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Abstract

This article concerns i) the stochastic behavior of the Box-Cox transformation estima-

tor and ii) the e®ect of estimating a transformation on the Box-Cox T-ratio used for the

post-transformation analysis. It is shown that the transformation estimator depends on three

factors: the model structure, the mean-spread and the error standard deviation ¾0. In general,

a structured model is able to estimate the transformation very well; an unstructured model

can do well also unless the mean-spread and ¾0 are both small; and a one-mean mode can give

a poor estimate if ¾0 is small. When the sample is not large, it is shown that the unconditional

e®ect of estimating a transformation on the Box-Cox T-ratio is generally small, and the 'condi-

tional' e®ect is also negligible in most of the situations except the case of one-way ANOVA with

small ¾0. Extensive Monte Carlo simulations are performed to support the theoretical ¯ndings.
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1 INTRODUCTION

In many applications of statistical modeling, a transformation of the dependent variable is

required to achieve a normal theory linear model with a simple mean structure and homoscedas-

tic errors. When such a transformation is known, the usual normal-theory linear model inference

methods can be directly applied to the transformed responses. When the transformation is un-

known, the common practice, as suggested by Box and Cox (1964), is to estimate the unknown

transformation parameter and then select a nearest simple number corresponding to a log or

square root, etc., transformation, and then carry out usual inferences for the parameters de¯ned

and interpreted on the selected scale.

Let y = (y1; ¢ ¢ ¢ ; yn)0 be the vector of responses, and h(y; ¸) = [h(y1; ¸); ¢ ¢ ¢ ; h(yn; ¸)]0 the

vector of transformed responses, where h(¢; ¸) is a strictly increasing transformation function,

known except the transformation parameter ¸, taking values on real line. Assume that there

exists a true value ¸0 of ¸ such that the vector h(y; ¸0) of the transformed observations satis¯es

h(y; ¸0) = X¯0 + ¾0e; (1.1)

Where ¯0 is a p£1 vector of regression parameters,¾0 is the standard deviation of the error term,

X is a known n£ p matrix of full rank, and ¾0e is an n£ 1 vector of independent errors of same

distribution.

Denote the parameter vector (¯00; ¸0; ¾0)' by »0 and its estimator ( ^̄0
n;

^̧
n; ¾̂n)

0 by »̂n. The

restricted estimator of (¯0; ¾0) when ¸0 is known is denoted by ( ^̄
n0; ¾̂n0). Thus, when ¸0 is

known, the post-transformation inference concerns ¯0 and is carried out based on the ¸0-known

T-ratio

T0 =

p
n( ^̄

n0 ¡ ¯0)

¾̂n0

which, after a suitable normalization, has a multivariate T-distribution when errors are exactly

normal.

When ¸0 is unknown and is estimated by ^̧
n, Box-Cox's analysis can be viewed as ^̧

n -¯xed

inference for ¯u(^̧n), de¯ned and interpreted on the selected scale ^̧
n, based on the Box-Cox

T-ratio

TBC(^̧n) =

p
n[ ^̄n ¡ ¯u(^̧n)]

¾̂n

with the ^̧
n -¯xed distribution of TBC(^̧n) approximated by the distribution of T0. For example,

for a particular data set if the resulted estimate of the transformation parameter is ^̧
n = 0.5, then

Box and Cox ¯t the model h(y; 0:5) = X¯u(0:5)+¾(0:5)e(0:5), and make inference about ¯u(0:5)

by approximating the distribution of TBC(0:5) by that of T0. Hinkley and Runger (1984, Sec.
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2.1) and Carroll and Ruppert (1988, Sec. 4.3.4) gave a similar interpretation. Notice that ^̧
n can

be equivalently replaced by a rounded value provided that rounding is done with reference to the

con¯dence interval.

Questions arise as how much the Box-Cox T-ratio TBC(^̧n) di®ers from the ¸0-known T-

ratio T0, and to what extent the ^̧
n-¯xed distribution of TBC(^̧n) can be approximated by the

distribution of T0. These are the crucial questions to the validity of Box-Cox transformation

methodology and are termed in this paper as the e®ect of estimating a transformation on the Box-

Cox T-ratio. The former corresponds to the unconditional e®ect and the latter the conditional

e®ect with ^̧
n regarded as ¯xed. Yang (1996) has studied these questions for large n, which

lead to the asymptotic validity of the Box-Cox transformation methodology. In this article, we

investigate these questions for small n case via a second-order asymptotic expansion of TBC(^̧n).

As this second-order expansion has a leading term T0 and a smaller order 'a®ecting' term that

involves ^̧
n, it is necessary to investigate ¯rst the stochastic behavior of ^̧

n, which is done by

Yang (1997) and reexamined in this article with improved and extended results.

The above two problems (in short, behavior of^̧n and e®ect of ^̧
n on TBC(^̧n) that will be

studied in this article are closely related (directly or indirectly) to the two problems raised in Box

and Cox (1982):

A. There are numerous aspects of transformations that merit further study. These include in particular

the further development of simple ways of assessing transformation potential; that is, of providing

some formal measure of the ability of particular data to provide useful information about a class of

transformations.

B. Suppose that the parameter of interest (di®erence, regression coe±cient, etc.) is de¯ned on the

data-dependent scale ^̧
n; in what circumstances do con¯dence intervals for these parameters calculated

in the "usual" way, as if ^̧
n were preassigned, provide an adequate approximation?

Section 2 presents general asymptotic expansions based on an M-estimation framework,

followed by a specialization to the Box and Cox (1964) maximum likelihood estimation framework,

which will be used throughout the article. Section 3 concerns the stochastic behavior of ^̧
n. Section

4 studies the unconditional behavior of TBC(^̧n). Section 5 investigates the ^̧
n-¯xed behavior of

TBC(^̧n) . Each of the Sections 3 to 5 is accompanied by Monte Carlo results to back up the

theoretical conclusions.

Putting ´ = X¯0 , we now summarize the major conclusions and discuss their relations and

implications to problems A and B. Most of the conclusions about ^̧
n were already reported in

Yang (1997).

First, the stochastic behavior of ^̧
n depends on three factors: the model structure, the
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spread in means (´0is) and the error standard deviation ¾0. In general, structured models such

as regression models or ANOVA models with at least two factors, are able to estimate ¸0 very

well; the unstructured models, such as single factor ANOVA model, are able to estimate ¸0 well

unless the spread in ´0is and ¾0 are both small; and a one-mean model can also do well unless ¾0

is small.

