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Abstract

Workers in a bucket brigade production system perform unproductive travel when they

walk to get more work from their colleagues. We introduce a new design of bucket brigades

to reduce unproductive travel. Under the new design, each worker works on one side of an

aisle when he proceeds in one direction and works on the other side when he proceeds in the

reverse direction. We propose simple rules for workers to share work under the new design

and find a sufficient condition for the system to self-balance. Numerical examples suggest

that the improvement in throughput by the new design can be as large as 30%. Even with

a 20% reduction in labor, the new design can still increase throughput by 7%.

1 Introduction

Bartholdi and Eisenstein (1996a) introduce bucket brigades as a way to effectively coordinate

workers on an assembly line. All workers in a bucket brigade follow a simple rule: Continue

to assemble an item (an instance of the product) along the line until either your colleague

downstream takes over it or you complete it; then you walk back to get more work, either from

your colleague upstream or from a buffer at the start of the line.

Bucket brigades are effective because they require neither a detailed work-content model nor

computation for work balance, which are necessary for any static work allocation policy. Due to

their dynamics, bucket brigades constantly seek balance and spontaneously adapt to disruptions
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and seasonality. For applications and related studies on bucket brigades, see Bartholdi and

Eisenstein (1996b, 2005), Bartholdi et al. (1999, 2001, 2006, 2009), Villalobos et al. (1999a,b),

Eisenstein (2005), Armbruster and Gel (2006), Armbruster et al. (2007), and Lim and Yang

(2009).

In this study, we present a novel design alternative that may provide significant improvement

to the performance of a bucket brigade. According to the bucket brigade rule, after a worker

relinquishes his item, he walks back to get another item. The throughput of bucket brigades

is compromised due to this unproductive travel, which can be significant especially for long

assembly lines.

We propose a new line design alternative to reduce unproductive travel. The idea is to

distribute work content on both sides of an aisle. Each worker assembles an item on one side of

the aisle while he proceeds in one direction and assembles, possibly, another item on the other

side while he proceeds in the reverse direction. We introduce new rules for workers to share

work because they are not only required to work in both directions, but also to cross the aisle.

We find a sufficient condition for the system to self-balance under the new rules.

Although the new design eliminates the unproductive walk back inherent in a traditional

bucket brigade, it incurs a new form of waste: It requires workers to walk across the aisle.

Fortunately, this cross-aisle travel is short when the aisle is narrow. We show that a bucket

brigade is more productive under the new design if the aisle width is smaller than a critical aisle

width. Our results suggest that a higher throughput can be attained under the new design even

with fewer workers. Consequently, the new design not only improves production rate, but also

significantly reduces labor cost.

We first illustrate the ideas and assess the effectiveness of the new design of bucket brigades

using a basic model. We then show that the new design generally remains effective under a

much more general setting.
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Figure 1: An assembly line. Each worker i works with velocities vi and ui in the intervals
[0, 1/2) and [1/2, 1] respectively.

2 Cellular bucket brigades

Consider an assembly line with length 1 shown in Figure 1. The work content of the product

is cumulative along the line so that points 0 and 1 correspond to the initiation and completion,

respectively, of an item. We consider different work content along the line such that each

worker i, for i = 1, . . . , n, has finite, constant work velocities vi and ui in the intervals [0, 1/2)

and [1/2, 1] respectively. We assume all workers walk with a finite, constant walk velocity w.

For the case with vi < ui (or vi > ui) for all i, the model represents an assembly line where

work is more concentrated on one half of the line and is diluted on the other half. For example,

it is common to have major assembly work in one section of a line while simple packaging is

done in the other section.

To reduce unproductive travel, we fold the entire line at point 1/2 so that the two halves of

the line form an aisle with width a in between. Figure 2 shows such a design with three workers.

The forward line contains work in the interval [0, 1/2) of the original line and the backward line

continues the remaining work in the reverse direction. Each item is initiated at the start of the

forward line and is progressively assembled until it reaches the end of the forward line where it

is transferred to the backward line. The item is then assembled backward until it is completed

at the end of the backward line. Each worker i works on the forward and backward lines with

velocities vi and ui respectively.

We conceptualize the aisle as a real line such that points 0 and 1/2 represent its start and

end respectively. Each worker i has a unique coordinate xi ∈ [0, 1/2] along the aisle. We require

workers to remain in a fixed ordering from 1 to n so that x1 ≤ x2 ≤ · · · ≤ xn. This will not
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Figure 2: A new design of the assembly line. The two halves of the assembly line form an
aisle in between. Each worker i has a coordinate xi along the aisle and works on the forward
and backward lines with velocities vi and ui respectively.

be a limitation of our model as the new design is effective only if the aisle is sufficiently narrow

that workers usually cannot overtake or pass each other. Only worker 1 can initiate and finish

an item at the start of the aisle, and only worker n can transfer an item from the forward line

to the backward line at the end of the aisle. We call workers i− 1 and i+1 the predecessor and

successor, respectively, of worker i.

Worker i continues to work forward until a hand-off occurs at point p ∈ [0, 1/2] along the

aisle where he meets his successor, who is working on the backward line. Unlike in a traditional

bucket brigade, a hand-off now becomes an exchange of work between the two workers and is not

instantaneous: The two workers first relinquish their items at point p and then walk across the

aisle with velocity w, which takes time a/w. After they exchange their work, worker i continues

on the backward line, while his successor continues on the forward line.

When worker n reaches the end of the forward line, the system resets itself: Worker n walks

across the aisle with his item to the backward line, which takes time a/w. He continues to

work backward until he meets worker n − 1, who is working forward. After exchanging their

work, worker n− 1 continues to work backward until he meets and exchanges work with worker

n − 2, and so on until worker 1 completes an item at point 0. Worker 1 then relinquishes the

completed item, crosses the aisle, and initiates a new item. Each reset triggers a completion,

which is followed by an initiation. The work-in-process is bounded by the number of workers in

the system.

To keep workers in the same ordering, we need new rules to handle situations in which a
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worker catches up with his colleagues. Consider a worker i, who is working forward, catches

up with worker i+ 1. If worker i+ 1 is working forward then worker i is blocked and he works

forward with his successor’s velocity vi+1. If worker i+1 is crossing the aisle at point xi+1 then

worker i waits for worker i + 1 at the same point xi = xi+1. Similarly, consider a worker i,

who is working backward, catches up with worker i − 1. If worker i − 1 is working backward

then worker i is blocked and he works backward with velocity ui−1. If worker i − 1 is crossing

the aisle at point xi−1 then worker i waits at xi = xi−1. Under the new design each worker

independently follows these rules:

Work forward: Continue to assemble your item on the forward line until

1. you exchange work with your successor, then work backward; or

2. you reach the end of the forward line if you are the last worker, then carry the item
to the backward line and work backward; or

3. you catch up with your successor, who is working forward, then slow down to match
his velocity and work forward; or

4. you catch up with your successor, who is crossing the aisle, then wait.

Work backward: Continue to assemble your item on the backward line until

1. you exchange work with your predecessor, then work forward; or

2. you complete your item at the end of the backward line if you are the first worker,
then initiate a new item and work forward; or

3. you catch up with your predecessor, who is working backward, then slow down to
match his velocity and work backward; or

4. you catch up with your predecessor, who is crossing the aisle, then wait.

Wait: Continue to carry your item,

1. if you are on the forward line, remain idle until your successor has finished crossing
the aisle, then work forward; or

2. if you are on the backward line, remain idle until your predecessor has finished
crossing the aisle, then work backward.

The waiting rule has the potential of wasting production capacity because it requires workers

to stand idle. However, as we will see from our analysis, the waiting rule will never be invoked

under normal operation of a properly configured system.

