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Abstract

We consider a finite-horizon single-product periodic-review inventory manage-
ment problem with demand distribution uncertainty. We formulate the problem
as a dynamic program and prove the existence of an optimal (s, S) policy. The
corresponding dynamic robust counterpart models are then developed for the
box and the ellipsoid uncertainty sets. These counterpart models are trans-
formed into tractable linear and second-order cone programs, respectively. We
illustrate the e↵ectiveness and practicality of the proposed robust optimization
approaches through a numerical study.
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1. Introduction

Inventory management is critical to the success of all supply chains. Many
researchers have made great e↵orts to identify e↵ective inventory policies to
determine when and how much to order a product(Zipkin, 2000). Establishing
an e↵ective inventory policy often requires an in-depth analysis of the nature
of the target business. Traditional inventory models, particularly for a multi-
period setting, usually assume that the demand distribution of a product and
all of its parameters are completely known (Ahmed et al., 2007). These assump-
tions may not hold in many practical situations. The solutions based on such
assumptions may lead to severe constraint violations even under very small per-
turbations(Beyer and Sendho↵, 2007). Demands are often volatile in practice
resulting in inaccurate forecasts. This is especially true for products with short
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life cycles, large varieties, and long supply lead times such as fashion goods,
electronic products, and mass-customized goods. Bertsimas and Thiele (2006)
show that an optimal inventory policy heavily tuned to a particular demand
distribution may perform very poorly for another demand distribution bearing
the same uncertainty parameters. The desire for an e↵ective inventory policy
to deal with highly unpredictable demand with inevitable forecast errors mo-
tivates the development of robust inventory models with demand distribution
uncertainty.

This study is motivated by the experience of SYE, a company selling elec-
tronics products on the Neusoft Electronics Market located in northeast China.
SYE operates in a very challenging business environment caused by short prod-
uct life cycles and by a volatile and unpredictable market. This environment
leads to inevitable errors in demand forecasts and a considerable risk of hav-
ing excessive inventory or stockout. Considering the fast-moving nature of the
product and limited capital, SYE divides the planning horizon into several sales
periods and then decides when and how much to order a product. The challenge
faced by SYE compels the development of a robust inventory policy based on
a multi-period model with demand distribution uncertainty. A periodic-review
(s

t

, S
t

) policy has a reorder point (s
t

) and an order-up-to level (S
t

) for each
period in a planning horizon of T periods. Under this policy, the inventory
position is reviewed in every time period t. If the inventory position is equal
to or below s

t

, an order with a su�cient quantity of the product is placed to
bring the inventory position back to the order-up-to level S

t

. SYE finds that a
periodic-review (s, S) policy will be useful for its inventory management.

Some of the earlier works for multi-period inventory models assume that
the uncertainty parameters are random with known distributions, most studies
do not present structural robust inventory policies, and others only derive the
corresponding values of the parameters attached to the proposed inventory poli-
cies. In contrast, this study investigates a finite-horizon single-product periodic-
review inventory management problem with uncertainty in demand probability
distributions. This work has three main contributions. The first contribution
is that we consider demand distribution uncertainty, which is commonly ob-
served in practice especially for products with short life cycles or for inventory
managers with limited information of demand distributions. The second con-
tribution is that an ((s

t

, S
t

)) policy for each period t is proved to be optimal
even for non-stationary distribution-free multi-period inventory problems. Such
a policy is attractive for the inventory managers. The third contribution is that
two types of, i.e., box and ellipsoid, uncertainty sets are used to model demand
distribution uncertainty. The resulting models are transformed into tractable
linear and second-order cone programs, respectively, which can be solved e�-
ciently to determine the reorder point (s

t

) and the order-up-to level (S
t

) for
each period t. All the transformed versions are proved to be equivalent to the
original models.

The remainder of this paper is organized as follows. Section 2 reviews some
relevant literature. Section 3 describes the basic multi-period dynamic inventory
model. Section 4 proves the existence of optimal (s

t

, S
t

) inventory policies under
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demand distribution uncertainty. In Section 5, robust dynamic programming
approaches for finding the optimal (s

t

, S
t

) policies are developed for the box
and ellipsoid uncertainty sets. Section 6 conducts a numerical study to show
the e↵ectiveness and practicality of the robust optimization approaches. Section
7 provides some concluding remarks and discusses future research directions.

2. Literature review

Relevant literature on multi-period inventory models is reviewed in this sec-
tion. Previous works on stochastic multi-period inventory management are
briefly reviewed first. Robust optimization and its application to multi-period
inventory management are then surveyed.

2.1. Stochastic multi-period inventory management

To the best of our knowledge, the first study on multi-period inventory
systems can go back to Wagner and Whitin (1958) for a dynamic version of
the economic lot sizing model. Since then, many studies have focused on multi-
period inventory models and dedicated to finding policies optimizing system
performance in both deterministic(Mousavi et al., 2013; Ventura et al., 2013;
Cárdenas-Barrón et al., 2015) and stochastic(Matsuyama, 2006; Wang et al.,
2010; Farahvash and Altiok, 2011; Lim, 2011; Liu et al., 2012; Ning et al., 2013;
Abouee-Mehrizi et al., 2015; Kim et al., 2015) market environments.

For inventory management problems with stochastic parameters, most of the
previous studies were on the single-period problem known as the newsvendor
model. The key di↵erence between the single-period and the multi-period mod-
els is that the multi-period models may involve stock leftovers or shortages from
previous periods, making the optimal order quantities more complicated(Zhang
et al., 2009). Farahvash and Altiok (2011) used a stochastic dynamic program-
ming model to solve a multi-period inventory problem with raw material pro-
curements carried out via a reverse auction. Lim (2011) proposed a stochastic
nonlinear mixed binary integer programming model for a multi-period inven-
tory problem with quantity discounts based on previous orders. Chen and Wei
(2012) studied the multi-period channel coordination problem in the framework
of vendor-managed inventory for deteriorating goods and used a calculus-based
formulation combined with dynamic programming techniques to solve this prob-
lem. Schmitt and Snyder (2012) developed an infinite-horizon inventory control
model under both yield uncertainty and disruptions, and pointed out that using
a single-period approximation could lead to a wrong strategy for mitigating sup-
ply risks. Janakiraman et al. (2013) analyzed the multi-period inventory model
and showed that a system with an equal or longer expected lead time combined
with a greater lead time variability in dilation ordering had a higher average
cost. Recently, Kim et al. (2015) proposed a multi-stage stochastic programming
model combining the multi-period newsvendor problems with transshipment to
optimize the inventory control policy. Abouee-Mehrizi et al. (2015) considered
a finite horizon multi-period inventory system where the objective was to de-
termine the optimal joint replenishment and transshipment policies, and found
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that the optimal ordering policy in each period was determined based on two
switching curves.

Since the extension from one period to multi-period can make the e↵ective
management of inventory systems more di�cult, it is essential to provide inven-
tory managers with a tractable policies with certain structures. The well-known
periodic review (s, S) policy is accordingly proposed in which an order is placed
to bring the inventory level up to S when its inventory level falls to or below
s when reviewed. Using a dynamic programming approach, Scarf (1960) first
showed that the (s, S) policy is optimal for finite horizon dynamic inventory
systems with a linear ordering cost function and a convex holding cost func-
tion. On this basis, Song and Zipkin (1993) and Chen and Song (2001) modeled
the demand level as a state of a continuous Markov chain, and showed that
state-dependent (s, S) policies were optimal for a multi-period inventory prob-
lem under a fluctuating demand environment. Benkherouf and Sethi (2010)
used a quasi-variational inequality approach to show the optimality of an (s, S)
policy for a single-item infinite-horizon inventory model. Xu et al. (2010) fur-
ther investigated the structural properties of (s, S) policies for inventory models
with lost sales which could then be used to develop computational schemes for
the lost sales with Erlang demands. More recently, Li and Xu (2013) studied
discrete-time inventory replenishment decisions in a continuous-time dynamic-
pricing setting and used a novel sample-path approach to prove the optimality
of the (s, S) inventory policy in the presence of dynamic pricing. Noblesse et al.
(2014a) skillfully characterized the ordering process of continuous review (s, S)
and (r, nQ) inventory policies, and discussed the impact of the batching param-
eter on the variability in the ordering process. Using an (s, S) policy, Noblesse
et al. (2014b) further examined the lot sizing decision in a production-inventory
model and found that high costs would be incurred when the EOQ deviated from
desirable production lot sizes. Feinberg and Lewis (2015) proved results on a
Markov decision process with infinite state spaces, weakly continuous transition
probabilities and one-step costs, which were applied to show the optimality of
(s, S) policies for stochastic periodic review inventory control problems. Disney
et al. (2016) studied the impact of stochastic lead times with order crossover
on inventory costs and safety stocks in the order-up-to policy, and presented
a new method for determining the distribution of the number of open orders.
Song and Wang (2017) considered periodic review inventory control problems
with both fixed order cost and uniform random yield, they proved that an (s, S)
structure is optimal in any period.

