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1 Introduction

Firm-level productivity (production function) estimation is critical to both positive and

normative research, in inferring the characteristics of firm-level production activities and

identifying the effect of policy/exogenous shocks (Olley and Pakes, 1996; Levinsohn and

Petrin, 2003; Ackerberg, Caves and Frazer, 2015; Wooldridge, 2009). Equally important, a

large literature has documented/analyzed how firms interact with each other via the supplier-

customer linkages, factor markets, and knowledge spillovers (e.g., Demir, Fieler, Xu and

Yang, 2024; Miyauchi, 2023; Alfaro-Ureña, Manelici and Vasquez, 2022; Ellison, Glaeser and

Kerr, 2010; Helsley and Strange, 1990; Diamond and Simon, 1990; Helsley and Strange, 2002;

Jaffe, Trajtenberg and Henderson, 1993; Audretsch and Feldman, 1996; Matray, 2021).

Previous literature on estimating firm-level production functions typically ignores poten-

tial spatial dependence across firms. The firm-level production activities are often taken to

be independent in estimations, before the estimated productivities are used to analyze po-

tential determinants of firm productivity (e.g., a firm’s exposure to foreign direct investment

or imports at the sector level, or supplying to multinational corporations at the firm level).

The recent work by Iyoha (2023) highlights the need to estimate firm productivities simul-

taneously taking into account the presence of productivity spillovers. Her work, however,

models the interdependence across firms “in reduced form” in terms of their productivities.

This leads to a rather difficult setup for estimations, and prevents her from formulating the

asymptotic properties (and variance-covariance) of the estimator. As a result, inferences

have to be made based on bootstrap methods.

In this paper, we propose methodologies that model productivity dependence across firms

structurally, motivated by the mechanisms highlighted by the spatial and firm-to-firm pro-

duction network literatures. In particular, a firm’s productivity is allowed to depend on

related firms’ lagged outputs (e.g., via local supplier-customer linkages), on related firms’

lagged labor inputs (e.g., via shared local labor pools), and on related firms’ current produc-

tivity shocks (e.g., via knowledge spillovers with the boundary defined by the geographical

area and/or by the production network). We propose a three-stage GMM-type estimation

strategy, which draws on the approaches proposed in the productivity estimation literature

(e.g., Wooldridge, 2009; Ackerberg, Caves and Frazer, 2015), and the spatial econometrics

literature (e.g., Kelejian and Prucha, 1998, 1999; Kapoor, Kelejian and Prucha, 2007; Lee

and Yu, 2014; Elhorst, 2014). The resulting three-stage efficient GMM estimator has stan-

dard asymptotic properties, with variance-covariance estimators that take into account the

spatial interactions across firms in each of the three dimensions proposed. The estimation

procedure provides the estimates of the production function parameters (the labor and cap-
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ital elasticities in value-added), the degree of autoregressive correlation in the productivity

process, and the spatial parameters (characterizing the dependence of productivity on re-

lated firms’ lagged outputs and lagged inputs respectively, and the strength of spatial error

correlation of the productivity shocks). Firms’ productivities are unobservable to researchers

and are correlated to firms’ characteristics. Our estimation strategy has both the flavor of

control function approach (see, e.g., Qu, Lee and Yang, 2021, and the productivity estima-

tion literature cited above) and the flavor of correlated random effects method (see, e.g., Li

and Yang, 2021).

We apply the developed methodology and estimation algorithm to the Japanese BSJBSA-

TSR linked dataset for the period 2009–2018. The dataset combines the firm-level financial

statement information from the Basic Survey of Japanese Business Structure and Activities

(BSJBSA), and the firm-to-firm supplier-customer relationship from Tokyo Shoko Research

(TSR). The estimation sample covers 14,178 firms per year (both publicly listed and unlisted

firms in Japan of medium/large sizes, across 200 commuting zones and 18 industries), and

in particular, provides information on each firm’s most important domestic suppliers and

customers (up to 24 connections, respectively). We find significant and positive spatial

coefficients in the Japanese firm-level productivity process via all three proposed channels.

In particular, a 1% increase in the average sales of a firm’s suppliers/customers in the previous

period in the same commuting zone helps improve the firm’s current productivity by 0.005%.

A larger local labor market also enhances a firm’s productivity: specifically, a 1% increase

in the average labor inputs in the previous period by firms located in the same commuting

zone raises a firm’s current productivity by 0.055%. There is also evidence of contemporary

knowledge spillovers among firms located in the same commuting zone (with a positive

and significant spatial error correlation coefficient of 0.68) and/or with supplier-customer

relationships. In sum, the proposed estimator suggests that spatial interactions across firms

play a significant role in determining the Japanese firm-level productivity both statistically

and economically.

In addition to formulating the asymptotic properties of the proposed estimator, we con-

duct Monte Carlo simulations to evaluate the finite sample performance of the estimator.

The Monte Carlo simulations demonstrate that the proposed estimator yields point esti-

mates that are consistent for the true parameters both in the absence and in the presence

of spatial effects. In other words, it returns statistically insignificant coefficient estimates of

the spatial dependence parameters, when the underlying DGPs are free of such structures,

and consistent estimates of the spatial dependence parameters when the underlying DGPs

are characterized with such structures (via the lagged output, the lagged labor input, or the

productivity shock channel). This finding holds for DGPs with varying strengths of spatial
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dependence, and DGPs with positive or negative spatial dependence. The proposed estima-

tion algorithm also generates standard error estimates of the parameters that are consistent

with the Monte Carlo simulated standard deviations, and with a convergence rate (when the

sample size changes) in line with the theory. In contrast, the conventional productivity esti-

mators (which ignore potential spatial interactions across firms) lead to biased estimates of

the production function parameters when the underlying DGPs exhibit spatial dependence

structure (and thus, for which the conventional estimator is misspecified). The extents of

the bias worsen when the underlying DGPs’ spatial dependence strengthens. These findings

imply that analyzing spatial interactions across firms based on the productivities estimated

by the conventional estimators will lead to biased inferences. Instead, the proposed estimator

in this paper offers a framework to simultaneously estimate firm production functions and

spatial interactions across firms in one unified setup.

The rest of the paper is organized as follows. We set up the model in Section 2. In

Section 3, we develop the estimation algorithms and formulate the asymptotic properties

of the proposed estimator. Section 4 introduces the Japanese firm-level and firm-to-firm

datasets. Section 5 conducts Monte Carlo simulations to evaluate the performance of the

proposed estimator in comparison with the conventional estimator. In Section 6, we apply

the proposed methodology empirically to the Japanese dataset, and Section 7 concludes. All

figures referred to in the text are provided in the Online Appendix.

2 Model

Consider the following production function, where a firm’s value-added depends on its pri-

mary factor inputs and productivity:

vait = α0 + αllit + αkkit + ωit + ξit, (1)

where vait and lit denote the log of value-added and labor input of firm i in period t, kit

the log of capital stock of firm i at the beginning of period t, ωit the log of productivity of

firm i in period t, and ξit the value-added shock to firm i in period t. In the conventional

setup, a firm’s productivity ωit is assumed to be dependent on its lagged productivity ωi,t−1

via an unknown function f(·) as in Olley and Pakes (1996), Levinsohn and Petrin (2003),

Ackerberg, Caves and Frazer (2015), andWooldridge (2009). One might also consider a firm’s

current productivity to depend on the lagged characteristics xi,t−1 of the firm (such as its

lagged exporting status, R&D expenditure, and changes in ownership) à la De Loecker (2013),

Doraszelski and Jaumandreu (2013), and Braguinsky, Ohyama, Okazaki and Syverson (2015).
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We generalize the conventional setup of the production function to allow spatial de-

pendence across firms. In particular, a firm i’s current productivity is allowed to depend

on the lagged output yj,t−1 of its related firms j in the set N y
i,t−1, and the lagged inputs

Ωj,t−1 ≡ {lj,t−1, kj,t−1,mj,t−1} of a possibly different set NΩ
i,t−1 of related firms, where mj,t−1

denotes the log of: 1×M vector of intermediate inputs of firm j in period t− 1:

ωit = f(ωi,t−1) + λ
∑

j∈N y
i,t−1

w
y
ij,t−1yj,t−1 +

∑
j∈NΩ

i,t−1

wΩij,t−1Ωj,t−1βΩ̄ + xi,t−1βx + uit, (2)

where yj,t−1 denotes the log of gross output of firm j in period t − 1. Furthermore, the

innovation uit to the productivity of firm i in period t is allowed to be spatially correlated

with those of related firms in the set N u
it contemporarily:

uit = µ
∑
j∈Nu

it

wuij,tujt + vit, i, j = 1, 2, 3, ..., N and t = 2, 3, ..., T. (3)

The weight assigned to each of the related firms in the set N y
i,t−1 is specified by w

y
ij,t−1, and

correspondingly those for firms in NΩ
i,t−1 and N u

it are specified by wΩij,t−1 and wuij,t, respectively.

Note that the set of related firms that a firm’s productivity depends upon can be defined

by supplier-customer relationship, by ownership structure, by physical location, by industry

of sales, or by combinations of them, and can differ across the three channels of spatial

dependence, as the context of the study may deem appropriate.

As in the literature, it is assumed that firms observe their productivities before making

production decisions, but the productivity ωit is unknown to econometricians and is the target

of estimation (along with the production function parameters). This makes the estimation

and inference of the extended production function specified in (1)–(3) challenging. Note

that the modelling and estimation of the productivity process ωit in (1)–(3) will adopt the

control function approach from the productivity estimation literature, and also incorporate

elements of the correlated random effects method (e.g., Li and Yang, 2021), thus bypassing

the need for inclusion of fixed effects.

2.1 Assumptions

We adopt a set of standard assumptions in the productivity estimation literature, and an

additional set of assumptions to accommodate the setup with spatial dependence across firms

as introduced in Equations (1)–(3).

Assumption 1. E(ξit|lit, kit,mit) = 0.
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Assumption 2. E(ξit|ljt, kjt,mjt, lj,t−1, kj,t−1,mj,t−1, . . . , lj1, kj1,mj1) = 0.

Assumption 3. E(uit|kit, lj,t−1, kj,t−1,mj,t−1,xj,t−1, . . . , lj1, kj1,mj1,xj1) = 0.

Assumption 4. The residuals, ξit, are assumed to be i.i.d. across both i and t, and have

finite fourth moments: ξit
iid∼ (0, σ2

ξ ), E|ξ
4+η
it | <∞, for some η > 0.

Assumption 5. The productivity innovations, uit, are spatially correlated as specified in

Equation (3), with residual vit assumed to be i.i.d. across both i and t, and have finite fourth

moments: vit
iid∼ (0, σ2

v), E|v
4+η
it | <∞, for some η > 0.

Assumption 6. The residuals, ξit and vit, are uncorrelated.

Assumption 7. (IN−µWu
t ) are non-singular for t = 1, 2, . . . , T , with µ ∈ (maxt

1
λmin,t

,mint
1

λmax,t
),

where IN is the identity matrix of size N , Wu
t ≡ {wuij,t}, and λmin,t and λmax,t are the smallest

and largest eigenvalues of Wu
t .

Assumption 8. The row and column sums of the matrices, Wy
t−1,W

Ω
t−1,W

u
t and (IN −

µWu
t ) are uniformly bounded in absolute value for t = 2, 3, . . . , T , where Wy

t−1 ≡ {wyij,t−1}
and WΩ

t−1 ≡ {wΩij,t−1}. The elements of the three spatial weight matrices are at most of order

ℏ−1
n such that ℏn/N → 0 as N → ∞.

Assumption 9. The regressor matrix {Ωt, yt−1,Ωt−1,xt−1} has a full column rank, and the

elements are uniformly bounded for t = 2, 3, . . . , T .

Assumption 1 is the standard assumption made in the literature for firm-level productiv-

ity estimations. Assumption 2 requires that the residuals ξit in the value-added equation (1)

are conditionally mean independent of the current and past input usages of the firm it-

self, and also those of the other firms. This is not as stringent an assumption as it might

appear, because the productivity term ωit in Equation (1) has absorbed potential spatial

dependence across firms to the extent modelled by Equation (2). Note that mit and mjt

appear in the conditioning set of the first two assumptions, although only mj,t−1 appears in

the model, because the inference of ωit will utilize the information of mit (as will become

clear in Section 3.2). Assumption 3 basically states that the innovation uit to productivity

is conditionally mean independent of the state variable (capital), as well as the past input

choices and characteristics of the firm itself and the other firms. Together, the first three

assumptions will help identify the set of moment conditions and instruments for estimating

the parameters in Equations (1) and (2). Assumptions 4–6 are made to develop the variance-

covariance estimator of the parameters. In particular, the finite fourth moment condition for

vit is required for the estimation of the spatial parameter µ in Equation (3). Assumptions
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7–9 are adopted from Kelejian and Prucha (1999), Kapoor, Kelejian and Prucha (2007),

and Elhorst (2014) to ensure that the spatial parameter estimates exist. Note that we will

construct the connectivity matrices such that they are row-normalized (with zeros in the

diagonal by construction) and satisfy Assumption 8.