Figure 3 illustrates how workers move under the new design. Let xti ∈ [0, 1/2] denote the

hand-off point between worker i and his successor due to the t-th reset. The two workers cross
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Figure 3: A cellular bucket brigade. This figure illustrates the paths of worker i (bold
solid arrows) and worker i + 1 (dotted arrows) between two successive hand-offs, which occur
at points xti and x

t+1
i , between the two workers in a cellular bucket brigade. The start and the

end of each worker’s path are represented by a circle and a square respectively.

the aisle with velocity w at point xti to exchange work. Worker i then works backward with

velocity ui until he meets worker i− 1, who is working forward, at point xti−1. After a hand-off,

worker i works forward with velocity vi. Meanwhile, worker i + 1 continues to work forward

with velocity vi+1 until he meets worker i+2, who is working backward, at point xt+1
i+1. After a

hand-off, worker i + 1 works backward with velocity ui+1. The next hand-off between workers

i and i+ 1 occurs at point xt+1
i . We call this a cellular bucket brigade (because workers move

in cells).

Let xt =
(

xt1, x
t
2, . . . , x

t
n−1

)

. Since the system resets itself when worker n reaches point

1/2, we have xtn = 1/2 for all t. For convenience, we define xt0 = 0 for all t. Let f be a

function defined implicitly by the cellular bucket brigade rules such that xt+1 = f(xt). We say

x∗ = (x∗1, x
∗

2, . . . , x
∗

n−1) is a fixed point if x∗ = f(x∗). Define θi = (1/vi + 1/ui)
−1. Lemma

1 identifies a fixed point of hand-off locations for a cellular bucket brigade. All proofs can be

found in the Online Appendix.

Lemma 1. For a cellular bucket brigade there exists a unique fixed point x∗, where

x∗i =

∑i
j=1 θj

2
∑n

j=1 θj
, i = 1, . . . , n− 1.

Figure 4 shows a three-worker cellular bucket brigade operating on its fixed point. Each worker

i repeats a simple loop for each item produced: After exchanging work with his successor at
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Figure 4: Balance in a cellular bucket brigade. Each worker repeats a simple loop when
the system operates on its fixed point. Workers 1, 2, and 3 cover the loops on the left, in the
middle, and on the right respectively. Hand-offs occur at points x∗1 and x∗2.

point x∗i , he works backward until point x∗i−1, where he exchanges work with his predecessor;

he then works forward until he completes the loop at point x∗i .

On the fixed point the system assembles an item every time worker 1 completes a loop.

Thus, the average throughput of a cellular bucket brigade is

ρc =
[

2a
w +

(

1
v1

+ 1
u1

)

x∗1

]

−1
=
(

2a
w + 1

2
∑n

j=1
θj

)

−1
. (1)

Note that the throughput of a cellular bucket brigade decreases with the aisle width a. Given a

team of workers, we expect a cellular bucket brigade to be more productive than its traditional

counterpart when the aisle is sufficiently narrow. A narrow aisle is preferred by cellular bucket

brigades also because it is easier for workers to see their successors and predecessors on the

opposite side of the aisle.

If a cellular bucket brigade is configured properly then its fixed point is an attractor.

Theorem 1. The fixed point x∗ of a cellular bucket brigade is an attractor if

1

v1
−

1

u1
>

1

v2
−

1

u2
> · · · >

1

vn
−

1

un
. (2)

The proof of Theorem 1 shows that the fixed point x∗ is at least a local attractor: If the system

is sufficiently close to the fixed point such that no blocking occurs, then it will converge to the

fixed point. This implies that the system will converge to the fixed point after perturbations, as
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long as they are not too disruptive. An extensive set of simulations, which cover a broad range

of work and walk velocities with numerous different initial states, suggest that the fixed point

x∗ is also a global attractor: If Condition (2) holds, then the system always converges to the

fixed point given any initial state.

Theorem 1 shows that a worker with a small forward velocity but a large backward velocity

should be assigned a low index. Consider a special case with ui = λvi, where λ is a constant

for all i. We say worker i is faster than worker j if vi > vj. Theorem 1 reduces to the following

results: (1) If λ > 1 (the forward line has more work than the backward line), then workers

should be sequenced from slowest to fastest in the direction of the forward line. (2) If λ < 1 (the

backward line has more work content), then workers should be sequenced from slowest to fastest

in the direction of the backward line. In short, for a cellular bucket brigade to self-balance in this

special case, workers should be sequenced from slowest to fastest in the direction of production

flow of one side of the aisle that has more work content.

3 Comparison with serial bucket brigades

We compare the performance of a cellular bucket brigade with its traditional counterpart. Under

the traditional design, workers remain in a fixed sequence from 1 to n along the production flow

shown in Figure 1. Each worker i works forward until he hands off his item to worker i + 1.

When worker n completes his item at the end of the line, the line resets itself: Worker n walks

back to get work from worker n− 1, who in turn walks back to get work from worker n− 2, and

so on until worker 1 initiates a new item at the start of the line. All assumptions are identical to

that of the normative model described in Theorem 3 of Bartholdi and Eisenstein (1996a) except

now each worker has two different work velocities and they walk back with a finite, constant

velocity w. As a result, the reset is not instantaneous. We call this a serial bucket brigade.

Let xt =
(

xt1, x
t
2, . . . , x

t
n−1

)

, where xti is the location at which worker i hands off work to

worker i + 1 due to the t-th reset. Since worker n finishes each item at point 1, we have

xtn = 1 for all t. For convenience, we define xt0 = 0 for all t. Define ψi = (1/vi + 1/w)−1 and
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φi = (1/ui + 1/w)−1. Lemma 2 identifies a fixed point for a serial bucket brigade. We define

worker k as the worker that repeatedly crosses point 1/2 on the line in Figure 1 when the system

operates on the fixed point.

Lemma 2. For a serial bucket brigade there exists a unique fixed point x∗, which can be deter-

mined as follows: If 1/ψ1 ≤ 1/
∑n

j=2 φj , then k = 1 and

x∗1 =
1−(1/2)(1/ψ1−1/φ1)

∑n
j=2

φj
(1/φ1)

∑n
j=1

φj
;

x∗i = x∗i−1 + φi [(1/2)/ψ1 + (x∗1 − 1/2)/φ1] , i = 2, . . . , n.

(3)

Otherwise,

x∗1 = ψ1
(1/2)(1/ψk+1/φk)

(1/ψk)
∑k

j=1
ψj+(1/φk)

∑n
j=k+1

φj
;

x∗i = x∗i−1 + ψi(x
∗

1/ψ1), i = 2, . . . , k − 1;

x∗n = 1;

x∗i = x∗i+1 − φi+1(x
∗

1/ψ1), i = n− 1, . . . , k;

(4)

and k is the smallest index such that (x∗1/ψ1)
∑k

j=1ψj ≥ 1/2.

Upon the fixed point, each worker i = 1, . . . , k − 1 repeatedly works on an interval that lies

in [0, 1/2) with velocity vi, while each worker i = k + 1, . . . , n executes a portion of work that

lies in [1/2, 1] with velocity ui. Worker k is the only one that repeatedly works in both intervals

[0, 1/2) and [1/2, 1] with velocities vk and uk respectively. Since the system assembles an item

every time worker 1 completes a loop, the throughput of a serial bucket brigade is determined

as follows:

ρs =











[(1/2)/ψ1 + (x∗1 − 1/2)/φ1]
−1 , if k = 1;

(x∗1/ψ1)
−1 , otherwise.

(5)

It can be shown that if v1 < v2 < · · · < vk and uk < uk+1 < · · · < un, then the fixed point x∗

is at least a local attractor (see the Online Appendix): If the system is sufficiently close to the

fixed point x∗ such that worker k is the only one that crosses point 1/2 all the time, then the

serial bucket brigade will converge to the fixed point. An extensive set of simulations suggest

that the fixed point is also a global attractor.
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Which design is more productive? Workers in a cellular bucket brigade walk across the aisle

to exchange work. This unproductive travel increases not only with the aisle width, but also

with the number of workers in a team. Producing an item by a cellular bucket brigade requires

2(n − 1) hand-offs, compared to n− 1 hand-offs in a serial bucket brigade. As n increases, the

increase in hand-offs for the cellular bucket brigade is twice as many as the increase in hand-offs

for the serial bucket brigade. To find out when a cellular bucket brigade outperforms its serial

counterpart, we should answer the following questions: (1) Given a team of workers and their

velocities, how narrow should the aisle be? (2) Given the aisle width and workers’ velocities,

how small should the team size be?