The practical implications of above conclusions as related to problem A are as follows. A

data set that came from an experiment using structured model is generally of high potential in

determining the transformation. A data set that came from an experiment using unstructured

or one-mean model still possesses a good potential in determining the transformation if the data

stretch to a wide range relatively, otherwise it will be di±cult to estimate the transformation.

As for the e®ect of estimation transformation on Box-Cox T-ratio, we ¯nd that, when n is

small, the di®erence between TBC(^̧n) and T0 is small in general, and hence the distribution of

TBC(^̧n) can be well approximated by that of T0. We also ¯nd that the ^̧
n-¯xed distribution of

TBC(^̧n) can be well approximated by the distribution of T0 for all models when ¾0 is not small.

When ¾0 is small, the approximation is still good in one-mean models and also reasonable in

structured models if the ¯xed-^̧n is within two standard deviations of ¸0; in unstructured models,

the ^̧
n-¯xed variance of ith element of TBC(^̧n) can be de°ated or in°ated depending on the signs

of ´i¡ ¹́ and ^̧
n¡¸0, with the magnitude depending on ´i¡ ¹́, but the sum of ^̧

n-¯xed variances

of the elements of TBC(^̧n) is stable.

The implication of these conclusions for problem B is quite clear: whenever the ^̧
n-¯xed

distribution of TBC(^̧n) can be well approximated by the distribution of T0 , then the usual

con¯dence intervals for the ^̧
n-dependent parameters will perform well. In this sense, all the

^̧
n-¯xed con¯dence intervals will perform well or reasonably well except the t-interval for the

individual mean of a one-way ANOVA model with ¾0 small relative to the mean-spread.

Hooper and Yang (1997) studied problem B where they interpreted the Box-Cox method

of post-transformation inferences as conditional inferences for ¯u(^̧n) based on TBC(^̧n) with the

conditional distribution of TBC(^̧n) given ^̧
n approximated by that of T0. Yang (1996) showed

under mild conditions that TBC(^̧n) is asymptotically equivalent to T0 and independent of ^̧
n.

Hence the two interpretations about the Box-Cox transformation methodology are asymptotically

equivalent.

Bickel and Doksum (1981) argued that the inference should be unconditional about ¯0 .

They showed that the usual normal-theory inference methods can fail because of the variance

in°ation due to transformation estimation. Box and Cox (1982) commented that this variance

in°ation is obvious but irrelevant for any sensible scienti¯c question. Hinkley and Runger (1984)
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and Cox and Reid (1987) further supported the Box and Cox's approach by claiming that the

slope parameters are stable in the so called z-scale that stabilizes or orthogonalizes the parameters.

Duan (1993) showed that this claim is true under certain symmetric conditions on the regressors,

but might fail when the symmetric conditions are not satis¯ed. Since the Box-Cox T-ratio is

typically invariant under the z-transformation, the z-scale is not considered here. A review of the

Box-Cox transformation technique is given by Sakia (1992).

2 ASYMPTOTIC EXPANSIONS

To facilitate the expansions, we introduce formally the de¯nition of the parameter of interest

after transformation selection. We employ the de¯nition given by Cohen and Sackrowitz (1987),

namely,

¯u(^̧n) = Expectation of ^̄
n treating ^̧

nas ¯xed: (2.1)

This de¯nition is consistent with our ^̧
n-¯xed interpretation of the Box-Cox's post-transformation

analysis. There are other de¯nitions, e.g., ¯c(^̧n)=Ef ^̄
nj^̧ng (Hinkley and Runger, 1984), which

is asymptotically equivalent to (2.1) (Bickel, 1984). See also Yang (1992, Chapter 2) for a general

discussion of the de¯nition and interpretation of the parameter of interest following a transfor-

mation selection.

Consider ¯rst the general M-estimation framework, i.e.,»̂n is an M-estimator of »0 which

solves

n¡1
nX

i=1

ª(yi; »̂n) = 0(p+2)£1 (2.2)

where ªi is a p + 2 dimensional vector-valued function having three components ª1i, ª2i and

ª3i that correspond to ¯, ¸0 and ¾0 respectively. Thus ª2i is dropped when ¸0 is known. Let

¹ª = ¹ª(y; »0) = n¡1Pn
i=1 ªi(yi; »0); _ª = _ª(y; »0) = (@=@»00) ¹ª(y; »0);

Äª = Äª(y; »0) = (@=@»0) _ª(y; »0); A = E _ª; B = E Äª;

where ¹ª is a (p+2)£1 vector, _ª and A are (p+2)£(p+2) matrices, Äª and B are (p+2)2£(p+2)

matrices or (p + 2)£ (p + 2)£ (p + 2) arrays. They are all partitioned according to (¯0; ¸0; ¾0).

The subvectors of ¹ª are denoted by ¹ª1, ¹ª2 and ¹ª3, the submatrices of _ª and A by _ªij and

Aij , i; j = 1; 2; 3, and the subarrays of Äª and B by Äªijk and Bijk, i; j; k = 1; 2; 3. For example,

¹ª1 = ¹ª1(y; »0 = n¡1Pn
i=1 ª1i(yi; psi0); a p£ 1vector;

_ª11 = _ª11(y; »0 = (@=@¯00) ¹ª1(y; Ã0); a p£ pmatrix;

Äª111 = Äª111(y; »0) = (@2=@¯0@¯
0
0)

¹ª1(y; »0); a p2 £ pmatrix or ap£ p£ parray:
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Note that all the quantities introduced above depend on n implicitly. Assume

C1: »̂n is root-n consistent,

C2: ¹ª = Op(n
¡1=2); and E¹ª = 0;

C3: _ª = A +Op(n
¡1=2);

C4: Äª = B +Op(n
¡1=2);

C5: A and A¡1 are O(1);with A13 = A0
31 = O(n¡1=2):

Assume further that the remainder term in the second-order Taylor expansions of the elements

of ªi has the order of (»̂n¡ »0)3, and that a random quantity bounded in probability has a ¯nite

expectation. Now we present some general results. The proofs are tedious and sketches are given

in the Appendix.

Theorem 2.1. Under the assumptions C1-C5,if ¯u(¸0) = ¯0 +O(n¡3=2), then as n!1,

we have a second-order asymptotic expansion for TBC(^̧n) and a ¯rst-order expansion for ^̧
n,

TBC(^̧n) = T0 + U1(^̧n ¡ ¸0) + U2(^̧n ¡ ¸0)
2 +Op(n

¡1; (2.3)

^̧
n ¡ ¸0 =

¹ª2A23A
1
33

¹ª3 ¡A21A
¡1
11

¹ª1

A21A
¡1
11 A12 ¡A22 + A23A

¡1
33 A32

+Op(n
¡1); (2.4)

where U1 and U2 in (2.3) are both Op(1) with the detailed expressions given at the end of Appendix.

