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Abstract—Taxi service is an important mode of public trans-
portation in most metropolitan areas since it provides door-to-
door convenience in the public domain. Unfortunately, despite
all the convenience taxis bring, taxi fleets are also extremely
inefficient to the point that over 50% of its operation time could
be spent in idling state. Improving taxi fleet operation is an
extremely challenging problem, not just because of its scale, but
also due to fact that taxi drivers are self-interested agents that
cannot be controlled centrally. To facilitate the study of such
complex and decentralized system, we propose to construct a
multiagent simulation platform that would allow researchers
to investigate interactions among taxis and to evaluate the
impact of implementing certain management policies. The
major contribution of our work is the incorporation of our
analysis on the real-world driver’s behaviors. Despite the fact
that taxi drivers are selfish and unpredictable, by analyzing a
huge GPS dataset collected from a major taxi fleet operator,
we are able to clearly demonstrate that driver’s movements
are closely related to the relative attractiveness of neighboring
regions. By applying this insight, we are able to design a
background agent movement strategy that generates aggregate
performance patterns that are very similar to the real-world
ones. Finally, we demonstrate the value of such system with a
real-world case study.

Keywords-multiagent simulation; urban transportation;
driver behavior; mobility pattern; taxi fleet

I. INTRODUCTION

Taxi service is an important mode of public transportation
in most metropolitan areas (e.g., in Singapore, taxi rides
accounted for around 17% of public transports in 2007/08),
since it provides door-to-door convenience in the public
domain. Unfortunately, despite all the convenience taxis
bring, taxi fleets are also extremely inefficient. In an ordinary
city, a taxi can easily spend 50% of its operation time idling
(waiting in queues or roaming around empty). For cities that
are getting increasingly crowded, inefficient taxi fleet not
only offers lower quality of service than its potential would
grant, it also creates negative impacts on environment and
road congestion. As such, improving the efficiency of the
taxi fleet operation is an important issue for government
agencies and taxi fleet operators alike.

Many past research efforts have been devoted to the
modeling of the taxi fleet operations and also approaches
that would improve the efficiency of taxi fleets. For example,

advances in technologies like Global Positioning System
(GPS) and communication networks enable advanced dis-
patch system to be deployed [1], [2]. On the other hand, a
series of work conducted by Yang et al. [3], [4] provides a
good framework for understanding the equilibrium proper-
ties of taxis in a network at the macro level. However, by
reviewing these past works (which are mostly published in
the transportation literature), we notice that there are very
few attention paid to the decentralized nature of the taxi
system. One exception is the design of taxi dispatch systems,
where we do see the application of multi-agent technologies
[5], [6]; nonetheless, taxi dispatch is only one possible
mode of operations (the other more dominant modes being
street pick-ups and queueing), and a comprehensive study
that covers all modes of operations from a decentralized
perspective is still not seen. Such decentralized perspective
is critical in modeling taxi fleets because taxis can only
be incentivized or coordinated and not centrally controlled.
With proper models in place, not only can we improve the
efficiency of current taxi fleets, a range of new services
could be designed and evaluated as well (e.g., efficient cab-
sharing service for serving last-mile travels between desired
destinations and the closet public transport hubs).

In this paper, we propose to build a multi-agent-based
simulation platform, TaxiSim, to simulate the operation of
taxi fleets. TaxiSim is designed to be capable of modeling
individual taxi driver’s strategies at micro level, and it’s also
designed to be scalable so that it can simulate thousands of
taxis simultaneously. Real-world operational data, if avail-
able, can also be imported to TaxiSim, and this allows us
to construct a highly realistic simulation environment. This
would allow researchers and policy makers to study and
evaluate potential mechanisms, policies, and new services
for improving taxi services.

