
Online Repositioning in Bike Sharing Systems
Meghna Lowalekar, Pradeep Varakantham, Supriyo Ghosh, Sanjay Dominik Jena†, Patrick Jaillet‡

School of Information Systems, Singapore Management University
†Département de management et technologie, École des sciences de la gestion (ESG) UQAM

‡Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA
meghnal.2015@phdis.smu.edu.sg, pradeepv@smu.edu.sg, supriyog.2013@phdis.smu.edu.sg,sanjay.jena@cirrelt.ca,jaillet@mit.edu

Abstract

Due to increased traffic congestion and carbon emissions,
Bike Sharing Systems (BSSs) are adopted in various cities for
short distance travels, specifically for last mile transportation.
The success of a bike sharing system depends on its ability to
have bikes available at the "right" base stations at the "right"
times. Typically, carrier vehicles are used to perform repo-
sitioning of bikes between stations so as to satisfy customer
requests. Owing to the uncertainty in customer demand and
day-long repositioning, the problem of having bikes avail-
able at the right base stations at the right times is a chal-
lenging one. In this paper, we propose a multi-stage stochas-
tic formulation, to consider expected future demand over a
set of scenarios to find an efficient repositioning strategy for
bike sharing systems. Furthermore, we provide a Lagrangian
decomposition approach (that decouples the global problem
into routing and repositioning slaves and employs a novel DP
approach to efficiently solve routing slave) and a greedy on-
line anticipatory heuristic to solve large scale problems effec-
tively and efficiently. Finally, in our experimental results, we
demonstrate significant reduction in lost demand provided by
our techniques on real world datasets from two bike sharing
companies in comparison to existing benchmark approaches.

1 Introduction
Bike Sharing systems (BSSs) are rapidly becoming a dom-
inant mode of transportation for short distance trips in var-
ious cities. The use of bicycle as a mode of transportation
helps in decreasing traffic congestion and carbon emissions
that has been increasing due to excess private vehicle usage.
Some of the popular bike sharing systems include Capital
Bikeshare in Washington DC, Hubway in Boston, Bixi in
Montreal, and Vélib in Paris. A bike sharing system typi-
cally has a set of base stations that are strategically placed
throughout a city and each station has a fixed number of
docks. At the start of the day, each station is stocked with
a predetermined number of bikes. Customers can pick and
drop bikes from any station and are charged depending on
the hiring duration.

As the customers move according to their own needs, dur-
ing the course of the day there will be starvation at some sta-
tions and congestion at some stations. To rebalance the avail-
ability of bikes, companies employ carrier vehicles to move
bikes between stations. There has been extensive research
on static repositioning approaches (Schuijbroek, Hampshire,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and van Hoeve 2017; Chemla, Meunier, and Calvo 2013;
Raviv, Tzur, and Forma 2013). These approaches perform
repositioning only at the beginning of the day, when the
movements of bikes by the customers are negligible, to en-
sure desired distribution of bikes across different stations.
But they do not consider stations getting imbalanced during
the day. Hence there is a need to focus on dynamic reposi-
tioning of bikes (Contardo, Morency, and Rousseau 2012;
Ghosh et al. 2015; 2017) during the day.

Shu et al. (2013) provide an optimization model for dy-
namic repositioning of bikes, but they do not consider rout-
ing of carrier vehicles. Ghosh et al. (2015; 2017) consider
the problem of dynamic repositioning of bikes along with
the problem of finding the routing policy for carrier vehicles.
They provide an offline policy generation approach based on
mean demand computed from the historical data. To over-
come the inherent complexity of the problem, they propose
a decomposition and abstraction based approach. While the
offline policy provides significant improvement over static
repositioning approaches, it is unable to consider the chang-
ing demand scenarios in real time. Recently Ghosh and
Varakantham (2017) propose a novel dynamic reposition-
ing approach by combining optimization and mechanism de-
sign, to reduce carbon footprint using bike trailers. Ghosh,
Trick, and Varakantham (2016) provide an online approach
to compute dynamic repositioning and routing policy. The
focus of their work is on providing a robust approach which
optimizes for the worst case scenario. While robust policies
provide guarantees for the adversarial inputs, they do not
work well when demand follows an expected distribution
and hence, we do not provide an experimental comparison.

In this work, we provide an online approach to com-
pute dynamic repositioning and routing policy using demand
samples from historical data. Due to its online nature, this
approach can adapt and react to the changing demand pat-
terns in real time. Two Stage stochastic models have been
successfully used in various related domains such as online
taxi matching (Lowalekar, Varakantham, and Jaillet 2016),
online multi resource routing problem (Zhang, Smilowitz,
and Erera 2011), etc. We specifically provide a multi-stage
stochastic optimization formulation, which considers sam-
ples of future customer demand (typically obtained from
historical data) for finding repositioning and routing policy.
Given the large scale nature of the problem, we provide a La-
grangian decomposition approach (that decouples the global
problem into routing and repositioning slaves and employs
a novel DP approach to efficiently solve routing slave) and

a greedy online anticipatory heuristic approach to improve
scalability. Finally, we provide an exhaustive comparison
of our approaches against multiple benchmarks on two real
world datasets.

2 Model
In this section, we provide a generic model for represent-
ing the problem of repositioning and routing while consid-
ering demand uncertainty in bike sharing systems. We ex-
tend the expected demand based model of Dynamic Reposi-
tioning and Routing Problem (DRRP) provided by Ghosh
et al. (2015). Here, we provide the Dynamic Reposition-
ing and Routing Problem with Demand Uncertainty (DR-
RPDU), that considers multiple samples of demand at dif-
ferent stations and timesteps.

