distance between θ̂NT (γ) and θ
0(γ) as

dH(θ̂NT (γ), θ
0(γ)) =max

[
max

g∈{1,...,G}

(
min

g′∈{1,...,G}

∥∥∥θ̂g′,ng′ ,T
(γ)− θ0g,ng

(γ)
∥∥∥2) ,

max
g′∈{1,...,G}

(
min

g∈{1,...,G}

∥∥∥θ̂g′,ng′ ,T
(γ)− θ0g,ng

(γ)
∥∥∥2)] .

Our proof is based on the proof of Theorem 1 and Proposition S.4 of Bonhomme and Manresa (2015)

but it generalizes their results for the multivariate case with potentially strong CD. Part (a) of Lemma

2 is proved by the following lemma.

Lemma A.1. Under the assumptions of Lemma 2, we have

(a) Q̂(θ, γ)− Q̃(θ, γ) = op(1),

(b) Q̃(θ̂NT (γ̂NT ), γ̂NT )− Q̃(θ0, γ0) = op(1).

Proof. To prove (a), we write∣∣∣Q̂(θ, γ)− Q̃(θ, γ)
∣∣∣ = ∣∣∣∣∣ 2

NT

N∑
i=1

T∑
t=1

V ′
it(θ

0
g0i

− θgi)

∣∣∣∣∣
≤ 2

(
1

N

N∑
i=1

∥∥∥θ0g0i − θgi

∥∥∥∥∥∥∥∥ 1T
T∑
t=1

Vit

∥∥∥∥∥
)

= op(1),

which follows directly from Assumption 1(a)-(c). To show (b), we first note that Q̃(θ, γ) is uniquely
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minimized at true values. To see this, it suffices to write

Q̃(θ, γ)− Q̃(θ0, γ0) =
1

N

N∑
i=1

∥∥∥θ0g0i − θgi

∥∥∥2
=

1

N

N∑
i=1

G∑
g=1

G∑
g′=1

1{g0i = g}1{gi = g′}
∥∥θ0g(γ0)− θg′(γ)

∥∥2
≥

G∑
g=1

1

N

N∑
i=1

1{g0i = g} min
g′∈{1,...,G}

∥∥θ0g(γ0)− θg′(γ)
∥∥2

=

G∑
g=1

n0g
N

min
g′∈{1,...,G}

∥∥θ0g(γ0)− θg′(γ)
∥∥2 ,

(27)

where n0g/N → κ0g ∈ (0, 1) by Assumption 2. Note that, by definition, kmeans estimator satisfies

Q̂(θ̂NT (γ̂NT ), γ̂NT ) ≤ Q̂(θ, γ). Combining this with (a), we find Q̃(θ̂NT (γ̂NT ), γ̂NT )+op(1) ≤ Q̃(θ, γ)+

op(1). Hence, by (27), we have Q̃(θ̂NT (γ̂NT ), γ̂NT )− Q̃(θ0, γ0) = op(1) which ends the proof.

For Part (a), we will show the consistency of the kmeans estimator of the cluster centers with

respect to the Hausdorff distance, as in Proposition S.4 of Bonhomme and Manresa (2015). Namely,

we will show that dH(θ̂NT (γ̂NT ), θ
0(γ0)) = op(1). Define the permutation υ : {1, . . . , G} → {1, . . . , G}

as υ(g) = argming′∈{1,...,G}∥θ0g(γ0)− θ̂g′,NT (γ̂NT )∥2. Following steps similar to those in (27), it is easy

to show that ∥θ0g(γ0) − θ̂g′,NT (γ̂NT )∥2 is bounded away from zero. It follows that υ(g) ̸= υ(g′) for

all g′ ̸= g, with probability approaching to one. Thus, for all g′ ∈ {1, . . . , G}, ming′∈{1,...,G}∥θ0g(γ0)−

θ̂g′,NT (γ̂NT )∥2 ≤ ∥θ0υ−1(g′)(γ
0) − θ̂g′,NT (γ̂NT )∥2 = ming̃∈{1,...,G}∥θ0υ−1(g′)(γ

0) − θ̂g̃,NT (γ̂NT )∥2 = op(1)

where the last equality follows from (27) and Lemma A.1(b). This in turn implies that

max
g∈{1,...,G}

(
min

g′∈{1,...,G}
∥θ0g − θg′∥2

)
= op(1).

Combining this with the definition of the Hausdorff distance, we find dH(θ̂NT (γ̂NT ), θ
0(γ0)) = op(1)

which shows that there exists a permutation υ(g) such that ∥θ0υ(g)(γ
0)− θ̂g,NT (γ̂NT )∥2 = op(1) which

ends the proof of Part (a).

For Part (b), we define Θη as the set of parameters θ ∈ ΘGK that satisfy ∥θ − θ0(γ0)∥2 < η for

η > 0. We state the following result which is similar to Lemma B.4 of Bonhomme and Manresa (2015).

Lemma A.2. For η > 0 small enough, we have, for all ξ > 0 and as (T,N) → ∞,

sup
θ∈Θη

1

N

N∑
i=1

1{ĝi(Z, θ) ̸= g0i } = op(T
−ξ).

Proof. As in the proof of Lemma B.4 of Bonhomme and Manresa (2015), we first note that, by
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the definition of ĝi(Z, θ) in (7), 1{ĝi(Z, θ) = g} ≤ 1
{∑T

t=1∥Zit − θg∥2 ≤
∑T

t=1∥Zit − θg0i
∥2
}
. Notice

also that we can write N−1
∑N

i=1 1{ĝi(Z, θ) ̸= g0i } =
∑G

g=1N
−1
∑N

i=1 1{g0i ̸= g}1{ĝi(Z, θ) = g}.