2.2. Robust optimization and its application to multi-period inventory manage-
ment

Other works related to this study are robust optimization techniques and
their application to multi-period inventory control problems. Di↵erent from
stochastic programming assuming full knowledge of the distribution informa-
tion of the stochastic parameters, robust optimization addresses uncertainty
parameters in optimization models by relaxing this assumption. Using well pre-
specified deterministic uncertainty sets in which all potential values of these
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parameters reside, the optimization models with uncertainty parameters can be
transformed into tractable robust counterparts. Robust optimization employs
a min-max approach that guarantees the feasibility of the obtained solution for
all possible values of the uncertainty parameters in the designated uncertainty
set(Bienstock and ÖZbay, 2008). Vlajic et al. (2012) believe robustness is a key
property of a system or a strategy that can be used to improve performance in
settings with uncertainty. More detailed discussion on robust optimization can
be found in Gabrel et al. (2014).

Research on inventory control under ambiguous demand distributions can
be traced back to Scarf et al. (1958), who derived the optimal order quantity
using a min-max method for the classical newsvendor problem with only known
mean and variance of the demand. His work was later extended by Alfares
and Elmorra (2005), Yue et al. (2006), Perakis and Roels (2008), Bhattacharya
et al. (2011), Jindal and Solanki (2014) and Kwon and Cheong (2014) for single
period models. In multi-period settings, Gallego et al. (2001) analyzed the (s,
S) policy for finite-horizon models when the demand distribution was under a
linear constraint. Ben-Tal et al. (2004) introduced an adjustable robust model
for linear programming problems, and applied it to a multi-stage inventory
management problem. Bertsimas and Thiele (2006) developed a new approach
to address demand ambiguity in a multi-period inventory control problem, which
has the advantage of being computationally tractable. Bienstock and ÖZbay
(2008) considered how to optimally set the basestock level for a single bu↵er
to deal with demand uncertainty. Lin (2008) explored the EOQ model with
backorder price discount by assuming known mean and variance of the demand
lead time.

Ben-Tal et al. (2009) considered the problem of minimizing the overall cost
of a supply chain over a possible long horizon, and proposed a globalized robust
counterpart to control inventories in serial supply chains. See and Sim (2010)
proposed a robust optimization approach to address a multi-period inventory
control problem with only limited information of the demand distributions such
as the mean, support, and some measures of deviations. Lin and Ng (2011)
presented a robust model with interval demand data to determine the optimal
order quantity and to select markets for products with short life cycles. Wei
et al. (2011) used a robust optimization approach to solve an inventory and pro-
duction planning problem with uncertainty in demand and returns over a finite
planning horizon. Klabjan et al. (2013) proposed an integrated approach com-
bining in a single step data fitting and inventory optimization for single-item
multi-period stochastic lot-sizing problems. Recently, Qiu and Shang (2014)
applied a robust optimization approach to derive the static order quantities
for multi-period inventory models with conditional value-at-risk. Under the
assumption of the (r,Q) strategy, Lin and Song (2015) developed a hybrid al-
gorithm to find an inventory policy by minimizing the expected cost and a risk
measure. Kang et al. (2015) developed a distribution-dependent robust linear
optimization approach and applied it to a discrete-time stochastic inventory
control problem with certain service level constraints. Using a similar interval
uncertainty set proposed in Kang et al. (2015), Thorsen and Yao (2016) devel-

5



oped an adversarial approach based on Benders’ decomposition to determine
optimal robust static and basestock policies.

Lim and Wang (2016) considered a multi-product, multi-period inventory
management problem with ordering capacity constraints. Demand for each
product in each period is characterized by an uncertainty set. They proposed
a target-oriented robust optimization approach to solve the problem. Their
objective is to identify an ordering policy that maximizes the sizes of all the
uncertainty sets such that all demand realizations from the sets will result in
a total cost lower than a pre-specified cost target. They proved that a static
decision rule was optimal for an approximate formulation of the problem, which
significantly reduced the computational burden. Their numerical results suggest
that, although only limited demand information is used, the proposed approach
significantly outperforms traditional methods if the latter assume inaccurate
demand distributions.

3. A multi-period inventory model with setup cost

Consider a finite-horizon single-product inventory system. An inventory
manager reviews the inventory level periodically, and orders and sells the prod-
uct over a finite planning horizon of T periods. The demand in period t is
denoted by D

t

, for t = 1, 2, ..., T , where D
t

is a stochastic variable. Fig.1 shows
the timeline of the events. At the beginning of each period t = 1, 2, ..., T , the

Period 1 Period t Period T

order 1 order 2 order T
D1 Dt DT

x1 x1﹣D1 x2 xTxt xt+1xt﹣Dt xT+1xT﹣DT

Figure 1: The dynamic inventory system over T periods.

inventory manager observes the on-hand inventory level before ordering, x
t

, and
then makes an ordering decision. The unit selling price and unit purchase cost
in period t are denoted by r

t

and c
t

, respectively. The replenishment orders are
assumed to be delivered instantly(Li and Xu, 2013; Abouee-Mehrizi et al., 2015;
Feinberg and Lewis, 2015). The on-hand inventory level after the ordering deci-
sion is then represented by the variable xt. The starting inventory level x

t

may
be positive indicating a surplus or negative indicating a shortage. The demand
that cannot be satisfied is backlogged and can be met later, i.e., the unsatisfied
demand does not become lost sales.

The demand D
t

of each period t is assumed to be independently distributed,
consistent with the assumptions of most of the studies in the literature of multi-
period inventory problems(Matsuyama, 2006; See and Sim, 2010; Chen and Wei,
2012). After an ordering decision is made and the demand D

t

is realized, the
ending inventory level of period t, x

t+1, is determined. The inventory state
dynamic equation can be described as (1) in the following

x
t+1 = xt �D

t

, t = 1, 2, ..., T, (1)
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where x1 represents the initial inventory level and is given. At the end of
each period t, a holding or backorder cost is incurred. The holding cost is
h
t

x
t+1 if x

t+1 > 0, where h
t

is the unit holding cost, and the backorder cost
is �b

t

x
t+1 if x

t+1 < 0, where b
t

is the unit backorder cost. The stochastic
demand D

t

is discrete and belongs to a countable set of non-negative numbers,
i.e., D

t

2 {D1
t

, D2
t

, ..., DKt
t

}, where K
t

is positive and Dk

t

, for k = 1, 2, ...,K
t

,
represents a possible value of D

t

and is called a demand scenario in period t.
The probability of demand scenario Dk

t

is denoted by pk
t

= Pr{D
t

= Dk

t

}, for
k = 1, 2, ...,K

t

. For notational convenience, let p
t

= (p1
t

, p2
t

, ..., pKt
t

)0 denote a
column vector of these probabilities in period t. Given the inventory level after
the ordering decision xt and a demand scenario Dk

t

, for k = 1, 2, ...,K
t

, define
the cost function for each period t in (2) in the following

C
t

(xt, Dk

t

) = �r
t

min{xt, Dk

t

}+ h
t

max{xt �Dk

t

, 0}+ b
t

max{Dk

t

� xt, 0}
= �r

t

Dk

t

+max{h
t

(xt �Dk

t

),�(r
t

+ b
t

)(xt �Dk

t

)}. (2)

The sales revenue is subtracted in (2) so that minimizing cost is equivalent
to maximizing profit. Let C

t

(xt) = (C
t

(xt, D1
t

), C
t

(xt, D2
t

), ..., C
t

(xt, DKt
t

))0

denote a cost vector.
Let V t(x

t

) be a function representing the optimal expected cost over the
periods t, ..., T given the initial inventory level x

t

at the start of period t. The
multi-period inventory management problem is formulated as a dynamic pro-
gram in (3) in the following

V t(x
t

) = min
x�xt

�

K�(x� x
t

) + c
t

(x� x
t

) +Ht(x)
 

, t = 1, 2, ..., T. (3)

where K represents a fixed ordering cost and �(�) is an indicator function that
equals 1 if � > 0, and 0 otherwise. The boundary condition is V T+1(x

T+1) ⌘ 0,
for all x

T+1 � 0. The function Ht(x) in (3) is given in (4) in the following

Ht(x) = C
t

(x)0p
t

+ �Ṽ t+1(x�D
t

)0p
t

, t = 1, 2, ..., T. (4)

where � 2 [0, 1] is a discount factor and Ṽ t+1(x � D
t

) = (V t+1(x � D1
t

), ...,
V t+1(x�DKt

t

))0 represents a vector of optimal expected costs over the periods
t + 1, ..., T . The function Ht(x) includes the expected revenue, the expected
holding cost, the expected backorder cost, and the optimal expected future
cost. For each period t, the decision variable x in (3) determines whether an
order is placed and how much should be ordered.

To handle the expectations in (3) and (4), traditional approaches to inven-
tory problems usually assume that the stochastic demand follows a certain,
such as Poisson or normal among others, probability distribution with known
parameters. This assumption is often unrealistic because of limited demand
information available in practice, especially for perishable goods with short life
cycles. Instead of assuming full knowledge of the underlying probability distri-
butions, the demand probabilities, p

t

, are not assumed to be explicitly specified
but are only assumed to belong to an uncertainty set. As a result of this as-
sumption, robust optimization is a natural approach for solving this inventory
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problem. Therefore, this inventory problem becomes how to describe a tractable
robust counterpart for the dynamic program in (3) and (4), and then how to
find an optimal solution.