3 Estimation Algorithms

In this section, we propose a three-stage estimation procedure based on Generalized Method

of Moments (GMM) to obtain consistent estimates of the parameters in Equations (1)–(3).

3.1 Moment Conditions

Given Assumptions 1–5, the following conditions hold with respect to the error terms in

Equation (1) and Equation (2):

E(ξt|lt, kt,mt,Ωt−1) = 0, (4)

E(ξt + ut|kt,Ωt−1,W
y
t−1yt−1,W

Ω
t−1Ωt−1,xt−1) = 0, (5)

where ξt ≡ (ξ1t, ..., ξNt)
′ and ut ≡ (u1t, ..., uNt)

′ denote the N × 1 vector of the residual terms

from Equation (1) and Equation (2), respectively, across firms in period t; lt ≡ (l1t, ..., lNt)
′

denotes the N × 1 vector of labor inputs across firms in period t; kt and mt are similarly

defined; Ωt−1 ≡ [lt−1 kt−1 mt−1]; yt−1 ≡ (y1,t−1, ..., yN,t−1)
′ denotes the N × 1 vector of gross

outputs across firms in period t−1; xt−1 is similarly defined. The matrices Wy
t−1 ≡ {wyij,t−1}

and WΩ
t−1 ≡ {wΩij,t−1} are N × N connectivity matrices in period t − 1 that specify the

dependence of firm i’s productivity in period t on related firms j’s lagged outputs and

lagged inputs, respectively. Note that the conditional mean is defined element (firm) wise

in each period t. This set of conditionally mean independent conditions will lead to the

moment conditions specified below in Equation (16).

Furthermore, by Kelejian and Prucha (1999) and Kapoor, Kelejian and Prucha (2007),

the following three moment conditions hold with respect to the error term in Equation (3):

E


1
N
v′tvt

1
N
vt

′Wu
t
′Wu

t vt
1
N
v′tW

u
t vt

 =

 σ2
v

σ2
v

N
tr(Wu

t
′Wu

t )

0

 . (6)

where vt ≡ (v1t, ..., vNt)
′ denotes the N × 1 vector of the residual term from Equation (3)

across firms in period t = 2, 3, . . . , T .
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3.2 Estimation Strategy

3.2.1 Stage 1

This stage basically follows the productivity estimation literature (e.g., Levinsohn and Petrin,

2003; Wooldridge, 2009). The productivity ωit is assumed to be observable to the firm (or

managers of the firm), but not to the econometrician. However, since a firm would in theory

choose the optimal level of intermediate inputmit to maximize profits, given its initial capital

stock kit, labor force lit, and realized productivity level ωit, the econometrician could invert

the relationship to infer a firm’s productivity given its initial capital stock and observed

input choices:

ωit = g(lit, kit,mit), (7)

where g(·, ·, ·) is some unknown general function in the observed input levels. Equation (7),

together with Equation (1), imply the following reduced-form value-added function:

vat = α0ιN + αllt + αkkt + ωt + ξt

= α0ιN + αllt + αkkt + g(lt, kt,mt) + ξt

≡ h(lt, kt,mt) + ξt, (8)

where vat ≡ (va1t, ..., vaNt)
′ denotes the N×1 vector of value-added across firms in period t;

and ιN is a N × 1 vector of one’s. The shorthand g(lt, kt,mt) is a N × 1 column vector

with g(lit, kit,mit) as its i-th entry; similarly, h(lt, kt,mt) is a N × 1 column vector with

h(lit, kit,mit) as its i-th entry, where h(lit, kit,mit) ≡ α0+αllit+αkkit+ g(lit, kit,mit). As in

Ackerberg, Caves and Frazer (2015) and Wooldridge (2009), one could approximate h(·, ·, ·)
in Equation (8) by a n-degree polynomial that contain at least lit, kit and mit. For example,

in the case where mit contains only one type of intermediate input and is hence a scalar,

h(lit, kit,mit) can be approximated by
∑

p,q,r (l
p
itk

q
itm

r
it) δp,q,r, with nonnegative integers p, q

and r such that p+ q + r ≤ n. That is:

h(lit, kit,mit) = α0 + c(lit, kit,mit)δ, (9)

where c(lit, kit,mit) is a 1 × Q vector of functions in (lit, kit,mit) and δ a Q × 1 vector of

parameters. For example, for a 2nd-order polynomial h function (n = 2), c(lit, kit,mit) =

[lit, kit,mit, l
2
it, litkit, litmit, k

2
it, kitmit,m

2
it].

Given the condition (4), Equation (8) given Equation (9) can be estimated using the
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following set of instrument variables (IVs) for period t:

Zt,I = (ιN , ct, ct−1), (10)

where the shorthand ct is a N ×Q matrix with c(lit, kit,mit) as its i-th row entry. Note that

since g(·, ·, ·) is allowed to be a general function (including linearity in the arguments as a

special case), the slope coefficients (αl, αk) on the inputs are not identified from Equation

(8), as highlighted by Ackerberg, Caves and Frazer (2015). However, it enables an estimate

ĥ(lit, kit,mit) of h(lit, kit,mit). In turn, the slope coefficients of the production function can

be identified in a later stage, along with the other parameters, as laid out in the next section.

The set of IVs listed in (10)—and in the condition (4)—includes the input variables only

up to one lag, and hence corresponds to weaker conditions than stated in Assumption 2.

One could potentially enlarge the set and include longer lags of the input variables in the

conditioning set, given Assumption 2.

3.2.2 Stage 2

Next, given the productivity process’s dynamic and spatial dependence structure specified in

Equation (2), and Equation (7), we can also write the value-added function in the following

alternative reduced form:

vat = α0ιN + αllt + αkkt + ωt + ξt

= α0ιN + αllt + αkkt + f[g(lt−1, kt−1,mt−1)]

+λWy
t−1yt−1 +WΩ

t−1Ωt−1βΩ̄ + xt−1βx + ut + ξt, (11)

where the shorthand f[g(lt−1, kt−1,mt−1)] is aN×1 column vector with f [g(li,t−1, ki,t−1,mi,t−1)]

as its i-th entry. Recall that the matrices Wy
t−1 ≡ {wyij,t−1} and WΩ

t−1 ≡ {wΩij,t−1} are N ×N

connectivity matrices in period t − 1 that specify the dependence of firm i’s productivity

in period t on related firms j’s lagged outputs and lagged inputs, respectively. In deriving

Equation (11), we have used Equation (2) to replace ωt and Equation (7) to replace ωi,t−1 in

the f(·) function such that f(ωi,t−1) = f [g(li,t−1, ki,t−1,mi,t−1)]. As suggested by Wooldridge

(2009), one could use a G-th degree polynomial to approximate f(·) such that:

f(ν) = ρ1ν + ρ2ν
2 + . . .+ ρGν

G. (12)

Given the condition in (5), Equation (11) can be estimated using the following set of IVs
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for period t:

Zt,II = (ιN , kt, ct−1,W
y
t−1yt−1,W

Ω
t−1Ωt−1,xt−1), (13)

with one lag (or a longer past history) of the variables. Additional spatio-temporal lags of

explanatory variables, such as (Wy
t−1)

2yt−1, (W
y
t−1)

3yt−1, (W
Ω
t−1)

2Ωt−1 and (WΩ
t−1)

3Ωt−1,

may also be added to the set of IVs to help identify the spatial coefficients.

While Ackerberg, Caves and Frazer (2015) propose to estimate Equations (8) and (11)—

without the spatial structure—sequentially, by plugging in estimates from Equation (8) into

Equation (11), we adopt the approach proposed by Wooldridge (2009) and estimate them

jointly, as it leads to more efficient estimators. In particular, denote the parameters of the

system by θ = (α0, δ
′, αl, αk, λ,β

′
Ω̄
,β′

x, ρ1, ..., ρG)
′. The residuals from Equations (8) and

(11) given the parameters are, respectively:

rt,I(θ) = vat − α0ιN − ctδ, (14)

rt,II(θ) = vat − α0ιN − αllt − αkkt − f[ct−1δ − αllt−1 − αkkt−1]

−λWy
t−1yt−1 −WΩ

t−1Ωt−1βΩ̄ − xt−1βx, (15)

where recall that g(li,t−1, ki,t−1,mi,t−1) = h(li,t−1, ki,t−1,mi,t−1) − α0 − αlli,t−1 − αkki,t−1 =

c(li,t−1, ki,t−1,mi,t−1)δ − αlli,t−1 − αkki,t−1, given Equations (8) and (9). The conditions in

(4) and (5) imply that:

E[Z ′
it rit(θ)] ≡ E

[ (
Z ′
it,I 0

0 Z ′
it,II

) (
rit,I(θ)

rit,II(θ)

) ]
= 0, (16)

where Zit,I , Zit,II , rit,I(θ), and rit,II(θ) are the i-th row entry of Zt,I , Zt,II , rt,I(θ), and

rt,II(θ), respectively. Given Equation (16), we proceed with GMM estimation of θ.

3.2.3 Stage 3

We estimate the spatial error structure in Equation (3) based on the GMM approach of

Kelejian and Prucha (1999) and Kapoor, Kelejian and Prucha (2007). Specifically, given the

parameter estimates θ̂ from the previous stages, we impute estimates of the productivity

innovation term, ût, by taking the difference between (15) and (14), since the residuals from

the second stage is ξ̂t + ut and the residuals from the first stage is ξ̂t:

ût ≡ ctδ̂ − α̂llt − α̂kkt

−f[ct−1δ̂ − α̂llt−1 − α̂kkt−1]

−λ̂Wy
t−1yt−1 −WΩ

t−1Ωt−1β̂Ω̄ − xt−1β̂x, (17)
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and use the moment conditions implied by Equation (6) to estimate µ and σ2
v jointly by

GMM. Note that if we define ut ≡ Wu
t ut, vt ≡ Wu

t vt, and ut = (Wu
t )

2ut, it follows that

vt = ut − µut and vt = ut − µut. By replacing vt in the moment condition (6) with ut − µut

rewrites the three moment conditions in terms of ut and µut. We can follow similar steps as

in Kelejian and Prucha (1999) and Kapoor, Kelejian and Prucha (2007) to derive Equation

(18) below:

1

T − 1

T∑
t=2

γt − Γt

 µ

µ2

σ2
v


 = 0, (18)

where

γt =
1

N

 E(u′tut)

E(u′tut)

E(u′tut)

 , (19)

Γt =
1

N


2E(u′tut) −E(u′tut) N

2E(u
′
tut) −E(u′tut) tr(Wu

t
′Wu

t )

E(u′tut + u′tut) −E(u′tut) 0

 . (20)

Use the estimates of the productivity innovation term from Equation (17), ût, to construct

the sample counterparts of the γt vector and the Γt matrix:1

ςt ≡ 1

N

 ût
′ût

ût
′Wu

t
′Wu

t ût

ût
′Wu

t ût

 , (21)

𭟋𭟋𭟋t ≡ 1

N

 2ût
′Wu

t ût −ût′Wu
t
′Wu

t ût N

2ût
′Wu

t
′Wu

t
′Wu

t ût −ût′Wu
t
′Wu

t
′Wu

tW
u
t ût tr(Wu

t
′Wu

t )

û′tW
u
tW

u
t ût + û′tW

u
t
′Wu

t ût −û′tWu
t
′Wu

tW
u
t ût 0

 ,(22)

and form the sample counterpart of the condition in Equation (18):

1

T − 1

T∑
t=2

ςt −𭟋𭟋𭟋t

 µ

µ2

σ2
v


 ≡ 1

T − 1

T∑
t=2

ϵt, (23)

1The derivations are provided in Section A.1 of the Theoretical Appendix.
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where ϵt is a 3 × 1 vector of residuals. We can then estimate µ and σ2
v by the transformed

moment condition E(ϵt) = 0. Specifically,

ϵt(µ, σ
2
v) =

1

N

 ût
′(IN − 2µWu

t + µ2Wu
t
′Wu

t )ût − σ2
vN

ût
′Wu

t
′(IN − 2µWu

t
′ + µ2Wu

t
′Wu

t )W
u
t ût − σ2

vtr(W
u
t
′Wu

t )

ût
′ (IN − µ(Wu

t +Wu
t
′) + µ2Wu

t
′Wu

t )W
u
t ût

 . (24)

The algorithm above provides a set of estimates consistent for θ, µ and σ2
v . We can

improve the efficiency of the estimators by deriving the weighting matrix for the GMM

estimator, and repeat the procedure until the parameter estimates converge. Section 3.3

characterizes the algorithm to obtain the efficient GMM estimator.

