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Abstract

It is challenging to maximize and maintain productivity of a U-line with discrete stations

under the impact of variability. This is because maximizing productivity requires assign-

ing workers to suitable tasks and maintaining productivity requires sufficient flexibility in

task assignment to absorb the impact of variability. To achieve this goal, we propose an

operating protocol to coordinate workers on the U-line. Under the protocol the system can

be configured such that its productivity is maximized. Workers are allowed to dynamically

share work so that the system can effectively absorb the impact of variability. Analysis

based on a deterministic model shows that the system always converges to a fixed point or

a period-2 orbit. We identify a sufficient condition for the system to converge to the fixed

point. Increasing the number of stations improves productivity only under certain circum-

stances. The improvement is most significant when the number of stations in each stage

increases from one to two, but further dividing the U-line into more stations has diminishing

return. Simulations based on random work velocities suggest that our approach significantly

outperforms an optimized, static work-allocation policy if variability in velocity is large.
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1 Introduction

Consider a U-shaped assembly line with M stations shown in Figure 1. There are three stages

in the U-line. Stages 1 and 3 are separated by an aisle and stage 2 spans across the aisle.

Stage 1 consists of m1 stations S1(1), . . . , S1(m1) located on one side of the aisle. Stage 2

has m2 stations S2(1), . . . , S2(m2) located across the aisle. Stage 3 consists of m3 stations

S3(1), . . . , S3(m3) located on the other side of the aisle. We assume m1 +m2 +m3 = M . Each

item (an instance of the product) is initiated at the start of S1(1) and is progressively assembled

in the same sequence of stations until it is completed at the end of S3(m3). We assume the

work content on each station is deterministic and is uniformly distributed on the station. Thus,

each worker continuously moves along a station as he progressively works on the station.

We consider a team of two workers W1 and W2. Each worker is cross-trained to work on

any station of the U-line, and he assembles only a single item at a time. We say the stations are

discrete because at most one worker is allowed to work on a station at any time (for example, to

avoid interference due to limited equipment or space in the station). As a result, a worker might

be idle while his colleague is working on a station. We first assume Wi works with a constant,

deterministic velocity vij(k) on Sj(k). We will investigate the impact of random velocities in

Section 6. Since the travel time between stations is short compared to the time to assemble an

item, we neglect the time to walk from one station to another.

We have seen an example of such a system in porcelain painting. Each item (for example,

vase) is painted with a specific theme of colors on each station, which is a rectangular table

equipped with painting tools. Each item is progressively painted with different colors at different

locations on a station when the item moves along a track on the station’s longitudinal axis. After

the item is done with a theme of colors, it is removed from the track and is carried to the next

station for another theme of colors. Since porcelain painting is a complicated process, at most

one worker is allowed to work on a station at any time to avoid interference. To facilitate

coaching and learning, an experienced worker is often paired with a relatively new worker to

form a team in such a system. The entire flow line is commonly configured in U-shape to provide
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Figure 1: A U-shaped line. Each item is initiated at the start of S1(1) and is progressively
assembled in the same sequence of stations until it is completed at the end of S3(m3).

better communication and to reduce travel.

U-lines are common in manufacturing because they possess several advantages over straight

lines. These include providing better visibility and communication that leads to better quality

control. The travel of workers is reduced as they can execute nonconsecutive tasks that are

physically close to each other, especially if the aisle is narrow. Many firms adopt a U-shaped

layout also because of space constraints. For a discussion on the advantages of U-lines, see

Miltenburg and Wijingaard (1994).

Our objective for the above system is to maximize and maintain its productivity under the

impact of variability (for example, in work velocity). This is challenging because maximizing

productivity requires assigning workers to the stations where they work fast; and maintaining

productivity requires sufficient flexibility in task assignment to absorb the impact of variability.

To achieve this objective, we propose an operating protocol to coordinate the workers. Under

the protocol the system can be configured such that its productivity is maximized. We also

allow the workers to dynamically share work so that they are not assigned and restricted to a

fixed set of stations. This flexibility can effectively absorb the impact of variability.

The protocol also reduces travel of workers by allowing each of them to work on noncon-

secutive stations that are physically close to each other. Although we neglect the travel time

between stations in our model, we believe allowing each worker to work on stations close to

each other may boost productivity in the actual implementation. In addition, the protocol is

straightforward to implement in practice because workers just follow simple rules.
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Specifically, we adapt the basic ideas of cellular bucket brigades introduced by Lim (2011)

to coordinate workers on the U-line. Under the design of a cellular bucket brigade, the work

content of an assembly line is distributed on both sides of an aisle. Each worker works on

one side when he proceeds in one direction and works on the other side when he proceeds in

the reverse direction. Two workers on different sides of the aisle may approach each other as

they work in opposite directions. The workers will exchange their work when they meet. By

applying similar coordination rules, which will be discussed in detail later, each item in the

U-line is initiated at the start of S1(1) typically by W1. The item is passed to W2 at some point

in stage 1. W2 then finishes the remaining work of stage 1 and continues to assemble the item

in stage 2, before he passes it back to W1 in stage 3. W1 then completes the item at the end of

S3(m3). We analyze the dynamics and determine the throughput (number of items produced

per unit time) of the U-line under the coordination rules proposed.

The paper by Lim (2011) analyzes a system where work content is continuously distributed

along an assembly line and workers can work arbitrarily close to each other. In contrast, the

analysis of the above U-line is much more challenging due to the discrete stations. The system

dynamics are complex because a worker cannot enter a station while his colleague is working

on the station. The problem is further complicated by the facts that each stage may contain

any number of stations, different stations may have different amounts of work, and workers may

have different velocities on different stations.

We first study U-lines with three stations and two workers in Section 4. We define simple

rules for the workers to share work. Under these rules, we provide a complete analysis of the

dynamics and determine the throughput of the system. We study U-lines with M stations and

two workers in Section 5. We then compare our approach with two other work-allocation policies

for random velocities in Section 6 before we make concluding remarks.
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2 Related literature

Most papers in the literature study serial bucket brigades where each item is handed off from

one worker to another in a straight-line layout (see Bartholdi et al. (2010) for a review). Each

worker processes an item at most once in such a setting. In contrast, a worker may process

an item twice in different stages of assembly in a cellular bucket brigade. We first discuss the

literature on serial bucket brigades.

Bartholdi and Eisenstein (1996a) introduce (serial) bucket brigades as a way to coordinate

workers along an assembly line with more stations than workers. When workers form a bucket

brigade on an assembly line, each worker assembles his item until it is taken over by a down-

stream colleague or he completes his item if he is the last worker of the line. After that the

worker walks back to take over an item from an upstream colleague or to initiate a new item at

the start of the line if he is the first worker. The authors consider a model with deterministic

work content. Each worker has a deterministic, finite work velocity and an infinite walk-back

velocity. They show that if workers are sequenced from slowest to fastest according to their work

velocities in the direction of production flow, then the system will self-balance: The hand-off

locations between any two neighboring workers will converge to a fixed point and every worker

repeatedly works on a fixed portion of the line. Furthermore, the long-run average through-

put will achieve the maximum possible for the system if the work content is continuously and

uniformly distributed on the assembly line.

The most widely known application of bucket brigades is order-picking in distribution centers

(Bartholdi et al. 1996b, 2001). Bucket brigades are also used in the production of garments,

packaging of cellular phones, and assembly of tractors, large-screen televisions, and automo-

tive electrical harnesses (see Bartholdi and Eisenstein (1996a,b, 2005) and Villalobos et al.

(1999a,b)). Bucket brigades are effective for the following reasons: (1) The rule is simple

for workers to learn and follow. (2) Due to their self-balancing property, we need neither a

work-content model nor computation for work balance, which are required by any static work-

allocation policy. (3) Since workers dynamically and constantly balance their work, the system
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can restore balance from temporary disruptions and is adaptive to changes in work content.

Based on the same model, Bartholdi et al. (1999) study the dynamics of two- and three-

worker bucket brigades with workers not necessarily sequenced from slowest to fastest. Bartholdi

et al. (2001) consider stochastic work content on work stations. They find that the dynamics

and throughput of the stochastic system will be similar to that of the deterministic system when

there is sufficient work distributed among sufficiently many stations.

Bartholdi and Eisenstein (2005) extend the basic model of bucket brigades to capture walk-

back time and hand-off time. Bartholdi et al. (2009) consider the case where workers are allowed

to overtake or pass each other and they walk back with finite velocities. The authors show that

the system may exhibit chaotic behavior that causes the inter-completion times of items to

be effectively random, even though the model is purely deterministic. The system can avoid

such pathologies if workers are indexed from most impeded by work to least impeded by work.

Bartholdi et al. (2006) extend the ideas of bucket brigades to a network of subassembly lines so

that all subassembly lines are synchronized to produce at the same rate and items are completed

at regular, predictable intervals.

Armbruster and Gel (2006) assume workers’ work velocities do not dominate each other along

the entire line. They study the dynamics and throughput of a two-worker system. Armbruster et

al. (2007) consider a model where workers improve their work velocities as they learn. Webster

et al. (2012) examine the performance of a bucket brigade order-picking system by changing the

distribution of products along an aisle. They identify conditions where product distribution has

large impact on throughput.

Lim and Yang (2009) analyze the dynamics of bucket brigades on discrete work stations and

identify the best policies that maximize the system’s throughput. They show that the policy that

fully cross-trains the workers and sequences them from slowest to fastest is not always the best

for the system, even though it outperforms other policies for most work-content distributions.

Gurumoorthy et al. (2009) study an M -station, two-worker bucket brigade. They determine the

asymptotic dynamic behavior and the throughput of the system using an algorithmic approach.
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Kirkizlar et al. (2012) study tandem lines with more stations than workers. They consider

buffers between stations. The authors find flexibility structures and worker assignment policies

that maximize the system’s throughput. For an excellent review of workforce cross-training and

coordination, see Hopp and Van Oyen (2004).

Bischak (1996) considers a U-shaped manufacturing module with fewer workers than sta-

tions. She proposes rules that are suitable for a straight-line layout for workers to move in

the module. The throughput and flow time of this moving-worker module are compared with

a system with one dedicated worker per station through simulation studies. Chand and Zeng

(2001) consider static work allocation and compare U-lines with straight-line layouts under the

impact of stochastic task times. Geismar et al. (2008) study a U-shaped manufacturing cell

with multiple stages. Items are moved from one stage to another by dual gripper robots. Each

robot visits a cyclic sequence of stages in a manner similar to that considered in our paper.

However, they assume the assignment of stages to each robot is predetermined and fixed.

The ideas of cellular bucket brigades are first introduced by Lim (2011), who presents an

alternative design that may provide significant improvement in throughput. Under the new

design, each worker works on one side of an aisle when he proceeds in one direction and works

on the other side of the aisle when he proceeds in the reverse direction. The author proposes

the cellular bucket brigade rules to coordinate workers under the new design. He also finds a

sufficient condition for the system to self-balance. Numerical examples suggest that the system

under the new design can be 30% more productive than a traditional, serial bucket brigade.

Lim (2012) provides a case study of order-picking by cellular bucket brigades using data from a

distribution center in North America.

In this paper, we adapt the basic ideas of Lim (2011) and propose rules to coordinate workers

on the U-line with discrete stations. Under our assumption on discrete stations, a worker cannot

enter a station if his colleague is working on the station. This constraint makes the analysis

significantly more challenging than that of Lim (2011), where work content is continuously

distributed along the line and workers can work arbitrarily close to each other. We believe our
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Figure 2: A path. The U-line is conceptualized as a path with length 1. In this graph, W1

and W2 work on S1(k) and S3(k
′) respectively. The horizontal position hi is determined by

projecting the point on the path where worker i is located to the horizontal axis.

work is the first to analytically address dynamic work-sharing on U-lines with discrete stations.