4. The optimality of the (st, St) policy with demand distribution un-
certainty

In this section, the robust counterparts of the dynamic program in (3) and
(4) under demand distribution uncertainty are formulated. Given the initial
inventory level x

t

at the start of period t, let zt(x
t

) denote the optimal expected
cost over the periods t, ..., T . This optimal expected cost can be determined by
(5) in the following

zt(x
t

) = min
x�xt

�

K�(x� x
t

) + c
t

(x� x
t

) +Gt(x)
 

, t = 1, 2, ..., T. (5)

The boundary condition is zT+1(x
T+1) ⌘ 0 for all x

T+1 � 0. The function
Gt(x) in (5) represents the worst-case expected cost over the periods t, ..., T . It
is given by (6) in the following

Gt(x) = max
pt

�

C
t

(x)0p
t

+ �z̃t+1(x�D
t

)0p
t

 

, t = 1, 2, ..., T. (6)

where Gt(x) = maxpt

�

C
t

(x)0p
t

+ �z̃t+1(x�D
t

)0p
t

 

is a vector of optimal costs
over the periods t + 1, ..., T . The functions zt(x

t

) in (5) and Gt(x) in (6) are
counterparts of V t(x

t

) in (3) and Ht(x) in (4), respectively. In (6), di↵erent
worst-case demand distributions are permitted for di↵erent periods. That is,
the worst-case distribution p⇤

t

for period t is not necessarily the same as the
worst-case distribution p⇤

t+1 for period t+ 1.
The optimal value of the variable x in (5) represents the order-up-to level.

From (5), the minimal worst-case expected cost over periods t, ..., T is K +
c
t

(x�x
t

)+Gt(x) if an order is placed in period t and is Gt(x) if an order is not
placed in period t, i.e., if x = x

t

. Since the function zt(x
t

) in (5) consists of an
indicator term K�(x � x

t

) with a value of K or 0 and a linear term c
t

(x � x
t

)
with a constant c

t

x
t

, define a function  t(x) as

 t(x) = c
t

x+Gt(x), t = 1, 2, ..., T. (7)

To show that an (s
t

, S
t

) policy is optimal for the inventory problem, it is su�-
cient to verify that  t(x) ! 1 as |x| ! 1, for t = 1, 2, ..., T , and the function
 t(x) is K-convex. A K-convex function is defined below.

DEFINITION 1. A real-valued function f(a) is K-convex for K � 0, if for
any a1  a2 and � 2 [0, 1],

f((1� �)a1 + �a2)  (1� �)f(a1) + �f(a2) + �K.
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A K-convex function plays an important role in proving the existence of an
optimal inventory policy for the multi-period inventory problem with a fixed
ordering cost. The following theorem shows the optimality of an (s, S) policy.
All the proofs can be found in the Online Supplement.

THEOREM 1. (Optimality of the (s
t

, S
t

) policy). An (s
t

, S
t

) policy is optimal
for the multi-period inventory problem in (5) and (6). That is, for each period
t = 1, 2, ..., T it is optimal to place an order to replenish the inventory level to
S
t

if the starting inventory level of the period is not larger than s
t

, and not to
place any order in the period otherwise.

An (s
t

, S
t

) policy is appealing because it can be implemented easily in prac-
tice. Robust optimization approaches are developed in the next section to find
the optimal s

t

and S
t

under demand distribution uncertainty.

5. Determining st and St using robust optimization

The key of solving the problem in (5) and (6) is to specify the uncertainty
sets to which the demand distributions belong. Two types of, i.e., the box and
the ellipsoid, uncertainty sets are considered in this study. In the following, e
represents a vector of 1s of appropriate dimension.

DEFINITION 2. For any period t = 1, 2, ..., T , the demand probability p
t

belongs to a box uncertainty set

PB
�
=
n

p
t

: p
t

= p̄
t

+ ⇠
t

, e0⇠
t

= 0, ⇠
t

 ⇠
t

 ⇠
t

o

, (8)

where p̄
t

is a vector representing the most likely or nominal distribution, and ⇠
t

is a vector representing disturbance terms with a known support [⇠
t

, ⇠
t

].

The restriction e0⇠
t

= 0 is necessary to ensure that p
t

is a probability distri-
bution. The non-negativity requirement p

t

� 0 can be included in the restric-
tion ⇠

t

 ⇠
t

 ⇠
t

.

DEFINITION 3. For any period t = 1, 2, ..., T , the demand probability p
t

belongs to a box uncertainty set

PE
�
= {p

t

: p
t

= p̄
t

+A
t

⇠
t

, e0A
t

⇠
t

= 0, p̄
t

+A
t

⇠
t

� 0, k⇠
t

k  1} , (9)

where p̄
t

is a vector representing the most likely or nominal distribution cor-
responding to the center of the ellipsoid, k · k is the standard Euclidean norm
with dual norm k · k⇤, ⇠

t

is a vector representing disturbance terms with k⇠
t

k =
q

⇠T
t

⇠
t

, and A
t

2 Rn⇥n is a known scaling matrix of the ellipsoid.

The conditions e0A
t

⇠
t

= 0 and p̄
t

+A
t

⇠
t

� 0 are necessary to ensure that
p
t

is a probability distribution. These conditions have a similar purpose to that
of e0⇠

t

= 0 in (8).
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The two uncertainty sets PB and PE defined above are widely used to de-
scribe uncertain parameters(Ben-Tal et al., 2005; Zhu and Fukushima, 2009; Qiu
and Shang, 2014). Due to incomplete data or lack of forecast expertise, it is
reasonable to consider these two types of uncertainty sets for the multi-period
inventory management problem as the actual demand distribution p

t

can be
approximated by introducing the disturbance vector ⇠

t

.

5.1. The optimal (s
t

, S
t

) policy under the box uncertainty set

Assume the discrete demand probability distribution belongs to a box un-
certainty set PB as defined in (8). The last period t = T will be considered
first in obtaining an optimal (s

t

, S
t

) policy for each period t = 1, 2, ..., T . Since
zT+1(x

T+1) ⌘ 0, then (6) becomes

GT (x
T

) = max
pT2PB

C
T

(x
T

)0p
T

,

and (5) becomes

zT (x
T

) = min
x�xT

�

K�(x� x
T

) + c
T

(x� x
T

) +GT (x)
 

To obtain an optimal solution to the above problem, the function  T (x) defined
in (7) needs to be minimized. According to the proof of Theorem 1, for t = T ,
the (s

T

, S
T

) policy is optimal with S
T

= argmin
x

 T (x), where

 T (x) = c
T

x+GT (x) = c
T

x+ max
pT2PB

{C
T

(x)0p
T

} . (10)

Therefore, the order-up-to level S
T

= x⇤ can be obtained by solving the follow-
ing problem

min
x

max
pT2PB

c
T

x+ C
T

(x)0p
T

= min
x

{c
T

x+ C
T

(x)0p̄
T

+⌥⇤(x)} (11)

where ⌥⇤(x) is the optimal objective value of the following linear program

max
⇠T

n

⌥(x) = C
T

(x)0⇠
T

�

�

�

e0⇠
T

= 0, ⇠
T

 ⇠
T

 ⇠
T

o

. (12)

The dual of the linear program (12) is given by

min
�T ,⌧T ,⌫T

n

⇠0
T

⌧
T

+ ⇠
0
T

⌫
T

�

�

�

e0�
T

+ ⌧
T

+ ⌫
T

= C
T

(x), ⌧
T

 0,⌫
T

� 0
o

, (13)

where �
T

, ⌧
T

, and ⌫
T

are the dual variables corresponding to the constraints in
(12). Consider the following optimization problem with variables (x, �

T

, ⌧
T

,⌫
T

)2
R⇥R⇥RKT ⇥RKT

min
x,�T ,⌧T ,⌫T

c
T

x+ C
T

(x)0p̄
T

+ ⇠0
T

⌧
T

+ ⇠
0
T

⌫
T

s.t. e0�
T

+ ⌧
T

+ ⌫
T

= C
T

(x)

⌧
T

 0,⌫
T

� 0.

(14)

10



Theorem 2 shows that solving Problem (14) is equivalent to solving Problem
(11).

THEOREM 2. (Finding the order-up-to level S
T

). If (x⇤, �⇤
T

, ⌧ ⇤
T

,⌫⇤
T

) is an
optimal solution to Problem (14), then x⇤ solves Problem (11). Conversely,

if x̂⇤ solves Problem (11), then (x̂⇤, �̂⇤
T

, ⌧̂ ⇤
T

, ⌫̂⇤
T

) solves Problem (14), where

(�̂⇤
T

, ⌧̂ ⇤
T

, ⌫̂⇤
T

) is an optimal solution to Problem (13).

According to Theorem 2, the order-up-to level S
T

for the last period can be
obtained by finding a solution x⇤ of a minimization problem (14). The inventory
manager can adjust p̄

T

tT + 1o ensure ⇠
T

 0 and ⇠
T

� 0, implying that the

term ⇠0
T

⌧
T

+⇠
0
T

⌫
T

in the objective function of Problem (14) is positive because

⌧
T

 0 and ⌫
T

� 0. The optimal value of ⇠0
T

⌧ ⇤
T

+ ⇠
0
T

⌫⇤
T

measures the cost
induced by the demand distribution uncertainty.