It is unorthodox to keep a term U2(^̧n ¡ ¸0)
2 that is of the same order as the error term

Op(n
¡1) in the expression. However, for a ¯xed n, certain approximations (see Sections 4 and 5)

show that, for a structured model, as ¾0 ! 0, U2(^̧n¡¸2(^̧n¡¸0)
2 = Op(1) whereas U1(^̧n¡¸0) =

Op(¾0), showing that the magnitude of U2(^̧n ¡ ¸0)
2 will exceed that of U1(^̧n¡ ¸0 as ¾0 goes to

small. Hence this term is important for studying the small-¾0 behavior of TBC(^̧n). This term

vanishes for unstructured models.

The expansion (2.3) indicates that TBC(^̧n) and T0 di®er only on second order, hence

they are asymptotically equivalent and the Box-Cox ^̧
n-¯xed inference is asymptotic valid. Yang

(1996) reached the same conclusion using the ¯rst-order expansion of TBC(^̧n). He also gave a

¯rst-order expansion for the Bickel-Doksum T-ratio, obtained by replacing ¯u(^̧n) in TBC(^̧n) by

¯0, which indicates that the Bickel-Doksum T-ratio di®ers from T0 even on the ¯rst order, hence

the unconditional inference for ¯0 by approximating the distribution of Bickel-Doksum T-ratio by

that of T0 is not valid. This agrees with the observations made by Bickel and Doksum (1981).

Although the Box-Cox's ^̧
n-¯xed inference is asymptotically valid, its performance for mod-

erate sample sizes is still unclear to us. Theorem 2.1 provides a tool for tackling this problem.

Notice that in developing Theorems 2.1, we have assumed that A13 = O(n¡1=2). This is not

restrictive since A13 corresponds to ¯0 and ¾0 which are, respectively, the location and scale

parameters of the transformed model hence are orthogonal in the sense of Cox and Reid (1987).
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In the cases that errors are exactly normal and maximum likelihood estimation method is used

we have A13 = 0. There is no di±culty theoretically in deriving the asymptotic expansions if this

assumption is dropped, but the derivation will be more tedious.

Theorem 2.1 corresponds to the general M-estimation framework hence ªi and h functions

need not be speci¯ed, as long as the assumptions C1-C5 are satis¯ed. To study the stochastic

behavior of ^̧
n and TBC(^̧n) in detail, it is necessary to specify the functions ªi and h. Clearly,

the Box-Cox power transformation and the score function under normal errors are the popular

candidates. In this case, we have h(t; ¸) = (t¸ ¡ 1)=¸, if ¸ 6= 0; and log t, if ¸ = 0, and

ªi(yi; »0) =

8
>>>><
>>>>:

ª1i(yi; »0) = ¾¡2
0 xi[h(yi; ¸0)¡ x0i¯0];

ª2i(yi; »0) = log yi ¡ ¾¡2
0 [h(yi; ¸0)¡ x0i¯0] _h(yi; ¸0);

ª3i(yi; »0) = ¾¡3
0 [h(yi; ¸0)¡ x0i¯0]

2 ¡ ¾¡1
0 ;

(2.5)

where _h(yi; ¸0) = (@=@¸0)h(yi; ¸0).

The estimators from (2.5) are usually called the Box-Cox estimators. In this article,

we will concentrate on these. The estimators corresponding to other ªi and h functions can be

studied in a similar way. Now, let In denote an n£n identity matrix and Q = In¡X(X 0X)¡1X 0,

and let _h = _h(yi; ¸0)n£i and Äh = (@2=@¸2
0)h(yi; ¸0)n£1. Theorem 2.1 can be easily reduced to the

following.

Corollary 2.1. Assume that the ªi function in (2.5) satis¯es the assumptions C1-C5.

Then,

TBC(^̧n) = T0 + U1(^̧n ¡ ¸0) + U2(^̧n ¡ ¸0)
2 +Op(n

¡1); (2.6)

^̧
n ¡ ¸0

¾0
=

¾0
Pn
i=1 log yi + e0(PE_(h)¡ _h)¡ (1¡ e0e=n)E(e0 _(h))

E( _h0 _h)¡ E( _h0)PE( _h) + ¾0E(e0Äh)¡ 2n¡1[E(e0 _h)]2
(2.7)

where U1 =
p
n¾¡1

0 (X 0X 0)¡1X 0[ _h¡E_h¡eE(e0 _h)=n] and U2 = ¡(2¾2
0

p
n)¡1(X 0X)¡1X 0eE( _h0Q _h).

Proof. For (2.6), evaluate all the quantities involved in U1 and U2 of (2.3) using (2.5) and

the expressions of the Box-Cox estimators ¾̂2
n = n¡1[h0(y; ^̧n)Qh(y; ^̧n)] and ¾̂2

n0 = n¡1[h0(y; ¸0)Q

h(y; ¸0)]. Then eliminate the terms that are either Op(n
¡1 or negligible when ¾0 is small. For

(2.7), evaluate all the quantities involved in (2.4) and simplify. Clearly, the third term in (2.6)

is Op(n
¡1), negligible with respect to n but may not be negligible with respect to ¾0 when it is

small since ¾¡2
0 is involved in U2.

With the simpli¯ed results of Corollary 2.1, it is possible to study in detail the stochastic

behavior of ^̧
n (Section 3) and its e®ect on the Box-Cox T-ratio (Sections 4 and 5). When ¸0 = 0,

it is possible to express (2.6) and (2.7) explicitly in terms of X ,¾0 and e. However, when ¸0 6= 0

it is necessary to introduce a further approximation to logy.
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3 ESTIMATION OF BOX-COX TRANSFORMATION

This section presents detailed results regarding the stochastic behavior of the Box-Cox

estimator ^̧
n in various situations by further evaluating or approximating (2.7). Yang (1997) also

obtained the expansion (2.7) that was then approximated by the small ¾0 method. His results are

improved and extended by considering separately the log-transformation (¸0 = 0) where no further

approximation is necessary and other transformations (¸0 6= 0) where a better approximation

method is used. We ¯rst present some theoretical results and then some Monte Carlo simulations.

