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Abstract

We consider a retailer with limited storage capacity selling n independent products.

Each product is produced by a distinct manufacturer, who is offered a consignment contract

with revenue sharing by the retailer. The retailer first sets a common revenue share for all

products, and each manufacturer then determines the retail price and production quantity

for his product. Under certain conditions on price elasticities and cost fractions, we find a

unique optimal revenue share for all products. Surprisingly, it is optimal for the retailer not

to charge any storage fee in many situations even if she is allowed to do so. Both the retailer’s

and manufacturers’ profits first increase and then remain constant as the capacity increases,

which implies that an optimal capacity exists. We also find that the decentralized system

requires no larger storage space than the centralized system at the expense of channel profit.

If products are complementary, as the degree of complementarity increases, the retailer will

decrease her revenue share to encourage the manufacturers to lower their prices.

1 Introduction

We consider a retailer with limited storage space selling n independent products over a single

period. The total demand for each product over the selling period is price sensitive and uncer-

tain. Each product is produced by a distinct manufacturer before the start of the selling period.

The retailer offers a consignment contract with revenue sharing to each manufacturer. Under

each contract, the ownership of a product belongs to its manufacturer when it is stored in the

retailer’s warehouse. No money is transacted until a unit of the product is sold. For each unit of

any product sold, the retailer keeps a fraction r ∈ [0, 1) of the revenue for herself and remits the

rest 1 − r to the corresponding manufacturer. After the retailer specifies the common revenue
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share r for all products, each manufacturer then determines the retail price and the production

quantity for his product.

An example of the above setting can be found in Amazon.com, which runs an online mar-

ketplace where sellers list their products (such as DVDs, video games, books, metal parts, soft

drinks, honey, pasta sauces, etc.) for sale. To save logistics cost, sellers can enroll in the Ful-

fillment by Amazon (FBA) program (see http://services.amazon.com). Sellers in the FBA

program store their products in a fulfillment center managed by Amazon. Upon receiving a

customer order from her website, Amazon picks, packs, and ships the order to the customer.

The FBA program provides customer service including handling customer inquiries, refunds,

and returns to shoppers for the listed products. Each seller determines the retail price of his

product and the number of units to list for sale. Amazon charges only when a unit of a seller’s

product is sold. For each unit of the product sold, Amazon deducts a certain percentage of its

retail price and deposits the remaining balance to the seller’s account. Units that are not sold

after a period of time will be returned to the seller and the listing is closed.

Amazon prefers this type of contract because of the following reasons: (i) Amazon bears no

overstocking risk. (ii) Unlike in traditional wholesale-price contracts, Amazon does not need to

negotiate with the individual sellers or to determine the retail price and production quantity for

every product, which could be tedious when there are many sellers. (iii) Although a consignment

contract with revenue sharing requires every seller to monitor his sales, the implementation is

straightforward in an on-line setting because every transaction is tracked, and so splitting the

revenue can be done automatically.

As a retailer, Amazon stores the products from many manufacturers (sellers) in her fulfill-

ment center. Due to limited storage space, the retailer should take her storage capacity into

consideration when she signs the contracts with the manufacturers. As we will see in our anal-

ysis, even with the storage capacity constraint, the retailer can still choose a common revenue

share such that the manufacturers will set the prices and deliver the quantities that favor her

interest.

Wang et al. (2004) study a consignment contract with revenue sharing between a retailer and

2



a single manufacturer. They do not consider the storage capacity constraint. In contrast, we

consider a retailer selling products for multiple manufacturers over a single period. The retailer

signs a separate contract with each manufacturer under a common revenue share r subject to

the storage capacity constraint. We investigate the firms’ decisions and their profits in the above

business setting. Specifically, we would like to answer the following questions:

1. How should the retailer set a common revenue share for all products to maximize her

profit subject to the capacity constraint?

2. If the manufacturers are charged for storage space, how should the retailer simultaneously

set the revenue share and the storage fee subject to the capacity constraint?

3. Is it always beneficial to the retailer and the manufacturers if the capacity is expanded?

4. How does the decentralized supply chain compare to a centralized system in terms of space

requirement and profit?

5. If products are complementary (for example, different parts of a documentary video), how

does the degree of complementarity affect the retailer’s and the manufacturers’ decisions?

We model decision making of the firms as a Stackelberg game in which the retailer, who

acts as a leader, offers each manufacturer a take-it-or-leave-it contract. Each contract specifies

a common revenue share r for the retailer. Each manufacturer, acting as a follower, determines

the retail price and the production quantity for his product. We assume that each manufacturer

accepts the contract if he can earn positive profit (his reservation profit is normalized to zero).

Section 2 reviews the related literature. Sections 3 and 4 analyze a centralized system and a

decentralized system respectively. Specifically, we find sufficient conditions for the existence of

a unique optimal revenue share for the decentralized system in Section 4.2. For many products,

these conditions are not difficult to satisfy in practice. We then investigate the problem of

simultaneously optimizing the revenue share and the storage fee in Section 4.3. Surprisingly, it is

optimal for the retailer not to charge any storage fee in many situations. Section 5 compares the

decentralized and the centralized systems. Section 6 studies a system with two complementary

products. Section 7 gives some concluding remarks.
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2 Literature review

Under a pure consignment contract such as the one described in Section 1, each supplier bears

all the overstocking risk for his product because he retains full ownership of the inventory. In

contrast, a pure wholesale-price contract serves as the other extreme: The downstream retailer

bears the full risk of overstocking because she owns the inventory under such a contract. To

share the overstocking risk, one can use an inventory buyback or return policy. The effect

of shared inventory ownerships on the supply chain’s performance has been studied in several

papers. Pasternack (1985) shows that under a newsvendor setting channel coordination is

achievable by properly designing an inventory return policy. Kandel (1996) investigates the

effects of different factors on the choice of inventory return policy. Emmons and Gilbert (1998)

consider a downstream retailer that makes both price and production decisions. They study the

effect of inventory return on channel performance. Rubinstein and Wolinsky (1987) compare

consignment with nonconsignment contracts when there are multiple sellers, middlemen, and

buyers. Hackett (1993) considers a retailer that exerts a sales effort under consignment contracts.

Several authors have studied revenue-sharing schemes. Cachon and Lariviere (2001) con-

sider various contracts offered by a downstream manufacturer to motivate an upstream supplier

to build up production capacity. Under one of the contracts, the manufacturer offers a price

to purchase components from the supplier while the retail price of the final product is fixed

exogenously. The above contract represents a revenue-sharing scheme because the purchasing

price offered to the supplier represents a “share” of the sales revenue. Gerchak and Wang (2004)

consider a manufacturer that receives components from multiple suppliers to assemble a final

product. Each supplier produces a different component for the final product. The manufac-

turer allocates the sales revenue between herself and the suppliers, who then determine their

production quantities. The authors derive the equilibrium revenue-sharing allocation and pro-

duction quantities. Wang and Gerchak (2003) extend the above model to determine production

capacities. However, they assume the retail price of the final product is a constant.

Revenue sharing can be found in other business settings besides consignment. For example,

in the video rental industry a supplier offers a contract to a downstream retailer. Under such
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a contract, the supplier charges the retailer an upfront wholesale price plus a share of the sales

revenue. The retailer then determines the order quantity or the retail price, or both. Cachon

and Lariviere (2005) show that a supplier can coordinate a single retailer channel using such a

contract. Dana and Spier (2001) analyze this contract when multiple downstream retailers face

a perfectly competitive market. See Pasternack (2000), Mortimer (2002), and Gerchak et al.

(2006) for other related work.

In our model the upstream suppliers make production or inventory decisions. This is sim-

ilar to a vendor-managed inventory (VMI) program (see, for example, Aviv and Federgruen

(1998), Fry et al. (2001), and references therein). To implement such a program in practice,

the downstream retailer may impose various constraints on the suppliers’ production decisions

such as minimum demand fill rates or bounds on production quantities. See Fry et al. (2001)

for detailed discussions and examples in practice.

Wang et al. (2004) consider a retailer that offers an upstream supplier a consignment contract

with revenue sharing. The retailer first specifies her revenue share for each unit of a product

sold. Given the revenue share, the supplier then chooses the retail price and the production

quantity for the product. The authors do not consider the storage capacity constraint. In

contrast, we consider a retailer with limited storage capacity and multiple suppliers.

It is noteworthy that in our model the revenue share set by the retailer interacts with the

retail prices (hence the total channel profit) set by the manufacturers. This is different from

most channel models found in the marketing literature where firms usually interact with each

other through their individual profit margins. See, for example, Jueland and Shugan (1983),

Lal and Staelin (1984), Moorthy (1988), Choi (1991, 1996), and references therein.

3 The centralized system

Consider a retailer that sells n different products over a single period. For each product i

produced by manufacturer i, let mi, di, and vi denote the manufacturing cost (including the

transportation cost to the warehouse) per unit for its manufacturer, the distribution cost (asso-

ciated with handling and storage in the warehouse) per unit for the retailer, and the volume per
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unit respectively, for i = 1, . . . , n. We assume the retailer charges a storage fee per unit volume

s for the entire selling period. Thus, each unit of product i incurs a cost cMi = mi + svi for its

manufacturer, a cost cRi = di − svi for the retailer, and a total cost ci = cMi + cRi = mi + di.

For each unit of product i, define αi = cRi /ci as its cost fraction for the retailer. The remaining

fraction 1−αi is incurred at manufacturer i. We assume that mi, di, and vi are all positive and

that s ∈

[

0,min
i

di/vi

]

.

Each manufacturer i delivers a quantity qi of product i to the retailer. Due to space limi-

tation, the retailer can only store a limited quantity of each product. Let V denote the total

space capacity of the retailer, who is subject to the capacity constraint
∑n

i=1 viqi ≤ V .

During the selling period, each product i has random and price-sensitive demand Di, which

has a multiplicative functional form: Di(pi) = yi(pi)εi, where yi(pi) is a deterministic function

of the retail price pi, and εi is a random variable with PDF fi(·), CDF Fi(·), failure rate

hi(·) = fi(·)/(1−Fi(·)), and mean µi, for i = 1, . . . , n. Assume that the probability distribution

of εi has support on [Ai, Bi] with 0 ≤ Ai < Bi, and so µi > 0. Note that Bi may be infinity.

For each product i, we assume the increasing generalized failure rate (IGFR) condition holds:

d(xhi(x))/dx = hi(x) + xdhi(x)/dx > 0. This condition is satisfied by many distributions such

as exponential, Weibull, and gamma distributions (see Cachon (2003)), and is more general

than the increasing failure rate (IFR) condition: dhi(x)/dx > 0 (see Paul (2005)).

We assume the function yi(pi) = aip
−bi
i , where ai > 0 and bi > 1, for i = 1, . . . , n. (If

bi < 1, we can show that the optimal retail price pi approaches infinity.) We call bi as the price

elasticity of product i. We acknowledge that our results depend on this demand model and they

may not hold generally.

We will compare the performance of a centralized system with that of a decentralized system

under consignment contracts with revenue sharing. Specifically, we study the expected profit of

the supply chain under each setting. We first analyze the centralized system in which a central

decision maker coordinates the decision making process. He chooses the retail price pi and the

production quantity qi for each product i to maximize the total profit of the entire supply chain.

Following Petruzzi and Dada (1999), we define zi = qi/yi(pi) as the stocking factor for product
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i. This definition of stocking factor is suitable for multiplicative demand models. Instead of

determining pi and qi, the decision maker determines pi and zi. Let Πi(pi, zi) denote the profit

generated from product i with retail price pi and stocking factor zi. Define p = (p1, . . . , pn) and

z = (z1, . . . , zn). The total channel profit is Π(p, z) =
∑n

i=1 Πi(pi, zi). The objective is to

max
p,z

Π(p, z) =
n
∑

i=1
Πi(pi, zi),

subject to
n
∑

i=1
viziyi(pi) ≤ V,

where Πi(pi, zi) = −ciqi + piE[min{qi,Di(pi)}] = yi(pi)[pi(zi − Λi(zi)) − cizi], and Λi(zi) =
∫ zi
Ai
(zi − x)fi(x)dx, for i = 1, . . . , n.

Let p∗(z) = (p∗1(z), . . . , p
∗
n(z)) denote the optimal retail prices given stocking factors z, and

let z∗ = (z∗1 , . . . , z
∗
n) denote the optimal stocking factors. For each product i, define p̃i(zi) =

bici
bi−1 · zi

zi−Λi(zi)
. The following theorem determines the optimal decisions for the centralized

system. All proofs can be found in Online supplement A.

Theorem 1. For any z such that zj ∈ [Aj , Bj ], j = 1, . . . , n, the optimal retail price of product

i in the centralized system is

p∗i (z) =















p̃i(zi), if
n
∑

j=1
vjzjaj(p̃j(zj))

−bj ≤ V ;
(

vi
ci

· ρ(z) + 1

)

p̃i(zi), otherwise;

where ρ(z) satisfies
n
∑

j=1

vjzjaj

[(

vj
cj

· ρ(z) + 1

)

p̃j(zj)

]−bj

= V. (1)

The optimal stocking factor z∗i is uniquely determined by Fi(z
∗
i ) = [z∗i + (bi − 1)Λi(z

∗
i )]/(biz

∗
i ).