DRRPDU is formally defined using the following tuple:〈
S,V, F, C#, C∗, d, ξ, σ,X ,∆, Q

〉
• S denotes the set of stations.
• V denotes the set of carrier vehicles used for repositioning

of bikes.
• F denotes samples of customer requests for the future

timesteps with F t,k denoting the set of customer requests
in demand sample k at decision epoch t. We use F t,t

′,k
s,s′ to

denote the number of customer requests between stations
s and s′ in sample k which start at decision epoch t and
end at decision epoch t′. F t,ks denotes the total number
of customer requests originating at station s and decision
epoch t in sample k.

• C# denotes the capacity of stations with C#
s denoting

capacity of station s.
• C∗ denotes the capacity of carrier vehicles with C∗v de-

noting capacity of vehicle v.
• d denotes the initial distribution of bikes at stations with
ds denoting the initial number of bikes at station s.

• ξ denotes the initial distribution of bikes in vehicle with
ξv denoting the initial number of bikes in vehicle v.

• σ denotes the distribution of carrier vehicles at stations.
σtv(s) is set to 1, if vehicle v starts from station s at deci-
sion epoch t and is 0 otherwise.

• X ts denotes the additional number of bikes which will be-
come available at station s at decision epoch t1.

• ∆ denotes the decision epoch duration in minutes.
• Q denotes the lookahead period, i.e., the number of de-

cision epochs for which request samples are considered.
Q ∗∆ gives the lookahead period duration in minutes.
The goal in DRRPDU is to minimize the expected lost

demand over multiple samples of demand scenarios over the
entire time horizonQ∗∆. It should be noted that all elements
of the DRRPDU tuple except Q and ∆ can be populated
directly from bike sharing datasets. Q and ∆ are typically
decided by management based on observing movement of
bikes.

1This could be due to the bikes hired in previous decision
epochs which are expected to return at decision epoch t

Variable Description
y+,0
s,v Number of bikes picked up from station s by

vehicle v at current decision epoch.
y−,0
s,v Number of bikes dropped at station s by vehicle v

at current decision epoch.
y+,t,k
s,v Number of bikes picked up from station s by

vehicle v at decision epoch t in sample k
y−,t,k
s,v Number of bikes dropped at station s by vehicle v

at decision epoch t in sample k
ht,k
s Bikes hired in sample k at station s at epoch t
gt,ks Bikes returned in sample k at station s at epoch t
Lt,k

s Lost demand in sample k at station s at epoch t
dt,ks Number of bikes present at station s at epoch t

in sample k
u0
v Number of bikes present in vehicle v at current

decision epoch.
ut,k
v Number of bikes present in vehicle v at epoch t

in sample k
zt,ks,v Indicates whether vehicle v is present at station s

at decision epoch t in sample k
m0,t

s,v Indicates whether vehicle v moves towards s at
current decision epoch and reaches s at t

mt,t′,k
s,v Indicates whether vehicle v moves towards s at t

and reaches s at decision epoch t′ in sample k

Table 1: Notation

MSS ():

min
1

|F |

Q−1∑
t=0

∑
k

∑
s

Lt,k
s (1)

s.t. Lt,k
s ≥ F t,k

s − ht,k
s ::: ∀s, t, k (2)

y+,t,k
s,v + y−,t,k

s,v ≤ C∗v ∗ zt,ks,v ::: ∀s, v, t > 0, k (3)

zt,ks,v,m
0,t
s,v,m

t,t′,k
s,v ∈ {0, 1} (4)

Constraints (5)− (22)

Table 2: MSS Formulation

3 Multi-Stage Stochastic Optimization
We now formulate DRRPDU as a mixed integer linear opti-
mization formulation. Unlike most current online reposition-
ing approaches that are typically myopic (Pfrommer et al.
2014), this multi-stage stochastic (MSS) formulation con-
siders future demand scenarios while optimizing reposition-
ing of bikes. The variables used in MSS are described in
Table 1. Table 2 presents the MSS formulation. Here are the
key constraints that are not specific to only one of reposi-
tioning and routing:
Lost demand: Constraints (2) along with the objective en-
sure that lost demand at any station, at any decision epoch is
the difference between demand and hired bikes.
Validity of Pickup/Dropoff : Constraints (3) ensure that a ve-
hicle v picks or drops bikes from any station s at any deci-
sion epoch t in any sample k if and only if the station s is
visited by vehicle at decision epoch t in sample k.

Rest of the constraints are specific to either Repositioning

Repositioning:

ht,k
s ≤ F t,k

s ::: ∀s, t, k (5)

h0,k
s ≤ ds −

∑
v

y+,0
s,v +

∑
v

y−,0
s,v ::: ∀s, k (6)

ht,k
s ≤ dt,ks −

∑
v

y+,t,k
s,v +

∑
v

y−,t,k
s,v ::: ∀s, t > 0, k (7)

gt,ks ≤
t−1∑
t′=0

∑
s′

ht′,k
s′ ∗

F t′,t,k
s′,s

F t′,k
s′

+ X t
s ::: ∀s, t > 0, k (8)

dt,ks = dt−1,k
s −

∑
v

y+,t−1,k
s,v +

∑
v

y−,t−1,k
s,v − ht−1,k

s

+ gt,ks ::: ∀s, t > 1, k (9)

d1,ks =ds−
∑
v

y+,0
s,v +

∑
v

y−,0
s,v − h0,k

s + g1,ks ::: ∀s, k (10)

dt,ks ≤ C#
s ::: ∀s, t, k (11)∑

v

y+,0
s,v ≤ d0s;

∑
v

y−,0
s,v ≤ C#

s − d0s ::: ∀s (12)∑
v

y+,t,k
s,v ≤dt,ks ;