Throughout this article, we use # to denote the elementwise vector multiplication. Common

functions such as log applied to a vector are operated elementwise. A vector subtracted by a

scalar means elementwise subtraction.

3.1 Theoretical Results

Theorem 3.1. Assuming the ¯rst six moments of e1 are the same as those of a standard

normal random variable, when ¸0 = 0, we have for large n,

^̧
n ¡ ¸0

¾0
=

¡1
2(Q´2)0e¡ ¾0(´ ¡ ¹́)0e2 + 1

2¾
2
01
0
n(3e¡ e3)

1
4kQ´2k2 + 2¾2

0k´ ¡ ¹́k2 + 3
2n¾04

+Op(n
¡1); (3.1)

V ar(^̧n) =
¾2

0
1
4kQ´2k2 + 2¾2

0k´ ¡ ¹́k2 + 3
2n¾

4
0

+Op(n
¡1); (3.2)

when ¸0 6= 0,letting µi = ¸0¾0(1 + ¸0´i)
¡1; i = 1; ¢ ¢ ¢ ; n, we have for small µ0 and large n,

^̧
n ¡ ¸0

¸0
=

¡(µ¡1#Á+ 1
2µ)

0Qe¡ (Á¡ ¹Á)0e2 + 1
2µ
0(3e¡ e3)

kQ(µ¡1#Á+ 1
2µk2 + 2kÁ¡ ¹Ák2 + 3

2kµk2
+Op(n

1) +Op(µ
3
0); (3.3)

V ar(^̧n) =
¸2

0

kQ(µ1#Á+ 1
2µk2 + 2kÁ¡ ¹Ák2 + 3

2kµk2
+Op(n

1) +Op(µ
3
0): (3.4)

where µ0 = max jµij, µ = fµign£1, Ái = log(1 + ¸0´i), Á = fÁign£1, ¹Á = n¡1Pn
i=1 Ái and 1n is a

vector of 1's.

Proof. When ¸0 = 0, it is easy to show that _h(yi; 0) = lim¸0!0
_h(yi; ¸0) = 1

2(log yi)
2 and

Äh(yi; 0) = lim¸0!0
Äh(yi; ¸0) = 1

2(log yi)
3. Substituting X¯0 + ¾0e into (2.7) for log y gives (3.1)

and (3.2).

When ¸0 6= 0, we have _h(yi; ¸0) = ¸¡1
0 [1 + ¸0h(yi; ¸0)] log yi ¡ ¸¡1

0 h(yi; ¸0) and Äh(yi; ¸0) =

[ _h(yi; ¸0)¡¸¡2
0 ] log yi +¸¡2

0 h(yi; ¸0)¡¸¡1
0

_h(yi; ¸0). Thus, it is only necessary to further approxi-

mate log yi to make (2.7) explicit. From the relation log yi = ¸¡1
0 log[1 + ¸0h(yi; ¸0)], we have by

a Taylor expansion

¸0 log yi = log(1 + ¸0´i) + µiei ¡
1

2
µ2
i e

2
i +Op(µ

3
i ): (3.5)

Now using (3.5), some tedious algebraic work leads to (3.3) and (3.4). 3
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The proof of the ¯rst part of the theorem can also be reached from the second part by

letting ¸0 ! 0. The approximation (3.5) should be su±cient for most of the practical purposes

as it is necessary that the µ0is are small to guarantee positive y0is. The small µ0is can be achieved

when at least one of the following conditions is satis¯ed: i) ¾0 is small, ii) ´(1) = min j´ij is large,

and iii) ¸0 is small. When only a ¯rst-order approximation is used, it is called the small-µ method

by Draper and Cox (1969). The approximation (3.5) is more accurate than the small-µ method

and more general than the small-¾ approximations widely applied (Bickel and Doksum, 1981;

Hooper and Yang, 1997; and Yang, 1997). Note that having i) or ii) is equivalent to having a

large signal-to-noise ratio or a small coe±cient of variation.

Theorem 3.1 improves and extends the results of Yang (1997). For ¸0= 0, Bickel and

Doksum (1981) reported explicit formulas for the cases of one-mean model, one-way layout and

two-way layout with additive e®ects, which turn out to be the special cases of our formula (3.2).

Other works regarding ^̧
n and V ar(^̧n) include Draper and Cox (1969), Hinkley (1975), Atkinson

(1985), Lawrance (1987) and Cox and Reid (1987, Sec. 5). Yang (1998) derived (3.4) in a

non-rigorous manner.

Theorem 3.1 explicitly reveals the three factors governing the behavior of ^̧
n, namely the

model structure, the mean-spread and the error standard deviation, being respectively the ¯rst,

second and third term in the denominator of (3.4). Following conclusions can easily be drawn: in

general, structured models such as regression models or ANOVA models with at least two factors

are able to estimate ¸0 very well; the unstructured models such as single factor ANOVA models

are able to estimate ¸0 well unless the spread in ´0is and ¾0 are both small; and a one-mean model

can also do well unless ¾0 is small.

When ¾0 is large, all the models perform in a similar way and estimation of transformation

can be very easy. This point becomes clearer by observing that V ar(^̧n) in (3.2) goes to 0 as

¾0 !1, n ¯xed.

Finally, Theorem 3.1 also allows us to see the distributional property of ^̧
n: ^̧

n is governed

by three uncorrelated terms: the ¯rst is normal, and the second and third have zero means and

are asymptotically normal under standard conditions. Hence when n is large, ^̧
n should possess

a distribution quite close to normal. This point can not be clearly seen from the results of Yang

(1997).

In summary, i) our results can be used to measure the transformation potential of a partic-

ular set of data (Box and Cox, 1982), i.e., the extent to which it is feasible to determine a suitable

transformation from a particular type of data; ii) the results can be used for statistical inferences

about ¸0, such as developing a new test of ¸0; and iii) the results make it much easier the study of

9
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a more important problem of this article: the e®ect of estimating transformation on the Box-Cox

T-ratio.

Cox and Reid (1989) derived an expression for V ar(^̧n) based on an orthogonal parameter

setting, which has a very similar structure as ours. It also involves three factors, namely the

squared coe±cient of variation from the regression component, the coe±cient of variation of the

error component, and a kind of signal to noise ratio. However, our expression is explicit in terms

of the parameters ¸0, ¯0, and ¾0, and the design X , so that the e®ect of each of the factors on

V ar(^̧n) can be seen clearly.