Given z∗, the optimal retail price of product i in the centralized system is determined by

p∗i (z
∗) =















p̃i(z
∗
i ), if

n
∑

j=1
vjz

∗
j aj

(

p̃j(z
∗
j )
)−bj

≤ V ;
(

vi
ci

· ρ(z∗) + 1

)

p̃i(z
∗
i ), otherwise.

The optimal production quantity for product i is q∗i = aiz
∗
i (p

∗
i (z

∗))−bi , i = 1, . . . , n. Note that

the optimal stocking factors do not depend on the capacity V . Any changes in V are totally

absorbed by adjusting the retail prices rather than changing the stocking factors. This is due

to the multiplicative demand model and may not hold for other demand models.
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4 The decentralized system

In the decentralized system the retailer signs a consignment contract with each manufacturer.

For each unit of any product sold, the retailer keeps a fraction r of the revenue and remits the

rest 1 − r to the corresponding manufacturer. After the retailer specifies the common revenue

share r, each manufacturer chooses the retail price and production quantity for his product to

maximize his own profit.

We model the decision process as a Stackelberg game where the retailer is the leader and the

manufacturers are followers. The retailer first decides and announces a revenue share. Based on

the announced revenue share, each manufacturer then chooses the retail price and production

quantity (or equivalently, the stocking factor) for his product to maximize his own profit. We

will solve the overall problem backward: We first solve each manufacturer’s problem to find his

optimal response (price and quantity) to any revenue share offered by the retailer. Plugging

each manufacturer’s optimal response into the retailer’s profit function, we then find the revenue

share that maximizes the retailer’s profit subject to her storage capacity constraint.

It is noteworthy that for our model setting, each manufacturer only needs to know his own

demand function and cost parameters to make his price and quantity decisions. He does not

need to know the retailer’s cost parameters or other manufacturers’ demand functions and cost

parameters. The manufacturers hold the expectation, or are informed by the retailer explicitly,

that all quantities that they deliver will be accepted by the retailer. This is consistent with

Amazon’s practice (see http://services.amazon.com).

The retailer, on the other hand, needs to know all information about the manufacturers. As

such, the retailer can anticipate perfectly each manufacturer’s optimal response to her revenue

share offer. By considering her capacity constraint properly, the retailer can actually direct the

manufacturers (through her choice of the revenue share) to choose production quantities such

that their sum will be within her storage capacity.

Although the manufacturers do not consider directly the retailer’s capacity constraint in

their individual decisions, the outcome of the overall game will be able to sustain a Fulfilled

Expectations Equilibrium (Katz and Shapiro 1985). That is, in equilibrium, all quantities
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chosen by the manufacturers will be accepted by the retailer, and their sum always satisfies the

capacity constraint. Note that this is different from the Subgame Perfect Equilibrium, which

would also require the retailer’s capacity constraint to be satisfied off the equilibrium path. As

to be shown under our model assumptions, each manufacturer’s optimal response is unique and

the equilibrium of the game will be unique.

4.1 Manufacturers’ decisions

Expecting that the retailer will accept all units of his product, each manufacturer ignores the

retailer’s capacity constraint when he determines the retail price and the stocking factor for his

product. Given any revenue share r, manufacturer i determines the retail price pi and stocking

factor zi to maximize his expected profit:

max
pi,zi

Md,i(r, pi, zi) = −(1−αi)ciqi+(1−r)piE[min{qi, Di(pi)}] = yi(pi)[(1−r)pi(zi−Λi(zi))−(1−αi)cizi].

Lemma 1. In the decentralized system, given any r and zi ∈ [Ai, Bi], the optimal response of

manufacturer i is to set the retail price as p∗d,i(r, zi) =
1−αi

1−r · p̃i(zi) and the stocking factor as

the unique optimal stocking factor of product i in the centralized system.

Note that the equilibrium stocking factor z∗i in the decentralized system is identical to the op-

timal stocking factor in the centralized system. Thus, for any revenue share r, the optimal pro-

duction quantity for manufacturer i in the decentralized system is q∗d,i(r) = aiz
∗
i (p

∗
d,i(r, z

∗
i ))

−bi ,

i = 1, . . . , n.

4.2 Retailer’s decision

Knowing the manufacturers’ optimal responses p∗
d(r, z

∗) = (p∗d,1(r, z
∗
1), . . . , p

∗
d,n(r, z

∗
n)), the re-

tailer needs to properly determine the revenue share r to maximize her expected profit Rd(r)

subject to her capacity constraint. The profit generated from product i is

Rd,i(r) = −αiciq
∗
d,i(r) + rp∗d,i(r, z

∗
i )E

[

min
{

q∗d,i(r), Di(p
∗
d,i(r, z

∗
i ))
}]

= yi
(

p∗d,i(r, z
∗
i )
) [

rp∗d,i(r, z
∗
i )(z

∗
i − Λi(z

∗
i ))− αiciz

∗
i

]

,

for i = 1, . . . , n. The retailer’s objective is to

max
r

Rd(r) =
n
∑

i=1

Rd,i(r),

subject to
n
∑

i=1

viz
∗
i yi

(

p∗d,i(r, z
∗
i )
)

≤ V.
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Let r̃ be a revenue share that satisfies the first-order condition:

dRd(r)
dr

∣

∣

∣

r=r̃
=
∑n

i=1
aibiciz∗i

(1−αi)bi (p̃i(z∗i ))
bi
· (1− r̃)bi−2

[

bi−αi

bi−1 · (1− r̃)− (1− αi)
]

= 0. (2)

Let r̂ be the revenue share such that the total volume required is V , that is
∑n

i=1 viz
∗
i ai

(

1−αi

1−r̂ p̃i(z
∗
i )
)−bi

= V. (3)

The following theorem shows the retailer’s optimal decision.

Theorem 2. There exists a unique optimal revenue share r∗ = max{r̃, r̂}, if

(i) bi = b, i = 1, . . . , n, or

(ii) max
i

(1−αi)(bi−2)
bi−αi

< min
i

(1−αi)(bi−1)
bi−αi

.

Theorem 2 provides two sufficient conditions for the existence of a unique optimal revenue

share. The first condition holds approximately for many products belonging to the same product

category. For example, pasta sauces by Classico, Prego, and Ragu have price elasticity of 1.88,

1.85, and 1.83 respectively (Seo and Capps Jr. 1997) and most metal products have price

elasticity of 1.1 (Baumol and Blinder 2012).

It is also not difficult to satisfy the second condition. From the proof of Theorem 2 we have

r̃i = 1−
(1− αi)(bi − 1)

bi − αi
, (4)

which represents the optimal revenue share for a special case of the problem with a single

product i and without the capacity constraint. Thus, the second condition of Theorem 2 can

be rewritten as max
i

(1 − r̃i)(bi − 2)/(bi − 1) < min
i

1 − r̃i. If bi ≤ 2 for all i, this condition is

satisfied. The price elasticity of many consumer goods falls between 1 and 2. For example, soft

drinks and tea have price elasticity of 1.06 and 1.07 respectively (Bergtold et al. 2004), whereas

jam and honey have price elasticity of 1.61 and 1.64 respectively (Helen and Willett 1986).

4.3 Changing the storage fee per unit volume s

In practice, the retailer can adjust the storage fee per unit volume s according to demand. For

example, Amazon charges a higher storage fee near the end of a year. The following lemma

guarantees the existence of optimal retailer’s decisions if she sets r and s simultaneously.

Lemma 2. There exist optimal decisions (r∗, s∗) for the retailer.
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To see how (r∗, s∗) respond to demands, we scale up demands for all products simultaneously

such that ai = λian, for i = 1, . . . , n. The following lemma shows that if demands are small

relative to the capacity V , the optimal revenue share and storage fee remain constant. However,

if demands are large, the retailer needs to increase the revenue share or storage fee according

to the demands in order to satisfy the capacity constraint.

Lemma 3. For demands satisfying ai = λian, i = 1, . . . , n, there exists an ān such that

(i) if an ≤ ān, then (r∗, s∗) = (r0, s0), where r0 and s0 are independent of an;

(ii) otherwise, (r∗, s∗) depend on an, and r∗ > r0 or s∗ > s0.

Figure 1 shows the optimal decisions (r∗, s∗) for a system with n = 2, V = 10, v1 = v2 = 1,

d1 = d2 = 1, b2 = 4, m2 = 5, and εi ∼ N (51, 8.332). There are three different scenarios: (a)

The optimal s∗ is always positive. (b) The optimal s∗ first equals 0 and then increases with

demand. (c) The optimal s∗ always equals 0.

Figure 1(a) suggests that r∗ and s∗ first remain constant and start increasing simultaneously

with an when the capacity constraint is binding (at the vertical dotted line). This is consistent

with Lemma 3. Note that s∗ > 0 for all an. Figure 1(b) shows that under a different parameter

setting, s∗ first equals 0. The revenue share r∗ starts increasing when the capacity constraint

is binding, while s∗ remains equal to 0. This is because the retailer gains a larger marginal

profit when she raises the revenue share compared to increasing the storage fee. It is optimal

not to charge any storage fee for small an. However, s
∗ starts increasing when an is sufficiently

large. Figures 1(a) and (b) suggest that the retailer should charge a higher storage fee when the

demand is large. This is consistent with the practice of Amazon, who charges a higher storage

fee during a peak season (see http://services.amazon.com).

Figures 1(a) and (b) seem to suggest that it is optimal to charge a positive storage fee when

demand is sufficiently large. However, Figure 1(c) shows an example where the retailer always

sets s∗ = 0. In fact, if all products have identical values for their parameters, except ai, then

it is always optimal for the retailer not to charge any storage fee. This result is summarized in

the following theorem. We say a system is symmetric if the following conditions hold: bi = b,

Fi = F , mi = m, di = d, and vi = v, for i = 1, . . . , n. These conditions can potentially hold for
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(a) b1 = 6, m1 = 15, a1 = 30,000a2
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(b) b1 = 6, m1 = 10, a1 = 5,000a2
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(c) b1 = 4, m1 = 5, a1 = 2a2

Figure 1: Optimal revenue share r∗ and storage fee s∗.

products belonging to the same family with common characteristics (for example, DVDs).

Theorem 3. For a symmetric system,

(i) the optimal storage fee per unit volume s∗ = 0 for any ai > 0, i = 1, . . . , n, and

(ii) the optimal revenue share r∗ first remains constant and then strictly increases with
∑n

i=1 ai.

Theorem 3 is surprising because it shows that under certain symmetry conditions, it is

optimal not to charge any storage fee even if the system fully utilizes its capacity (see Figure

1(c)). This shows that it is more effective for the retailer to influence the manufacturers’

production quantities through raising r than raising s. Since the system is always symmetric for

n = 1, it is always optimal for the retailer to set s∗ = 0 if she deals with only one manufacturer.

Corollary 1. If n = 1, then

(i) the optimal storage fee per unit volume s∗ = 0 for any a1 > 0, and

(ii) the optimal revenue share r∗ first remains constant and then strictly increases with a1.

To check whether the retailer’s optimal decisions (r∗, s∗) always follow the three patterns

shown in Figure 1, we investigate the behavior of (r∗, s∗) numerically by enumerating various

parameters. We set n = 2, d1 = d2 = 1, v1 = v2 = 1, and ε1, ε2 ∼ N (51, 8.332). We consider

bi = 1.5 + 0.3k, k = 0, 1, . . . , 15, and mi = 1 + 2k, k = 0, 1, . . . , 7, for i = 1, 2. Without

loss of generality, we only consider cases where b1 ≥ b2. This results in 8,704 combinations

of (b1, b2,m1,m2). For each combination of parameters (b1, b2,m1,m2), we fix the ratio a1/a2

such that the optimal volumes of both products are comparable (to prevent the system from
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degenerating to the one-product case). We then find (r∗, s∗) for a2 ∈ [1, 50]. To make capacity

relevant, we set V such that the system fully utilizes its capacity if and only if a2 ≥ 10.

Out of the 8,704 parameter settings, 99.5% exhibit one of the three typical patterns shown

in Figure 1: 21.6% follow Figure 1(a), 31.0% follow Figure 1(b), and 46.9% follow Figure 1(c).

Note that among all the parameter settings, only 1.5% are symmetric (b1 = b2 and m1 = m2).

This implies that 45.4% (46.9% - 1.5%) of the settings are asymmetric with s∗ = 0, and this

generally happens when m1 and m2 are close to each other. Thus, although Theorem 3 only

applies to symmetric systems, our numerical results suggest that in many asymmetric systems

(45.4%), it is also optimal for the retailer not to charge any storage fee.