3.3 Efficient GMM Estimator

This section itemizes the steps to implement the proposed estimation strategy and obtain

the efficient GMM estimator of θ and ψ ≡ {µ, σ2
v}.

1. Minimize the objective function:
[

1
N(T−1)

∑N
i=1

∑T
t=2Z ′

itrit(θ)
]′
Wθ

[
1

N(T−1)

∑N
i=1

∑T
t=2Z ′

itrit(θ)
]

with respect to θ by setting Wθ = IM to obtain the one-step estimator θ̂ of θ, where

Wθ of dimension M×M refers to the weighting matrix for the moment conditions

used in the estimation of θ, and M is the combined number of moment conditions

(instruments) from Stage 1 and Stage 2.

2. Given the one-step estimate of θ, obtain the residuals {ût}Tt=2 by Equation (17). This

in turn can be used to obtain an estimator of µ and σ2
v based on Equations (23) and

(24):

argmin
µ,σ2

v

1

T − 1

T∑
t=2

ςt −𭟋𭟋𭟋t

 µ

µ2

σ2




′

Wψ
1

T − 1

T∑
t=2

ςt −𭟋𭟋𭟋t

 µ

µ2

σ2


 , (25)

by setting Wψ = I3 to obtain the one-step estimator of µ and σ2
v , where Wψ of

dimension 3× 3 refers to the weighting matrix for the moment conditions used in the

estimation of ψ, and there are three moment conditions in this case.

3. Derive a variance-covariance estimator V̂θ of the moment conditions used in the esti-
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mation of θ, Vθ = Var

(
1√

N(T−1)

∑N
i=1

∑T
t=2 Z ′

itrit

)
, noting that:2

Vθ =
1

N(T − 1)

N∑
i=1

T∑
t=2

N∑
j=1

T∑
s=2

E[(Z ′
itrit)(Z ′

jsrjs)
′]

=
1

N(T − 1)

N∑
i=1

T∑
t=2

(
Z ′
it,IZit,IE(ξ

2
it) Z ′

it,IZit,IIE(ξ
2
it)

Z ′
it,IIZit,IE(ξ

2
it) Z ′

it,IIZit,IIE(ξ
2
it)

)

+
1

N(T − 1)

T∑
t=2

Z ′
t

(
0N×N 0N×N

0N×N σ2
v [(IN − µWu

t )
−1(IN − µWu

t )
−1′])

)
Z t, (26)

by replacing the residuals ξt with the sample counterpart ξ̂t, and the parameters (µ

and σ2
v) with their estimates obtained from Steps 1–2 above.

4. Repeat Step 1, but update the weighting matrix by Wθ = V̂
−1

θ .

5. To obtain an estimate of the variance-covariance matrix for the moment conditions

used in the estimation of ψ, we extend the framework of Kapoor, Kelejian and Prucha

(2007) to allow for non-normal errors and time-varying connectivity matrices.3 The

variance-covariance matrix for the sample counterpart of the left side of the moment

conditions in Equation (6) is given by:

Vψ =

 Vψ,11 Vψ,12 0

Vψ,21 Vψ,22 Vψ,23

0 Vψ,32 Vψ,33

 , (27)

where Vψ,11 = σ4
v(κv + 2); Vψ,12 = σ4

v

N(T−1)
(κv + 2)tr(Wu′Wu); Vψ,21 = Vψ,12; Vψ,22 =

σ4
v

N(T−1)
[κv diagv(W

u′Wu)′diagv(Wu′Wu) + tr(Wu′Wu(Wu′Wu +WuWu′))]; Vψ,23 =
σ4
v

N(T−1)
tr((Wu′Wu)(Wu+Wu′)); Vψ,32 = Vψ,23; and Vψ,33 =

σ4
v

N(T−1)
tr(Wu(Wu+Wu′)).

κv is the excess kurtosis of vit, and Wu is a N(T − 1) × N(T − 1) block-diagonal

matrix with Wu
2 ,W

u
3 , . . . ,W

u
T on the diagonal; the operator ‘diagv’ takes the diagonal

elements of a matrix and converts them to a column vector.

The excess kurtosis κv can be estimated using the following formula given the estimates

of µ and σ2
v :

κ̂v =

∑N
i=1

∑T
t=2(v̂it −

1
N(T−1)

∑N
i=1

∑T
t=2 v̂it)

4

N(T − 1)σ̂4
v

− 3, (28)

2The derivations of Vθ are provided in Section A.2 of the Theoretical Appendix.
3The derivations of Vψ are provided in Section A.3 of the Theoretical Appendix.
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where v̂it is the i-th element of v̂t = (IN − µ̂Wu
t )ût and σ̂

4
v = (σ̂2

v)
2.

6. Repeat Step 2, this time setting Wψ = V̂
−1

ψ .

7. Repeat Steps 3–6 until convergence in the estimates: θ̂, µ̂, σ̂2
v , V̂θ, and V̂ψ.

8. Obtain a variance-covariance matrix estimator of the parameters θ based on the asymp-

totic property established for the efficient GMM estimator (Lee and Yu, 2014):√
N(T − 1)(θ̂ − θ) ∼ N (0, plimN,T→∞Σθ), (29)

where Σθ = (H′
θV

−1
θ Hθ)

−1 and Hθ = E
[
d
dθ′Z ′

itrit(θ)
]
. The latter is estimated by its

sample counterpart:

Ĥθ =
1

N(T − 1)

N∑
i=1

T∑
t=2

[
d

dθ′Z
′
itrit(θ)

]
θ=θ̂

.

It is easy to show that Σ̂θ −Σθ
p→ 0, where Σ̂θ ≡ (Ĥ

′
θV̂

−1

θ Ĥθ)
−1.

9. Similarly, the variance-covariance matrix Σψ (in the original scale) for the parameters

ψ can be estimated by:

Σ̂ψ =
1

N(T − 1)
(Ĝ ′

ψV̂
−1

ψ Ĝψ)−1, (30)

where

Ĝψ =
1

(T − 1)

T∑
t=2

dϵt(ψ̂)

dψ′

=
1

N(T − 1)

T∑
t=2

 2ût
′(µ̂Wu

t
′ − IN )W

u
t ût −N

2ût
′Wu

t
′(µ̂Wu

t
′Wu

t −Wu
t
′)Wu

t ût −tr(Wu
t
′Wu

t )

ût
′(2µ̂Wu

t
′Wu

t − (Wu
t +Wu

t
′))Wu

t ût 0

 . (31)

4 Data

Our dataset is constructed by combining two Japanese datasets. The first dataset is the Basic

Survey of Japanese Business Structure and Activities (BSJBSA), provided by the Ministry

of Economy, Trade and Industry (METI), Japan. The data include a firm-level annual

survey of detailed business information, such as sales, employment, capital stock, industry

classification (Japan Standard Industry Classification, JSIC) and intermediate purchases.

The data cover both manufacturing and non-manufacturing firms that have: (1) more than 50
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employees, and (2) capital stocks of more than 30 million yens (approximately 250 thousand

USD in 2015).

The second dataset contains information on firm-to-firm relationship provided by Tokyo

Shoko Research (TSR), a major credit reporting company in Japan. It provides a firm’s most

important domestic suppliers and customers (up to 24 connections in each direction) and

covers both publicly listed and unlisted firms in Japan of all sizes and industries. Because

these two datasets do not use the same firm identification codes, we match them on the

basis of firm name, address, phone number, and postal code. Using the BSJBSA as the

denominator (since it provides the required firm-level variables for productivity estimations),

the percentage of firms in BSJBSA that are matched with its counterpart in TSR is very high,

typically at 93%–94%, across years during the sample period 2009–2018. Table 1 provides

the detailed firm counts.

We supplement the BSJBSA-TSR linked dataset with the JIP database 2021 provided by

the Research Institute of Economy, Trade and Industry (RIETI), and with the information

on commuting zones (CZs) constructed by Adachi, Fukai, Kawaguchi and Saito (2021). We

impute the industry-level price deflators based on the JIP database. In particular, it contains

the nominal and real values of outputs, intermediate inputs, investment, value added, and

R&D expenditure for the 100 industries classified by the JIP database. We construct the

deflators by the ratios of the nominal and real values for each of these variables, and merge

them with the BSJBSA data (based on concordance between the BSJBSA JSIC industries

and the JIP industries, provided in the JIP database). There are in total 433 JSIC 3-digit

industries. A JIP industry is matched on average with 4.8 JSIC 3-digit industries. These

deflators are then used to convert the BSJBSA corresponding variables into real terms.

We also impute the average work hours per person in a year in an industry based on the

JIP database and merge the variable with the BSJBSA data (using again the concordance

between the JIP and JSIC industries).

The information on CZs is used as one criterion below in defining connectivity matrices

across firms. Adachi, Fukai, Kawaguchi and Saito (2021) construct the CZ information

for Japan using the hierarchical agglomerative clustering (HAC) method of Tolbert and

Killian (1987) and Tolbert and Sizer (1996) for constructing the US CZs. By Adachi, Fukai,

Kawaguchi and Saito (2021), there are 267 CZs in 2010 and 265 in 2015 in Japan. We use the

2010 CZ definition, and merge the CZ information with the BSJBSA observations based on

the prefecture and city names of a firm’s address, and examine/adjust manually if necessary.

The variables at the firm-year level used for the production function estimation is con-

structed in the following manners. The number of workers is measured as the sum of regular

workers and part-time workers (excluding temporary workers) in headquarter, head office,
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branch office, and assignee company (available from the BSJBSA). The labor hour is con-

structed as the number of workers of a firm in a year (from the BSJBSA), times the average

work hours per person in the corresponding year and industry (from the JIP database). The

real physical capital stock is constructed by the perpetual inventory method with 2007 as

the base year, using the real physical capital value in 2007 (year end) and the real investment

in physical capital in each year from the BSJBSA, together with the depreciation rates at

the industry level from the JIP database. The real intermediate inputs are constructed by

the sum of the cost of goods sold, and general and administrative expenses, minus wages,

rental costs, depreciation, and taxes reported in the BSJBSA, deflated by the input deflator

(constructed using the JIP database as documented above). The real revenue is measured by

sales, deflated by the output deflator imputed from the JIP database. The real value added is

constructed by nominal value-added (i.e., nominal sales minus nominal intermediate inputs)

deflated by the value-added deflator from the JIP database. The nominal R&D expenditure

is deflated by the R&D deflator (constructed using the JIP database). The export status of

a firm is directly available from the BSJBSA.

4.1 Summary Statistics

Table 2(a) provides the summary statistics of the key variables for the BSJBSA-TSR linked

sample in year 2015 (based on the denominator of BSJBSA firms, not all of which have

corresponding entries in TSR). The effective number of observations differs from Table 1 due

to potentially missing observations on the variable of interest.

A few remarks are in order. First, the average firms tend to be large (e.g., having 490

workers, and 7.2 billion JPY physical capital, roughly equivalent to 60 million USD). This is

due to the fact that the BSJBSA only covers medium and large firms. Second, the average

firms report 6.8 customers and 6.7 suppliers, suggesting that the TSR’s limit of reporting

the top customers and suppliers up to 24 connections in each direction is not practically

binding for most of the firms.

Figures 1(a)–3(a) illustrate the number of firms, their average size in terms of employ-

ment, and their average number of customers and suppliers for each 1-digit JSIC rev12

industry. Figure 1(a) indicates that most of the firms in the sample are in the manufactur-

ing, wholesale & retail trade, and information & communications industries. Among them,

those in the service industries tend to be large in terms of employment (e.g., accommodation

and food & beverage services, electricity, gas, heat supply & water, and finance & insurance;

see Figure 2(a)). In terms of connectedness with other firms, those in the construction, man-

ufacturing, and mining & quarrying industries tend to have a larger number of customers
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and suppliers, while those in the service industries tend to have a smaller number of business

customers but just as many suppliers as in other industries (Figure 3(a)).

Figures 4(a)–6(a) show a large heterogeneity across prefectures in terms of the number

of firms, their average size, and their average number of customers and suppliers. Most of

the firms in the sample are located in economically large prefectures, such as Tokyo, Osaka,

Aichi, Kanagawa, and Hyogo (Figure 4(a)). Firms in these large prefectures tend also to

be large in terms of employment (Figure 5(a)) and connected with a larger number of both

customers and suppliers (Figure 6(a)).