Combining these two gives N−1
∑N

i=1 1{ĝi(Z, θ) ̸= g0i } ≤
∑G

g=1N
−1
∑N

i=1Qig(θ) where Qig(θ) =

1{g0i ̸= g}1
{∑T

t=1∥Zit − θg∥2 ≤
∑T

t=1∥Zit − θg0i
∥2
}
. We will bound Qig(θ). By the fact that Zit =

θ0
g0i

+ Vit, we have

Qig(θ) = 1{g0i ̸= g}1

{
T∑
t=1

K∑
k=1

[
2Vk,it(θk,g0i

− θk,g) + (θ0k,g0i
− θk,g)

2 − (θ0k,g0i
− θk,g0i

)2
]
≤ 0

}

≤ max
g′ ̸=g

1

{
T∑
t=1

K∑
k=1

[
2Vk,it(θk,g′ − θk,g) + (θ0k,g′(γ

0)− θk,g)
2 − (θ0k,g′(γ

0)− θk,g′)
2
]
≤ 0

}
.

Define

AT =

∣∣∣∣∣
T∑
t=1

K∑
k=1

[
2Vk,it(θk,g′ − θk,g) + (θ0k,g′(γ

0)− θk,g)
2 − (θ0k,g′(γ

0)− θk,g′)
2
]

−
T∑
t=1

K∑
k=1

[
2Vk,it(θ

0
k,g′(γ

0)− θ0k,g(γ
0)) + (θ0k,g′(γ

0)− θ0k,g(γ
0))2

]∣∣∣∣∣ .
Rearranging and using the triangular inequality, we find,

AT ≤ |A1T |+ |A2T |+ |A3T |+ |A4T |,

where

A1T = 2

T∑
t=1

K∑
k=1

Vk,it(θk,g′ − θ0k,g′(γ
0)),

A2T = 2
T∑
t=1

K∑
k=1

Vk,it(θ
0
k,g(γ

0)− θk,g),

A3T = T
K∑
k=1

(θ0k,g′(γ
0)− θk,g′)

2,

and

A4T = T

K∑
k=1

[
(θ0k,g′(γ

0)− θk,g)
2 − (θ0k,g′(γ

0)− θ0k,g(γ
0))2

]
= T

K∑
k=1

[
θ2k,g − θ0k,g(γ

0)2 − 2θ0k,g′(γ
0)(θk,g − θ0k,g(γ

0))
]

= T

K∑
k=1

[
θ2k,g − θ0k,g(γ

0)2
]
− 2T

K∑
k=1

[
θ0k,g′(γ

0)(θk,g − θ0k,g(γ
0))
]
.
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For θ ∈ Θη, we find that

AT ≤ TC1
√
η

(
1

T

T∑
t=1

K∑
k=1

V 2
k,it

)1/2

+ TC2η + TC3
√
η,

with C1, C2, C3 being constants independent of η and T which follows from the definition of Θη. We

find

Qig(θ) ≤ max
g′ ̸=g

1

{
T∑
t=1

K∑
k=1

[
2Vk,it(θ

0
k,g′(γ

0)− θ0k,g(γ
0)) + (θ0k,g′(γ

0)− θ0k,g(γ
0))2

]
≤ TC1

√
η

(
1

T

T∑
t=1

K∑
k=1

V 2
k,it

)1/2

+ TC2η + TC3
√
η

 .

The right-hand side does not depend on θ, hence, supθ∈Θη
Qig(θ) ≤ Q̃ig with

Q̃ig ≤ max
g′ ̸=g

1

{
T∑
t=1

K∑
k=1

2Vk,it(θ
0
k,g′(γ

0)− θ0k,g(γ
0))

≤ −T
K∑
k=1

(θ0k,g′(γ
0)− θ0k,g(γ

0))2 + TC1
√
η

(
1

T

T∑
t=1

K∑
k=1

V 2
k,it

)1/2

+ TC2η + TC3
√
η

 .

This gives supθ∈Θη
N−1

∑N
i=1 1{ĝi(Z, θ) ̸= g0i } ≤ N−1

∑N
i=1

∑G
g=1 Q̃ig. Now we have

P(Q̃ig = 1) ≤
∑
g′ ̸=g

P

(
T∑
t=1

K∑
k=1

2Vk,it(θ
0
k,g′(γ

0)− θ0k,g(γ
0))

≤ −T
K∑
k=1

(θ0k,g′(γ
0)− θ0k,g(γ

0))2 + TC1
√
η

(
1

T

T∑
t=1

K∑
k=1

V 2
k,it

)1/2

+ TC2η + TC3
√
η


≤
∑
g′ ̸=g

[
P

(
T∑
t=1

K∑
k=1

2Vk,it(θ
0
k,g′(γ

0)− θ0k,g(γ
0)) ≤ −TCg,g′ + TC1

√
η
√
C + TC2η + TC3

√
η

)

+ P

(
K∑
k=1

(θ0k,g′(γ
0)− θ0k,g(γ

0))2 < Cg,g′

)
+ P

(
1

T

T∑
t=1

K∑
k=1

V 2
k,it > C

)]
.

By Assumption 5, the second term above is null, and by Lemma B.5 of Bonhomme and Manresa

(2015) and under Assumption 6, P
(
T−1

∑T
t=1

∑K
k=1 V

2
k,it > C

)
= o(T−ξ), for all ξ > 0. Furthermore,

by choosing η suitably, we find

P

(
1

T

T∑
t=1

K∑
k=1

2Vk,it(θ
0
k,g′(γ

0)− θ0k,g(γ
0)) ≤ −Cg,g′ + C1

√
η
√
C + C2η + C3

√
η

)

≤ P

(
1

T

T∑
t=1

K∑
k=1

Vk,it(θ
0
k,g′(γ

0)− θ0k,g(γ
0)) ≤ −

Cg,g′

2

)
= o(T−ξ)
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where we obtain the last equality by applying Lemma B.5 of Bonhomme and Manresa (2015) with

zt = Vk,it(θ
0
k,g′(γ

0) − θ0k,g(γ
0)) and z = Cg,g′/2. This in turn implies that N−1

∑N
i=1

∑G
g=1 P(Q̃ig =

1) = o(T−ξ). Finally we note that, for all ξ > 0 and ξ̃ > 0,

P

(
sup
θ∈Θη

1

N

N∑
i=1

1{ĝi(Z, θ) ̸= g0i } > ξ̃T−ξ

)
≤ P

N−1
N∑
i=1

G∑
g=1

Q̃ig > ξ̃T−ξ


≤

E
(
N−1

∑N
i=1

∑G
g=1 Q̃ig

)
ξ̃T−ξ

= o(1),

which ends the proof.

