
Assignment 2 – ECON747 Spatial Econometric Models and Methods

1. For the SLR model with both spatial lag (SL) and spatial error (SE) dependence, or
simply the SLE model, treated in Section 3.4, Lecture 3, for hypothesis testing:

Yn = λW1nYn +Xnβ + un, un = ρW2nun + εn, (1)

we are interested in three hypotheses concerning the spatial effects in the SLE model:

(a) HSLE
0 : δ0 = 0 in the SLE model,

(b) HSL|SE
0 : λ0 = 0 in the SLE model, and

(c) HSE|SL
0 : ρ0 = 0 in the SLE model, where δ0 = (λ0, ρ0)′.

(i) Following the instructions given in Slide 53, Lecture 3, and the ideas behind (3.34)
and (3.35), develop fully the two variants of the standardized LM tests: SLM◦

SLE

and SLMMD
SLE, for testing the joint hypothesis HSLE

0 : δ0 = 0.
(ii) Following the instructions given in Slide 54, Lecture 3, develop the two standard-

ized LM tests, SLM◦
SL|SE and SLM◦

SE|SL, for testing H
SL|SE
0 : λ0 = 0 and H

SE|SL
0 :

ρ0 = 0, respectively.
(iii) Develop the MD variants of the two tests in (ii) above, SLMMD

SL|SE and SLMMD
SE|SL.

Solution:

(i) Write Model (1) in reduced form:

Bn(ρ)An(λ)Yn = Bn(ρ)Xnβ + εn.

where An(λ) = In − λW1n and Bn(ρ) = In − ρW2n. This leads to Gaussian quasi
loglikelihood function of θ = (β′, σ2, λ, ρ)′:

`n(θ) = −n
2 log(2πσ2) + log |An(λ)|+ log |Bn(ρ)| − 1

2σ2 ε
′
n(β, δ)εn(β, δ), (2)

where εn(β, δ) = Yn(δ) − Xn(ρ)β, δ = (λ, ρ)′, Xn(ρ) = Bn(ρ)Xn, and Yn(δ) =
Bn(ρ)An(λ)Yn, and the quasi Gaussian score function:

Sn(θ) =



1
σ2 X′

n(ρ)εn(β, δ),
1

2σ4 ε
′
n(β, δ)εn(β, δ)− n

2σ2 ,

1
σ2 ε

′
n(β, δ)BnW1n(ρ)Yn − tr[Fn(λ)],

1
σ2 ε

′
n(β, δ)Gn(ρ)εn(β, δ)− tr[Gn(ρ)],

(3)

where Fn(λ) = W1nA
−1
n (λ), and Gn(ρ) = W2nB

−1
n (ρ).

Given δ, solving the first two components of the quasi score equations, Sn(θ) = 0,
we obtain the constrained (Q)MLEs of β and σ2:

β̃n(δ) = [X′
n(ρ)Xn(ρ)]−1X′

n(ρ)Yn(δ), (4)

σ̃2
n(δ) = 1

nY′
n(δ)Mn(ρ)Yn(δ), (5)
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where Mn(ρ) = In − Xn(ρ)[X′
n(ρ)Xn(ρ)]−1X′

n(ρ). Substituting β̃n(δ) and σ̃2
n(δ)

back into the δ-component, Sn,δ(θ), of Sn(θ), we obtain the concentrated quasi
score (CQS) function of δ, Sc

n(δ) = Sn,δ(β̃n(δ), σ̃2
n(δ), δ) ≡ S̃n,δ(δ):

S̃n,δ(δ) =


1

σ̃2
n(δ)

ε̃′n(δ)Bn(ρ)W1nYn − tr(Fn(λ)),

1
σ̃2

n(δ)
ε̃′n(δ)Gn(ρ)ε̃n(δ)− tr(Gn(ρ)),

(6)

where ε̃n(δ) = εn(β̃n(δ), δ) = Mn(ρ)Yn(δ).