∑
v

y−,t,k
s,v ≤C#

s −dt,ks ::: ∀s, k, t > 0 (13)

ut,k
v =ut−1,k

v +
∑
s

y+,t,k
s,v −

∑
s

y−,t,k
s,v ::: ∀v, k, t > 0 (14)

u0,k
v = ξv +

∑
s

y+,0
s,v −

∑
s

y−,0
s,v ::: ∀v, k (15)

ut,k
v ≤ C∗v ::: ∀v, k, t (16)

y+,0
s,v + y−,0

s,v ≤ C∗v ∗ σ0
v(s) ::: ∀s, v (17)

Table 3: Repositioning Constraints

or Routing. Table 3 presents the constraints related to the
repositioning problem:
Hired bikes : Constraints (5)-(7) ensure that at any station at
any decision epoch, the number of hired bikes is the mini-
mum of available bikes at station and demand at station.
Returned bikes: Constraint (8) compute the number of re-
turned bikes at any station and decision epoch as the sum
of bikes returned due to hiring at previous decision epochs
(within formulation) and bikes which will be returned due to
previous hires.
Bike availability: Constraints (9)-(11) ensure that the num-
ber of available bikes at any station at any decision epoch is
less than the capacity of that station. At any station, at any
decision epoch, the number of bikes available is calculated
by considering hired bikes at previous decision epoch, bikes
picked up/dropped by vehicles in previous decision epoch
and bikes returned by customers in current decision epoch.
Station capacity: Constraints (12)-(13) ensure that the num-
ber of bikes picked up from any station is less than the num-
ber of available bikes and the number of bikes dropped at
any station is less than the number of available free slots.
Vehicle capacity: The number of bikes present in any ve-
hicle v is calculated by considering bikes picked up and
dropped by vehicle in current decision epoch and the number
of bikes already present in the vehicle. Constraints (14)-(16)
ensure that at any decision epoch, in any sample, the number

Routing:

zt,ks,v =

t−1∑
t′=1

mt′,t,k
s,v +m0,t

s,v + σt
v(s) ::: ∀s, v, t > 0, k (18)

mt,t′,k
s,v ≤

∑
s′

zt,ks′,v ∗ δ
t,t′

s′,s,v ::: ∀s, v, t, k (19)

m0,t
s,v ≤

∑
s′

σ0
v(s′) ∗ δ0,ts′,s,v ::: ∀s, v, t (20)

Q−1∑
t′=t+1

∑
s

mt,t′,k
s,v =

∑
s′

zt,ks′,v ::: ∀v, t, k (21)

Q−1∑
t′=1

∑
s

m0,t′
s,v =

∑
s′

σ0
v(s′) ::: ∀v (22)

Table 4: Routing Constraints

of bikes in any vehicle v is less than capacity of vehicle.
Table 4 contains the constraints related to routing prob-

lem. These constraints ensure that there exists a valid path
between vehicle positions at different decision epochs. m0,t

s,v
variables are used to ensure that at current decision epoch,
vehicle moves towards same station across all samples. All
the constraints in this case ensure that movement of vehicles
are valid.

Constraint (18) ensure that a vehicle v is present at station
s, at decision epoch t, in sample k, if and only if , either
it is reaching station s at decision epoch t due to previous
assignments (given by σtv values) or if it is going to reach
station s at decision epoch t due to assignments which are
part of current formulation. Constraints (19)-(20) ensure that
a vehicle v starts moving towards station s′ at decision epoch
t and reaches s′ at decision epoch t′, if at decision epoch t it
was present at some station s, such that the distance between
s and s′ can be covered in time t′−t. We use binary constants
δt,t
′

s,s′,v to indicate if vehicle v starting at station s at decision
epoch t reaches station s′ exactly at decision epoch t′ or
not. We assume a fixed travel time between stations based
on average speed of vehicle so these binary constants can be
calculated beforehand. Constraints (21)-(22) ensure that at
any decision epoch, if a vehicle is present at some station,
then it will start moving towards exactly one of the stations.
A movement between the same station indicates vehicle is
staying at the same station.

We solve the MSS optimization formulation online at
each decision epoch to compute the repositioning and rout-
ing strategy. At each decision epoch, distribution of bikes at
stations and vehicle positions are updated based on actual re-
alized customer requests and repositioning strategy executed
by vehicles.

4 Lagrangian Dual Decomposition
Since we have to make decisions online, the solution has
to be generated quickly. With increasing number of stations
and increasing number of samples, the number of variables
and constraints increases in MSS which makes it difficult to

solve quickly. Decomposition across samples does not help
in reducing computation time, as for problems with large
number of stations, even for a single sample MSS takes
a long time (thousands of seconds). Therefore, we extend
the Lagrangian Dual Decomposition (LDD) (Fisher 1985)
method proposed by Ghosh et al. (2015) for solving offline
repositioning and routing problem in bike sharing. Our key
contributions within this LDD approach when applied to
DRRPDU are two fold:(i) We update LDD to account for
multiple demand samples; (ii) We significantly improve the
computational complexity of solving the routing problem by
using dynamic programming.

In our MSS formulation, as we can see in Table 2, only
constraints (3) link the routing and repositioning variables
across samples. Therefore, we dualize constraint (3) using
price variables αt,ks,v and obtain Lagrangian as follows:

L(α) = min
[1

|F |

Q−1∑
t=0

∑
k

∑
s

L
t,k
s

+

Q−1∑
t=1

∑
v

∑
k

∑
s

α
t,k
s,v ∗ (y

+,t,k
s,v + y

−,t,k
s,v − C∗v ∗ z

t,k
s,v)

]
(23)

= min
[1

|F |

Q−1∑
t=0

∑
k

∑
s

L
t,k
s +

∑
v

Q−1∑
t=1

∑
k

∑
s

α
t,k
s,v ∗ (y

+,t,k
s,v +

y
−,t,k
s,v)

]
−min

[Q−1∑
t=1

∑
v

∑
k

∑
s

(C
∗
v ∗ α

t,k
s,v ∗ z

t,k
s,v)

]
(24)

In equation (24) the first two terms correspond to the repo-
sitioning problem and last term corresponds to the routing
problem. Therefore, we have a decomposition of dual prob-
lem into repositioning and routing slaves. The repositioning
slave minimizes the first two terms of equation (24) subject
to constraints (5)-(16). The routing problem minimizes the
last term of equation (24) subject to constraints in Table 4.