Figure 5(a) shows the average throughput of both cellular and serial bucket brigades when

they operate on their fixed points given the team size n. For the cellular bucket brigade we plot

the throughput with different aisle width a. The velocities are vi = 1.0 + [i− (n+1)/2]δv, ui =

1.1 + [i − (n + 1)/2]δv, i = 1, . . . , n, where δv = 0.1, and w = 2.0. The throughput increases

with the team size n, but due to the increase in unproductive travel, the increase in throughput

is less than linear (the rate of increase is decreasing in n). Note that as n → ∞, ρc → w/(2a)

whereas ρs is unbounded.

For the cellular bucket brigade the rate of increase in throughput improves as the aisle

becomes narrower. The cellular bucket brigade outperforms the serial bucket brigade for all

team sizes when a ≤ 0.04 (4% of the length of the original assembly line). The throughput

improvement given by the cellular bucket brigade can be as large as 30% (for n = 10). Note

that even with fewer workers the cellular bucket brigade may outperform the serial bucket

brigade. For example, in Figure 5(a) the cellular bucket brigade with 8 workers and aisle width

a = 0.02 is 7% more productive than the serial bucket brigade with 10 workers. For this example,

the cellular bucket brigade not only attains a 7% higher production rate but also saves 20% of

labor cost.

For wider aisles (a > 0.04), the cellular bucket brigade remains more productive when

the team size is sufficiently small. As the team size gets larger, the cellular bucket brigade
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Figure 5: Throughput and critical aisle width. (a) The cellular bucket brigade is more
productive than its serial counterpart when the aisle width and/or team size are sufficiently
small. (b) The critical aisle width decreases with the team size. The cellular bucket brigade
outperforms the serial bucket brigade when the aisle width falls below this curve and vice versa.

requires more hand-offs to produce an item. This results in more unproductive travel and

undermines its performance. Figure 5(a) shows that when the team size is larger than some

critical value the cellular bucket brigade becomes less productive than its serial counterpart.

Fortunately, this critical team size can be increased by reducing the aisle width. Figure 5(a)

can also be interpreted in another way. For each team size n the cellular bucket brigade is more

productive than the serial bucket brigade if the aisle width is smaller than the critical aisle

width a∗ = w
2

(

1
ρs

− 1
2
∑n

j=1
θj

)

, which can be determined by comparing Equations (1) and (5).

Figure 5(b) shows the critical aisle width given the team size n. The cellular bucket brigade

dominates below the curve and the serial bucket brigade is preferred above the curve. The

critical aisle width decreases with the team size. The larger the team the narrower the aisle

should be to maintain the effectiveness of the cellular bucket brigade. Figure 5(b) is especially

useful when we consider using the cellular bucket brigade. For example, if we have a team of 5

workers the figure indicates that the aisle width must be smaller than 10% of the total length

of the original assembly line to justify the new design. On the other hand, if the aisle width is

10% of the line length then the figure suggests that the cellular bucket brigade is preferred if

the team size is smaller than 5.
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Figure 6(a) illustrates the sensitivity of the critical aisle width to the difference in work

velocities. We set vi, ui and w as in Figure 5(a) but vary δv from 0.01 to 0.2. The critical

aisle width increases with δv, implying that large difference in skill level favors the cellular

bucket brigade. This is because in the serial bucket brigade workers who work faster cover

larger work intervals (see Equations (3) and (4)) and have more unproductive walk than their

slower colleagues. This wastes production capacity as we want workers who work fast to focus

on assembling rather than walking. This problem is overcome by the cellular bucket brigade

in which every worker has the same amount of unproductive, cross-aisle travel to produce an

item. As a result, workers who work fast are more utilized for assembling. This advantage is

especially significant when different workers possess very different skill levels.

4 Generalization of the basic model

We also compare the performance of cellular and serial bucket brigades based on a generalized

assembly line where each worker i changes his work velocity from vi to ui at point β ∈ [0, 1]

and walks with velocity wi, for i = 1, . . . , n. To construct a cellular bucket brigade, we fold the

assembly line at point 1/2. We obtain generalized expressions of fixed points, throughput, and

convergence conditions for both cellular and serial bucket brigades (see the Online Appendix).

All these expressions reduce to the results of the basic model discussed in the previous sections

if we set β = 1/2 and wi = w for all i.

Since worker i walks with velocity wi to cross the aisle in a cellular bucket brigade, he may

cause his colleagues to wait if he walks too slow. In this case, the system may have multiple

fixed points given the same ordering of workers and its capacity is not fully used due to waiting.

Fortunately, we identify a sufficient condition to ensure the system has a unique fixed point

and no waiting occurs on the fixed point. This condition can be satisfied as long as the walk

velocities of workers are not too different.

The generalized convergence condition for the cellular bucket brigade may be satisfied as

long as β is neither too small nor too large (that is, in the cellular bucket brigade the point
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Figure 6: Sensitivity and generalization. (a) The critical aisle width increases with the
difference in work velocities. (b) The throughput of bucket brigades based on a generalized
assembly line with β = 0.25.

where workers change their work velocities cannot be too close to the start of the aisle). There

may exist different orderings of workers that satisfy this generalized condition and result in

different fixed points and throughput. In such cases we record both the maximum and the

minimum throughput of the cellular bucket brigade. Figure 6(b) compares the throughput of

both designs with β = 0.25. We set vi and ui as in Figure 5(a) and wi = 2.0+[i−(n+1)/2]×0.1,

for i = 1, . . . , n. Similar results are observed if different values are used for these parameters.

The gap between the maximum and the minimum throughput of the cellular bucket brigade is

marginal. The cellular bucket brigade is more productive when the aisle is narrow and/or the

team size is small. Details of these generalized results can be found in the Online Appendix.

Although the generalized model leads to more complex theoretical results and an extra

condition to ensure the uniqueness of the fixed point, the cellular bucket brigade generally

remains effective for boosting productivity given a team of workers.

5 Conclusions

The main contribution of this paper is to introduce cellular bucket brigades so that workers can

share work in a more productive manner. Under this new design, work content is distributed on

both sides of an aisle. Workers work on one side of the aisle when they proceed in one direction,
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and they work on the other side when they proceed in the reverse direction. This eliminates

the unproductive walk back inherent in traditional bucket brigades. However, a cellular bucket

brigade requires workers to walk across the aisle to exchange work. Although this travel is

unproductive, we show that the new design is still preferable when the aisle width and/or team

size are sufficiently small. Numerical examples suggest that the throughput improvement by

the new design can be as large as 30%. Even with a 20% reduction in labor, the new design can

still increase throughput by 7%.

We introduce simple rules for workers to share work under the new design. Based on the

rules, we identify a sufficient condition for the system to self-balance. All attractive character-

istics of traditional bucket brigades such as repetition of work, workers are constantly busy, and

regular output are preserved under this new design.

Given a team of workers and their velocities, a cellular bucket brigade is more productive

than its traditional counterpart if the aisle width is below a critical value, which increases with

the difference in work velocities. Thus, a team of workers with very different skill levels favors

the cellular bucket brigade in which workers who work fast are more utilized to assemble items.

In practice, workers may find it difficult to see each other if they work on opposite sides of

an aisle. This can be overcome by installing mirrors on each side of the aisle. Also, this will not

be an issue if the aisle is sufficiently narrow.
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A Technical details

A.1 Proof of Lemma 1

Proof. On the fixed point each worker i repeats a simple loop for each item produced: He

exchanges work with his successor at point x∗i . He then works backward with velocity ui until

he reaches point x∗i−1, where he exchanges work with his predecessor. After the hand-off he

works forward with velocity vi until he completes the loop at point x∗i . The fixed point x∗ can

be found by solving the following equations:

x∗i − x∗i−1

ui
+
x∗i − x∗i−1

vi
=

x∗i+1 − x∗i
vi+1

+
x∗i+1 − x∗i
ui+1

, i = 1, . . . , n− 1.

