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Abstract 

  Statistical inference based on the Weibull distribution, a distribution widely used in 

reliability and survival analysis, is usually difficult as it often involves numerical computa-

tion and approximation. However, this distribution can be transformed to near-normality 

by a simple power transformation.  Based on this transformation, a prediction interval (PI) 

for its median can be easily constructed through an inverse transformation.  The procedure 

for selecting the best power transformation through minimizing Kullback-Leibler infor-

mation is described.  The property of this transformation-based PI is investigated. Simple 

correction factors are also proposed.  It is shown that the transformation-based PI with 

corrections performs well, irrespective of the sample size and parameter values.  Simula-

tion results show that the new PI generally outperforms the existing PI.  Numerical 

examples are given for illustration.  
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1.  Introduction 

 
  The median of a lifetime distribution is usually interpreted as the 'typical' life or the 

'characteristic' life of a population.  Hence inference concerning the median is often an 

interesting study in the fields of reliability, quality control, medical and biological scienc-

es, etc. The Weibull distribution (Weibull, 1951) is one of the most popular lifetime 

distributions upon which numerous research articles have been published and active 

research is still going on (Bain and Engelhardt, 1991 and Johnson et al., 1994), especially 

in relation to engineering and medical applications.  However, simple and accurate statis-

tical methods for basic problems such as prediction interval for the median do not seem to 

exist, as the statistical inference for the Weibull distribution is generally difficult.  Nelson 

(1982, p232) describes an approximate method that is rough unless the sample size is 

larger than 100.  Lawless (1974, 1978) gives a method for exact conditional confidence 

limits, but the method requires a special computer program for its implementation.   

 On the other hand, most lifetime distributions are transformable to near-normality 

(Hernandze and Johnson, 1980; Yang 1999b), hence certain statistical intervals can be 

constructed through an inverse transformation if the quantity of interest is invertable 

(Hahn and Meeker, 1991, p72-74), such as the median or general percentiles.  This ap-

proach is attractive for its simplicity hence should be recommended for the cases where 

the existing methods are too complicated to be implemented in practice.  It usually works 

well if the data can be transformed to exact normality and the transformation is known.  

Often in practice, however, the transformation may be known only up to a certain func-

tional form.  Certain transformation parameter(s) have to be decided based on the data 

(Box and Cox, 1964).  Also, in many situations, even the 'best' transformation may only be 

able to transform the data to near-normality.  Hence for the transformation-based predic-
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tion or prediction intervals, there are two general issues that require rigorous examination, 

namely, the effect of nonnormality and the effect of estimating the transformation, which 

are often ignored by practitioners.   

  In this article, we explore a transformation approach for the construction of a simple 

prediction interval for the Weibull median and compare it with the one described in 

Nelson (1982).  The Weibull distribution can be transformed to a near-normal distribution, 

and many statistical methods for normal distribution can then be applied. Using the 

transformation approach, one first transforms the data by some monotonic transformation 

so that the transformed data become closely normally distributed. Then a prediction 

interval for the median of the transformed future observation can be derived. Finally, the 

interval for the transformed median can be inverted to give a prediction interval for the 

original median.  In this article, a simple power transformation is considered.  The effect 

of nonnormality and the effect of estimating transformation are quantified.   

 The paper is organised as follows. In Section 2, the transformation-based PI for the 

Weibull median is outlined, and its asymptotic property is discussed.  Section 3 presents 

some theoretical results that quantify the large sample effect of nonnormality and the 

effect of estimating transformation.  Based on this theory, simple correction factors are 

proposed.  Section 4 presents simulation results for the small sample behaviour of the 

proposed and existing PIs.  Two numerical examples are given in Section 5 for further 

comparisons and for illustrations.  Finally, a general discussion is given in Section 6. 