The above observations can be summarized as follows. (i) If the manufacturing costs m1

and m2 are similar, it is usually optimal for the retailer not to charge any storage fee (see Figure

1(c)). In this case, it is more effective for the retailer to influence the manufacturers’ production

quantities through raising r than raising s. (ii) If the manufacturing costs are very different, it

is usually optimal to charge a positive s∗ when the system fully utilizes its capacity (see Figures

1(a) and (b)). (iii) If the manufacturing costs are very different, sometimes it is optimal to

charge a positive s∗ even if the system has not fully utilized its capacity (see Figure 1(a)).

Points (i) and (iii) above can be explained as follows. Since the retailer can only set a

common r for all products, she prefers a group of manufacturers with similar r̃i because this

will reduce her profit loss caused by setting a common r. Since r̃i is very sensitive to αi

(see Equation (4)), the retailer prefers a group of manufacturers with similar αi. Note that

αi = 1− cMi /
(

cMi + cRi
)

= 1− (mi + svi)/(mi + di). If the manufacturing costs mi are close to

each other, then αi are close to each other even with s = 0 (this explains point (i)). However,

if mi are very different from each other, the retailer tends to make αi more homogeneous by

increasing s (this explains point (iii)).

4.4 Changing the capacity V

The retailer can expand her storage capacity to maximize her profit (note that capacity ex-

pansion cannot be done in a short time and is generally planned in advance). Interestingly, if

ai = λian for all i, the impact of increasing V on the optimal revenue share and storage fee is
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effectively equivalent to that of reducing demand an. Lemma 3 implies the following corollary.

Corollary 2. For demands satisfying ai = λian, i = 1, . . . , n, there exists a V̄ such that

(i) if V ≥ V̄ , then (r∗, s∗) = (r0, s0), where r0 and s0 are independent of V ;

(ii) otherwise, (r∗, s∗) depend on V , and r∗ > r0 or s∗ > s0.

Similarly, Theorem 3 implies the following corollary.

Corollary 3. For a symmetric system,

(i) the optimal storage fee per unit volume s∗ = 0 for any V , and

(ii) the optimal revenue share r∗ first strictly decreases with V and then remains constant.

Since expanding capacity (for example, building a warehouse) comes with a cost, how much

capacity should the retailer invest? Suppose the retailer has initial capacity V0 and assume it

incurs a constant cost κ to expand a unit volume. It is important to first study how the retailer’s

profit changes with capacity V . Figures 2(a), (b), and (c) show the retailer’s profit in the three

parameter settings corresponding to Figures 1(a), (b), and (c) respectively. We set a2 = 3,000.

Figures 2(a) and (b) correspond to asymmetric systems, whereas Figure 2(c) corresponds to a

symmetric system. In all cases, the retailer’s profit is first increasing concave in V , and then

remains constant. Figure 2 also shows that the manufacturers’ total profit Md =
∑n

i=1Md,i is

first strictly increasing in V and then remains constant. This suggests that expanding capacity

may benefit not only the retailer, but also the manufacturers.

Lemma 4. For a symmetric system, we have the following results:

(i) The retailer’s profit is first strictly increasing concave in V , and then remains constant.

(ii) Each manufacturer’s profit is first linearly increasing in V , and then remains constant.

(iii) Given an initial capacity V0 and a constant expansion cost per unit volume κ, the retailer’s

optimal additional capacity is max{V ∗ − V0, 0}, where

V ∗ =

(

n
∑

i=1

ai

)

vz∗
[(

κv

c
+

b− α

b− 1

)

p̃(z∗)

]−b

.

If V0 ≥ V ∗, the retailer does not need to expand her capacity. Otherwise, part (i) of Lemma

4 implies that the retailer should expand her capacity to V ∗, where her marginal profit equals

κ. This is summarized in part (iii) of Lemma 4. Furthermore, parts (i) and (ii) show that
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(c) b1 = 4, m1 = 5, a1 = 2a2

Figure 2: Retailer’s profit and manufacturers’ total profit.

in a symmetric system both the retailer and the manufacturers may benefit from the capacity

expansion. Our numerical results suggest that this is also generally true for asymmetric systems.

Thus, not only Amazon but also the sellers in the FBA program may benefit from the former’s

capacity expansion.

5 Comparing the decentralized and the centralized systems

We use the centralized system as a benchmark to evaluate the decentralized system, where the

retailer sets both the revenue share and storage fee given a fixed capacity V . It is generally

hard to compare the stocking factors and retail prices of the decentralized and the centralized

supply chains across multiple products, but we can compare them for a symmetric system.

Lemma 5. For a symmetric system, the equilibrium stocking factor (retail price) of each product

in the decentralized supply chain is the same as (no less than) the optimal stocking factor (retail

price) of the product in the centralized supply chain.

We further compare the decentralized and the centralized systems in other aspects as follows.

5.1 Space requirement and channel efficiency

Define φ = (R∗
d +

∑n
i=1 M

∗
d,i)/Π

∗ as the channel efficiency of the decentralized system, where

R∗
d and M∗

d,i represent the equilibrium profits of the retailer and manufacturer i, respectively,

in the decentralized system; and Π∗ is the centralized system’s optimal profit.
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Lemma 6. For a symmetric system, we have the following results:

(i) Under equilibrium decisions, the decentralized system always requires less space than the

centralized system unless both systems fully utilize their capacity.

(ii) The channel efficiency φ is larger than 2/e ≈ 0.736.

Although part (i) of Lemma 6 holds only for symmetric systems, our numerical studies

suggest that this result also holds for asymmetric systems generally. In each graph of Figure

3, the dashed line shows the ratio of the decentralized system’s volume requirement to the

centralized system’s volume requirement. We use the same parameter settings in Figures 1(a),

(b), and (c) for Figures 3(a), (b), and (c) respectively.

In all the three cases, the volume ratio never exceeds 1. The decentralized system requires no

larger space than the centralized system. The volume ratio is first constant in demand (a2) when

the capacity is not fully used in both the centralized and decentralized systems. The ratio starts

to increase with demand as the centralized system fully utilizes its capacity (at the left vertical

dotted line). As demand continues to grow, both the centralized and decentralized systems fully

utilize their capacity (at the right vertical dotted line) and the volume ratio becomes 1.

The solid line in each graph of Figure 3 shows the channel efficiency, which is always above

0.7 for all the three cases. Part (ii) of Lemma 6 provides a lower bound on the channel efficiency

for a symmetric system (Figure 3(c)). The result of this special case is similar to Proposition 5

in Wang et al. (2004). On the other hand, we find that some asymmetric systems (for example,

when m1 is extremely different from m2) give arbitrarily low channel efficiency.

For all the three cases, the channel efficiency first remains constant in a2 when the capacity

is not fully used in both the centralized and decentralized systems. The channel efficiency starts

to increase with a2 as the centralized system fully utilizes its capacity, and it continues to grow

until both systems fully utilize their capacity.

When both the centralized and decentralized systems fully utilize their capacity, the channel

efficiency behaves differently for different cases. For the symmetric case (Figure 3(c)), the

decentralized system achieves perfect channel efficiency and it is called coordinated. This is

because all manufacturers set the same retail price, which is equal to the common retail price

16
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Figure 3: Volume ratio and channel efficiency.

in the centralized system. This leads to the same total profit for both the centralized and

decentralized systems because they have identical stocking factors z∗. The channel efficiency

is below 1 for asymmetric cases (Figures 3(a) and (b)) because the retailer controls only two

variables r and s to influence the manufacturers’ retail prices in the decentralized system. In

contrast, the centralized system enjoys the flexibility of directly setting every product’s price.

In summary, the decentralized system requires a smaller storage space but provides less

channel profit than the centralized system.

5.2 The advantages of charging storage fee

What are the advantages of charging storage fee? The solid line in Figure 4(a) shows the increase

in channel efficiency when the retailer sets s = s∗ ≥ 0 instead of s = 0. We use the same

parameter setting as in Figure 1(a). The dashed and the dotted lines show that the increases in

the manufacturers’ and retailer’s profits can be as large as 20% and 5% respectively. Surprisingly,

charging storage fee benefits not only the retailer, but also the manufacturers. Although they

pay the storage fee per unit volume s∗, the manufacturers enjoy a higher percentage increase in

their total profit than the retailer. This is because if s = s∗ > 0 not only does the channel gain

more revenue, but also the retailer tends to set a lower r, which yields a larger revenue share

1− r for each manufacturer.

We use the same 8,704 parameter settings in Section 4.3 to further investigate the impact

of storage fee. In each parameter setting, we set V such that the capacity is fully used if and

only if a2 ≥ 10. Figure 4(b) shows the histograms of the channel efficiency for both s = s∗ and
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Figure 4: The advantages of charging storage fee.

s = 0. For most of the parameter settings the channel efficiency is larger than 0.736 — the lower

bound for a symmetric system established in Lemma 6. The figure also suggests that charging

storage fee improves channel efficiency. For all 8,704 parameter settings, charging s = s∗ always

results in higher (or equal) channel efficiency, retailer’s profit, and manufacturers’ total profit,

compared to charging s = 0. Thus, the current Amazon’s practice of charging a storage fee

benefits not only herself, but also the sellers in the FBA program. For 98% of the settings, the

manufacturers enjoy a higher (or equal) percentage increase in their total profit compared to

the retailer. This suggests that charging the optimal storage fee is more advantageous to the

manufacturers than to the retailer.

6 Two complementary products

We also consider two complementary products (for example, two parts of a documentary video)

with demand functions: Di(pi, pj) = yi(pi, pj)εi, where yi(pi, pj) = ai(pi + βpj)
−bi , β ∈ [0, 1],

i, j ∈ {1, 2}, and i 6= j. Note that ∂Di(pi, pj)/∂pj ≤ 0, which is consistent with the definition

of complementary products in the economics literature (see, for example, Stiglitz 1993). These

demand functions are inspired by the log-linear demand model (Bell 1968). They also generalize

the model used by Wang (2006) (which is a special case with β = 1) and the model in the

previous sections (which is a special case with β = 0). In this section, we consider a symmetric

system for tractability. We assume b > 1 + β and the IFR condition dh(x)/dx > 0 holds.

We first determine the manufacturers’ decisions. Given any revenue share r and the retail
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price pj , the objective of manufacturer i is to

max
pi,zi

Md,i(r, pi, zi, pj) = −(1− α)cqi + (1− r)piE[min{qi, Di(pi, pj)}]

= ai(pi + βpj)
−b[(1 − r)pi(zi − Λ(zi))− (1 − α)czi].

Lemma 7. The equilibrium stocking factor of each product equals z∗, which is uniquely deter-

mined by F (z∗) = [(1 + β)z∗ + (b− 1− β)Λ(z∗)]/(bz∗). Given any revenue share r, the optimal

retail price of each product is p∗d(r) =
(1−α)bc

(1−r)(b−1−β) ·
z∗

z∗−Λ(z∗) .

If β = 0, z∗ and p∗d(r) reduce to their counterparts in Lemma 1 for a symmetric system. As β

increases, z∗ and p∗d(r) deviate from that of Lemma 1. In particular, z∗ increases with β.

Corollary 4. The equilibrium stocking factor z∗ is strictly increasing in β.

Knowing the manufacturers’ optimal responses, the retailer chooses the revenue share r to

maximize her expected profitRd(r) = Rd,1(r)+Rd,2(r), whereRd,i(r) = y(p∗d(r), p
∗
d(r))[rp

∗
d(r)(z

∗−

Λ(z∗))−αcz∗] = ai[(1+β)p∗d(r)]
−b
[

(1−α)b
b−1−β · r

1−r − α
]

cz∗, representing the profit generated from

product i. The retailer’s decision is determined as follows.

Theorem 4. The optimal revenue share is r∗ = max{r̃, r̂}, where r̃ = [α(b − 2 − β) + 1]/[b −

(1 + β)α] and r̂ = 1−
[

V
vz∗(a1+a2)

]1/b
· (1+β)(1−α)bc

b−1−β · z∗

z∗−Λ(z∗) .

Lemma 7 shows that each retail price decreases as the revenue share decreases. Furthermore,

in this complementary demand model, reducing the price pj increases not only the demand

for product j, but also the demand for product i. As β gets larger, any price reduction will

increasingly benefit the retailer. In this situation the retailer should decrease her revenue share

to encourage the manufacturers to lower their prices. This is confirmed by the following corollary.

Corollary 5. The optimal revenue share r∗ is strictly decreasing in β.

Corollaries 4 and 5 show the monotonic behavior of the stocking factor and revenue share in β.

However, the retail price does not have any monotonic behavior in β.

If the retailer can change the storage fee per unit volume s, it can be shown that Theorem

3 continues to hold for two complementary products. The proof is similar to that of Theorem

3 and is therefore omitted. Thus, in a symmetric system it is always optimal for the retailer to

set s∗ = 0 for n independent products or for two complementary products.
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7 Conclusion

We study a retailer that has limited storage space selling products for n manufacturers under

consignment contracts with revenue sharing. Knowing the manufacturers’ optimal responses,

the retailer sets a common revenue share to maximize her profit subject to the storage capacity

constraint. We show that there exists a unique optimal revenue share if one of the following

conditions is satisfied: (i) All products have identical price elasticity. (ii) All products have

price elasticity no larger than 2.