The potential spatial dependence across firms through the supply chain and the input

markets can be more local than the prefecture level. Bernard, Moxnes and Saito (2019) show

that the median distance of any customer-supplier pair in the TSR data is 30 km and thus

smaller than the typical size of prefectures. Thus, the following figures further provide the

characterization at the commuting zone level. Figure 7(a) shows the number of CZs within

each prefecture in 2015. Prefectures with large areas (e.g., Hokkaido and Nagano) tend to

have many CZs, while those with small areas and economic sizes (e.g., Kagawa and Fukui)

tend to have few CZs. Figures 8(a)–10(a) show the counterparts of Figures 4(a)–6(a) at

the commuting-zone level. The commuting zone with the largest number of firms (8993)

is CZ89 that covers the busiest areas around Tokyo (parts of Tokyo, Kanagawa, Chiba,

and Saitama). Economically large CZs also tend to have larger firms and more connected

firms. For example, the same CZ89 ranks top 5th in terms of average firm’s employment

size (643.99), and top 24th in terms of average firm’s customer connections (7.44). Note also

that the average firm size is much more dispersed at the right tail when we zoom in at the

commuting-zone level (Figure 9(a)) compared to that at the prefecture level (Figure 5(a)).

Similarly, the distributions of customer/supplier connections are much more dispersed at the

commuting-zone level (Figure 10(a)) than at the prefecture level (Figure 6(a)), suggesting a

large degree of heterogeneity across CZs within prefectures.

4.2 Definition of Connectivity Matrices

To model the spatial-temporal lag dependence in outputs, we define the output connectivity

matrix Wy
t−1 based on the set of a firm’s customers and/or suppliers located in the same

commuting zone. The ij-th element of Wy
t−1 takes on the value one if both firms i and j

are located in the same commuting zone, and in addition, firm j is a customer or supplier

of firm i, in period t − 1. This is in line with the research conducted by Demir, Fieler, Xu

and Yang (2024), Alfaro-Ureña, Manelici and Vasquez (2022) and Ellison, Glaeser and Kerr

(2010). They find that the input-output linkages across firms and the geographical proximity
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of firms play an important role in productivity spillovers.

Next, for spatial dependence across firms through the input markets, we restrict our focus

to the labor market channel, and define input connectivity matrix WΩ
t−1 such that the ij-th

element of WΩ
t−1 takes on the value one if firms i and j are located in the same commuting

zone in period t − 1. Firms located in the same commuting zone are more likely to tap

into the same labor pool, considering the potential labor mobility frictions across zones.

Multiple theories have been proposed about the benefits associated with a large labor pool.

When firms in the same location employ more workers, the potential pool of labor in the

location increases. This facilitates better worker-firm matches (e.g., Helsley and Strange,

1990); allows risk sharing and worker turnover across firms (e.g., Diamond and Simon, 1990;

Krugman, 1991); and induces stronger incentives for workers to invest in human capital

knowing that they do not face ex post appropriation (Rotemberg and Saloner, 2000). As a

result, conditional on the amount of labor input hired by a firm, the quality of labor input

(and hence firm productivity) is likely higher when the total labor employed in the same

location in the past period is larger. Relatedly, Greenstone, Hornbeck and Moretti (2010)

find that estimated spillover effects resulting from the opening of Million Dollar Plants are

larger for other plants that share labor pools and similar technologies with the new plant.

To model the spatial diffusion of the productivity shock ut, we consider three variants

of the connectivity matrix Wu
t , depending on whether two firms are located in the same

commuting zone, whether they have supplier/customer relationships, or both. In particular,

the ij-th element of Wu
t takes on the value one: (i) if both firms i and j are located in the

same commuting zone in period t, (ii) if both firms i and j are located in the same commuting

zone, and firm j is a customer or supplier of firm i, in period t, and (iii) if firm j is a customer

or supplier of firm i in period t, respectively. Supporting evidence of the first criterion used

includes the work by Jaffe, Trajtenberg and Henderson (1993), Audretsch and Feldman

(1996), and Matray (2021). These studies suggest that knowledge/innovation spillovers

tend to be geographically localized. In the second variant, the spillover is further restricted

specifically to firms in supplier-customer relationships. An unexpected productivity shock

experienced by a firm may trickle down to its buyers via the provision of higher quality

inputs, allowing its buyers to scale up their productivities. Alternatively, the technology

innovation or discovery may occur simultaneously to the network of firms that belong to

the same supply or value chain. The third variant instead focuses on the supply chain as

the conduit of productivity spillovers, but disregards the potential distance between the

customers/suppliers. Note that the second variant is a relatively sparse matrix compared to

the other two variants.

The connectivity matrices defined above are then row-normalized, such that each row
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has a row sum equal to one (and zero if all elements in a row are zeros).

5 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to assess the consistency and efficiency

of the estimator we proposed in Section 3 (which allows for spatial dependence across firms),

and compare it with the conventional estimators (that assume no such spatial dependence).

We consider five data generating processes (DGPs). The first DGP (DGP1) is favorable to

the conventional estimator and assumes that the productivity ωt follows an AR(1) process.

The remaining DGPs consider spatial dependence of different structures and strengths across

firms. The second DGP (DGP2) assumes the productivity ωt to depend on own lagged

productivity and the lagged outputs/inputs of connected firms as specified in Equation (2).

The third DGP (DGP3) further allows the productivity shock ut to be spatially correlated

as specified in Equation (3). The fourth DGP (DGP4) is the same as DGP3 but assumes

stronger spatial dependence in the lagged output/inputs of connected firms. The fifth DGP

(DGP5) is the same as DGP4 but considers instead negative spatial dependence in the lagged

output/inputs of connected firms.

We generate the simulation data based on the empirical sample statistics of the Japanese

BSJBSA-TSR linked dataset. Appendix B provides detailed documentations of the simula-

tion setups, which we summarize below. We follow Ackerberg, Caves and Frazer (2015) and

adopt a Leontief production function such that:

V Ait = min {eα0Lαl
itK

αk
it e

ωit , eαmMit}eξit ,

which implies Equation (1). In turn, gross output is linear in value-added. In particular, we

set eαm = 1 in simulating the gross output. The firm-level productivity is simulated based

on Equations (2)–(3), with variations in the parameter values across the DGPs studied.

The firm-level input variables (labor and capital inputs) and the firm-to-firm connectivity

matrices are simulated based on the firm-level statistics and the supplier-customer network

statistics of the BSJBSA-TSR linked dataset. For example, based on the BSJBSA-TSR

linked dataset, we tabulate the distribution of firms that supply to one, two, three, . . .,

and up to 24 other firms; and respectively, the distribution of firms that purchase from

one, two, three, . . ., and up to 24 other firms. We use these distribution statistics across

years to simulate time-varying supplier-customer networks, which takes into account network

addition, attrition, and persistency observed in the data.

Given the model structure, we assume that the error terms (ξit, vit) are normally dis-
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tributed with mean zeros and standard deviations of σξ = 0.3 and σv = 0.7. We simulate

a balanced panel of 500, 750 or 1000 firms for 10 or 19 time periods. For each DGP,

1000 simulated samples are drawn and estimated. We report the mean (Mean) and the

standard deviation (SD) of the parameter point estimates across the 1000 Monte Carlo sim-

ulations, together with the average of the estimated standard errors (SE) derived from the

variance-covariance matrices of the estimators across the 1000 Monte Carlo simulations. The

parameter values used in the DGPs are listed in the first row of Tables 3–7. The param-

eter values that are common across DGPs are: α0 = 0, αl = 0.6, αk = 0.4; ρ1 = 0.5 and

ρ2 = . . . = ρG = 0. To simplify the Monte Carlo exercises, we drop xi,t−1 (a firm’s lagged

exporting status and/or R&D expenditure) from consideration in the simulation. In DGP2,

the strength of spillovers in terms of lagged outputs and lagged labor inputs of related firms

is set at: λ = βl = 0.01. DGP4 considers stronger spillovers such that λ = βl = 0.1, while

DGP5 considers negative spillovers such that λ = βl = −0.1. In DGP3–DGP5, with spatial

error dependence, we set µ = 0.25.

Given the simulated sample, we use the Wooldridge (2009) GMM estimator in combina-

tion with the ACF estimator to represent the conventional estimator (henceforth WGMM),

which assumes no spatial dependence across firms.4 For our proposed estimator (SGMM), we

use the instruments indicated in Equations (10) and (13) in estimations. In particular, the

current and first lag of labor, capital and material inputs are used as the instruments for the

first-stage equation (8), with a degree-1 h function in labor, capital and material inputs (à la

Ackerberg, Caves and Frazer, 2015). For the second-stage equation (11), the current capital

along with the first lag of labor, capital and material inputs, and the lagged-one-period out-

puts and labor inputs of related firms (Wy
t−1yt−1, (W

y
t−1)

2yt−1, W
l
t−1lt−1, (W

l
t−1)

2lt−1) are

used as instruments. The connectivity matrices are as defined in Section 4.2. In particular,

the connectivity matrix Wu
t specifying the spatial correlation of productivity shocks is de-

fined based on the customer-supplier relationships across firms. The same set of instruments

are used for the WGMM estimations, but excluding the related firms’ lagged outputs and

lagged labor inputs (Wy
t−1yt−1, (W

y
t−1)

2yt−1, W
l
t−1lt−1, (W

l
t−1)

2lt−1).

5.1 Simulation Results

Table 3 reports the results for DGP1. The conventional estimator (WGMM) performs well as

it should, when the DGP has no spatial dependence across firms. Importantly, our proposed

4As noted above, the Wooldridge (2009) procedure estimates Equations (8) and (11) jointly (instead of
sequentially as in ACF), while the ACF estimator allows g(·, ·, ·) to be a general function in all the input
variables (including linearity as a special case) and hence does not aim to identify the slope coefficients
(αl, αk) in Stage 1 from Equation (8) but in Stage 2 from Equation (11).
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estimator (SGMM) performs just as well. The point estimates of both estimators are close to

the true parameter values, and the 95% confidence intervals (CIs) include the true parameter

values for the input coefficients of the production function (αl, αk). While our estimator

has wider confidence intervals than the conventional estimator for the input coefficients,

it returns mean estimates of the spatial coefficients (λ, βl, µ) nearly identical to zeros,

consistent with the true parameter values of the underlying DGP. Both estimators obtain

estimates for the autoregressive parameter (ρ1) that are close to the true parameter value,

even when the duration of the panel is relatively short. Both the conventional estimator and

our proposed estimator yield standard error estimates (SE) that are on average close to their

Monte Carlo standard deviations (SD). The SEs also reduce as the sample size increases at

a rate consistent with the asymptotic properties laid out in Section 3.3.

Table 4 reports the findings for the second set of simulations based on DGP2. When spa-

tial dependence across firms via lagged outputs and lagged labor inputs are indeed present,

the conventional estimator leads to biased estimates of the input coefficients. In particular,

its mean estimates for αl across variations in N and T are higher than the true parameter

value. The bias does not shrink with a larger sample size, suggesting the inconsistency of

the conventional estimator when spatial dependence is present in the underlying DGP. In

contrast, our proposed SGMM estimator yields estimates that are close to the true param-

eter values for both input elasticities (αl, αk) and the spatial coefficients (λ, βl), with 95%

CIs that well cover the true parameter values. Finally, our proposed SGMM estimator re-

ports statistically insignificant estimates of µ, consistent with the underlying DGP where no

spatial correlation in the error terms (i.e., the productivity shocks ut) is present.

In DGP3, the data generating process for the productivity term further allows for spatial

error correlation across related firms. Table 5 shows that the conventional estimator of the

labor coefficient of the production function remains to be upward biased, while our proposed

estimator yields consistent estimates that are close to the true parameter values for all the

coefficients of interest. In particular, we note that the SGMM estimator returns estimates of

the spatial error coefficient (µ) that are close to its true parameter value when it is indeed

non-zero.

Table 6 reports the simulation results for DGP4. With larger spatial coefficients (λ =

βl = 0.1, instead of 0.01), the conventional estimator of all coefficients (αl, αk, ρ1) are

upward biased, and the extents of bias are substantial (by around 23–26 percentage points

for αl, 1 percentage point for αk, and 17–26 percentage points for ρ1). Furthermore, the

standard errors (SE) obtained by the conventional estimator deviate significantly from the

Monte Carlo standard deviations (SD). In contrast, our proposed SGMM estimator continues

to yield consistent estimates for the true parameters, with estimates of the standard errors
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(SE) that are on average very close to the Monte Carlo standard deviations (SD).