Obviously, Problem (14) is a convex programming model. The piecewise
linearity of the components of C

T

(x) ensures that Problem (14) is a piecewise
linear program. Furthermore, each component of C

T

(x) can be linearized by
introducing an auxiliary variable 

T

with the restrictions 
T

� h
T

(x�D
T

) and

T

� �(r
T

+ b
T

)(x � D
T

). As before, x � D
T

is the starting inventory level
of period T +1. Therefore, Problem (14) becomes a linear programming model
that can be solved e�ciently. The order-up-to level is equal to the optimal value
of x, i.e., S

T

= x⇤. Thus, the optimal objective value of Problem (11) is

 T (S
T

) = c
T

S
T

+ C
T

(S
T

)0p̄
T

+ ⇠0
T

⌧ ⇤
T

+ ⇠
0
T

⌫⇤
T

,

implying that GT (S
T

) = C
T

(S
T

)0p̄
T

+ ⇠0
T

⌧ ⇤
T

+ ⇠
0
T

⌫⇤
T

.

The reorder point s
T

is derived in the following. Recall that GT (x
T

) is the
worst-case expected cost with the starting inventory x

T

but without an order
placed in period T . Furthermore, s

T

is the reorder point at or below which an
order will be triggered to raise the inventory level to S

T

. Given S
T

, s
T

is the
largest value of y with y  S

T

such that

GT (y) = K + c
T

(S
T

� y) +GT (S
T

). (15)

The right hand side of (15) is the worst-case expected cost when the starting
inventory level is y and an order is placed to replenish the inventory level to S

T

.
This implies that s

T

is the threshold at which the cost associated with ordering
S
T

� y equals the cost associated with not placing an order. The reorder point
s
T

can be found by solving

min
�

y
�

�GT (y)  K + c
T

(S
T

� y)+GT (S
T

), y  S
T

 

.

Since an accurate expression of the function GT (y) cannot be derived, the
above problem cannot be solved directly. Fortunately, Theorem 3 below provides
an e↵ective approach of finding the reorder point, which equals the optimal value
of y, i.e., s

T

= y⇤.

11



THEOREM 3. (Finding the reorder point s
T

). The optimal solution y⇤ of the
following problem, with variables (y, �

T

, ⌧
T

,⌫
T

) 2 R ⇥R ⇥RKT ⇥RKT , is the
reorder point s

T

max
yST , �T , ⌧T , ⌫T

C
T

(y)0p̄
T

+ ⇠0
T

⌧
T

+ ⇠
0
T

⌫
T

s.t. e0�
T

+ ⌧
T

+ ⌫
T

= C
T

(y)

C
T

(y)0p̄
T

+ ⇠0
T

⌧
T

+ ⇠
0
T

⌫
T

 K + c
T

(S
T

� y) +GT (S
T

)

⌧
T

 0,⌫
T

� 0.

(16)

Similar to Problem (14), Problem (16) can be converted to a linear program
after linearizing each component of C

T

(y) and can be solved e�ciently. Likewise,

the term ⇠0
T

⌧
T

+ ⇠
0
T

⌫
T

in the objective function measures the cost caused by
the demand distribution uncertainty.

The two fundamental problems (14) and (16) are solved to find S
T

and s
T

.
The cost incurred in period T with the initial inventory x

T

is given by

zT (x
T

) =

(

K + c
T

(S
T

� x
T

) +GT (S
T

), if x
T

 s
T

GT (x
T

), otherwise.
(17)

Since x
T

can be observed at the beginning of period T , the cost zT (x
T

) with
x
T

> s
T

can be obtained by solving Problem (39) in Appendix A.3.
The problem in the last period T has been solved so far. Without loss of

generality, assume the problem in period has been solved. That is, an optimal
(s

t

, S
t

) policy together with the cost zt(x
t

) has been obtained in period t, for
1 < t < T . For period t� 1, the following problem, from the definition of  t(x)
in (7), is solved to find an order-up-to level S

t�1

min
x

 t�1(x) = c
t�1x+Gt�1(x)

= c
t�1x+ max

pt�12PB

�

C
t�1(x)

0p
t�1 + �z̃t(x�D

t�1)
0p

t�1

 

(18)

where z̃t(x�D
t�1) = (zt(x�D1

t�1), · · · , zt(x�DKt
t�1))

0 is the vector of optimal
costs for period . Since the decision variable x is the inventory level after an
ordering decision is made in period t�1, the term x�D

t�1 is the initial inventory
level of period t, i.e., x

t

= x �D
t�1. Similar to the process for period t, S

t�1

can be obtained by solving Problem (18), which is equivalent to the following
problem

min
x, �t�1

⌧t�1, ⌫t�1

c
t�1x+[C

t�1(x)+�z̃t(x�D
t�1)]0p̄

t�1+ ⇠0
t�1

⌧
t�1+⇠

0
t�1⌫t�1

s.t. e0�
t�1 + ⌧

t�1 + ⌫
t�1 = C

t�1(x) + �z̃t(x�D
t�1)

⌧
t�1  0,⌫

t�1 � 0.

(19)

12



Thus, the order-up-to level S
t�1 = x⇤ is found for period t� 1. The reorder

point for period t� 1 is found next. Recall that  t�1(S
t�1) denote the optimal

objective value of Problem (19) and the expression of Gt�1(S
t�1) can be derived

accordingly. Similarly, the reorder point s
t�1 is the largest value of y with

y  S
t�1 such that

Gt�1(y) = K + c
t�1(St�1 � y) +Gt�1(S

t�1), (20)

where Gt�1(y) is the optimal objective value of the following problem

min
�t�1,⌧ t�1,⌫t�1

[C
t�1(y) + �z̃t(y �D

t�1)]0p̄
t�1 + ⇠0

t�1
⌧
t�1 + ⇠

0
t�1⌫t�1

s.t. e0�
t�1 + ⌧

t�1 + ⌫
t�1 = C

t�1(y) + �z̃t(y �D
t�1)

⌧
t�1  0,⌫

t�1 � 0.

(21)

Similar to that in period t, the reorder point s
t�1 can be found by solving the

following problem with variables (y, �
t�1, ⌧ t�1,⌫t�1) 2 R⇥R⇥RKt�1 ⇥RKt�1

max
ySt�1, �t�1
⌧ t�1, ⌫t�1

[C
t�1(y) + �z̃t(y �D

t�1)]0p̄
t�1 + ⇠0

t�1
⌧
t�1 + ⇠

0
t�1⌫t�1

s.t. e0�
t�1 + ⌧

t�1 + ⌫
t�1 = C

t�1(y) + �z̃t(y �D
t�1)

[C
t�1(y) + �z̃t(y �D

t�1)]
0p̄

t�1 + ⇠0
t�1

⌧
t�1 + ⇠

0
t�1⌫t�1

 K + c
t�1(St�1 � y) +Gt�1(S

t�1)

⌧
t�1  0,⌫

t�1 � 0,

(22)

with s
t�1 = y⇤, the optimal solution. The optimal cost incurred in period t� 1

with the initial inventory x
t�1 has the form

zt�1(x
t�1) =

(

K + c
t�1(St�1 � x

t�1) +Gt�1(S
t�1), if x

t�1  s
t�1

Gt�1(x
t�1), otherwise.

(23)

The optimal (s
t

, S
t

) policy for period t = T�1, T�2, ..., 1 can be determined
recursively. The optimal cost incurred in period t = 1 is the total cost over the
T periods, which equals

z1(x1) =

(

K + c1(S1 � x1) +G1(S1), if x1  s1

G1(x1), otherwise.
(24)

The above discussion provides a solution procedure for finding the optimal
(s

t

, S
t

) inventory policy. In this procedure, two linear programming problems
need to be solved for each period t to find s

t

and S
t

, respectively. Due to the
linearity of these problems, the (s

t

, S
t

) policy can be determined e�ciently.

13



5.2. The optimal (s
t

, S
t

) policy under the ellipsoid uncertainty set

Assume the discrete demand probability distribution belongs to an ellip-
soid uncertainty set PE as defined in (9). The last period T is considered
first in finding an optimal (s

t

, S
t

) policy for each period t = 1, 2, ..., T . Since
zT+1(x

T+1) ⌘ 0, the worst-case expected cost is given by

GT (x
T

) = max
pT2PE

C
T

(x
T

)0p
T

According to Theorem 1, for t = T , an (s
t

, S
t

) policy is optimal. The order-
up-to level S

T

can be obtained by solving

min
x

 T (x) = c
T

x+GT (x)

= min
x

max
pT2PE

c
T

x+ C
T

(x)0p
T

= min
x

{c
T

x+ C
T

(x)0p̄
T

� �⇤(x)} (25)

where �⇤(x) is the optimal objective value of the following problem

min
⇠T

{�(x) = �C
T

(x)0A
T

⇠
T

| e0A
T

⇠
T

= 0, p̄
T

+A
T

⇠
T

� 0, k⇠
T

k  1} . (26)

The order-up-to level S
T

is equal to x⇤ = argmin
x

 T (x).