3 A path

Let skj denote the work content of Sj(k) and define sj =
∑mj

k=1 s
k
j , for j = 1, 2, 3. We normalize

the total work content of the line such that
∑3

j=1 sj = 1. The assembly line can be conceptual-

ized as a path with length 1. Figure 2 shows such a path, which is represented by a bold solid

line. The start and the end of the path are represented by points 0 and 1 respectively. The

intervals [0, s1], (s1, s1 + s2], and (s1 + s2, 1] correspond to the work content of stages 1, 2, and

3 respectively. The horizontal line segments [0, s1] and (s1 + s2, 1] are parallel to each other,

and the line segment (s1, s1 + s2] is perpendicular to them.

Define hi as the horizontal position of Wi. This horizontal position is determined by pro-

jecting the point on the path where the worker is located to the horizontal axis. Figure 2 shows

the relationship between the point on the path where each worker is located and his horizontal

position. To distinguish these two coordinate systems, we call any location on the path a point

and any location on the horizontal axis a position.

We set the origin of the horizontal axis to be the projection of point 0 (the start of stage

1) to the axis. Note that a horizontal position can be negative if s1 < s3. Since stage 2 runs

vertically across the aisle, we have hi ≤ s1, for i = 1, 2. We require the workers to remain in a

fixed sequence along the horizontal axis such that h1 ≤ h2 at any point in time.
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4 The three-station, two-worker U-lines

In this section, we discuss a special case wherem1 = m2 = m3 = 1. Thus, the notation vij(k) and

Sj(k) can be simplified as vij and Sj , respectively, for i = 1, 2 and j = 1, 2, 3. We fully analyze

the dynamics of this special case and determine the asymptotic behavior and throughput of the

system in closed-form expressions. Understanding the behavior of the three-station system will

help us in the analysis of the M -station case.

4.1 Definitions and rules

We say W1, who is working on S1, meets W2, who is working on S3, when their horizontal

positions coincide (that is, h1 = h2). When W1 meets W2, a hand-off between the two workers

occurs: Each worker relinquishes his item, walks across the aisle, and takes over each other’s

item. After the hand-off, W1 works on S3, while W2 proceeds on S1.

Figure 3 shows how the two workers move on the U-line. Let xn denote the n-th hand-off

position. At the n-th hand-off, the two workers first relinquish their work and then walk across

the aisle. After they exchange their work, W1 works on S3 with velocity v13. When he finishes

his work on S3, he walks instantaneously to the start of S1, initiates a new item, and works on

S1 as soon as the station is free. Meanwhile, W2 works on S1 with velocity v21. After he reaches

the end of S1, he continues to work on S2. W2 then works on S3, as soon as the station is free,

until he meets W1 again at position xn+1.

Specifically, the workers follow the simple rules below:

Rule for W1:

• If you are on S1, assemble your item until you meet W2. Then exchange work with
W2 and work on S3.

• If you are on S3, assemble your item until you complete it. Then initiate a new item
and work on S1.

Rule for W2:

• Assemble your item along the assembly line until you meet W1. Then exchange work
with W1 and work on S1.
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1
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v11

v22
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Figure 3: Movements of workers on three stations. This figure shows the movements
of the two workers between the n-th and (n+1)-st hand-offs on a three-station U-line. The
solid arrows correspond to working, while the dashed arrows correspond to instantaneous walk.
The start and the end of each worker’s movement are represented by a circle and a square
respectively.

We call the above the cellular bucket brigade rules.

W1 is blocked at point 0 if he reaches the start of S1 while his colleague is still working on

S1. Similarly, W2 is blocked at point s1 + s2 if he reaches the start of S3 while his colleague is

still working on S3.

If W1 reaches the end of S1 before he meets his colleague, then W1 is halted at point s1.

If W1 is halted, he remains idle until a hand-off occurs immediately after W2 finishes his work

on S2. After the hand-off, W1 works on S3 while W2 reenters S2. On the other hand, if W2

reaches the end of S3 before he meets his colleague, then W2 is halted at point 1. Note that W2

can be halted only if s1 > s3. If W2 is halted, he remains idle until a hand-off occurs when the

horizontal positions of the two workers coincide.

4.2 Dynamics and throughput

Given the stations’ work content and the workers’ work velocities, we determine the asymptotic

dynamic behavior and the throughput of the system for any initial state. According to the

cellular bucket brigade rules, if s1 > s3 then h1 ∈ [0, s1] and h2 ∈ [s1 − s3, s1]. Otherwise,

h1 ∈ [s1−s3, s1] and h2 ∈ [0, s1]. Thus, any hand-off position falls in the interval I = [max{s1−

s3, 0}, s1] on the horizontal axis. Let f : I 7→ I be a function such that xn+1 = f(xn). The

sequence of iterates x1, x2, x3, . . . is called the orbit of an initial iterate x0 under f (Alligood et
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al. 1996). We say x∗ is a fixed point if x∗ = f(x∗). A period-2 orbit is an orbit that alternates

between p and q, where p = f(q) and q = f(p). Note that f(f(p)) = p and f(f(q)) = q.

We first construct the function f and then determine the asymptotic behavior of the cellular

bucket brigade by analyzing f (see Appendix A). We show that the system either converges to a

fixed point or a period-2 orbit. We find closed-form expressions of the fixed point, the period-2

orbit, and the corresponding throughput. Some of these expressions are too complex and thus

we only summarize the main results in the following paragraphs. The details can be found in

Appendix A. The dynamics of the system can be characterized by the following parameter:

ϕ =
1/v21 − 1/v23
1/v11 − 1/v13

.

There are two cases: (1) ϕ ≤ 1 and (2) ϕ > 1, which give rise to distinct dynamics and are

discussed as follows.

4.2.1 Case 1: ϕ ≤ 1

Figure 4(a) summarizes the asymptotic behavior of the three-station, two-worker system for

ϕ ≤ 1. Each point (s1, s3) in Figure 4(a) represents a work-content distribution on the stations.

Figure 4(a) shows that, for any given work velocities, the work-content distributions can be

grouped into five regions. Each region corresponds to a distinct asymptotic behavior. For

convenience, let µij = v22/vij denote the unit work time of worker i on stage j normalized by

the unit work time of worker 2 on stage 2, for i = 1, 2 and j = 1, 3. For brevity, define

η1 =
1 + (µ23 − 1)s1 − s3

µ11 + µ23
;

η2 =
µ23s1

µ11 + µ23
;

η3 =
1 + (µ13 + µ21 + µ23 − 1)s1 − (µ13 + 1)s3

µ11 + µ13 + µ21 + µ23
;

γ(x) =
1 + (µ13 + µ21 + µ23 − 1)s1 − (µ13 + 1)s3 − (µ13 + µ21)x

µ11 + µ23
.

For any initial workers’ locations on the U-line, the asymptotic behavior in each region is

summarized as follows.
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Figure 4: Asymptotic behaviors and throughput (ϕ ≤ 1). (a) The cellular bucket brigade
has different asymptotic behaviors in different regions. (b) The throughput in each region has
a different expression. For both graphs, we set v11 = 5/6, v13 = 5/4, v21 = 10/7, v22 = 1, and
v23 = 5/8.

Region 1 (Blocking and halting): This region corresponds to systems with “long” S1 and

“short” S3. The system converges to a fixed point x∗ = s1 − s3. At the fixed point, W1 is

blocked at point 0 and W2 is halted at point 1 in each iteration.

Region 2 (Blocking): The system converges to a fixed point x∗ = η1. At the fixed point, W1

is blocked at point 0 in each iteration.

Region 3 (Blocking): This region corresponds to systems with “short” S1 and “long” S3.

The system converges to a fixed point x∗ = η2. At the fixed point, W2 is blocked at point

s1 + s2 in each iteration.

Region 4 (Halting): Both S1 and S3 are “short” in this region. The system converges to a

fixed point x∗ = s1. At the fixed point, W1 is halted at point s1 in each iteration.

Region 5 (Nonidling): If ϕ < 1, the system converges to a fixed point x∗ = η3. If ϕ = 1, the

system converges to a period-2 orbit: x and γ(x), where x depends on the initial workers’
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locations on the line. Neither blocking nor halting occurs in this region.

It is noteworthy that if ϕ < 1, the system always converges to a unique fixed point in each

region. Thus, given a work-content distribution on the stations, the system always converges to

a unique fixed point if the following condition is satisfied.

Convergence Condition (3-Station U-Lines):

1/v11 − 1/v13 > 1/v21 − 1/v23. (1)

The condition above can be interpreted as follows: The term 1/vi1 − 1/vi3 represents the extra

work time worker i needs on stage 1 compared to stage 3 to complete a unit of work. According

to the condition, a worker with larger extra work time on stage 1 should be assigned a lower

index. In other words, a worker who is slower in stage 1 but faster in stage 3 than his colleague

should be assigned a lower index.

When the system operates on a fixed point, W1 repeatedly works in a loop on the left of

Figure 3, while W2 covers a loop on the right that includes stage 2. Convergence to a fixed point

could be desirable because each worker repeats the same portion of work on each item produced.

This allows workers to learn more efficiently as each of them concentrates on a set of possibly

nonconsecutive tasks. Furthermore, each worker covers a set of tasks that are physically close

to each other especially if the aisle is narrow. This reduces travel of workers and thus may

substantially boost productivity in practice. All other attractive characteristics of traditional

bucket brigades on a straight-line layout are preserved under the U-line layout. For example,

the system constantly seeks balance and the output is regular.

Figure 4(b) shows the long-run average throughput in each region. The throughput in each

region has a different expression, which can be found in Appendix A. Even though there is

neither blocking nor halting in Region 5, the throughput in this region may be lower than that

of other regions. This is because each worker has different work velocities on different stations.

Although there is no idleness in Region 5, a worker may repeatedly work on a station where he

is slow. On the other hand, although a worker may be blocked or halted in other regions, he
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may repeatedly work on stations where he is fast. This phenomenon does not exist in a system

where each worker has a constant velocity over all stations. In that case, it is guaranteed that

a region with no idleness will have the highest throughput.

4.2.2 Case 2: ϕ > 1

If ϕ > 1, the asymptotic behaviors and the expressions of throughput remain the same in all

regions except for Region 5, which is now partitioned into seven subregions as shown in Figure

5(a). We summarize the system’s asymptotic behavior in each subregion as follows.

Region 5a: The system converges to a period-2 orbit: η1 and γ(η1). On the period-2 orbit,

W1 is blocked at point 0 in every other iteration.

Region 5b: The system converges to a period-2 orbit: η2 and γ(η2). On the period-2 orbit,

W2 is blocked at point s1 + s2 in every other iteration.

Region 5c: The system converges to a period-2 orbit: s1 and γ(s1). On the period-2 orbit,

W1 is halted at point s1 in every other iteration.

Region 5d: The system converges to a period-2 orbit: η1 and s1 − s3. On the period-2 orbit,

W1 and W2 are repeatedly idle in alternative iterations: W1 is blocked at point 0 in one

iteration, and W2 is halted at point 1 in the next iteration.

Region 5e: The system converges to a period-2 orbit: η1 and η2. On the period-2 orbit, W1

and W2 are repeatedly idle in alternative iterations: W1 is blocked at point 0 in one

iteration, and W2 is blocked at point s1 + s2 in the next iteration.

Region 5f: The system converges to a period-2 orbit: s1 and η2. On the period-2 orbit, W1 and

W2 are repeatedly idle in alternative iterations: W1 is halted at point s1 in one iteration,

and W2 is blocked at point s1 + s2 in the next iteration.