We have three major findings for independent products. Firstly, if the products have similar

manufacturing costs, we obtain a counterintuitive result that the retailer generally should not

charge any storage fee even if demand is high. We prove that for a symmetric system the

optimal storage fee per unit volume s∗ = 0. Surprisingly, we also find that s∗ = 0 for many

asymmetric systems in our numerical studies if the products have similar manufacturing costs.

In this situation, it is sufficient for the retailer to adjust only the revenue share when demand

increases. If the products have very different manufacturing costs, we find that charging storage

fee benefits not only the retailer, but also the manufacturers.

Secondly, both the retailer and manufacturers may benefit from the retailer’s capacity ex-

pansion. For a symmetric system, we prove that both the retailer’s and the manufacturers’

profits first increase and then remain constant as the capacity increases. We also observe these

behaviors in numerical studies for asymmetric systems. Furthermore, by taking the capacity

cost into account, we determine the retailer’s optimal capacity for a symmetric system.

Thirdly, the decentralized system requires no larger space than the centralized system. We

prove this result for a symmetric system, and it also holds for asymmetric systems in numerical

studies. Although the decentralized system generates less profit than the centralized system,

it attains at least 0.736 channel efficiency if the system is symmetric. Thus, the decentralized

system uses less storage space at the expense of channel profit.

We have one major finding for two complementary products. As the degree of complemen-

tarity β increases, the retailer will decrease her revenue share. This is because if β is large, any

reduction in price will greatly benefit the retailer. In this situation, the retailer should reduce
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the revenue share to encourage the manufacturers to lower their prices.

We would like to highlight that even though the manufacturers may approach the retailer

at different times in practice, the retailer still has to determine the common revenue share in

advance (for example, Amazon publishes the revenue share on its website). This paper provides

a model for the retailer to set the revenue share and storage fee, given multiple manufacturers

sharing her limited storage space during an extended period of time (say, one year). Our model

serves as an approximation of the actual problem when the system reaches a steady state, where

the number of manufacturers at any point in time is roughly constant. The retailer can forecast

this constant and allocate a fixed volume of storage space for this number of manufacturers. Our

model provides guidance and insights to the retailer to determine the revenue share, the storage

fee, and the capacity in this setting. The model also helps the manufacturers to determine the

retail prices and production quantities for their products.
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Online supplement

A Technical details

A.1 Proof of Theorem 1

Before we prove Theorem 1, we first prove the following lemmas. Define Gi(zi) = zi−biziFi(zi)+

(bi − 1)Λi(zi).

Lemma 8. The equation Gi(zi) = 0 has a unique solution.

Proof. For any zi ∈ [A,B), we have

dGi(zi)

dzi
= (1− Fi(zi))(1 − bizihi(zi)).

According to IGFR assumption, 1− bizihi(zi) is decreasing in zi and so dGi(zi)/dzi crosses zero

at most once (from positive to negative). Since Gi(Ai) = Ai > 0 and Gi(Bi) = −(bi − 1)µi < 0,

the first derivative dGi(zi)/dzi either is always negative or changes from positive to negative. In

either case, Gi(zi) crosses zero exactly once, from positive to negative. Therefore, the equation

Gi(zi) = 0 has a unique solution.

The following lemma gives the optimal price and stocking factor without the capacity constraint.

Lemma 9. Without the capacity constraint, for any zi ∈ [Ai, Bi], the optimal retail price in the

centralized system is p̃i(z). The optimal stocking factor z∗i is uniquely determined by

Fi(z
∗
i ) =

z∗i + (bi − 1)Λi(z
∗
i )

biz∗i
, i = 1, . . . , n.

Proof. Given any zi,

∂Πi(pi, zi)

∂pi
= aip

−bi−1
i [bicizi − (bi − 1)(zi − Λi(zi))pi].

Since aip
−bi−1
i > 0, Πi(pi, zi) is unimodal in pi and is maximized at p̃i(zi) ≡ bici

bi−1 · zi
zi−Λi(zi)

.

Thus, without the capacity constraint, the optimal retail price in the centralized system is p̃i(zi)

given any zi.
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Next, we show that Πi(p̃i(zi), zi) is maximized at z∗i , which satisfies the following equation

Fi(z
∗
i ) =

z∗i + (bi − 1)Λi(z
∗
i )

biz
∗
i

.

We have

Πi(p̃i(zi), zi) = yi(p̃i(zi))[p̃i(zi)(zi − Λi(zi))− cizi] = ai (p̃i(zi))
−bi [p̃i(zi)(zi − Λi(zi))− cizi];

dΠi(p̃i(zi), zi)

dzi
=

∂Πi(pi, zi)

∂zi

∣

∣

∣

∣

pi=p̃i(zi)

+
∂Πi(pi, zi)

∂pi

∣

∣

∣

∣

pi=p̃i(zi)

·
dp̃i(zi)

dzi

=
∂Πi(pi, zi)

∂zi

∣

∣

∣

∣

pi=p̃i(zi)

(by envelope theorem)

= ai (p̃i(zi))
−bi [p̃i(zi)(1 − Fi(zi))− ci]

= ai (p̃i(zi))
−bi

[

bici
bi − 1

·
zi

zi − Λi(zi)
· (1− Fi(zi))− ci

]

=
aici (p̃i(zi))

−bi

(bi − 1)(zi − Λi(zi))
·Gi(zi).

Since aici(p̃i(zi))
−bi

(bi−1)(zi−Λi(zi))
> 0, the first-order condition dΠi(p̃i(zi), zi)/dzi = 0 can be achieved

only if Gi(zi) = 0. Lemma 8 shows that the equation Gi(zi) = 0 has a unique solution z∗i . Since

Gi(Ai) = Ai > 0 and Gi(Bi) = −(bi − 1)µi < 0, the profit function Πi(p̃i(zi), zi) is unimodal

in zi and is maximized at z∗i . Therefore, without the capacity constraint, the optimal stocking

factor is z∗i .

Lemma 10. If the volume of product i is fixed at Vi, then the optimal stocking factor z∗i is still

uniquely determined by

Fi(z
∗
i ) =

z∗i + (bi − 1)Λi(z
∗
i )

biz∗i
, i = 1, . . . , n.

Proof. Since the volume of product i is fixed at Vi, we have pi = p̆i(zi), where p̆i(zi) ≡

(viaizi/Vi)
1
bi . This implies

Πi(p̆i(zi), zi) = yi(p̆i(zi))[p̆i(zi)(zi − Λi(zi))− cizi] =
Vi

vi

[

(

viai
Vi

)
1

bi

· z
1

bi
−1

· (zi − Λi(zi))− ci

]

.

Thus, we have

dΠ(p̆i(zi), zi)

dzi
=

Vi

vi
·

(

viai
Vi

)
1

bi

[

z
1

bi
−1

i (1 − Fi(zi)) +

(

1

bi
− 1

)

z
1

bi
−2

i (zi − Λi(zi))

]

=
Vi

bivi
·

(

viai
Vi

)
1

bi

· z
1

bi
−2

i ·Gi(zi).

Since Vi

bivi
·
(

viai
Vi

) 1
bi · z

1
bi
−2

i > 0, similar to the proof of Lemma 9, we can prove that the optimal

stocking factor is still z∗i .
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We are now ready to prove Theorem 1.

Proof. We first determine the optimal retail prices p∗(z) given the stocking factors z, and then

find the optimal stocking factors z∗.

Determining the optimal prices p∗(z)

Lemma 9 implies that if
∑n

j=1 vjzjaj(p̃j(zj))
−bj ≤ V , then p∗i (zi) = p̃i(zi), for i = 1, . . . , n.

We only need to show that if
∑n

j=1 vjzjaj(p̃j(zj))
−bj > V (that is, the capacity constraint is

violated), then p∗i (zi) =
(

vi
ci
· ρ(z) + 1

)

p̃i(zi), for i = 1, . . . , n.

For convenience, let ui = p−bi
i , i = 1, . . . , n. The channel profit function can be rewritten

as Π(u, z) =
∑n

i=1Πi(ui, zi), where u = (u1, . . . , un) and

Πi(ui, zi) = aiui

[

u
− 1

bi

i (zi − Λi(zi))− cizi

]

.

Note that we have just transformed the decision variables (p, z) to (u, z). The problem now is to

maximize Π(u, z) subject to the capacity constraint, which is rewritten as
∑n

j=1 vjajzjuj ≤ V .

For each product i, we have

∂Πi(ui, zi)

∂ui

= ai

[

u
− 1

bi

i (zi − Λi(zi))− cizi −
1

bi
u
− 1

bi

i (zi − Λi(zi))

]

= ai

[

bi − 1

bi
(zi − Λi(zi))u

− 1

bi

i − cizi

]

= aicizi





u
− 1

bi

i

p̃i(zi)
− 1



 = aicizi

(

pi
p̃i(zi)

− 1

)

, and

∂2Πi(ui, zi)

∂u2
i

= −
aicizi
bip̃i(zi)

u
− 1

bi
−1

i < 0.

Since ∂Πj/∂uk = 0, for any j 6= k, the profit function Π(u, z) is jointly concave in u. Thus, the

capacity constraint is binding:
n
∑

j=1

vjajzjuj = V. (5)

We prove by contradiction that the optimal u∗ = (u∗1, . . . , u
∗
n) should satisfy the following

equations

1

viaizi
·
∂Πi(ui, zi)

∂ui

∣

∣

∣

∣

ui=u∗

i

=
ci
vi

(

p∗i (zi)

p̃i(zi)
− 1

)

, i = 1, . . . , n, (6)

which equal the same constant. Suppose for any z, u0 maximize the profit function Π(u, z) and

there exist two different indices j and k such that

1

vjajzj
·
∂Πj(uj, zj)

∂uj

∣

∣

∣

∣

uj=u0
j

>
1

vkakzk
·
∂Πk(uk, zk)

∂uk

∣

∣

∣

∣

uk=u0
k

. (7)
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Let ∆V be a very small positive real number. Define u′ as a vector such that u′j = u0j +
∆V

vjajzj
,

u′k = u0k −
∆V

vkakzk
, and u′m = u0m, ∀m 6= j, k. Note that (u′, z) is still a feasible solution because

∑n
m=1 vmamzmu′m =

∑n
m=1 vmamzmu0m = V . The Taylor’s expansion of the profit function at

(u0, z) gives

Πj(u
′
j , zj) = Πj(u

0
j , zj) +

∂Πj(uj , zj)

∂uj

∣

∣

∣

∣

uj=u0

j

·
∆V

vjajzj
+O(∆V 2);

Πk(u
′
k, zk) = Πk(u

0
k, zk)−

∂Πk(uk, zk)

∂uk

∣

∣

∣

∣

uk=u0

k

·
∆V

vkakzk
+O(∆V 2);

Πm(u′
m, zm) = Πm(u0

m, zm), m 6= j, k.

Thus, we have

Π(u′, z) = Π(u0, z) +

(

1

vjajzj
·
∂Πj(uj , zj)

∂uj

∣

∣

∣

∣

uj=u0

j

−
1

vkakzk
·
∂Πk(uk, zk)

∂uk

∣

∣

∣

∣

uk=u0

k

)

∆V +O(∆V 2).

Due to Inequality (7), Π(u′, z) > Π(u0, z) if ∆V is sufficiently small. This contradicts the

optimality of u0. Therefore, Equations (6) hold.

For convenience, define S ≡ ci
vi

(

p∗i (zi)
p̃i(zi)

− 1
)

, which is the constant value of Equation (6). We

will show that ρ(z) = S. For each product i,

S =
ci
vi

(

p∗i (zi)

p̃i(zi)
− 1

)

⇔ p∗i (zi) =

(

vi
ci

· S + 1

)

p̃i(zi).

From Equation (5), we have

n
∑

j=1

vjzjaj

[(

vj
cj

· S + 1

)

p̃j(zj)

]−bj

= V.

Since the left hand side of the above equation strictly decreases with S, the equation has a

unique solution for S. Together with Equation (1), this implies that S = ρ(z). Therefore, if

∑n
j=1 vjzjaj(p̃j(zj))

−bj > V , then p∗i (zi) =
(

vi
ci
· ρ(z) + 1

)

p̃i(zi), i = 1, . . . , n.

Let p̃(z) = (p̃1(z1), . . . , p̃n(zn)) and p̂(z) = (p̂1(z), . . . , p̂n(z)), where p̂i(z) =
(

vi
ci
· ρ(z) + 1

)

·

p̃i(zi), for i = 1, . . . , n. The above conclusion on the optimal prices can be rewritten as p∗(z) =

p̃(z) if
∑n

j=1 vjzjaj(p̃j(zj))
−bj ≤ V , and p∗(z) = p̂(z) otherwise.