The Lagrangian dual function associated with (26) is

g(�
T

, ⇢
T

, �
T

) = min
⇠T

L(⇠
T

;�
T

, ⇢
T

, �
T

)

= min
⇠T

�

�C
T

(x)0A
T

⇠
T

+ �0
T

(�p̄
T

�A
T

⇠
T

) + ⇢
T

(k⇠
T

k � 1) + �
T

e0A
T

⇠
T

 

= �(�0
T

p̄
T

+ ⇢
T

)�max
⇠T

�

[A0
T

C
T

(x) +A0
T

�
T

� �
T

A0
T

e]0⇠
T

� ⇢
T

k⇠
T

k
 

= �(�0
T

p̄
T

+ ⇢
T

)� f⇤
T

(A0
T

C
T

(x) +A0
T

�
T

� �
T

A0
T

e), (27)

where f⇤
T

(y) is the conjugate function of f
T

(⇠) = ⇢
T

k⇠k with f⇤
T

(y) = 0 if
kyk⇤  ⇢

T

and f⇤
T

(y) = 1 otherwise, and k · k⇤ is a dual norm of k · k with
k · k⇤ = k · k. Since the Lagrangian dual function yields lower bounds for any
�
T

� 0 and ⇢
T

� 0, an equivalent formulation of (26) is

max
�T ,⇢T ,�T

g(�
T

, ⇢
T

, �
T

)

= max
�T ,⇢T ,�T

(

��0
T

p̄
T

� ⇢
T

�

�

�

�

�

kA0
T

C
T

(x) +A0
T

�
T

� �
T

A0
T

ek  ⇢
T

,

�
T

� 0, ⇢
T

� 0

)

(28)

Consider the following problem with variables (x,�
T

, ⇢
T

, �
T

) 2 R⇥RKT ⇥
R⇥R

min
x,�T ,⇢T ,�T

c
T

x+ C
T

(x)0p̄
T

+ �0
T

p̄
T

+ ⇢
T

s.t. kA0
T

C
T

(x) +A0
T

�
T

� �
T

A0
T

ek  ⇢
T

�
T

� 0, ⇢
T

� 0.

(29)
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Theorem 4 shows that solving Problem (29) is equivalent to solving Problem
(25).

THEOREM 4. (Finding the order-up-to level S
T

): If (x⇤,�⇤
T

, ⇢⇤
T

, �⇤
T

) is an
optimal solution to Problem (29), then x⇤ solves Problem (25). Conversely, if

x̂⇤ solves Problem (25), then (x̂⇤, �̂
⇤
T

, ⇢̂⇤
T

, �̂⇤
T

) is an optimal solution to Problem

(29), where (�̂
⇤
T

, ⇢̂⇤
T

, �̂⇤
T

) is an optimal solution to Problem (2828) with x = x̂⇤.

Similar to the box uncertainty set, the demand distribution uncertainty also
leads to a positive cost �0

T

p̄
T

+ ⇢
T

when the demand probability distribution
belongs to an ellipsoid uncertainty set. The term �0

T

p̄
T

+ ⇢
T

in (29) has a

similar meaning to that of ⇠0
T

⌧
T

+ ⇠
0
T

⌫
T

in (14).
By linearizing the components of C

T

(x), Problem (29) becomes a second-
order cone programming model and can be solved e�ciently. The optimal order-
up-to level in the last period T equals the optimal value of x in Problem (29),
i.e., S

T

=x⇤. The optimal objective value of Problem (29) is

 T (S
T

) = c
T

S
T

+ C
T

(S
T

)0p̄
T

+ (�⇤
T

)0p̄
T

+ ⇢⇤
T

, (30)

where GT(y) is the optimal objective value of the following problem with vari-
ables (�

T

, ⇢
T

,�
T

)2RKT⇥R⇥R

min
�T ,⇢T ,�T

C
T

(y)0p̄
T

+ �0
T

p̄
T

+ ⇢
T

s.t. kA0
T

C
T

(y) +A0
T

�
T

� �
T

A0
T

ek  ⇢
T

�
T

� 0, ⇢
T

� 0.

(31)

Similar to that in Theorem 3 for the box uncertainty set, the following
tractable second-order cone program can be used to find s

T

max
yST ,�T ,⇢T ,�T

C
T

(y)0p̄
T

+ �0
T

p̄
T

+ ⇢
T

s.t. kA0
T

C
T

(y) +A0
T

�
T

� �
T

A0
T

ek  ⇢
T

C
T

(y)0p̄
T

+ �0
T

p̄
T

+ ⇢
T

 K + c
T

(S
T

� y) +GT (S
T

)

�
T

� 0, ⇢
T

� 0.

(32)

The optimal reorder point is equal to the optimal value of y in Problem (32),
i.e., s

T

= y⇤. Thus, an optimal (s
T

, S
T

) policy for period T can be constructed
by solving Problems (29) and (32). The cost incurred in period T with an initial
inventory level x

T

is

zT (x
T

) =

(

K + c
T

(S
T

� x
T

) +GT (S
T

), if x
T

 s
T

GT (x
T

), otherwise.

Up to now, the problem in the last period has been solved. Assume the
problem has been solved for period t, and an optimal (s

T

, S
T

) policy together
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with the associated cost zt(x
t

) has been found for 1 < t < T . The problem for
period t� 1 is then considered. The following problem is solved to find S

t�1

min
x

 t�1(x) = c
t�1x+Gt�1(x)

= c
t�1x+ max

pt�12PE

�

C
t�1(x)

0p
t�1 + �z̃t(x�D

t�1)
0p

t�1

 

where z̃t(x�D
t�1)=(zt(x�D1

t�1), · · · , zt(x�D
Kt
t�1))

0 is the vector of optimal costs
for period t. As above, x�D

t�1 is the starting inventory level of period t. Similar
to the analysis for the box uncertainty set, S

t�1 can be determined by solving
the following problem with variables (x,�

t�1, ⇢t�1, �t�1)2R⇥RKt�1⇥R⇥R

min
x,�t�1,⇢t�1,�t�1

c
t�1x+[C

t�1(x)+�z̃t(x�D
t�1)]0p̄

t�1+�0
t�1p̄t�1+⇢t�1

s.t. kA0
t�1[Ct�1(x) + �z̃t(x�D

t�1) + �
t�1 � �

t�1e]k  ⇢
t�1

�
t�1 � 0, ⇢

t�1 � 0.

(33)

The optimal order-up-to level for period t � 1 is equal to the optimal value of
x in Problem (33), i.e., S

t�1 = x⇤. Recall that  t�1(S
t�1) denotes the optimal

objective value of Problem (33) implying Gt�1(S
t�1) =  t�1(S

t�1)�c
t�1St�1.

Similarly, s
t�1 can be found by solving the following problem with variables

(y,�
t�1, ⇢t�1, �t�1) 2 R⇥RKt�1 ⇥R⇥R

max
ySt�1,�t�1,⇢t�1,�t�1

[C
t�1(y) + �z̃t(y �D

t�1)]0p̄
t�1 + �0

t�1p̄t�1 + ⇢
t�1

s.t. kA0
t�1[Ct�1(y) + �z̃t(y �D

t�1) + �
t�1 � �

t�1e]k  ⇢
t�1

[C
t�1(y) + �z̃t(y �D

t�1)]
0p̄

t�1 + �0
t�1p̄t�1 + ⇢

t�1

 K + c
t�1(St�1 � y) +Gt�1(S

t�1)

�
t�1 � 0, ⇢

t�1 � 0.

(34)

The optimal reorder point is equal to the optimal value of y in Problem (34),
i.e., s

t�1 = y⇤.
The optimal cost incurred with the initial inventory x

t�1 in period t� 1 is

zt�1(x
t�1) =

(

K + c
t�1(St�1 � x

t�1) +Gt�1(S
t�1), if x

t�1  s
t�1

Gt�1(x
t�1), otherwise,

(35)

where Gt�1(x
t�1) is the optimal objective value of the following problem with

x
t�1 > s

t�1

min
�t�1,⇢t�1,�t�1

[C
t�1(xt�1) + �z̃t(x

t�1 �D
t�1)]0p̄

t�1 + �0
t�1p̄t�1 + ⇢

t�1

s.t.kA0
t�1[Ct�1(xt�1) + �z̃t(x

t�1 �D
t�1)] +A0

t�1�t�1 � �
t�1A

0
t�1ek  ⇢

t�1

�
t�1 � 0, ⇢

t�1 � 0.
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The optimal (s
t

, S
t

) policy can be determined recursively for each period
t = T � 1, T � 2, ..., 1. The cost in period 1 is given by

z1(x1) =

(

K + c1(S1 � x1) +G1(S1), if x1  s1

G1(x1), otherwise,
(36)

representing the total cost over all the T periods.

6. Numerical study

In this section, the e↵ectiveness and practicality of the proposed robust opti-
mization approaches are demonstrated through a numerical study. The solution
approaches are first applied to a multi-period inventory problem. A single-period
inventory problem is then used to analyze the impact of uncertainty levels on
the performance of the solution approaches. For the problem instances in the
numerical study, the initial inventory level and the discount factor are set to
x1 = 0 and � = 1, respectively. Furthermore, r

t

= 20, c
t

= 10, h
t

= 2, b
t

= 15,
K

t

= 10 and K = 100 are used. The demand scenarios are sampled uniformly
from the interval [100, 200] and are then sorted to provide K

t

demand values.
The demand scenarios D

t

2 {110, 113, 128, 144, 155, 163, 181, 185, 191, 196} are
randomly generated. According to Andersson et al. (2013), the resulting distri-
bution will be too specialized if K

t

is too small, or will essentially resemble a
uniform distribution if K

t

is too large. Hence, K
t

= 10 is chosen. Unless specif-
ically mentioned, the nominal distribution randomly generated and used in the
numerical study is p̄

t

= (0.04, 0.24, 0.18, 0.10, 0.15, 0.11, 0.02, 0.07, 0.04, 0.05)0,
for t = 1, 2, ..., T .