Region 5g: The system converges to a period-2 orbit: s1 and s1 − s3. On the period-2 orbit,

W1 and W2 are repeatedly idle in alternative iterations: W1 is first blocked at point 0 and
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Figure 5: Asymptotic behaviors and throughput (ϕ > 1). (a) Region 5 is partitioned into
seven subregions. (b) The throughput in each subregion of Region 5 has a different expression.
For both graphs, v11 = 5/6, v13 = 2/7, v21 = 10/7, v22 = 1, and v23 = 5/8.

then halted at point s1 in one iteration, and W2 is halted at point 1 in the next iteration.

Figure 5(b) shows that each subregion of Region 5 may have different throughput, which may

be lower than that of other regions.

4.2.3 Summary

There is blocking and halting in Regions 1 to 4 independent of the value of ϕ. This is because the

three stages of the U-line are less balanced in these regions: Stages 1, 2, and 3 have relatively

more work content than other stages in Regions 1–2, 4, and 3 respectively. In contrast, the

work content of the three stages is more balanced in Region 5, which allows the system to

avoid blocking and halting if the workers are sequenced properly. Specifically, if the workers are

sequenced such that ϕ < 1, then the system always converges to a fixed point with no blocking

or halting in Region 5. If ϕ = 1, the system converges to a period-2 orbit, which depends on

the initial workers’ locations, with no blocking or halting. If ϕ > 1, the system converges to

different period-2 orbits with blocking and/or halting in different parts of Region 5.
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4.3 Choosing the best worker sequence

Suppose the velocities of workers and the work content of stations are given, what is the best

sequence of workers to maximize throughput? Since there are only two possible sequences

for the two-worker system, we can calculate their respective values of ϕ. For each sequence,

the throughput under the given work-content distribution can be obtained from the results of

Section 4.2.1 (if ϕ ≤ 1) or Section 4.2.2 (if ϕ > 1). The sequence that gives a higher throughput

should be chosen. For example, there are two possible sequences given workers A and B: W1 is

worker A and W2 is worker B (denoted by AB), or W1 is worker B and W2 is worker A (denoted

by BA). Figure 6(a) shows the best sequence of workers for each work-content distribution with

vA1 < vB1, vA2 = vB2, and vA3 > vB3.

The sequences AB and BA perform equally well near the bottom-left corner of Figure 6(a).

This is because the bottom-left corner of the figure corresponds to Region 4 in Section 4.2 (see

Figures 4(a) and 5(a)). In Region 4, stage 2 is a bottleneck because it has relatively more work

content than other stages. Thus, the throughput of a worker sequence is determined by the

worker that works on stage 2. Since both workers A and B have the same velocity on stage 2,

both sequences AB and BA have the same throughput in Region 4.

In other areas of Figure 6(a), the preferred worker sequence depends on the workers’ velocities

and the relative amounts of work in the three stages. For example, stage 1 has relatively more

work content than other stages near the bottom-right corner of Figure 6(a). We should assign

a worker who is fast on stage 1 to the left. The sequence BA is preferred because vA1 < vB1.

Similarly, stage 3 has relatively more work content than other stages near the top-left corner of

Figure 6(a). The sequence AB is preferred because vA3 > vB3.

Figure 6(b) represents a case where worker B is faster than worker A in both stages 1 and

3. Apparently, the sequence BA dominates as it allows the faster worker to do more work. We

summarize the above findings as follows.

1. If stage 2 has relatively more work content than other stages, then assign a worker who is

faster than his colleague in stage 2 to the right of the U-line.
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Figure 6: Best sequences. The sequence AB dominates in the dark-shaded area, whereas the
sequence BA dominates in the light-shaded area. Both sequences perform equally well in the
remaining area. (a) vA1 = 4/5, vA2 = 1, vA3 = 5/4, vB1 = 5/4, vB2 = 1, and vB3 = 4/5. (b)
vA1 = 4/5, vA2 = 1, vA3 = 4/5, vB1 = 5/4, vB2 = 1, and vB3 = 5/4.

2. If stage 1 (stage 3) has relatively more work content than other stages, then assign a

worker who is faster than his colleague in stage 1 (stage 3) to the left of the U-line.

5 The M-station, two-worker U-lines

In this section we analyze the dynamics and determine the throughput of U-lines withM stations

and two workers. Unlike in the three-station case, we cannot find a closed-form expression of

the dynamic function f . However, we show that the system converges to either a fixed point

or a period-2 orbit. We determine the fixed point and the corresponding throughput using an

algorithmic approach.

5.1 Definitions and rules

Recall that a worker is in stage j ∈ {1, 2, 3} if he is on station Sj(k) for any k ∈ {1, . . . ,mj}. We

say W1, who is working on stage 1, meets W2, who is working on stage 3, when their horizontal

positions coincide (that is, h1 = h2). There are three different types of hand-offs in the M -
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station U-line. A hand-off of type I occurs when W1 meets W2. Each worker first relinquishes

his item, walks across the aisle, and then takes over each other’s item. After the hand-off, W1

works on stage 3 while W2 proceeds on stage 1. The movements of the two workers beginning

with a type I hand-off are similar to that shown in Figure 3.

Since there are multiple stations in stage 3, W2 can enter stage 3 as long as he is not blocked

by W1. The two workers can work on different stations in stage 3 simultaneously. A type II

hand-off occurs when W1 completes an item at the end of stage 3 and W2 has passed the origin

of the horizontal axis (h2 < 0). In this case W1 walks back, takes over work from W2 at the

horizontal position h2 < 0, and continues the work on stage 3. Meanwhile, W2 walks across the

aisle and initiates a new item in stage 1. Note that type II hand-offs are possible only if s1 < s3.

Figure 7(a) shows the movements of the two workers beginning with a type II hand-off.

Similarly, W1 can enter stage 2 as long as he is not blocked by W2. The two workers can

work on different stations in stage 2 simultaneously. A type III hand-off occurs when W2 reaches

the end of stage 2 while W1 is working on stage 2. The two workers exchange work so that W1

works on stage 3 and W2 reenters stage 2 after the hand-off. Figure 7(b) shows the movements

of the two workers beginning with a type III hand-off. To map a hand-off point in stage 2 to

a unique position on the horizontal axis, we rotate counterclockwise the path segment in stage

2 by 90◦ (see the dotted arc in Figure 7(b)). The rightmost dashed vertical line in Figure 7(b)

shows how the horizontal position xn is determined after a type III hand-off point in stage 2 is

projected to the horizontal axis. Note that type II and type III hand-offs do not occur in the

three-station system.

The cellular bucket brigade rules for the M -station U-line are given as follows.

Rule for W1:

• If you are in stage 1 or 2, assemble your item until you exchange work with W2. Then
work in stage 3.

• If you are in stage 3, assemble your item until you complete it. Upon completion,

1. if the horizontal position of W2 is nonnegative then initiate a new item and work
in stage 1;

2. otherwise, take over work from W2 and continue the work in stage 3.
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Figure 7: Movements of workers on M stations. Both graphs show the movements of the
two workers between the n-th and (n+1)-st hand-offs on an M -station U-line. The arrows, the
circles, and the squares are interpreted in the same way as in Figure 3. (a) Type II hand-off:
The n-th hand-off occurs when W1 completes an item at point 1. He then takes over work from
W2, whose horizontal position is negative. (b) Type III hand-off: The n-th hand-off occurs
when W2 reaches the end of stage 2. He then exchanges work with W1, who is also in stage 2.

Rule for W2: Assemble your item along the assembly line until

• you exchange work with W1, who is in stage 1 (2), then work in stage 1 (2); or

• your item is taken over by W1, then initiate a new item and work in stage 1.

In the M -station U-line, W1 can be blocked at the start of any station in stages 1 and 2,

whereas W2 can be blocked at the start of any station in stage 3. If W2 reaches the end of stage

3 before he meets his colleague, then W2 is halted at point 1. Note that W2 can be halted only

if s1 > s3. If W2 is halted, he remains idle until a hand-off occurs when the horizontal positions

of the two workers coincide.

5.2 Dynamics

According to the cellular bucket brigade rules for the M -station U-line, any hand-off position

falls in the interval I = [s1 − s3, s1 + s2 − sm2

2 ] on the horizontal axis. Note that the position of

a type II hand-off is negative (see Figure 7(a)), and the position of a type III hand-off falls in

(s1, s1 + s2 − sm2

2 ] (see Figure 7(b)). Let f : I 7→ I be a function such that xn+1 = f(xn).

Due to numerous combinations of numbers of stations in the three stages of the U-line, we

cannot enumerate each possible case and determine the dynamic function f in closed form (such
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as the one for the three-station case in Appendix A.1). However, we prove that f is continuous,

non-increasing, and piecewise linear (see Appendix B.1). These properties of f enable us to

determine the asymptotic behavior of the M -station system.

Specifically, we show that the system has a unique fixed point x∗ and has no periodic orbits

of period greater than 2 (see Lemma 9 in Appendix B.2). We say a hand-off position x is

interior if the points corresponding to x on the U-line fall in the interior of some stations. We

find a sufficient condition for the system to converge to the fixed point x∗, independent of the

initial workers’ locations on the U-line:

Convergence Condition (M-Station U-Lines): For any pair of interior hand-off posi-

tions x and f(x), one of the following cases should hold:

1. 0 < x < s1, 0 < f(x) < s1, where x falls in S1(k1) and S3(k2) while f(x) falls in S1(k3) and S3(k4),
and

1/v11(k3)− 1/v13(k2) > 1/v21(k1)− 1/v23(k4). (2)

2. 0 < x < s1, f(x) < 0, where x falls in S1(k1) and S3(k2) while f(x) falls in S3(k4), and

− 1/v13(k2) > 1/v21(k1)− 1/v23(k4). (3)

3. x < 0, 0 < f(x) < s1, where x falls in S3(k2) while f(x) falls in S1(k3) and S3(k4), and

1/v11(k3)− 1/v13(k2) > −1/v23(k4). (4)

4. x < 0, f(x) < 0, where x falls in S3(k2) while f(x) falls in S3(k4), and

− 1/v13(k2) > −1/v23(k4). (5)

5. x > s1, 0 < f(x) < s1, where x falls in S2(k1) while f(x) falls in S1(k3) and S3(k4), and

1/v11(k3) > 1/v22(k1)− 1/v23(k4). (6)

6. x > s1, f(x) < 0, where x falls in S2(k1) while f(x) falls in S3(k4), and

0 > 1/v22(k1)− 1/v23(k4). (7)

7. 0 < x < s1, f(x) > s1, where x falls in S1(k1) and S3(k2) while f(x) falls in S2(k3), and

1/v12(k3)− 1/v13(k2) > 1/v21(k1). (8)

8. x < 0, f(x) > s1, where x falls in S3(k2) while f(x) falls in S2(k3), and

1/v12(k3)− 1/v13(k2) > 0. (9)

9. x > s1, f(x) > s1, where x falls in S2(k1) while f(x) falls in S2(k3), and

1/v12(k3) > 1/v22(k1). (10)
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We show that the system always converges to the fixed point x∗ if the above Convergence

Condition holds (see Lemma 10 in Appendix B.2 for details). Note that if s1 ≥ s3 then both

x and f(x) are non-negative, and so only the inequalities (2), (6), (8), and (10) are needed to

ensure convergence.

