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Abstract

We examine a platform owner’s optimal two-sided pricing strategy while considering

seller-side innovation decisions and price competition. We model the innovation race

among sellers in both finite and infinite horizons. In the finite case, we analytically

show that the platform’s optimal seller-side access fee fully extracts the sellers’ surplus,

and that the optimal buyer-side access fee mitigates price competition among sellers.

The platform’s optimal strategy may be to charge or subsidize buyers depending on the

degree of variation in the buyers’ willingness-to-pay for quality; this optimal strategy

induces full participation on both sides. Furthermore, a wider quality gap among

sellers’ products lowers the optimal buyer-side fee but leads to a higher optimal seller-

side fee. In the infinite innovation race, we perform computations to find the stationary

Markov equilibrium of sellers’ innovation rate. Our results show that when all sellers

innovate, there exists a parameterization under which a higher seller-side access fee

stimulates innovation.
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1 Introduction

In recent years, electronic markets have successfully adopted two-sided business models.

Mobile commerce is experiencing unprecedented growth. Apple sold 47.5 million iPhones in

2010, in part due to an ever expanding iPhone App Store [20]. Google’s Android Market

experienced a six-fold increase in the number of applications since the end of 2009 [8] and

currently accounts for 25.5% of worldwide smartphone sales [17]. As a result of rapidly

expanding mobile platforms, Internet traffic in the mobile industry has increased four to six

times since 2008 [1]. These growth statistics suggest that mobile platforms are creating vital

application markets for both users and application developers.1

Existing studies of two-sided platforms are based primarily on cross-side network exter-

nalities [27] [5] [6] [7]. They analyze the platform’s pricing and governance issues, given that

users on each side of the market benefit from the number of users on the other side and

that demand is the driving force for user participation. In a buyer-seller platform, interac-

tions between the two sides exhibit rich characteristics beyond pure network externalities.

Even though network size may be the platform’s strategic focus before the number of plat-

form users reaches a critical mass, other factors, such as innovation and price competition

in the platform market, are increasingly important for platform growth. Furthermore, in-

creasing network size may have complex effects on the innovation incentives in the platform

market [10]. In this paper, we endogenize the cross-side externality by explicitly modeling

seller-side price competition; we also incorporate sellers’ innovation decisions and analyze

the platform’s optimal two-sided pricing strategy.

On a platform, sellers’ pricing decisions and buyers’ purchase decisions ultimately de-

termine both sides’ benefits from the platform. Apple’s App Store offers a wide variety of

applications. Within each application category, developers (sellers) compete in quality, cre-

ativity, and price. Application users (buyers) have access to application ratings, rankings,

and often free trials to assess quality before making purchase decisions. Our study focuses

1Among the many examples of two-sided technology platforms are operating systems platforms, such as
Linux and Windows, and gaming hardware platforms, such as PlayStation and the XBox.
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on any one category of products by examining the price competition in a vertically differen-

tiated platform market. The equilibrium outcome yields the sellers’ revenues and the buyers’

values in the platform market.

To the best of our knowledge, past studies on two-sided platforms typically take product

development as given. However, platform growth is fundamentally driven by continuous

innovation that supplies products to the platform market. An intrinsic characteristic of IT

platforms is that products go through finite cycles in the market. Sellers compete aggressively

for a chance to serve a sizable market and innovate intensively to sustain or recapture market

share [2]. The sellers’ innovation intensity then determines the rate of market turnover. For

instance, the Android Market became active much later than the Apple App Store, but it

has been growing at a much faster pace as a result of application innovations.

By setting access fees on both sides of the market, the platform owner plays a direct role

in jointly regulating sellers’ innovation incentives and buyers’ participation and purchase

decisions. A proprietary software platform (e.g., Windows) typically charges the buyer a

licensing fee. When the platform owner integrates the platform hardware and software, it

imposes a cost on the buyer for purchasing the hardware with the software pre-installed (e.g.,

iPad). A typical proprietary platform owner, such as Apple, also imposes a fee and certain

hardware requirements on the seller-side for using the software development kit (SDK) nec-

essary to develop and test new apps.2 Based on this upfront cost and other R&D expenses,

the seller evaluates potential payoffs of innovation and considers the chance of success when

facing competition from the other sellers.

In this paper, we address questions that arise from introducing seller-side price compe-

tition and innovation into the platform’s decisions in setting two-sided access fees: How do

two-sided access fees affect price competition in the platform market? What is the platform’s

optimal strategy in setting two-sided access fees? And when sellers engage in continuous in-

novation, how do the platform access fees affect innovation incentives?

The equilibrium characterization of price competition in the platform market reveals

2See the iPhone Developer Program, http : //developer.apple.com/iphone/program/.
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several new insights into the effect of platform access fees on buyers’ participation decisions.

We find that increasing the buyer-side access fee up to a certain threshold does not exclude

any buyers. Given a buyer-side fee below this threshold, price competition among sellers

drives down the prices in the platform market, which induces all buyers to join the platform

in equilibrium. For the buyer-side access fee above the threshold, sellers have an incentive

to subsidize buyers, which may still lead to buyers’ full participation in equilibrium.

Based on the finite-horizon setting of the sellers’ innovation problem, we find that the

platform sets the optimal seller-side access fee to fully extract the sellers’ surplus and sets the

optimal buyer-side access fee to moderate price competition among sellers and to disincen-

tivize seller subsidization of the buyers’ fee. Interestingly, subsidizing buyers may be optimal

for the platform if buyers’ willingness-to-pay for quality is sufficiently dispersed; otherwise,

the platform charges a positive optimal buyer-side fee. In both cases, the platform’s optimal

pricing strategy induces full participation by both sides of the platform. Furthermore, as

the quality gap in the platform market widens, the optimal seller-side access fee increases

because of higher revenues in the platform market, whereas the optimal buyer-side access

fee decreases leading to buyers’ full participation.

Our results in the infinite case indicate that when all sellers innovate, a parameterization

exists under which a higher seller-side access fee stimulates innovation. This is because as

innovation failure becomes more costly, sellers balance their expected payoffs by innovating

more intensively for a greater chance of success. However, when the seller-side access fee

exceeds a certain threshold, sellers do not perceive the platform market to be profitable and

do not innovate. We find that the buyer-side access fee has a different effect. A higher

buyer-side access fee reduces buyers’ willingness-to-pay and induces the sellers to subsidize

buyers in equilibrium. Therefore, increasing the buyer-side fee lowers sellers’ equilibrium

innovation rate.

The rest of the paper is organized as follows: We review the related literature in Section 2.

Section 3 provides an overview of the model. We then formulate seller-side price competition

and characterize the equilibrium of the platform market in Section 4. In Section 5, we analyze
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the platform’s optimal pricing strategy given sellers’ innovation problem in a finite horizon

and then illustrate the effects of the platform’s fees when sellers engage in an infinite dynamic

innovation race. Finally, we conclude in Section 6.

2 Literature Review

A stream of research studies two-sided pricing in various types of platform markets.

Rochet and Tirole [22] are the first to analyze system competition in the context of a payment

card association. They examining the set of rules governing the transactions in the payment

cards industry, such as cooperative determination of the interchange fee, the honor-all-cards

rule, and the no-surcharge rule [22]. In [23], they further study competing platforms’ two-

sided price allocation problems under different governance structures (for-profit and not-

for-profit) while taking into account other factors, such as user multihoming. Caillaud and

Jullien [11] [12] also examine the multihoming factor in platform pricing, but their emphasis

is on platforms with indirect network externality as those in matchmaking. They introduce a

more complex fee structure: Platforms can impose two types of fees, the ex-ante registration

fee and the ex-post transaction fee; the latter may allow competing platforms to differentiate

given the possibility of multihoming [12].

Armstrong [5] also focuses on two-sided markets that have cross-side network externality

and explores platform pricing strategies based on such externality, on different types of

fees, and on multihoming. He finds that the side of the platform that provides substantial

benefit (or exerts substantial network externality) to the other side enjoys a price subsidized

by the platform; however, a per-transaction fee structure mitigates such price cuts in a

competitive setting [5]. Moreover, when one side of the market multihomes (the other side

single-homes), the platform generates high profits from the multihoming side but subsidizes

the single-homing side [5]. Armstrong and Wright further study a competitive setting where

only one side perceives differentiation among competing platforms [6].