As the task of routing constraints is to ensure the pres-
ence of a valid path between vehicle positions at different
timesteps and the objective of routing slave is to minimize
the weights of visited station timestep pairs, instead of solv-
ing it as an integer optimization problem, we can also solve
it using dynamic programming to significantly improve effi-
ciency. We can observe in the routing constraints (Table 4)
that vehicles are independent of each other. Therefore, if we
have a single sample, for each vehicle the routing problem
can be solved separately. The routing problem can be viewed
as node weighted shorted path problem with each station
at each decision epoch as graph node and node weights as
−1 ∗ C∗v ∗ αt,ks,v .

In case of multiple samples, once the m0,t
s,v variables are

fixed, samples are independent of each other. Therefore,
for each vehicle and each sample we can still solve using
dynamic programming and at t=0, instead of taking mini-
mum for individual sample, we take the minimum of sum of
weights for all samples. Algorithm 1 provides the detailed
steps. Steps 3-9 identify the starting station and timestep for
the vehicle. We then use ws,v variables to store the weight
at the vertex and as,v variables to store the path. Steps 15-
18 are the key dynamic programming steps that update the
weight at the vertices using backward induction. Steps 29-37
update the variables of the optimization formulation using
the stored path in as,v variables.

To obtain the solution to MSS,we optimize maxα Lα.
Given an α, the dual value corresponding to the MSS is ob-
tained by adding the solution from both slaves. The mas-
ter optimization problem is solved iteratively using sub-
gradient descent on price variables α as described in Algo-
rithm 2. Convergence in the process is detected when dif-
ference between primal solution (defined as p in Algorithm
2) and dual solution (defined as sum of objective values of
repositioning and routing slaves) is lesser than a small pre-
determined value (ε).

Algorithm 1 SolveRouting(α)
1: obj = 0
2: for v ∈ V do
3: startts = −1
4: for t=0 to Q-1 do
5: if σt

v(s) == 1 then
6: startts← t
7: if t > 0 then
8: for k = 1 to |F | do
9: zt,ks,v ← 1

10: t1 = startts > 0?startts : startts+ 1
11: for k = 1 to |F | do
12: for t = Q− 1 to t1 do
13: for s ∈ S do
14: if t==Q-1 then
15: wt,k

s,v ← −1 ∗ C∗v ∗ αt,k
s,v

16: else
17: wt,k

s,v ← min
s′,t′

((wt′,k
s′,v − C

∗
v ∗ αt,k

s,v) ∗ δt,t
′

s,s′,v)

18: at,ks,v ← argmin
s′,t′

((wt′,k
s′,v − C

∗
v ∗ αt,k

s,v) ∗ δt,t
′

s,s′,v)

19: if startts == 0 then
20: w0

s,v ← min
s′,t′

(
∑

k(wt′,k
s′,v) ∗ δ0,t

′

s,s′,v)

21: a0s,v ← argmin
s′,t′

(
∑

k(wt′,k
s′,v) ∗ δ0,t

′

s,s′,v)

22: obj ← w0
s,v

23: else
24: for k = 1 to |F | do
25: obj+ = wstartts,k

s,v

26: s← startstation
27: if startts == 0 then
28: s′, t′ ← a0s,v

29: m0,t′

s′,v ← 1

30: for k = 1 to |F | do
31: zt

′,k
s,v ← 1

32: s← s′,t1 ← t′

33: for k = 1 to |F | do
34: t = t1
35: while t < Q− 1 do
36: s′, t′ ← at,ks,v

37: mt,t′,k
s′,v ← 1,zt

′,k
s′,v ← 1

38: s← s′, t← t′

39: return obj, z,m

We need to extract a feasible primal solution from the
solution obtained from slaves. The solution obtained from
repositioning slave may not be consistent with the routes
computed by routing slave but the solution obtained by rout-
ing slave is always feasible solution to the original MSS op-

timization. Therefore, to extract a feasible primal solution,
we solve the MSS optimization by fixing the routing vari-
ables to the values obtained from routing slave.

Algorithm 2 SolveLDD()
α← 0, iter ← 0
repeat
o1, y

+, y− ← SolveRepositioning(αiter)
o2, z,m← SolveRouting(αiter)
p← ExtractPrimal(z,m)
αt,k,iter+1
s,v =

[
αt,k,iter
s,v +γ∗(y+,t,k

s,v +y−,t,k
s,v −C∗v ∗zt,ks,v)

]
+

iter ← iter + 1
until p− (o1 + o2) ≤ ε

5 Greedy Online Anticipatory Heuristic
The Lagrangian decomposition approach described in Sec-
tion 4 helps in scaling MSS to larger problems. However,
in some cases, we may need to run a large number of itera-
tions (around 100 iterations that can take up to 10 minutes)
to get a high quality solution. In online settings, to get a solu-
tion within reasonable time, we execute both MSS and LDD
with a time-limit of 1 minute. Therefore, as the number of
stations and vehicles increases, we may not be able to get a
high quality solution within the time-limit.