It is noteworthy that inequality (2) is a generalized version of inequality (1). Thus, the

Convergence Condition for M -station U-lines is a generalization of that for three-station U-

lines. However, in an M -station system we need to consider workers’ velocities on specific

stations in a stage because each stage may contain multiple stations. If at least one of the

hand-off positions x and f(x) is negative, some terms are missing from inequality (2) because

the stations corresponding to those terms do not exist. This leads to inequalities (3)–(5). If x

falls in stage 2 (due to a type III hand-off), then v21(k1) is replaced by v22(k1). Similarly, if

f(x) falls in stage 2, then v11(k3) is replaced by v12(k3). These lead to inequalities (6)–(10).

For a three-station U-line, only type I hand-offs are possible and their horizontal positions

are always non-negative. As a result, the Convergence Condition for M -station U-lines reduces

to condition (1) for the three-station case. The Convergence Condition for M -station U-lines

can be interpreted in a similar manner using the intuition derived from condition (1).

Checking the Convergence Condition for the M -station system only requires enumeration of

all possible values of ki, i = 1, . . . , 4. It is straightforward to check this condition as there are

at most (m1 +m2 +m3)
2 combinations of ki, i = 1, . . . , 4. Furthermore, the condition can be

checked easily if vij(k) = vij , where vij is a constant, for k = 1, . . . ,mj.

We develop algorithms to calculate the fixed point x∗ and its throughput for the M -station

U-line. Based on these algorithms, we investigate the impact of the number of stations in each

stage on throughput.

5.3 Impact of number of stations on throughput

Increasing the number of stations in each stage makes the system more flexible because a worker

can enter a station in a stage as long as he is not blocked by his colleague. This reduces the
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idling time of workers and may potentially result in higher throughput than the three-station

U-line. We examine the throughput by increasing the number of stations in each stage.

Figure 8(a) shows the system’s throughput with m1 = m2 = m3 = 1 for different work-

content distributions. Figure 8(b) shows the throughput when the number of stations in each

stage increases to 2. The throughput increases in Regions 1 and 2 (see Figure 4(a)). This is

because in the three-station system W1 is repeatedly blocked at the start of stage 1 when the

system operates on the corresponding fixed point. Dividing stage 1 into more stations reduces

the time of W1 being blocked and so increases the throughput. Similarly, dividing stage 3 into

more stations reduces the time of W2 being blocked at the start of stage 3. This increases the

throughput in Region 3. Likewise, dividing stage 2 into more stations reduces the time of W1

being halted at the start of stage 2. This increases the throughput in Region 4. Finally, the

throughput remains unchanged in Region 5. This is because in the three-station system there

is neither blocking nor halting in this region. Thus, increasing the number of stations in each

stage will not improve the throughput in this region.

Does productivity in Regions 1 to 4 continue to increase as the number of stations in each

stage increases? Figure 8(c) shows the throughput when m1 = m2 = m3 = 10. In comparison

with Figure 8(b), the throughput is significantly improved only in Region 3. Given the number

of stations mj in each stage j, Figure 8(d) shows the average throughput of all work-content

distributions (s1, s2, s3) over the three stages. We assume skj = sj/mj , for j = 1, 2, 3, k =

1, . . . ,mj . The average throughput significantly increases if the number of stations in each

stage increases from 1 to 2. However, the average throughput is only marginally improved and

soon becomes constant if each stage is further divided into more stations.
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Figure 8: Impact of number of stations. (a–c) We set m1 = m2 = m3 = K. The
throughput remains unchanged in Region 5, but may increase in other regions as K increases.
(d) The average throughput increases significantly when the number of stations in any stage
increases from 1 to 2, but soon becomes constant as the number of stations further increases. For
all graphs, we set v11(k) = 5/6, v21(k) = 10/7, v12(k) = v22(k) = 1, v13(k) = 5/4, v23(k) = 5/8,
and skj = sj/mj , for k = 1, . . . ,mj , j = 1, 2, 3.
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Sometimes it could be expensive to divide a stage into more stations. In this situation

knowing where flexibility can add the most value becomes important. Our analysis allows

us to identify an attractive candidate to be divided into more stations. For example, Figure

8(d) suggests that, for this particular velocity setting, increasing m2 from 1 to 2 gives the

largest improvement in average throughput compared to increasing m1 or m3. Figure 8(d) also

suggests that the throughput is significantly improved if we increase the number of stations

in every stage from 1 to 2. Note that we still have blocking and halting for the systems with

m1 = m2 = m3 = K ≥ 2 in Figure 8(d). However, the idle time of workers in these systems

is reduced due to the systems’ extra flexibility (more stations in each stage). This results in

a significant gap between the top curve (with m1 = m2 = m3 = K) and the lower curves in

Figure 8(d).

6 Performance under random work velocities

Sections 4 and 5 assume no variability in each vij(k): Each worker has a constant and determin-

istic work velocity on each station. In practice, the work velocity of each worker on each station

is usually neither constant nor deterministic. To demonstrate that a cellular bucket brigade

can absorb the impact of variability in work velocity, we assume the workers have random work

velocities in this section. We compare numerically the throughput of the cellular bucket brigade

with that of a team based on static allocation of work (called the static team).

For the static team, we assume a worker can only exchange work with his colleague after he

finishes his work on a station. Thus, the work of a worker cannot be preempted within a station.

Each worker in the static team repeats a fixed loop in the U-line. Figure 9 shows an example:

W1 works on stations S1(1), . . . , S1(α1) in stage 1 and stations S3(α3 + 1), . . . , S3(m3) in stage

3; whereas W2 works on stations S1(α1 + 1), . . . , S1(m1) in stage 1, all the stations in stage 2,

and stations S3(1), . . . , S3(α3) in stage 3. See Geismar et al. (2008) for a similar allocation.

Workers in a static team such as the one shown in Figure 9 follow the rules below.

Rule for W1:
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Figure 9: Static allocation of work. Each worker repeats a fixed loop under static alloca-
tion of work. The solid arrows correspond to working, while the dashed arrows correspond to
instantaneous walk.

• If you are in stage 1, assemble your item until you reach the end of S1(α1). Then
exchange work with W2 once he finishes the work on S3(α3), and work in stage 3.

• If you are in stage 3, assemble your item until you complete it. Then initiate a new
item and work in stage 1.

Rule for W2:

• Assemble your item along the assembly line until you reach the end of S3(α3). Then
exchange work with W1 once he finishes the work on S1(α1), and work in stage 1.

In Figure 9, W1 covers the first segment of stage 1 and the second segment of stage 3, while

W2 works on the rest of the stations. We consider α1 ∈ [0,m1 +m2] and α3 ∈ [−m2,m3] such

that other kinds of work allocation are possible. If α1 = 0, then W1 will not work on stage 1. If

m1 ≤ α1 ≤ m1 +m2, then W2 will not work on stage 1 and W1 relinquishes his work for W2 in

stage 2. For example, α1 = m1 and α1 = m1 +m2 correspond to cases where W1 relinquishes

his work for W2 at the start and the end of stage 2 respectively. If −m2 ≤ α3 ≤ 0, then W2 will

not work on stage 3 and he relinquishes his work for W1 in stage 2. For example, α3 = −m2

and α3 = 0 correspond to cases where W2 relinquishes his work for W1 at the start and the end

of stage 2 respectively. If α3 = m3, then W1 will not work on stage 3.

For benchmarking, we also consider an alternative dynamic team in which each worker works

individually over all stations. At the start of each station, if a faster worker (with a larger mean

velocity on the station) is blocked by a slower worker, they will exchange work and so the slower

worker will be blocked at the station. Note that this policy does not facilitate learning.

For all the three policies considered, we assume that when Wi works on Sj(k) for the t-
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th time his velocity is ṽtij(k). We define ṽtij(k) = vij(k)/(1 + εtij(k)), where vij(k) (velocities

in the deterministic model) serve as parameters and εtij(k) are independent and identically

distributed random variables, for i = 1, 2, j = 1, 2, 3, k = 1, . . . ,mj , and t = 1, 2, 3, . . .. Under

this definition, a worker generally has a different velocity every time he revisits a station. We

report the results of the case where each εtij(k) follows a normal distribution N (0, σ2), where

the standard deviation σ is a parameter. Similar results are observed if each εtij(k) follows a

uniform distribution with mean 0.

We compare the average throughput of the three policies by simulations. Given any σ, an

experiment corresponds to a specific set of values for the parameters skj and vij(k), i = 1, 2, j =

1, 2, 3, k = 1, . . . ,mj . Each experiment consists of 10 simulation runs. In each simulation run,

500 items are produced after the system is stabilized. In each experiment, the indices α1 and

α3 for the static team are determined such that its average throughput with deterministic work

velocities vij(k) is maximized. This can be done by enumerating all possible locations in stages

1, 2, and 3 for exchanging work.

We consider each stage has two stations with evenly distributed work content, and the

parameter vij(k) equals a constant vij for all k = 1, . . . ,mj . Similar results are observed when

we consider more complex situations such as more stations per stage, uneven work content on

the stations, or general vij(k). For each σ, we set v12 = v22 = 1.0 and consider vij ∈ {2/3, 1, 2},

for i = 1, 2, j = 1, 3, and (s1, s2, s3) are chosen from the combinations in Table 1.

Table 1: Different work-content distributions on the three stages of the U-line.

Combinations 1 2 3 4 5 6 7
s1 0.6 0.2 0.2 0.4 0.4 0.2 1/3
s2 0.2 0.6 0.2 0.4 0.2 0.4 1/3
s3 0.2 0.2 0.6 0.2 0.4 0.4 1/3

This results in 567 (that is, 34 × 7) experiments for each σ.

Define the percentage efficiency of a policy as

Average throughput of the policy over all experiments

Average throughput of the static team over all experiments
× 100%.
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A policy, on average, outperforms the static team if the former’s percentage efficiency is larger

than 100%. Figure 10(a) shows the cellular bucket brigade’s percentage efficiency for various

values of σ, incremented by 0.025, in [0, 0.5]. This efficiency is always larger than 100% and it

increases with σ. The cellular bucket brigade can better absorb the impact of variability in work

velocity and its performance relative to the static team improves as variability increases. The

performance of the static team is close to that of the cellular bucket brigade when variability is

low. This is because we optimize the work allocation for workers in the static team: For each

experiment, we optimize α1 and α3 such that the average throughput of the static team with

deterministic work velocities vij(k) is maximized. In contrast, we do not optimize the worker

sequence of the cellular bucket brigade in each experiment.

The alternative dynamic team is the least productive among the three policies when vari-

ability is low. However, its performance improves and becomes similar to that of the cellular

bucket brigade as variability increases. The problem of the alternative dynamic team is that

even if a faster worker exchanges work with a slower worker at a station, the slower worker will

still need to work on the station (where he is slow) after the faster worker leaves the station.

Figure 10(b) shows the percentage of experiments where the average throughput of the

cellular bucket brigade is greater than or equal to that of the static team for various σ. This

percentage generally increases with σ. The cellular bucket brigade dominates in at least 53%

of the 567 experiments for each σ. The curve given by the alternative dynamic team overlaps

with the curve of the cellular bucket brigade. Although the percentage of experiments that the

alternative dynamic team outperforms the static team is the same as that of the cellular bucket

brigade, the average throughput of the alternative dynamic team is significantly lower than that

of the cellular bucket brigade if σ is small (see Figure 10(a)).

Figure 10 suggests that the cellular bucket brigade is promising because it does not require

optimization on work allocation, unlike the static team where we need to find the best loops for

the workers in advance. By following the simple coordination rules, the cellular bucket brigade

can better accommodate the impact of random work velocities and maintain higher efficiency.
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Figure 10: Average throughput comparison. (a) The percentage efficiency of both the
cellular bucket brigade and the alternative dynamic team increases with variability in work
velocity. (b) The percentage of experiments in which the throughput of the cellular bucket
brigade is greater than or equal to that of the static team generally increases with variability.