For the box uncertainty set, the uncertainty disturbance vector ⇠
t

takes
values from the interval [⇠

t

, ⇠
t

] with ⇠
t

= ↵e and ⇠
t

= �⇠
t

, where ↵ is a
scalar that controls the uncertainty levels of the demand distributions. In this
numerical study, ↵ = 0.04 is used. For the ellipsoid uncertainty set, the scaling
matrix is A

t

= �I, where I is an identity matrix of appropriate dimension
and � is a scalar. In this numerical study, � = 0.15 is used and the levels of
uncertainty can be adjusted by using di↵erent values of �. In order to evaluate
the e↵ectiveness and practicality of the proposed robust optimization approaches
in dealing with demand distribution uncertainty, the actual demand in each
period t is assumed to follow the nominal distribution p̄

t

.

6.1. The multi-period inventory problem

The length of the planning horizon is one year and each period corresponds
to a one month sales cycle, i.e., T = 12. The parameters r

t

, c
t

, K, b
t

, h
t

, D
t

,
and p̄

t

are first assumed to be the same over the periods. This assumption will
be relaxed later.

Table 1 shows the (s
t

, S
t

) policies and their cost performance. The second
column shows the results when the actual demand distribution is assumed to
be known, i.e., the nominal distribution. Thus, there is no uncertainty in the
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demand distribution in this case. The third and fourth columns show the re-
sults, with demand distribution uncertainty, under the box and the ellipsoid
uncertainty sets, respectively. The terms pers and perS represent the objective
values of the problems to find the reorder point s

t

and the order-up-to level
S
t

, respectively. They represent the objective values of Problems (16) and (14)
for the box uncertainty set and the objective values of Problems (32) and (29)
for the ellipsoid uncertainty set. The terms pers|p̄

t

and perS |p̄
t

represent the
corresponding objective values when a given (s

t

, S
t

) policy is applied to the
multi-period model with the actual demand distribution.

Table 1: The (st, St) policies and their cost performance

Inventory

policy and

costs

Nominal Box Ellipsoid

(st, St) (165, 191) (162, 183) (162, 180)
(pers, perS) (�16508.78,�14962.60) (�15243.23,�13725.82) (�14740.48,�13225.38)
(pers|p̄t, per

S |p̄t) (�16508.78,�14962.60) (�15325.78,�13802.91) (�14864.71,�13339.20)

The (s
t

, S
t

) policy in each column of Table 1 is the same for each period be-
cause all the parameters are the same over the whole planning horizon. However,
a di↵erent uncertainty set yields a di↵erent (s

t

, S
t

) policy, and these policies are
di↵erent from the optimal policy when the actual distribution is known. Fur-
thermore, the objective values of the optimal (s

t

, S
t

) policy when the actual
distribution is known (column 2) are lower than those under the box and the
ellipsoid uncertainty sets.

To obtain an (s
t

, S
t

) policy for a non-stationary distribution-free model, the
components of p̄

t

are varied in a systematic way to create a nominal distribution
for each t = 1, 2, ..., T . Three groups of nominal distributions, labeled as ND-I,
ND-II and ND-III, are depicted in Figs. 2, 4, and 6, respectively. The expected
demands of these three groups of nominal distributions correspond to three
di↵erent, i.e., an increasing (Fig. 3), a decreasing (Fig. 5) and a random (Fig.
7), patterns, respectively, covering a wide range of situations in practice. The
(s

t

, S
t

) policies and the corresponding cost performance for the three groups
of nominal distributions are presented in Tables 2-7. The results in Table 2
show that increasing expected demands over time lead to non-decreasing s

t

and
S
t

under all the three cases i.e., known actual distribution, box uncertainty
set and ellipsoid uncertainty set. This implies that a larger expected demand
yields a higher reorder point and a higher order-up-to level. Similarly, the
results in Table 4 show that with decreasing expected demands, both s

t

and S
t

are non-increasing under all the three cases. Furthermore, due to the demand
distribution uncertainty, the reorder point s

t

and the order-up-to level S
t

for
each period under both the box and the ellipsoid uncertainty sets are not higher
than that when the actual demand distribution is known. Results in Tables 3
and 5 show that the costs under the box and the ellipsoid uncertainty sets are
higher than that when the actual demand distribution is known. These results
are consistent with the results in Table 1.
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Figure 2: ND-I: Nominal distributions with
increasing expected demands over time
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Figure 3: Expected demands under the ND-I
nominal distributions for di↵erent time peri-
ods

Table 2: (st, St) inventory policies for each period t under the ND-I nominal distributions

Period t

st, St
Nominal Box Ellipsoid

1 (161, 191) (159, 183) (160, 178)

2 (162 191) (160, 183) (160, 178)

3 (166, 191) (162, 183) (162, 180)

4 (170, 191) (165, 183) (164, 184)

5 (174, 196) (169, 185) (167, 187)

6 (177, 196) (172, 191) (171, 191)

7 (179, 196) (175, 191) (174, 191)

8 (180, 196) (177, 196) (176, 193)

9 (181, 196) (179, 196) (178, 196)

10 (182, 196) (179, 196) (179, 196)

11 (182, 196) (180, 196) (179, 196)

12 (183, 196) (180, 196) (180, 196)

Table 3: Cost performance under the ND-I nominal distributions

Costs Nominal Box Ellipsoid

(pers, perS) (�18009.65,�16053.63)(�16570.14,�15078.03)(�16056.38,�14560.93)
(pers|p̄t, per

S |p̄t)(�18009.65,�16053.63)(�16660.43,�15165.35)(�16185.94,�14671.51)
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Figure 4: ND-II: Nominal distributions with
decreasing expected demands over time
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Figure 5: Expected demands under the ND-
II nominal distributions for di↵erent time pe-
riods

Table 4: (st, St) inventory policies for each period t under the ND-II nominal distributions

Period t

st, St
Nominal Box Ellipsoid

1 (184, 196) (182, 196) (181, 196)

2 (184, 196) (182, 196) (181, 196)

3 (184, 196) (181, 196) (181, 196)

4 (183, 196) (180, 196) (180, 196)

5 (182, 196) (179, 196) (179, 196)

6 (181, 196) (178, 196) (177, 196)

7 (180, 196) (175, 196) (174, 195)

8 (178, 196) (172, 196) (170, 191)

9 (175, 196) (169, 191) (167, 191)

10 (172, 196) (165, 191) (164, 187)

11 (169, 196) (163, 183) (162, 183)

12 (168, 196) (162, 183) (161, 181)

Table 5: Cost performance under the ND-II nominal distributions

Costs Nominal Box Ellipsoid

(pers, perS) (�18743.30,�17003.18)(�17217.43,�15500.17)(�16687.83,�14973.62)
(pers|p̄t, per

S |p̄t)(�18743.30,�17003.18)(�17308.31,�15627.85)(�16819.02,�15146.56)
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For the ND-III nominal distributions, more varying (s
t

, S
t

) policies are ob-
tained for di↵erent periods due to the variations in the components of p̄

t

. Results
in Fig. 7 and Table 6 show that higher expected demands in some periods, e.g.,
t = 5, 9, 11, lead to higher s

t

and S
t

, which is consistent with the results for
the ND-I and ND-II nominal distributions. Similarly, due to the demand dis-
tribution uncertainty, the values of s

t

and S
t

for each period under the box and
the ellipsoid uncertainty sets are not higher than that when the actual demand
distribution is known. Results in Table 7 show that the costs under the box
and the ellipsoid uncertainty sets are higher than that when the actual demand
distribution is known.

0 1 2 3 4 5 6 7 8 9 10 11 12
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t

p̄
k t

 

 

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

k = 9

k = 10

Figure 6: ND-III: Nominal distributions with
varying expected demands over time
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Figure 7: Expected demands under the ND-
III nominal distributions for di↵erent time
periods

Table 6: (st, St) inventory policies for each period t under the ND-III nominal distributions

Period t

st, St
Nominal Box Ellipsoid

1 (180, 196) (176, 196) (175, 194)

2 (179, 196) (175, 196) (173, 191)

3 (179, 196) (174, 196) (172, 191)

4 (179, 196) (175, 196) (174, 193)

5 (180, 196) (177, 196) (175, 196)

6 (180, 196) (176, 196) (174, 195)

7 (180, 196) (175, 196) (174, 194)

8 (179, 196) (175, 196) (173, 192)

9 (180, 196) (176, 196) (174, 195)

10 (179, 196) (175, 196) (173, 193)

11 (180, 196) (176, 196) (175, 196)

12 (179, 196) (175, 191) (173, 191)

Using the same parameters for all the periods only a↵ects the values of and
as well as the cost performance, but does not a↵ect the optimality of the (s

t

, S
t

)
policy or the e↵ectiveness and practicality of the solution approaches. This is
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Table 7: Cost performance under the ND-III nominal distributions

Costs Nominal Box Ellipsoid

(pers, perS) (�18450.36,�16748.88)(�16882.05,�15218.83)(�16336.04,�14685.46)
(pers|p̄t, per

S |p̄t)(�18450.36,�16748.88)(�16958.00,�15346.51)(�16440.05,�14854.61)

because the multi-period model with demand distribution uncertainty is non-
stationary distribution free and the parameters are allowed to vary from period
to period.