  The simulation results show that the corrected transformation-based PI performs very 

well in general, irrespective of the sample size and values of the parameters.  When 

sample size is not large the new PI outperforms the existing PI, particularly in terms of the 

coverage probability.  This means that the new PI is not only simple but also accurate.  
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The results shed much light on the application of the transformation approach to more 

complicated Weibull prediction problems concerning percentiles or reliabilities, etc., and 

to the prediction problems under a Weibull regression model.  

 

2.  The Transformation-based Prediction interval 

 
  Let X = ),,,( 21 nXXX   be a sample of past observations from a Weibull population 

and 0X  a single future observation from the same population with the cumulative distribu-

tion function (CDF) 

),;( βαxF  = 1 − ])(exp[ βαx− , 

where α  is the scale parameter and β  is the shape parameter.  Let 0θ  be the median of 

0X .  We are interested in constructing a prediction interval for 0θ  using the transfor-

mation approach and compare it with the existing one. 

 
2.1.   Power transformation of Weibull to near-normality  

  Let )(λX  be a monotonic transformation of a Weibull random variable X and 

),,;( λβαyf  be its probability density function (pdf).  Let ),;( σμφ y  be the pdf of a 

normal random variable with a mean μ  and a standard deviation σ .  Clearly, we want to 

find a transformation such that the two pdfs ),,;( λβαyf  and ),;( σμφ y  are closest in a 

certain sense for some chosen λ , μ  and σ .  A popular measure of discrepancy between 

two pdfs is called  Kullback-Leibler (KL) information (Kullback, 1968) defined as 

),( φfI  =  
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When )(λX  is the simple power transformation )(λX  = λX , Hernandez and Johnson 

(1980) showed that the best normalizing transformation for the Weibull distribution in the 

sense of a minimized KL information has the power parameter given as 

0λ  = 0 β, 

where 0  is the solution of the following equation 
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where γ  is the Euler constant, )(αΓ  is the gamma function and )(αΨ  is the di-gamma 

function that is defined as the derivative of log )(αΓ .  All the functions can be easily 

calculated using some statistical software such as MATHEMAICA, and the equation (2.1) 

can be easily solved, which gives a value 0.2654 for 0  (up to four decimal points).   

  The corresponding mean and standard deviation for the transformed random variable 

)( 0λX  are 0μ  = 0λα )1( 0+Γ  and 0σ  = 0λα 21
0

2
0 )]1()21([  +Γ−+Γ .  The minimum 

value of );( φfI  is 0.00278, independent of α  and β , indicating that ),,;( 0λβαyf  and 

),;( 00 σμφ y  are very close and that the closeness cannot be further improved using the 

power transformation.  The simple relationship between the transformation parameter and 

the Weibull shape parameter allows us to estimate the transformation parameter in a 

simple way: λ̂ = 0 β̂   where β̂  is the MLE of β  defined as the solution of 
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Alternatively, an estimator of the transformation parameter can be obtained based on the 

general procedure given in Box and Cox (1964).  This procedure works for all nonnegative 

continuous observations and the Box-Cox estimator of transformation is defined as 
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)(minargˆ
B  



sX −=λ  

where X  is the geometric mean of the X's and )(s  is the standard deviation of the 

transformed sample in   scale.   

 Authors who have contributed to the applications of the Box-Cox transformation 

technique to prediction problems include: Carroll and Ruppert (1981, 1991), Duan (1983), 

Taylor (1985), Collins (1991), Hamilton and Taylor (1993), Yang (1999b), among others.  

Specifically, Carroll and Rupper (1981) studied the effect of estimating transformation on 

the estimation of the median in original scale and concluded that this effect is not large.  

Sakia (1992) gave a review on the Box-Cox transformation technique. 

 Intuitively our approach should be simpler and more efficient as extra information 

regarding the distribution is used.  In fact, using the asymptotic results by Yang (1999a, 

p176) and Bain and Engelhardt (1991, p217), one can easily see that Bλ̂  could be as much 

as about ten times more variable than λ̂ .  For this reason, we adopt the estimator λ̂  for 

the development of a prediction interval for the Weibull median using transformation 

approach. 