Table 7 indicates that if the underlying DGP is characterized with large negative spa-

tial coefficients (λ = βl = −0.1, instead of 0.01), the conventional estimator of the input

coefficients (αl, αk) are instead downward biased, and the extents of bias continue to be

substantial (by around 21–23 percentage points for αl, and 1 percentage point for αk). The

conventional estimator of ρ1, however, remains to be upward biased (by 12–21 percentage

points). The standard errors (SE) obtained by the conventional estimator on average also

deviate significantly from the Monte Carlo standard deviations (SD). In contrast, our pro-

posed SGMM estimator yields consistent estimates for the true parameters, with estimates of

the standard errors (SE) being very close on average to the Monte Carlo standard deviations

(SD). In particular, it is able to capture the negative signs of the two spatial coefficients

(λ = βl = −0.1) and their magnitudes.

In sum, across all the DGPs, we find that the proposed SGMM estimator yields point

estimates that are consistent for the true parameter values both in the absence and in the

presence of spatial effects. By the SGMM estimator, the standard error estimates (SE) of

the parameters are also very close to the Monte Carlo standard deviations (SD). As the

sample size N(T − 1) doubles (either due to doubling of N or T − 1), both the standard

error estimates (SE) and the Monte Carlo standard deviations (SD) shrink at a rate close to

1/
√
2, consistent with a convergence rate of 1/

√
N(T − 1).

6 Empirical Analysis

6.1 Estimation Sample

We apply the methodology and estimation algorithms proposed in Section 3 to the Japanese

dataset introduced in Section 4. Given the BSJBSA-TSR linked data, we further restrict

the sample to a balanced panel of firms with observations on the set of variables required

for productivity estimations. In particular, the sample is based on firms that were surveyed

for 10 consecutive years from 2009 to 2018.5 Second, the sample of firms used for analysis

also need to have non-missing values for log of labor hours (used to measure lit), log of real

capital stock (kit), log of real intermediate inputs (mit), log of real revenues (yit), and log

of real value added (vait), during the entire sample period 2009–2018. Recall that the real

capital stock is calculated based on the perpetual inventory method with the real capital

stock in 2007 (year end) as the initial value. Observations on real capital stock for a firm

5This excludes, for example, firms whose number of employees fell under 50 at some point during the
sample period.
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could be missing, for example, if the firm was not observed in 2007.

The resulting sample is a balanced panel of 14,178 firms for the period 2009–2018. Given

the balanced panel of firms, the set of a firm’s customers/suppliers identified via the TSR

entries is effectively restricted to those whose firm-level data also exist in BSJBSA. In par-

ticular, firm j is regarded effectively as a customer/supplier of firm i in the estimation if firm

i reports firm j as a customer or supplier, and if firm j exists in the BSJBSA dataset (with

consecutive observations on output and inputs, as required for the estimation of Equation

(2)).

Table 2(b) provides the summary statistics for the estimation sample. Relative to the

raw sample reported in Table 2(a), the firms in the estimation sample tends to be larger in

terms of both inputs and output, and have more customers and suppliers. This is expected,

as larger firms are more likely to be surveyed consecutively and have positive inputs/output

throughout the years. Although larger firms tend to have more customers/suppliers, the

orders of magnitude in the number of connections on average do not differ substantially

between the raw and estimation samples. Despite the much smaller set of firms covered, the

estimation sample accounts for 61.42% of aggregate real value added and 63.29% of real gross

output of the raw sample in 2015 (and a majority of the other economic activities in terms

of employment, labor hours, real capital stock, and real spending on intermediate inputs).

Figures 1(b)–10(b) repeat the characterization as in Figures 1(a)–10(a), and show that the

estimation sample has similar patterns as documented for the raw sample. The rank across

industries is almost identical in terms of the number of firms: manufacturing, wholesale &

retail trade, and information & communications remain to be the top three industries with

the largest numbers of firms (Figure 1). The set of prefectures with the largest numbers

of firms is also similar to that previously documented (Figure 4). Basically, firms in the

estimation sample tend to be larger in terms of employment size (Figures 2, 5, and 9),

and are slightly more connected in terms of customers/suppliers (Figures 3, 6, and 10), in

comparison with the raw sample.

6.2 Estimation Results

We estimate the model proposed in Equations (1)–(3) based on the estimation methodology

laid out in Section 3 and the connectivity matrices defined in Section 4.2. In short, we define

the output connectivity matrixWy
t−1 based on the set of a firm’s customers/suppliers located

in the same commuting zone. The ij-th element of Wy
t−1 takes on the value one if both firms

i and j are located in the same commuting zone, and in addition, firm j is a customer or

supplier of firm i, in period t − 1. Second, we define input connectivity matrix WΩ
t−1 such
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that the ij-th element of WΩ
t−1 takes on the value one if both firms i and j are located in

the same commuting zone in period t − 1. The input variable being analyzed corresponds

to the lagged labor inputs of the connected firms defined by WΩ
t−1. Third, we consider three

variants of the spatial error connectivity matrix Wu
t and define it such that the ij-th element

of Wu
t takes on the value one: (i) if both firms i and j are located in the same commuting

zone in period t, (ii) if both firms i and j are located in the same commuting zone, and firm

j is a customer or supplier of firm i, in period t, and (iii) if firm j is a customer or supplier

of firm i in period t, respectively. The connectivity matrices are then row-normalized, such

that each row has a row sum equal to one (and zero if all elements in a row are zeros).

In addition to the key variables (lagged productivity and connected firms’ lagged output

and lagged labor input) in the productivity equation (2), we also control for the firm’s lagged

exporting status and lagged real R&D expenditure, and the industry fixed effects (FE).

Table 8 reports the estimation results. Column 1 (based on the first definition of Wu
t )

indicates that all three spatial coefficients are significant and positive. A 1% increase in

the sales of customers/suppliers in the same commuting zone in the previous period helps

improve a firm’s current productivity by 0.005%. A larger local labor market also enhances

a firm’s productivity: specifically, a 1% increase in the employment of firms located in

the same commuting zone in the previous period raises a firm’s current productivity by

0.055%. Finally, there is evidence of contemporary knowledge spillovers across firms located

in the same commuting zone: the productivity innovations uit are spatially correlated with a

positive and significant slope coefficient of 0.68. The other production function parameters

are also precisely estimated. Column 1 reports a labor value-added share of 0.81, a capital

value-added share of 0.14, and a partial AR(1) coefficient of 0.77 for the productivity process.

In addition, if a firm is an exporter in the previous period, its current productivity tends to

be higher by 18.98%. A one-dollar increase in R&D expenditure in the previous period also

helps to raise the current period productivity by 5.13E-07 (in log scale).

The estimates for key parameters of interest remain similar if we adopt alternative def-

initions of spatial error connectivity matrices Wu
t , as reported in Column 2 and Column 3.

The key difference is the strength of contemporary spatial correlation in the productivity

shocks uit. They tend to be quantitatively smaller by around 50% in magnitude if Wu
t is

defined in a more restricted manner, relative to the finding in Column 1 based on common

commuting zone alone.

To compare the spatial GMM findings with those if one ignores the spatial dependence

across firms, Column 4 reports the estimates based on conventional estimators (restricting

the spatial coefficients to be zeros but otherwise adopting the same GMM approach). We find

that the labor value-added share tends to be downward biased (0.72), the capital value-added
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share upward biased (0.22), and the AR(1) coefficient upward biased (0.83), in comparison

with the spatial GMM estimates reported above. The effect estimates of exporter status

(18.62%) and R&D expenditures (1.83E-06) are otherwise close to those obtained by the

spatial GMM estimates.

6.3 Restricted Specifications

In this section, we experiment with restricted specifications of Equations (2)–(3), by setting λ,

β, and/or µ equal to zeros. This helps us assess the role of each proposed spatial mechanism

in affecting the outcome of production function estimations. For this set of exercises, we

define Wu
t based on supplier-customer relationship within the same commuting zone. This

specification (as shown in Column (2) of Table 8) tends to lead to the weakest estimate of µ

and hence provides a conservative reference benchmark for the proposed spatial mechanisms.

Table 9 summarizes the results. Columns (1)–(3) allow for spatial error dependence

(µ ̸= 0) but omit the dependence of productivity on the lagged outputs and/or the lagged

labor inputs of related firms (λ = 0 and/or β = 0). Columns (4)–(6) further drop the spatial

error dependence structure (µ = 0). We note that relative to the benchmark, by ignoring

the spatial error dependence structure in the productivity process, the labor elasticity (αl)

estimate is significantly downward biased and the reverse is true for the capital elasticity (αk)

estimate; meanwhile, the AR(1) coefficient estimate tends to be upward biased (as shown in

Columns (4)–(6)). Thus, to a large extent, the direction of bias of the conventional estimates

(in Column (4) of Table 8) relative to the SGMM estimates is driven by the omission of the

spatial error dependence structure in the productivity process. Given µ = 0, by omitting the

dependence of productivity on the lagged outputs or the lagged labor inputs of related firms,

the remaining spatial coefficient (λ or β) tends to increase, but the orders of magnitude

remain very similar.

Once we allow for the spatial error dependence structure in the productivity process (as

shown in Columns (1)–(3)), by omitting the dependence of productivity on the lagged outputs

and/or the lagged labor inputs of related firms, the labor elasticity (αl) estimate tends to

be upward biased and the capital elasticity (αk) estimate downward biased, the opposite of

the pattern shown in Columns (4)–(6); meanwhile, the AR(1) coefficient estimate continues

to be upward biased, relative to the benchmark. Thus, by omitting all spatial mechanisms,

the conventional WGMM estimate tends to fall in between the two sets of labor/capital

elasticity estimates (Columns (1)–(3) versus Columns (4)–(6)), and on net with the omission

of spatial error structure (µ = 0) exerting a greater impact on the pattern of bias for the

sample under study. In Columns (1)–(3), by omitting the dependence of productivity on the
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lagged outputs or the lagged labor inputs of related firms, the remaining spatial coefficient

(λ or β) tends to increase but maintains similar orders of magnitude as the benchmark, an

observation similar to the case with µ = 0. Finally, the spatial error coefficient µ tends to

weaken if the other two spatial mechanisms are omitted from the specification. Overall, the

exercises in this section illustrate the sensitivity of the labor and capital elasticity estimates

(and that of the AR(1) coefficient in the productivity process) to the spatial mechanisms

proposed in this study.

7 Conclusion

In this paper, we develop a framework to simultaneously estimate firm production functions

and spatial interactions across firms in one unified setup. We propose a three-stage efficient

GMM estimation algorithm, and formulate the asymptotic properties of the proposed esti-

mator. The Monte Carlo simulations demonstrate that the proposed estimator is consistent

under DGPs with or without spatial dependence across firms. In contrast, the conventional

estimators are biased when the true DGPs are indeed characterized with spatial dependence.

By applying the developed methodology and estimation algorithm to the Japanese BSJBSA-

TSR linked dataset for the period 2009–2018, we find that spatial interactions across firms

play a significant role in determining the Japanese firm-level productivity both statistically

and economically.

The paper can be extended in several directions in future research. First, the connectivity

matrices in our setup are allowed to differ across different mechanisms of spatial interactions.