Determining the optimal stocking factors z∗

The remaining of the proof shows that the optimal stocking factor z∗i for product i is uniquely

determined by

Fi(z
∗
i ) =

z∗i + (bi − 1)Λi(z
∗
i )

biz∗i
.
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The proof of Lemma 9 implies that Π(p̃(z), z) is uniquely maximized at z∗. For any z, we

have Π(p̃(z), z) ≥ Π(p̂(z), z). Thus, if (p̃(z∗), z∗) satisfies the capacity constraint, that is, if

∑n
j=1 vjz

∗
j aj(p̃j(z

∗
j ))

−bj ≤ V , then the optimal stocking factors are z∗.

To complete the proof, we only need to show that if (p̃(z∗), z∗) does not satisfy the capacity

constraint, that is, if
∑n

j=1 vjz
∗
j aj(p̃j(z

∗
j ))

−bj > V , then the optimal stocking factors are still

z∗. For any z, it satisfies one of the two conditions: (a)
∑n

j=1 vjzjaj(p̃j(zj))
−bj ≤ V ; (b)

∑n
j=1 vjzjaj(p̃j(zj))

−bj > V .

Suppose condition (a) is satisfied. We have p∗(z) = p̃(z). The proof of Lemma 9 shows that

Πi(p̃i(zi), zi) is unimodal in zi, for i = 1, . . . , n. Since (p̃(z∗), z∗) does not satisfy the capacity

constraint, the profit function Π(p̃(z), z) is maximized at z̄ that satisfy
∑n

j=1 vj z̄jaj(p̃j(z̄j))
−bj =

V . Note that p̃(z̄) = p̂(z̄).

Suppose condition (b) is satisfied. We will prove that the optimal stocking factor vector

is z∗ by contradiction. Suppose the profit function Π(p, z) is maximized at a feasible point

(p0, z0) (that is, (p0, z0) satisfies the capacity constraint), where z0 6= z∗. There exists an

index k such that z0k 6= z∗k. Let Vk = vkakz
0
k

(

p0k
)−bk ⇔ p0k =

(

vkakz
0
k/Vk

)
1
bk . Consider another

solution (p′, z′), where p′ is a price vector such that p′k = (vkakz
∗
k/Vk)

1
bk and p′i = p0i , ∀i 6= k,

and z′ is a stocking factor vector such that z′k = z∗k and z′i = z0i , ∀i 6= k. The solution (p′, z′)

is feasible because it consumes the same capacity as the solution (p0, z0) does. Lemma 10

shows that Πk(p
′
k, z

′
k) = Πk

(

(vkakz
∗
k/Vk)

1
bk , z∗k

)

> Πk

(

(vkakz
0
k/Vk)

1
bk , z0k

)

= Πk(p
0
k, z

0
k). Since

Πi(p
′
i, z

′
i) = Πk(p

0
i , z

0
i ), ∀i 6= k, we have Π(p′, z′) > Π(p0, z0), which contradicts the optimality

of z0. Therefore, under condition (b) the optimal stocking factor vector is z∗.

Since p∗(z) is continuous in z, the profit function Π(p∗(z), z) is also continuous in z. This

implies that Π(p̂(z∗), z∗) > Π(p̃(z̄), z̄), which is the optimal profit under condition (a). Thus,

if (p̃(z∗), z∗) does not satisfy the capacity constraint, that is, if
∑n

j=1 vjz
∗
j aj(p̃j(z

∗
j ))

−bj > V ,

then the optimal stocking factors are still z∗.
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A.2 Proof of Lemma 1

Given any zi,

∂Md,i(r, pi, zi)

∂pi
= aip

−bi−1
i [bi(1− αi)cizi − (bi − 1)(zi − Λi(zi))(1 − r)pi].

Since aip
−bi−1
i > 0, the function Md,i(r, pi, zi) is unimodal in pi and is maximized at p∗d,i(r, zi) =

1−αi

1−r · p̃i(zi). Substituting p∗d,i(r, zi) into the manufacturer’s profit function, we have

Md,i

(

r, p∗d,i(r, zi), zi
)

= ai(1− αi)

(

1− αi

1− r

)−bi

· (p̃i(zi))
−bi [p̃i(zi)(zi − Λi(zi))− cizi] .

Differentiating the above profit function with respect to zi, we have

dMd,i(r, p
∗

d,i(r, zi), zi)

dzi
=

∂Md,i(r, pi, zi)

∂zi

∣

∣

∣

∣

pi=p∗
d,i

(r,zi)

+
∂Md,i(r, pi, zi)

∂pi

∣

∣

∣

∣

pi=p∗
d,i

(r,zi)

·

d(p∗d,i(r, zi))

dzi
,

=
∂Md,i(r, pi, zi)

∂zi

∣

∣

∣

∣

pi=p∗
d,i

(r,zi)

(by envelope theorem)

= ai(1− αi)

(

1− αi

1− r

)

−bi

· (p̃i(zi))
−bi [p̃i(zi)(1− Fi(zi))− ci]

= ai(1− αi)

(

1− αi

1− r

)

−bi

· (p̃i(zi))
−bi

[

bici

bi − 1
·

zi

zi − Λi(zi)
· (1− Fi(zi))− ci

]

= (1− αi)

(

1− αi

1− r

)

−bi

·
aici (p̃i(zi))

−bi

(bi − 1)(zi − Λi(zi))
·Gi(zi).

Since (1 − αi)
(

1−αi

1−r

)−bi aici(p̃i(zi))
−bi

(bi−1)(zi−Λi(zi))
> 0, the first-order condition

dMd,i(r,p
∗

d,i
(r,zi),zi)

dzi
= 0 can

be achieved only if Gi(zi) = 0. Lemma 8 shows that the equation Gi(zi) = 0 has a unique

solution z∗i . Since Gi(Ai) = Ai > 0 and Gi(Bi) = −(bi − 1)µi < 0, the manufacturer’s profit

Md,i(r, p
∗
d,i(r, zi), zi) is unimodal in zi and is maximized at z∗i .

A.3 Proof of Theorem 2

Substituting p̃i(zi) and p∗d,i(r, zi) into the retailer’s profit function for product i, we have

Rd,i(r) = yi(p
∗
d,i(r, z

∗
i ))[rp

∗
d,i(r, z

∗
i )(z

∗
i − Λi(z

∗
i ))− αiciz

∗
i ]

= ai

(

1− αi

1− r
p̃i(z

∗
i )

)−bi [ (1− αi)bi
bi − 1

·
r

1− r
− αi

]

ciz
∗
i .
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Taking the first derivative with respect to r, we have

dRd,i(r)

dr
= ai

(

1− αi

1− r
p̃i(z

∗
i )

)−bi−1

(−bi)
1− αi

(1 − r)2
p̃i(z

∗
i )

[

(1− αi)bi
bi − 1

·
r

1− r
− αi

]

ciz
∗
i

+ ai

(

1− αi

1− r
p̃i(z

∗
i )

)−bi 1− αi

(1− r)2
bi

bi − 1
ciz

∗
i

= ai

(

1− αi

1− r
p̃i(z

∗
i )

)−bi biciz
∗
i

1− r

[

1− αi

(1− r)(bi − 1)
−

(1 − αi)bi
bi − 1

·
r

1− r
+ αi

]

= ai

(

1− αi

1− r
p̃i(z

∗
i )

)−bi biciz
∗
i

1− r

(

bi − αi

bi − 1
−

1− αi

1− r

)

=
aibiciz

∗
i

(1− αi)bi(p̃i(z∗i ))
bi

· (1 − r)bi−2

[

bi − αi

bi − 1
· (1 − r)− (1− αi)

]

.

Since
aibiciz

∗

i

(1−αi)bi (p̃i(z∗i ))
bi

· (1 − r)bi−2 is always positive and
[

bi−αi

bi−1 · (1− r)− (1− αi)
]

is strictly

decreasing in r,
dRd,i(r)

dr crosses zero at most once. Since bi−αi

bi−1 − (1 − αi) > 0, we have

dRd,i(r)
dr

∣

∣

∣

r=0
> 0. In addition, we have limr→1−

dRd,i(r)
dr < 0. Therefore,

dRd,i(r)
dr crosses zero

exactly once, from positive to negative. Thus, Rd,i(r) is unimodal and has a unique maxi-

mizer r̃i = 1 − (1−αi)(bi−1)
bi−αi

= αi(bi−2)+1
bi−αi

∈ (0, 1). This implies that all stationary points of

Rd(r) =
∑n

i=1Rd,i(r) (values of r that satisfy dRd(r)/dr = 0) fall in [mini r̃i,maxi r̃i]. Since we

have dRd(r)
dr

∣

∣

∣

r=0
> 0 and limr→1−

dRd(r)
dr < 0, we know that any local maximum is a stationary

point.

We will prove that there is a unique stationary point if at least one of the following conditions

is satisfied:

(i) bi = b, for i = 1, . . . , n;

(ii) maxi
(1−αi)(bi−2)

bi−αi
≤ mini

(1−αi)(bi−1)
bi−αi

.

Taking the second derivative with respect to r, we have

d2Rd,i(r)

dr2
=

aibiciz
∗
i

(1 − αi)bi(p̃i(z∗i ))
bi

· (1− r)bi−3 · [(bi − 2)(1− αi)− (bi − αi)(1 − r)]. (8)

We show the uniqueness under the above two conditions separately.

(i) If bi = b, for i = 1, . . . , n, we have

d2Rd(r)

dr2
= (1− r)b−3 ·

{

n
∑

i=1

[

aibciz
∗
i (b− 2)(1− αi)

(1− αi)b(p̃i(z∗i ))
b

]

− (1− r) ·
n
∑

i=1

[

aibciz
∗
i (b − αi)

(1− αi)b(p̃i(z∗i ))
b

]

}

.

Since dRd(r)
dr

∣

∣

∣

r=0
> 0 and limr→1−

dRd(r)
dr < 0, as r increases from 0 to 1−, the second derivative

d2Rd(r)/dr
2 either is always negative or changes from negative to positive. If d2Rd(r)/dr

2 is
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always negative, then the strict concavity of Rd(r) guarantees the uniqueness of the station-

ary point. If d2Rd(r)/dr
2 changes from negative to positive, dRd(r)/dr first decreases from

dRd(r)
dr

∣

∣

∣

r=0
> 0 and then increases to limr→1−

dRd(r)
dr < 0. Thus, the first derivative dRd(r)/dr

crosses zero exactly once, from positive to negative. Therefore, the stationary point is unique.

(ii) Define Ki(r) = (bi − 2)(1− αi)− (bi − αi)(1− r) and so Equation (8) becomes

d2Rd,i(r)

dr2
=

aibiciz
∗
i

(1− αi)bi(p̃i(z∗i ))
bi

· (1− r)bi−3 ·Ki(r).

Define r̃max = maxj r̃j , we have

Ki(r̃max) = (bi − αi) ·

[

(1− αi)(bi − 2)

bi − αi

− (1− r̃max)

]

= (bi − αi) ·

[

(1− αi)(bi − 2)

bi − αi

−min
j

(1− αj)(bj − 1)

bj − αj

]

.

If maxi
(1−αi)(bi−2)

bi−αi
< mini

(1−αi)(bi−1)
bi−αi

, then we have Ki(r̃max) < 0 for all i.

Recall that for any stationary point r0 of Rd(r), we have r0 ≤ r̃max. Since Ki(r) is linearly

increasing in r, we have Ki(r
0) ≤ Ki(r̃max) < 0. Thus,

d2Rd(r)

dr2

∣

∣

∣

∣

r=r0

=

n
∑

i=1

d2Rd,i(r)

dr2

∣

∣

∣

∣

r=r0

< 0.

Therefore, there is a unique stationary point for Rd(r). This implies that Rd(r) is unimodal

and has a unique maximizer r̃ defined in Equation (2).

Since the total volume
∑n

i=1 viz
∗
i ai

(

1−αi

1−r p̃i(z
∗
i )
)−bi

is decreasing in r, we know that the

optimal revenue share r∗ is at least r̂, which is defined in Equation (3). Thus, the unimodality

of Rd(r) implies that r∗ = r̃ if r̃ ≥ r̂, and that r∗ = r̂, otherwise.

A.4 Proof of Lemma 2

Since s is a decision variable now, we define the retailer’s profit generated by product i as

Rd,i(r, s) and the total retailer’s profit as Rd(r, s) =
∑n

i=1 Rd,i(r, s). Since the profit is contin-

uous in r and s, it is sufficient to prove that candidate optimal (r, s) are restricted within a

closed set. Note that [0, d/v] ∋ s is closed but [0, 1) ∋ r is open, and so we would like to narrow

candidate optimal r to a closed interval.