We now prove the last three parts of Lemma 2. For Part (b) we refer to the proof of Bonhomme and

Manresa (2015) which is identical to our case. Part (c) also follows similar lines to the proof of Theorem

2 and Corollary 1 of Bonhomme and Manresa (2015) with a difference that we have in (28). First,

like in the proof of Part (a), let Q∗(θ) = (NT )−1
∑N

i=1

∑T
t=1∥Zit − θĝi∥2, be the concentrated version

of Q̂(θ, γ), and Q†(θ) = (NT )−1
∑N

i=1∥Zit − θg0i
∥2. By choosing η small enough, Lemma A.2 leads to

supθ∈Θη
|Q∗(θ)−Q†(θ)| = op(T

−ξ) for all ξ > 0. Furthermore, by consistency of θ̂NT (γ̂NT ) and θ̂NT (γ
0),

as (T,N) → ∞, Q∗(θ̂NT (γ̂NT ))−Q†(θ̂NT (γ̂NT )) = op(T
−ξ) andQ∗(θ̂NT (γ

0))−Q†(θ̂NT (γ
0)) = op(T

−ξ)

which in turn gives Q†(θ̂NT (γ̂NT ))−Q†(θ̂NT (γ
0)) = op(T

−ξ). Now, as in (27),

Q†(θ̂NT (γ̂NT ))−Q†(θ̂NT (γ
0)) =

1

N

N∑
i=1

∥∥∥θ̂ĝi − θ̂gi

∥∥∥2
=

1

N

N∑
i=1

G∑
g=1

G∑
g′=1

1{ĝi = g}1{gi = g′}
∥∥∥θ̂ĝi − θ̂gi

∥∥∥2
≥

G∑
g=1

1

N

N∑
i=1

1{ĝi = g}1{gi = g′} min
g′∈{1,...,G}

∥∥∥θ̂ĝi − θ̂gi

∥∥∥2
=

G∑
g=1

n̂g
N

min
g′∈{1,...,G}

∥∥∥θ̂ĝi − θ̂gi

∥∥∥2 ,

(28)

where n̂g/N → κ0g ∈ (0, 1) by Assumption 2. We thus obtain θ̂ĝi − θ̂gi = op(T
−ξ) which ends the proof

of Part (c). Part (d) then follows from the consistency of the estimator and Assumption 3.

A.3. Proof of Lemma 3

Let γ ∈ ΓN,G, G ≥ 2, and νg the associated NT × 1 vector. For convenience, we remind that,

νg = (ν ′g,1, . . . , ν
′
g,N )′, νg,i = ιT δg,i, ιT being a T -vector of ones, δg,i = 1{gi = 1}/n1 − 1{gi = g}/ng.

34



As in the main text, we also have Πg = INT − νgν
′
g/∥νg∥2. Following lemmas will be referred to in the

proof of our result.

Lemma A.3. Suppose that Assumption 1 holds. Then as B → ∞ as (T,N) → ∞ such that B/T → 0,

N 1−ϵΩ̂NT (γ)N 1−ϵ − Ω(γ) = op(1).

Proof. Let ΩNT (γ) = V[T−1/2
∑T

t=1 V̄N,t(γ)]. We have, ΩNT (γ) = T−1
∑T

t,s=1 E[V̄N,t(γ)V̄
′
N,s(γ)]. Un-

der the assumptions and standard arguments N 1−ϵΩNT (γ)N 1−ϵ − Ω(γ) = op(1) as (T,N) → ∞.

Following Sun (2013), we have Ω̂NT (γ)− ΩNT (γ) = op(1) from which the desired result follows.

Lemma A.4. Suppose that Assumption 1, and H1,g
0 : limN→∞ θ01,n1

(γ) = limN→∞ θ0g(γ) hold. Then,

Dg,NT (Hi,t−τ , γ)
d−→ χK for all g ∈ {2, . . . , G}, as B → ∞, (T,N) → ∞ such that B/T → 0.

Proof. We write

D2
g,NT (Hi,t−τ ) = T [θ̂1,n1,T (γ)− θ̂g,ng ,T (γ)]

′σ̂−1
1,g,NT (γ)[θ̂1,n1,T (γ)− θ̂g,ng ,T (γ)],

which is a standard Wald-type statistic for the test of the difference of the two cluster centers.

Therefore, for the result to hold, it suffices to show that D2
g,NT (Hi,t−τ )

d−→ χ2
K under the assump-

tions. Let R1,g be the 2K × GK selection matrix with its first and gth columns being (ι′K , 0
′
K)′ and

(0′K ,−ι′K)′, respectively, and zeros otherwise, where 0K is a K-vector of zeros. Using Lemma 1, we

find Σ(γ)−1/2T 1/2R1,gN 1−ϵ[θ̂NT (γ) − θ0(γ)]
d−→ N(0, IK) where Σ(γ) = R1,gΩ(γ)R

′
1,g. Under H1,g

0 ,

this in turn gives that

T [n1−ϵ
1 θ̂1,n1,T (γ)− n1−ϵ

g θ̂g,ng ,T (γ)]
′σ−1

1,g(γ)[n
1−ϵ
1 θ̂1,n1,T (γ)− n1−ϵ

g θ̂g,ng ,T (γ)]
d−→ χ2

K ,

where σ21,g(γ) = ω1,1(γ)+ωg,g(γ)−2ω1,g(γ) with ωg,g′(γ) begin the {g, g′}th K×K block of Ω(γ). But

by Lemma A.3, we have (ngng′)
1−ϵω̂g,g′,NT (γ)− ωg,g′(γ) = op(1) from which the result follows.