In this section, we provide Greedy Online Anticipatory
Heuristic (GOAH) approach based on online anticipatory
algorithms (Mercier and Van Hentenryck 2007) that can
quickly provide solution for large scale problems. Typically,
online anticipatory algorithms are used to solve large scale
online stochastic integer programs. These algorithms opti-
mize for each sample scenario and then select the best so-
lution over all samples. We use a similar idea to develop
our approach but instead of optimally solving each sample,
we approximate the value obtained for each sample due to
scalability issues. In our case, solution for a sample would
correspond to a set of repositioning and routing decisions
for each vehicle. Each vehicle v has maximum |S| routing
choices where |S| is the number of stations and it has C∗v
repositioning choices where C∗v denotes the capacity of ve-
hicle v. As vehicle v already has ξv bikes in vehicle, it can
pick at most C∗v − ξv bikes or it can drop at most ξv bikes.
So all possible solutions for each vehicle are C∗v ∗ |S|.

Unlike in typical anticipatory algorithms where there is
only one entity, here, we have multiple carrier vehicles and
therefore, the space of possible joint solutions grows expo-
nentially. To address this, we consider one vehicle at a time
and use the greedy algorithm (Algorithm 3) to pick the best
vehicle policy in each iteration and execute that policy. To
pick the best vehicle policy in each iteration, we can use
MSS/LDD for a single vehicle to compute individual vehi-
cle’s policy. But using MSS/LDD for a single vehicle will
not provide desirable gain in runtime (as this will not re-
duce the complexity in the MSS/LDD formulations due to
presence of multiple samples). Therefore, we use a heuris-
tic approach, which computes policy for individual vehicle
in two steps: (i) Approximate computation of reposition-
ing decisions (extra bikes available for pickup/dropoff) at

each station, timestep in each sample. (ii) Compute policy
(repositioning and routing decisions) for a vehicle across all
samples by using approximate repositioning decisions cal-
culated in previous step.

Algorithm 3 GOAH()
e←ComputeApproxRepositioningValues()
V ′ = φ
while |V ′| < |V| do

for v ∈ V\V ′ do
valv = 0
valv, av ← GetVehiclePolicy(v, e)

v′ ← argmin
v

valv

e← ExecutePolicy(v′, av′ , e)
V ′ ← V ′ ∪ v′

Approximate computation of repositioning decisions: We
use et,ks to denote the extra bikes available for pickup or drop
off at station s timestep t in sample k. A positive et,ks value
indicates availability of extra bikes and a negative value indi-
cates the number of bikes which should be dropped to meet
the lost demand. These values can be used by vehicles to
decide the number of bikes to pick up/drop off at a station
timestep pair.

For each sample, we execute "no repositioning" strategy,
i.e., simulate the hiring and return of bikes (according to de-
mand observed in the sample) on the current distribution of
bikes at the stations, to calculate the available bikes, lost de-
mand and hired bikes at each station timestep pair.

Since the bikes which are not required at timestep t can
be used to meet demand at timestep t + 1, if we use the
current computed et,ks value, it can be a wrong indicator for
vehicle to pick bikes. Therefore, we ensure that et,ks values
are positive if and only if bikes are not required at any future
timesteps. Similarly, unallocated bikes at time t can remain
unallocated at time t + 1, so same bikes will contribute to
the et,ks values for two different timesteps. To forbid vehicle
from considering same bike as available for pickup at two
different timesteps, we assume that a station will be visited
at most once. This is a valid assumption if the lookahead
period is small (i.e., less than one hour).

As the station is visited only once, when vehicle visits
any station at any timestep, the decision of the number of
bikes picked up/dropped by vehicle should consider future
timesteps as well. Therefore, we update the et,ks values for
each timestep to account for lost demand at future timesteps
or requirement of extra bikes at future timesteps. The up-
dated et,ks values are used in next step, to guide the policy
computation for vehicle.
Computing policy for vehicle given et,ks values: In this
step, for each sample, we construct a graph. The nodes in
the graph correspond to s, c, t, where s is the station id, c is
the number of bikes in the vehicle and t is the timestep. An
edge is created between node {s, c, t} and node {s′, c′, t′}
if and only if δt,t

′

s,s′ = 1 (i.e., s′ is reachable from s). The
edge between nodes {s, c, t} and {s′, c′, t′} indicates that
at timestep t vehicle is moving from station s towards sta-
tion s′ and reaches station s′ at timestep t′. Positive value

of c − c′ indicates vehicle dropped c − c′ bikes at station
s and negative value indicates vehicle picked |c − c′| bikes
from station s. Therefore, an edge in the graph represents
the routing and repositioning decision of vehicle. We create
an additional sink node T . The policy for a single vehicle is
computed by finding the maximum weighted path between
vehicle start position and node T .

The weight of edges is defined as follows:

Rk({s, c, t}, {s′, c′, t′}) =
min(0, et,ks + c− c′) if c <= c′

min(c− c′,−et,ks) if c > c′ and et,ks < 0

0 otherwise

Rk({s, c, t}, T) =

{
min(c,−et,ks) if et,ks < 0

0 otherwise

i.e., edges have positive weight on dropping bikes at station
with lost demand, negative weight on picking bikes from a
station with lost demand and 0 weight otherwise. In other
words, weight of edge indicates reduction in lost demand.
To incorporate the assumption of visiting a station only once
(for picking up or dropping off bikes) in the graph, we need
to consider constrained graphs where a set of edges can not
be part of a path. This problem is NP-hard (Ziegelmann
2001). However, for Q=3, we can easily incorporate this as-
sumption without using constrained graphs. This is because
at t=0, vehicle position is known, so we can avoid creating
edges between same stations at different timesteps.

Once we compute policies for individual vehicle, in each
iteration, we exeucte the policy for vehicle which maxi-
mizes the marginal reduction. As a result of executing ve-
hicle policy, the et,ks values are updated to take into account
the pickup/drop of bikes at stations by vehicle.