II. BACKGROUND

Since the early days of digital computers, simulations
have played an important role in transportation research.
In all major areas of transportation studies, be it traffic
signal control, traffic assignment (routing), or even regional
planning, simulations are all involved deeply. With rapid
development of computing technology, simulations have



now become even more powerful and ubiquitous. Some of
the well-known transportation simulation platforms include
TRANSYT [7], CORSIM [8], and MITSim [9]. Each of
them is designed with different granularity (could be macro-
scopic, mesoscopic, or microscopic), and each might be
used for different applications as well (e.g., vehicle routing,
demand forecast, or traffic signal control). More recently,
the advances in multi-agent technology have also motivated
researchers to construct simulations that are capable of
treating individual actors inside a transportation system as
agents. Some notable open-source multi-agent simulation
projects include MATSim [10] and SUMO [11]. We would
like to emphasize that this is a very incomplete listing and
it’s not our intention to conduct a comprehensive reviews on
available traffic simulation softwares available. Our purpose
is to highlight the importance of simulation methods in
conducting transportation studies, and also the growing trend
of adopting multi-agent technology.

Despite all these efforts in building computer simulations
for a wide range of studies, to the best of our knowledge,
we cannot find any simulation platform that is capable of
modeling realistic taxi fleet operations. Taxi fleet operation
is special and cannot be modeled straightforwardly by using
existing technologies for the following reasons:

• In most cities, taxi drivers pay a fixed rent and keep all
remaining revenue. This revenue structure makes them
naturally selfish, and to build a credible model, we need
to understand how drivers make decisions empirically.

• Taxi drivers are subject to both voluntary and involun-
tary movements. Involuntary movements occur when
customers board their vehicles. After a taxi reaches
the destination specified by the boarded customer, it
has to continue its voluntary movement from there.
Such movement pattern is the most critical difference
between taxis and ordinary passenger cars.

To address these unique requirements, we decided to develop
our own multiagent simulation platform, TaxiSim.

III. SYSTEM ARCHITECTURE

TaxiSim is designed to be a decentralized discrete event
simulation, focusing on modeling only taxi driver’s be-
haviors. The traffic condition in the network is regarded
as exogenous, and will not be modeled explicitly. This
simplifies the design of TaxiSim, however, it should not
have an adverse impact on the realism of the simulation,
since taxis only constitute a small percentage of all vehicles.
All taxi agents in TaxiSim are to be executed as individual
threads in the simulation, and each agent maintains its
own event queue. There are three major event types (the
interactions among these events are illustrated in Figure 1):

• Movement event: move to a particular location. This
event is generated by the main strategy routine. The
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Figure 1. Flow of events.

expiry time of the event is the expected travel time
from the current location to the destination. When the
movement event expires, the street pickup module (to
be described in detail later) will be invoked (if the
service mode is roaming) to determine whether a street
job can be picked up. If a job can be picked up, a job
event will be spawned.

• Queueing event: join a particular queue. This event can
only be generated if the current location is at the queue
and queueing is chosen as the service mode. The expiry
time of the event is the expected waiting time in the
queue before picking up a job. When this event expires,
the job event will be spawned.

• Job event: serve a client who intends to move to a
particular location. The expiry time is the expected
travel time from the current location to the destination.
At expiry, revenue will also be generated.

With these event definition, the progression of the simulation
can be described by the following steps:

1) (Initialization) Invoke main strategy functions in all
threads, and one of the three events will be generated.

2) (Iteration) The main thread queries for the earliest
event expiry time from all threads; that thread will
be asked to pop and execute the event. For all other
threads, their local clocks will be progressed to this
earliest expiry time.

3) Step 2 will be executed until the stopping criterion
is met (e.g., when the simulation clock exceeds 12
hours).

From Figure 1 we can see that the event structure of
TaxiSim is relatively simple and the progression of the
simulation depends heavily on the implementation of taxi
agent’s strategy. To simplify the design of agent strategy,
we further decompose the agent strategy into components in
Figure 2. The role of each component is briefly explained.
A full-blown example on the strategy design is deferred to
the next section.
Taxi Initialization Module. This component is responsible
for warming up the simulation with an initial taxi distribu-
tion. This module has to generate two pieces of information:
1) geographical location and 2) agent type (which includes
both the strategy and the strategy-related parameters). The
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Figure 2. An agent-centric view of the system.

initialization module is controlled by a list of user-supplied
parameters, and if necessary, users can supply their own
initialization routines as well.