At δ = 0, we have An(0) = Bn(0) = In, Fn(0) = W1n, Gn(0) = W2n, and

S̃SLE,δ(0) ∝

{
ε̃′nW1nYn = ε′nMnW1nεn + ε′nMnW1nXnβ0,

ε̃′nW2nε̃n = εnMnW2nMnεn
(7)

where ε̃n = ε̃n(0) = Mnεn = MnYn and Mn = Mn(0). It is easy to see that
E[S̃SLE,δ(0)] = σ2

0(tr(MnW1n), tr(MnW2n))′ 6= 0, and thus S̃SLE,δ(0) needs to be
centered! An obvious centered version of S̃SLE,δ(0) that is feasible takes the form:

S̃∗SLE,δ =

{
ε̃′nW1nYn − 1

n−k ε̃
′
nε̃ntr(MnW1n)

ε̃′nW2nε̃n − 1
n−k ε̃

′
nε̃ntr(MnW2n)

=

{
ε′nΦ1εn + ε′nη

εnΦ2εn,
(8)

where Φ1 = MnWrn − crMn, Φ2 = MnW2nMn − c2Mn, cr = 1
n−ktr(MnWrn), r =

1, 2, and η = MnW1nXnβ0.

SLM Test based on Analytical VC Matrix.

The second expression given in (8) greatly facilitate the derivation and presentation
of the VC matrix of S̃∗SLE,δ at δ = 0. We have by Lemma 2.1,

Var(S̃∗SLE,δ|δ=0) =

(
ω11 + π1, ω12 + π2

∼ ω22

)
,

where ωjr = σ4
0κ0φ

′
jφr + σ4

0tr(ΦjΦs
r), j, r = 1, 2, π1 = 2σ3

0γ0φ
′
1η + σ2

0η
′η, π2 =

σ3
0γ0φ

′
2η, φr is the vector of diagonal elements of Φr, Φs

r = Φr + Φ′
r, r = 1, 2, and

γ and κ are the measures of skewness and excess kurtosis of εni.

The standardized LM (SLM) test for testing HSLE
0 : δ0 = 0 takes the form:

SLM◦
SLE =

(
ε̃′nW

◦
1nYn

ε̃′nW
◦
2nε̃n

)′
(
ω11 + π1, ω12 + π2

∼ ω22

)−1(
ε̃′nW

◦
1nYn

ε̃′nW
◦
2nε̃n

)
(9)

where W ◦
rn = Wrn−crIn, r = 1, 2, and the tilde-quantities are the plug-in estimates

by plugging in the null estimates: β̃n(0) for β0, n
n−k σ̃

2
n(0) for σ2

0, and the sample
skewness and excess kurtosis of ε̃n for γ and κ.
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Remark 1: The above results give a conditional test of HSE
0 : ρ0 = 0 given λ = 0:

SLM◦
SE =

(n− k)ε̃′nW
◦
2nε̃n

[κ̃nφ′2φ2 + tr(Φ2Φs
2)]

1
2 ε̃′nε̃n

,

which is the same in form as (3.34) given in Lecture 3, except n − k is used in
place of n for better finite sample performance.

Remark 2: Similarly, the conditional test of HSL
0 : λ0 = 0 given ρ = 0 is

SLM◦
SL =

ε̃′nW
◦
1nYn

[σ̃4
nκ̃nφ′1φ1 + σ̃4

ntr(Φ1Φs
1) + 2σ̃3

nγ̃nφ′1η̃ + σ̃2
nη̃

′η̃]
1
2

,

where σ̃2
n = n

n−k σ̃
2
n(0). This fills in a gap indicated in (3.50) of Lecture 3.

SLM Test based on OPMD Estimate of VC Matrix.

To derive MD (martingale difference) version of the SLM test, write

S̃∗SLE,δ =

ε
′
nΦ1εn + ε′nη

εnΦ2εn
=

ε
′
nΦ1εn + ε′nη − σ2

0tr(Φ1),

εnΦ2εn − σ2
0tr(Φ2).

Following Lemma 3.1 in Lecture 3, we have,

S̃∗SLE,δ =


∑n

i=1[εniξ1i + φ1,ii(ε2ni − σ2
0) + ηiεni] ≡

∑n
i=1 g1,ni∑n

i=1[εniξ2i + φ2,ii(ε2ni − σ2
0)] ≡

∑n
i=1 gni

≡
n∑

i=1

gni,

where φr,ii are the diagonal elements of Φr, r = 1, 2, ηi the elements of η, and ξri

the elements of (Φu′
r + Φl

r)εn with Φu
r and Φl

r being the strictly upper and lower
triangular matrices of Φr. As {gni} are uncorrelated with mean 0,

∑n
i=1 g̃2,nig̃′ni

gives an OPMD estimate of Var(S̃∗SLE,δ|δ=0) that is consistent, where g̃2,ni is the
(null) plug-in estimate of g2,ni (ε̃ni for εni, β̃n(0) for β0, n

n−k σ̃
2
n(0) for σ2

0).