According to the proof of Theorem 2, for any s,

∂Rd,i(r, s)

∂r
=

aibiciz
∗
i

(1− αi(s))bi(p̃i(z∗i ))
bi

· (1− r)bi−2

[

bi − αi(s)

bi − 1
· (1 − r)− (1− αi(s))

]

,

where αi(s) =
di−vis
mi+di

. Thus, as long as r > 1 − (1−αi(s))(bi−1)
bi−αi(s)

, we have ∂Rd,i(r, s)/∂r < 0. For

any s, since αi(s) ≤
di

mi+di
< 1, we have 1− αi(s) ≥

mi

mi+di
> 0. Thus, we have (1−αi(s))(bi−1)

bi−αi(s)
≥
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(1−αi(s))(bi−1)
bi

≥ mi

mi+di
· bi−1

bi
> 0. Therefore, we have 1− (1−αi(s))(bi−1)

bi−αi(s)
≤ 1 − mi

mi+di
· bi−1

bi
< 1.

Hence, 1− (1−αi(s))(bi−1)
bi−αi(s)

≤ r̄ < 1 for all i and s, where r̄ = maxi

(

1− mi

mi+di
· bi−1

bi

)

.

For all r ∈ (r̄, 1), we have ∂Rd(r, s)/∂r =
∑n

i=1 ∂Rd,i(r, s)/∂r < 0, and so for any r ∈ (r̄, 1),

we have Rd(r̄, s) > Rd(r, s). As a result, it is sufficient for us to look for optimal revenue share

in the closed interval [0, r̄].

Now we have successfully narrowed the candidate optimal (r, s) to set Q = Q1 ∩Q2, where

Q1 = {(r, s) | r ∈ [0, r̄], s ∈ [0, d/v]} and Q2 =

{

(r, s)

∣

∣

∣

∣

∑n
i=1 viz

∗
i ai

(

1−αi(s)
1−r̂ p̃i(z

∗
i )
)−bi

≤ V

}

.

Note that Q2 refers to the capacity constraint. Since both Q1 and Q2 are closed, the intersection

of them, Q, is closed. Therefore, there exists an optimal decision (r∗, s∗).

A.5 Proof of Lemma 3

The proof of Lemma 2 implies that without the capacity constraint, there exist optimal revenue

share and stocking factor because candidate optimal (r, s) are restricted within a closed set Q1,

the expression of which can be found in the end of proof of Lemma 2.

The optimal decision (r0, s0) without the capacity constraint does not depend on an because

the retailer’s profit Rd(r, s) can be factorized as an and a function L(r, s) that does not depend

on an:

Rd(r, s) =
n
∑

i=1

Rd,i(r, s) = an · L(r, s), where

L(r, s) =

n
∑

i=1

λi

(

1− αi(s)

1− r
p̃i(z

∗
i )

)−bi [

r ·
1− αi(s)

1− r
p̃i(z

∗
i )(z

∗
i − Λi(z

∗
i ))− αi(s)ciz

∗
i

]

.

Let ān be a demand scalar that satisfies the following equation.

n
∑

i=1

viz
∗
i λiān

(

1− αi(s
0)

1− r0
p̃i(z

∗
i )

)−bi

= V.

(i) For any an ≤ ān, the optimal decision (r0, s0) satisfies the capacity constraint, and so it is

still optimal.

(ii) For any an > ān, (r
0, s0) does not satisfy the capacity constraint, and so the total volume

should be reduced. Since the total volume
∑n

i=1 viz
∗
i λiān

(

1−αi(s)
1−r p̃i(z

∗
i )
)−bi

is decreasing in

both r and s, for any feasible decision (r, s) we have r > r0 or s > s0.
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A.6 Proof of Theorem 3

(i) Lemma 2 guarantees the existence of an optimal s∗. According to the proof of Theorem 2,

we have

∂Rd,i(r, s)

∂r
=

aibcz
∗

(1− α(s))b(p̃(z∗))b
· (1 − r)b−2

[

b− α(s)

b− 1
· (1− r)− (1 − α(s))

]

,

where α(s) = (d− vs)/(m+ d). According to Theorem 2, r∗(s) = max{r̃(s), r̂(s)}, where

r̃(s) = 1−
(1− α(s))(b − 1)

b − α(s)
;

r̂(s) = 1−

(

V

vz∗a0

)
1

b

· (1− α(s))p̃(z∗),

where a0 =
∑n

i=1 ai. We have two cases: (a) r∗(s∗) = r̃(s∗) ≥ r̂(s∗) and (b) r∗(s∗) = r̂(s∗) >

r̃(s∗). According to the proof of Theorem 2, in case (a) the capacity constraint is not binding

and r̃(s∗) satisfies the capacity constraint. In case (b) the capacity constraint is binding and

r̃(s∗) does not satisfy the capacity constraint. We will show that dRd(r
∗(s∗), s∗)/ds < 0 for any

s∗ in both cases. This implies that the optimal storage fee s∗ = 0.

Case (a): Since r∗(s∗) = r̃(s∗) = 1− (1−α(s∗))(b−1)
b−α(s∗) , we have

Rd,i(r
∗(s∗), s∗) = ai

(

1− α(s∗)

1− r∗(s∗)
p̃(z∗)

)

−b [

(1− α(s∗))b

b− 1
·

r∗(s∗)

1− r∗(s∗)
− α(s∗)

]

cz
∗

⇒
∂Rd,i(r

∗(s∗), s)

∂s

∣

∣

∣

∣

s=s∗

= ai

(

1− α(s∗)

1− r∗(s∗)
p̃(z∗)

)

−b−1

(−b)
1

1− r∗(s∗)
·

v

m+ d
p̃(z∗)

[

(1− α(s∗))b

b− 1
·

r∗(s∗)

1− r∗(s∗)
− α(s∗)

]

cz
∗

+ ai

(

1− α(s∗)

1− r∗(s∗)
p̃(z∗)

)

−b
v

m+ d

(

b

b− 1
·

r∗(s∗)

1− r∗(s∗)
+ 1

)

cz
∗

=
aibcz

∗

(1− α(s∗))b+1(p̃(z∗))b
·

v

m+ d
(1− r

∗(s∗))b−1

·

[

−
(1− α(s∗))br∗(s∗)

b− 1
+ α(s∗)(1− r

∗(s∗)) +
(1− α(s∗))r∗(s∗)

b− 1
+

(1− α(s∗))(1− r∗(s∗))

b

]

=
aibcz

∗

(1− α(s∗))b+1(p̃(z∗))b
·

v

m+ d
(1− r

∗(s∗))b−1

[

b+ 1− α(s∗)

b
· (1− r

∗(s∗))− (1− α(s∗))

]

=
aibcz

∗

(1− α(s∗))b+1(p̃(z∗))b
·

v

m+ d
(1− r

∗(s∗))b−1(1− α(s∗))

[

b+ 1− α(s∗)

b
·

b− 1

b− α(s∗)
− 1

]

< 0.

Therefore, according to the envelope theorem,

dRd(r
∗(s), s)

ds

∣

∣

∣

∣

s=s∗

=
∂Rd(r

∗(s∗), s)

∂s

∣

∣

∣

∣

s=s∗

=

n
∑

i=1

∂Rd,i(r
∗(s∗), s)

∂s

∣

∣

∣

∣

s=s∗

< 0.

Case (b): We have r∗(s∗) = r̂(s∗) = 1−
(

V
vz∗a0

)
1
b · (1−α(s∗))p̃(z∗) and the capacity constraint

is binding. Suppose s∗ > 0. Consider any s ∈ (s∗ − δ, s∗], where δ is a sufficiently small positive
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number such that the capacity constraint is binding and Equation (3) holds. Thus, the optimal

revenue share is r∗(s) = r̂(s) = 1−
(

V
vz∗a0

)
1
b · (1− α(s))p̃(z∗). We have

dRd,i(r
∗(s), s)

ds

∣

∣

∣

∣

s=s∗

=
∂Rd,i(r, s

∗)

∂r

∣

∣

∣

∣

r=r∗(s∗)

·
dr∗(s)

ds

∣

∣

∣

∣

s=s∗

+
∂Rd,i(r

∗(s∗), s)

∂s

∣

∣

∣

∣

s=s∗

, where

∂Rd,i(r, s
∗)

∂r

∣

∣

∣

∣

r=r∗(s∗)

=
aibcz

∗

(1− α(s∗))b(p̃(z∗))b
· (1− r∗(s∗))b−2 ·

[

b− α(s∗)

b− 1
· (1− r∗(s∗)) − (1 − α(s∗))

]

;

∂Rd,i(r
∗(s∗), s)

∂s

∣

∣

∣

∣

s=s∗
=

aibcz∗

(1− α(s∗))b+1(p̃(z∗))b
·

v

m+ d
(1− r∗(s∗))b−1 ·

[

b+ 1− α(s∗)

b
· (1− r∗(s∗))− (1− α(s∗))

]

;

dr∗(s)

ds

∣

∣

∣

∣

s=s∗
= −

(

V

vz∗a0

) 1

b

·
v

m+ d
· p̃(z∗) = −

v

m+ d
·
1− r∗(s∗)

1− α(s∗)
.

Therefore, we have

dRd(r
∗(s), s)

ds

∣

∣

∣

∣

s=s∗

=
a0bcz∗

(1− α(s∗))b+1(p̃(z∗))b
·

v

m+ d
(1− r∗(s∗))b ·

[

b+ 1− α(s∗)

b
−

b− α(s∗)

b− 1

]

< 0.

(ii) Since s∗ = 0, it is sufficient to maximize Rd(r, 0) over r ∈ [0, 1). According to Theorem 2,

r∗ = max{r̃, r̂}, where r̃ is the optimal revenue share without the capacity constraint and it does

not depend on a0. Let ā0 = V
vz∗ ·

(

1−α(0)
1−r p̃(z∗)

)b
denote the value of a0 such that the capacity

constraint is just binding given the revenue share r̃. For any a0 ≤ ā0, the optimal revenue share r̃

satisfies the capacity constraint, and so it is still optimal. But for any a0 > ā0, r̃ does not satisfy

the capacity constraint. Thus, the optimal revenue share is r∗ = r̂ = 1 −
(

V
vz∗a0

)
1
b · (1 − α(0))

(according to the proof of Theorem 2), which is strictly increasing in a0. In summary, the optimal

revenue share r∗ first remains constant (r̃) and then strictly increases with a0 =
∑n

i=1 ai.

A.7 Proof of Lemma 4

(i) According to Corollary 3, the optimal unit storage fee s∗ = 0 and the optimal revenue share

r∗ first strictly decreases with V and then remains constant. When r∗ decreases with V , the

capacity constraint is binding and we know that r∗ = r̂ from the proof of Theorem 3. Similarly,

when r∗ remains constant and the capacity constraint is not binding, we know that r∗ = r̃ and

the retailer’s profit remains constant.

Thus, it is sufficient to show that the retailer’s profit Rd(r
∗) = Rd(r̂) is strictly increasing

concave in V when the capacity constraint is binding. Recall that r̂ = 1−
(

V
vz∗a0

)
1
b ·(1−α(s∗)) and

a0 =
∑n

i=1 ai. Since for the symmetric system cost share α(s∗) always equals α(0) = d/(m+ d),
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in all the following proofs for the symmetric system we write α(s∗) as α for simplicity. We have

dRd(r̂)

dV
=

dRd(r)

dr

∣

∣

∣

∣

r=r̂

·
dr̂

dV
=

dRd(r)

dr

∣

∣

∣

∣

r=r̂

·

(

dV

dr̂

)−1

=
a0bcz∗

(1− α)b(p̃(z∗))b
· (1− r̂)b−2 ·

[

b− α

b− 1
· (1− r̂)− (1 − α)

]

·

[

−vz∗a0b

(

1− α

1− r̂
p̃(z∗)

)−b−1
p̃(z∗)

1− r̂
·
1− α

1− r̂

]−1

=
c

v
·

(

1− α

1− r̂
−

b− α

b− 1

)

.

According to the proof of Theorem 2, we have 1−α
1−r̂ −

b−α
b−1 > 0. Therefore, dRd(r̂)/dV is positive

and is strictly increasing in r̂. Since r̂ is decreasing in V , dRd(r̂)/dV is positive and is strictly

decreasing in V . Thus, Rd(r̂) is strictly increasing concave in V .

(ii) Similar to the proof of part (i), it is sufficient to show that each manufacturer’s profitMd,i(r̂)

is linearly increasing in V , where r̂ = 1−
(

V
vz∗a0

)
1
b · (1− α) and a0 =

∑n
i=1 ai. We have

Md,i(r) = yi(p
∗
d(r, z

∗))[(1 − r)p∗d(r, z
∗)(z∗ − Λ(z∗))− (1− α)cz∗] = aicz

∗

(

1− α

1− r
p̃(z∗)

)−b

·
1− α

b− 1
.

Thus, we have

dMd,i(r̂)

dV
=

dMd,i(r)

dr

∣

∣

∣

∣

r=r̂

·
dr̂

dV
=

dMd,i(r)

dr

∣

∣

∣

∣

r=r̂

·

(

dV

dr̂

)−1

= −
aibcz

∗

(b − 1)(1− α)b−1(p̃(z∗))b
· (1 − r̂)b−1

·

[

−vz∗a0b

(

1− α

1− r̂
p̃(z∗)

)−b−1
p̃(z∗)

1− r̂
·
1− α

1− r̂

]−1

=
aic(1− α)

a0(b− 1)v
,

which is a positive constant. Therefore, each manufacturer’s profit Md,i(r̂) is linearly increasing

in V .