Lemma 1 follows by simple algebra.

A.2 Proof of Theorem 1

Proof. Iteration t follows the sequence of hand-off points from the end to the start of the aisle

caused by the t-th reset. A hand-off occurs at point xti where worker i, who is working forward,

meets worker i + 1, who is working backward on the opposite side of the aisle. Since the time

spent in the movement from one iteration to the next (depicted in Figure 3) is the same for

both workers, we have

a

w
+
xti − xti−1

ui
+
a

w
+
xt+1
i − xti−1

vi
=

a

w
+
xt+1
i+1 − xti
vi+1

+
a

w
+
xt+1
i+1 − xt+1

i

ui+1
, (6)

for i = 1, . . . , n− 1.

Rewriting Equation (6) yields:

xt+1
i =

1/vi + 1/ui
1/vi + 1/ui+1

xti−1 −
1/vi+1 + 1/ui
1/vi + 1/ui+1

xti +
1/vi+1 + 1/ui+1

1/vi + 1/ui+1
xt+1
i+1,

for i = 1, . . . , n− 1. Or we can write

xt+1
i = (1 + αi)γix

t
i−1 − αix

t
i + (1 + αi)(1− γi)x

t+1
i+1, (7)
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where

αi =
1/vi+1 + 1/ui
1/vi + 1/ui+1

,

γi =
1/vi + 1/ui

1/vi + 1/ui + 1/vi+1 + 1/ui+1
,

for i = 1, . . . , n− 1. Note that Condition (2) implies 0 < αi < 1, i = 1, . . . , n− 1.

Equation (7) can be expressed as an affine system (Martelli 1999):

yt+1 = Ayt + b,

where yt =
(

xt1, x
t
2, . . . , x

t
n−2, x

t+1
n−1

)T
. The first n−2 components of the vector yt correspond to

the last n−2 hand-offs of iteration t and the last component corresponds to the first hand-off of

iteration t+1. (This is to accommodate the vector b, which affects only the updating of xt+1
n−1.)

The matrix A can be factored as A = An−1A1A2 . . . An−2, where each matrix Ai updates x
t
i

according to Equation (7), and

b =

(

0, 0, . . . , 0,
(1 + αn−1)(1 − γn−1)

2

)T

.

In this way we first update xtn−2, then x
t
n−3, and so on until xt1, and then finally xt+1

n−1, which

uses the last component of b.

Each matrix Ai is an identity matrix except for row i. Each A2, A3, . . . , An−2 has three

non-zero terms in row i that sum to 1, with values (1 + αi)γi, −αi, and (1 + αi)(1 − γi) in

columns i − 1, i, and i + 1 respectively. For A1 the first term (1 + α1)γ1 > 0 is omitted from

row 1, and thus the sum of the first row has absolute value less than 1. For An−1 the last term

(1 + αn−1)(1 − γn−1) > 0 is omitted from row n− 1, thus the sum of the last row has absolute

value less than 1.

For the full transition matrix A, all eigenvalues have modulus less than one. In short, this

follows because each A2, A3, . . . , An−2 can be replaced by a stochastic matrix, while both A1

and An−1 can be replaced by a strictly sub-stochastic matrix. Since all states communicate,

the system tends to the zero matrix. Thus, the orbit y0,y1,y2, . . . converges to the unique
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fixed point y∗ of hand-off locations. (See, for example, Martelli 1999 for dynamics of affine

systems.)

A.3 Proof of Lemma 2

Proof. On the fixed point each worker i repeats a simple loop for each item produced: He

receives work from worker i − 1 at point x∗i−1 and relinquishes work for worker i + 1 at point

x∗i . Recall that the loop of worker k overlaps with both intervals [0, 1/2) and [1/2, 1]. We

first assume k > 1. The fixed point x∗ in Equations (4) can be found by solving the following

equations:

(

1

v1
+

1

w

)

x∗1 =

(

1

vi
+

1

w

)

(x∗i − x∗i−1), i = 2, . . . , k − 1;

(

1

v1
+

1

w

)

x∗1 =
1/2− x∗k−1

vk
+
x∗k − 1/2

uk
+
x∗k − x∗k−1

w
;

(

1

v1
+

1

w

)

x∗1 =

(

1

ui
+

1

w

)

(x∗i − x∗i−1), i = k + 1, . . . , n.

The solution follows by simple algebra. Note that if k = 2 and the corresponding x∗1 ≥ 1/2,

which imply 1/ψ1 ≤ 1/
∑n

j=2 φj, then worker 1 is the one that repeatedly crosses point 1/2. In

this case, the fixed point x∗ in Equations (3) can be found by solving the following equations:

1/2

v1
+
x∗1 − 1/2

u1
+
x∗1
w

=

(

1

ui
+

1

w

)

(x∗i − x∗i−1), i = 2, . . . , n.

The solution follows by simple algebra.

A.4 Convergence of serial bucket brigades

Theorem 2. The fixed point x∗ of a serial bucket brigade is an attractor if v1 < v2 < · · · < vk

and uk < uk+1 < · · · < un.

Proof. Iteration t follows the sequence of hand-off points from the end to the start of the

assembly line caused by the t-th reset. When the system operates sufficiently close to the fixed

point x∗ there is only one worker (we assume worker k) that crosses point 1/2 in each iteration.
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A hand-off occurs at point xti where worker i, who is working forward, meets worker i+ 1, who

is walking backward. Since the time spent in the movement from one iteration to the next is

the same for both workers, we have

xti − xti−1

w
+
xt+1
i − xti−1

vi
=
xt+1
i+1 − xti
vi+1

+
xt+1
i+1 − xt+1

i

w
, for i = 1, . . . , k − 2;

xtk−1 − xtk−2

w
+
xt+1
k−1 − xtk−2

vk−1
=

1/2 − xtk−1

vk
+
xt+1
k − 1/2

uk
+
xt+1
k − xt+1

k−1

w
;

xtk − xtk−1

w
+

1/2− xtk−1

vk
+
xt+1
k − 1/2

uk
=
xt+1
k+1 − xtk
uk+1

+
xt+1
k+1 − xt+1

k

w
;

xti − xti−1

w
+
xt+1
i − xti−1

ui
=
xt+1
i+1 − xti
ui+1

+
xt+1
i+1 − xt+1

i

w
, for i = k + 1, . . . , n− 1.

Rewriting the above equations yields:

xt+1
i = xti−1 −

ψi
ψi+1

xti +
ψi
ψi+1

xt+1
i+1, for i = 1, . . . , k − 2;

xt+1
k−1 = xtk−2 −

ψk−1

ψk
xtk−1 +

ψk−1

φk
xt+1
k +

ψk−1

2

(

1

ψk
−

1

φk

)

;

xt+1
k =

φk
ψk
xtk−1 −

φk
φk+1

xtk +
φk
φk+1

xt+1
k+1 −

φk
2

(

1

ψk
−

1

φk

)

;

xt+1
i = xti−1 −

φi
φi+1

xti +
φi
φi+1

xt+1
i+1, for i = k + 1, . . . , n− 1.

Since xtn = 1 for all t,

xt+1
n−1 = xtn−2 +

φn−1

φn

(

1− xtn−1

)

.

Substituting xt+1
i+1 into the equation for xt+1

i , for i = n− 2 to i = 1 yields:

xt+1
i = xti−1 +

ψi
φn

(

1− xtn−1

)

, for i = 1, . . . , k − 1;

xt+1
k =

φk
ψk
xtk−1 +

φk
φn

(

1− xtn−1

)

−
φk
2

(

1

ψk
−

1

φk

)

;

xt+1
i = xti−1 +

φi
φn

(

1− xtn−1

)

, for i = k + 1, . . . , n− 1.