The OPMD version of the SLM test takes the form:(
ε̃′nW

◦
1nYn

ε̃′nW
◦
2nε̃n

)′
(

n∑
i=1

g̃2,nig̃′ni

)−1(
ε̃′nW

◦
1nYn

ε̃′nW
◦
2nε̃n

)
. (10)

Remark 3. Both tr(Φ1) and tr(Φ1) are zero, and thus with or without these
terms does not affect S̃∗SLE,δ, but it does affect the MD decomposition and thus
potentially improves the OPMD estimate of Var(S̃∗SLE,δ).

Remark 4. With (10), the two OPMD versions of the conditional tests of HSE
0 :

λ0 = 0 given ρ = 0 and HSE
0 : ρ0 = 0 given λ = 0 can be easily obtained:

SLMMD
SL =

ε̃′nW
◦
1nYn√∑n

i=1 g̃
2
1,ni

and SLMMD
SE =

(n− k)ε̃′nW
◦
2nε̃n√∑n

i=1 g̃
2
2,ni

,
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These fill in two gaps as indicated in Lecture 3.

(ii) To develop the two marginal SLM tests, SLM◦
SL|SE for testing HSL|SE

0 : λ0 = 0, and

SLM◦
SE|SL for testing HSE|SL

0 : ρ0 = 0, one may choose to work with either the joint
quasi score function given in (3), or the concentrated quasi score (CQS) function
given in (6), following the principle laid out in Slides 9 and 10 of Lecture 3.

We choose to work with the CQS function given in (6) for its apparent advantage:
being able take into account the estimation of β and σ2.

It is sufficient to re-center and re-scale the two stochastic quantities in (6):

ε̃′n(δ)Bn(ρ)W1nYn and ε̃′n(δ)Gn(ρ)ε̃n(δ),

which have expectations at δ0: σ2
0tr(Mn(ρ0)F̄n(λ0)) and σ2

0tr(Mn(ρ0)Gn(λ0)).
This suggests one should first center these two quantities:{

ε̃′n(δ0)Bn(ρ0)W1nYn − σ2
0tr(Mn(ρ0)F̄n(λ0)),

ε̃′n(δ0)Gn(ρ0)ε̃n(δ0)− σ2
0tr(Mn(ρ0)Gn(ρ0)),

where F̄n(λ0) = Bn(ρ0)Fn(λ0)B−1
n (ρ0), and work with their feasible versions by

replacing σ2
0 by its unbiased estimate 1

n−k ε̃
′
n(δ0)ε̃n(δ0) = 1

n−k ε̃
′
n(δ0)Yn(δ0):

S̃∗n,δ(δ0) =

{
ε̃′n(δ0)F̄n(λ0)Yn(δ0)− c1(δ0)ε̃′n(δ0)Yn(δ0),

ε̃′n(δ0)Gn(ρ0)ε̃n(δ0)− c2(ρ0)ε̃′n(δ0)ε̃n(δ0),
(11)

where c1(δ0) = 1
n−k tr(Mn(ρ0)F̄n(λ0)) and c2(ρ0) = 1

n−k tr(Mn(ρ0)Gn(ρ0)). This
leads to the unbiased estimation function of δ0, which takes the form at general δ:

S̃∗n,δ(δ) =

ε̃
′
n(δ)[F̄n(δ)− c1(δ)In]Yn(δ),

ε̃′n(δ)[Gn(ρ)− c2(ρ)In]ε̃n(δ).
(12)

With (12), we are ready to derive the two marginal SLM tests by applying the
principle laid out in Slides 9 and 10, Lecture 3.

