
Android Repository Mining for Detecting Publicly
Accessible Functions Missing Permission Checks

Abstract—Android has become the most popular mobile oper-
ating system. Millions of applications, including many malware,
haven been developed for it. Even though its overall system ar-
chitecture and many APIs are documented, many other methods
and implementation details are not, not to mention potential bugs
and vulnerabilities that may be exploited. Manual documentation
may also be easily outdated as Android evolves constantly with
changing features and higher complexities. Techniques and tool
supports are thus needed to automatically extract information
from different versions of Android to facilitate whole-system
analysis of undocumented code. This paper presents an approach
for alleviating the challenges associated with whole-system anal-
ysis. It performs usual program analysis for different versions
of Android by control-flow and data-flow analyses. More impor-
tantly, it integrates information retrieval and query heuristics to
customize the graphs for purposes related to the queries and
make whole-system analyses more efficient. In particular, we
use the approach to curate functions in Android that can be
invoked by applications in either benign or malicious way, which
are referred to as publicly accessible functions in this paper,
and with the queries we provided, identify functions that may
access sensitive system and/or user data and should be protected
by certain permission checks. Based on such information, we
can detect some publicly accessible functions in the system that
may miss sufficient permission checks. As a proof of concept,
this paper has analyzed six Android versions and shows basic
statistics about the publicly accessible functions in the Android
versions, and detects and verifies several system functions that
miss permission checks and may have security implications.

Keywords-android; program comprehension; program analy-
sis; information retrieval; call graph; dependency;

I. INTRODUCTION

Android now accounts for more than 80% of the global
smartphone operating system (OS) market [1]. The system
architecture of Android and many of its APIs have evolved
much across different versions of the Android system from
API level 1 to API level 25 for Nougat 7.1, exhibiting
inconsistent behaviors and leading to incompatibility across
versions. Applications running on top of the Android system
may invoke the APIs available from the system, but exhibiting
different behaviors depending on the implementation of the
APIs and their versions. Malicious applications may even
invoke both documented and undocumented methods in the
system, and exploit potential bugs and vulnerabilities in the
system, causing harms to smartphone users.

Understanding Android system behaviors and APIs be-
comes even more important and challenging when Android
evolves with much diversity across its ecosystem and faces the
fragmentation problem [2]. The size of the Android system
has also grown into tens of million lines of code including
code generated during build, imposing significant technical

challenges when performing whole-system program analysis
of all code involved.

In the area of static analysis of Android systems and
applications, much work [3]–[5] that focuses on analyzing
Android applications require expert knowledge and models
of the Android systems, such as the lifecycle callbacks, the
back stack, etc. Such expert and manual modelling of the
systems cannot keep up with the evolution and fragmentation
of the systems. There are needs to automate the modeling of
various versions of the Android system, and more generally, to
automate the modeling of large-scale frameworks and libraries
used for application development. Whole-system analysis on
the Android system and its benefits for automated modeling of
the system and facilitating programmers to understand system
behaviors and APIs have been considered in the literature, but
it comes with many challenges (e.g., [6]).

This paper takes a step to circumvent the challenges by
combining program analysis techniques with information re-
trieval techniques to analyze the whole Android system across
different versions. The paper aims to build a framework that
can automatically curate the methods in the Android system
that can be accessible by applications, providing a “navigation
map” of the methods for different versions of Android systems
for programmers to understand. The framework has two major
interleaved components: one is a program analysis component
built with the Soot analysis framework [7] that constructs basic
Java class hierarchies, call graphs, and control-flow graphs,
and performs data flow analysis along the graphs for different
versions of Android systems; the other is a text-based infor-
mation retrieval and graph customization component that can
take in user-provided query words to tailor the graphs for the
users’ needs. In particular, as an application of the framework,
we consider the methods in the system that access sensitive
system-level and/or user data and thus often require certain
permission protections. With the query words we provided
(such as “permission”, “allow” for permission checking, and
“telephony”, “location” for particular sensitive data), our infor-
mation retrieval and graph customization component can slice
the outputs from the program analysis component in a way
that is more compact, facilitating more efficient identification
and analysis the relevant methods, and detecting methods that
may miss permission checks but are publicly accessible.