3.2 Monte Carlo Simulations

All the conclusions drawn from Theorem 3.1 rely on the assumption of large sample size n.

It is necessary to check the applicability of these conclusions (i.e., the accuracy of the formulas)

when n is not large. For various parameter con¯gurations, the standard deviation (sd) of ^̧
n is

simulated and compared with that calculated from (3.2) or (3.4). We consider the parameter

con¯gurations such that the probability P [(1+¸0(´i+¾0ei)) < 0] is negligible for all i = 1; ¢ ¢ ¢ ; n.

When ¸0 = 0, there is no restrictions theoretically, but numerically it is restrictive to have a

very large mean. Each simulated number is based on 10,000 random samples. We consider three

completely di®erent models for illustration:

Model 1. A one-mean model with parameter settings: n = 50; ¸0 = 0.0, 0.05, 0.2 and 0.5;

¯0 = 0.1, 1.0, 5.0, 10.0, and 20.0; ¾0 = 0.1, 1.0, 2.0, and 10.0.

Model 2. A three-means model. The parameter settings are: n = 36 (12 for each mean);

¸0 = 0.0 and 0.1; ¯00 = (31, 21, 11), (21, 11, 1), and (12, 11, 10); ¾0 = 0.01, 0.1, 1.0, 2.0, and 5.0.

Model 3. A 33 factorial design with linear e®ects where n = 27, ¯00 = (5.2523, 0.569,

-0.4312, -0.2682), the ¯tted value of the textile example of Box and Cox (1964); ¸0 = 0.0, 0.1 and

-0.05; and ¾0 = 0.01, 0.1, 1.0, 2.0, and 5.0.

The selected results are summarized in Table 3.1. Detailed results are available from the

author upon request. The results generally show that the formulas (3.2) and (3.4) are very

accurate. Thus, the analytical conclusions are applicable when n is not large. It is interesting to

note that in the one-mean model the sd of ^̧
n decreases almost linearly with the increase of ¾0. In

the three-means model, the sd of ^̧
n decreases signi¯cantly as the means move further apart and

when the mean-spread is large the sd of ^̧
n depends very little on ¾0; when ¾0 is large relative

to the mean-spread, the sd of ^̧
n is small. Furthermore, the magnitude of ¯0 plays no role in the

behavior of when ¸0 = 0, but plays some role when ¸0 6= 0. In the 33 factorial design, the sd of

^̧
n reaches to its maximum at a certain value of ¾0.
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Table 3.1: Selected results for the simulated and calculated (lower entry) sd0s of ^̧
n

Model 1, ¸0 = 0:0 Model 2, ¸0 = 0:1

¾0
. . . ¯0 0.1 1.0 5.0 20.0 ¯0

. . . ¾0 0.01 0.1 1.0 2.0

0.1 1.2341 1.2402 1.2143 { 31,21,11 0.0471 0.0468 0.0446 0.0459

1.1547 1.1547 1.1547 1.1547 0.0430 0.0430 0.0427 0.0419

1.0 0.1232 0.1227 0.1243 0.1237 21,11,1 0.0299 0.0298 0.0197 0.0294

0.0115 0.0115 0.0115 0.0115 0.0276 0.0276 0.0274 0.0267

10.0 0.0124 0.0124 0.0122 0.0123 12,11,10 0.4586 0.4839 0.3392 0.2096

0.0115 0.0115 0.0115 0.0115 0.4472 0.4448 0.3067 0.1906

Model 3, ¸0 = 0:0 Model 3, ¸0 = ¡0:15

¾0 = 0:1 0.1 1.0 2.0 5.0 ¾0 = :01 0.1 1.0 2.0 5.0

0.0083 0.0817 0.1472 0.0856 0.0359 0.0064 0.0601 0.1083 0.0618 {

0.0085 0.0792 0.1262 0.0739 0.0311 0.0063 0.0585 0.0928 0.0543 0.0229

4 THE UNCONDITIONAL EFFECT

We now start to investigate the e®ect of estimating a transformation on the Box-Cox T-

ratio. We ¯rst study the simpler unconditional e®ect, and then the harder conditional e®ect with

regarded as ¯xed in next section. Again the theoretical results are followed by the Monte Carlo

simulations. Simulation serves the purpose of con¯rmation of using second-order expansion to

approximate the small sample e®ect of transformation estimation, and thus checks the reliability

of the theoretical conclusions.

4.1 Theoretical Results

Theorem 4.1. Assuming i) the ¯rst six moments of e1 are the same as those of a standard

normal random variable, ii) X 0X = O(n), and iii) the conditions of Corollary 2.1 are true, we

have

TBC(^̧n) = T0 + ~U1(^̧n ¡ ¸0) + ~U2(^̧n ¡ ¸0)
2 +Op(n

¡1) +Op(µ
3
0); (4.1)

V ar[TBC(^̧n)] = V ar(T0) +Op(n
¡1) +Op(µ

3
0); (4.2)

where ~U1 =
p
n¸¡1

0 (X 0X)¡1X 0[(Á¡¹Á)#e+1
2µ#(e2¡1)], and ~U2 = ¡1

2n
1=2(X 0X)¡1X 0ekQ(µ¡1#Á)k2.

Proof. For (4.1), evaluating U1 of (2.6) using (3.5) gives ~U1. The transition from U2 to ~U2 is

based on the following arguments. For ¯xed ¾0; U2(^̧n¡¸0)
2 = Op(n

¡1), which should be absorbed

into the error term. However, for structured models with n ¯xed, it can be seen using (3.5) and

the results of Theorem 3.1 that, as ¾0 ! 0; U2(^̧n ¡ ¸0)
2 = Op(1) while U1(^̧n ¡ ¸0) = Op(¾0),
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suggesting that the leading term of U2, that is ~U2, should be kept for the purpose of small ¾0

study. This term becomes more important when studying the ^̧
n-¯xed behavior of TBC(^̧n) in

Section 5.