(iii) According to part (i), the retailer’s profit is first strictly increasing concave in V and

then remains constant. Thus, it is sufficient to prove that Rd(r̂) − κV is maximized at V ∗ =

a0vz∗
[(

κv
c + b−α

b−1

)

p̃(z∗)
]−b

. The first-order condition yields

d(Rd(r̂)− κV )

dV
=

c

v
·

(

1− α

1− r̂
−

b− α

b− 1

)

− κ = 0.

The solution r̂ of the above equation can be inserted into Equation (3) to obtain V ∗.

A.8 Proof of Lemma 5

For a symmetric system, s∗ = 0 according to Theorem 3. From Lemma 1, the equilibrium

stocking factor z∗i of each product i for the decentralized system is identical to the optimal
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stocking factor for the centralized system.

We next compare the equilibrium prices. According to Theorem 2, the optimal revenue

share r∗ = {r̃, r̂}, where r̃ = 1− (1−α)(bi−1)
bi−α and r̂ = 1−

(

V
∑n

i=1 viz
∗

i ai

)
1
bi (1−α)p̃i(z

∗
i ). According

to Lemma 1, we have p∗d,i(r̃, z
∗
i ) =

1−α
1−r̃ · p̃i(z

∗
i ) =

bi−α
bi−1 · p̃i(z

∗
i ) > p̃i(z

∗
i ). There are two cases for

the centralized system:

(a)
∑n

i=1 viz
∗
i ai (p̃i(z

∗
i ))

−bi < V ;

(b)
∑n

i=1 viz
∗
i ai (p̃i(z

∗
i ))

−bi ≥ V .

For case (a), we have
∑n

i=1 viz
∗
i ai

(

p∗d,i(r̃, z
∗
i )
)−bi

<
∑n

i=1 viz
∗
i ai (p̃i(z

∗
i ))

−bi < V , which im-

plies that the capacity constraint is not binding in both the decentralized and the centralized

systems. Thus, the optimal revenue share is r∗ = r̃ for the decentralized system. As a result,

the equilibrium prices of product i are p∗d,i(r̃, z
∗
i ) and p̃i(z

∗
i ) for the decentralized and the cen-

tralized systems respectively. Since p∗d,i(r̃, z
∗
i ) > p̃i(z

∗
i ), the equilibrium price of product i for

the decentralized system is higher than the optimal price of product i for the centralized system.

For case (b), the capacity constraint is binding in the centralized system. According to

Theorem 1, each product i has the same optimal stocking factor (z∗i = z∗) for a symmetric

centralized system. Furthermore, from Equation (1) we know that each product i has the same

optimal retail price (p∗i (z
∗) = p∗(z∗)), where p∗(z∗) = (vz∗a0/V )

1
b and a0 =

∑n
i=1 ai.

Similarly, according to Lemma 1, each product i has the same equilibrium stocking factor

(z∗i = z∗) and the same equilibrium retail price (p∗d,i(r
∗, z∗) = p∗d(r

∗, z∗)) for a symmetric

decentralized system. To satisfy the capacity constraint in the decentralized system, we must

have vz∗a0 (p∗d(r
∗, z∗))−b ≤ V , which implies p∗d(r

∗, z∗) ≥ (vz∗a0/V )
1
b = p∗(z∗). Therefore, the

equilibrium price of each product i for the decentralized system is higher than or equal to the

optimal price of product i for the centralized system.

A.9 Proof of Lemma 6

(i) In this symmetric case, s∗ = 0 according to Theorem 3. As a result, r∗ = {r̃, r̂}, where

r̃ = 1− (1−α)(bi−1)
bi−α and r̂ = 1−

(

V
∑n

i=1 viz
∗

i ai

) 1
bi (1−α)p̃i(z

∗
i ). From Lemma 1, we have p∗d,i(r̃, z

∗
i ) =

1−α
1−r̃ · p̃i(z

∗
i ) =

bi−α
bi−1 · p̃i(z

∗
i ).
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Since bi−α
bi−1 > 1 , we have

n
∑

i=1

viz
∗
i ai

(

bi − α

bi − 1
· p̃i(z

∗
i )

)−bi

<

n
∑

i=1

viz
∗
i ai (p̃i(z

∗
i ))

−bi .

The left- and right-hand sides of the above inequality represent the total volumes required by

the decentralized and the centralized systems, respectively, without the capacity constraint.

If
∑n

i=1 viz
∗
i ai

(

bi−α
bi−1 · p̃i(z

∗
i )
)−bi

< V , then the total volume required by the decentralized

system is less than that required by the centralized system. If
∑n

i=1 viz
∗
i ai

(

bi−α
bi−1 · p̃i(z

∗
i )
)−bi

≥

V , then
∑n

i=1 viz
∗
i ai (p̃i(z

∗
i ))

−bi > V , that is, the capacity constraint is binding in both the

decentralized and the centralized systems.

(ii) In this symmetric case, s∗ = 0 according to Theorem 3. We have p∗d,i(r̃, z
∗
i ) =

1−α
1−r̃ · p̃i(z

∗
i ) =

bi−α
bi−1 · p̃i(z

∗
i ). Define φi =

(

Md,i(r
∗
i , p

∗
d,i(r

∗
i , z

∗
i ), z

∗
i ) +Rd,i(r

∗
i )
)/

Πi(p
∗
i (z

∗), z∗i ), i = 1, . . . , n. To

prove φ > 2/e, it is sufficient to show that φi > 2/e, i = 1, . . . , n. There are three cases:

(a)
∑n

i=1 viz
∗
i ai (p̃i(z

∗
i ))

−bi < V ;

(b)
∑n

i=1 viz
∗
i ai

(

bi−α
bi−1 · p̃i(z

∗
i )
)−bi

< V ≤
∑n

i=1 viz
∗
i ai (p̃i(z

∗
i ))

−bi ;

(c)
∑n

i=1 viz
∗
i ai

(

bi−α
bi−1 · p̃i(z

∗
i )
)−bi

≥ V .

For case (a), the capacity constraint is not binding in either centralized system or decen-

tralized system, and so the single-retailer, n-manufacturer system can be decomposed into n

single-retailer, single-manufacturer systems. Hence, the analysis of Wang et al. (2004) applies.

For case (b), p∗i (z
∗) > p̃i(z

∗
i ) and p∗d,i(r

∗
i , z

∗
i ) =

bi−α
bi−1 · p̃i(z

∗
i ), for any i. So Πi(p

∗
i (z

∗), z∗i ) =

ai (p
∗
i (z

∗))−bi ·
ciz∗i
bi−1 < ai (p̃i(z

∗
i ))

−bi ·
ciz∗i
bi−1 , and thus

φi >

(

bi − 1

bi − α

)bi

·
(2− α)bi − 1

bi − 1
>

2

e
,

where the last inequality holds according to the proof of Proposition 5 of Wang et al. (2004).

For case (c), Theorem 1 and Lemma 1 show that both p∗d,i(r
∗
i , z

∗
i ) and p∗i (z

∗) are constant

across products. Since the capacity constraint is binding in both systems in this case and

the total volumes of both systems depend only on the prices, we have p∗d,i(r
∗
i , z

∗
i ) = p∗i (z

∗),

i = 1, . . . , n. Thus, φi = 1, i = 1, . . . , n.

Therefore, for all three cases, φi > 2/e, i = 1, . . . , n, and so φ > 2/e ≈ 0.736.
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A.10 Proof of Lemma 7

Proof of unique price maximizer given any stocking factors:

We first show that given any r, zi, and pj, Md,i(r, pi, zi, pj) is unimodal in pi. We have

∂Md,i(r, pi, zi, pj)

∂pi
= ai(pi + βpj)

−b−1{(1− α)bczi − [(b − 1)pi − βpj ](1− r)(zi − Λ(zi))}.

Since the term in the braces is linearly decreasing in pi, Md,i(r, pi, zi, pj) is unimodal in pi. The

first-order condition implies thatMd,i(r, pi, zi, pj) is maximized at pi =
1−α
1−r ·

bc
b−1 ·

zi
zi−Λ(zi)

+ β
b−1 ·pj .

Similarly, Md,j(r, pj , zj , pi) is maximized at pj =
1−α
1−r ·

bc
b−1 ·

zj
zj−Λ(zj)

+ β
b−1 ·pi. The optimal price

p∗d,i is determined as follows.

p∗d,i =
1− α

1− r
·

bc

b− 1
·

zi
zi − Λ(zi)

+
β

b− 1
·
1− α

1− r
·

bc

b− 1
·

zj
zj − Λ(zj)

+
β2

(b− 1)2
p∗d,i

⇒ p∗d,i =
(1 − α)bc

(1− r)[(b − 1)2 − β2]
·

[

(b − 1) ·
zi

zi − Λ(zi)
+ β ·

zj
zj − Λ(zj)

]

.

Proof of unique stocking factor of manufacturer i given the prices of other manu-

facturers:

We then show that given any pj , there is a unique stocking factor that maximizes the profit of

manufacturer i. According to the envelope theorem, we have

dMd,i(r, p
∗

d,i, zi, pj)

dzi

∣

∣

∣

∣

pj=p∗
d,j

=
∂Md,i(r, pi, zi, pj)

∂zi

∣

∣

∣

∣

pi=p∗
d,i

,pj=p∗
d,j

+
∂Md,i(r, pi, zi, pj)

∂pi

∣

∣

∣

∣

pi=p∗
d,i

,pj=p∗
d,j

·

dp∗d,i

dzi

=
∂Md,i(r, pi, zi, pj)

∂zi

∣

∣

∣

∣

pi=p∗
d,i

,pj=p∗
d,j

(by envelope theorem)

=
ai(p

∗

d,i + βp∗d,j)
−b(1− α)c

[(b− 1)2 − β2](zi − Λ(zi))
·G(zi, zj),

where

G(zi, zj) =

[

b(b− 1)zi + βb ·
zj

zj − Λ(zj)
· (zi − Λ(zi))

]

(1− F (zi))−
[

(b − 1)2 − β2
]

(zi − Λ(zi)).

We have

∂G(zi, zj)

∂zi
= (1− F (zi))

{

b− 1 + β
2 + βb ·

zj

zj − Λ(zj)
· (1− F (zi))

−

[

b(b− 1)zi + βb ·
zj

zj − Λ(zj)
· (zi − Λ(zi))

]

h(zi)

}

;

∂2G(zi, zj)

∂z2i
= −h(zi)

∂G(zi, zj)

∂zi
− (1− F (zi))

{

2βb ·
zj

zj − Λ(zj)
· f(zi) + b(b− 1)h(zi)

+

[

b(b− 1)zi + βb ·
zj

zj − Λ(zj)
· (zi − Λ(zi))

]

·
dh(zi)

dzi

}

.

According to our assumption dh(zi)/dzi > 0, we have ∂2G(zi, zj)/∂z
2
i < 0 for any zi such

that ∂G(zi, zj)/∂zi = 0, which implies that G(zi, zj) is unimodal in zi. Since

G(A, zj) =

[

b− 1 + β2 + βb ·
zj

zj − Λ(zj)

]

A > 0,
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and G(B, zj) = −[(b− 1)2 − β2]µ < 0, the equation G(zi, zj) = 0 has a unique solution z0i given

any zj , and zi < z0i ⇔ G(zi, zj) > 0. Thus, Md,i(r, p
∗
d,i, zi, p

∗
d,j) is unimodal in zi, and so given

any zj , there is a unique maximizer z0i ∈ (A,B) for Md,i(r, p
∗
d,i, zi, p

∗
d,j). For convenience, define

ζ(z) as a unique function satisfying G(ζ(z), z) = 0. The equilibrium stocking factors satisfy the

following two equations: z∗1 = ζ(z∗2) and z∗2 = ζ(z∗1).

Proof of unique stocking factor z∗1 = z∗2 = z∗:

We first show that the ratio z
z−Λ(z) is strictly increasing in z. We have

d
(

z
z−Λ(z)

)

dz
=

z − Λ(z)− z + zF (z)

(z − Λ(z))2
=

zF (z)− Λ(z)

(z − Λ(z))2
> 0, ∀z ∈ (A,B],

because zF (z) − Λ(z) =
∫ z
A xf(x)dx > 0 for any z ∈ (A,B].

We then show that ζ(z) is strictly increasing in z. For any z′j , z
′′
j ∈ (A,B) such that z′j < z′′j ,

we have

G(ζ(z′j), z
′′
j ) = G(ζ(z′j), z

′
j) + βb(zi − Λ(zi))(1 − F (zi))

(

z′′j
z′′j − Λ(z′′j )

−
z′j

z′j − Λ(z′j)

)

= βb(zi − Λ(zi))(1− F (zi))

(

z′′j
z′′j − Λ(z′′j )

−
z′j

z′j − Λ(z′j)

)

> 0.