6.2. Sensitivity to the uncertainty level

More experiments are conducted based on a single-period inventory model
to further test the e↵ectiveness and practicality of the robust optimization ap-
proaches in coping with demand distribution uncertainty. When only a single
period is involved, the subscript t is dropped from the notations. These experi-
ments also serve as a sensitivity analysis of the impact of the uncertainty levels
on the (s, S) policies and on the cost performance. Conducting these experi-
ments is quite convenient by setting T = 1 and designing a special mechanism
to settle accounts at the end of the period, i.e., by replacing h with h0 = h� c
and b by b0 = b+ c(Zipkin, 2000). Thus, Problems (14) and (16) with T = 1 are
solved for the box uncertainty set, and Problems (29) and (32) with T = 1 are
solved for the ellipsoid uncertainty set to find the (s, S) policies.

The optimal cost performance can be achieved when the actual, i.e., the
nominal, distribution is known. A cost performance loss is defined as the di↵er-
ence between the optimal cost performance under the nominal distribution and
the cost performance produced by a robust (s, S) policy under demand distri-
bution uncertainty. The cost performance loss can be interpreted as a fee that
an inventory manager is willing to pay to gain access to the perfect demand
information. The cost performance ratio in percentage is defined as the cost
performance loss over the optimal cost under the nominal distribution.

6.2.1. E↵ects on the inventory policies and their cost performance

In this section, all the parameter values are the same as those in the multi-
period problem, except for that T = 1 and the values of ↵ and � are varied for
the box and the ellipsoid uncertainty sets, respectively.

For the box uncertainty set, the scalar ↵ measuring the uncertainty levels
in demand distributions varies from 0 to 0.1 in an increment of 0.01. As ↵
increases, the distribution uncertainty levels also increase. By solving Problems
(14) and (16 with T = 1, the results obtained are shown in Figs. 8 and 9. Fig. 8
displays the relationships between ↵ and the reorder point s, and between ↵ and
the order-up-to level S. The optimal (s, S) policy when the actual distribution
is known corresponds to that at ↵ = 0. As ↵ increases, the reorder point stays
approximately the same but the order-up-to level decreases. This suggests that a
higher uncertainty level in demand distribution leads to a smaller order quantity,
and can thus a↵ect the inventory cost performance.
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Figure 8: (s, S) policies under di↵erent values
of ↵ for the box uncertainty set
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Figure 9: Cost performance under di↵erent val-
ues of ↵ for the box uncertainty set

Fig. 9 shows the relationships between ↵ and the robust inventory cost per-
formance and between and the cost performance obtained when applying the ro-
bust inventory policy to the single-period model with the nominal distribution.
A larger value of ↵, corresponding to a higher distribution uncertainty level,
yields a larger cost. As ↵ increases, compared with the more substantial changes
in the robust cost performance, the changes in the cost performance of applying a
robust (s, S) policy to the model with the nominal distribution are much smaller.

The largest and the smallest loss ratios are �1338.55�(�1274.45)
�1338.55 ⇥ 100% = 4.79%

at ↵ = 0.10 and �1338.55�(�1338.55)
�1338.55 ⇥ 100% = 0.00% at ↵ = 0.01, respectively.

These results suggest that the robust optimization approach with the box uncer-
tainty set can e↵ectively curtail the impact of demand distribution uncertainty
on the inventory cost performance.

For the ellipsoid uncertainty set, the scalar � varies from 0 to 0.5 in an
increment of 0.05. As � increases, the distribution uncertainty levels increase.
By solving Problems (29) and (32) with T = 1, the results obtained are shown
in Figs. 10 and 11. The results in Fig. 10 are similar to those in Fig. 8. They
suggest that the order quantities decrease as the distribution uncertainty levels
increase. Specifically, due to demand distribution uncertainty, the values of s
and S under di↵erent values of � are all smaller than their respective optimal
values at � = 0.

Fig. 11 shows that the cost performance obtained by applying the ro-
bust (s, S) policy to the model with the nominal distribution is superior to
the robust inventory cost performance. The largest and the smallest cost per-
formance loss ratios are �1338.55�(�1204.44)

�1338.55 ⇥100% = 10.2% at � = 0.50 and
�1338.55�(�1338.55)

�1338.55 ⇥100% = 0.00% at � = 0.05, respectively. These results
suggest that the proposed robust optimization approach with the ellipsoid un-
certainty set is also e↵ective in dealing with demand distribution uncertainty.

The results in Figs. 9 and 11 should motivate inventory managers to improve
their forecast accuracy in demand distributions. Smaller values of ↵ and �
represent more accurate forecasts on the demand distributions and yield better
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Figure 10: (s, S) policies under di↵erent val-
ues of � for the ellipsoid uncertainty set
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Figure 11: Cost performance under di↵erent
values of � for the ellipsoid uncertainty set

inventory cost performance.

6.2.2. Further examination

To further test the e↵ectiveness and practicality of the proposed robust opti-
mization approaches, another nominal demand distribution p̄ = (0.03, 0.23, 0.19,
0.11, 0.16, 0.10, 0.01, 0.08, 0.05, 0.04)0 is used. The actual distribution for the
single-period inventory problem is assumed to follow this nominal distribution.
All other parameters remain the same as above. The optimal (s, S) policy for
this nominal distribution is (s, S) = (165, 191), leading to an optimal cost of
�1345.20.

Fig. 12 shows the reorder point s and the order-up-to level S, while Fig.
13 shows the cost performance, obtained with the robust optimization approach
with the box uncertainty set under di↵erent distribution uncertainty levels. The
results in Figs. 12 and 13 are similar to those in Figs. 8 and 9. The cost
performance losses are also quite small. The largest and the smallest loss ratios
are �1345.20�(�1268.22)

�1345.20 ⇥ 100% = 5.72% at ↵ = 0.10 and �1345.20�(�1343.77)
�1345.20 ⇥

100% = 0.11% at ↵ = 0.01, respectively.
Figs. 14 and 15 show the results for the ellipsoid uncertainty set. The results

are very similar to those in Figs. 10 and 11. The largest and smallest loss ratios
are �1345.20�(�1211.60)

�1345.20 ⇥ 100% = 9.93% at � = 0.50 and �1345.20�(�1344.62)
�1345.20 ⇥

100% = 0.04% at � = 0.05, respectively. The results in Figs. 13 and 15 suggest
that the proposed robust optimization approaches are e↵ective in dealing with
demand distribution uncertainty for di↵erent nominal distributions.

7. Conclusion

New models are proposed for the multi-period inventory management prob-
lem with fixed ordering costs under uncertainty in discrete demand distributions.
The optimality is proved for (s

t

, S
t

) policies for each period. Both the box and
the ellipsoid uncertainty sets are used to describe the demand distribution un-
certainty, and tractable robust counterpart models are developed. The proposed
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Figure 12: (s, S) policies under di↵erent val-
ues of ↵ for the box uncertainty set
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Figure 13: Cost performance under di↵erent val-
ues of ↵ for the box uncertainty set
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Figure 14: (s, S) policies under di↵erent val-
ues of � for the ellipsoid uncertainty set
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Figure 15: Cost performance under di↵erent val-
ues of � for the ellipsoid uncertainty set

models under both the box and the ellipsoid uncertainty sets can be reformu-
lated as tractable mathematical programming models, and can thus be solved
e�ciently using robust optimization techniques. The robustness of the multi-
period inventory models and the e↵ectiveness and practicality of the proposed
robust optimization approaches in coping with demand distribution uncertainty
are validated through a numerical study. The obtained results suggest that the
total cost changes stably as the uncertainty levels change and is close to the
optimal cost. This implies that the proposed models are robust and the cor-
responding solution approaches are powerful for solving inventory management
problems without known demand distributions. These robust optimization ap-
proaches can also incorporate various demand distribution uncertainty levels.

The proposed models and the solution approaches are only validated for
the box and the ellipsoid uncertainty sets. Other techniques may be used to
construct other types of uncertainty sets. For example, ��divergence based on
statistical inference or likelihood estimate can be used to build a confidence in-
terval of the uncertain demand probabilities with a certain confidence level(Ben-
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Tal et al., 2013; Wang et al., 2013; Bayraksan and Love, 2015). Furthermore,
multi-item problems with budget constraints can be incorporated into the multi-
period inventory models. Value-based indicators bridging the physical and the
financial operations, such as the economic value added, can be used to measure
the performance of a multi-period inventory policy in medium-term operations.
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A.1 Proof of Theorem 1

The following two lemmas using the definition of a K-convex function are used to prove Theorem 1.

Lemma 1. For any t = 1, 2, ..., T , the function  t(x) (7) is continuous with respect to x and lim
|x|!1

 

t(x)=

1. Specifically,  

t(x) is a K-convex function of x.