In the context of online intermediaries, Yoo et al. [27] study a two-sided pricing problem

of a B2B market owner. Their findings on the effect of network externality on the opti-
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mal prices are consistent with those suggested by Armstrong [5]; they also reveal additional

insights into the roles of negative network effects and switching costs in platform pricing.

Galbreth et al. [16] endogenize participation of the two sides of a platform market and find

the equilibrium to predict the growth of the market. Bakos and Katsamakas [7] examine the

platform’s design decisions, in which network externality is endogenized under independent,

owned-by-one-side, and spin-off ownerships. They find that the platform’s optimal design

decision often involves an asymmetric design and is independent of the platform ownership

structure [7]. Most of these frameworks use a static model (with the exception of [16], which

focuses on market growth rather than pricing) and assume a certain utility form that is often

symmetric for the two sides of the market. Differing from this traditional framework, Econo-

mides and Katsamakas [15] model two-sided pricing of an operating system platform and

incorporate price competition among the applications. Their focus is to compare industries

of a proprietary platform (e.g., Windows) and an open source platform (e.g., Linux) [15].

They find that users’ strong preference for application variety may lead to higher total profits

in a proprietary industry compared to those in an industry based on an open source plat-

form [15]. They also show that the proprietary platform industry may dominate the open

source platform industry in market share [15].

Departing from purely static analysis in which two sides of the market make decisions

simultaneously, Hagiu [19] explores the platform’s price commitment strategy when one side

arrives first. He finds that the platform’s commitment may not lead to optimal pricing. The

reason is that without committing to charging the late-arrival side a low price, the platform

could still get the early-arrival side on board, which would allow the platform to charge the

late-arrival side a higher price [19].

We contribute to the literature on two-sided markets by explicitly modeling transactions

between two sides and characterizing the market equilibrium. Moreover, we consider sellers’

innovation problem prior to their market participation. Discussion of innovation in the

context of two-sided market is currently limited, as most research works continue in the

direction of pure network externality. An empirical study by Boudreau [10] is one of the few
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recent studies to examine the effects of innovation in the platform market. By analyzing

a data set on the applications for handheld computers and PDAs, Boudreau identifies a

negative effect of increasing developer network size on innovation incentives in a two-sided

platform [10]. We incorporate dynamic innovation by sellers into the interactions between

the platform and the two sides of the market and discuss the effect of the platform’s fees on

sellers’ innovation incentives.

There is a rich literature in economics on innovation incentives, policies, and economic

growth. The innovation race carried by one side of the platform described in our work rests

on the set of theories and assumptions fundamental to this stream of literature. Grossman

and Helpman [18] investigate the interaction between innovation and imitation in a general

equilibrium framework and identify the steady-state equilibrium and its response to vari-

ous policies. Aghion et al. [3] identify a complementary relationship between anti-trust and

patent policies, finding that (1) product market competition leads to growth by incentiviz-

ing firms to innovate to escape competition, and (2) that some neck-and-neck competition

resulting from imitation promotes growth. Segal and Whinston [24] focus on a number of

anti-trust policies and conclude that policies that protect new market entrants raise the

innovation rate. Our work is differentiated from these studies in that it incorporates the

interactions between two sides of the market and models sellers’ price competition in a verti-

cally differentiated market, adopted from Shaked and Sutton [25]. Furthermore, we discuss

our findings in the context of the platform’s pricing decisions.

3 The Model

Consider a setting where the platform sets lump-sum access fees on two sides of the

market: f for the seller-side and pb for the buyer-side. Suppose the platform generates

revenues from these fees collected from both sides.3 Observing such fees, both sides make

their decisions.

3The other type of fee commonly considered in two-sided markets is transaction-based, which the platform
collects from each successful seller-buyer transaction. Our qualitative results still hold if the platform imposes
both types of fees. Thus, we focus on the fixed-fee structure in our analysis for tractability.
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Sellers make decisions in two stages. They first choose whether to innovate and the

contingent innovation rate, which determines the probability of successful invention and

market entry. Sellers also choose the equilibrium prices in competition with the other market

incumbents contingent on market entry. To distinguish between the innovating sellers and

those who successfully enter the platform market and serve buyers, we use the term incumbent

for the latter type of seller. We first derive the platform’s optimal two-sided fees in the finite

case, where sellers make the decision to enter the innovation race only once (i.e., there is no

re-entry). We then present the dynamic case, in which sellers engage in continuous innovation

in the infinite horizon, and we illustrate numerically the effect of the platform fees on sellers’

equilibrium innovation rate. For both formulations, we assume that the innovation is superior

to the existing goods in the market; thus, a seller is positioned as the top-quality incumbent

upon market entry but may be demoted to a lower quality position as the innovation race

among the other sellers continues. Figure 1 shows an overview of the interactions between

the platform and participants from two sides of the market.

<Insert Figure 1 approximately here>

In the platform market, competing incumbents are vertically differentiated and set prices

based on buyers’ preferences. In each period, buyers make decisions on whether to join the

platform, and contingently, they make the purchase decision after observing the buyer-side

access fee pb set by the platform and the prices set by the incumbents. Buyers incur pb

only if they choose to purchase from any incumbent; otherwise, they resort to an outside

option and do not join the platform. The equilibrium characterization of the platform market

explicitly captures the transactions between the two sides while taking into account quality

differentiation, price competition, and buyer heterogeneity.

Using backward induction, we first analyze the equilibrium of the platform market while

taking pb and f as given. Based on the equilibrium characterization, we then find the

platform’s optimal pricing strategies given sellers’ innovation problem in the finite horizon.

Finally, we incorporate dynamic features into sellers’ innovation decisions and present the

numerical findings.

8



4 The Platform Market

Consider a market of products that differ in quality. Denote by k = 1, ..., n the index for

product quality, where a higher k represents a higher quality. Let buyers be heterogeneous

in their willingness to pay for quality in the platform market. Denote a buyer’s marginal

willingness-to-pay by the random variable z, which follows the uniform distribution: z ∼

U [z, z]. Following the approach in [25], we start with a general setting of n qualities and then

impose a constraint on the bounds of buyers’ willingness-to-pay. This condition will lead to

a two-product market and allows for analytical tractability in deriving the equilibrium.

Observing the buyer-side access fee pb, buyers maximize the following utility function:

U(z, k, pb) = uk · z − pb. (1)

Here, uk is the value offered by a product of quality k, such that u0 < u1 < ... < un (i.e.,

higher quality provides higher value). A buyer’s utility from consuming a quality k good is

the value of the good weighted by her willingness-to-pay for quality. One may interpret u0

as the value of an outside option, to which buyers resort if they choose not to transact on the

platform market. For notational simplicity, we normalize u0 to 0, while our main findings

still hold for other values of u0.

A buyer incurs the buyer-side access fee pb only if she chooses to transact on the platform,

in which case she also pays the price of the product purchased. Let zk be the indifference

level, such that the buyer with the willingness-to-pay, zk, is indifferent between products k

and k − 1 at their respective prices. Thus,

U(zk − pk, k, pb) = U(zk − pk−1, k − 1, pb). (2)

Based on Eq. (1), buyers with willingness-to-pay above zk would prefer the quality k good

at pk over the quality k− 1 good at pk−1. In other words, buyers with taste z > zk have the

preference order (k, pk) � (k − 1, pk−1). Assume pk ≥ 0 for all k. Furthermore, since buyers
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do not pay pb when resorting to the outside option, U(z, 0, pb) = u0z = 0.