For (4.2), based on the general assumption of Section 2 that a quantity bounded in probabil-

ity has a ¯nite expectation it su±ces to show that Cov[T0; ~U2(^̧n¡¸)2] is of order Op(n
¡1) that is

easy by Theorem 3.1 and that Cov[T0; ~U2(^̧n¡ ¸0)
2] is negligible when ¾0 is small. Some algebra

leads to Cov[T0; ~U2(^̧n ¡ ¸0)
2] ¼ ¡2(X 0X)¡1 when ¾0 is small, showing that it is negligible. 3

Note that for the case of log transformation, the Op(µ
3
0) term in Theorem 4.1 vanishes and

the exact expressions of U1 and U2 can be obtained by either the relation _h(y; 0) = 1
2 log2 y directly

or letting ¸0 ! 0 in the expressions of ~U1 and ~U2, which gives

U1 =
p
n(X 0X)¡1X 0[(´ ¡ ¹́)#e+

1

2
¾0(e

2 ¡ 1)] and U2 = ¡(8¾2
0

p
n)¡1(X 0X)¡1X 0ekQ´2k2:

The results in Theorem 4.1, especially (4.2), is certainly encouraging. It says that when n is

small, estimating the transformation has very little e®ect on the variance of TBC(^̧n) in any

situations. In contrast, ^̧
n depends very much on the model type, mean spread and magnitude

of error variance. Our results also show that TBC(^̧n) does not depend on the symmetry of

design. In contrast, the stability (with respect to ^̧
n) of the estimated slope coe±cients on the

z scale depends on the symmetry of design (Duan, 1993). The small n e®ect (unconditional) of

estimating transformation on higher moments of TBC(^̧n) can be studied in detail by examining

the "a®ecting" term U1(^̧n ¡ ¸0) + U2(^̧n ¡ ¸0)
2 at various situations, which can be done in

connection with Theorem 3.1. The investigations can be made easier by ¯rst concentrating on

the log transformation (¸0=0) and then generalizing to other transformations.

(i) When Q´2 6= 0, which happens when model for the means have structure, such as

regression models or factorial models with two or more factors, the e®ect is small if ¾0 is small

since U1
^̧
n is small in the sense of ¾0 and U2

^̧2
n is small in the sense of n. This point becomes

more evident from the limits:

lim
¾0!0

(U1
^̧
n) = 0 and lim

¾0!0
(U2

^̧2
n) = ¡1

2
n¡1=2kQ´2k¡2(X 0X)¡1X 0e[e0Q´2]2;

where the second one is clearly of the same order as the error term Op(n
¡1).

(ii) When Q´2 = 0, which occurs when model for the means does not have structure, such

as one factor ANOVA model, U2 vanishes and U1
^̧
n is a quantity of order Op(n

¡1=2). When ¾0 is

small U1
^̧
n is quite stable with respect to the changes in parameter values as seen from the limit,

lim
¾0!0

(U1
^̧
n) =

1

2

p
nk´ ¡ ¹́k¡2(X 0X)¡1X 0[(´ ¡ ¹́)#e](´ ¡ ¹́)0e2
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. (iii) When k´ ¡ ¹́k = 0, which happens when all means are equal, we have

U1
^̧
n ¼

1

6
n¡3=210n(3e¡ e3)10n(e2 ¡ 1);

a quantity independent of ¾0 and ¯0, of order Op(n
¡1=2) and expected to be small. This is in

contrast to the behavior of ^̧
n in one-mean models where V ar(^̧n) can be very large when ¾0 is

small.

(iv) Finally when ¾0 is large, all models behave like a one-mean model as evidenced by the

limit

lim
¾0!1

(U1
^̧
n) =

1

6
n¡3=210n(3e¡ e3)10n(e2 ¡ 1);

hence the e®ect in this case is expected to be small in general.

The discussions i)-iii) above extend directly to ¸0 6= 0 cases. The last discussion extends

to ¸0 6= 0 cases where ¾0 is large but µ0 is still small.

4.2 Monte Carlo Simulations

We now present some simulation results to con¯rm our theoretical conclusions. We consider

again the three models used in Section 3 with similar parameter con¯gurations. The selected

results are put in Tables 4.1. When the errors are exactly normal, V ar(T0) = [n2=(n ¡ p ¡
3)](X 0X)¡1 with the degrees of freedom (df) of T0 reduced by one, i.e., df = n ¡ p ¡ 1. The

reduction in df is to account for the estimation of . Simulation results exhibit a general excellent

agreement between V ar[TBC(^̧n)] and V ar(T0). This illustrates the accuracy of second-order

expansion (4.2) when n is not large.

To demonstrate the e®ect of design, we also consider an asymmetric 23 factorial design

obtained by modifying the design matrix in the above symmetric 33 factorial design by changing

the level '-1' to '0', while leaving the others unchanged (Duan, 1993). The results in Table 4.1

show that symmetry of design is not important to the behavior of TBC(^̧n).

5 THE EFFECT OF TRANSFORMATION MISSPECIFICATION

We now study the e®ect of transformation misspeci¯cation on the Box-Cox T-ratio, i.e., the

^̧
n-¯xed behavior of TBC(^̧n). That is the key issue to the validity of the Box-Cox transformation

methodology. This is done by comparing the ^̧
n-¯xed mean and variance of TBC(^̧n) with the

mean and variance of T0. The study of the ^̧
n-¯xed behavior can be interpreted as sensitivity

analysis of TBC(^̧n) when ^̧
n is di®erent from ¸0 (Duan, 1993). By ^̧

n-¯xed we mean ignoring

the randomness of ^̧
n but not the e®ect of changing parameter values and sample size. This is

handled by writing ^̧
n = ¸0 + ¢¿(^̧n), where ¢ is the standardized ^̧

n and ¿(^̧n) is the standard
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Table 4.1: Simulated sd0s of the ith element (ti) of the Box-Cox it T-ratio

Model 1, ¸0 = 0:0, sd(T0) = 1:0426 Model 2, ¸0 = 0:05, sd(T0i) = 1:8974

¾0
. . . ¹0 0.1 1.0 5.0 20.0 ¯0 ¾0 t1 t2 t3

0.1 1.0633 1.0565 1.0605 { 21,11,1 0.01 1.9481 1.9318 1.9608

1.0 1.0570 1.0579 1.0608 1.0585 0.1 1.9575 1.9293 1.9334

10.0 1.0593 1.0617 1.0529 1.0563 1.0 1.9543 1.8920 1.9403

5.0 1.9631 1.8981 1.9393

Model 3: ¸0 = 0:0, ¯rst row is sd(T0) 23 factorial design: ¸0 = 0:0, ¯rst row is sd(T0)

¾0 t1 t2 t3 t4 ¾0 t1 t2 t3 t4

1.1619 0.4230 1.4230 1.4230 1.8371 2.4646 2.4054 2.4054

0.001 1.1655 1.4501 1.4259 1.4365 0.001 1.9054 2.5975 2.5657 2.5849

1.0 1.1604 1.4262 1.4285 1.4249 0.1 1.8636 2.4878 2.4771 2.4568

1.0 1.1927 1.4304 1.4234 1.4116 1.0 1.8683 2.4624 2.4357 2.4341

5.0 1.1975 1.4136 1.4172 1.4156 5.0 1.8448 2.4252 2.4290 2.4740

deviation of ^̧
n. Fixing ^̧

n means ¯xing ¢ but not ¿(^̧n) with respect to ´, ¾0 and n. This is

practically meaningful as, for example, when n = 25 one obtains ^̧
n = 0.5, which can be used to

transform the current data set or future data set of the same size and from the same situations.