Time Keeping Module. This module repeatedly queries
for the earliest event expiry time from all threads and also
synchronizes the local clocks at all threads.

Mode Selection Module. This module decides what mode
of operation should be used. This is the first major function
required to define an agent’s strategy.

Queueing Module. Suppose an agent chooses to join a
particular taxi queue, the taxi queue will be simulated
specifically by the queueing module. The most important
queueing features to simulate is the arrival of customers at
the queue according to demand data provided by the demand
generator and the maintenance of currently queued agents.

Street Pickup Module. If an agent decides to roam the
street, this module will determine which areas it should
go towards. At each discrete epoch, it will also determine
whether this agent can pick up a street job. The model we
used in determining such pickups will be described in more
detail in later section

Taxi Movement Module. This module dictates how a taxi
moves from one point to another on the road network. This
is the second major function required to define an agent’s
strategy. A default background strategy is provided, however,
it can be replaced if necessary.

Demand Generator. Customer demands are generated by
this module. The demand generated can be either based on
real-world data or completely fictitious. No matter how a
demand is generated, it must come with four parameters: a)
origin, b) destination, c) time, and d) fare.

Logger. This module logs completed trips. If any additional
information needs to be logged, user-defined loggers can be
implemented based upon a common logging interface.

The simulation framework in TaxiSim allows a wide vari-
ety of servicing strategies to be implemented. A background

strategy that closely resembles aggregate driver behaviors is
included as the default strategy in TaxiSim. If necessary,
user-defined strategy can also be designed easily by using
the provided API.

IV. DESIGNING THE BACKGROUND STRATEGY

As Gode and Sunder [12] have demonstrated in their work
on the financial market simulation, simplistic and random
zero intelligence (ZI) agents can collectively generate ratio-
nal aggregate outcomes. When designing the background
strategy for TaxiSim, we adopt similar design principles
and try to identify a strategy that is simple yet capable of
generating credible aggregate results.

In TaxiSim, taxi driver’s behavior consists of two compo-
nents: 1) service mode choice and 2) service strategy. For a
taxi driver, the service mode choice refers to the choice of
operation mode (roaming, queueing, or waiting for dispatch
job). After the service mode is chosen, a taxi driver will
then try to decide the best operational policy to use in that
mode. For example, a taxi driver, on choosing the roaming
mode, will have to decide which region to roam and what
path to take. The implication of this design is that strategies
can be built incrementally. For the background strategy, we
initially include only street roaming (the dominant mode of
operation), and if necessary, add additional modes later.

When designing the background strategy, our goal is to
create a fleet of simulated taxis that is representative of
real-world fleets. We do not intend to model taxi behaviors
at micro level, instead, the macro-level regularity is what
we are after. We made such modeling choice since micro-
level real-world patterns are extremely noisy, and it’s often
difficult (if not impossible) to infer individual’s intention
from the observed data traces. Moreover, even when we have
accurate behavioral models for certain individuals, it is still
far from being representative of real-world fleet.

The macro-level regularity we are interested in is the
revenue accumulation pattern over time. The revenue ac-
cumulation pattern is chosen as the target since it aligns
with agent’s objective function and the day-to-day pattern
observed from the empirical data is consistently recurrent.

The design idea for the background strategy comes from
our analysis of the empirical data, which is described in the
following subsection.

A. Quantifying Drivers’ Behaviors

The source of data that supports our analysis comes from a
taxi fleet operator in Singapore. Our analysis on the dataset
reveals a surprising resemblance of the aggregate driver’s
behaviors to a myopic strategy. More precisely, the myopic
strategy refers to choosing zones to move to according to the
relative density of trip originations. The definition of zones
in our analysis is adopted from the official zoning defined
by the Singapore Land Authority (illustrated in Figure 3).