From Eq. (2), we can then derive the following indifference levels:

z1 = p1 +
pb
u1

, (3)

zk =
−uk−1pk−1

uk − uk−1

+
ukpk

uk − uk−1

. (4)

We focus on sellers’ innovation costs (e.g., f and εc(φ) from Section 5) and assume zero

marginal production cost for those who become incumbents. Let incumbents compete in

price, their revenue functions are:

R1(p1, ..., pn) = p1(z2 − z), if z1 ≤ z (5)

R1(p1, ..., pn) = p1(z2 − z1), if z1 ≥ z (6)

Rk(p1, ..., pn) = pk(zk+1 − zk), for 1 < k < n (7)

Rn(p1, ..., pn) = pn(z − zn). (8)

When p1 is sufficiently high, buyers with lower willingness-to-pay may not purchase even

the lowest-quality good and, in turn, do not join the platform, in which case the market is

not covered and the indifference level z1 lies above the lower bound of buyers’ willingness-

to-pay. Equations (5) and (6) correspond to the cases where the lowest-quality incumbent

does and does not cover the market, respectively.

Lemma 1. Let z < 4z, then in any Nash equilibrium, at most two incumbents (of quality n

and n− 1) obtain positive market shares.

When the range of buyers’ willingness-to-pay satisfies the condition indicated in Lemma

1, the incumbents of the top two qualities engage in an intense competition resulting in

equilibrium prices that are sufficiently low, such that all buyers choose to purchase from one

of the two products on the platform. Adopted from Shaked and Sutton [25], this assumption

allows for a tractable equilibrium characterization. In the other cases, three or more incum-
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bents may serve the market, and the equilibrium would require complex conditions without

adding significant insights.

Two-Quality Market Equilibrium

Based on Lemma 1, the following analysis rests on a two-quality market with high- and

low-quality incumbents. Given the buyer-side access fee, pb, set by the platform, incumbents

and buyers make their pricing and purchase decisions, respectively.

Applying Eq. (3) and Eq. (4), we have

p1 = z1 −
pb
u1

, (9)

p2 =
1

u2

[(u2 − u1)z2 + u1z1 − pb] . (10)

Eq. (9) and Eq. (10) express the high- and low-quality incumbents’ prices in z1 and z2, which

are the indifference levels of buyers’ willingness-to-pay, and they allow us to characterize

the equilibrium market segmentation. The existence of equilibrium requires an additional

condition specifying the relationship between the bounds of buyers’ willingness-to-pay:

Proposition 1. If 2z < z < 4z, then a unique equilibrium exists. Moreover, the equilibrium

lies in one of the three regions based on the conditions specified in Table 1. The equilibrium

characterization is shown in Table 2.

<Insert Table 1 approximately here>

The buyer-side access fee set by the platform results in one of three equilibrium regions

(shown in Table 1) and affects the equilibrium pricing strategies of the competing incumbents.

The buyer-side access fee and incumbents’ equilibrium prices then jointly determine buyers’

decisions of platform participation. In Region I, the buyer-side access fee is sufficiently low

so that the platform has a high potential appeal, even to the buyers with a low willingness-

to-pay for quality. As a result, the competition drives down incumbents’ prices such that,

in equilibrium, buyers with the lowest willingness-to-pay strictly prefer to join the platform

and purchase from the low-quality incumbent. In Region II, the buyer-side access fee is
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above such a threshold. As buyers are faced with a higher barrier to join the platform, the

force of market competition is mitigated – in equilibrium the low-quality incumbent sets the

price such that buyers with the lowest willingness-to-pay are indifferent between joining the

platform and resorting to the outside option. As the buyer-side access fee further increases

and leads to the Region III equilibrium, competing incumbents strategize to exclude buyers

with a low willingness-to-pay. Thus, the market is not covered.

<Insert Figure 2 approximately here>

Figure 2 indicates three equilibrium regions based on the relationship between the low-

quality level (u1) and the quality gap (u2−u1), given the buyer-side access fee pb. When the

quality gap is narrow, the equilibrium falls in Region I for higher values of u1. In this case,

price competition among incumbents is fierce because of a low differentiation and buyers’

strong inclination to purchase. However, at a lower u1, the low-quality good offers lower

utility to buyers and dampens their purchasing incentives; thus, the equilibrium switches to

Region II (and then to Region III for even lower values of u1), as incumbents compete less

aggressively on price. With a wider quality gap, the equilibrium falls in Region II for higher

values of u1, where price competition is mitigated. For lower values of u1, buyers are less

inclined to purchase; therefore, we may have a Region III equilibrium, in which the market

is not covered.

<Insert Table 2 approximately here>

Lemma 2. When pb ≥ 1
3
[(2u2 + u1)z − (u2 − u1)z] (Region II or III), both incumbents’

equilibrium prices and revenues decrease in the buyer-side access fee.

This result implies that incumbents may have an incentive to subsidize buyers when the

buyer-side access fee imposed by the platform is sufficiently high. Furthermore, such subsi-

dizing by both incumbents–which occurs in equilibrium–leads to lower incumbent revenues as

the buyer-side access fee increases. Our findings reveal two new insights into the externality

of the buyer-side access fee under the forces of price competition.

The first key insight is that the buyer-side access fee may exert a negative cross-side

externality on the seller-side equilibrium revenues without having any direct effect on the
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buyer-side network size. In particular, all buyers join the platform in Region II, as a result of

incumbents’ strategy to subsidize buyers in equilibrium. Within the bounds of this region,

the platform can increase the buyer-side access fee without trading off any demand.

The second notable finding is that this negative cross-side externality is absent for lower

values of the buyer-side fee. Illustrated in the Region I equilibrium, price competition among

incumbents dominates any effect from the buyer-side access fee; thus, incumbents’ equilib-

rium revenues in this region are independent of the buyer-side access fee, and the market

is covered. Therefore, the platform can set the buyer-side access fee up to a certain level

without trading off any demand or taxing the incumbents indirectly, and it is optimal to

price the buyer-side access fee at least at this level. (Section 5 presents the analysis of the

platform’s optimal pricing strategy.)

In Region III, competing incumbents subsidize buyers nevertheless, as the buyer-side

access fee increases. However, in this region, this subsidizing is not sufficient to bring all

buyers on board. Therefore, in this case increasing the buyer-side access fee reduces the

buyer-side network size as well as incumbents’ revenues.

5 Seller Innovation and Platform Pricing

In this section, we set up the sellers’ innovation decision problem and discuss the finite and

infinite cases separately. In the finite case (Section 5.1), sellers face a two-period horizon when

choosing the innovation rate. In this setup, we analytically derive the platform’s optimal

buyer-side and seller-side access fees. In the infinite case (Section 5.2), we incorporate

dynamic features into the innovation race, where sellers’ innovation decisions also take into

account the prospects both of exiting the market (because of continuing innovation by the

other sellers) and of re-entering the innovation race. We present the numerical results showing

the effect of the platform’s two-sided fees on sellers’ equilibrium innovation rate. We first

introduce the notations that are common to both cases.

Let there be M homogeneous sellers who compete in the R&D race. Their variable

R&D cost is described by εc(φi), where ε is a constant parameter. Following the assumption
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in [24], suppose the cost function is convex in the form c(φi) = φ2
i , so that innovation efforts

become increasingly costly. And let φi ∈ [0, 1] denote seller i’s innovation rate, as well as

its probability of producing a successful innovation. Multiple sellers may succeed in devel-

oping a new product. However, suppose one out of all the sellers who successfully innovate

is rewarded with market entry at random, which follows the assumption in the literature

that the success of innovation that leads to market dominance over existing products often

depends on serendipitous factors [24] [18] [10] [14].

Given homogeneity among sellers, we are interested in a symmetric equilibrium, where all

sellers choose the identical innovation rate. Let π(φ) denote the probability that at least one

seller successfully develops a new product when M sellers innovate at the rate of φ ∈ [0, 1].

π(φ) = 1− (1− φ)M . (11)

For any one seller, the probability of market entry conditional on successful innovation

is denoted by rM(φ), where φ ∈ [0, 1] is the innovation effort of M − 1 competing sellers:

rM(φ) = ΣM−1
k=0

(
1

k + 1

)(
M − 1

k

)
φk(1− φ)M−1−k =

1− (1− φ)M

φ ·M
. (12)

This seller’s probability of market entry, λ(φ′, φ), is then the product of the probability of

successful innovation, φ′, and the conditional probability, rM(φ): λ(φ′, φ) = φ′rM(φ).