Lemma A.5. Suppose that Assumptions 1-3, and H1,g
0 : limN→∞ θ01,n1

(γ) = limN→∞ θ0g(γ) hold.

Then, as (T,N) → ∞, ΠgZ, Dg,NT (Ht−τ , γ) and dir(σ̂
−1/2
1,g,NT (γ)Z

′νg) are asymptotically pairwise

independent.

Proof. Notice first that we can write Dg,NT (Ht−τ , γ) = ∥
√
T σ̂

−1/2
1,g,NT (γ)Z

′νg∥ and under Assumptions

1-3
√
T σ̂

−1/2
1,g,NT (γ)Z

′νg
d−→ N(0, ∥νg∥2IK) if H1,g

0 holds, by Lemma 1. It follows that Dg,NT (Ht−τ , γ)

is asymptotically independent of dir(σ̂
−1/2
1,g,NT (γ)Z

′νg) as the length and the direction of a standard

normal random vector are independent of each other.
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To show that Dg,NT (Ht−τ , γ) is asymptotically independent of ΠgZ, we first note that Πgνg = 0.

This implies by the properties of the matrix normal distribution that Z ′νg is independent of ΠgZ from

which the desired result follow immediately.

Our proof of Lemma 3 follows lines similar to the proof of Theorem 1 of Gao et al. (2024) and

Proposition 1 of Chen and Witten (2023). We first write

Z = ΠgZ + (INT −Πg)Z = ΠgZ +
νgν

′
gZσ̂

−1/2
1,g,NT (γ)σ̂

1/2
1,g,NT (γ)

∥νg∥2

= ΠgZ +
∥σ̂−1/2

1,g,NT (γ)Z
′νg∥

∥νg∥2
νg[dir(σ̂

−1/2
1,g,NT (γ)Z

′νg)]
′σ̂

1/2
1,g,NT (γ)

= ΠgZ +Dg,NT (Ht−τ , γ)
νg√

T∥νg∥2
[dir(σ̂

−1/2
1,g,NT (γ)Z

′νg)]
′σ̂

1/2
1,g,NT (γ).

(29)

By replacing this equation into (12), we find

pg,∞(dg,NT (Hi,t−τ , γ))

= lim
(T,N)→∞

PH0

[
Dg,NT (Hi,t−τ , γ) ≥ dg,NT (Hi,t−τ , γ)

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i

(
ΠgZ +Dg,NT (Ht−τ , γ)

νg√
T∥νg∥2

[dir(σ̂
−1/2
1,g,NT (γ)Z

′νg)]
′σ̂

1/2
1,g,NT (γ)

)
= g

(m)
i (z)

}
,

ΠgZ = Πgz, dir(σ̂
1/2
1,g,NT (γ)Z

′νg) = dir(σ̂
1/2
1,g,NT (γ)z

′νg)

]

= lim
(T,N)→∞

PH0

[
Dg,NT (Hi,t−τ , γ) ≥ dg,NT (Hi,t−τ , γ)

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i

(
Πgz +Dg,NT (Ht−τ , γ)

νg√
T∥νg∥2

[dir(σ̂
−1/2
1,g,NT (γ)z

′νg)]
′σ̂

1/2
1,g,NT (γ)

)
= g

(m)
i (z)

}
,

ΠgZ = Πgz,dir(σ̂
1/2
1,g,NT (γ)Z

′νg) = dir(σ̂
1/2
1,g,NT (γ)z

′νg)

]
,

where we used the two conditions ΠgZ = Πgz and dir(σ̂
−1/2
1,g,NT (γ)Z

′νg) = dir(σ̂
−1/2
1,g,NT (γ)z

′νg) to obtain

the second equality. By Lemma A.5, this implies

pg,∞(dg,NT (Hi,t−τ , γ))

= lim
(T,N)→∞

PH0

[
Dg,NT (Hi,t−τ , γ) ≥ dg,NT (Hi,t−τ , γ)

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i

(
Πgz +Dg,NT (Ht−τ , γ)

νg√
T∥νg∥2

[dir(σ̂
−1/2
1,g,NT (γ)z

′νg)]
′σ̂

1/2
1,g,NT (γ)

)
= g

(m)
i (z)

}]
.
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Next, by plugging in the definition of Πg into the first term of (29), we have,

z(ϕ) := z − ∥z′νg∥
∥νg∥2

νg[dir(z
′νg)]

′ +Dg,NT (Hi,t−τ , γ)
νg√

T∥νg∥2
[dir(σ̂

−1/2
1,g,NT (γ)z

′νg)]
′σ̂

1/2
1,g,NT (γ)

= z − ∥z′νg∥
∥νg∥2

νg[dir(z
′νg)]

′ +Dg,NT (Hi,t−τ , γ)
νg√

T∥νg∥2
∥z′νg∥

∥σ̂−1/2
1,g,NT (γ)z

′νg∥
[dir(z′νg)]

′

= z − ∥z′νg∥
∥νg∥2

νg[dir(z
′νg)]

′ + ϕ
νg√

T∥νg∥2
∥z′νg∥

∥σ̂−1/2
1,g,NT (γ)z

′νg∥
[dir(z′νg)]

′.

(30)

with ϕ ∼ χK which follows from Lemma A.4 under H0. This in turn gives

pg,∞(dg,NT (Hi,t−τ , γ)) = PH0

[
ϕ ≥ dg,NT (Hi,t−1, γ)

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i (z(ϕ)) = g

(m)
i (z)

}]
,

which shows that pg,∞(dg,NT (Hi,t−1, γ)) can be calculated as the survival function of a χK variable

truncated to the set S =
{
ϕ ∈ R :

⋂M
m=0

⋂N
i=1 g

(m)
i (z(ϕ)) = g

(m)
i (z)

}
, that is, pg,NT (dg,NT (Hi,t−τ )) =

1− FχK [dg,NT (Hi,t−τ );S]. This completes the proof.