 
2.2.  The transformation-based prediction interval 

 For a set of past observations, the transformation-based prediction interval is devel-

oped by first transforming the data, obtaining a prediction interval for the transformed 

data, and then invert the prediction interval back to the original scale. 

  Let )( 01 λX , )( 02 λX , ..., )( 0λnX  be the transformed past sample and )( 0
0 λX  be the 

transformed future observation.  Let )( 0λX  and )( 0λs  be the mean and standard deviation 
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of the transformed past sample.  Since )( 0λiX ’s are approximately normal and are 

independent, we have )]([ 0
0 λXE  ≈  )]([edM 0

0 λX  and  

)( 0λT  = 
ns

XX

)(

)]([Med)(

0

0
0

0

λ
λλ −

   
.

~
approx

    1−nt . 

An approximate 100(1-δ ) % prediction interval (PI) for )]([edM 0
0 λX  is obtained as: 

nstX n )()2()( 010 λδλ −± , 

where )2(1 δ−nt  is the upper 100( 2δ ) percentage value of a t distribution with n−1  

degrees of freedom.  Since the power transformation is monotonic, it is clear that 

)]([edM 0
0 λX  = 0)](Med[ 0 λX  =  0

0
λθ .  An approximate 100(1-δ ) % PI for 0θ  is obtained 

by a simple inverse transformation:  

{ } 01

010 )()2()(
λλδλ nstX n−± . 

 Using the central limit theorem and the laws of large numbers, one can easily see 

that as long as the Weibull observations can be transformed to have the same mean and 

median, )( 0λT  converges to the standard normal, and hence the above interval has a 

correct asymptotic coverage.  However, this interval assumes that the true transformation 

parameter 0λ  is known, which clearly is not a realistic assumption.  When 0λ  is unknown, 

a common practice is to replace it by its estimator λ̂  and give a PI for 0θ  as 

 { } λ
λδλ

ˆ1

1 )ˆ()2()ˆ( nstX n−± . (2.3) 

The PI given by Equation (2.3) is very simple, especially when λ̂  is determined by the 

MLE procedure outlined in the earlier subsection.  It, however, ignores two things: one is 

the effect of nonnormality, in particular, the equality )]([edM 0
0 λX  = )]([E 0

0 λX  does not 

hold exactly, and the other is the effect of estimating the transformation.  We will study 
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these issues theoretically by providing some asymptotic results and numerically for small 

samples using Monte Carlo simulation in the subsequent sections.  It should be pointed out 

that a common erroneous impression about the interval (2.3) is that, similar to the case of 

0λ  known, it also possesses a correct asymptotic coverage.  Our result given in next 

section indicates that it is not true and hence the interval needs some corrections. 

 

3.  Prediction Interval with Correction Factor   

 
 Clearly, for the PI (2.3) to have good asymptotic property, it is necessary that the 

following pivotal quantity 

)ˆ(λT  = 
ns

X

)ˆ(

)ˆ(
ˆ

0

λ
θλ λ−

 

is approximately t distributed with n−1 degrees of freedom or at least converges to the 

standard normal as n becomes large.  A simple Taylor expansion shows that )ˆ(λT  does 

not converge to the standard normal, hence the interval (2.3) does not have a correct 

asymptotic coverage.  This is definitely an undesirable property for any statistical interval, 

hence necessary corrections need to be considered.  The following theory quantifies of 

effect of estimating transformation and the effect of nonnormality and provides a theoreti-

cal base for the introduction of the correction factors. 