5.1 Finite Innovation Horizon

Consider a two-period model, whereM sellers make innovation decisions in each period. If

a seller enters the market, in period 1 it will become the high-quality incumbent and generate

the equilibrium revenue, R∗2, which is derived in Table 2. In period 2, this seller (which has

become the high-quality incumbent) will be demoted to the low-quality position and receive

the revenue, R∗1, as long as one successful innovation is produced in this period (i.e., at least

one other seller enters the market and becomes the new high-quality incumbent); we assume

that in the case of no successful innovation in period 2, the high-quality incumbent remains
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in its dominant position. When a seller does not enter the market, it obtains zero revenue.

However, a seller incurs the seller-side access fee f if it decides to innovate, regardless of the

outcome of innovation. When a seller chooses not to innovate, it receives nothing. Suppose

a seller innovates when it is indifferent between innovating and not innovating. Let the

discount factor β = 1. Each seller solves the following problem, given the other sellers’

innovation rate φ.

max {0, max
φ′∈[0,1]

λ(φ′, φ)V2(φ)− εc(φ′)− f} (13)

V2(φ) = R∗2 + π(φ)V1(φ) + (1− π(φ))V2(φ) (14)

V1(φ) = R∗1 + (1− π(φ))V1(φ) (15)

V2(φ) and V1(φ) are the value functions for the high-quality and low-quality incumbents,

respectively. The expected values of the incumbents also depend on π(φ), the probability

of at least one seller’s successfully developing a new product,4 in which case market entry

is guaranteed. By rearranging Eq. (14) and Eq. (15), V1(φ) = R∗1/π(φ) and V2(φ) =

(R∗2 +R∗1)/π(φ). Thus, the seller’s problem can be reduced to:

max{0, max
φ′∈[0,1]

φ′(R∗2 +R∗1)

Mφ
− εc(φ′)− f}. (16)

Proposition 2. If f ≤ R∗2+R∗1
2M

, the sellers’ equilibrium innovation rate is φ∗ =
√

R∗2+R∗1
2εM

;

otherwise, no seller will participate in the innovation race.

Based on Proposition 2, the number of sellers joining the platform by paying the access

fee and engaging in innovation can be denoted by the following function of f and pb:

Ω(f, pb) =

 M, if f ≤ R∗2+R∗1
2M

;

0, otherwise.
(17)

4Notice that in this stage, the seller is an incumbent in the market and does not participate in the R&D
race.
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Similarly, denote by Ψ(f, pb) the fraction of buyers who participate in the platform market:

Ψ(f, pb) =

 1, if pb ≤ u1

2u2+u1
[(4u2 − u1)z − (u2 − u1)z];

z−z∗1
z−z , otherwise.

(18)

Recall that pb ≤ u1

2u2+u1
[(4u2 − u1)z − (u2 − u1)z] implies that the market equilibrium is in

Region I or II, where the market is covered. In Region III, the market is not covered, and

z∗1 = 1
4u2−u1

[(u2 − u1)z + 2u2+u1

u1
pb] (see the proof for Proposition 1) is the willingness-to-pay

of the buyer who is indifferent between not participating and consuming the low-quality

product on the platform in equilibrium. By normalizing the size of the buyer market to 1,

the profit-maximizing platform chooses f and pb to solve:

max
(f,pb)∈R2

Π(f, pb) = fΩ(f, pb) + pbΨ(f, pb). (19)

In a finite-horizon problem, the seller-side access fee affects sellers’ participation decision

but not their equilibrium innovation rate. Therefore, the platform clearly would set f at the

maximum value
R∗2+R∗1

2M
to ensure participation while fully extracting the sellers’ surplus. We

can then express the platform’s revenue in terms of pb only:

Π(pb) =

 pb +
R∗2+R∗1

2
, if pb ≤ u1

2u2+u1
[(4u2 − u1)z − (u2 − u1)z];

z−z∗1
z−z pb +

R∗2+R∗1
2

, otherwise.
(20)

Lemma 3. The platform’s revenue function is increasing in pb in Region I. If z − z ≥
u2(4u2−u1)
u2−u1

, the platform’s revenue function is decreasing in pb in both Region II and Region

III.

In Region I, the buyer-side access fee exerts no externality on the competition in the

platform market; thus, the platform faces no tradeoff from increasing the buyer-side fee.

However, in Region II, given that some buyers have sufficiently high willingness-to-pay for

quality, the effect that increasing the buyer-side access fee has on cutting incumbents’ rev-
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enues and, in turn, on reducing the platform’s revenues outweighs the platform’s direct gains

from the buyers’ fees. Furthermore, given a sufficiently high degree of variation in buyers’

willingness-to-pay, the platform suffers more losses than gains by increasing the buyer-side

fee in Region III, where increasing the buyer-side fee not only reduces the incumbents’ equi-

librium revenues but also the buyer-side demand.

Proposition 3. If z − z ≥ u2(4u2−u1)
u2−u1

, the platform sets the optimal buyer-side access fee at

p∗b = 1
3
[(2u2 +u1)z−(u2−u1)z] and the optimal seller-side access fee at f ∗ = (u2−u1)

18M
[ (z−2z)2

u1
+

(2z−z)2
u2

]. Full participation by both sides of the market is achieved.

The condition z − z ≥ u2(4u2−u1)
u2−u1

ensures concavity in the platform’s revenue function

and leads to an interior solution of the optimal buyer-side access fee.5 Given a symmetric

equilibrium of innovation decisions among homogeneous sellers, it is clear that the platform

would capture all sellers to ensure transactions in the market. Based on the platform’s

optimal pricing, price competition among the incumbents is moderated. At the low-quality

incumbent’s equilibrium price, the buyer with the lowest willingness-to-pay is indifferent

between participating on the platform and choosing the outside option. In other words,

the platform’s optimal pricing strategy leads to the highest possible incumbent prices while

covering the buyer market in equilibrium. Moreover, the platform’s optimal buyer-side fee

disincentivizes seller subsidization of the buyer-side fee.

Proposition 4. If z ≥ (u2−u1)z
2u2+u1

(which holds given z ≥ u2(4u2−u1)(2u2+u1)
(u2−u1)(u2+2u1)

), the platform’s

optimal buyer-side access fee is positive. If z < (u2−u1)z
2u2+u1

(which holds for 5u1 < 2u2), the

platform subsidizes the buyers by setting a negative optimal buyer-side fee.

The platform’s optimal strategy may be to charge or subsidize buyers depending on

their willingness-to-pay. The relationship between the upper and lower bounds of buyers’

willingness-to-pay in Proposition 4 indicates the degree of variation in their preferences for

5In the absence of this condition, a different condition is needed to justify a possible corner solution, in
which case the platform may set the optimal buyer-side access fee at its maximum. The proof of optimality
would then require further comparison between this corner value and the one established in Proposition 3.
For tractability and a crisp insight, we focus on the interior solution in this problem.
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quality. The more dispersed these preferences are, the higher the incumbents’ equilibrium

revenues; thus, when the variation of these preferences is sufficiently high (i.e., z < (u2−u1)z
2u2+u1

),

the platform has an incentive to subsidize buyers to induce their full participation and in turn

extract higher revenues from the seller-side of the market. Moreover, given such dispersion,

incumbents are less inclined to serve buyers that have lower willingness-to-pay. Therefore,

platform subsidization of buyer-side fees is necessary to cover the market and to achieve the

maximum platform revenue. Following the same intuition, given a lower variation of buyers’

willingness-to-pay for quality, the competition among incumbents is sufficient to result in a

market-covered equilibrium; thus, the platform’s optimal strategy is to set a positive buyer-

side access fee.

We now consider the effect of quality gap on the platform’s optimal pricing strategy by

studying the comparative statics of the optimal fees with respect to buyers’ valuation of the

high-quality good, u2. Increasing u2 while fixing buyers’ valuation for the low-quality good,

u1, effectively increases quality differentiation.

Proposition 5. The platform’s optimal buyer-side access fee is decreasing in the product

quality gap, whereas the optimal seller-side access fee is increasing in the product quality

gap.