However, when data set is doubled in size or the experimental setting is changed, one de¯nitely

would not use the same '0.5' to transform the data, instead would reestimate the transformation

value.

5.1 Theoretical Results

Theorem 5.1. Assume that the conditions of Corollary 2.1 are satis¯ed, then

E[TBC(^̧n)j¢ ¯xed] = E(T0) +Op(n
¡1); (5.1)

V ar[TBC(^̧n)j¢ ¯xed] = V ar(T0) + 2¡(¢) +Op(n
¡1); (5.2)

where ¡(¢) = ¢¿(^̧n)E(T0U
0
1)¡¢2¿2(^̧n)E(T0U

0
2).

Proof. This is straightforward following Corollary 2.1.

When µ0 is small, U1 and U2 in Corollary 2.1 can be approximated by ~U1 and ~U2 of Theorem

4.1. Thus, E(T0U
0
1) and E(T0U

0
2) can be easily approximated, which gives,

¡(¢) ¼ n¸¡1
0 ¢¿(^̧n)(X

0X)¡1X 0DX(X 0X)¡1 ¡ 1

2
¾¡2

0 ¢2¿2(^̧n)kQak2(X 0X)¡1; (5.3)

where D = DiagfÁi ¡ ¹Ágn£n, and a = ¸¡2
0 (1 + ¸0´) log(1 + ¸0´).
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Letting ¸0 ! 0 in (5.2) gives an expression for corresponding to a log-transformation.

Using (5.2) in connection with Theorem 3.1, we can summarize the behavior of ¡(¢) for ¢ ¯xed

as follows.

(i) For structured models with small ¾0, ¡(¢) becomes negative, suggesting that the ^̧
n-

¯xed variance of TBC(^̧n) is smaller than V ar(T0). That is, a misspeci¯ed transformation de°ates

the variance of Box-Cox T-ratio. This can be seen more clearly from the limit

lim
¾0!0

¡(¢) = ¡1

2
¢2(X 0X)¡1:

However, as it is very likely that ¢ takes values in the interval (-2, 2), that is, ^̧
n is within two

standard deviations of ¸0, this de°ation factor will be small, especially when n is large.

(ii) For unstructured models, the second term in (5.2) vanishes, and when ¾0 is small, the

ith diagonal element of ¡(¢) is positive if ¢(Ái¡ ¹Á) > 0 and negative if ¢(Ái¡ ¹Á) < 0, suggesting

that ^̧
n-¯xed variance of ith element of TBC(^̧n) is accordingly larger or smaller than the ith

diagonal element of V ar(¸0). This point becomes more evident from the following limit,

lim
¸0!0

¡(¢) =
1p
2
n¢kÁ¡ ¹Á1nk¡1(X 0X)¡1X 0DX(X 0X)¡1:

Hence when n is small the ^̧
n-¯xed e®ect may not be negligible for an unstructured model with

¾0 small relative to the spread in means. Further, it is easy to see that tr¡(¢) = 0 or close to 0,

suggesting that the total variance trV ar[TBC(^̧n)] does not depend much on the value of ^̧
n.

(iii) For a one-mean model, ¡(¢) = 0, indicating that when n is small the ^̧
n-¯xed e®ect

of a estimating transformation will be very small in this case.

(iv) Finally when ¾0 is large, all models behave like a one-mean model and the e®ect of

transform-ation misspeci¯cation is very small as evidenced by lim¾0!1 ¡(¢) = 0 for ¸0 = 0. This

limit suggests that for other transformations ¡(¢) is small when ¾0 is large but µ0 is small.

Combining the results of Section 3 and 5, we conclude that in the cases that ^̧
n behaves

poorly such as one-mean models with small ¾0, TBC(^̧n) is very robust to the changes of ^̧
n,

while in the cases that TBC(^̧n) is sensitive to the changes in ^̧
n such as unstructured models

with ¾0 small relative to the mean-spread, ^̧
n behaves very well. This is an important conclusion;

it sheds light on the validity of Box-Cox methodology. The practical implication of these results

is profound: the Box-Cox transformation methodology performs well in most of the statistical

inferential situations.

5.2 Monte Carlo Simulations

The three models in Section 3 are used again with similar parameter settings. The simulation

results reported in Tables 5.1 are the simulated ^̧
n-¯xed standard deviations of TBC(^̧n) or the
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Table 5.1: Simulated ^̧
n-¯xed sd of TBC(^̧n)

Model 1: ¸0 = 0:0, sd(T0) = 1:0342 Model 2: ¸0 = 0:01; ¯0 = (12; 11; 10)0

sd(T0i) = 1:8974

¢ ¾0 ¹0 = 0:1 ¹0 = 1:0 ¹0 = 10 ¢ ¾0 t1 t2 t3

3 0.1 1.0585 1.0598 1.0416 3 0.01 2.5872 1.6783 1.0891

-3 1.0580 1.0657 1.0494 -3 1.0967 1.6608 2.5874

3 1.0 1.0492 1.0493 1.0493 3.0 0.1 2.5739 1.6925 1.0837

-3 1.0632 1.0461 1.0612 -3 1.1153 1.6704 2.6194

3 10. 1.0485 1.0520 1.0627 3 2.0 2.2163 1.8336 1.5580

-3 1.0460 1.0463 1.0396 -3 1.5304 1.8360 2.2273

Model 3: ¸0 = 0:0;¢ = §2; sd(T0) = (1:1619; 1:4230; 1:4230; 1:4230)

¾0 t1 t2 t3 t4 ¾0 t1 t2 t3 t4

0.001 1.0719 1.2924 1.2823 1.3016 1.0 1.1635 1.4044 1.3778 1.4059

1.0637 1.2983 1.2849 1.3096 1.1460 1.3921 1.3871 1.3759

0.1 1.0498 1.2934 1.2969 1.2819 10.0 1.1447 1.3846 1.3846 1.3883

1.0685 1.2878 1.2899 1.2940 1.1630 1.3919 1.3992 1.3704

element of TBC(^̧n) indicated by ti in the table when ^̧
n = ¸0 + ¢¿(^̧n) with ¢ = §2;§3. The

value of ¿(^̧n) is calculated using (3.2) or (3.4). More extensive simulation results are available

from the author.