A.4. Proof of Proposition 1

Lemma A.6. Suppose that Assumptions 1-5, and H1,g
1 : limN→∞ θ01,n1

(γ0) ̸= limN→∞ θ0g,ng
(γ0) hold.

Then, Dg,NT (Hi,t−τ ) diverges as B → ∞, (T,N) → ∞ such that B/T → 0.

Proof. We first write

T−1/2Dg,NT (Hi,t−τ ) =
∥∥∥σ̂−1/2

1,g,NT (γ̂NT )[θ̂1,n̂1,T (γ̂NT )− θ̂g,n̂g ,T (γ̂NT )]
∥∥∥

p−→
∥∥∥σ−1/2

1,g (γ0)[θ01,n1
(γ0)− θ0g,ng

(γ0)]
∥∥∥ > 0,

by Lemma 1(a), Lemma 2 and Assumption 3 from which σ1,g is positive definite. Then the result

follows from the fact that under H1,g
1 , ∥θ01,n1

(γ0)− θ0g,ng
(γ0)∥ > 0.

To prove the first part of the proposition, we write

lim sup
(T,N)→∞

P

[
pg,NT (Dg,NT (Hi,t−τ , γ)) ≤ α

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i

(
ΠgZ +Dg,NT (Ht−τ , γ)

νg√
T∥νg∥2

{dir(σ̂−1/2
1,g,NT (γ)Z

′νg)}′σ̂−1/2
1,g,NT (γ)

)
= g

(m)
i (z)

}
,

ΠgZ = Πgz, dir
(
σ̂
−1/2
1,g,NT (γ)Z

′νg

)
= dir

(
σ̂
−1/2
1,g,NT (γ)z

′νg

)]

= lim sup
(T,N)→∞

P

[
pg,NT (Dg,NT (Hi,t−τ , γ)) ≤ α

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i (z[Dg,NT (Hi,t−τ , γ)]) = g

(m)
i (z)

}]
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= lim sup
(T,N)→∞

P

[
1− FχK [Dg,NT (Hi,t−τ , γ);S] ≤ α

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i (z[Dg,NT (Hi,t−τ , γ)]) = g

(m)
i (z)

}]
,

which follows similar lines to the ones above and the definition of FχK [Dg,NT (Hi,t−τ , γ);S] as the

cumulative distribution function of a χK variate truncated to the set S. It remains to show that

lim sup
(T,N)→∞

P

[
1− FχK [Dg,NT (Hi,t−τ , γ);S] ≤ α

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i (z[Dg,NT (Hi,t−τ , γ)]) = g

(m)
i (z)

}]
= α.

To show this, we note that, under H0, the conditional distribution function of Dg,NT (Hi,t−τ , γ) given⋂M
m=0

⋂N
i=1

{
g
(m)
i (z[Dg,NT (Hi,t−τ , γ)]) = g

(m)
i (z)

}
is FχK (·,S).

lim sup
(T,N)→∞

P

[
pg,NT (Dg,NT (Hi,t−τ , γ)) ≤ α

∣∣∣∣∣
N⋂
i=1

{
g
(M)
i (Z) = g

(M)
i (z)

}]

= lim
(T,N)→∞

E

[
1 {pg,NT (Dg,NT (Hi,t−τ , γ)) ≤ α}

∣∣∣∣∣
N⋂
i=1

{
g
(M)
i (Z) = g

(M)
i (z)

}]

= lim
(T,N)→∞

E

[
E

(
1 {pg,NT (Dg,NT (Hi,t−τ , γ)) ≤ α}

∣∣∣∣∣
M⋂

m=0

N⋂
i=1

{
g
(m)
i (Z) = g

(m)
i (z)

}
,ΠgZ = Πgz,

dir
(
σ̂
1/2
1,g,NT (γ)Z

′νg

)
= dir

(
σ̂
1/2
1,g,NT (γ)z

′νg

)) ∣∣∣∣∣
N⋂
i=1

{
g
(M)
i (Z) = g

(M)
i (z)

}]

= lim
(T,N)→∞

E

[
α

∣∣∣∣∣
N⋂
i=1

{
g
(M)
i (Z) = g

(M)
i (z)

}]
= α,

which concludes the proof of Part (a).

Part (b) follows directly from Lemma A.6 which implies that Dg,NT (Hi,t−τ ) → ∞ under the

alternative hypothesis, hence, for any α ∈ (0, 1)

lim
(T,N)→∞

P[pg,NT (Dg,NT (Hi,t−τ )) ≤ α] = 1,

and noting that under Lemma (d)(b), the conditioning event holds with probability 1.

A.5. Proof of Theorem 1

Lemma A.7. Let PNT = (P1,NT , . . . , Pn,NT )
′ a random n-vector such that PNT

d−→ P as (T,N) →

∞ where P is an n-vector of p-values. Let h(x1, . . . , xn) = 1
n

(∑n
i=1 x

−r
i

)1/r
, r ∈ (1,∞). Then

h(PNT )
d−→ h(P ).

Proof. This follows from the Continuous Mapping Theorem by the fact that h( · ) is continuous.
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Lemma A.8. Let PNT = (P1,NT , . . . , Pn,NT )
′ a random n-vector such that PNT

d−→ P as (T,N) → ∞

where P is an n-vector of p-values. Let Cα = {(p1, . . . , pn) ∈ [0, 1]n : f(p1, . . . , pn) ≤ α}, for all α ∈

(0, 1), with f(p1, . . . , pn) = min
[

r
r−1n

(∑n
i=1 p

−r
i

)−1/r
, 1
]
, r ∈ (1,∞). Then lim(T,N)→∞ P(PNT ∈

Cα) ≤ P(P ∈ Cα).