One can potentially hypothesize alternative candidates for the connectivity matrices and

conduct specification tests that select the specification that best fits the model. Second, the

current framework allows for time-varying connectivity matrices. This is useful, as we can use

the framework to analyze how shocks (such as transportation infrastructure developments

and earthquakes) affect the connectivity matrices across time, and in turn, the firm-level

performance measures (such as productivity, and production technology). Third, the current

framework could also be used to analyze the centrality of firms in the sense that a firm is

more central if by increasing connectivity (links) to this firm, the average productivity of all

firms is improved by more than if by increasing connectivity (links) to another firm. This is

useful for policy design that aims to target subsidies at the critical links of a firm network

structure for the greater benefits of the economy.
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A Theoretical Appendix

A.1 Deriving the Moment Condition in Stage 3

Substituting vt = ut − µWu
t ut into the left side of Equation (6) yields:

1

N
E

 (ut − µWu
t ut)

′(ut − µWu
t ut)

(ut − µWu
t ut)

′Wu
t
′Wu

t (ut − µWu
t ut)

(ut − µWu
t ut)

′Wu
t (ut − µWu

t ut)

 =
1

N
E

 (ut − µut)
′(ut − µut)

(ut − µut)
′Wu

t
′Wu

t (ut − µut)

(ut − µut)
′Wu

t (ut − µut)



=
1

N
E

 (u′tut − 2µut
′ut + µ2u′tut)

(u′tut − 2µu
′
tut + µ2u

′
tut)

u′tut − µ(u′tut + u′tut) + µ2u′tut

 .
Therefore, Equation (6) becomes:

1

N
E

 (u′tut − 2µut
′ut + µ2u′tut)

(u′tut − 2µu
′
tut + µ2u

′
tut)

u′tut − µ(u′tut + u′tut) + µ2u′tut

 =

 σ2
v

σ2
v

N
tr(Wu

t
′Wu

t )

0

 . (32)

Rearranging terms, we have:

1

N
E

 u′tut

u′tut

u′tut
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1

N
E
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′ut − µ2u′tut +Nσ2

v
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′
tut − µ2u

′
tut + σ2
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u
t
′Wu

t )

µ(u′tut + u′tut)− µ2u′tut



=
1

N
E

 2ut
′ut −u′tut N

2u
′
tut −u′tut tr(Wu

t
′Wu

t )

(u′tut + u′tut) −u′tut 0


 µ

µ2

σ2
v

 , (33)

which yields the following relationship:

γt = Γt

 µ

µ2

σ2
v

 .
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A.2 Deriving the Variance-Covariance Matrix for the Moment

Conditions in Stages 1 and 2

Using the definition of the variance-covariance matrix of the moment conditions in the first

and second stages, we have:

Vθ = Var

(
1√

N(T − 1)

N∑
i=1

T∑
t=2

Z ′
itrit

)

=
1

N(T − 1)
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t=2

N∑
j=1

T∑
s=2

E[(Z ′
itrit)(Z ′

jsrjs)
′]

=
1

N(T − 1)
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t=2
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s=2
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′
js]Zjs
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1
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N∑
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itE
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ξit

ξit + uit

)
(ξjs ξjs + ujs)
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Zjs

=
1
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N∑
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itE
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To derive E

(
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)
, consider the following 4 cases:

1. i = j, t = s
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3. i ̸= j, t = s

E
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To estimate E(u2it), note that uit can be obtained by taking the product of the i-th row

of (IN − µWu
t )

−1 and vt, since ut = (IN − µWu
t )

−1vt. Then, we have:
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Substituting all the terms back into Vθ, we obtain:
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where M1 and M2 are the number of moment conditions (instruments) used in the first and

second stages respectively (such that M1+M2 = M), and Zt,II = [Z ′
1t,II ,Z ′

2t,II , . . . ,Z ′
Nt,II ]

′

is a N ×M2 matrix.

We can estimate Vθ by its sample counterpart:
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Z ′
it,IZit,I ξ̂

2
it Z ′

it,IZit,II ξ̂
2
it

Z ′
it,IIZit,I ξ̂

2
it Z ′

it.IIZit,II ξ̂
2
it

)

+
1

N(T − 1)

T∑
t=2

Z ′
t

(
0N×N 0N×N

0N×N σ̂2
v [(IN − µ̂Wu

t )
−1(IN − µ̂Wu

t )
−1′])

)
Z t,

where ξ̂it, µ̂ and σ̂2
v are obtained from Steps 1–2 in Section 3.3.
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A.3 Deriving the Variance-Covariance Matrix for the Moment

Conditions in Stage 3

In this section, we derive the variance-covariance matrix for the moment conditions used in

Stage 3. Let A and B be n× n non-stochastic matrices. For a n× 1 random vector e with

mean 0, variance σ2
e and finite excess kurtosis κe:

cov(e′Ae, e′Be) = σ4
eκea

′b+ σ4
etr(A(B′ +B)), (35)

where a = diagv(A) and b = diagv(B). The operator ‘diagv’ takes the diagonal elements of

a matrix and converts them to a column vector.

Define v = [v′2, v
′
3, . . . , v

′
T ] to be a N(T − 1) × 1 vector, and v = Wuv. Let κv be the

excess kurtosis of v. The sample counterpart of the moment conditions in Equation (6) is:

1

N(T − 1)

 v′v

v′Wu′Wuv

v′Wuv

 =

 σ̂2
v

σ̂2
v

N(T−1)
tr(Wu′Wu)

0

 . (36)

The following computes each cell of the variance-covariance matrix of the vector on the left

side of Equation (36):

Vψ,11 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)

σ4
v

(N(T − 1))2
[κvι

′
N(T−1)ιN(T−1) + tr(IN(T−1)(I

′
N(T−1) + IN(T−1)))]

= σ4
v(κv + 2);

Vψ,12 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′Wu′Wuv

)
=

σ4
v

N(T − 1)
[κvtr(W

u′Wu) + tr(IN(T−1)(W
u′Wu +WuWu′))]

=
σ4
v

N(T − 1)
(κv + 2)tr(Wu′Wu);
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Vψ,13 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′Wu′v

)
=

σ4
v

N(T − 1)
[κvtr(W

u) + tr(Wu)]

= 0;

Vψ,22 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′Wu′Wuv,

1

N(T − 1)
v′Wu′Wuv

)
=

σ4
v

N(T − 1)
[κv diagv(W

u′Wu)′ diagv(Wu′Wu)) + tr((Wu′Wu)(Wu′Wu +WuWu′))];

Vψ,23 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′Wu′Wuv,

1

N(T − 1)
v′Wuv

)
=

σ4
v

N(T − 1)
[κv diagv(W

u′Wu)′ diagv(Wu) + tr((Wu′Wu)(Wu +Wu′))]

=
σ4
v

N(T − 1)
tr((Wu′Wu)(Wu +Wu′));

Vψ,32 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′Wuv,

1

N(T − 1)
v′Wu′Wuv

)
=

σ4
v

N(T − 1)
[κv diagv(W

u)′ diagv(Wu′Wu) + tr(Wu(Wu′Wu +Wu′Wu))]

= 2
σ4
v

N(T − 1)
tr(WuWu′Wu);

Vψ,33 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′Wuv,

1

N(T − 1)
v′Wuv

)
=

σ4
v

N(T − 1)
[κv diagv(W

u)′ diagv(Wu) + tr(Wu(Wu +Wu′))]

=
σ4
v

N(T − 1)
tr(Wu(Wu +Wu′)).
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B Simulation Appendix

B.1 Simulation of Connectivity Matrices

The BSJBSA-TSR linked dataset provides the distribution of the number of customers (and

respectively suppliers) that a firm has, up to 24 customers (and suppliers). We assign a

time-invariant random number for each firm, ri, which is uniformly distributed in [0, 1], for

i ∈ {1, 2, . . . , N}. For the initial period, we use a weakly monotonic mapping function,

qnumt (·), to map the firm random number ri ∈ [0, 1] to the number of customers, given the

empirical distribution. In other words, qnumt (ri) = numit, where q
num
t (·) is the inverse of the

empirical distribution function of the number of customers in period t. Given the number

of customers assigned to each firm in the initial period, we randomly draw its customers

from the pool of firms. Subsequently, given the mapping from the firm random number to

the number of customers that firm i has at time t, qnumt (ri) = numit, we randomly drop

firms from the set of customers that a firm initially has in the previous period if numit <

numi,t−1 ∗ persistency t−1, where persistency t−1 is the fraction of firm-to-firm relationships

in period t− 1 that survive in period t as observed in the data. Alternatively, we add firms

(randomly drawn from the pool of unrelated firms) to the set of customers that a firm has in

the previous period after attrition (the identity of the connections dropped being randomly

drawn from the pool of existing customers of a firm) if numit > numi,t−1 ∗ persistency t−1.

The number of suppliers that a firm has across time is simulated in similar manner.

Given data on the distribution of firms across commuting zones, we use the inverse of

the empirical distribution function of commuting zones, qczt (·), to map each firm ri ∈ [0, 1] to

commuting zone in each period, such that qczt (ri) = czit. We then generate the connectivity

matrix based on common commuting zone. The ij-th element of the matrix is set equal

to 1, if firms i and j are located in the same commuting zone in period t and 0 otherwise.

As we vary the number of firms N above 500, we limit the number of connections per firm.

Specifically, we generate random numbers rij ∈ [0, 1] from a uniform distribution for each

firm-pair ij. For each ij-th element of the connectivity matrix that equals 1 in period t, it

remains to be 1 if rij < 500/N and reduces to 0 otherwise.

B.2 Simulation of Input and Output Variables

Based on the BSJBSA-TSR linked dataset, we obtain the mean and standard deviation of

labor input (and respectively, capital) across firms in each year from 2009 to 2018. We

then simulate the usage of labor input (and respectively, capital) for each firm, by drawing

randomly from Normal distributions that have the same mean and standard deviation as
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empirically observed specific to each input variable and year.

For the Monte Carlo simulations, we adopt a Leontief production function as in Acker-

berg, Caves and Frazer (2015) such that:

V Ait = min {eα0Lαl
itK

αk
it e

ωit , eαmMit}eξit , (37)

which gives rise to the following relationship between material inputs and productivity after

taking logs:

αm +mit = α0 + αllit + αkkit + ωit. (38)

Setting eαm = 1 as in ACF, we have: mit = α0+αllit+αkkit+ωit. The logged output, yit =

lnYit, is then derived using the sum of value-added and material inputs: yit = ln(V Ait+Mit).

B.3 Simulation Procedure

Given simulated data on {lit}i=N,t=Ti=1,t=1 , {kit}i=N,t=Ti=1,t=1 , {Wy
t }T−1
t=1 , {Wl

t}T−1
t=1 and {Wu

t }Tt=1 and

the parameter values for {α0, αl, αk, λ, βl, ρ1, µ, σξ, σv}, the data used for the simulations are

generated as follows:

1. Set ωi,t−1 = 0, for t = 1.

2. Generate vai,t−1 based on the simulated li,t−1 and ki,t−1, the parameter values for

{α0, αl, αk}, the productivity ωi,t−1, and the random draw of ξi,t−1 from a Normal

distribution with mean 0 and variance σ2
ξ .

3. Set mi,t−1 according to Equation (38) and derive yi,t−1 = ln(V Ai,t−1 +Mi,t−1).

4. Generate ωit based on Equations (2)–(3), given yi,t−1, simulated data on {Wy
t }T−1
t=1 ,

{Wl
t}T−1
t=1 and {Wu

t }Tt=1, the parameter values for {λ, βl, ρ1, µ}, and the random draw

of vit from a Normal distribution with mean 0 and variance σ2
v .

5. Iterate Steps 2–4 to generate simulated data on {vait}i=N,t=Ti=1,t=1 , {mit}i=N,t=Ti=1,t=1 , {yit}i=N,t=Ti=1,t=1 ,

and {ωit}i=N,t=Ti=1,t=1 .
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Table 1: BSJBSA and TSR Matching Percentage

Sample 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

# firms in BSJBSA 29096 29570 30647 30584 30217 30180 30231 30151 29530 29780
# TSR firms matched 26947 27559 28486 28557 28237 28263 28196 28448 27715 27978

Percentage 92.61 93.20 92.95 93.37 93.45 93.65 93.27 94.35 93.85 93.95

Notes: This table reports the percentage of firms in BSJBSA that are matched with its counterpart in TSR. The BSJBSA set of firms
is used as the denominator, since it provides the required firm-level variables for productivity estimations.