The product quality gap in the platform market in part determines the platform’s optimal

allocation of entry costs between the two sides of the market. First, intuitively, a wider

quality gap mitigates competition and raises incumbents’ equilibrium revenues. The platform

would then extract a higher surplus from sellers by increasing the seller-side access fee.

However, without also adjusting the buyer-side access fee downward to the optimal level,

the platform would induce a market equilibrium where incumbents strategically subsidize

buyers for the access fee. Thus, to fully appropriate the gains from a wider quality gap, the

platform needs to lower the buyer-side access fee to eliminate the suboptimal competitive

tension among incumbents.
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5.2 Extension: Infinite Innovation Race

In this section, we numerically illustrate the effect of the platform’s fees when sellers

can continue innovation after exiting the market in an attempt to regain incumbent market

positions.6

With the discount factor β ∈ (0, 1), the sellers choose their innovation rate φ′ based on

the following value functions of a dynamic programming problem:

V 0(φ) = max{0,−f + V E(φ)}; (21)

V E(φ) = max
φ′∈[0,1]

{λ(φ′, φ)V I
2 + (1− λ(φ′, φ))βV 0(φ)− εc(φ′)}; (22)

V I
2 (φ) = R∗2 + βπ(φ)V I

1 (φ) + β(1− π(φ))V I
2 (φ), (23)

V I
1 (φ) = R∗1 + βπ(φ)V 0(φ) + β(1− π(φ))V I

1 (φ). (24)

V 0(φ) is the value function of sellers at the start of the game: If they choose to innovate,

the expected value is −f + V E(φ); when this value is negative, they would choose not to

innovate and would obtain value 0. V E(φ) is the value function of sellers participating

in the R&D race; they choose the innovation effort, φ′ (given the effort of others, φ) to

maximize their expected value while taking into account the probability of market entry

and the variable innovation cost. V I
2 (φ) and V I

1 (φ) are the value functions of the high- and

low-quality incumbents, respectively. A higher market entry probability may reduce the

expected value of incumbency because incumbents shift down in quality (and the lowest-

quality incumbent exits) when entry occurs.

We are interested in the stationary Markov equilibrium [21] among sellers, consisting of

a set of strategies: Given other sellers’ strategies, 1) each seller’s best response of whether to

enter the innovation race; 2) the innovation rate φ that maximizes its expected value; and 3)

its revenue-maximizing price for each period after market entry given the other incumbent’s

pricing strategy and buyers’ preferences (presented in Table 2). The equilibrium innovation

6This setup is analogous to the potential monopolist’s innovation process studied in Segal and Whin-
ston [24].
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rate is solved computationally. Sellers’ innovation decisions are dynamic as they care about

intertemporal tradeoffs; however, their prices as incumbents in the market are determined

under a static equilibrium in each period in response to the strategy of the other incumbent

in the current market. The implicit assumptions here are twofold: 1) that incumbents do

not engage in collusive contracts (particularly not with unknown future entrants) to obtain

higher revenues (i.e., they do not set a higher price in the initial period at the expense of

lower revenues in the discounted future periods); and 2) sellers perceive finite periods of

market incumbency, so that their pricing decisions in each period are equivalent to those in

a static equilibrium; therefore, the equilibrium prices are independent intertemporally.

Lemma 4. Let X = [0, 1], and denote by B(X) a space of bounded functions g : X → R.

The value function V 0 defined in Eq. (21) through Eq. (24) is unique in B(X).

Since we are interested in the stationary symmetric equilibria, sellers’ choice sets include

two types. Sellers either never enter the innovation race or always enter the innovation race

after exiting the market. We write the dynamic problem of the latter case as follows:

V A(φ) = max
φ′∈[0,1]

{−f + λ(φ′, φ)V I
2 + (1− λ(φ′, φ))βV A(φ)− εc(φ′)}; (25)

V I
2 (φ) = R∗2 + βπ(φ)V I

1 (φ) + β(1− π(φ))V I
2 (φ), (26)

V I
1 (φ) = R∗1 + βπ(φ)V A(φ) + β(1− π(φ))V I

1 (φ), (27)

where V A(φ) represents the value of a seller who always enters the innovation race when

the other sellers choose the innovation rate φ. When φ′ = φ, all sellers choose the same

innovation rate. If V A(φ) ≥ 0, the optimal innovation rate φ∗ = φ. Otherwise, no seller

enters the innovation race. The innovation rate is determined by the following equation:

φ = arg max
φ′∈[0,1]

{−f + λ(φ′, φ)V I
2 + (1− λ(φ′, φ))βV A(φ)− εc(φ′)}. (28)

Because of the complexity of the dynamic problem, we use computational methods to find

the numerical solution φ̃ to the problem described by Eq. (28). (See Appendix B for this

20



computation approach and the parameterization.) After computing the value of V A(φ̃), we

find whether sellers enter the innovation race, given f and pb.

We first fix the seller-side access fee, f , and vary the buyer-side access fee, pb, to under-

stand the manner in which the buyer-side access fee affects sellers’ innovation decisions.

<Insert Figure 3 approximately here>

Sellers’ equilibrium innovation rate decreases in the buyer-side access fee, pb, as the

market equilibrium shifts from Region I to Region II and then to Region III. Increases in

the buyer-side access fee may diminish the sellers’ equilibrium revenues in case of market

entry (Lemma 2). Sellers’ innovation incentive is driven by the expected payoff of innovation,

which is the sum of the values in different states weighted by the probability of shifting from

one state to the next (e.g., the probability of market entry, and that of being demoted from

the high-quality incumbent to the low-quality incumbent). As pb increases, if the market

equilibrium falls in Region I, the market equilibrium revenues are not affected (Lemma 2),

nor is the sellers’ expected innovation payoff; thus, the equilibrium innovation rate remains

constant. In Regions II and III, the incumbents of both qualities have decreasing revenues

in pb; therefore, the equilibrium innovation rate declines as pb increases. Notice that this

result is consistent with the finite case, where φ∗ =
√

R∗2+R∗1
2εM

and ∂φ∗

∂pb
is clearly negative.

We now take pb as given and vary the seller-side access fee, f . When f exceeds the sellers’

expected payoff of innovation, no seller chooses to enter the innovation race. Thus, we focus

on the symmetric equilibrium, where all sellers innovate, and we examine the effect of the

seller-side access fee on the equilibrium innovation rate.

<Insert Figure 4 approximately here>

We find that the seller-side access fee induces higher innovation efforts (Figure 4),7 as

sellers are motivated to innovate more intensively for a higher probability of innovation

success and market entry. This contrasts with the finite-horizon case, where the seller-side

fee affects only the sellers’ decision of participation, but it has no effect on their equilibrium

innovation rate. In the finite case, the seller-side fee incurs only once if a seller chooses to

7The figure only shows one equilibrium region because varying f while holding pb fixed does not change
the equilibrium region. The numerical experiments under the pb values of all regions show the same result.
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innovate, and the innovation rate does not interact with this upfront lump-sum fee. The

key difference in the infinite case is that ex ante sellers consider future innovation after

their market exit; thus, this fee must be paid at each future reentry into the innovation

race. As f increases, the failure to innovate becomes more costly, and the expected payoff is

diminished. Therefore, in equilibrium sellers balance the expected values of different states

by innovating more intensively to achieve higher probabilities of generating revenues and to

take into account more costly innovation failure. Similarly, a lower f would then make sellers

“lazier.” Our result shows that competition for market entry leads to an overall increase in

the symmetric equilibrium innovation rate.

6 Conclusion

Motivated by recent developments in mobile platform markets, we analyze a platform’s

optimal two-sided pricing strategy while taking into consideration seller-side price compe-

tition and innovation. In the finite-horizon innovation race, our findings indicate that the

platform sets the optimal seller-side access fee at the maximum to fully extract the sellers’

surplus and may charge or subsidize buyers, depending on the degree of variation of buyers’

willingness-to-pay for quality. The optimal buyer-side access fee moderates the competition

among sellers and disincentivizes their subsidizing of the buyer-side fee. The platform’s op-

timal two-sided pricing strategy and the interactions between sellers and buyers enable full

participation by both sides of the market in equilibrium. When sellers engage in innova-

tion in the infinite horizon, our parameterization shows that increasing the buyer-side fee

may discourage innovation and that, when all sellers innovate, a higher seller-side fee may

stimulate innovation in equilibrium.