Proof. This follows from the Portmanteau Theorem by the fact that the sets Cα are closed (see, Section

3.4 of Gasparin et al., 2024).

From Theorem 1 of SU, we have

P


 1

G− 1

G∑
g=2

P−r
g

−1/r

≤ α(G− 1)(1−r)/r r − 1

r

 ≤ α,

where, the random variables Pg are defined by pg,NT (Dg,NT (Hi,t−τ ))
d−→ Pg ∼ U [0, 1] as (T,N) → ∞

for all g ∈ {2, . . . , G} which holds by Proposition 1(a). For part (a), as in the proof of Proposition 2

of SU, we write the above inequality as

P

 r

r − 1
(G− 1)

 G∑
g=2

P−r
g

−1/r

≤ α

 = P
(

r

r − 1

1

W homo(Hi,t−τ )
≤ α

)
≤ α,

where, W homo(Hi,t−τ ) is defined by W homo
NT (Hi,t−τ )

d−→ W homo(Hi,t−τ ) as (T,N) → ∞. Now, by

applying Lemma A.8, we find

lim
(T,N)→∞

P
(

r

r − 1

1

W homo
NT

≤ α

)
= P

(
r

r − 1

1

W homo(Hi,t−τ )
≤ α

)
≤ α,

which ends the proof of part (a).

Part (b) now follows from Proposition 1(a) under which at least for one g ∈ {1, . . . , G} the p-value

satisfies pg,NT (Dg,NT (Hi,t−τ )) → 1.

A.6. Proof of Proposition 2

Part (a) follows directly from Theorem 3.1 of Sun (2013) under our Assumptions 1 and 3 by setting

γ = (1, . . . , 1)′. Part (b) follows from Section 4.1 of Sun (2011) under the same assumptions.

A.7. Proof of Theorem 2

Part (a) follows the same lines as the proof of Theorem 1 and noting that the p-value associated

to the O-EPA test statistic is asymptotically uniform by Proposition 2. Similarly, Part (b) follows
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from the fact that under the alternative hypothesis, either at least for one g ∈ {1, . . . , G} the p-value

satisfies pg,NT (Dg,NT (Hi,t−τ )) → 1 and the conditioning event holds with probability 1 by Lemma

2(b), or the O-EPA test statistic diverges.

A.8. Proof of Theorem 3

The proof begins algebraically similar to the proof of Lemma 1 except that we will establish a CLT

conditional on GR = σ({Zit}Ni=1, t ∈ R). First, we will show that each K × 1 sub-vector of θ̂NP (γ̂NR)

satisfies θ̂g,n̂g ,P (γ̂NR) = θ0g,ng
(γ̂NR) + op(1). We have,

E(θ̂g,n̂g ,P (γ̂NR)− θ0g,ng
(γ̂NR) | GR)

= E

(
1

n̂gP

N∑
i=1

T∑
t=S+1

Vit{ĝi,NR = g}

∣∣∣∣∣ GR

)

=
1

n̂gP

N∑
i=1

T∑
t=S+1

E(Vit | GR){ĝi,NR = g}

= 0,

(31)

by Assumption 7. For the variance, we find,∥∥∥E [(θ̂g,n̂g ,P (γ̂NR) − θ0g,ng
(γ̂NR)(θ̂g,n̂g ,P (γ̂NR)− θ0g,ng

(γ̂NR)
′
∣∣∣ GR

]∥∥∥
=

∥∥∥∥∥∥E
 1

(n̂gP )2

N∑
i,j=1

T∑
t,s=S+1

VitV
′
js1{ĝi,NR = g}1{ĝj,NR = g}

∣∣∣∣∣∣ GR

∥∥∥∥∥∥
≤ 1

n̂2gP

N∑
i,j=1

∥∥∥∥∥∥ 1P
T∑

t,s=S+1

E
(
VitV

′
js

∣∣ GR
)∥∥∥∥∥∥1{ĝi,NR = g}1{ĝj,NR = g}

≤ 1

n̂2gP

N∑
i,j=1

∥∥∥∥∥∥ 1P
T∑

t,s=S+1

E
(
VitV

′
js

∣∣ GR
)∥∥∥∥∥∥ = Op

(
1

κ2gP

)
,

(32)

by Assumptions 1 and 2 from which it follows that θ̂g,n̂g ,P (γ̂NR) = θ0g,ng
(γ̂NR) + op(1). Now, by

Assumption 3, conditional on GR and under H0, as P,R→ ∞, (T,N) → ∞ we have

ΩNP (γ̂NR)
−1/2N̂ 1−ϵP 1/2(θ̂g,n̂g ,P (γ̂NR)− θ0g,ng

(γ̂NR))

= ΩNP (γ̂NR)
−1/2N̂ 1−ϵP−1/2

T∑
t=S+1

V̄N,t(γ̂NR)
d−→ N(0, IK),

with ΩNP (γ̂NR) = P−1
∑T

t,s=S+1 N̂ 1−ϵE[V̄N,t(γ̂NR)V̄
′
N,s(γ̂NR)]N̂ 1−ϵ where N̂ = diag(n̂1, . . . , n̂G)⊗IK .

Part (a) then follows from Theorem 1 of Sun (2013) noting that N 1−ϵΩ̂NP (γ̂NR)N 1−ϵ − Ω(γ̂NR) =
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op(1), conditional on GR.