6 Experiments and Results
In this section, we compare our approaches Multi Stage
Stochastic Optimization (MSS), Lagrangian Dual Decom-
position (LDD) and Greedy Online Anticipatory Heuristic
(GOAH) with the following approaches:

1. Static Repositioning (STREP) - In this approach, stations
are rebalanced at the end of the day. That is to say, no
repositioning is performed during the planning period.

2. Expected Sample Offline Policy Generation (ESOF): In
this case, mean demand between stations from past 30
days of data is used as a demand sample to generate of-
fline repositioning policy. We execute MSS/LDD for this
expected sample with Q as evaluation decision epochs for
different ∆ values to generate an offline policy2.

3. Expected Sample Offline Policy Generation with revenue
as objective (ESOF-Rev) (Ghosh et al. 2015): As the ob-
jective of the formulation is to maximize the revenue, the
approach tries to minimize the cost of vehicle movement
in addition to minimizing lost demand. We compare the
lost demand values and fuel cost with this approach.

2For ∆ = 10 (in minutes) and evaluation period of 6 hours, we
use Q as 36.

4. Expected Sample Online Policy Generation (ESON): In
this case we use the mean demand sample online in the
MSS/LDD approaches.

We use MSS(∆ = x,Q = y), LDD(∆ = x,Q = y),
GOAH(∆ = x,Q = y) and ESON(∆ = x,Q = y) to refer
to our approaches when the time interval ∆ is set to x and
lookahead Q is set to y. We compare the value of lost de-
mand for all the approaches. For MSS, LDD and ESON the
time limit to compute solution is set as 1 minute.
Setup: We conducted our experiments by taking the de-
mand distribution over 3 months from 2 real world bike shar-
ing datasets. The first dataset is from Hubway BSS3 which
has 95 stations and the second dataset is from Capital Bike-
Share BSS4 which has 305 stations. For the Hubway dataset,
we use 3 vehicles for repositioning of bikes and for the Cap-
ital BikeShare 6 vehicles are used.

As the historical trip data only contains successful book-
ings and does not capture the unobserved lost demand, we
employ a micro-simulation model with 1 minute of timestep
to identify the duration when a station got empty and intro-
duce artificial demand at the empty station based on the ob-
served demand at that station in previous timestep. In the 3
months trip data of both datasets, we have data for 60 week-
days. We use the first 30 weekdays to compute the mean
demand sample which is used by ESOF and ESOF-Rev ap-
proaches. All the approaches are evaluated on remaining 30
weekdays and the average lost demand is computed over
these 30 days.

While computing the repositioning and routing policy at
decision epoch t, for our approaches MSS, LDD and GOAH,
we consider k samples of customer requests at decision
epoch t,t + 1,..,t+Q-1 from past k days (from the evaluation
day at the same time). Once the repositioning and routing
policy is computed, we evaluate the policy on realized cus-
tomer demand.

We evaluate all the approaches using the simulation
model used in Ghosh, Trick, and Varakantham (2016). The
simulation model is run every one minute to serve the cus-
tomer demand. In contrast, repositioning/routing strategy is
computed at an interval of ∆ minutes. After the reposit-
ing/routing policy is obtained by algorithms at time ∆,
2 ∗ ∆,... minutes, the availability of bikes at station and in
vehicles is updated. In case there is no free slot at the station
available while returning of bikes, the bikes are distributed in
the nearby stations. The simulator is run for 6 hours for each
day starting at different time of the day. We experimented
with starting time as 6:00AM and 03:00PM. At the start of
the experiment starting position of vehicles is randomly cho-
sen. The objective of all the algorithms (except ESOF-Rev)
is to minimize the lost demand5.
Results: We first show results for MSS and LDD by varying
the values of ∆ andQ. For GOAH, as described in Section 5,
Q is fixed to 3. Therefore, we do not show results for GOAH
for different Q values.

3http://hubwaydatachallenge.org/trip-history-data/
4http://www.capitalbikeshare.com/system-data
5All approaches have been implemented in Java using the IBM

CPLEX 12.6.0.

2 5 8 10 15 20

Number Of Samples

0

20

40

60

80

100

120

140

160

180

200

220

Lo
st

 D
e
m

a
n

d

MSS(∆ = 5, Q=6)
LDD(∆ = 5, Q=6)
MSS(∆ = 10, Q=3)
LDD(∆ = 10, Q=3)

Lost Demand Comparison - Hubway

(a)

LDD(∆ = 15, Q=2) LDD(∆ = 10, Q=3) LDD(∆ = 5, Q=6)

Algorithm

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

Lo
st

 D
em

an
d

Lost Demand Comparison - Hubway

(b)

3 4 5 6

Q(LookAhead)

0

50

100

150

200

Lo
st

 D
em

an
d

Δ=10
Δ=15

Lost Demand Comparison - Hubway

(c)

2 5 8 10 15 20
Number Of Samples

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

L
o
st

 D
e
m

a
n

d

MSS(∆ = 5, Q=6)
LDD(∆ = 5, Q=6)
MSS(∆ = 10, Q=3)
LDD(∆ = 10, Q=3)

Lost Demand Comparison - Capital BikeShare

(d)

LDD(∆ = 15, Q=2) LDD(∆ = 10, Q=3) LDD(∆ = 5, Q=6)

Algorithm

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

Lo
st

 D
em

an
d

Lost Demand Comparison - Capital BikeShare

(e)

3 4 5 6

Q(LookAhead)

0

200

400

600

800

1000

Lo
st

 D
em

an
d

Δ=10
Δ=15

Lost Demand Comparison - Capital BikeShare

(f)
Figure 1: (a) and (d) Performance comparison of MSS and LDD. (b) and (e) Lost demand comparison of LDD for different ∆
and Q values. (c) and (f) Lost demand comparison of LDD for different Q values.