It follows by simple algebra that for i = 1, . . . , k − 1,

xt+1
i − xt+1

i−1 = xti−1 − xti−2 + (ψi − ψi−1)
1

φn

(

1− xtn−1

)

,

xt+1
i − xt+1

i−1

ψi
=

(

ψi−1

ψi

)

xti−1 − xti−2

ψi−1
+

(

1−
ψi−1

ψi

)

1− xtn−1

φn
. (8)
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For i = k,

xt+1
k

φk
−
xt+1
k−1

ψk
=

(

ψk−1

ψk

)

xtk−1 − xtk−2

ψk−1
+

(

1−
ψk−1

ψk

)

1− xtn−1

φn
−

1

2

(

1

ψk
−

1

φk

)

,

1/2− xt+1
k−1

ψk
+
xt+1
k − 1/2

φk
=

(

ψk−1

ψk

)

xtk−1 − xtk−2

ψk−1
+

(

1−
ψk−1

ψk

)

1− xtn−1

φn
. (9)

For i = k + 1,

xt+1
k+1 − xt+1

k = xtk −
φk
ψk
xtk−1 + (φk+1 − φk)

1− xtn−1

φn
+
φk
2

(

1

ψk
−

1

φk

)

,

xt+1
k+1 − xt+1

k

φk+1
=

(

φk
φk+1

)

(

1/2 − xtk−1

ψk
+
xtk − 1/2

φk

)

+

(

1−
φk
φk+1

)

1− xtn−1

φn
. (10)

Similarly, for i = k + 2, . . . , n,

xt+1
i − xt+1

i−1 = xti−1 − xti−2 + (φi − φi−1)
1− xtn−1

φn
,

xt+1
i − xt+1

i−1

φi
=

(

φi−1

φi

)

xti−1 − xti−2

φi−1
+

(

1−
φi−1

φi

)

1− xtn−1

φn
. (11)

Let

yti =
xti − xti−1

ψi
, for i = 1, . . . , k − 1;

ytk =
1/2 − xtk−1

ψk
+
xtk − 1/2

φk
;

yti =
xti − xti−1

φi
, for i = k + 1, . . . , n.

Equations (8–11) become

yt+1
i =

(

ψi−1

ψi

)

yti−1 +

(

1−
ψi−1

ψi

)

ytn, for i = 1, . . . , k;

yt+1
i =

(

φi−1

φi

)

yti−1 +

(

1−
φi−1

φi

)

ytn, for i = k + 1, . . . , n.

These equations can be expressed as a linear system

yt+1 = Ayt,

where yt =
(

yt1, y
t
2, . . . , y

t
n

)T
and A is a transition matrix of a finite state Markov chain. Since

the Markov chain is irreducible and aperiodic (see Ross 1996), At → A∗ as t → ∞. Thus, the

orbit y0,y1,y2, . . . converges to the unique fixed point y∗. It can be shown that the hand-off

points converge to the fixed point x∗ by simple algebra.
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A.5 Analysis of generalized cellular bucket brigades

We fold the assembly line at point 1/2 so that the two halves of the line form an aisle with

width a in between. If β ≤ 1/2 each worker i works forward with velocities vi and ui in the

intervals [0, β) and [β, 1/2], respectively, along the aisle, and works backward with velocity ui.

If β > 1/2 each worker i works forward with velocity vi and works backward with velocities ui

and vi in the intervals [0, 1 − β] and (1− β, 1/2], respectively, along the aisle. Define

µi =











(2/ui)
−1, if β ≤ 1/2;

(2/vi)
−1, otherwise;

for i = 1, . . . , n.

We only consider the case with β ≤ 1/2. (The analysis of the case with β > 1/2 is similar

and all the results can be obtained by replacing β with 1 − β.) Let worker k be the one that

repeatedly crosses point β ∈ [0, 1/2] on a fixed point. Thus, upon the fixed point, worker

i = 1, . . . , k − 1 repeatedly works on an interval that lies in [0, β) with forward velocity vi and

backward velocity ui, and worker i = k+1, . . . , n repeatedly works forward and backward with

velocity ui on an interval that lies in [β, 1/2]. Worker k is the only one that repeatedly works

in both intervals [0, β) and [β, 1/2] with forward velocities vk and uk respectively and backward

velocity uk.

It is straightforward to see that there is no blocking when the system operates on a fixed

point. However, since each worker i walks with velocity wi in the generalized model, different

workers may spend different amounts of time to cross the aisle. As a result, worker i may cause

his predecessor or successor to wait if worker i walks too slow to cross the aisle. The following

condition ensures that there exists a unique fixed point x∗ and there is no waiting on x∗: For

i = 1, . . . , n,

1
θk

k
∑

j=1
θj

(

2a
wi

− 2a
wj

)

+ 1
µk

n
∑

j=k+1

µj

(

2a
wi

− 2a
wj

)

≤ β 1
θk

+ (12 − β) 1
µk
, i 6= k;

k
∑

j=1
θj

(

2a
wi

− 2a
wj

)

+
n
∑

j=k+1

µj

(

2a
wi

− 2a
wj

)

≤ 1
2 , i = k.

(12)
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Lemma 3. If Condition (12) holds, then no waiting occurs in a generalized cellular bucket

brigade on a fixed point x∗, which is unique and can be determined as follows: If
∑n

j=2 2µj(2a/w1+

β/θ1 − 2a/wj) ≤ 1− 2β, then k = 1 and

x∗1 =

1

2
−

n
∑

j=2

µj

[

β
(

1

θ1
−

1

µ1

)

+

(

2a
w1

−
2a
wj

)]

1

µ1

n
∑

j=1

µj

;

x∗i = x∗i−1 + µi

(

β
θ1

+
x∗1−β
µ1

+ 2a
w1

− 2a
wi

)

, i = 2, . . . , n.

(13)

Otherwise,

x∗1 = θ1

1

2

1

µk
+β

(

1

θk
−

1

µk

)

−

[

1

θk

k
∑

j=2

θj

(

2a
w1

−
2a
wj

)

+ 1

µk

n
∑

j=k+1

µj

(

2a
w1

−
2a
wj

)

]

1

θk

k
∑

j=1

θj+
1

µk

n
∑

j=k+1

µj

;

x∗i = x∗i−1 + θi

(

x∗1
θ1

+ 2a
w1

− 2a
wi

)

, i = 2, . . . , k − 1;

x∗n = 1
2 ;

x∗i = x∗i+1 − µi+1

(

x∗
1

θ1
+ 2a

w1
− 2a

wi+1

)

, i = n− 1, . . . , k;

(14)

where k is the smallest index such that (x∗1/θ1)
∑k

j=1 θj +
∑k

j=2 θj(2a/w1 − 2a/wj) ≥ β.

Proof. We first show that if Condition (12) holds then no waiting occurs on a fixed point x∗.

We prove by contradiction. Assume Condition (12) holds and suppose there is a worker i,

1 ≤ i ≤ k− 1, who causes his predecessor or successor to wait (that is, 2a/wi is very large). As

a result, x∗i−1 = x∗i . Without loss of generality, assume worker i− 1 waits for worker i and this

implies that

2a

wi
>

a

wi−1
+
x∗i−1 − x∗i−2

vi−1
+

a

wi−1
+
x∗i−1 − x∗i−2

ui−1
;

x∗i−1 < x∗i−2 + θi−1

(

2a

wi
−

2a

wi−1

)

. (15)

Since other workers might also wait for their predecessors or successors on the fixed point
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x∗, we have

2a

wi
≥

a

wj
+
x∗j − x∗j−1

vj
+

a

wj
+
x∗j − x∗j−1

uj
, j = 1, . . . , i− 2; (16)

2a

wi
≥

a

wj
+
x∗j − x∗j−1

vj
+

a

wj
+
x∗j − x∗j−1

uj
, j = i+ 1, . . . , k − 1; (17)

2a

wi
≥

a

wj
+
β − x∗j−1

vj
+
x∗j − β

uj
+

a

wj
+
x∗j − x∗j−1

uj
, j = k; (18)

2a

wi
≥

a

wj
+
x∗j − x∗j−1

uj
+

a

wj
+
x∗j − x∗j−1

uj
, j = k + 1, . . . , n. (19)

Inequalities (16) lead to the following result:

x∗i−2 ≤

i−2
∑

j=1

θj

(

2a

wi
−

2a

wj

)

.