Figure 3. Zones defined in Singapore.
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Figure 4. The correlations between outgoing trips and incoming flows at 7am, 7pm, and all hours.

The available data for our analysis includes trip informa-
tion and movement logs. For each captured trip, the dataset
contains fare, origin coordinate, destination coordinate, and
times at departure and arrival. For movement logs, each log
entry captures time of the log, latitude, longitude, and taxi
status (free, hired, or others). The time-dependent density
of trip origination out of each zone can be easily measured
by accumulating trip counts based on origin coordinates and
trip starting time. The free movement of drivers, on the other
hand, is much more difficult to measure, due to the following
two reasons:

• Some drivers might not have any strategy in mind
when making movement decisions. For example, they
might simply choose to arbitrarily roam the current
neighborhood, with no specific destination in mind. Or
they might even just park along the roadside and rest.
These drivers are going to generate significant noises

in the dataset.
• Even when drivers have specific destinations they

would like to travel to, they are going to pass through
a number of zones in between their current zones and
the destination zones, and a lot of unintended log traces
will be generated alone the way as a result.

To overcome these two difficulties, we adopt a simple
threshold-based rule in filtering movement logs. From the
movement logs, we first infer the amount of time each driver
spent in the zones that s/he passes by. For each zone, we
then define a size/distance dependent lower bound to filter
out movements that are unlikely to be intentional (since they
have not stayed long enough to show that they are indeed
interested in that zone). After this filtering is done, we then
aggregate all inbounding flows into every zone at each and
every hour.

If drivers indeed adopt a myopic strategy in aggregate,



we should see strong positive correlation between outgoing
trips from a zone (which represent how attractive this zone
is) and incoming flows to the same zone (which represent
drivers’ aggregate intentions to go to this zone). Figure 4
illustrates the analysis on the data we collected from the
weekdays of July 2009. Each plotted data point represents
the count from a zone in a particular hour, and all counts
per hour (flows and trips) are converted to percentages of
total counts over all zones per hour to ensure meaningful
comparison.

We choose two most representative times to highlight
our analysis. Two highlighted time frames, 7–8am and 7–
8pm, are the morning and evening rush hours and their
R2 values are 0.7044 and 0.7739 respectively. For all time
frames, the R2 value is slightly lower at 0.6747. From
this analysis we can see that a strong positive correlation
indeed exists between the relative attractiveness of a zone
and drivers’ aggregate movement. Furthermore, we can see
that such correlation is stronger when traffic patterns are
more recurrent and predictable (e.g., the ones during rush
hours). However, even the R2 value of 0.6747 for all hours
demonstrates sufficiently strong positive correlation.

B. The Background Strategy

Based on our empirical findings, we design a roam-
ing strategy that makes probabilistic moves toward differ-
ent zones according to their relative attractivenesses (pre-
computed based on historical demands). In other words,
the taxi will make randomized movement weighted by the
earning potentials. Such strategy should create aggregate
movement patterns similar to the ones we observed from
the real-world data.

Formally speaking, zones are predefined polygons that are
mutually exclusive and collectively cover the whole area of
interest (the main Singapore island in our case). The earning
potential, or the attractiveness of zone j, denoted as aj , can
be quantified by

aj ∝
dj

rj(p)2
, (1)

where dj is the number of trips departing from zone j and
rj(p) is the distance between the centroid of zone j and
the location p. This definition is quite intuitive: a zone will
be more attractive if it has more trips and is closer to the
current location. aj is inversely correlated to the square of
rj(p) since we want to account for the fact that longer
distance incurs both higher movement cost and also longer
traveler time. The background strategy is designed to follow
the attractivenesses computed in (1): the probability that
the agent moves toward a particular zone is proportional
to its attractiveness, i.e., pj = aj/

∑
j aj , where pj is the

probability that zone j will be chosen.