7 Conclusions

Maximizing and maintaining productivity of a U-line with discrete stations under the impact

of variability can be challenging. This is because maximizing productivity requires assigning

workers to suitable tasks and maintaining productivity requires sufficient flexibility in task

assignment to absorb the impact of variability.

To achieve this goal, we propose the cellular bucket brigade rules to coordinate workers on

the U-line with discrete stations. Under these rules the system’s productivity can be maximized

by properly choosing the worker sequence. Workers are allowed to dynamically share work (they

are not assigned and restricted to a fixed set of stations) such that the system can effectively

absorb the impact of variability. Our approach also reduces travel by allowing each worker to

work on nonconsecutive stations that are physically close to each other. We believe this may

boost productivity in the actual implementation even though we neglect the travel time between

stations in our model. In addition, the rules are easy to follow and implement in practice.

We analyze a deterministic model with two workers and multiple stations. Each worker

handles a single item at a time, and at most one worker is allowed to work on a station at
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any time. We assume worker- and station-dependent work velocities. The analysis of the

system dynamics is nontrivial due to possible blocking and halting of workers and numerous

combinations of numbers of stations, work-content distributions, and work velocities.

The three-station system always converges to a fixed point or a period-2 orbit for a given

work-content distribution. For the system to converge to the fixed point, a worker who is slower

in stage 1 but faster in stage 3 than his colleague should be assigned a lower index. Based on

closed-form expressions of the fixed point, the period-2 orbit, and the corresponding throughput,

we identify the best worker sequence that maximizes the system’s throughput.

Convergence to a fixed point could be desirable because each worker repeatedly works in the

same loop on the U-line, which facilitates learning. The travel of workers is also reduced as each

worker executes tasks that are physically close to each other especially if the aisle is narrow.

All other attractive characteristics of traditional bucket brigades on a straight-line layout are

preserved under the U-line layout. For example, the system has regular output on the fixed

point and it can restore balance after disruptions.

Similarly, the M -station system always converges to a fixed point or a period-2 orbit for a

given number of stations in each stage and a given work-content distribution on the stations.

We identify a sufficient condition for the system to converge to the fixed point. This condition

is a generalization of that of the three-station case. It can be interpreted in a similar manner

using the intuition derived from the three-station system and can be tested efficiently. We find

that dividing each stage into more stations will improve the throughput if the system falls in

Regions 1 to 4, but will not boost productivity if the system falls in Region 5. The throughput

is significantly improved as the number of stations in each stage increases from 1 to 2, but there

is diminishing return if we further divide each stage into more stations.

To evaluate the performance of the cellular bucket brigade under random work velocities,

we compare it with a team based on optimized, static allocation of work. Our simulation results

suggest that the cellular bucket brigade is more productive and its performance relative to the

static team improves as variability in work velocity increases. The cellular bucket brigade is
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promising because, by following the simple coordination rules, it can better absorb the impact

of random work velocities and maintain higher efficiency.

We should emphasize that it is easier to identify the hand-off position under the cellular

bucket brigade rules if each worker continuously moves along a station when he progressively

works on the station. It is straightforward to implement the rules in such a setting, which can

be found, for example, in porcelain painting.

The cellular bucket brigade rules proposed in this paper are based on the assumption that

the work on each station can be preempted. For nonpreemptive work content, we will need

to redefine hand-offs. It will be interesting to investigate the performance of cellular bucket

brigades in such an environment. It is also interesting to study the impact of travel time for

long, U-shaped assembly lines.
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A Technical details for the three-station system

A.1 Constructing the function f
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s3 = 1 − s1
s3 = µ11

µ11+µ23

s1

s1 = 1+(µ11+µ23−1)s3

µ11+1

s3 = 1 − (µ11 + 1)s1

Figure 11: Five distinct forms of the function f . Each region corresponds to a distinct
form of the function f . We set µ11 = 1.2, µ13 = 0.8, µ21 = 0.7, and µ23 = 1.6 in this example.

To study the dynamics of the three-station, two-worker system, we first construct the func-

tion f . Figure 11 shows five work-content regions. Each region corresponds to a distinct form

of the function f , which is determined in Lemma 1. Let

θ1 = s1 −
µ13

µ13 + µ21
s3;

θ2 =
1 + (µ13 + µ21 − µ11 − 1)s1 − (µ13 + 1)s3

µ13 + µ21
;

θ3 =
1 + (µ13 + µ21 − µ11 − 1)s1 + (µ11 + µ23 − µ13 − 1)s3

µ13 + µ21
;

θ4 =
1 + (µ13 + µ21 − 1)s1 − (µ13 + 1)s3

µ13 + µ21
.

Lemma 1. The function f is given as follows.

Region a
(

s1 >
1+(µ11+µ23−1)s3

µ11+1

)

:

f(xn) = s1 − s3.
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Region b
(

s3 ≥ 1− (µ11 + 1)s1, s1 ≤
1+(µ11+µ23−1)s3

µ11+1 , and s3 <
µ11

µ11+µ23
s1

)

:

f(xn) =











η1, if xn ∈ [s1 − s3, θ1);

γ(xn), if xn ∈ [θ1, θ3];

s1 − s3, otherwise.

Region c
(

s3 ≥ 1− (µ11 + 1)s1 and s3 ≥
µ11

µ11+µ23
s1

)

:

f(xn) =











η1, if xn ∈ [max{0, s1 − s3}, θ1);

γ(xn), if xn ∈ [θ1, θ4];

η2, otherwise.

Region d
(

s3 < 1− (µ11 + 1)s1 and s3 <
µ11

µ11+µ23
s1

)

:

f(xn) =











s1, if xn ∈ [s1 − s3, θ2);

γ(xn), if xn ∈ [θ2, θ3];

s1 − s3, otherwise.

Region e
(

s3 < 1− (µ11 + 1)s1 and s3 ≥
µ11

µ11+µ23
s1

)

:

f(xn) =











s1, if xn ∈ [max{0, s1 − s3}, θ2);

γ(xn), if xn ∈ [θ2, θ4];

η2, otherwise.

Proof. We construct the function f for the following two cases separately: (I) s1 > s3 and (II)

s1 ≤ s3.

0

s1+s2

s1

1

0 s1

v13

v21

s1-s3 xn

Figure 12: Case (I) (s1 > s3). The hand-off position xn falls in the interval [s1 − s3, s1]. The
points on the path where workers are located immediately after the n-th hand-off are shown.

For Case (I), the hand-off position xn falls in the interval [s1− s3, s1] on the horizontal axis.

Figure 12 shows the path for Case (I). Note that the points on the path where workers are
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located immediately after the n-th hand-off are shown in the figure. In this case, W1 may be

blocked at point 0 or halted at point s1 on the line, and W2 may be blocked at point s1 + s2

or halted at point 1. We determine the next hand-off position xn+1 by considering all possible

combinations of blocking and halting events.

(I) s1 > s3 (xn ∈ [s1 − s3, s1]):

(A) W1 is not blocked at point 0 if s1−xn

v21
≤ xn−s1+s3

v13
⇔ xn ≥ θ1.

(1) W1 is not halted at point s1 if s1−xn

v21
+ 1−s1−s3

v22
≤ xn−s1+s3

v13
+ s1

v11
⇔ xn ≥ θ2.

(a) W2 is not blocked at point s1 + s2 if s1−xn

v21
+ 1−s1−s3

v22
≥ xn−s1+s3

v13
⇔ xn ≤ θ4.

(i) W2 is not halted at point 1 if

s1−xn

v21
+ 1−s1−s3

v22
+ s3

v23
≥ xn−s1+s3

v13
+ s1−s3

v11
⇔ xn ≤ θ3.

— In this case, xn+1 = γ(xn).

(ii) W2 is halted at point 1 if xn > θ3.

— In this case, xn+1 = s1 − s3.

(b) W2 is blocked at point s1 + s2 if xn > θ4.

(i) W2 is not halted at point 1 if s3
v23

≥ s1−s3
v11

⇔ s3 ≥
µ11

µ11+µ23
s1.

— In this case, xn+1 = η2.

(ii) W2 is halted at point 1 if s3 <
µ11

µ11+µ23
s1.

— In this case, xn+1 = s1 − s3.

(2) W1 is halted at point s1 if xn < θ2.

— In this case, xn+1 = s1.

(B) W1 is blocked at point 0 if xn < θ1.

(1) W1 is not halted at point s1 if 1−s1−s3
v22

≤ s1
v11

⇔ s3 ≥ 1− (µ11 + 1)s1.

(a) W2 is not halted at point 1 if 1−s1−s3
v22

+ s3
v23

≥ s1−s3
v11

⇔ s1 ≤
1+(µ11+µ23−1)s3

µ11+1 .

— In this case, xn+1 = η1.
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(b) W2 is halted at point 1 if s1 >
1+(µ11+µ23−1)s3

µ11+1 .

— In this case, xn+1 = s1 − s3.

(2) W1 is halted at point s1 if s3 < 1− (µ11 + 1)s1.

— In this case, xn+1 = s1.

0

s1+s2

s1

1

0 s1s1-s3

v13

v21

xn

Figure 13: Case (II) (s1 ≤ s3). The hand-off position xn falls in the interval [0, s1] on the
horizontal axis. The actual locations of workers on the line immediately after the n-th hand-off
are shown.

For Case (II), the hand-off position xn falls in the interval [0, s1] on the horizontal axis.

Figure 13 shows the path for Case (II). The actual locations of workers on the line immediately

after the n-th hand-off are shown in the figure. In this case, W1 may be blocked at point 0 or

halted at point s1 on the line, and W2 may be blocked at point s1 + s2. We determine the next

hand-off position xn+1 by considering all possible combinations of blocking and halting events.

(II) s1 ≤ s3 (xn ∈ [0, s1]):

(A) W1 is not blocked at point 0 if xn ≥ θ1.

(1) W1 is not halted at point s1 if xn ≥ θ2.

(a) W2 is not blocked at point s1 + s2 if xn ≤ θ4.

— In this case, xn+1 = γ(xn).

(b) W2 is blocked at point s1 + s2 if xn > θ4.

— In this case, xn+1 = η2.
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(2) W1 is halted at point s1 if xn < θ2.

— In this case, xn+1 = s1.

(B) W1 is blocked at point 0 if xn < θ1.

(1) W1 is not halted at point s1 if s3 ≥ 1− (µ11 + 1)s1.

— In this case, xn+1 = η1.

(2) W1 is halted at point s1 if s3 < 1− (µ11 + 1)s1.

— In this case, xn+1 = s1.

Now, we check the function f in each region of Figure 11 using the above results. Note that

θ3 > θ2, θ4 > θ1, and θ4 > θ2.

Region a: In this region, we have s1 > 1+(µ11+µ23−1)s3
µ11+1 , which implies θ1 > θ3 > θ2,

s3 > 1 − (µ11 + 1)s1, and s3 < µ11

µ11+µ23
s1. (The last inequality is implied by s1 + s3 < 1: The

lines s1 = 1+(µ11+µ23−1)s3
µ11+1 and s3 = µ11

µ11+µ23
s1 always intersect at point ( µ11+µ23

2µ11+µ23
, µ11

2µ11+µ23
) on

the line s1 + s3 = 1. See Figure 11.)