Table 2: Summary Statistics (for 2015 cross section)

(a) BSJBSA-TSR Linked Sample
Observations Mean Std Min Max

Labor headcounts 29044 490.48 1940.36 50 130725
Labor hours 29044 846896.70 3288626 67141.72 206818495
Real capital 18580 7205.55 75883.27 0 5394504
Real spending on intermediate inputs 29044 18826.32 127064.81 -4802.70 9208360
Real revenue 29044 21954.38 137121.55 0.93 1.06+07
Real valued added 29044 3109.33 15810.43 -51864.47 1417696
Real R&D expenditure 29044 398.37 7788.43 0 679568.72
Export status 29044 0.23 0.42 0 1
Number of customers 27788 6.77 5,54 0 24
Number of suppliers 27788 6.73 4.75 0 24
Number of customers existing in BSJBSA 27788 4.09 3.95 0 23
Number of suppliers existing in BSJBSA 27788 3.73 3.17 0 22

(b) Estimation Sample
Observations Mean Std Min Max

Labor headcounts 14178 567.81 2152.05 50 81740
Labor hours 14178 997316.94 3794994.36 70234.09 162990234
Real capital 14178 7767.91 80312.97 0.17 5394504
Real spending on intermediate inputs 14178 24580.23 155456.49 12.36 9208361
Real revenue 14178 28465.38 169336.04 123.84 10620083
Real valued added 14178 3912.00 19523.18 9.67 1417696
Real R&D expenditure 14178 585.11 8996.03 0 601742.00
Export status 14178 0.27 0.44 0 1
Number of customers 13757 7.32 5.71 0 24
Number of suppliers 13757 7.43 4.92 0 24
Number of customers existing in BSJBSA 13757 4.52 4.12 0 23
Number of suppliers existing in BSJBSA 13757 4.24 3.34 0 22

Notes: Refer to Section 4 for the measurement of the variables. The revenue, value added, capital, intermediate inputs, and real R&D
expenditure are in million Japanese yens. The number of customers / suppliers is identified by the BSJBSA firm’s corresponding entries
in TSR, which provides the list of a firm’s top 24 customers / suppliers. The number of customers / suppliers existing in BSJBSA
refers to the subset of a firm’s top 24 customers / suppliers listed in TSR that also have firm-level information in BSJBSA.
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Table 3: DGP1 – No Spatial Dependence in Productivity

Estimator N T-1 Stat.
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 0 0 0.5 0 0.49

WGMM

500 9
Mean 0.6000 0.4000 - - 0.4996 - -
SD (0.0051) (0.0053) - - (0.0138) - -
SE (0.0052) (0.0054) - - (0.0140) - -

500 18
Mean 0.6000 0.3998 - - 0.4996 - -
SD (0.0035) (0.0038) - - (0.0095) - -
SE (0.0036) (0.0038) - - (0.0095) - -

750 9
Mean 0.6002 0.4000 - - 0.4998 - -
SD (0.0042) (0.0045) - - (0.0119) - -
SE (0.0042) (0.0044) - - (0.0114) - -

750 18
Mean 0.6000 0.4001 - - 0.5000 - -
SD (0.0029) (0.0031) - - (0.0077) - -
SE (0.0030) (0.0031) - - (0.0077) - -

1000 9
Mean 0.6000 0.3999 - - 0.4998 - -
SD (0.0037) (0.0039) - - (0.0098) - -
SE (0.0037) (0.0038) - - (0.0099) - -

1000 18
Mean 0.5999 0.4001 - - 0.4999 - -
SD (0.0025) (0.0028) - - (0.0069) - -
SE (0.0026) (0.0027) - - (0.0067) - -

SGMM

500 9
Mean 0.5998 0.4000 0.0000 0.0001 0.4991 -0.0009 0.4881
SD (0.0078) (0.0053) (0.0023) (0.0031) (0.0138) (0.0322) (0.0117)
SE (0.0076) (0.0054) (0.0023) (0.0031) (0.0140) (0.0319) (0.0103)

500 18
Mean 0.6001 0.3998 0.0000 0.0000 0.4994 0.0001 0.4892
SD (0.0053) (0.0038) (0.0016) (0.0022) (0.0095) (0.0232) (0.0083)
SE (0.0053) (0.0038) (0.0016) (0.0022) (0.0095) (0.0225) (0.0073)

750 9
Mean 0.6004 0.4000 0.0000 -0.0001 0.4996 0.0015 0.4896
SD (0.0060) (0.0046) (0.0019) (0.0025) (0.0119) (0.0273) (0.0097)
SE (0.0061) (0.0045) (0.0019) (0.0025) (0.0114) (0.0274) (0.0084)

750 18
Mean 0.6000 0.4001 0.0000 0.0000 0.4998 0.0000 0.4896
SD (0.0042) (0.0031) (0.0014) (0.0017) (0.0077) (0.0184) (0.0067)
SE (0.0042) (0.0031) (0.0014) (0.0017) (0.0077) (0.0183) (0.0060)

1000 9
Mean 0.5999 0.3999 0.0001 0.0000 0.4995 -0.0005 0.4892
SD (0.0059) (0.0039) (0.0019) (0.0024) (0.0098) (0.0227) (0.0084)
SE (0.0057) (0.0038) (0.0018) (0.0024) (0.0099) (0.0226) (0.0073)

1000 18
Mean 0.6000 0.4001 0.0000 -0.0001 0.4997 0.0004 0.4898
SD (0.0038) (0.0028) (0.0013) (0.0016) (0.0069) (0.0159) (0.0058)
SE (0.0040) (0.0027) (0.0013) (0.0017) (0.0067) (0.0160) (0.0052)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the average of the estimated
standard errors (SE) derived from the variance-covariance matrices of the estimators across the 1000 Monte Carlo simulations.
The parameter values used in the DGPs are listed in the first row of the table.
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Table 4: DGP2 – Spatial Dependence in Productivity via Lagged Outputs and Lagged Labor
Inputs of Related Firms

Estimator N T-1 Stat.
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 0.01 0.01 0.5 0 0.49

WGMM

500 9
Mean 0.6229 0.4002 - - 0.5085 - -
SD (0.0052) (0.0053) - - (0.0138) - -
SE (0.0052) (0.0054) - - (0.0138) - -

500 18
Mean 0.6229 0.4002 - - 0.5094 - -
SD (0.0035) (0.0038) - - (0.0095) - -
SE (0.0037) (0.0038) - - (0.0094) - -

750 9
Mean 0.6224 0.4009 - - 0.5073 - -
SD (0.0042) (0.0045) - - (0.0117) - -
SE (0.0042) (0.0045) - - (0.0113) - -

750 18
Mean 0.6218 0.4008 - - 0.5096 - -
SD (0.0029) (0.0031) - - (0.0078) - -
SE (0.0030) (0.0031) - - (0.0077) - -

1000 9
Mean 0.6214 0.4007 - - 0.5059 - -
SD (0.0037) (0.0039) - - (0.0098) - -
SE (0.0037) (0.0038) - - (0.0098) - -

1000 18
Mean 0.6214 0.4008 - - 0.5067 - -
SD (0.0025) (0.0028) - - (0.0069) - -
SE (0.0026) (0.0027) - - (0.0066) - -

SGMM

500 9
Mean 0.5999 0.4000 0.0100 0.0101 0.4991 -0.0009 0.4881
SD (0.0078) (0.0053) (0.0023) (0.0031) (0.0136) (0.0322) (0.0117)
SE (0.0076) (0.0054) (0.0023) (0.0031) (0.0139) (0.0319) (0.0103)

500 18
Mean 0.6001 0.3998 0.0100 0.0100 0.4994 0.0001 0.4892
SD (0.0053) (0.0038) (0.0016) (0.0022) (0.0094) (0.0232) (0.0083)
SE (0.0053) (0.0038) (0.0016) (0.0022) (0.0094) (0.0225) (0.0073)

750 9
Mean 0.6004 0.4000 0.0100 0.0099 0.4996 0.0015 0.4896
SD (0.0060) (0.0046) (0.0019) (0.0025) (0.0117) (0.0273) (0.0097)
SE (0.0061) (0.0045) (0.0019) (0.0026) (0.0113) (0.0274) (0.0084)

750 18
Mean 0.6000 0.4001 0.0100 0.0100 0.4998 0.0000 0.4896
SD (0.0042) (0.0031) (0.0014) (0.0017) (0.0077) (0.0184) (0.0066)
SE (0.0042) (0.0031) (0.0014) (0.0017) (0.0077) (0.0183) (0.0060)

1000 9
Mean 0.5999 0.3999 0.0101 0.0100 0.4995 -0.0005 0.4892
SD (0.0059) (0.0039) (0.0019) (0.0024) (0.0097) (0.0228) (0.0084)
SE (0.0057) (0.0038) (0.0018) (0.0024) (0.0098) (0.0226) (0.0073)

1000 18
Mean 0.6000 0.4001 0.0100 0.0099 0.4998 0.0004 0.4898
SD (0.0038) (0.0028) (0.0013) (0.0016) (0.0069) (0.0159) (0.0058)
SE (0.0040) (0.0027) (0.0013) (0.0017) (0.0067) (0.0160) (0.0052)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the average of the estimated
standard errors (SE) derived from the variance-covariance matrices of the estimators across the 1000 Monte Carlo simulations.
The parameter values used in the DGPs are listed in the first row of the table.
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Table 5: DGP3 – Spatial Dependence in Productivity via Lagged Outputs and Lagged Labor
Inputs of Related Firms, and via Productivity Shocks

Estimator N T-1 Stat.
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 0.01 0.01 0.5 0.25 0.49

WGMM

500 9
Mean 0.6229 0.4002 - - 0.5083 - -
SD (0.0053) (0.0054) - - (0.0139) - -
SE (0.0052) (0.0055) - - (0.0138) - -

500 18
Mean 0.6229 0.4002 - - 0.5094 - -
SD (0.0036) (0.0038) - - (0.0096) - -
SE (0.0037) (0.0039) - - (0.0094) - -

750 9
Mean 0.6224 0.4009 - - 0.5072 - -
SD (0.0043) (0.0046) - - (0.0118) - -
SE (0.0042) (0.0045) - - (0.0113) - -

750 18
Mean 0.6218 0.4008 - - 0.5096 - -
SD (0.0030) (0.0031) - - (0.0078) - -
SE (0.0030) (0.0032) - - (0.0077) - -

1000 9
Mean 0.6214 0.4008 - - 0.5058 - -
SD (0.0038) (0.0039) - - (0.0099) - -
SE (0.0037) (0.0039) - - (0.0098) - -

1000 18
Mean 0.6214 0.4008 - - 0.5067 - -
SD (0.0026) (0.0028) - - (0.0069) - -
SE (0.0026) (0.0027) - - (0.0066) - -

SGMM

500 9
Mean 0.5998 0.4000 0.0101 0.0101 0.4989 0.2488 0.4881
SD (0.0079) (0.0054) (0.0023) (0.0032) (0.0136) (0.0322) (0.0117)
SE (0.0077) (0.0055) (0.0023) (0.0032) (0.0140) (0.0318) (0.0103)

500 18
Mean 0.6001 0.3998 0.0100 0.0100 0.4994 0.2499 0.4892
SD (0.0054) (0.0038) (0.0016) (0.0023) (0.0095) (0.0231) (0.0082)
SE (0.0054) (0.0039) (0.0016) (0.0022) (0.0095) (0.0224) (0.0073)

750 9
Mean 0.6004 0.3999 0.0100 0.0099 0.4995 0.2513 0.4896
SD (0.0061) (0.0046) (0.0019) (0.0026) (0.0118) (0.0273) (0.0097)
SE (0.0062) (0.0045) (0.0019) (0.0026) (0.0114) (0.0274) (0.0084)

750 18
Mean 0.6000 0.4001 0.0100 0.0100 0.4998 0.2499 0.4896
SD (0.0043) (0.0031) (0.0014) (0.0017) (0.0077) (0.0184) (0.0066)
SE (0.0043) (0.0032) (0.0014) (0.0017) (0.0077) (0.0183) (0.0060)

1000 9
Mean 0.5999 0.3999 0.0101 0.0100 0.4994 0.2493 0.4892
SD (0.0060) (0.0039) (0.0019) (0.0024) (0.0098) (0.0227) (0.0084)
SE (0.0057) (0.0039) (0.0018) (0.0024) (0.0099) (0.0226) (0.0073)

1000 18
Mean 0.6001 0.4001 0.0100 0.0100 0.4997 0.2503 0.4898
SD (0.0039) (0.0028) (0.0013) (0.0016) (0.0069) (0.0158) (0.0058)
SE (0.0041) (0.0027) (0.0013) (0.0017) (0.0067) (0.0160) (0.0052)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the average of the estimated
standard errors (SE) derived from the variance-covariance matrices of the estimators across the 1000 Monte Carlo simulations.
The parameter values used in the DGPs are listed in the first row of the table.
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Table 6: DGP4 – Stronger Spatial Dependence in Productivity via Lagged Outputs and
Lagged Labor Inputs of Related Firms, and via Productivity Shocks

Estimator N T-1 Var
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 0.1 0.1 0.5 0.25 0.49

WGMM

500 9
Mean 0.8628 0.4100 - - 0.7129 - -
SD (0.0056) (0.0056) - - (0.0063) - -
SE (0.0070) (0.0069) - - (0.0090) - -

500 18
Mean 0.8497 0.4115 - - 0.7573 - -
SD (0.0039) (0.0040) - - (0.0044) - -
SE (0.0050) (0.0046) - - (0.0062) - -

750 9
Mean 0.8536 0.4139 - - 0.6937 - -
SD (0.0047) (0.0047) - - (0.0053) - -
SE (0.0055) (0.0056) - - (0.0075) - -

750 18
Mean 0.8382 0.4123 - - 0.7581 - -
SD (0.0032) (0.0032) - - (0.0034) - -
SE (0.0040) (0.0037) - - (0.0051) - -