5 10 15 20 25 30

Number of samples

0

50

100

150

200

Lo
st

 D
em

an
d

GOAH - Hubway

(a)

5 10 15 20 25 30

Number of samples

0

200

400

600

800

1000

Lo
st

 D
em

an
d

GOAH - Capital BikeShare

(b)

5 10 15 20 25 30

Number of samples

0

2

4

6

8

10

12

14

16

R
un

ti
m

e(
in

 s
ec

on
ds

) Hubway
Capital

GOAH - Runtime

(c)

Figure 2: Performance comparison of GOAH

STREP ESOF-Rev ESOF(∆ = 10) ESON LDD GOAH
(∆ = 10, Q = 6) (∆ = 10, Q = 6) (∆ = 10, Q = 3)

Hubway(3PM) 278.32 225.95 225.93 172.11 141.16 181.67

Capital BikeShare(3PM) 1320.93 960.30 795.28 745.61 666.78 824.03

Hubway(6AM) 184.82 130.30 122.69 98.63 56.85 92.75

Capital BikeShare(6AM) 508.27 456.96 410.60 323.17 288.87 341.71

Table 5: Lost demand reduction

ESOF-Rev ESOF(∆ = 10) ESON(∆ = 10, Q = 6) LDD(∆ = 10, Q = 6) GOAH(∆ = 10, Q = 3)
Fuelcost 7.84 32.64 31.26 30.60 26.60

Revenue 431.10 422.87 461.11 488.58 441.72

Gain 423.25 390.23 429.85 457.98 415.11

Table 6: Fuel cost comparison-Hubway 3pm

Trip Duration ESOF-Rev ESOF(∆ = 10) ESON(∆ = 10, Q = 6) LDD(∆ = 10, Q = 6) GOAH(∆ = 10, Q = 3)
0-30 1166.74 1169.26 1212.17 1232.34 1205.55

30-60 93.43 91.24 102.84 112.51 97.73

60-90 11.27 11.11 11.62 12.50 11.39

>90 7.88 7.69 8.11 8.22 7.95

Table 7: Number of bikes hired for different trip duration (in minutes)- Hubway 3pm

Number of Samples: In the first set of experiments on MSS
and LDD, we experiment with different numbers of samples.
Figure (1a) shows results for the Hubway dataset and Figure
(1d) shows results for the Capital BikeShare dataset. The X-
axis represents the number of samples and Y-axis represents
the lost demand values. On the Hubway dataset, MSS could
not compute a reasonable quality solution (the optimality
gap remained at 80%) within 1 minute for more than 5 sam-
ples for ∆ = 5 and for more than 10 samples for ∆ = 10.
On the Capital Bikeshare data set, for ∆ = 5 and a time limit
of 1 minute, MSS did not find a solution of reasonable qual-
ity even when only a single sample was used. On both the
datasets, we observe that for LDD, lost demand reduces on
increasing the number of samples, but the reduction in lost
demand is less than 5% on increasing samples beyond 10.
For ∆ = 5, on the Capital BikeShare, LDD could not com-
plete even 10 iterations within 1 minute and hence, the lost
demand increases on increasing samples from 10 to 15. As
the lost demand reduction is not significant after 10 samples
and the problem also becomes complex , we use 10 samples
for LDD and MSS in the next experiments.
Decision Epoch Duration(∆): In the next set of experi-
ments, we fix the lookahead period for approaches to 30
minutes and experiment with different decision epoch du-
ration. As ∆∗Q =30 minutes, the value of Q is taken as 30

∆ .
Figure (1b) shows results on the Hubway dataset and Figure
(1e) shows the results on the Capital BikeShare dataset. We
fix the number of samples as 10. We only show results for
LDD as MSS was not able to compute a reasonable qual-
ity solution within 1 minute for 10 samples for majority of
scenarios. On both datasets, lost demand decreases on de-
creasing the value of ∆. This is because vehicle is allowed
to make more movements and also because we are looking
at demand values at smaller intervals which allows making
better online decisions. On decreasing ∆ from 10 to 5, lost
demand reduces by nearly 15% on both datasets.
Lookahead Period: For a fixed value of ∆, we experiment
with different lookahead period durations. We show the re-
sults for ∆ = 10 with lookahead period between 30 minutes
and 1 hour. For ∆ = 15, we show the results for lookahead
period between 30 minutes and 1.5 hours. Figures (1c) and
(1f) show the results for different Q values. On increasing
the look ahead period lost demand reduces for both ∆ values
but the reduction is more with ∆ = 10. With ∆ = 10 and
Q = 6 (i.e., lookahead period of 1 hour), the lost demand
values are comparable to ∆ = 5 and Q = 6 (lookahead
period of 30 minutes). With ∆ = 10, lost demand reduces
by 12% on increasing Q value from 3 to 6. But the rate of
reduction is low with higher ∆ value. As the lost demand
reduction provided by ∆ = 10, Q = 6 is comparable to lost
demand reduction with ∆ = 5, we use ∆ = 10, Q = 6 for
further comparison as this involves lesser vehicle movement.
GOAH Performance: We experiment with different num-
ber of samples for GOAH for ∆ = 10, Q = 3. In case of
GOAH, along with lost demand we also compare the run-
time on both datasets with different number of samples. Fig-
ure (2a) and (2b) show the lost demand comparison on in-
creasing the number of samples. On both datasets, on in-
creasing samples from 5 to 15, lost demand reduces by 8%