 

  Theorem 3.1.   Let λ̂  be MLE of 0λ , i.e., λ̂  = 0 β̂  with  β̂  being the solution of  

(2.2).  We have 

)ˆ(λ∗T  = 
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cX b

)ˆ(

)ˆ(
ˆ

0

λ
θλ λ−

 ⎯→⎯D  )1,0( 2
vcN +  
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where the bias correction factor bc  and the variance correction factor 2
vc  are given as  

bc  = )exp()1( 000  u−+Γ   and  2
vc  = 2

1k + 2 1k 2k  

with  1k  = 0 0k )1( 0+Γ [ 00 )1( u−+Ψ  ] 21
0

2
0 )]1()21([ −+Γ−+Γ  ,  

2
0k  = [ ]βββ )ˆ(lim −

∞→
nVar

n
,  

0u  = log[−log(0.5)], and  

2k  = [ ])ˆ)()((lim 000
1

0
1

0 λλμλλσ −−
∞→

−− XnE
n

. 

 The proof of Theorem 3.1 is lengthy but straightforward, hence is put in the Appen-

dix.  Theorem 3.1 tells that estimating transformation inflates the variance of the pivotal 

quantity to be used in the PI construction.  It suggests that in order for the PI (2.3) to 

perform well, at least asymptotically, two corrections are needed: one is bc , related to the 

bias of estimation and called bias correction factor and the other is 2
vc , related to the 

variance of )ˆ(λT  hence called the variance correction factor.  The PI after corrections 

thus takes the form: 

 [ ]{ } λ
λδλ

ˆ12
1

1 )1()ˆ()2()ˆ( ncstXc vnb +± −
− . (3.1) 

The value for bc  up to four decimal places is 0.9957 and the value of 2
vc is approximately 

0.1168, where 2
0k = 0.6079 (from Bain and Engelhardt, 1991, p219) and 2k  = 0.4767 

(obtained by Monte Carlo simulation).  The constant 2k  is a pure number with its value 

being difficult to be obtained in an analytical way, hence Monte Carlo simulation is 

employed.  It seems that the bias correction factor may be negligible, but the variance 

correction factor is not.  Simple calculation gives 212 )1( vc+  ≈  1.0568, which would affect 

the interval performance significantly.     
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4.  Monte Carlo Simulation and Comparison 

 
 In the previous section, the transformation-based PI (3.1) is derived and is shown to 

possess a nice asymptotic property.  However, it is important to investigate the perfor-

mance of this PI when the sample size is not large. In this section, a simulation study is 

carried out to investigate the small sample property of the new PI and to compare it with 

the existing PI that is reported in Nelson (1982, p232).  To help seeing the gains of intro-

ducing correction factors, the results for the PI (2.3) are also reported. 

 The simulation process can be simply described as follows. For each combination of 

the parameter values (α , β ), the sample size n and the nominal level (1−δ ), 10,000 

Weibull random samples are generated and the three PIs (transformation-based, corrected 

transformation-based and Nelson’s) are calculated for each sample.  The proportions of the 

PIs that cover the median are used as Monte Carlo estimates of the coverage probability of 

the intervals and the average lengths of these intervals are served as Monte Carlo estimates 

of the expected lengths of the intervals.  The performance of the PIs are not affected by the 

scale parameter α , hence it is fixed at a value 1.  Three difference values of β  are consid-

ered, resulted in population skewness from small to large.  Four difference sample sizes 

(small to large) and three nominal levels are considered.  The simulated average length 

(A.L.) and coverage probability (C. Prob.) for the three PIs are summarized in Table 4.1. 

 The simulation results show that the transformation-based PI with corrections per-

forms very well, irrespective of the choices of sample size, parameter value and nominal 

level.  All the simulated coverage probabilities are very close to the corresponding nomi-

nal levels.  The lengths are all comparable to the existing PI.  However, the existing PI has 

rather poor coverage when n is small and it seems that it deteriorates further as population 
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skewness ω  increases.  For examples, when n = 10, the simulated coverage probabilities 

could be as low as 83%, 89% and 95%, respectively, with the corresponding nominal 

levels 90%, 95% and 99%.  Notice that the transformation-based PI without corrections 

also performs better than the existing one in terms of coverage probability when n is small.   