Since x∗n = 1/2, Inequalities (17-19) lead to the following result:

x∗i ≥ β −

k
∑

j=i+1

θj

(

2a

wi
−

2a

wj

)

+
θk
µk





1

2
− β −

n
∑

j=k+1

µj

(

2a

wi
−

2a

wj

)



 .

Since x∗i−1 = x∗i , combining the last two inequalities with Inequality (15), we have

β −

k
∑

j=i+1

θj

(

2a

wi
−

2a

wj

)

+
θk
µk





1

2
− β −

n
∑

j=k+1

µj

(

2a

wi
−

2a

wj

)



 <

i−1
∑

j=1

θj

(

2a

wi
−

2a

wj

)

;

1

θk

k
∑

j=1

θj

(

2a

wi
−

2a

wj

)

+
1

µk

n
∑

j=k+1

µj

(

2a

wi
−

2a

wj

)

> β
1

θk
+

(

1

2
− β

)

1

µk
.

This contradicts Condition (12). It can be proved in a similar way that if Condition (12) holds

then worker i, k + 1 ≤ i ≤ n, will not cause his predecessor or successor to wait on the fixed

point x∗.

Now we show that if Condition (12) holds then worker k will not cause his predecessor or

successor to wait on the fixed point x∗. We prove by contradiction. Assume Condition (12)

holds and suppose worker k causes his predecessor or successor to wait (that is, 2a/wk is very

large). As a result, x∗k−1 = x∗k = β. Without loss of generality, assume worker k − 1 waits for

worker k and this implies that

2a

wk
>

a

wk−1
+
x∗k−1 − x∗k−2

vk−1
+

a

wk−1
+
x∗k−1 − x∗k−2

uk−1
;

x∗k−1 < x∗k−2 + θk−1

(

2a

wk
−

2a

wk−1

)

. (20)
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Since other workers might also wait for their predecessors or successors on the fixed point

x∗, we have

2a

wk
≥

a

wj
+
x∗j − x∗j−1

vj
+

a

wj
+
x∗j − x∗j−1

uj
, j = 1, . . . , k − 2; (21)

2a

wk
≥

a

wj
+
x∗j − x∗j−1

uj
+

a

wj
+
x∗j − x∗j−1

uj
, j = k + 1, . . . , n. (22)

Inequalities (21) lead to the following result:

x∗k−2 ≤

k−2
∑

j=1

θj

(

2a

wk
−

2a

wj

)

.

Since x∗n = 1/2, Inequalities (22) lead to the following result:

x∗k ≥
1

2
−

n
∑

j=k+1

µj

(

2a

wk
−

2a

wj

)

.

Since x∗k−1 = x∗k, combining the last two inequalities with Inequality (20), we have

k−1
∑

j=1

θj

(

2a

wk
−

2a

wj

)

>
1

2
−

n
∑

j=k+1

µj

(

2a

wk
−

2a

wj

)

;

k
∑

j=1

θj

(

2a

wk
−

2a

wj

)

+

n
∑

j=k+1

µj

(

2a

wk
−

2a

wj

)

>
1

2
.

This contradicts Condition (12).

Thus, if Condition (12) holds there is no waiting on the fixed point x∗ on which each worker

i repeats a simple loop for each item assembled: He exchanges work with worker i− 1 at point

x∗i−1, which takes time a/wi, and exchanges work with worker i + 1 at point x∗i , which takes

time a/wi. Recall that the loop of worker k overlaps with both intervals [0, β) and [β, 1/2]. We

first assume k > 1. The fixed point x∗ in Equations (14) can be found by solving the following

equations:

a

w1
+
x∗1
v1

+
a

w1
+
x∗1
u1

=
a

wi
+
x∗i − x∗i−1

vi
+

a

wi
+
x∗i − x∗i−1

ui
, i = 2, . . . , k − 1;

a

w1
+
x∗1
v1

+
a

w1
+
x∗1
u1

=
a

wk
+
β − x∗k−1

vk
+
x∗k − β

uk
+

a

wk
+
x∗k − x∗k−1

uk
;

a

w1
+
x∗1
v1

+
a

w1
+
x∗1
u1

=
a

wi
+
x∗i − x∗i−1

ui
+

a

wi
+
x∗i − x∗i−1

ui
, i = k + 1, . . . , n.
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The solution follows by simple algebra. Note that if k = 2 and the corresponding x∗1 ≥ β, which

imply
∑n

j=2 2µj(2a/w1 + β/θ1 − 2a/wj) ≤ 1 − 2β, then worker 1 is the one that repeatedly

crosses point β. In this case, the fixed point x∗ in Equations (13) can be found by solving the

following equations:

a

w1
+
β

v1
+
x∗1 − β

u1
+

a

w1
+
x∗1
u1

=
a

wi
+
x∗i − x∗i−1

ui
+

a

wi
+
x∗i − x∗i−1

ui
, i = 2, . . . , n.

The solution follows by simple algebra.

Note that if Condition (12) does not hold then a cellular bucket brigade may have multiple

fixed points. These fixed points depend on the initial state of the system (initial locations and

directions of workers). The production capacity of the system is not fully used because waiting

occurs on these fixed points.

The following lemma determines the throughput of a cellular bucket brigade when it operates

on its fixed point.

Lemma 4. The average throughput of a generalized cellular bucket brigade on the fixed point

x∗ is

ρc =











(

β
θ1

+
x∗
1
−β
µ1

+ 2a
w1

)

−1
, if k = 1;

(

x∗1
θ1

+ 2a
w1

)

−1
, otherwise.

Proof. On the fixed point the system assembles an item every time worker 1 completes a simple

loop. If k = 1 the average throughput is

ρc =

(

a

w1
+
β

v1
+
x∗1 − β

u1
+

a

w1
+
x∗1
u1

)

−1

;

otherwise,

ρc =

(

a

w1
+
x∗1
v1

+
a

w1
+
x∗1
u1

)

−1

.

The following theorem shows that if Condition (12) holds, then a cellular bucket brigade

may be configured such that its unique fixed point x∗ is an attractor.
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Theorem 3. The fixed point x∗ of a generalized cellular bucket brigade is an attractor if Con-

dition (12) holds and

k > 1 with
1

v1
−

1

u1
>

1

v2
−

1

u2
> · · · >

1

vk−1
−

1

uk−1
>

1

vk
−

1

uk
. (23)

Proof. Condition (12) implies the fixed point x∗ is unique. We will show that if Condition (23)

holds, then the fixed point x∗ is at least a local attractor: If the system is sufficiently close

to the fixed point such that there is only one worker constantly crosses point β and neither

blocking nor waiting occurs in the system, then the system will converge to the fixed point.

Iteration t follows the sequence of hand-off points from the end to the start of the aisle

caused by the t-th reset. Assume the system operates sufficiently close to the fixed point x∗

such that only worker k crosses point β and neither blocking nor waiting occurs in each iteration.