For Part (b), we first write

θ̂NP (γ̂NR)− θ0(γ0) = [θ̂NP (γ̂NR)− θ̂NR(γ̂NR)] + [θ̂NR(γ̂NR)− θ0(γ0)]

= [θ̂NP (γ̂NR)− θ̂NR(γ̂NR)] + op(1),

as (R,N)
p−→ ∞, which follows from Lemma 2(a). We will show that the first term is also op(1). To

see this we focus on the K × 1 sub-vectors of the term:

θ̂g,n̂g ,P (γ̂NR)− θ̂g,n̂g ,R(γ̂NR) =
1

n̂gP

N∑
i=1

T∑
t=S+1

Zit1{ĝi,NR = g} − 1

n̂gR

N∑
i=1

R∑
t=1

Zit1{ĝi,NR = g}

=
1

n̂gP

N∑
i=1

T∑
t=S+1

Vit1{ĝi,NR = g} − 1

n̂gR

N∑
i=1

R∑
t=1

Vit1{ĝi,NR = g}

=
1

P

T∑
t=S+1

V̄g,n̂g ,t −
1

R

R∑
t=1

V̄g,n̂g ,t

= Op

(
κϵ−1
g

N1−ϵ
√
P

)
+Op

(
κϵ−1
g

N1−ϵ
√
R

)
= op(1).

This in turn gives that

θ̂′NP (γ̂NR)N ϵ−1Ω̂−1
NP (γ̂NR)N ϵ−1θ̂NP (γ̂NR)

p−→ θ0′(γ0)Ω−1(γ0)θ0(γ0) > 0,

by Assumptions 3 and 4 from which it follows that Ω̂NP (γ̂NR) → ∞ which completes the proof.

B. Calculation of the Truncation Set S

We start by writing the truncation set S as follows:

S =

{
ϕ ∈ R :

N⋂
i=1

g
(0)
i (z(ϕ)) = g

(0)
i (z)

}⋂{
ϕ ∈ R :

M⋂
m=1

N⋂
i=1

g
(m)
i (z(ϕ)) = g

(m)
i (z)

}
.

As stated by Chen and Witten (2023), according to Step 2 of Algorithm 1, the equality in the first

term holds if and only if the initial cluster center which is closest to zit in total over t, coincides with

the initial cluster center which is closest to [z(ϕ)]it in total over t, for all i = 1, . . . , N . This is similar

for the equality in second term except that the cluster centers are determined by the assignments of

the previous step in the iteration. Proposition 2 of Chen and Witten (2023) can then be generalized
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as follows:

S =

 N⋂
i=1

G⋂
g=1

{
ϕ :

T∑
t=1

∥∥∥∥[z(ϕ)]it − θ
(0)

g
(0)
i (z)

[z(ϕ)]

∥∥∥∥2 ≤ T∑
t=1

∥∥∥[z(ϕ)]it − θ(0)g [z(ϕ)]
∥∥∥2}

⋂
 M⋂

m=1

N⋂
i=1

G⋂
g=1

ϕ :
T∑
t=1

∥∥∥∥∥∥[z(ϕ)]it − 1

T

T∑
t=1

N∑
j=1

w
(m−1)
j

(
g
(m)
i (z)

)
[z(ϕ)]jt

∥∥∥∥∥∥
2

≤
T∑
t=1

∥∥∥∥∥∥[z(ϕ)]it − 1

T

T∑
t=1

N∑
j=1

w
(m−1)
j (g)[z(ϕ)]jt

∥∥∥∥∥∥
2
 ,

(33)

where w
(m)
i (g) = 1

{
g
(m)
i (z) = g

}
/
∑N

j=1 1
{
g
(m)
j (z) = g

}
. By (30), we see that,

[z(ϕ)]it = zit − δ̂i
∥z′νg∥
∥νg∥2

dir(z′νg) +

 ∥z′νg∥
∥σ̂−1/2

1,g,NT (γ)z
′νg∥

δ̂i√
T∥νg∥2

ϕ

 dir(z′νg). (34)

Straightforward calculations which are similar to the proofs of Lemmas 14 and 15 of Chen and Witten

(2023) give ∥∥∥∥∥[z(ϕ)]it − 1

T

T∑
t=1

[z(ϕ)]jt

∥∥∥∥∥
2

= aijϕ
2 + bijtϕ+ cijt,

where

aij =

 ∥z′νg∥
∥σ̂−1/2

1,g,NT (γ)z
′νg∥

2(
δ̂i − δ̂j√
T∥νg∥2

)2

,

bijt = 2

 ∥z′νg∥
∥σ̂−1/2

1,g,NT (γ)z
′νg∥

( δ̂i − δ̂j√
T∥νg∥2

⟨zit − z̄j,T , dir(z
′νg)⟩ −

(δ̂i − δ̂j)
2

√
T∥νg∥4

∥z′νg∥

)
,

cijt =

∥∥∥∥zit − z̄j,T − (δ̂i − δ̂j)
z′νg
∥νg∥2

∥∥∥∥2 ,
and ∥∥∥∥∥∥[z(ϕ)]it − 1

T

T∑
t=1

N∑
j=1

w
(m−1)
j (g)[z(ϕ)]jt

∥∥∥∥∥∥
2

= ãijϕ
2 + b̃ijtϕ+ c̃ijt,
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where

ãij =

 ∥z′νg∥
∥σ̂−1/2

1,g,NT (γ)z
′νg∥

2(
δ̂i −

∑N
j=1w

(m−1)
j (g)δ̂j√

T∥νg∥2

)2

,

b̃ijt = 2

 ∥z′νg∥
∥σ̂−1/2

1,g,NT (γ)z
′νg∥


×

 δ̂i −
∑N

j=1w
(m−1)
j (g)δ̂j√

T∥νg∥2

〈
zit −

1

T

T∑
t=1

N∑
j=1

w
(m−1)
j (g)zjt, dir(z

′νg)

〉

−
(δ̂i −

∑N
j=1w

(m−1)
j (g)δ̂j)

2

√
T∥νg∥4

∥z′νg∥

}
,

c̃ijt =

∥∥∥∥∥∥zit − 1

T

T∑
t=1

N∑
j=1

w
(m−1)
j (g)zjt −

δ̂i − N∑
j=1

w
(m−1)
j (g)δ̂j

 z′νg
∥νg∥2

∥∥∥∥∥∥
2

.

These in turn show that the truncation set S can be analytically calculated as the inequalities defined

in the two components of (33) are all quadratic in ϕ.