Simulation results also show that the gains of introducing the correction factors are 

generally quite significant, especially for the 90% and 95% PIs.  

 
Table 4.1.  A summary of simulation results for PI (3.1) (first row), 

PI (2.3) (second row) and the Nelson (1982) (third row). 

   n = 10  20    30  50 
(β, α)  ω A.L. C.Prob. A.L. C.Prob A.L. C.Prob. A.L. C.Prob. 

90% Prediction Intervals 
(2,1)  .63 0.5225 0.8933 0.3631 0.8907 0.2966 0.8978 0.2290 0.8996 
  0.4914 0.8712 0.3421 0.8754 0.2787 0.8771 0.2152 0.8778 
  0.4716 0.8429 0.3514 0.8732 0.2922 0.8840 0.2291 0.8933 
(1,1) 2.0 0.9137 0.8890 0.6208 0.8946 0.5015 0.9004 0.3851 0.8984 
  0.8445 0.8702 0.5780 0.8731 0.4662 0.8783 0.3580 0.8778 
  0.8350 0.8314 0.6053 0.8720 0.4965 0.8840 0.3868 0.8926 
(.5,1) 6.6 1.6666 0.8957 0.9872 0.8958 0.7591 0.8982 0.5619 0.9009 
  1.4856 0.8712 0.9017 0.8725 0.6904 0.8718 0.5144 0.8821 
  1.5594 0.8378 0.9844 0.8717 0.7606 0.8858 0.5708 0.8996 

95% Prediction Intervals 
 (2,1) .63 0.6450 0.9466 0.4395 0.9459 0.3570 0.9471 0.2745 0.9501 
  0.6066 0.9303 0.4141 0.9335 0.3354 0.9343 0.2579 0.9350 
  0.5659 0.8969 0.4202 0.9226 0.3490 0.9357 0.2734 0.9445 
 (1,1) 2.0 1.1429 0.9419 0.7555 0.9492 0.6057 0.9538 0.4625 0.9502 
  1.0549 0.9286 0.7031 0.9336 0.5629 0.9349 0.4299 0.9314 
  1.0219 0.8885 0.7312 0.9245 0.5971 0.9382 0.4635 0.9387 
(.5,1) 6.6 2.2321 0.9460 1.2387 0.9482 0.9352 0.9481 0.6829 0.9533 
  1.9730 0.9316 1.1270 0.9328 0.8486 0.9323 0.6242 0.9378 
  2.0445 0.8939 1.2337 0.9238 0.9382 0.9342 0.6947 0.9441 

99% Prediction Intervals 
(2,1) .63 0.9271 0.9880 0.6007 0.9894 0.4811 0.9896 0.3661 0.9895 
  0.8720 0.9859 0.5660 0.9845 0.4520 0.9831 0.3439 0.9849 
  0.7568 0.9573 0.5570 0.9719 0.4613 0.9804 0.3605 0.9841 
(1,1) 2.0 1.7107 0.9888 1.0479 0.9912 0.8237 0.9906 0.6199 0.9915 
  1.5726 0.9859 0.9739 0.9871 0.7648 0.9864 0.5758 0.9841 
  1.4339 0.9513 0.9935 0.9759 0.8025 0.9829 0.6174 0.9835 
(.5,1) 6.6 4.0522 0.9897 1.8608 0.9892 1.3378 0.9894 0.9428 0.9902 
  3.5005 0.9855 1.6765 0.9850 1.2066 0.9858 0.8586 0.9834 
  3.3893 0.9534 1.8308 0.9739 1.3403 0.9807 0.9613 0.9842 
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5.  Numerical Examples 

 
 In this section, we use two real life examples to illustrate the transformation-based PIs 

and further compare them with the existing one.  Both data sets have been extensively 

used for testing the statistical techniques developed for certain lifetime model including 

the Weibull.   