A hand-off occurs at point xti where worker i, who is working forward, meets worker i+ 1, who

is working backward. Since the time spent by each worker from one iteration to the next is the

same, we have

2a

wi
+
xti − xti−1

ui
+
xt+1
i − xti−1

vi
=

2a

wi+1
+
xt+1
i+1 − xti
vi+1

+
xt+1
i+1 − xt+1

i

ui+1
,

i = 1, . . . , k − 2;

2a

wi
+
xti − xti−1

ui
+
xt+1
i − xti−1

vi
=

2a

wi+1
+
β − xti
vi+1

+
xt+1
i+1 − β

ui+1
+
xt+1
i+1 − xt+1

i

ui+1
,

i = k − 1;

2a

wi
+
xti − xti−1

ui
+
β − xti−1

vi
+
xt+1
i − β

ui
=

2a

wi+1
+
xt+1
i+1 − xti
ui+1

+
xt+1
i+1 − xt+1

i

ui+1
, i = k;

2a

wi
+
xti − xti−1

ui
+
xt+1
i − xti−1

ui
=

2a

wi+1
+
xt+1
i+1 − xti
ui+1

+
xt+1
i+1 − xt+1

i

ui+1
,

i = k + 1, . . . , n− 1.
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Rewriting the above equations yields:

xt+1
i =

1/vi + 1/ui
1/vi + 1/ui+1

xti−1 −
1/vi+1 + 1/ui
1/vi + 1/ui+1

xti +
1/vi+1 + 1/ui+1

1/vi + 1/ui+1
xt+1
i+1 +

2a
1/wi+1 − 1/wi
1/vi + 1/ui+1

, i = 1, . . . , k − 2;

xt+1
i =

1/vi + 1/ui
1/vi + 1/ui+1

xti−1 −
1/vi+1 + 1/ui
1/vi + 1/ui+1

xti +
2/ui+1

1/vi + 1/ui+1
xt+1
i+1 +

2a
1/wi+1 − 1/wi
1/vi + 1/ui+1

+ β
1/vi+1 − 1/ui+1

1/vi + 1/ui+1
, i = k − 1;

xt+1
i =

1/vi + 1/ui
1/ui + 1/ui+1

xti−1 − xti +
2/ui+1

1/ui + 1/ui+1
xt+1
i+1 +

2a
1/wi+1 − 1/wi
1/ui + 1/ui+1

− β
1/vi − 1/ui

1/ui + 1/ui+1
, i = k;

xt+1
i =

2/ui
1/ui + 1/ui+1

xti−1 − xti +
2/ui+1

1/ui + 1/ui+1
xt+1
i+1 +

2a
1/wi+1 − 1/wi
1/ui + 1/ui+1

, i = k + 1, . . . , n− 1.

Or we can write

x̄t+1
i = (1 + αi)γix̄

t
i−1 − αix̄

t
i + (1 + αi)(1 − γi)x̄

t+1
i+1 + ǫi, (24)

for i = 1, . . . , n− 1, where

x̄ti =











xti, if i = 1, . . . , k − 1;

θk
µk
xti, otherwise;

αi =











1/vi+1+1/ui
1/vi+1/ui+1

, if i = 1, . . . , k − 1;

1, otherwise;

γi =











1/θi
1/θi+1/θi+1

, if i = 1, . . . , k − 1;

1/µi
1/µi+1/µi+1

, otherwise;

ǫi =







































2a/wi+1−2a/wi

1/vi+1/ui+1
, if i = 1, . . . , k − 2;

2a/wi+1−2a/wi

1/vi+1/ui+1
+ β 1/vi+1−1/ui+1

1/vi+1/ui+1
, if i = k − 1;

θk
µk

(

2a/wi+1−2a/wi

1/ui+1/ui+1
− β 1/vi−1/ui

1/ui+1/ui+1

)

, if i = k;

θk
µk

(

2a/wi+1−2a/wi

1/ui+1/ui+1

)

, otherwise.

Note that Condition (23) implies 0 < αi < 1, i = 1, . . . , k − 1.
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Equations (24) can be expressed as an affine system:

yt+1 = Ayt + b,

where yt =
(

x̄t1, x̄
t
2, . . . , x̄

t
n−2, x̄

t+1
n−1

)T
. The first n−2 components of the vector yt correspond to

the last n− 2 hand-offs of iteration t and the last component corresponds to the first hand-off

of iteration t+1. The matrix A can be factored as A = An−1A1A2 . . . An−2, where each matrix

Ai updates x̄
t
i according to Equations (24), and

b = An−1





n−2
∑

i=1





i−1
∏

j=1

Aj



bi



+ bn−1,

where bi is a zero vector except for the i-th component, which equals ǫi, for i = 1, . . . , n − 2,

and bn−1 is also a zero vector except for the (n − 1)-st component, which equals ǫn−1 + (1 +

αn−1)(1− γn−1)(θk/µk)/2. In this way we first update x̄tn−2, then x̄
t
n−3, and so on until x̄t1, and

then finally x̄t+1
n−1.

Each matrix Ai is an identity matrix except for row i. Each A2, A3, . . . , An−2 has three

non-zero terms in row i that sum to 1, with values (1 + αi)γi, −αi, and (1 + αi)(1 − γi) in

columns i − 1, i, and i + 1 respectively. For A1 the first term (1 + α1)γ1 > 0 is omitted from

row 1, and thus the sum of the first row has absolute value less than 1. For An−1 the last term

(1 + αn−1)(1 − γn−1) > 0 is omitted from row n − 1, and thus the sum of the last row has

absolute value less than or equal to 1.

For the full transition matrix A, all eigenvalues have modulus less than one. In short, this

follows because each A2, A3, . . . , An−2 can be replaced by a stochastic matrix, A1 can be replaced

by a strictly sub-stochastic matrix, and An−1 can be replaced by a strictly sub-stochastic matrix

or a stochastic matrix. Since all states communicate, the system tends to the zero matrix. Thus,

the orbit y0,y1,y2, . . . converges to the unique fixed point y∗ of hand-off locations.

The proof of Theorem 3 shows that the fixed point x∗ is at least a local attractor: If the

system is sufficiently close to the fixed point, then it will converge to the fixed point. An extensive

set of simulations suggest that the fixed point x∗ is also a global attractor: If Conditions (12)
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and (23) hold, then the system always converges to the fixed point given any initial state. Note

that k = 1 and thus Condition (23) does not hold if β is too small (or if β is too large for the

case with β > 1/2).

A.6 Analysis of generalized serial bucket brigades

Define ψi = (1/vi + 1/wi)
−1 and φi = (1/ui + 1/wi)

−1, for i = 1, . . . , n. Let worker k be

the one that repeatedly crosses point β ∈ [0, 1] on a fixed point. Thus, upon the fixed point,

worker i = 1, . . . , k − 1 repeatedly works on an interval that lies in [0, β) with forward velocity

vi and backward velocity wi, and worker i = k + 1, . . . , n repeatedly works on an interval that

lies in [β, 1] with forward velocity ui and backward velocity wi . Worker k is the only one that

repeatedly works in both intervals [0, β) and [β, 1] with forward velocities vk and uk respectively

and backward velocity wk.

Lemma 5 identifies a fixed point of hand-off locations for a serial bucket brigade.

Lemma 5. For a generalized serial bucket brigade there exists a unique fixed point x∗, which

can be determined as follows: If β/ψ1 ≤ (1− β)/
∑n

j=2 φj , then k = 1 and

x∗1 =
1−β(1/ψ1−1/φ1)

∑n
j=2 φj

(1/φ1)
∑n

j=1 φj
;

x∗i = x∗i−1 + φi [β/ψ1 + (x∗1 − β)/φ1] , i = 2, . . . , n.

(25)

Otherwise,

x∗1 = ψ1
1/φk+β(1/ψk−1/φk)

(1/ψk)
∑k

j=1 ψj+(1/φk)
∑n

j=k+1 φj
;

x∗i = x∗i−1 + ψi(x
∗

1/ψ1), i = 2, . . . , k − 1;

x∗n = 1;

x∗i = x∗i+1 − φi+1(x
∗

1/ψ1), i = n− 1, . . . , k;

(26)

where k is the smallest index such that (x∗1/ψ1)
∑k

j=1 ψj ≥ β.

Proof. When the system operates on the fixed point x∗, each worker i repeats a simple loop for

each item assembled: He takes over work from worker i − 1 at point x∗i−1 and passes work to

worker i+1 at point x∗i . Recall that the loop of worker k overlaps with both intervals [0, β) and
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[β, 1]. We first assume k > 1. The fixed point x∗ in Equations (26) can be found by solving the

following equations:

x∗1
v1

+
x∗1
w1

=
x∗i − x∗i−1

vi
+
x∗i − x∗i−1

wi
, i = 2, . . . , k − 1;

x∗1
v1

+
x∗1
w1

=
β − x∗k−1

vk
+
x∗k − β

uk
+
x∗k − x∗k−1

wk
;

x∗1
v1

+
x∗1
w1

=
x∗i − x∗i−1

ui
+
x∗i − x∗i−1

wi
, i = k + 1, . . . , n.