V. ROAMING MODE: DESIGN AND CALIBRATION

The myopic background strategy introduced in the previ-
ous section provides the building block for the modeling of
street roaming. However, the interaction of agent strategies
still needs to be carefully designed and calibrated to achieve
a realistic simulation. In this section, we discuss how to
model the competition among taxi drivers for a limited pool
of street jobs, and how we can calibrate the simulation with
real-world data.

A. Designing the Street Pickup Module
The role of street pickup module is to determine what

should happen when multiple agents are competing for the
same pool of street jobs and it should be independent of the
design of agent strategies.

To determine whether an agent can pick up a job at its
current location, following factors need to be considered:

1) Spatial constraint: The agent must be within certain
radius to the prospective job in order to pick it up.

2) Temporal constraint: The agent can only pick up jobs
that are already revealed (i.e., for customers who have
already revealed their needs for travels).

3) Competition: Even when an agent meets both the
spatial and temporal constraints, it still has to compete
with other agents (which may or may not be included
in the simulation) for the revealed job.

Formally speaking, we define a job j to be the tuple
(pjs, p

j
e, t

j
s, t

j
e), where pjs, p

j
e, t

j
s, and tje are respectively

the job’s origin coordinate, destination coordinate, departing
time, and arrival time. With these notations, the set of
feasible jobs at time tc and location pc can then be defined
as:

Jp(tc, pc) ≡ {j | ts > tc + T (pc, ps), T (pc, ps) ≤ ε}, (2)

where T (pc, ps) refers to the travel time from pc to ps and
ε refers to the duration of one time unit in our simulation.

For jobs in Jp(tc, pc), the probability for a job to be
picked up should depend on the relative distance between
a job’s originating location and the taxi’s current location.
This comes from the intuition that taxis closer to a customer
should have greater chances of getting the job. Similarly,
the temporal difference between a job’s reveal time and the
time when the taxi spot that job should also follow similar
intuition, i.e., a taxi comes closer to a job when it’s revealed
should be more likely to pick up that job than taxis that come
later. In addition, the chance to pick up jobs also depends
on how competitive an area is; i.e., all things being equal, it
should be less likely to pick up a job in a more competitive
area.

To summarize the influences of both the spatial and
temporal distances, we define the normalized composite
(NC) distance from a taxi to a job as:

δ =
1
2
×
[
δd
Dε

+ (1− δt
ε

)
]
, (3)



where δd and δt refer to the spatial and temporal distances
between the job and the taxi respectively and Dε refers to
the maximum distance the taxi can travel during one time
unit. By construction δ should be a real number in the range
of [0, 1].

When δ = 1, the chance of picking up a trip is 0.1. When
δ = 0, the chance of picking up a trip is 0.8. For 0 < δ < 1,
the pickup probability follows an exponential function, and
can be parametrized as p(δ) = αeβδ . α and β can be solved
by using the above boundary conditions.

The level of competition in a zone is summarized by
the chance of retrying and it represents how likely a taxi
can keep looking for jobs in a time period. If a particular
zone is very competitive, then there should be fewer such
retrying opportunities, and the chance of retrying should
have a smaller value.

To determine whether an agent can pick up a job at the
current location and in the current time period, the following
steps will be utilized (for the ease of presentation, assume
that Jp(tc, pc) is an ordered set with elements j1, j2, . . . and
δji ≤ δji+1 for all i):

1) Set the counter i← 1.
2) For ji, the probability that it will be picked up is

p(δji). Sample from p(δji), if the result is positive,
stop and return ji (and ji will be removed globally
from all agents’ considerations). If the result is nega-
tive, move to the next step.

3) With probability (1 − qz,t), the street pickup module
will terminate the search, return to the main strategy
module and notify the agent to take next action. If the
search is not terminated yet and i + 1 ≤ |Jp(tc, pc)|
(implying that there is available job in set Jp(tc, pc)),
increase the counter, i← i+ 1, and repeat step 2.