 
 Example 5.1: the vehicle failure data.  This data set was reported by Bilikan et al.  

(1979) and used again by Cheng and Iles (1990) to illustrate their methods for fitting a 

three parameter lifetime distribution.  The data represent the mileages to failure of a type 

of vehicle: 164, 250, 439, 440, 450, 478, 487, 524, 688, 850, 1048, 1280, 1364, 1488, 

1513, 1860, 1947, 1991, 2200, 2446.   

 Example 5.2: the repair time data: This data set, taken from Chhikara and Folks 

(1989, p139) where a 0.5 was missed from the original data set, contains the repair times 

(in hours) for an airborne communication transceiver.  The data is given as: 0.2, 0.3, 0.5, 

0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 

2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 

10.3, 22.0, 24.5.  

 
Table 5.1.   The PIs based on real life data. 

 PI (3.1)  PI (2.3)     The existing PI   
 Lower Upper Lower Upper  Lower Upper 

Vehicle Failure Data : n = 20, λ̂  = 0.4292, ω̂  = 0.4032 
90% 714.6624 1272.8924   720.0704 1242.9814 748.3878 1255.1046 
95% 666.3705 1342.4290   674.3180 1307.5682 712.2276 1318.8270 
99% 570.7345 1496.1442   583.3476 1450.0315 646.5259 1452.8498 

Repair Time Data : n = 46, λ̂  = 0.2385, ω̂  = 2.8568 
90% 1.6701 3.0448   1.6690 2.9458 1.8000 2.9771 
95% 1.5653 3.2182   1.5701 3.1049 1.7154 3.1241 
99% 1.3690 3.5910   1.3842 3.4460 1.5612 3.4326 
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 The calculated prediction intervals are summarized in Table 5.1.  The results show 

that the existing PI (Nelson, 1982, p232) and the transformation-based PI without correc-

tions given in (2.3) are shorter than the transformation-based PI with corrections given in 

(3.1), indicating the two intervals are a bit too tight, especially when n is small.  When n is 

large (the case of second data set), the difference in interval lengths is not significant.  

These results are consistent with the simulation results given in the earlier section. 

 

6.  Discussions 

 
 The problem of obtaining a prediction interval for the median of a future Weibull 

observation is studied.  The approach we followed is to first transform the Weibull obser-

vations to near-normality, construct an interval for the transformed future median and then 

invert.  The best power transformation is obtained through minimizing the Kullback-

Leibler information.  Both the large sample and small sample properties of the transfor-

mation-based interval are studied and simple correction factors are introduced.  It is shown 

that the transformation-based prediction interval with simple corrections outperforms the 

existing one in terms of coverage probability.  

 Considering both simplicity and accuracy, the results obtained in this paper favour the 

transformation approach.  Similar results can be expected for the general Weibull predic-

tion problems concerning the percentiles or reliabilities.  The transformation approach for 

prediction interval construction may be also applicable to the failure time regression case 

where the failure times are Weibull distributed, but dependent on certain concomitant 

variables.  It might be interesting to give theoretical investigations for these situations. 
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 The Box-Cox transformation is usually applied to the complete data.  The effect of 

censoring requires further investigation that is beyond the scope of this work and the 

theoretical results as those in Theorem 3.1 are not readily available.  However, if one is 

interested in using the transformation approach to do prediction with censored data, one 

possible way is to adapt the general method described by Meeker and Escobar (1998, 

p296) for a (transformed) location and scale family.  Clearly, the issue of the effect of 

estimating transformation becomes more complicated.  We will pursue this study in a 

future paper. 
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Appendix :  Proof of Theorem 3.1 

 
The proof of Theorem 3.1 requires two lemmas that are given below. 

 Lemma A.  Let X be a Weibull random variable with scale and shape parameters α  

and β , respectively.  Then ( )XXE logλ  is finite for some real λ  >− β . 