Since s3 <
µ11

µ11+µ23
s1, we have s1 > s3. Thus, this region corresponds to Case (I). If xn < θ1

then, because of inequalities s3 > 1 − (µ11 + 1)s1 and s1 > 1+(µ11+µ23−1)s3
µ11+1 , we have Case

(I)(B)(1)(b): xn+1 = s1 − s3. Otherwise, we have xn ≥ θ1 > θ3 > θ2 and so the region

corresponds to Case (I)(A)(1). In addition, we have s3 < µ11

µ11+µ23
s1 ⇔ θ4 > θ3. Thus, we have

either Case (I)(A)(1)(a)(ii) due to the inequality xn > θ3 or Case (I)(A)(1)(b)(ii) due to the

inequality s3 < µ11

µ11+µ23
s1. Both cases imply xn+1 = s1 − s3. Therefore, for any xn, we have

xn+1 = s1 − s3 in this region.

Region b: In this region, we have s3 ≥ 1 − (µ11 + 1)s1, s1 ≤ 1+(µ11+µ23−1)s3
µ11+1 , and s3 <

µ11

µ11+µ23
s1. The last inequality implies s1 > s3, and thus this region corresponds to Case (I). If

xn < θ1 then, because of the inequalities s3 ≥ 1− (µ11 +1)s1 and s1 ≤
1+(µ11+µ23−1)s3

µ11+1 , we have

Case (I)(B)(1)(a): xn+1 = η1. Otherwise, we have xn ≥ θ1. Since s3 ≥ 1−(µ11+1)s1 ⇔ θ1 ≥ θ2,

this region corresponds to Case (I)(A)(1). In addition, s3 < µ11

µ11+µ23
s1 ⇔ θ4 > θ3. Thus, if

xn ≤ θ3 < θ4, we have Case (I)(A)(1)(a)(i): xn+1 = γ(xn). Otherwise, we have xn > θ3,

37



and thus we have either Case (I)(A)(1)(a)(ii) or Case (I)(A)(1)(b)(ii) due to the inequality

s3 <
µ11

µ11+µ23
s1. Both cases imply xn+1 = s1 − s3.

Region c: In this region, we have s3 ≥ 1 − (µ11 + 1)s1 and s3 ≥ µ11

µ11+µ23
s1, which imply

θ1 ≥ θ2 and θ3 ≥ θ4 respectively. In addition, as shown in Region a, if s1 > 1+(µ11+µ23−1)s3
µ11+1 ,

then s3 <
µ11

µ11+µ23
s1. Thus, in this region we have s3 ≥

µ11

µ11+µ23
s1 ⇒ s1 ≤

1+(µ11+µ23−1)s3
µ11+1 . Both

Cases (I) and (II) are possible in this region.

For Case (I), if xn < θ1 then, because of the inequalities s3 ≥ 1 − (µ11 + 1)s1 and s1 ≤

1+(µ11+µ23−1)s3
µ11+1 , we have Case (I)(B)(1)(a): xn+1 = η1. Otherwise, we have xn ≥ θ1 ≥ θ2,

and thus this region corresponds to Case (I)(A)(1). If xn ≤ θ4 then, because of the inequality

θ3 ≥ θ4, we have Case (I)(A)(1)(a)(i): xn+1 = γ(xn). Otherwise, we have xn > θ4. Since

s3 ≥
µ11

µ11+µ23
s1, we have Case (I)(A)(1)(b)(i): xn+1 = η2.

For Case (II), if xn < θ1 then, because of the inequality s3 ≥ 1− (µ11 + 1)s1, we have Case

(II)(B)(1): xn+1 = η1. Otherwise, we have xn ≥ θ1 ≥ θ2, and thus this region corresponds to

Case (II)(A)(1). If xn ≤ θ4, then we have Case (II)(A)(1)(a): xn+1 = γ(xn). Otherwise, we

have xn > θ4, and thus we have Case (II)(A)(1)(b): xn+1 = η2.

Region d: In this region, we have s3 < 1 − (µ11 + 1)s1 and s3 < µ11

µ11+µ23
s1. The first

inequality implies θ2 > θ1, and the second inequality implies s1 > s3 and θ4 > θ3. Thus,

this region corresponds to Case (I). If xn < θ2, then we have either Case (I)(B)(2) due to the

inequality s3 < 1− (µ11 +1)s1 or Case (I)(A)(2). Both cases imply xn+1 = s1. If θ2 ≤ xn ≤ θ3,

then we have Case (I)(A)(1)(a)(i): xn+1 = γ(xn). Otherwise, we have xn > θ3, and thus we

have either Case (I)(A)(1)(a)(ii) or Case (I)(A)(1)(b)(ii) due to the inequality s3 < µ11

µ11+µ23
s1.

Both cases imply xn+1 = s1 − s3.

Region e: In this region, we have s3 < 1 − (µ11 + 1)s1 and s3 ≥ µ11

µ11+µ23
s1, which imply

θ2 > θ1 and θ3 ≥ θ4 respectively. Both Cases (I) and (II) are possible in this region.

For Case (I), if xn < θ2, then we have either Case (I)(B)(2) due to the inequality s3 <

1 − (µ11 + 1)s1 or Case (I)(A)(2). Both cases imply xn+1 = s1. If θ2 ≤ xn ≤ θ4 then, because

of the inequality θ3 ≥ θ4, we have Case (I)(A)(1)(a)(i): xn+1 = γ(xn). Otherwise, we have
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xn > θ4. Since s3 ≥
µ11

µ11+µ23
s1, we have Case (I)(A)(1)(b)(i): xn+1 = η2.

For Case (II), if xn < θ2, then we have either Case (II)(B)(2) due to inequality s3 <

1 − (µ11 + 1)s1 or Case (II)(A)(2). Both cases imply xn+1 = s1. If θ2 ≤ xn ≤ θ4, then we

have Case (II)(A)(1)(a): xn+1 = γ(xn). Otherwise, we have xn > θ4, and thus we have Case

(II)(A)(1)(b): xn+1 = η2.

A.2 Dynamics of a piecewise-linear function

We need the following lemma to determine the asymptotic behaviors of the three-station U-line.

Lemma 2. For any ρ > 0, suppose xn+1 = g(xn) and g : [A,B] 7→ [A,B] (0 ≤ A < B) has the

following form

g(x) =































Y, if x ∈ [A,X1);

Y + ρX1 − ρx, if x ∈ [X1,X2];

Y + ρX1 − ρX2, otherwise;

where Y , X1, and X2 are constants. The asymptotic behaviors of the system can be summarized

as follows.

(I) Y ≤ X1: The system converges to a fixed point Y .

(II) X1 < Y < (1 + ρ)X2 − ρX1: There are three cases:

(1) ρ < 1: The system converges to a fixed point Y+ρX1

1+ρ
;

(2) ρ = 1: The system converges to a period-2 orbit: x and Y +ρX1−ρx, where x depends

on the initial point of the orbit;

(3) ρ > 1: The system converges to a period-2 orbit:

a. X1 < Y ≤ X2: Period-2 orbit: Y and (1− ρ)Y + ρX1;

b. X2 < Y < X2 + (ρ− 1)(X2 −X1): Period-2 orbit: Y and Y + ρX1 − ρX2;

c. X2 + (ρ− 1)(X2 −X1) ≤ Y < (1 + ρ)X2 − ρX1: Period-2 orbit: Y + ρX1 − ρX2

and ρ2X2 − (ρ− 1)Y − ρ(ρ− 1)X1.
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(III) Y ≥ (1 + ρ)X2 − ρX1: The system converges to a fixed point Y + ρX1 − ρX2.

Proof. We first prove case (I). If Y ≤ X1, then for any initial point x ∈ [A,B] we have g(x) ≤

Y ≤ X1. Thus, g(g(x)) = Y and the system stays at the fixed point Y . Similarly, we can prove

case (III) as follows. If Y ≥ (1 + ρ)X2 − ρX1, then for any initial point x ∈ [A,B] we have

g(x) ≥ Y + ρX1− ρX2 ≥ X2. Thus, g(g(x)) = Y + ρX1− ρX2 and the system stays at the fixed

point Y + ρX1 − ρX2.

Now, we prove case (II). If X1 < Y < (ρ + 1)X2 − ρX1, there are three possible cases: (1)

ρ < 1, (2) ρ = 1, and (3) ρ > 1. We analyze each case as follows.

For case (1), we have ρ < 1. For any initial point x0 ∈ [A,B], we have |f(xn) − η0| ≤

ρn|x0 − η0|. Since ρ < 1, the system converges to the fixed point η0.

For case (2), we have ρ = 1. For any initial point x0 ∈ [A,B], there are three possible cases:

a. If x0 < X1, then g(x0) = Y .

• If X1 < Y ≤ X2, then g(Y ) = Y +X1 − Y = X1. Thus, g(g(Y )) = Y , which means

the system converges to a period-2 orbit: Y and X1.

• If X2 < Y < 2X2 −X1, then g(Y ) = Y +X1 −X2. We have g(Y ) ∈ [X1,X2]. Thus,

g(g(Y )) = Y +X1 − g(Y ) = X2, which implies g(g(g(Y ))) = Y +X1 −X2 = g(Y ).

The system converges to a period-2 orbit: Y +X1 −X2 and X2.

b. If x0 > X2, then g(x0) = Y+X1−X2. Let Y
′ = Y+X1−X2. We have 2X1−X2 < Y ′ < X2.

• If 2X1−X2 < Y ′ < X1, then g(Y ′) = Y . We have g(Y ′) ∈ [X1,X2]. Thus, g(g(Y
′)) =

Y +X1 − g(Y ′) = X1, which implies g(g(g(Y ′))) = Y +X1 −X1 = Y = g(Y ′). The

system converges to a period-2 orbit: Y and X1.

• IfX1 ≤ Y ′ < X2, then g(Y ′) = Y+X1−Y ′ = X2. Thus, g(g(Y
′)) = Y+X1−X2 = Y ′.

The system converges to a period-2 orbit: Y ′ and X2.

c. If X1 ≤ x0 ≤ X2, then g(x0) = Y +X1 − x0.
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• If X1 ≤ g(x0) ≤ X2, then g(g(x0)) = x0. The system converges to a period-2 orbit:

x0 and Y +X1 − x0.

• If g(x0) < X1, then g(g(x0)) = Y and this reduces to case a.

• If g(x0) > X2, then g(g(x0)) = Y +X1 −X2 and this reduces to case b.

For case (3), we have ρ > 1. We first prove by contradiction that for any initial point x0 ∈

[A,B], such that x0 6= η0, the orbit under g contains at least one endpoint Y or Y + ρX1− ρX2.

If not, then xn ∈ (X1,X2) for all n = 0, 1, 2, . . .. However, since |xn − η0| = ρn|x0 − η0|, there

exists a n′ such that xn′ 6∈ (X1,X2). This contradicts our assumption. Thus, any orbit under g

contains at least one endpoint Y or Y + ρX1 − ρX2. As a result, we can focus our analysis on

orbits starting from Y or Y + ρX1 − ρX2. There are three cases:

a. If X1 < Y ≤ X2, then Y < X2 + (ρ − 1)(X2 − X1) ⇔ Y + ρX1 − ρX2 < X1, which

implies g(Y + ρX1 − ρX2) = Y . Thus, we only need to analyze orbits starting from Y .

g(Y ) = (1−ρ)Y +ρX1 < X1, which implies g(g(Y )) = Y . Therefore, the system converges

to a period-2 orbit: Y and (1− ρ)Y + ρX1.

b. If X2 < Y < X2+(ρ−1)(X2−X1), then g(Y ) = Y +ρX1−ρX2 and g(Y +ρX1−ρX2) = Y .