Let In = Var[S̃∗n,δ(δ0)] and Jn = −E[ ∂
∂δ S̃

∗
n,δ(δ0)]. Partition according to (λ, ρ):

In = [In,λλ, Iλρ; In,ρλ, In,ρρ] and Jn = [Jn,λλ,Jλρ;Jn,ρλ,Jn,ρρ]. The detailed ana-
lytical expressions of In and Jn can easily be obtained.

Then, the SLM test for testing HSL|SE
0 : λ0 = 0 has the general form:

SLM◦
SL|SE =

ε̃′n(δ̃n)[F̄n(δ̃n)− c1(δ̃n)In]Yn(δ̃n)

(Ĩn,λλ − 2π̃1nĨn,λρ + π̃2
1nĨn,ρρ)

1
2

,

where δ̃n = (0, ρ̃n)′ and π1n = Jλρ/Jn,ρρ.
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Similarly, the SLM test for testing HSE|SL
0 : ρ0 = 0 has the general form:

SLM◦
SE|SL =

ε̃′n(δ̃n)[Gn(0)− c2(0)In]ε̃n(δ̃n)

(Ĩn,ρρ − 2π̃2nĨn,ρλ + π̃2
2nĨn,λλ)

1
2

,

where δ̃n = (λ̃n, 0)′ and π2n = Jρλ/Jn,λλ. These fill in two gaps as indicated in
(3.69) and (3.70), Lecture 3.

(iii) The OPMD versions of the two marginal SLM tests can be obtained following the
general principle laid out in (3.13) and (3.14), Lecture 3. By (11), S̃∗n,δ(δ0) can be
written in the same form as the second expression of (8):

S̃∗n,δ(δ0) =

{
ε′nΦ1εn + ε′nη,

εnΦ2εn,

but with Φr and cr, r = 1, 2, and η = MnW1nXnβ0 being redefined.

Again, tr(Φr) = 0, r = 1, 2, but their elements are not. Therefore, the MD
decomposition is based on

S̃∗n,δ(δ0) =

ε
′
nΦ1εn + ε′nη − σ2

0tr(Φ1) ≡
∑n

i=1 g1,ni,

εnΦ2εn − σ2
0tr(Φ2) ≡

∑n
i=1 g2,ni.

The OPMD version of the marginal SLM test for testing HSL|SE
0 : λ0 = 0 is,

SLM◦
SL|SE =

∑n
i=1(g̃1,ni − π1g̃2,ni)√∑n
i=1(g̃1,ni − π1g̃2,ni)2

,

where g̃r,ni is the null estimate of gr,ni at δ̃n = (0, ρ̃n)′, β̃n(δ̃n), σ̃2
n(δ̃n), and ε̃n(δ̃n).

The OPMD version of the marginal SLM test for testing HSE|SL
0 : ρ0 = 0 is,

SLM◦
SE|SL =

∑n
i=1(g̃2,ni − π2g̃1,ni)√∑n
i=1(g̃2,ni − π2g̃1,ni)2

,

where g̃r,ni is the null estimate of gr,ni at δ̃n = (λ̃n, 0)′, β̃n(δ̃n), σ̃2
n(δ̃n), and ε̃n(δ̃n).

These fill in another two gaps as indicated in (3.71) and (3.72), Lecture 3.

2. Consider fitting an SLE model to the Boston House Price data, introduced in Lec-
tures 1 and 2, using all the covariates listed. Refer to Section 3.4, Lecture 3. Use both
Matlab and Python to carry out the following analyses:

(i) Based on (3.54) and the description below it, carry out the three LR tests, LRSL|SE,
LRSE|SL and LRSLE, for testing the three hypotheses in Problem 1. Comment.

(ii) Based on (3.59) and the description below it, carry out the three Wald tests, TSL|SE,
TSE|SL, and TSLE, for testing the three hypotheses in Problem 1. Comment.
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(iii) Based on (3.66) and the descriptions below it, carry out the three LM tests LMFISLE,
LMFI

SL|SE and LMFI
SE|SL, for testing the three hypotheses in Problem 1. Comment.

(iv) Implement the six standardized LM tests developed in Problem 1, SLM◦
SLE and

SLMMD
SLE, SLM◦

SL|SE and SLMMD
SL|SE, and SLM◦

SE|SL and SLMMD
SE|SL. Comment.

(v) Based on the tests performed, which SLR model is most suitable for the data?

Solution:
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