The presence of seller price competition allows the platform to serve buyers with all

levels of willingness-to-pay even at a positive optimal price. For instance, marketed as

a superior platform device, the iPhone has successfully penetrated a wide range of user

market segments, in part because of attractive apps that are priced to appeal even to users

with a low willingness-to-pay. On the other hand, an excessive buyer-side access fee may
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lead to a suboptimal competitive intensity, where the seller-side indirectly bears the cost to

ensure buyers’ participation. Although raising the price for the device may not significantly

compromise the buyer network size, it can lead to significantly lower app prices that reduce

the sellers’ surplus and thus the platform’s revenues. Thus, while setting a positive price for

the mobile device, the platform should also support profitable transactions in the app market.

The iPad, being arguably the most appealing tablet, is not priced substantially higher than

its lower-quality substitutes. Our findings suggest that this strategy provides leverage for the

app sellers to avoid an intense price competition and to achieve higher profits. Furthermore,

as the high-end apps become increasingly superior, the platform’s optimal strategy could be

to further reduce the buyers’ cost and to raise the seller-side fee.

To the best of our knowledge, most past studies on two-sided platforms do not explicitly

model seller-side price competition (with the exception of Economides and Katsamakas’s

work that focuses on comparing industry structures based on proprietary and open source

platforms [15]). Past studies often rest upon the assumption that two sides possess highly

symmetric characteristics and primarily exert network externality. Introduction of price

competition unveils results that contrast with previous findings, which show that the side

of the platform that provides substantial benefits to the other side is rewarded with a lower

price subsidized by the platform [5]. By characterizing the market equilibrium, we find that

the platform may subsidize the buyer-side given a high variation of buyers’ preferences. In

this case, platform subsidies help to bring on board the buyer segment that would otherwise

be excluded in equilibrium. In the other cases, the platform sets a positive fee on both sides.

Our findings also contrast with the insight in [15] showing that the platform may subsidize

the application providers (analogous to sellers in our work) when users (i.e., buyers) have

a strong preference for application variety. While Economides and Katasamakas [15] use a

linear demand function to capture the degrees of complementarity and substitution among

applications, we model a vertically differentiated market of sellers and show that a wider

quality gap affects the platform’s optimal allocation of fees: The buyer-side experiences a

reduction in the access fee, whereas the fee for the seller-side increases.
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Furthermore, studies on the role of innovation in a two-sided market are limited, with the

exception of Boudreau’s empirical study on the effect of network size on software developers’

innovation incentives [10]. Our work incorporates sellers’ innovation decisions in both finite

and infinite horizons and shows that the platform access fees on both sides affect sellers’

innovation incentives. Increasing the buyer-side fee can have a negative impact on innovation.

On the other hand, increasing the seller-side fee may can have a favorable effect on innovation,

as sellers strive for a greater chance of market entry to offset the cost of innovation failure.

It remains a challenge to model a competitive framework in which multiple platforms set

prices on two sides simultaneously. Furthermore, as a future direction, it may be interest-

ing to consider innovating sellers that have heterogeneous characteristics. The asymmetric

innovation decisions could lead to insights that expand on the current findings.
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Appendix

A Proofs

Proof of Lemma 1

Proof. Let us define Ck ≡ uk

uk−uk−1
(note that Ck > 1). Eq. (3) and Eq. (4) can be rewritten

as

z1 = p1 +
pb
u1

(29)

zk = pk−1(1− Ck) + pkCk (30)

The first-order conditions (FOCs) of incumbents’ revenues in Eq. (5) through Eq. (8) are
as follows:

For k = 1,

z2 − z − p1(C2 − 1) = 0, if z1 ≤ z (31)

z2 − z1 − p1[(C2 − 1) + 1] = 0, if z1 ≥ z (32)

For k = 2, ..., n− 1,
zk+1 − zk − pk[(Ck+1 − 1) + Ck] = 0. (33)

For k = n,
z − zn − pnCn = 0. (34)

Assume there are more than two incumbents in equilibrium we can rewrite the FOCs using
Eq. (30) as:

zk+1 − 2zk − pk(Ck+1 − 1)− pk−1(Ck − 1) = 0 (35)

z − 2zn − pn−1(Cn − 1) = 0. (36)
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We can then get z > 2zn and zk+1 > 2zk, which yield 2zn > 4zn−1, and then z > 4zn−1.
By the assumption z < 4z − 3pb, we get 4z > z. Therefore, zn−1 < z, implying that the
incumbents of the two qualities cover the market.

Proof of Proposition 1

Proof. Based on Eq. (9) and Eq. (10), rewriting the FOCs of the low-quality incumbent
yields the following:

z2 = z +
1

u2 − u1

(u1z1 − pb), if z1 ≤ z; (37)

z2 =
2u2 − u1

u2 − u1

z1 −
u2pb

u1(u2 − u1)
, if z1 ≥ z. (38)

And for the high-quality incumbent, we get:

z − 2z2 =
1

u2 − u1

(u1z1 − pb). (39)

<Insert Figure 5 approximately here>
Figure 5 is a plot of the low-quality incumbent’s FOCs (Eq. (37) and Eq. (38)) showing

increasing values of z2 as functions of z1 in three regions. In the high-quality incumbent’s
FOC, Eq. (39), z2 is a decreasing function of z1. Thus, the point where two incumbents’
FOCs intersect is the equilibrium of interest. In an equilibrium where two incumbents share
the market, the point of intersection of their FOCs necessarily lies in one of the three regions.
In particular, z2, the indifference level for the two products, must exceed the lower bound z;
otherwise, the high-quality incumbent obtains the entire market. Shown in Figure 5, on the
lower bound of Region I, z2 = z and z1 = pb

u1
; Firm 2’s FOC must cross from above, requiring

z2 > z, for the existence of equilibrium.
Both firms’ revenue functions are concave in each firm’s own price holding the competi-

tor’s price constant; thus, the second-order conditions are satisfied. Given z > 2z, firm 2’s
FOC (Eq. (39)) lies above z at z1 = pb

u1
in Figure 5. Since z2 is decreasing in z1 in Eq. (39),

it necessarily intersects with firm 1’s FOC in one of the three regions, thus resulting in a
unique equilibrium.

At z1 = z, if z2 ≤ u2

u2−u1
z − pb

u2−u1
for firm 2 (Eq. (39)), then the equilibrium occurs in

Region I; thus, the condition pb ≤ 1
3

[(2u2 + u1)z − (u2 − u1)z] for Region I equilibrium is
obtained. Similarly, at z1 = z, if u2

u2−u1
z − pb

u2−u1
≤ z2 ≤ 2u2−u1

u2−u1
z − u2pb

u1(u2−u1)
for firm 2, then

a Region II equilibrium follows; z2 ≥ 2u2−u1

u2−u1
z − u2pb

u1(u2−u1)
, meanwhile, leads to a Region III

equilibrium. The corresponding conditions of pb can be derived as shown in Table 1.
For Region II to be feasible, we need to show that the lower bound of pb is indeed less than

the upper bound for this region; in other words, we need to show 1
3
[(2u2 +u1)z−(u2−u1)z] <
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u1

2u2+u1
[(4u2 − u1)z − (u2 − u1)z]. The lower bound can be rearranged as follows:

1

3
[(2u2 − 2u2 + u1 + 2u1)z + 2(u2 − u1)z − (u2 − u1)z]

= u1z +
1

3
(u2 − u1)(2z − z).

And the upper bound can be rearranged in a similar way:

u1

2u2 + u1

[(4u2 − 2u2 − u1 + 2u1)z + 2(u2 − u1)z − (u2 − u1)z]

= u1z +
u1

2u2 + u1

(u2 − u1)(2z − z).