Note that we have shown that G(zi, zj) = 0 has a unique solution zi = ζ(zj) and that zi < ζ(zj)

if and only if G(zi, zj) > 0 (unimodality of Md,i in zi). Since G(ζ(z′j), z
′′
j ) > 0, we have

ζ(z′j) < ζ(z′′j ). Therefore, ζ(z) is strictly increasing in z.

Now we can prove by contradiction that in any equilibrium, the stocking factors of the two

manufacturers are the same: z∗1 = z∗2 . Suppose otherwise, without loss of generality, assume

there exist equilibrium stocking factors z∗1 and z∗2 such that z∗1 < z∗2 . We have ζ(z∗2) = z∗1 < z∗2 =

ζ(z∗1), which contradicts the strictly increasing property of ζ. Therefore, in any equilibrium,

we have z∗1 = z∗2 . This implies that any stocking factor is optimal if and only if G(z∗, z∗) = 0,

that is

b(b− 1 + β)z∗(1− F (z∗))− [(b− 1)2 − β2](z∗ − Λ(z∗)) = 0

⇔ bz∗(1− F (z∗))− (b− 1− β)(z∗ − Λ(z∗)) = 0

⇔ F (z∗) =
(1 + β)z∗ + (b − 1− β)Λ(z∗)

bz∗
.

As a result, the optimal prices for both products are the same:

p∗d(r) =
(1− α)bc

(1 − r)(b − 1− β)
·

z∗

z∗ − Λ(z∗)
.
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A.11 Proof of Corollary 4

According to the proof of Lemma 7, given any β the equilibrium stocking factor z∗(β) is uniquely

determined by G(z∗(β), z∗(β);β) = 0, where G(z, z;β) = (b−1+β)[bz(1−F (z))−(b−1−β)(z−

Λ(z))]. We can prove that for any β, the function G(z, z;β) is unimodal in z, G(A,A;β) > 0,

and G(B,B;β) < 0. The proofs are similar to that of Lemma 7 and so are omitted.

For any β′, β′′ ∈ [0, 1] such that β′ < β′′, we have

G(z∗(β′), z∗(β′);β′′) = G(z∗(β′), z∗(β′);β′) + (β′′ − β′)(z∗(β′)− Λ(z∗(β′)))

= (β′′ − β′)(z∗(β′)− Λ(z∗(β′))) > 0.

Since G(z, z;β) is unimodal in z, G(A,A;β) > 0, and G(B,B;β) < 0, G(z, z;β) (as a func-

tion of z) crosses zero only once at z = z∗(β) and z < z∗(β) ⇔ G(z, z;β) > 0. Since

G(z∗(β′), z∗(β′);β′′) > 0, we have z∗(β′) < z∗(β′′). Thus, the equilibrium stocking factor is

strictly increasing in β.

A.12 Proof of Theorem 4

The proof is similar to that of Theorem 2. Recall that Rd,i(r) represents the retailer’s profit

from product i. We have

dRd,i(r)

dr
=

aib[(1 + β)p∗d(r)]
−bcz∗

(1− r)2(b− 1− β)
{[b− (1 + β)α](1 − r)− (1 − α)(b − 1)} .

Since b−(1+β)α−(1−α)(b−1) = 1−α+α(b−1−β) > 0, we have
dRd,i(r)

dr

∣

∣

∣

r=0
> 0. In addition,

we have limr→1−
dRd,i(r)

dr < 0. Therefore, Rd,i(r) is unimodal and has a unique maximizer

r̃ = 1−
(1− α)(b − 1)

b− (1 + β)α
=

α(b − 2− β) + 1

b− (1 + β)α
∈ (0, 1).

Since Rd,1(r) and Rd,2(r) are maximized at r = r̃, the retailer’s total profit Rd(r) = Rd,1(r) +

Rd,2(r) is unimodal and has a unique maximizer r̃.

Since the volume of each product vz∗ai

(

(1 + β) · 1−α
1−r · bc

b−1−β · z∗

z∗−Λ(z∗)

)−b
is decreasing in

r, any feasible revenue share falls in the interval [r̂, 1), where r̂ is the minimum revenue share

that makes the total volume required satisfy the capacity constraint:

vz∗(a1 + a2)

(

(1 + β) ·
1− α

1− r̂
·

bc

b − 1− β
·

z∗

z∗ − Λ(z∗)

)−b

= V.

Thus, the unimodality of Rd(r) implies that if r̃ ≥ r̂, then r∗ = r̃; otherwise, r∗ = r̂.
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A.13 Proof of Corollary 5

It is sufficient to prove that both r̃ and r̂ are decreasing in β. Since r̃ = 1 − (1−α)(b−1)
b−(1+β)α , it is

decreasing in β. We now show that r̂ = 1 −
[

V
v(a1+a2)

]
1
b
· (1 − α)bc · (g(β))

1
b is also decreasing

in β, where g(β) = 1
z∗ ·

(

1+β
b−1−β · z∗

z∗−Λ(z∗)

)b
. It is sufficient to show that g(β) is increasing in β.

We have

g
′(β) =

b

z∗
·

(

1 + β

b− 1− β
·

z∗

z∗ − Λ(z∗)

)b−1

·
b

(b− 1− β)2
·

z∗

z∗ − Λ(z∗)

+
1

z∗2
·
dz∗

dβ
·

(

1 + β

b− 1− β
·

z∗

z∗ − Λ(z∗)

)b

·

[

b(z∗F (z∗)− Λ(z∗))

z∗ − Λ(z∗)
− 1

]

,

where the first term is always positive. According to Lemma 7, we have bz∗F (z∗) = (1+β)z∗+

(b−1−β)Λ(z∗), and so we have b(z∗F (z∗)−Λ(z∗))
z∗−Λ(z∗) −1 = β ≥ 0. Since 1

z∗2
· dz

∗

dβ ·
(

1+β
b−1−β · z∗

z∗−Λ(z∗)

)b

is positive, we have g′(β) > 0, and so g(β) is increasing in β. Thus, r̂ is decreasing in β.
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B Numerical studies

B.1 Sensitivity analysis

In this section, we investigate the sensitivity of the decision variables r∗ and s∗, the retailer’s

profit, the manufacturers’ total profit, the volume ratio, and the channel efficiency with respect

to various parameters. In each of Figures 5–10, we change only one parameter to see the

responses of the above mentioned variables. The first, second, and third rows of each figure

show the responses of the same variables as in Figures 1, 2, and 3 respectively.

Figure 5 shows the responses of the variables with respect to a2. We use the same parameter

settings as in Figures 1–3, except that we now fix a1 but change a2. We set n = 2, b2 = 4,

V = 10, v1 = v2 = 1, d1 = d2 = 1, m2 = 5, and εi ∼ N (51, 8.332). The revenue share r∗

generally increases with a2, while the storage fee s∗ may remain 0 in some cases. Since the

retailer adjusts her decisions (r∗, s∗) as a2 gets larger, her profit always increases. However, the

manufacturers’ total profit and the channel efficiency may decrease as a2 increases.

Figure 6 shows the sensitivity of the system with respect to price elasticity b2. We use the

same parameter settings as in Figures 1–3, except that we now fix a1 and a2 but change b2. We

set n = 2, V = 10, v1 = v2 = 1, d1 = d2 = 1, m2 = 5, and εi ∼ N (51, 8.332). As price elasticity

b2 increases, demand becomes more sensitive to the price. As a result, the retailer reduces her

revenue share r∗ to encourage the manufacturers to lower their prices. This causes the retailer’s

profit and the manufacturers’ total profit to drop. The channel efficiency and the volume ratio

also decrease as b2 increases.

Figure 7 shows the impact of demand variability σ2. We use the same parameter settings

as in Figures 1–3, except that we now fix a1 and a2 but change σ2. We set n = 2, b2 = 4,

V = 10, v1 = v2 = 1, d1 = d2 = 1, m2 = 5, ε1 ∼ N (51, 8.332), and ε2 ∼ N (51, σ2
2). The revenue

share r∗ remains more or less constant, while the storage fee s∗ may decrease or remain 0 as

demand variability σ2 increases. The retailer’s profit drops as demand becomes more variable.

It is surprising that the manufacturers’ total profit may increase slightly (see Figures 7(d) and

(e)) as σ2 increases. Overall, the channel efficiency decreases gradually as demand variability

gets larger.
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(i) b1 = 4, m1 = 5, a1 = 1800

Figure 5: Sensitive analysis with respect to a2.

Figure 8 shows the sensitivity of the system’s variables with respect to cost c2. We use the

same parameter settings as in Figures 1–3, except that we now fix a1 and a2 but change c2. We

set n = 2, b2 = 4, V = 10, v1 = v2 = 1, d1 = 1, α2 = 0.167, and εi ∼ N (51, 8.332). The retailer

sets a lower revenue share as cost c2 becomes higher to encourage the manufacturers to produce

more. Due to the decrease in revenue share, the retailer’s profit drops as c2 increases. Surpris-

ingly, a higher total cost per unit for product 2 may lead to an increase in the manufacturers’

total profit and the channel efficiency.

Figure 9 shows the impact of distribution cost d2. We use the same parameter settings as

in Figures 1–3, except that we now fix a1 and a2 but change d2. We set n = 2, b2 = 4, V = 10,
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(i) b1=4, m1=5, a1=1400, a2=700

Figure 6: Sensitive analysis with respect to price elasticity b2.

v1 = v2 = 1, d1 = 1, m2 = 5, and εi ∼ N (51, 8.332). As the distribution cost d2 increases, the

retailer may raise the storage fee s∗ (see Figures 9(a) and (b)), while keeping the revenue share

r∗ more or less constant. The retailer’s profit decreases as the distribution cost d2 gets larger,

whereas the manufacturers’ total profit may increase with d2 (see Figures 9(d) and (e)). The

channel efficiency and the volume ratio first remain more or less constant and then decrease as

d2 increases.

Figure 10 shows the responses of the system’s variables with respect to the number of

products n. We use the same parameter settings as in Figures 1–3, except that we now have

more products. We set bn = 4, V = 10, vi = 1, di = 1, mn = 5, bi = i−1
n−1 · (bn − b1) + b1,
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Figure 7: Sensitive analysis with respect to demand variability σ2.

ai =
i−1
n−1 · (an − a1) + a1, mi =

i−1
n−1 · (mn − m1) + m1, and εi ∼ N (51, 8.332). The revenue

share r∗ increases as there are more products in the system. The storage fee s∗, on the other

hand, may have a “U-shaped” response with respect to n (see Figure 10(a)). The retailer’s

profit increases with n, while the manufacturers’ total profit changes in a less significant way.

The channel efficiency, however, remains more or less constant as n gets larger.
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Figure 8: Sensitive analysis with respect to cost c2.
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(h) b1=6, m1=10, a1=3.5e6, a2=700
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(i) b1=4, m1=5, a1=2400, a2=1200

Figure 9: Sensitive analysis with respect to distribution cost d2.
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(a) b1=6, m1=15, a1=1.8e7, an=600
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(b) b1=6, m1=10, a1=7.5e6, an=1500
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(c) b1=4, m1=5, a1=1800, an=900
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(d) b1=6, m1=15, a1=1.8e7, an=600
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(e) b1=6, m1=10, a1=7.5e6, an=1500

2 4 6 8 10
10

20

30

40

50

60

70

80

n

P
ro

fit
s

 

 

Retailer’s Profit

Manufacturers’ Profit

(f) b1=4, m1=5, a1=1800, a2=900
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(g) b1=6, m1=15, a1=1.8e7, an=600
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(h) b1=6, m1=10, a1=7.5e6, an=1500

2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

R
at

io

 

 

Volume Ratio
Channel Efficiency

(i) b1=4, m1=5, a1=1800, a2=900

Figure 10: Sensitive analysis with respect to n.

B.2 The advantages of setting individual revenue shares

In this section, we investigate the advantages of consignment contracts in which the retailer sets

an individual revenue share ri with each manufacturer i. Figure 11(a) shows the percentage

improvement of a system with individual ri compared to the system with a common r. Both the

channel efficiency and the retailer’s profit are improved if the retailer sets individual ri. These

improvements increase with a2 and may attain 7% and 11% for the channel efficiency and the

retailer’s profit respectively.

The manufacturers’ total profit, however, could be lower in the system with individual ri
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Figure 11: The advantages of setting individual revenue shares ri.

when a2 is small. The improvement of the manufacturers’ total profit becomes positive when a2

is sufficiently large, and it grows with a2 until it reaches its peak where it starts to drop. This

implies that the increasing improvement in channel efficiency as a2 gets larger in Figure 11(a)

is due to the improvement of the retailer’s profit.

Figure 11(b) shows the distribution of channel efficiency over the 8,704 parameter settings

used in Section 4.3. The result suggests that the channel efficiency is always higher than 73.6%

(the lower bound established in Lemma 6) for the system with individual ri. Figure 11(b) also

suggests that the channel efficiency of the system with individual ri is generally higher than

that of the system with a common r.
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