Thus, the system converges to a period-2 orbit: Y and Y + ρX1 − ρX2.

c. If X2 + (ρ − 1)(X2 −X1) ≤ Y < (ρ + 1)X2 − ρX1, then Y > X2, which implies g(Y ) =

Y + ρX1 − ρX2. Thus, we only need to analyze orbits starting from Y + ρX1 − ρX2. The

inequalities X2+(ρ−1)(X2−X1) ≤ Y < (ρ+1)X2−ρX1 implyX1 ≤ Y +ρX1−ρX2 < X2,

and so g(Y +ρX1−ρX2) = Y +ρX1−ρ(Y +ρX1−ρX2) = ρ2X2−(ρ−1)Y −ρ(ρ−1)X1 > X2.

The last inequality is implied by Y < (ρ + 1)X2 − ρX1. Thus, g(g(Y + ρX1 − ρX2)) =

Y + ρX1 − ρX2. Therefore, the system converges to a period-2 orbit: Y + ρX1 − ρX2 and

ρ2X2 − (ρ− 1)Y − ρ(ρ− 1)X1.

Note that the function g in Lemma 2 represents a general form of the function f in Lemma 1.
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We will use the properties of the function g described in Lemma 2 to determine the asymptotic

behaviors of the three-station, two-worker system.

A.3 Asymptotic behaviors and throughput

Lemma 3. If ϕ ≤ 1, the two-worker cellular bucket brigade on a three-station u-line has a

distinct asymptotic behavior in each of the following five regions.

Region 1: This region is defined by s1 >
1+(µ11+µ23−1)s3

µ11+1 . The system converges to a fixed point

x∗ = s1 − s3. At the fixed point, W1 is constantly blocked at point 0 and W2 is constantly

halted at point 1. The average throughput is T =
(

s1−s3
v11

+ s3
v21

)

−1
.

Region 2: This region is defined by s1 <
1+(µ11+µ23−1)s3

µ11+1 and s1 >
1

µ11+1+
µ11µ13+µ13µ23−µ13−µ21

(µ11+1)(µ13+µ21)
·

s3. The system converges to a fixed point x∗ = η1. At the fixed point, W1 is constantly

blocked at point 0. The average throughput is T =
(

η1
v11

+ s1−η1
v21

)

−1
.

Region 3: This region is defined by s3 > 1
µ13+1 + µ11µ13+µ11µ21−µ11−µ23

(µ13+1)(µ11+µ23)
· s1. The system con-

verges to a fixed point x∗ = η2. At the fixed point, W2 is constantly blocked at point s1+s2.

The average throughput is T =
(

η2
v11

+ s3−s1+η2
v13

)

−1
.

Region 4: This region is defined by s3 < 1−(µ11+1)s1
µ13+1 . The system converges to a fixed point

x∗ = s1. At the fixed point, W1 is constantly halted at point s1. The average throughput

is T =
(

1−s1−s3
v22

)

−1
.

Region 5: This region is defined by s1 < 1
µ11+1 + µ11µ13+µ13µ23−µ13−µ21

(µ11+1)(µ13+µ21)
· s3, s3 < 1

µ13+1 +

µ11µ13+µ11µ21−µ11−µ23

(µ13+1)(µ11+µ23)
· s1, and s3 >

1−(µ11+1)s1
µ13+1 . If ϕ < 1, the system converges to a fixed

point η3. If ϕ = 1, the system converges to a period-2 orbit: x and γ(x), where x depends

on the initial locations of the workers on the line. Neither blocking nor halting occurs in

this region. The average throughput is T =
(

η3
v11

+ s3−s1+η3
v13

)

−1
.

Proof. We partition the entire feasible work-content area into five regions shown in Figure 4(a).

We determine the asymptotic behavior and throughput of the system in each region separately.
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Region 1: This region is identical to Region a in Figure 11. Lemma 1 shows that the

system always converges to the fixed point x∗ = s1−s3. When the system operates on the fixed

point, according to the proof of Lemma 1 (see Region a), W1 is constantly blocked at point 0

and W2 is constantly halted at point 1. The average throughput is T =
(

s3
v21

+ s1−s3
v11

)

−1
.

Region 2: This region falls in Regions b and c in Figure 11. Since

s1 > 1
µ11+1 + µ11µ13+µ13µ23−µ13−µ21

(µ11+1)(µ13+µ21)
· s3 ⇔ η1 < θ1, according to the function f in Regions b

and c as well as Lemma 2, the system converges to the fixed point x∗ = η1. When the system

operates on the fixed point, according to the proof of Lemma 1 (see Regions b and c), W1 is

constantly blocked at point 0. The average throughput is T =
(

s1−η1
v21

+ η1
v11

)

−1
.

Region 3: This region falls in Regions c and e in Figure 11. Since

s3 >
1

µ13+1 +
µ11µ13+µ11µ21−µ11−µ23

(µ13+1)(µ11+µ23)
·s1 ⇔ η2 > θ4, according to the function f in Regions c and e

as well as Lemma 2, the system converges to the fixed point x∗ = η2. When the system operates

on the fixed point, according to the proof of Lemma 1 (see Regions c and e), W2 is constantly

blocked at point s1 + s2. The average throughput is T =
(

s3−s1+η2
v13

+ η2
v11

)

−1
.

Region 4: Since s3 <
1−(µ11+1)s1

µ13+1 ⇔ s3
v13

+ s1
v11

< 1−s1−s3
v22

, W1 is constantly halted at point s1.

The system converges to the fixed point x∗ = s1. The average throughput is T =
(

1−s1−s3
v22

)

−1
.

Region 5: This region falls in Regions b, c, d, and e in Figure 11. According to the function

f in Regions b, c, d, and e as well as Lemma 2, we have (1) if ϕ < 1, the system converges to a

fixed point η3, and (2) if ϕ = 1, the system converges to a period-2 orbit: x and γ(x), where x

depends on the initial locations of the workers on the line. Neither blocking nor halting occurs

in this region. The average throughput is T =
(

η3
v11

+ s3−s1+η3
v13

)

−1
.

According to the proof of Lemma 3, the asymptotic behaviors in Regions 1 to 4 are inde-

pendent of ϕ. Thus, if ϕ > 1, the asymptotic behaviors and the expressions of the throughput

remain the same in all regions except for Region 5. Due to page limitation, the detailed analysis

of the asymptotic behaviors and the throughput for the case with ϕ > 1 is only available upon

request.
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B Technical details for the M-station system

In the M -station U-line, a hand-off position falls in the range [x, x], where x = s1 − s3 and

x = s1 + s2 − sm2

2 . Recall that after a hand-off W1 first works on stage 3 before he works on

stages 1 and 2, and W2 first works on stage 1 and then works on stages 2 and 3 (see Figure 3).

Note that W1 can only be blocked at the start of a station in stages 1 and 2. On the other hand,

W2 can only be blocked at the start of a station in stage 3, and can only be halted at point 1.

Let Lj(k) denote the point at the start of Sj(k) on the path, for k = 1, . . . ,mj and j = 1, 2, 3.

Consider Wi starts from a hand-off position x. For convenience, we say Wi is blocked at

Lj(k) from x if he is blocked at Lj(k) before the next hand-off. Similarly, we say Wi is halted

at point L from x if he is halted at point L before the next hand-off.

We have the following properties:

Property 1. For any x and x′ in [x, x], if Wi is blocked at Lj(k) from both x and x′, then

f(x) = f(x′).

Property 2. For any x and x′ in [x, x], if Wi is halted at point L from both x and x′, then

f(x) = f(x′).

Property 3. For any x and x′ in [x, x] such that x > x′, if W1 is blocked at L1(k) from x then

W1 is blocked at L1(k) from x′, and if W1 is halted at point s1 from x then W1 is halted at point

s1 from x′.

Property 4. For any x and x′ in [x, x] such that x < x′, if W2 is blocked at L3(k) from x then

W2 is blocked at L3(k) from x′, and if W2 is halted at point 1 from x then W2 is halted at point

1 from x′.

B.1 Characterizing the function f

From the above properties, we have the following results.

Lemma 4. There exists a constant c1 such that W1 is blocked or halted from any x ∈ [x, c1),

but he is neither blocked nor halted from any x ∈ [c1, x).
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Proof. The lemma claims that W1 is blocked or halted from any x < c1. We can find c1 in each

of the following three cases: (1) If W1 is neither blocked nor halted from x, then according to

Property 3, W1 is neither blocked nor halted from any x ∈ [x, x]. Thus, we have c1 = x. (2)

If W1 is blocked or halted from x, then according to Property 3, W1 is blocked or halted from

any x ∈ [x, x]. Thus, we have c1 = x. (3) Otherwise, according to Property 3, there exists a

hand-off position c1 such that W1 is blocked or halted from any x ∈ [x, c1), but he is neither

blocked nor halted from any x ∈ [c1, x]. The three cases above imply that W1 is blocked or

halted from any x ∈ [x, c1), but he is neither blocked nor halted from any x ∈ [c1, x).

Using Property 4, the proof of the following lemma is similar and is omitted.

Lemma 5. There exists a constant c2 such that W2 is blocked or halted from any x ∈ (c2, x],

but he is neither blocked nor halted from any x ∈ (x, c2].

Together with Properties 1 and 2, Lemmas 4 and 5 imply the following result.

Corollary 1. There exist constants Y1 and Y2 such that for any x ∈ [x, c1), f(x) = Y1, and for

any x ∈ (c2, x], f(x) = Y2.

Lemma 6. If c1 < c2 then f is strictly decreasing in [c1, c2].

Proof. According to Lemmas 4 and 5, both workers are neither blocked nor halted from any

x ∈ [c1, c2]. For any hand-off positions χ1 and χ2 such that c1 ≤ χ1 < χ2 ≤ c2, we will show that

f(χ1) > f(χ2). There are three cases: (1) 0 ≤ f(χ2) ≤ s1; (2) f(χ2) < 0; and (3) f(χ2) > s1.

For case (1), it is sufficient to prove that after a hand-off at χ1, when W1 works in stage 1

and arrives at position f(χ2) he has not met W2. For any hand-off position x ∈ [x, x], let t1(x)

denote the total time for W1 to start from point min{s1, x}, finish his item at the end of stage 3,

work on a new item in stage 1 (and possibly stage 2), and reach position f(χ2). Let t2(x) denote

the total time for W2 to start from max{0, x}, work on his item in stages 1, 2, and 3, and reach

position f(χ2). Since χ1 < χ2, if χ1 < s1 we have t1(χ1) < t1(χ2) and t2(χ1) ≥ t2(χ2); otherwise,

we have t1(χ1) ≤ t1(χ2) and t2(χ1) > t2(χ2). In addition, we know that t1(χ2) = t2(χ2). Thus,
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we have t1(χ1) < t1(χ2) = t2(χ2) ≤ t2(χ1) or t1(χ1) ≤ t1(χ2) = t2(χ2) < t2(χ1), which imply

f(χ1) > f(χ2).

For case (2), it is sufficient to prove that after a hand-off at position χ1, when W1 arrives

at point 1, W2 has not reached position f(χ2). For any hand-off position x ∈ [x, x], let t1(x)

be the total time for W1 to start from point min{s1, x} and finish his item at the end of stage

3 (reach point 1). Let t2(x) denote the total time for W2 to start from max{0, x}, work on

his item in stages 1, 2, and 3, and reach position f(χ2). Since χ1 < χ2, if χ1 < s1 we have

t1(χ1) < t1(χ2) and t2(χ1) ≥ t2(χ2); otherwise, we have t1(χ1) ≤ t1(χ2) and t2(χ1) > t2(χ2).

In addition, we know that t1(χ2) = t2(χ2). Thus, we have t1(χ1) < t1(χ2) = t2(χ2) ≤ t2(χ1) or

t1(χ1) ≤ t1(χ2) = t2(χ2) < t2(χ1), which imply f(χ1) > f(χ2).