Clearly, u1

2u2+u1
< 1

3
since 2u2 + u1 > 3u1. And given that 2z− z < 0, the lower bound is less

than the upper bound.
For Region I, from the FOCs (Eq. (37) and Eq. (39)), we can derive that z∗1 =

1
u1

[u2−u1

3
(z − 2z) + pb] and z∗2 = [z + z]/3. The equilibrium prices can be derived by substi-

tuting these expressions into Eq. (9) and Eq. (10). Then, based on the revenue functions,
Eq. (5) to Eq. (8), the corresponding equilibrium revenues can be derived by substituting
in z∗1 , z∗2 , and the equilibrium prices.

For Region II, z∗1 = z, and thus z∗2 = [z− u1

u2−u1
z+ pb

u2−u1
]/2, based on the FOC Eq. (39).

The rest of the equilibrium expressions can be derived in a similar manner as in Region I.
For Region III, using Eq. (38) and Eq. (39), it follows that z∗1 = 1

4u2−u1
[(u2 − u1)z +

2u2+u1

u1
pb] and z∗2 = 1

4u2−u1
[(2u2− u1)z + pb]. And similarly, by substituting these expressions

into the corresponding equations, the rest of the equilibrium results will follow.
By the assumption 2z < z < 4z, the equilibrium prices of Region I are clearly positive.

In Region II, positive pricing implies that pb ≤ u1z. We can show that at z = 2z, the upper
bound meets u1z. Since the upper bound is a decreasing function of z and z > 2z, for all
values of pb in this region, the equilibrium prices will be positive. In Region III, to ensure
positive equilibrium prices, pb must satisfy pb ≤ u1

2
z.

We also need to show that Region III is feasible (i.e., that the conditions pb ≤ u1

2
z and

pb ≥ u1

2u2+u1
[(4u2 − u1)z − (u2 − u1)z] (see Table 1) can be satisfied simultaneously). Since

2z < z, if the lower bound at z = z/2 is less than or equal to the upper bound, then this
region will be feasible. We can easily show that at z = z/2, the lower bound yields exactly
u1

2
z.
Thus, all three equilibrium regions are feasible, and all equilibrium prices and revenues

are positive.

Proof of Lemma 2

Proof. • Region II:
∂p∗1
∂pb

= −1/u1 < 0 and
∂p∗2
∂pb

= −1/(2u2) < 0.
∂R∗1
∂pb

= 1
2u1

[
−z + 2z + 2

u2−u1
[u1z − pb]

]
;
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Substituting in the lower bound pb = 1
3
[(2u2 + u1)z − (u2 − u1)z],

−z + 2z +
2

u2 − u1

[u1z − pb]

= −1

3
z + 2z − 4(u2 − u1)

3(u2 − u1)
z

=
1

3
(2z − z) < 0.

Since
∂R∗1
∂pb

is decreasing in pb,
∂R∗1
∂pb

< 0 for all values of pb in Region II.
∂R∗2
∂pb

= −1
2u2

[
z + 1

u2−u1
[u1z − pb]

]
< 0, (note that pb ≤ u1z).

• Region III:
∂p∗1
∂pb

= −2(u2−u1)
u1(4u2−u1)

< 0 and
∂p∗2
∂pb

= −(u2−u1)
u2(4u2−u1)

< 0.

Given pb ≤ u1

2
z,

∂R∗1
∂pb

= −4u2(u2−u1)
u1(4u2−u1)2

[
z − 2pb

u1

]
< 0, and

∂R∗2
∂pb

= −2(u2−u1)
u2(4u2−u1)2

[2u2z − pb] < 0.

Proof of Proposition 2

Proof. Suppose a seller decides to innovate, it solves maxφ′
φ′(R∗2+R∗1)

Mφ
− εφ′2 − f . The first-

order condition (FOC) yields
R∗2+R∗1
Mφ

= 2εφ′. Given homogeneous sellers, we are interested in

a symmetric equilibrium, where φ′ = φ. Therefore, we have φ∗ =
√

R∗2+R∗1
2εM

. By substituting

φ∗ into the seller’s value function, we get
R∗2+R∗1

2M
− f , which is positive when f ≤ R∗2+R∗1

2M
.

Thus, all sellers will innovate when the seller-side access fee is below
R∗2+R∗1

2M
.

Proof of Lemma 3

Proof. We find the first order derivative of the platform’s revenue function with respect to
pb in all three regions.

Region I
Based on Proposition 2, R∗1 and R∗2 are constant in pb in Region I. Therefore, the first-order
condition for the platform’s revenue function in this region is simply Π′(pb) = 1. The revenue
is increasing in pb in Region I.

Region II
The first-order derivative of the platform’s revenue function is ∂Π

∂pb
= 1 + 1

2

∂R∗2
∂pb

+ 1
2

∂R∗1
∂pb

, which
is:

1 +
1

4u1

(2z − z) +
1

u2 − u1

(
1

2u1

− 1

4u2

)
[u1z − pb]−

z

4u2

= 4u1 + (2z − z) +
1

u2 − u1

(2− u1

u2

)[u1z − pb]−
u1z

u2
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Since this expression is decreasing in pb, it is sufficient to show that it is negative at the
lower bound of pb for this region, where pb = 1

3
[(2u2 + u1)z− (u2− u1)z]. By substituting in

this pb value, we get

4u1 + (2z − z) +
1

3(u2 − u1)
(2− u1

u2

)[−2(u2 − u1)z + (u2 − u1)z]− u1z

u2

= 4u1 + (2z − z)− (
2

3
− u1

3u2

)(2z − z)− u1z

u2

= 4u1 +
1

3
(2z − z) +

u1

3u2

(2z − z)− u1z

u2

Since 2z < z, this expression is negative, given z ≥ 4u2. The revenue is decreasing in pb in
Region II.

Region III
The platform’s revenue function for Region III is:

Π(pb) =
pb

(4u2 − u1)(z − z)

[
3u2z −

2u2 + u1

u1

pb

]
+

1

2
(R∗2 +R∗1). (40)

The first-order derivative of the platform’s revenue function with respect to pb is:

1

(4u2 − u1)(z − z)

[
3u2z −

2(2u2 + u1)

u1

pb

]
− u2 − u1

u2(4u2 − u1)2
[2u2z − pb]−

2u2(u2 − u1)

u1(4u2 − u1)2

[
z − 2pb

u1

]
We can increase the last term slightly by replacing u1 with u2 (to simplify analysis) and
show that the resulting expression yields a negative value:

1

(4u2 − u1)(z − z)

[
3u2z − 2pb −

4u2

u1

pb

]
− u2 − u1

u2(4u2 − u1)2

[
4u2z − pb −

4u2

u1

pb

]
.

Clearly, 3u2z−2pb− 4u2

u1
pb < 4u2z−pb− 4u2

u1
pb. Therefore, for z−z ≥ u2(4u2−u1)

u2−u1
, the expression

is negative, and the platform’s revenue is decreasing in pb in Region III.
Since z ≤ 4z, z− z ≤ 3

4
z. The condition z− z ≥ u2(4u2−u1)

u2−u1
implies that z ≥ 4u2(4u2−u1)

3(u2−u1)
>

4u2. Therefore, given the condition, z − z ≥ u2(4u2−u1)
u2−u1

, the platform’s revenue is decreasing
in both Regions II and III.

Proof of Proposition 3

Proof. Lemma 3 establishes that the platform’s revenues are increasing in pb in Region I,
and decreasing in Region II and Region III. Therefore, the optimal pb lies in the point where
Region I overlaps Region II, p∗b = 1

3
[(2u2 +u1)z− (u2−u1)z]. By Proposition 2, the platform

sets f at the maximum conditional on sellers’ entry into the innovation race. Therefore,

f = (u2−u1)
18M

[ (z−2z)2

u1
+ (2z−z)2

u2
].
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Proof of Proposition 4

Proof. Clearly, p∗b = 1
3
[(2u2 + u1)z − (u2 − u1)z] ≥ 0, if and only if z ≥ (u2−u1)z

2u2+u1
. We can

show that this condition for z can be satisfied in this problem. Since 2z < z, we must
satisfy z

2
> (u2−u1)z

2u2+u1
, which holds given 1

2
> (u2−u1)

2u2+u1
. For z ≥ u2(4u2−u1)(2u2+u1)

(u2−u1)(u2+2u1)
, the condition

z − z ≥ u2(4u2−u1)
u2−u1

holds as well. Therefore, if z ≥ (u2−u1)z
2u2+u1

, p∗b is positive.