The results for a one-mean model show that sd[TBC(^̧n)j^̧n¯xed] can be well approximate

by sd(T0) for any situations, irrespective to the size of the di®erence ^̧
n ¡ ¸0. This means that

for the one-mean model TBC(^̧n) is very robust against transformation misspeci¯cation. The

results for the three-means model show that the ^̧
n-¯xed e®ect on the individual variance can

be signi¯cant but not on the total variance, which is consistent with the theory. In model 3,

our theory suggests that the ^̧
n-¯xed sd of TBC(^̧n) be smaller than sd(T0) when ¾0 is small.

Simulations show that it is indeed smaller, but only slightly if j¢j · 2. The e®ect is small when

¾0 is moderate to large. The ^̧
n-¯xed sd of TBC(^̧n) can also be easily approximated by (5.1).

Calculations (not reported) show that it is very accurate.
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APPENDIX: Proof of Theorem 2.1

A second-order Taylor expansion of ¹ª1(y; Ã̂n) around (¯0; ¸0; ¾0) gives

0 = + ¹ª1 + _ª11( ^̄
n¯0) + _ª12(^̧n ¡ ¸0) + _ª13(¾̂n ¡ ¾0) + 1

2 [Ip  ( ^̄
n ¡ ¯0)

0] Äª111( ^̄
n ¡ ¯0)

+1
2
Äª122(^̧n ¡ ¸0)

2 + 1
2

Äª133(¾̂n ¡ ¾0)
2 + Äª112( ^̄

n ¡ ¯0)(^̧n ¡ ¸0)

+ Äª113( ^̄
n ¡ ¯0)(¾̂n ¡ ¾0) + Äª123(^̧n ¡ ¸0)(¾̂n ¡ ¾0) +Op(n

¡3=2): (A1)

First-order Taylor expansions of ¹ª1(y; Ã̂n) and ¹ª3(y; Ã̂n) around (¯0; ¸0; ¾0) yield

^̄
n ¡ ¯0 = ¡A¡1

11 [ ¹ª1 + A11(^̧n ¡ ¸0)] +Op(n
¡1): (A2)

¾̂n ¡ ¾0 = ¡A¡1
33 [ ¹ª3 + A32(^̧n ¡ ¸0)] +Op(n

¡1): (A3)

Substituting A2 and A3 into A1 for the terms of order Op(n
¡1) and replacing Äªijk by Bijk

give

^̄
n ¡ ¯0 = ¡A¡1

11 f ¹ª1 ¡ ( _ª11 ¡A11)A
¡1
11

¹ª1 ¡ _ª13A
¡1
33

¹ª3 + 1
2 [Ip  (A¡1

11
¹ª1)]

0B111A
¡1
11

¹ª1

+1
2B133(A¡1

33
¹ª3)2 + B113A

¡1
11 A¡1

33
¹ª1

¹ª3g ¡A¡1
11 f _ª12 ¡ ( _ª11 ¡A11)A¡1

11 A12

¡ _ª13A
¡1
33 A32 + [Ip  (A¡1

11
¹ª1)]

0B111A
¡1
11 A12 + B133A

¡2
33 A32

¹ª3 ¡B112A
¡1
11

¹ª1

+B113A
¡1
11 A1

33(
¹ª1A32 + A12

¹ª3)¡B123A
¡1
33

¹ª3g(^̧n ¡ ¸0)¡A¡1
11 f1

2B122

+1
2 [Ip  (A¡1

11 A12)]
0B111A

¡1
11 A12 + 1

2B133(A
¡1
33 A32)

2 ¡B112A
¡1
11 A12

+B113A
¡1
11 A¡1

33 A12A32 ¡B123A
¡1
33 A32g(^̧n ¡ ¸0)

2 +Op(n
¡3=2): (A4)

Now, taking expectation of A4 treating ^̧ as ¯xed gives expansions of ¯u(^̧n) and ^̄
n¡¯u(^̧n).

Letting ^̧
n = ¸0 in the expansion of ¯u(^̧n) and ^̄

n¡¯u(^̧n) results in an expansion for ^̄
n0¡¯u(¸0).

Thus,

^̄
n ¡ ¯u(^̧n) = ^̄

n0 + the second-order term +Op(n
¡3=2): (A5)

Now, considering ¾̂¡1
n as a function of ¾̂2

n, a ¯rst-order Taylor expansion gives

¾̂¡1
n = ¾̂¡1

n0 ¡ 1
2¾

¡3
0 (¾̂2

n ¡ ¾̂2
n0) +Op(n

¡1); (A6)

and considering ¾̂2
n as a function of ^̧

n, we have by a second-order Taylor expansion around ¸0

¾̂2
n = ¾̂2

n0 + _r(¸0)(^̧n ¡ ¸0) + Är(¸0)(^̧n ¡ ¸0)
2; (A7)

where _r(¸0) and Är(¸0) are the ¯rst and second derivatives of ¾̂2
n with respect to ^̧

n evaluated

at ¸0. Substituting (A7) into (A6) and multiplying the resulted expression by (A5) side by side

and then by
p
n gives the ¯rst part of Theorem 2.1. The second part is obtained by substituting

(A2) and (A3) into

0 = ¹ª(y; ª̂n) = ¹ª2 + _ª21( ^̄
n ¡ ¯0) + _ª22(^̧n ¡ ¸0) + _ª23(¾̂n ¡ ¾0) +Op(n

¡1):
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The ¯nal expressions of U1 and U2 are given as follows

U1 = 1
2

p
n¾¡3

0 A¡1
11

¹ª1 _r(¸0)¡
p
n¾¡1

0 A¡1
11 f _ª12 ¡A12( _ª11 ¡A11)A11¡1A12 ¡ _ª13A

¡1
33 A32

+[Ip  (A¡1
11

¹ª1)]
0B111A11¡1A12 + B133A33¡2A32

¹ª3 ¡B112A
¡1
11

¹ª1

B113A
¡1
11 A33¡1( ¹ª1A32 + A12

¹ª3)¡B123A
¡1
33

¹ª3g;
U2 = 1

4

p
n¾¡3

0 A¡1
11

¹ª1Är(¸0):
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