C. Additional Results

C.1. Consequences of naive testing

To illustrate the consequences of C-EPA inference following kmeans, we generate 2000 samples from

the following DGP: ∆Lit = λiFt−1 + Uit where Uit ∼ iidN(0, 1), Ft ∼ iidN(0, 1), λi ∼ iidN(0, 0.2)

with N = 50, T = 20. We then calculate pNT (WNT (1, γ)) for each 2000 samples, that is, the p-values

associated with the unconditional C-EPA test statistic based on predetermined clusters. For this test,

we assume G = 2 is predetermined and we set gi = 1 for i = 1, . . . , 25 and gi = 2 for i = 26, . . . , 50.

In addition, we compute the naive p-values pNT (WNT (1, γ̂NT )) with G = 2. The histograms of these

p-values are given in Figure 2.

The results show that the p-value of the test (4) is approximately uniform under the null of C-

EPA whereas the test statistic using the kmeans estimates is extremely anti-conservative. Hence, the

consequences of double dipping to test the homogeneity of the cluster means are equally present in

the case of C-EPA testing post-clustering.
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Figure 2: Histograms of the p-values pNT (WNT (1, γ)) and pNT (WNT (1, γ̂NT ))
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C.2. Details on Monte Carlo simulations and the empirical illustration

Table 5: Performance of the kmeans Estimator and the Proposed Information Criterion–G0 = 2

T d DGP Rec. Rand. Ind. ĜNT T d DGP Rec. Rand. Ind. ĜNT

Unconditional Tests (Hi,t−1 = 1) Conditional Tests (Hi,t−1 = F1,t−1)

Main Results

20 0.125 1 0.00 0.59 2.00 20 0.125 1 0.00 0.62 2.00
50 0.125 1 0.00 0.68 2.01 50 0.125 1 0.00 0.78 2.00
100 0.125 1 0.00 0.79 2.02 100 0.125 1 0.13 0.91 2.00
200 0.125 1 0.10 0.91 2.05 200 0.125 1 0.62 0.98 2.00

20 0.25 1 0.00 0.75 2.10 20 0.25 1 0.06 0.85 2.02
50 0.25 1 0.09 0.91 2.15 50 0.25 1 0.61 0.98 2.00
100 0.25 1 0.64 0.98 2.11 100 0.25 1 0.97 1.00 2.00
200 0.25 1 0.97 1.00 2.05 200 0.25 1 1.00 1.00 2.00

20 0.375 1 0.06 0.89 2.27 20 0.375 1 0.48 0.96 2.00
50 0.375 1 0.74 0.99 2.14 50 0.375 1 0.97 1.00 2.00
100 0.375 1 0.99 1.00 2.06 100 0.375 1 1.00 1.00 2.00
200 0.375 1 1.00 1.00 2.03 200 0.375 1 1.00 1.00 2.00

20 0.5 1 0.42 0.96 2.31 20 0.5 1 0.86 0.99 2.00
50 0.5 1 0.98 1.00 2.12 50 0.5 1 1.00 1.00 2.00
100 0.5 1 1.00 1.00 2.05 100 0.5 1 1.00 1.00 2.00
200 0.5 1 1.00 1.00 2.04 200 0.5 1 1.00 1.00 2.00

Alternative DGPs

50 0.25 2 0.13 0.92 2.24 50 0.25 2 0.66 0.98 2.00
100 0.25 2 0.71 0.99 2.12 100 0.25 2 0.98 1.00 2.00
50 0.25 3 0.11 0.91 2.13 50 0.25 3 0.61 0.98 2.00
100 0.25 3 0.65 0.98 2.09 100 0.25 3 0.97 1.00 2.00
50 0.25 4 0.00 0.79 2.86 50 0.25 4 0.23 0.93 2.05
100 0.25 4 0.08 0.90 2.94 100 0.25 4 0.79 0.99 2.02
50 0.25 5 0.00 0.78 2.70 50 0.25 5 0.20 0.92 2.02
100 0.25 5 0.07 0.90 2.80 100 0.25 5 0.76 0.99 2.01
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Table 8: Estimated Exchange Rate Clusters–Conditional Test, Full Sample (AR1 vs. RW)

g = 1 g = 2 g = 3 g = 4 g = 5

θ̂1,n̂1,T = (−0.12, 0.01)′ θ̂2,n̂2,T = (−0.3, 0.21)′ θ̂3,n̂3,T = (−0.32, 0.3)′ θ̂4,n̂4,T = (−0.2, 0.08)′ θ̂5,n̂5,T = (−0.36, 0.32)′

EUR/AUD GBP/HKD USD/HRK EUR/RUB EUR/BRL GBP/RUB GBP/CHF
EUR/CAD GBP/ILS USD/HUF EUR/TRY USD/BRL GBP/TRY
EUR/CHF GBP/INR USD/IDR USD/ARS GBP/ZAR
EUR/CNY GBP/JPY USD/ILS USD/RUB
EUR/HKD GBP/KRW USD/INR USD/TRY
EUR/IDR GBP/MYR USD/ISK
EUR/ILS GBP/NOK USD/JPY
EUR/INR GBP/NZD USD/KRW
EUR/JPY GBP/SEK USD/LKR
EUR/KRW GBP/SGD USD/MKD
EUR/MXN GBP/THB USD/MXN
EUR/MYR GBP/TWD USD/MYR
EUR/NOK GBP/USD USD/NOK
EUR/NZD USD/ALL USD/NZD
EUR/PHP USD/AUD USD/PHP
EUR/SEK USD/BAM USD/PLN
EUR/SGD USD/BGN USD/RON
EUR/THB USD/CAD USD/SEK
EUR/USD USD/CHF USD/SGD
EUR/ZAR USD/CNY USD/THB
GBP/AUD USD/COP USD/TWD
GBP/CAD USD/CZK USD/UYU
GBP/CNY USD/DKK USD/ZAR
GBP/DKK USD/DZD
GBP/EUR USD/GBP
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