Similarly, p∗b < 0, if and only if z < (u2−u1)z
2u2+u1

. Since z < 4z, we need to show that
z
4
< (u2−u1)z

2u2+u1
, which holds for 5u1 < 2u2. Thus, in this case, p∗b is negative.

Proof of Proposition 5

Proof. To find the effect of quality gap on the platform’s optimal fees, we study the com-
parative statics of p∗b and f ∗ with respect to u2, the buyers’ valuation for the high-quality
good, while keeping u1 fixed.

It is straightforward to derive the following:
∂p∗b
∂u2

= 1
3
(2z − z) < 0 and ∂f∗

∂u2
= (z−2z)2

18Mu1
+

(2z−z)2
18Mu2

u1

u2
> 0. Therefore, it immediately follows that p∗b decreases as the quality gap widens,

while f ∗ increases as the quality gap widens.

Proof of Lemma 4

Proof. We first substitute Eq. (23) and Eq. (24) into Eq. (22). The problem of interest can
be written as follows:

V 0(φ) = max{0,−f + V E(φ)}

V E(φ) = max
φ′∈[0,1]

{ λ(φ′, φ)

1− β(1− π(φ))
R2 +

λ(φ′, φ)βπ(φ)

(1− β(1− π(φ)))2
R1 − εc(φ′) + β̃(φ′, φ)V 0(φ)},

where β̃(φ′, φ) ≡ ( βπ(φ)
1−β(1−π(φ))

)2λ(φ′, φ) + (1−λ(φ′, φ))β. Let R̃(φ′, φ) = −f + λ(φ′,φ)
1−β(1−π(φ))

R2 +
λ(φ′,φ)βπ(φ)

(1−β(1−π(φ)))2
R1− εc(φ′). After rearranging the dynamic programming problem, we have the

following Bellman’s equation:

V 0(φ) = max{0, max
φ′∈[0,1]

{R̃(φ′, φ) + β̃(φ′, φ)V 0(φ)}}. (41)

Define the operator T : B(X)→ B(X) as follows:

Tv(φ) = max{0, max
φ′∈[0,1]

{R̃(φ′, φ) + β̃(φ′, φ)v(φ)}}.

The Bellman’s equation can be written as

v = Tv.

Thus, the optimal value function v is a fixed point of the mapping T.8 Next, we need
to show that the mapping T satisfies the requirement of Theorems 3.2 and 3.3 in [26]. So

8Please refer to a discussion of the Bellman’s equation on page 8 in [9].
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the mapping T has a unique fixed point. We first check the requirement of Theorem 3.3
(Blackwell’s sufficient conditions for a contraction) in [26].

1) (Monotonicity) ∀g, h ∈ B(X), g(x) ≤ h(x) for all x ∈ X. We want to show
(Tg)(x) ≤ (Th)(x) for all x ∈ X. Let φ1 = arg maxφ′∈[0,1]{R̃(φ′, x) + β̃(φ′, x)g(x)} and

φ2 = arg maxφ′∈[0,1]{R̃(φ′, x) + β̃(φ′, x)h(x)}, x ∈ X. Clearly,

(Tg)(x) = max{0, R̃(φ1, x) + β̃(φ1, x)g(x)} ≤ max{0, R̃(φ1, x) + β̃(φ1, x)h(x)} ≤
max{0, R̃(φ2, x) + β̃(φ2, x)h(x)} = (Th)(x)

2) (Discounting) ∀x ∈ X, ∀g ∈ B(X), a ≥ 0, we want to show that there exists some
ι ∈ (0, 1) such that T (g + a)(x) ≤ (Tg)(x) + ιa. a is a constant. Here, (g + a)(x) denotes

the function (g + a)(x) = g(x) + a. ∀x ∈ X, as ( βπ(x)
(1−β(1−π(x)))

)2 ∈ [0, β2], λ(φ′, x) ∈ [0, 1],

β ∈ (0, 1), thus β̃(φ′, x) ∈ [0, β].

T (g + a)(x) = max{0, max
φ′∈[0,1]

{R̃(φ′, x) + β̃(φ′, x)(g(x) + a)}} (42)

≤ max{0, max
φ′∈[0,1]

{R̃(φ′, x) + β̃(φ′, x)g(x) + β̃(φ′, x)a}} (43)

≤ (Tg)(x) + β̃(φ′, x)a (44)

≤ (Tg)(x) + βa (45)

Therefore, the mapping defined above is a contraction mapping with modulus β. By
applying Theorem 3.2 (Contraction Mapping Theorem) in [26], we know that the mapping
T has a unique fixed point. Therefore, the Bellman’s equation has a unique solution.

B Computation and Parameterization

We solve the dynamic programming problem in Eq. (21) through Eq. (24) using the

value function iteration method and derive the policy function φ′ = ν(φ), which is a seller’s

innovation rate given other sellers’ innovation rate. We then evaluate the distance between

the derived innovation rate ν(φ) and the original guess and update the φ to find the solutions

of these equations. We use the “fsolve” function in Matlab to solve this system of equations.

We also try a large set of initial guesses to determine whether multiple equilibria might exist.

Our computation results are robust under different initial guesses.

The discount rate β = 0.95 implies that the annual interest rate is approximately 5%.

For u2, u1, and u0, we consider a functional form for uk similar to that in [13]: uk = eak,

where a is an exogenous parameter such that a higher a gives a greater difference in quality,

and ak reflects the elasticity of utility with regards to quality. a in the utility function is set
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at 0.5. For the uniform distribution of buyers’ willingness-to-pay, U [z, z], the upper bound z

is set at 22, and the lower bound z is 6. As for the functional form of innovation cost c(·), we

follow Aghion et al.’s model and use quadratic form, c(ε) = εφ2 [4], where ε = 22. We also

let the number of potential entrants, M , be 10 in each period, for a reasonable computation

load.

C Tables and Figures

Table 1: Boundary Conditions for Equilibrium Regions I, II, and III

Region I pb ≤ 1
3
[(2u2 + u1)z − (u2 − u1)z]

Region II 1
3
[(2u2 + u1)z − (u2 − u1)z] ≤ pb ≤ u1

2u2+u1
[(4u2 − u1)z − (u2 − u1)z]

Region III u1

2u2+u1
[(4u2 − u1)z − (u2 − u1)z] ≤ pb ≤ u1

2
z

Table 2: Equilibrium Characterization for the Two-Quality Market

Region Equilibrium Prices Equilibrium Revenues

I p∗1 = u2−u1

3u1
(z − 2z) R∗1 = u2−u1

u1

(
z−2z

3

)2

p∗2 = u2−u1

3u2
(2z − z) R∗2 = u2−u1

u2

(
2z−z

3

)2

II p∗1 = 1
u1

[u1z − pb] R∗1 =
p∗1
2

[
z − 2z − 1

u2−u1
[u1z − pb]

]
p∗2 = 1

2u2
[(u2 − u1)z + u1z − pb] R∗2 = u2−u1

4u2

[
z + 1

u2−u1
(u1z − pb)

]2

III p∗1 = u2−u1

4u2−u1
[z − 2pb

u1
] R∗1 = u2(u2−u1)

(4u2−u1)2

[
z − 2pb

u1

]2

p∗2 = u2−u1

4u2−u1
[2z − pb

u2
] R∗2 = u2−u1

u2(4u2−u1)2
[2u2z − pb]2
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Figure 1: An Overview of the Two-Sided Platform

Figure 2: The Equilibrium Regions in (u1, u2 − u1)-Space
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Figure 3: Equilibrium Innovation Rate and Buyer-Side Ac-
cess Fee pb

Figure 4: Equilibrium Innovation Rate and Seller-Side Ac-
cess Fee f
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Figure 5: The Low-Quality Incumbent’s First-Order Con-
ditions
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