The solution follows by simple algebra. Note that if k = 2 and the corresponding x∗1 ≥ β, which

imply β/ψ1 ≤ (1 − β)/
∑n

j=2 φj , then worker 1 is the one that repeatedly crosses point β. In

this case, the fixed point x∗ in Equations (25) can be found by solving the following equations:

β

v1
+
x∗1 − β

u1
+
x∗1
w1

=
x∗i − x∗i−1

ui
+
x∗i − x∗i−1

wi
, i = 2, . . . , n.

The solution follows by simple algebra.

The following lemma determines the throughput of a serial bucket brigade when it operates

on its fixed point.

Lemma 6. The average throughput of a generalized serial bucket brigade on the fixed point x∗

is

ρs =











[β/ψ1 + (x∗1 − β)/φ1]
−1 , if k = 1;

(x∗1/ψ1)
−1 , otherwise.

Proof. On the fixed point the system assembles an item every time worker 1 completes a simple

loop. If k = 1 the average throughput is ρs = [β/v1 + (x∗1 − β)/u1 + x∗1/w1]
−1; otherwise,

ρs = (x∗1/v1 + x∗1/w1)
−1.

The following theorem shows that a serial bucket brigade may be configured such that its

unique fixed point x∗ is an attractor.
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Theorem 4. The fixed point x∗ of a generalized serial bucket brigade is an attractor if

1
v1

− 1
w1

> 1
v2

− 1
w2

> · · · > 1
vk−1

− 1
wk−1

> 1
vk

− 1
wk
, and

1
uk

− 1
wk

> 1
uk+1

− 1
wk+1

> · · · > 1
un−1

− 1
wn−1

> 1
un

− 1
wn
.

(27)

Proof. We will show that if Condition (27) holds, then the fixed point x∗ is at least a local

attractor: If the system is sufficiently close to the fixed point such that there is only one worker

constantly crosses point β and there is no blocking in the system, then the system will converge

to the fixed point.

Iteration t follows the sequence of hand-off points from the end to the start of the line caused

by the t-th reset. Assume the system operates sufficiently close to the fixed point x∗ such that

only worker k crosses point β and there is no blocking in each iteration. A hand-off occurs at

point xti where worker i, who is working forward, meets worker i+1, who is working backward.

Since the time spent by each worker from one iteration to the next is the same, we have

xti − xti−1

wi
+
xt+1
i − xti−1

vi
=

xt+1
i+1 − xti
vi+1

+
xt+1
i+1 − xt+1

i

wi+1
, i = 1, . . . , k − 2;

xti − xti−1

wi
+
xt+1
i − xti−1

vi
=

β − xti
vi+1

+
xt+1
i+1 − β

ui+1
+
xt+1
i+1 − xt+1

i

wi+1
, i = k − 1;

xti − xti−1

wi
+
β − xti−1

vi
+
xt+1
i − β

ui
=

xt+1
i+1 − xti
ui+1

+
xt+1
i+1 − xt+1

i

wi+1
, i = k;

xti − xti−1

wi
+
xt+1
i − xti−1

ui
=

xt+1
i+1 − xti
ui+1

+
xt+1
i+1 − xt+1

i

wi+1
, i = k + 1, . . . , n− 1.
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Rewriting the above equations yields:

xt+1
i =

1/vi + 1/wi
1/vi + 1/wi+1

xti−1 −
1/vi+1 + 1/wi
1/vi + 1/wi+1

xti +
1/vi+1 + 1/wi+1

1/vi + 1/wi+1
xt+1
i+1,

i = 1, . . . , k − 2;

xt+1
i =

1/vi + 1/wi
1/vi + 1/wi+1

xti−1 −
1/vi+1 + 1/wi
1/vi + 1/wi+1

xti +
1/ui+1 + 1/wi+1

1/vi + 1/wi+1
xt+1
i+1 +

β
1/vi+1 − 1/ui+1

1/vi + 1/wi+1
, i = k − 1;

xt+1
i =

1/vi + 1/wi
1/ui + 1/wi+1

xti−1 −
1/ui+1 + 1/wi
1/ui + 1/wi+1

xti +
1/ui+1 + 1/wi+1

1/ui + 1/wi+1
xt+1
i+1 −

β
1/vi − 1/ui

1/ui + 1/wi+1
, i = k;

xt+1
i =

1/ui + 1/wi
1/ui + 1/wi+1

xti−1 −
1/ui+1 + 1/wi
1/ui + 1/wi+1

xti +
1/ui+1 + 1/wi+1

1/ui + 1/wi+1
xt+1
i+1,

i = k + 1, . . . , n− 1.

Or we can write

x̄t+1
i = (1 + αi)γix̄

t
i−1 − αix̄

t
i + (1 + αi)(1 − γi)x̄

t+1
i+1 + ǫi, (28)

for i = 1, . . . , n− 1, where

x̄ti =











xti, if i = 1, . . . , k − 1;

ψk

φk
xti, otherwise;

αi =











1/vi+1+1/wi

1/vi+1/wi+1
, if i = 1, . . . , k − 1;

1/ui+1+1/wi

1/ui+1/wi+1
, otherwise;

γi =











1/ψi

1/ψi+1/ψi+1
, if i = 1, . . . , k − 1;

1/φi
1/φi+1/φi+1

, otherwise;

ǫi =























β 1/vi+1−1/ui+1

1/vi+1/wi+1
, if i = k − 1;

−β ψi

φi

1/vi−1/ui
1/ui+1/wi+1

, if i = k;

0, otherwise.

Note that Condition (27) implies 0 < αi < 1, i = 1, . . . , n− 1.

Equations (28) can be expressed as an affine system:

yt+1 = Ayt + b,
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where yt =
(

x̄t1, x̄
t
2, . . . , x̄

t
n−2, x̄

t+1
n−1

)T
. The first n−2 components of the vector yt correspond to

the last n− 2 hand-offs of iteration t and the last component corresponds to the first hand-off

of iteration t+1. The matrix A can be factored as A = An−1A1A2 . . . An−2, where each matrix

Ai updates x̄
t
i according to Equations (28), and

b = An−1 (A1A2 · · ·Ak−1bk +A1A2 · · ·Ak−2bk−1) + bn−1,

where bi is a zero vector except for the i-th component, which equals ǫi, for i = k − 1, k, and

bn−1 is also a zero vector except for the (n − 1)-st component, which equals (1 + αn−1)(1 −

γn−1)(ψk/φk). In this way we first update x̄tn−2, then x̄
t
n−3, and so on until x̄t1, and then finally

x̄t+1
n−1.

Each matrix Ai is an identity matrix except for row i. Each A2, A3, . . . , An−2 has three

non-zero terms in row i that sum to 1, with values (1 + αi)γi, −αi, and (1 + αi)(1 − γi) in

columns i − 1, i, and i + 1 respectively. For A1 the first term (1 + α1)γ1 > 0 is omitted from

row 1, and thus the sum of the first row has absolute value less than 1. For An−1 the last term

(1 + αn−1)(1 − γn−1) > 0 is omitted from row n − 1, and thus the sum of the last row has

absolute value less than 1.

For the full transition matrix A, all eigenvalues have modulus less than one. In short, this

follows because each A2, A3, . . . , An−2 can be replaced by a stochastic matrix, while both A1

and An−1 can be replaced by a strictly sub-stochastic matrix. Since all states communicate, the

system tends to the zero matrix. Thus, the orbit y0,y1,y2, . . . converges to the unique fixed

point y∗ of hand-off locations.

The proof of Theorem 4 shows that the fixed point x∗ is at least a local attractor. An

extensive set of simulations suggest that the fixed point x∗ is also a global attractor.
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