When the above procedures terminate, the agent will either
be awarded a job (which will trigger the creation of a job
event) or it will be ordered to move. The parameter qz,t
introduced in step 3 is the retrying probability mentioned
earlier, and it reflects the likelihood that the taxi will be
granted an additional chance in trying to search for another
job. In a more competitive area, such retrying will be less
likely and it is reflected in having a lower qz,t. As we should
see in the next section, this parameter is our main focus in
calibrating the simulation.

B. Calibrating the Street Pickup Module

The introduction of the background strategy allows us
to put together a working simulation. However, to have
a realistically useful simulation, we still need to calibrate
it with the real-world dataset that we have. Of the three
operational modes (roaming, queueing, and job dispatching),
queueing and job dispatching need almost no calibration, as
both modes follow deterministic rules and their operations
are quite predictable. The most difficult mode to deal with
is the roaming mode, since a lot of external factors (most

of them uncertain) are involved. Therefore, when calibrating
TaxiSim, our focus is on the roaming mode (handled by the
street pickup module just introduced).

We propose a simple calibration process that is shown to
be very effective in modeling unobservable competitions. As
mentioned in the previous section, we have summarized the
level of competition using the retrying probability. There-
fore, the calibration of TaxiSim can be abstractly viewed
as an optimization problem, with decision variables being
the retrying probabilities and the objective function aiming
to minimize the weighted sum of absolute differences in
average revenues between the simulation and the real-world
data. Expressed formally, the optimization problem is:

min
∑
z,t

wz,t |rz,t({qz,t})−Rz,t| (4)

s.t.
0 ≤ qz,t ≤ 1,∀z, t.

In the above formulation, rz,t and Rz,t are the average
revenues obtained from the simulation and real-world data
respectively, qz,t is the chance of retrying, and wz,t is the
percentage of trips originating from zone z in time period
t. The definition of wz,t straightforwardly incorporates the
relative importance of different tuples.

Although Problem (4) looks simple, it’s in fact very
difficult to be solved exactly because rz,t({qz,t}) can only
be evaluated by executing multiple simulation runs. Due to
the intractable nature of Problem (4), we have proposed a
simple hill-climbing heuristic for the simulation calibration.
This heuristic is described by the following steps:

1) Initialize retrying probability qz,t to 0.4 and step size
εz,t to 0.1 for all (z, t) tuples.

2) Execute the simulation by using the current vector
of {qz,t}. Compute the average revenues rz,t for all
tuples.

3) For each (z, t) tuple, if rz,t > Rz,t, let qz,t ← qz,t −
εz,t, otherwise let qz,t ← qz,t + εz,t. If the gap (i.e.,
|rz,t({qz,t})− Rz,t|) narrows over previous iteration,
let εz,t ← 0.5 εz,t.

4) Check if the stopping criterion is met; if not, go to
step 2, otherwise, stop.

The stopping criterion can be either time-based, in which
the process will execute a fixed number of iterations, or
performance-based, in which the overall performance is
monitored, and the process will terminate if it is not making
sufficient improvement.

To calibrate TaxiSim, we load the simulation with 1,000
agents, each running the background strategy, and the cali-
bration result is plotted in Figure 5. The result shows that
after calibration, the average difference of revenue between
our simulation and the real-world data is around $0.46.
Considering that the average revenue per hour is around $12,
this translates into a mere 3.8% error rate.
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Figure 5. The evolution of weighted sum of differences over iterations.
Note that the value stabilizes after iteration 5.

VI. USE CASE: EVALUATING A STRATEGY PROFILE

In this section, we evaluate the performance of a new
strategy for taxi drivers and a potential information service
from the fleet operator. We first describe the basis of the
strategy, then our simulation setup and finally our analysis
of the simulation result.

A. Optimal Service Choice Strategy

For individual agents, one of the difficulties in choosing
service mode (and also service strategy) is that agents
usually have very limited information regarding remote
locations. Without such information agents will have to
make their own predictions and this potentially can incur
a lot of errors (and resulting in sub-optimal decisions). The
inefficiency of such decision making process in real-world
operations is quantified in an earlier study by [13], and one
potential solution is for the taxi fleet operator to provide
agents with necessary real-time information so that they can
compute their “optimal service choices”.