Lemma 2. Under Lemma 1, let S

t

be a minimum point of  

t(x) and s

t

be any element of the set

�
x

��
x  S

t

, 

t(x) =  

t(S
t

) +K
 

(37)

The following results hold

(i)  

t(S
t

)   

t(x), for all x 2 R.

(ii)  

t(S
t

) +K =  

t(s
t

)   

t(x), for all x  s

t

.

(iii)  

t(x)   

t(y) +K, for all x and y with s

t

 x  y.

The proof of Lemma 1 follows a similar logic in Scarf (1960). A di↵erent K-convex function from

that in Scarf (1960) and mathematical induction are used to complete the proof. First, consider the

1



last period, i.e., t = T ,  T (x) = c

T

x+G

T (x) = c

T

x+max
pT

{C
T

(x)0p
T

}. Obviously,  T (x) is continuous

and lim
|x|!1

 

T (x) = 1. Specifically,  T (x) is convex and, hence, a K-convex function.

Next, assume  t(x) is continuous, K-convex and lim
|x|!1

 

t(x) = 1, then there exist two parameters

s

t

and S

t

with s

t

< S

t

such that S

t

minimizes  t(x) and  

t(s
t

) =  

t(S
t

) + K. From the definitions

of G

t(x) and z

t(x), z

t(x) =  

t(S
t

) + K � c

t

x if x  s

t

and z

t(x) =  

t(x) � c

t

x otherwise. Since

 

t(s
t

) =  

t(S
t

) +K, zt(x) is continuous and K-convex.

Finally, consider period t� 1

 

t�1(x) = c

t�1x+G

t�1(x)

= c

t�1x+max
pt�1

�
C

t�1(x)
0p

t�1 + �z

t(x�D

t�1)
 

Therefore,  t�1(x) is continuous. Since z

t(x) is continuous and -convex, according to the properties of

the K-convex functions (Zipkin, 2000, P398), zt(x�D

t�1) is -convex and thus  t�1(x) is also -convex.

Furthermore, lim
|x|!1

 

t�1(x) = 1.

Based on Lemma 1 and the properties of a -convex function, Lemma 2 is straightforward. The proof

is omitted and readers are referred to Simchi et al. (2014). Lemmas 1 and 2 then lead to Theorem 1.

A.2 Proof of Theorem 2

Let (x⇤, �⇤
T

, ⌧ ⇤
T

,⌫⇤
T

) be an optimal solution to Problem (14) with an optimal objective value ✓⇤. It

can be found by comparing the constraints of Problems (13) and (14) that (�⇤
T

, ⌧ ⇤
T

,⌫⇤
T

) is also feasible

to Problem (13). Given x

⇤, ⌥⇤(x⇤) = ⇠
T

⌧ ⇤
T

+ ⇠
T

⌫⇤
T

by the strong duality of linear programming. If x⇤

is not optimal to Problem (11), there exists another solution x̃

⇤ to Problem (11) such that

c

T

x̃

⇤ + C

T

(x̃⇤)0p̄
T

+⌥⇤(x̃⇤)  c

T

x

⇤ + C

T

(x⇤)0p̄
T

+⌥⇤(x⇤)

= c

T

x

⇤ + C

T

(x⇤)0p̄
T

+ ⇠
T

⌧ ⇤
T

+ ⇠
T

⌫⇤
T

= ✓

⇤
.

Given x̃

⇤, let (�̃⇤
T

, ⌧̃ ⇤
T

, ⌫̃⇤
T

) be an optimal solution to Problem (13). By comparing the constraints of

Problems (13) and (14), it can be found that (x̃⇤, �̃⇤
T

, ⌧̃ ⇤
T

, ⌫̃⇤
T

) is also feasible to Problem (14). Similarly,

⌥⇤(x̃⇤) = ⇠
T

⌧̃ ⇤
T

+ ⇠
T

⌫̃⇤
T

by the strong duality of linear programming. Therefore, the objective value of

Problem (14) at (x̃⇤, �̃⇤
T

, ⌧̃ ⇤
T

, ⌫̃⇤
T

), denoted by ✓̃⇤, is not larger than ✓

⇤, i.e., ✓̃⇤  ✓

⇤. This contradicts

2



the assumption that (x⇤, �⇤
T

, ⌧ ⇤
T

,⌫⇤
T

) is an optimal solution to Problem (14). Hence, x⇤ is an optimal

solution to Problem (11).

Conversely, if x̂

⇤ solves Problem (11), (�̂⇤
T

, ⌧̂ ⇤
T

, ⌫̂⇤
T

) is an optimal solution to Problem (13) with

x = x̂

⇤. If (x̂⇤, �̂⇤
T

, ⌧̂ ⇤
T

, ⌫̂⇤
T

) is not an optimal solution to Problem (14), there exists another solution

(˜̂x⇤, ˜̂�⇤
T

,

˜̂⌧ ⇤
T

,

˜̂⌫⇤
T

) that solves Problem (14). According to the discussion above, ˜̂x⇤ is an optimal solution

to Problem (11), contradicting the assumption that x̂⇤ solves Problem (11). Therefore, solving Problem

(14) is equivalent to solving Problem (11).

A.3 Proof of Theorem 3

The reorder point s
T

can be found by solving

max
yST

G

T (y)

s.t. G

T (y)  K + c

T

(S
T

� y) +G

T (S
T

),
(38)

where the optimal value of the variable y is the reorder point s
T

, i.e., s
T

= y

⇤, and G

T (y) is the optimal

objective value of the following problem with variables (�
T

, ⌧
T

,⌫
T

) 2 R⇥R

KT ⇥R

KT

min
�T ,⌧T ,⌫T

C

T

(y)0p̄
T

+ ⇠
T

⌧
T

+ ⇠
T

⌫
T

s.t. e0�
T

+ ⌧
T

+ ⌫
T

= C

T

(y)

⌧
T

 0,⌫
T

� 0.

(39)

The constraint in Problem (38) is satisfied at equality at s

T

. Therefore, Problem (38) can be

rewritten as

max
yST

min
�T ,⌧T ,⌫T

K + c

T

(S
T

� y) +G

T (S
T

)

s.t. e0�
T

+ ⌧
T

+ ⌫
T

= C

T

(y)

⌧
T

 0,⌫
T

� 0

C

T

(y)0p̄
T

+ ⇠
T

⌧
T

+ ⇠
T

⌫
T

= K + c

T

(S
T

� y) +G

T (S
T

).

In this optimization problem, the objective function is composed of a constant K+ c

T

S

T

+G

T (S
T

)

and a linear term �c

T

y that are both independent of the variables (�
T

, ⌧
T

,⌫
T

). Therefore, s
T

can be

found by solving Problem (16).
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A.4 Proof of Theorem 4

Let (x⇤,�⇤
T

, ⇢

⇤
T

, �

⇤
T

) and ✓⇤ be an optimal solution and the optimal objective value to Problem (29),

respectively. Then x

⇤ is also feasible to Problem (25). Denote by ✓⇤0 the objective value of Problem

(25) at x = x

⇤. If x

⇤ is not optimal to Problem (25), there exists another solution x̃

⇤ that solves

Problem (25) such that ✓̃⇤0 < ✓

⇤
0. Given x = x̃

⇤, (�̃
⇤
T

, ⇢̃

⇤
T

, �̃

⇤
T

) is obtained by solving Problem (28). By

the strong duality of the Lagrangian, �⇤(x⇤)=�(�⇤
T

)0p̄
T

�⇢⇤
T

and �⇤(x̃⇤) =�(�̃
⇤
T

)0p̄
T

�⇢̃⇤
T

. Therefore,

✓̃ = ✓̃0 < ✓

⇤
0 = ✓

⇤. Because Problems (28) and (29) have the same set of constraints, (x̃⇤, �̃
⇤
T

, ⇢̃

⇤
T

, �̃

⇤
T

)

is also feasible to Problem (29). This contradicts the assumption that (x⇤,�⇤
T

, ⇢

⇤
T

, �

⇤
T

) is an optimal

solution to Problem (29) because ✓̃⇤ < ✓

⇤. Thus, x⇤ is an optimal solution to Problem (25).

Conversely, if x̂⇤ is an optimal solution to Problem (25), (�̂
⇤
T

, ⇢̂

⇤
T

, �̂

⇤
T

) can be obtained by solving

Problem (28). Since Problems (28) and (29) have the same set of constraints, (x̂⇤, �̂
⇤
T

, ⇢̂

⇤
T

, �̂

⇤
T

) is also

feasible to Problem (29). If (x̂⇤, �̂
⇤
T

, ⇢̂

⇤
T

,�̂

⇤
T

) is not an optimal solution to Problem (29), there exists

another solution (˜̂x⇤, ˜̂�⇤
T

,

˜̂
⇢

⇤
T

,

˜̂
�

⇤
T

) that solves Problem (29). From the discussion above, ˜̂x⇤ is an optimal

solution to Problem (25), contradicting the assumption that x̂⇤ is an optimal solution to Problem (25).

Therefore, (x̂⇤, �̂
⇤
T

, ⇢̂

⇤
T

,�̂

⇤
T

) is an optimal solution to Problem (28).
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