but on increasing beyond 15 samples reduction is 2%. With
15 samples, on both datasets, GOAH obtains a runtime of
less than 8 seconds (Figure (2c)). Therefore, it is possible
to execute GOAH on larger bike sharing systems where it is
even difficult for offline approaches to compute a solution.
As described later, GOAH provides nearly 35% reduction
in lost demand as compared to no repositioning strategy.
Comparison Of Different Algorithms: Next, we com-
pare the reduction in lost demand values obtained by dif-
ferent algorithms. We compare LDD(∆ = 10, Q = 6),
GOAH(∆ = 10, Q = 3) with ESOF(∆ = 10), ESOF-Rev,
ESON(∆ = 10, Q = 6) and STREP on both datasets. For
LDD we use 10 samples and for GOAH 15 samples. Table 5
shows the lost demand values on both datasets for 6AM and
3PM. As we can see on both datasets, LDD reduces the lost
demand by nearly 50% as compared to STREP and provides
20% gain over ESOF and ESON. The lost demand reduction
by GOAH is comparable to ESOF and ESON but it provides
improvement in runtime which is the main advantage of us-
ing it against other approaches.
Comparison Of Fuel cost: Finally we compare the fuel cost
incurred by different algorithms. We use the cost of diesel as
1.5 USD per litre and assume that the vehicle can travel 12
kilometer with 1 litre of fuel. Here, we show the results on
the Hubway dataset at 3pm. We obtained similar results on
the other dataset. We then compare the fuel cost incurreed
by various algorithms in Table 6. As we do not consider the
fuel cost in our objective, fuel cost of our algorithm is nearly
4 times the cost of fuel consumed by ESOF-Rev. We also
compute the revenue obtained by bike sharing company by
using the standard price model where only rides greater than
30 minutes are charged6. The revenue increase compensates
for the additional fuel cost in case of LDD. With GOAH,
both the fuel cost and revenue gain are less than LDD. Over-
all gain provided by GOAH is less than ESOF-Rev.

As the rides having travel time less than 30 minutes are
included in the subscription cost, we also compare the num-
ber of bikes hired for different trip duration by various algo-
rithms (Table 7). Once again, LDD provides the best results.
As the major percentage of bikes are hired for duration 0-30
minutes, the lost demand reduction of these rides does not
directly contribute to daily revenue. But this reduction will
help in increasing the number of new subscribers which will
provide additional profit to bike sharing companies.

7 Conclusion
We develop a multi-stage stochastic optimization formula-
tion for computing online repositiong and routing policy
for vehicles in bike sharing systems. We also provide a la-
grangian based decomposition and greedy based heuristic
approach to efficiently reduce lost demand for large scale
bike sharing systems. In future, this work can be extended to
compute online policies which can simultaneously and ef-
ficiently optimize reduction of lost demand and fuel cost of
vehicles. Another possible direction is to include uncertainty
in travel time of vehicles, so as to compute robust policies.

6https://www.thehubway.com/pricing/day

8 Acknowledgements
This work was partially supported by the Singapore National
Research Foundation through the Singapore-MIT Alliance
for Research and Technology (SMART) Centre for Future
Urban Mobility (FM).

References
Chemla, D.; Meunier, F.; and Calvo, R. W. 2013. Bike shar-
ing systems: Solving the static rebalancing problem. Dis-
crete Optimization 10(2):120–146.
Contardo, C.; Morency, C.; and Rousseau, L.-M. 2012.
Balancing a dynamic public bike-sharing system, volume 4.
Cirrelt.
Fisher, M. L. 1985. An applications oriented guide to la-
grangian relaxation. Interfaces 15(2):10–21.
Ghosh, S., and Varakantham, P. 2017. Incentivising the use
of bike trailers for dynamic repositioning in bike sharing
systems. In International Conference on Automated Plan-
ning and Scheduling (ICAPS).
Ghosh, S.; Varakantham, P.; Adulyasak, Y.; and Jaillet, P.
2015. Dynamic redeployment to counter congestion or star-
vation in vehicle sharing systems. In International Confer-
ence on Automated Planning and Scheduling (ICAPS).
Ghosh, S.; Varakantham, P.; Adulyasak, Y.; and Jaillet, P.
2017. Dynamic repositioning to reduce lost demand in bike
sharing systems. Journal of Artificial Intelligence Research
58:387–430.
Ghosh, S.; Trick, M.; and Varakantham, P. 2016. Robust
repositioning to counter unpredictable demand in bike shar-
ing systems. In International Joint Conference on Artificial
Intelligence (IJCAI).

Lowalekar, M.; Varakantham, P.; and Jaillet, P. 2016. On-
line spatio-temporal matching in stochastic and dynamic do-
mains. In AAAI Conference on Artificial Intelligence (AAAI).

Mercier, L., and Van Hentenryck, P. 2007. Performance
analysis of online anticipatory algorithms for large multi-
stage stochastic integer programs. In IJCAI, 1979–1984.

Pfrommer, J.; Warrington, J.; Schildbach, G.; and Morari,
M. 2014. Dynamic vehicle redistribution and online price
incentives in shared mobility systems. IEEE Transactions
on Intelligent Transportation Systems 15(4):1567–1578.

Raviv, T.; Tzur, M.; and Forma, I. A. 2013. Static repo-
sitioning in a bike-sharing system: models and solution ap-
proaches. EURO Journal on Transportation and Logistics
2(3):187–229.

Schuijbroek, J.; Hampshire, R.; and van Hoeve, W.-J. 2017.
Inventory rebalancing and vehicle routing in bike shar-
ing systems. European Journal of Operational Research
257(3):992–1004.

Shu, J.; Chou, M. C.; Liu, Q.; Teo, C.-P.; and Wang, I.-L.
2013. Models for effective deployment and redistribution of
bicycles within public bicycle-sharing systems. Operations
Research 61(6):1346–1359.

Zhang, G.; Smilowitz, K.; and Erera, A. 2011. Dy-
namic planning for urban drayage operations. Transporta-
tion Research Part E: Logistics and Transportation Review
47(5):764–777.

Ziegelmann, M. 2001. Constrained shortest paths and re-
lated problems. Ph.D. Dissertation, Universitätsbibliothek.