However, if we evaluate such proposal at the system level,
it is doubtful such solution will actually improve driver’s
revenue. In fact, we suspect that due to the lack of strate-
gic reasoning (recognizing the fact that other drivers also
possess similar information), agents will end up clogging
the queue when the expected revenue at the queue is high,
and unnecessarily avoiding the queue when the expected
revenue at the queue is low. This not only might cause
drivers to suffer, it might also create adverse effects at the
queue (the queue will constantly be either too crowded or
too underserved). A formal analysis and studying of such
phenomenon is beyond the scope of this paper, but we
would like to present some initial simulation results from this
study to demonstrate how TaxiSim can be used in assisting
research agendas on quantifying driver’s intentions as well
as on designing incentive mechanism to better coordinate a
fleet of selfish drivers.

B. Simulation Setup and Result

We set up a simulation with 2,000 taxis, and we try
to experiment with different market penetration ratios of
the “intelligent service choice technology”. We start our
experiment with only one agent equipped with such tech-
nology, and then gradually increase the ratio to 20%, 40%,
60%, 80%, and then finally ∼100% (all but one taxi adopt
intelligent technology). For simplicity, we assume that there
is only one major queue that agents can choose to go to.
From the dataset, we recognize that the airport is the single
largest queue (can hold several hundreds of taxis during
the peak hours), thus it will be chosen as the designated
queue. We also assume that agents by default will follow
the background strategy, and it will only join the designated
queue at random (a small probability derived from the real-
world dataset). For agents holding the intelligent technology,
they will query this technology for advices whenever they
are choosing their service mode, and if the suggestion
returned is to go to the airport queue, they will make a
shortest-path travel there and join the queue.
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The result of the simulation is illustrated in Figure 6,
and it confirms our earlier conjecture: increasing market
penetration ratios in our simulation study indeed causes the
average performance of intelligent technology holders to
deteriorate steadily. However, from the result we can also
see that the drop in the performance is most significant when
the ratio moves from ∼0% to 20% (a drop of around 12%),
after which the decline is much gradual (all around 1% to
3%). Another interesting finding is that even in the case
where intelligent technology floods the market and causes
its holder’s performance to drop, its average performance is
still better than that of the background strategy (who only
makes ad hoc visits to the queue).



VII. CONCLUSIONS

In recent years, more and more research efforts in AI are
being introduced to transportation, a domain traditionally
dominated by operations researchers and civil engineers. For
example, an agent-based approach is recently demonstrated
to be a more effective alternative to the traditional intersec-
tion control technology [14]. Also, traditional transportation
researchers are increasingly more acceptable to the idea
of multiagent technology; for example, the potentials of
agent-based technologies and machine learning techniques
in traffic control are highlighted in a recent review by [15].

This paper contributes to this increasingly promising line
of research, and in particular, we contribute to the study
of taxi fleet operations, an important yet overlooked area
in the urban mobility research. Our primary contribution is
the methodology used in creating TaxiSim, a highly realistic
agent-based simulation platform dedicated to taxi fleets.
In developing TaxiSim, we have successfully extracted a
representative agent strategy from our analysis of the real-
world dataset. We have also proposed a simple yet effective
process for calibrating TaxiSim. Finally, we present an use
case on how TaxiSim can be practically used to study
complex strategic interactions in taxi fleet operations.

We show that TaxiSim is a good platform for evaluating
and experimenting advanced strategies for taxi drivers, as
well as new policies and mechanisms which affect the
dynamics of the whole taxis eco-system. Taxi fleets in
urban environments are agile and flexible. With proper
coordinations and incentives, they can be utilized to improve
the urban mobility eco-system. Realizing the full potential
of these taxi fleets with AI techniques will remain one of
our major research directions in the future.
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