 Proof:  First, we have that 

 ( )XXE logλ  = ( )[ ]dxxxxx βββλ αβα −−−
∞

 exp)log( 1

0

. 

Let y = βα )(x , the above integral becomes, 

   dyyyy )exp()log(log
0

1 −+
∞ − βλλ βαα   

          = λα [ ])1()1()1(log 1 βλβλββλα +Ψ+Γ++Γ − , 
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where )(⋅Γ  is the gamma function and )(⋅Ψ  is the digamma function that is the derivative 

of log )(⋅Γ .  Clearly the last integral is defined if λ  > − β . 

  

 Lemma B.  Let λ̂  be the MLE of 0λ , i.e., λ̂  = 0 β̂ , with 0  being the solution of 

(2.1) and β̂  being the solution of (2.2), then )ˆ(2 λs  ⎯→⎯p  2
0σ . 

 Proof:  A first-order Taylor expansion gives 

)ˆ(2 λs  = )( 0
2 λs  + ( λ̂ − 0λ ) [ ]
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λλλλ ddXX ii =  and )()( 010 00

1 λλ λλ i
n
i XX n == .  Lemma A and the weak 

laws of large numbers (WLLN) ensure that the first two quantities in the curling brackets 

converge in probability.  Hence →nR  0 as λ̂ → 0λ , which means the whole second term 

converges in probability to zero.  It is easy to see by WLLN that )( 0
2 λs  ⎯→⎯p  2

0σ , hence 

the result follows. 

 

 Proof of Theorem 3.1:  We argue that )ˆ(λ∗T  is asymptotically normal and then find 

the asymptotic mean and variance of it.  First, the joint asymptotic normality of 

( )ββ −ˆn  and ( )0ˆ μμ −n , where )ˆ(ˆ 0 βμ X= , can be easily established by the stand-

ard theory of M-estimation based on the estimating equation 

− n

ii Xn
1

1 )ˆ,ˆ;( μβψ  = 0,  

where iψ ′  = { )1ˆlogˆ(
ˆ −− gXX ii βββ  , μβ ˆ

ˆ
0 −

iX } and g  = − n

i iXn log1 .  Now a first-

order Taylor expansion gives λθ ˆ

0bc  = 0μ  + ( 0
ˆ λλ − ) 00 log0 θθ λ

bc  + )( 1−nOp , hence 

[ ] 0

ˆ

0)ˆ( σθλ λ
bcXn −  = 00 )ˆ( σμμ −n  + 00 log0 θθ λ

bc 00 )ˆ( σλλ −n  + )( 21−nOp . 
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It follows that [ ] 0

ˆ

0)ˆ( σθλ λ
bcXn −  is also asymptotically normal.  Hence Lemma B and 

Slutsky's theorem can be applied to give the asymptotic normality of )ˆ(λ∗T  in Theorem 

3.1.  What is left is to find the asymptotic variance of )ˆ(λ∗T .  A first-order Taylor expan-

sion of )ˆ(λU = [ ]λθλ ˆ

0)ˆ( bcXn −  around 0λ  gives 

)ˆ(λU  = )( 0λU  + )ˆ( 0λλ −n [ 000 log)( 0

0
θθλ λ

λ bcX − ] + )( 21−nOp . 

Lemma A and WLLN show that )( 00
λλX  ⎯→⎯p )log( 11

0 XXE λ , hence 

)ˆ(λU  = )( 0λU  + )ˆ( 0λλ −n [ 0011 log)log( 00 θθ λλ
bcXXE − ] + )( 21−nOp . 

Using the results in Lemma A, some simple calculations give the asymptotic variance of 

)ˆ(λU  and hence the asymptotic variance of )ˆ(λ∗T . 

  The asymptotic mean zero is obvious since bc  is defined as the ratio of the mean 

and median of 0λX . 
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