1000 9
Mean 0.8389 0.4116 - - 0.6716 - -
SD (0.0041) (0.0040) - - (0.0051) - -
SE (0.0047) (0.0047) - - (0.0068) - -

1000 18
Mean 0.8295 0.4122 - - 0.7184 - -
SD (0.0028) (0.0029) - - (0.0034) - -
SE (0.0033) (0.0032) - - (0.0048) - -

SGMM

500 9
Mean 0.5998 0.4000 0.1001 0.1002 0.4994 0.2484 0.4881
SD (0.0079) (0.0054) (0.0021) (0.0034) (0.0080) (0.0322) (0.0107)
SE (0.0076) (0.0055) (0.0022) (0.0034) (0.0086) (0.0319) (0.0103)

500 18
Mean 0.6001 0.3998 0.1000 0.1000 0.4998 0.2497 0.4892
SD (0.0054) (0.0038) (0.0016) (0.0025) (0.0065) (0.0231) (0.0076)
SE (0.0055) (0.0039) (0.0016) (0.0025) (0.0065) (0.0224) (0.0073)

750 9
Mean 0.6004 0.3999 0.0999 0.0999 0.5002 0.2510 0.4896
SD (0.0060) (0.0046) (0.0018) (0.0026) (0.0067) (0.0272) (0.0090)
SE (0.0062) (0.0045) (0.0018) (0.0026) (0.0068) (0.0274) (0.0084)

750 18
Mean 0.6000 0.4001 0.1000 0.1000 0.4999 0.2498 0.4897
SD (0.0042) (0.0031) (0.0013) (0.0020) (0.0052) (0.0184) (0.0061)
SE (0.0042) (0.0032) (0.0013) (0.0020) (0.0053) (0.0183) (0.0060)

1000 9
Mean 0.5998 0.3999 0.1001 0.1001 0.4995 0.2491 0.4893
SD (0.0059) (0.0039) (0.0017) (0.0026) (0.0063) (0.0227) (0.0079)
SE (0.0057) (0.0039) (0.0017) (0.0026) (0.0062) (0.0226) (0.0073)

1000 18
Mean 0.6000 0.4001 0.1000 0.1000 0.5000 0.2502 0.4898
SD (0.0039) (0.0028) (0.0013) (0.0018) (0.0047) (0.0158) (0.0054)
SE (0.0040) (0.0027) (0.0012) (0.0019) (0.0047) (0.0160) (0.0052)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the average of the estimated
standard errors (SE) derived from the variance-covariance matrices of the estimators across the 1000 Monte Carlo simulations.
The parameter values used in the DGPs are listed in the first row of the table.
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Table 7: DGP5 – Negative Spatial Dependence in Productivity via Lagged Outputs and
Lagged Labor Inputs of Related Firms, and via Productivity Shocks

Estimator N T-1 Var
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 -0.1 -0.1 0.5 0.25 0.49

WGMM

500 9
Mean 0.3656 0.3929 - - 0.6527 - -
SD (0.0054) (0.0056) - - (0.0078) - -
SE (0.0062) (0.0066) - - (0.0098) - -

500 18
Mean 0.3748 0.3905 - - 0.6969 - -
SD (0.0038) (0.0040) - - (0.0058) - -
SE (0.0044) (0.0044) - - (0.0071) - -

750 9
Mean 0.3728 0.3888 - - 0.6334 - -
SD (0.0045) (0.0047) - - (0.0070) - -
SE (0.0050) (0.0053) - - (0.0081) - -

750 18
Mean 0.3813 0.3901 - - 0.7058 - -
SD (0.0031) (0.0032) - - (0.0043) - -
SE (0.0036) (0.0036) - - (0.0057) - -

1000 9
Mean 0.3801 0.3902 - - 0.6193 - -
SD (0.0040) (0.0041) - - (0.0058) - -
SE (0.0043) (0.0045) - - (0.0071) - -

1000 18
Mean 0.3863 0.3900 - - 0.6610 - -
SD (0.0027) (0.0029) - - (0.0043) - -
SE (0.0030) (0.0031) - - (0.0052) - -

SGMM

500 9
Mean 0.5998 0.4000 -0.0999 -0.0999 0.5000 0.2484 0.4882
SD (0.0078) (0.0054) (0.0029) (0.0034) (0.0089) (0.0322) (0.0107)
SE (0.0076) (0.0055) (0.0030) (0.0034) (0.0091) (0.0319) (0.0103)

500 18
Mean 0.6001 0.3998 -0.1000 -0.1001 0.4996 0.2497 0.4893
SD (0.0054) (0.0038) (0.0022) (0.0025) (0.0070) (0.0231) (0.0076)
SE (0.0054) (0.0039) (0.0022) (0.0025) (0.0070) (0.0224) (0.0073)

750 9
Mean 0.6003 0.3999 -0.1001 -0.1001 0.4995 0.2510 0.4896
SD (0.0061) (0.0046) (0.0024) (0.0027) (0.0074) (0.0273) (0.0090)
SE (0.0062) (0.0045) (0.0024) (0.0027) (0.0072) (0.0274) (0.0084)

750 18
Mean 0.6000 0.4001 -0.1000 -0.1000 0.5000 0.2498 0.4896
SD (0.0042) (0.0031) (0.0019) (0.0020) (0.0057) (0.0184) (0.0063)
SE (0.0042) (0.0032) (0.0019) (0.0020) (0.0057) (0.0183) (0.0060)

1000 9
Mean 0.5999 0.3999 -0.0999 -0.1000 0.5001 0.2491 0.4895
SD (0.0059) (0.0039) (0.0024) (0.0026) (0.0064) (0.0227) (0.0077)
SE (0.0057) (0.0039) (0.0023) (0.0026) (0.0066) (0.0226) (0.0073)

1000 18
Mean 0.6000 0.4001 -0.1001 -0.1001 0.4998 0.2502 0.4899
SD (0.0038) (0.0028) (0.0018) (0.0019) (0.0051) (0.0158) (0.0055)
SE (0.0040) (0.0027) (0.0018) (0.0019) (0.0051) (0.0160) (0.0052)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the average of the estimated
standard errors (SE) derived from the variance-covariance matrices of the estimators across the 1000 Monte Carlo simulations.
The parameter values used in the DGPs are listed in the first row of the table.
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Table 8: Production Function Estimations (Japanese Firms 2009–2018)

SGMM WGMM
(1) (2) (3) (4)

Wy
t−1 buyer-seller*CZ buyer-seller*CZ buyer-seller*CZ

WΩ
t−1 CZ CZ CZ

Wu
t CZ buyer-seller*CZ buyer-seller

α0 -8.0852 -7.9469 -7.9957 -4.4705
(0.1115) (0.1096) (0.1093) (0.0683)

αl 0.8110 0.7909 0.7969 0.7202
(0.0041) (0.0047) (0.0048) (0.0082)

αk 0.1386 0.1685 0.1659 0.2230
(0.0022) (0.0026) (0.0026) (0.0050)

ρ1 0.7724 0.7480 0.7472 0.8265
(0.0036) (0.0041) (0.0042) (0.0042)

βexporter 0.1898 0.1789 0.1795 0.1862
(0.0032) (0.0034) (0.0035) (0.0032)

βR&D 5.13E-07 7.95E-07 8.63E-07 1.83E-06
(1.27E-07) (1.46E-07) (1.40E-07) (2.01E-07)

λ 0.0053 0.0055 0.0057
(0.0003) (0.0003) (0.0003)

β 0.0550 0.0601 0.0596
(0.0020) (0.0022) (0.0022)

µ 0.6769 0.2788 0.2979
(0.0062) (0.0042) (0.0034)

σ2
v 0.0210 0.0246 0.0251

(0.0002) (0.0002) (0.0002)

no. of observations 141,780 141,780 141,780 141,780
no. of firms 14,178 14,178 14,178 14,178
industry FE Yes Yes Yes Yes

Notes: This table reports the estimations of Equations (1)–(3) based on the estimation methodology laid out in Section 3
and the connectivity matrices defined in Section 4.2. The function h(lit, kit,mit) in Equation (9) is approximated by
a second-order polynomial function: lpitk

q
itm

r
it for p + q + r ≤ 2, with nonnegative integers p, q and r. The slope

coefficient estimates δ are omitted from the table above. The function f(ν) in Equation (12) is assumed to be of
first order as in the conventional estimator. The list of instruments used for SGMM is: Zt,I = (ιN , ct, ct−1) and

Zt,II = (ιN , kt, ct−1,W
y
t−1yt−1,W

l
t−1lt−1, (W

y
t−1)

2yt−1, (W
l
t−1)

2lt−1). The list of instruments used for WGMM is

the same as those for SGMM, but excluding the related firms’ outputs and labor inputs (Wy
t−1yt−1, (W

y
t−1)

2yt−1,

Wl
t−1lt−1, (Wl

t−1)
2lt−1). We iterate the efficient GMM estimation procedure until the set of parameter estimates

converges.
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Table 9: Production Function Estimations (Japanese Firms 2009–2018) with Restricted Specifications

benchmark (1) (2) (3) (4) (5) (6)
Wy

t−1: buyer-seller*CZ Yes Yes No No Yes Yes No
WΩ

t−1: CZ Yes No Yes No Yes No Yes
Wu

t : buyer-seller*CZ Yes Yes Yes Yes No No No

α0 -7.9469 -5.2952 -8.5280 -5.4494 -8.3118 -4.2629 -8.6608
(0.1096) (0.0385) (0.1100) (0.0406) (0.1473) (0.0667) (0.1422)

αl 0.7909 0.8324 0.8243 0.8580 0.5466 0.6762 0.6230
(0.0047) (0.0040) (0.0041) (0.0041) (0.0144) (0.0081) (0.0099)

αk 0.1685 0.1334 0.1406 0.1198 0.2690 0.2447 0.2804
(0.0026) (0.0022) (0.0022) (0.0022) (0.0065) (0.0047) (0.0055)

ρ1 0.7480 0.7801 0.7824 0.8098 0.8780 0.8246 0.8272
(0.0041) (0.0036) (0.0035) (0.0034) (0.0037) (0.0041) (0.0041)

βexporter 0.1789 0.1833 0.1998 0.1981 0.1736 0.1720 0.1863
(0.0034) (0.0032) (0.0031) (0.0031) (0.0032) (0.0032) (0.0032)

βR&D 7.95E-07 1.05E-06 5.09E-07 9.82E-07 1.28E-06 1.22E-06 1.11E-06
(1.46E-07) (1.21E-07) (1.25E-07) (1.14E-07) (1.68E-07) (1.59E-07) (1.63E-07)

λ 0.0055 0.0068 0.0051 0.0067
(0.0003) (0.0003) (0.0002) (0.0003)

β 0.0601 0.0583 0.0510 0.0676
(0.0022) (0.0019) (0.0017) (0.0022)

µ 0.2788 0.2376 0.2249 0.1882
(0.0042) (0.0040) (0.0044) (0.0041)

σ2
v 0.0246 0.0208 0.0213 0.0186

(0.0002) (0.0002) (0.0002) (0.0001)

no. of observations 141,780 141,780 141,780 141,780 141,780 141,780 141,780
no. of firms 14,178 14,178 14,178 14,178 14,178 14,178 14,178
industry FE Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports the estimations of Equations (1)–(3), but with subsets of parameters restricted to be zeros, based on the estimation methodology laid out
in Section 3 and the connectivity matrices defined in Section 4.2. See Table 8 for further details. The list of instruments used for SGMM is: Zt,I = (ιN , ct, ct−1)

and Zt,II = (ιN , kt, ct−1,W
y
t−1yt−1,W

l
t−1lt−1, (W

y
t−1)

2yt−1, (W
l
t−1)

2lt−1), excluding subsets of the instruments (Wy
t−1yt−1, (Wy

t−1)
2yt−1, Wl

t−1lt−1,

(Wl
t−1)

2lt−1) whose corresponding spatial terms are not included in the estimations. We iterate the efficient GMM estimation procedure until the set of
parameter estimates converges.
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Figure 1: Number of firms in each industry in 2015
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Figure 2: Average firm’s employment in each industry in 2015
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Figure 3: Average number of connections in each industry in 2015
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Figure 4: Number of firms in each prefecture in 2015
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Figure 5: Average firm’s employment in each prefecture in 2015
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Figure 6: Average number of connections in each prefecture in 2015
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Figure 7: Number of commuting zones in each prefecture in 2015
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Figure 8: Number of firms in each commuting zone in 2015
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Figure 9: Average firm’s employment in each commuting zone in 2015
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Figure 10: Average number of connections in each commuting zone in 2015
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