For case (3), it is sufficient to prove that after a hand-off at position χ1, when W2 arrives at

point s1+s2, W1 has passed position f(χ2). For any hand-off position x ∈ [x, x], let t2(x) denote

the total time for W2 to start from point max{0, x} and reach position s1+ s2. Let t1(x) be the

total time for W1 to start from point min{s1, x}, and finish his item at the end of stage 3, work

on a new item in stages 1 and 2, and reach position f(χ2). Since χ1 < χ2, if χ1 < s1 we have

t1(χ1) < t1(χ2) and t2(χ1) ≥ t2(χ2); otherwise, we have t1(χ1) ≤ t1(χ2) and t2(χ1) > t2(χ2).

In addition, we know that t1(χ2) = t2(χ2). Thus, we have t1(χ1) < t1(χ2) = t2(χ2) ≤ t2(χ1) or

t1(χ1) ≤ t1(χ2) = t2(χ2) < t2(χ1), which imply f(χ1) > f(χ2).

Lemma 7. f is continuous.

Proof. According to the proofs of Lemmas 4 and 5, W1 is almost blocked or halted from c1 and

W2 is almost blocked or halted from c2. Together with Corollary 1, we have f(c1) = Y1 and

f(c2) = Y2. Thus, it is sufficient to prove that f is continuous in [c1, c2].

For convenience, define vi,max = maxj,k vij(k), vi,min = minj,k vij(k) for i = 1, 2, and vmax =

max{v1,max, v2,max}. Consider any hand-off positions χ1 and χ2, where c1 ≤ χ1 < χ2 ≤ c2 such

that χ2 − χ1 < δ for a small δ. There are three cases: (1) 0 ≤ f(χ2) ≤ s1; (2) f(χ2) < 0; (3)

f(χ2) > s1. For each case, we adopt the same definitions of t1(x) and t2(x) as those in the proof
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of Lemma 6.

For case (1), the proof of Lemma 6 shows that after a hand-off at position χ1, when W1

works in stage 1 and arrives at position f(χ2), he has not met W2. Meanwhile, W2 reaches the

position h2 ≤ f(χ2) + v2,max · (t2(χ1) − t1(χ1)). Thus, we have f(χ1) < h2 ≤ f(χ2) + v2,max ·

(t2(χ1)− t1(χ1)).

For case (2), the proof of Lemma 6 shows that after a hand-off at position χ1, when W1

arrives at point 1, W2 has not reached position f(χ2). Instead, W2 reaches the position f(χ1) ≤

f(χ2) + v2,max · (t2(χ1)− t1(χ1)).

For case (3), the proof of Lemma 6 shows that after a hand-off at position χ1, when W2

arrives at point s1 + s2, W1 has passed position f(χ2), and reaches the position f(χ1) ≤

f(χ2) + v1,max · (t2(χ1)− t1(χ1)).

Combining cases (1), (2), and (3), we have f(χ1) ≤ f(χ2) + vmax · (t2(χ1)− t1(χ1)), which

implies f(χ1) − f(χ2) ≤ vmax · (t2(χ1) − t1(χ1)). Since t2(χ1) − t1(χ1) = (t2(χ1) − t2(χ2)) +

(t1(χ2)− t1(χ1)) ≤
χ2−χ1

v2,min
+ χ2−χ1

v1,min
= (χ2 − χ1) ·

(

1
v1,min

+ 1
v2,min

)

<
(

1
v1,min

+ 1
v2,min

)

· δ, we have

f(χ1)− f(χ2) < vmax ·
(

1
v1,min

+ 1
v2,min

)

· δ.

Thus, for any ε > 0, there exists δ = ε ·
(

vmax ·
(

1
v1,min

+ 1
v2,min

))

−1
> 0 such that for

any hand-off positions χ1 and χ2, if χ2 − χ1 < δ then f(χ1) − f(χ2) < ε. Therefore, f(x) is

continuous in [c1, c2].

Recall that a hand-off position x is an interior hand-off position if the locations corresponding

to x on the U-line fall in the interior of some stations.

Lemma 8. f is piecewise linear.

Proof. According to Corollary 1, it is sufficient to prove that f is piecewise linear in [c1, c2].

Consider any hand-off position χ ∈ (c1, c2), such that both χ and f(χ) are interior hand-off

positions. We will show that f is linear in the neighborhood of such χ.

For convenience, define u1 as the velocity of W1 at position χ when he works in stage 3. If

f(χ) ≥ 0, then define v1 as the velocity of W1 at position f(χ) when he works in stage 1 or 2.
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If χ ≥ 0, then define v2 as the velocity of W2 at position χ when he works in stage 1 or 2. We

also define u2 as the velocity of W2 at position f(χ) when he works in stage 3.

For any x = χ±∆x, where ∆x is a small positive number, we have nine cases: (1) 0 < χ < s1

and 0 < f(χ) < s1; (2) 0 < χ < s1 and f(χ) < 0; (3) χ < 0 and 0 < f(χ) < s1; (4) χ < 0

and f(χ) < 0; (5) χ > s1 and 0 < f(χ) < s1; (6) χ > s1 and f(χ) < 0; (7) 0 < χ < s1 and

f(χ) > s1; (8) χ < 0 and f(χ) > s1; (9) χ > s1 and f(χ) > s1.

For case (1), we have f(x) = f(χ) ∓ v1u2

v1+u2
·
(

1
u1

+ 1
v2

)

·∆x. For case (2), we have f(x) =

f(χ)∓u2 ·
(

1
u1

+ 1
v2

)

·∆x. For case (3), we have f(x) = f(χ)∓ v1u2

v1+u2
· 1
u1

·∆x. For case (4), we

have f(x) = f(χ)∓ u2

u1
·∆x. For case (5), we have f(x) = f(χ)∓ v1u2

v1+u2
· 1
v2

·∆x. For case (6),

we have f(x) = f(χ) ∓ u2

v2
·∆x. For case (7), we have f(x) = f(χ)∓ v1 ·

(

1
u1

+ 1
v2

)

·∆x. For

case (8), we have f(x) = f(χ)∓ v1
u1

·∆x. For case (9), we have f(x) = f(χ)∓ v1
v2

·∆x. Thus, f

is linear in the neighborhood of χ, and so f is piecewise linear in [c1, c2].

The following corollary summarizes the above results.

Corollary 2. f is continuous, non-increasing, and has the following form

f(x) =































Y1, if x ∈ [x, c1);

F (x), if x ∈ [c1, c2];

Y2, otherwise;

where F is strictly decreasing and piecewise linear.

B.2 Asymptotic behaviors

Corollary 2 implies the following lemma.

Lemma 9. There exists a unique fixed point and there are no periodic orbits of period greater

than 2 in the system.

Proof. According to Brouwer’s fixed point theorem, there exists a fixed point because f is

continuous. Since f is also non-increasing, the fixed point is unique.
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We then prove by contradiction that there are no periodic orbits of period greater than

2. Suppose there exists a periodic orbit of period π > 2: x1, x2, . . . , xπ. For convenience,

define X = {x1, x2, . . . , xπ}. First note that for any xi ∈ X, we have xi 6= x∗. Without loss

of generality, assume that x1 < x∗. Since f is non-increasing, for any xi ∈ X, if xi < x∗,

then f(xi) > x∗, and if xi > x∗, then f(xi) < x∗. As a result, we have f2n−1(x1) > x∗ and

f2n(x1) < x∗, for n = 1, 2, . . .. Thus, π is even because fπ(x1) = x1 < x∗.

Since f2(·) is non-decreasing, if x1 < x3 then we have x1 < x3 = f2(x1) < x5 = f2(x3) <

· · · < x1 = f2(xπ−1), which is a contradiction; otherwise, we have x1 > x3 = f2(x1) > x5 =

f2(x3) > · · · > x1 = f2(xπ−1), which is also a contradiction. Therefore, there does not exist a

periodic orbit of period π > 2.

The following lemma provides a sufficient condition for the system to converge to the fixed

point x∗, independent of the initial workers’ locations on the U-line. This condition can be tested

easily. Let Pj(k) denote the horizontal position of Lj(k), for k = 1, . . . ,mj and j = 1, 2, 3. Note

that we project points in stage 2 except the last station S2(m2) onto [s1, s1 + s2 − sm2

2 ], that is

P2(k) = s1 +
∑k−1

l=1 sl2. For convenience, define P1(m1 + 1) = s1 and P3(m3 + 1) = x.

Lemma 10. The system converges to a fixed point x∗ if for any pair of interior hand-off

positions x and f(x), one of the following conditions is satisfied:

1. 0 < x < s1, 0 < f(x) < s1, where x ∈ (P1(k1), P1(k1 + 1))
⋂

(P3(k2 + 1), P3(k2)) and

f(x) ∈ (P1(k3), P1(k3 + 1))
⋂

(P3(k4 + 1), P3(k4)), and

1

v11(k3)
−

1

v13(k2)
>

1

v21(k1)
−

1

v23(k4)
.

2. 0 < x < s1, f(x) < 0, where x ∈ (P1(k1), P1(k1 + 1))
⋂

(P3(k2 + 1), P3(k2)) and f(x) ∈

(P3(k4 + 1), P3(k4)), and

−
1

v13(k2)
>

1

v21(k1)
−

1

v23(k4)
.
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3. x < 0, 0 < f(x) < s1, where x ∈ (P3(k2 + 1), P3(k2)) and f(x) ∈ (P1(k3), P1(k3 +

1))
⋂

(P3(k4 + 1), P3(k4)), and

1

v11(k3)
−

1

v13(k2)
> −

1

v23(k4)
.

4. x < 0, f(x) < 0, where x ∈ (P3(k2 + 1), P3(k2)) and f(x) ∈ (P3(k4 + 1), P3(k4)), and

−
1

v13(k2)
> −

1

v23(k4)
.

5. x > s1, 0 < f(x) < s1, where x ∈ (P2(k1), P2(k1 + 1)) and f(x) ∈ (P1(k3), P1(k3 +

1))
⋂

(P3(k4 + 1), P3(k4)), and

1

v11(k3)
>

1

v22(k1)
−

1

v23(k4)
.

6. x > s1, f(x) < 0, where x ∈ (P2(k1), P2(k1 + 1)) and f(x) ∈ (P3(k4 + 1), P3(k4)), and

0 >
1

v22(k1)
−

1

v23(k4)
.

7. 0 < x < s1, f(x) > s1, where x ∈ (P1(k1), P1(k1 + 1))
⋂

(P3(k2 + 1), P3(k2)) and f(x) ∈

(P2(k3), P2(k3 + 1)), and

1

v12(k3)
−

1

v13(k2)
>

1

v21(k1)
.

8. x < 0, f(x) > s1, where x ∈ (P3(k2 + 1), P3(k2)) and f(x) ∈ (P2(k3), P2(k3 + 1)), and

1

v12(k3)
−

1

v13(k2)
> 0.

9. x > s1, f(x) > s1, where x ∈ (P2(k1), P2(k1 + 1)) and f(x) ∈ (P2(k3), P2(k3 + 1)), and

1

v12(k3)
>

1

v22(k1)
.

Proof. According to the proof of Lemma 8, the four conditions in Lemma 10 ensure that the

absolute value of the derivative of f , where f is differentiable, is smaller than 1. Let ρ ∈ [0, 1)

denote the largest absolute value of the slope of f . For any x ∈ [x, x], we have |f(x)− f(x∗)| ≤

ρ|x − x∗|. Since f(x∗) = x∗, we have |fn(x) − x∗| ≤ ρn|x − x∗|, and thus limn→∞ fn(x) = x∗.

Therefore, the system converges to the fixed point.
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