We have analyzed six versions of Android (4.1.1, 4.2.2, 4.3,
4.4.4, 5.1.0, 6.0.1) with our framework, and curated publicly
accessible functions from them. The numbers of publicly
accessible functions generally increase with increasing version
numbers and Android code sizes, from more than 50K to more

Code
in various languagesCode
in various languagesAndroid System Code

(3) Detection of publicly
accessible functions that

need/miss permission checks

(2) Query‐based
graph slicing and

dependency analysis

(1) Construction of
call graphs and

control‐flow graphs

filtered graphs with
dependence relations
highlighted in blue

Keyword
queries for a
particular
purpose

Fig. 1. Approach Overview
than 70K. The large numbers of publicly accessible functions
have more potential venues for unauthorized access to sensitive
information in the system. As a proof of concept, with the
query words we used together with framework, we show that
in the versions of 4.1.1 and 4.2.2, there are quite a number
of methods (e.g. the system class android.media.AudioManager has
method isSpeechRecognitionActive) that are not sufficiently protected
by permissions and may be invoked by malicious applications
to obtain sensitive information about the system and users.

Our novel technical contribution lies in the integration of
information retrieval techniques with program analysis tech-
niques to improve the scalability of the analysis and allow
customized heuristics based on user-provided query words for
tailored whole-system analysis.

II. RELATED WORK

The work in this paper is closely related to much work
in static analysis of Android systems and applications. Much
work that focuses on analyzing Android applications require
expert knowledge and models of the Android systems. For
example, FlowDroid [4] detects private data leaks. It performs
static analysis on Android app based on interprocedural control
flows and data flows. IccTA [3] performs inter-component taint
analysis. It uses a highly precise control-flow graph through
instrumentation of the code of applications to detect inter-
component flows. CHEX [8] detects possible hijack-enabling
flows through low-overhead reachability tests on customized
system dependence graphs. Yang et al. [9] present a control-
flow representation and analysis of user-driven callback be-
havior based on context-sensitive analysis of event handlers.
Rasthofer et al. [5] describe various static and dynamic code
analysis techniques of Android malware and emphasize the
challenges that hinder automated malware analysis, such as
lack of complete and accurate models of the systems and
scalability difficulties in performing whole-system analysis.

This paper tries to work towards (semi-)automated whole-
system modeling and analysis of Android systems and appli-
cations. This objective on whole-program analysis has been
considered in the literature. For example, Yan et al. [6]
propose to extend Soot with summary-based analysis so as
to scale up to whole-program analysis. StubDroid [10] gen-
erates summaries for system/library APIs before performing
data-flow analysis for applications. To facilitate whole-system
taint analysis, SuSi [11] uses machine learning techniques
to discover and categorize data sources and sinks in the

Android framework automatically. Our approach in this paper
is also for whole-system modeling and analysis, but utilizes
information retrieval techniques and user-provided keyword
queries to make analysis much efficient and targeted for a
specific purpose related to the queries. For example, our work
may be used for detecting functions in the Android system
that may be invoked by applications and access sensitive data
but miss sufficient permission checks.

III. APPROACH
A. Overview

As shown in Figure 1, our approach consists 3 main steps.
(1) For a version of Android, we collect all of Java classes

involved, construct call graphs for the whole Android sys-
tem, and the control flow graphs for individual methods.

(2) Then, based on query keywords from users (e.g., “phone
device id”), we identify potentially relevant methods us-
ing information retrieval techniques, and using NetworkX
to slice the graphs to keep only the relevant methods
while maintaining their connectivity in the sliced graphs.
Then, further data-flow and control-flow analysis of the
methods based on the sliced graphs are performed to pro-
duce likely dependence relations among the objects and
function calls needed for invoking each of the methods,
which are represented as a dependency graph.

(3) Also based on queries related to permission checking,
we identify potentially publicly accessible functions, and
check whether there are permission controls for the
objects and function calls needed to invoke a publicly
accessible function. If there is a possible permission
check in the paths in the publicly accessible function’s
dependence graph, we assume the function is sufficiently
protected by permissions in Android. For example, the
sample code fragment in Figure 1 shows that getDeviceId
is protected by the READ_PHONE_STATE permission.

Steps (2) and (3) are both based on information retrieval
techniques and customization of the graphs. Combining them
together, we may detect system functions that may access
sensitive data but without sufficient permission protections.

B. Implementation Details

Generate	whole-system	Call	Graphs	and	
individual	method	Control-Flow	Graphs

Detect	Methods	containing	
permission	checks

Filter	Methods	containing	
sensitive	words

Methods	containing	sensitive	words	but	
missing	permission	checks	for	verification

Detect	Methods	having	no	
permission	checks

Slice	Graphs	according	to	
dependence	relations

Whole	Android	System	Bytecode

Fig. 2. Detecting Sensitive Methods Missing Permission Checks

Figure 2 illustrates the technical steps in more details.
1) We generate the whole-system call graphs and the control

flow graphs for individual methods via Soot [7]. This
paper does not consider many challenges (e.g., modeling
event handlers, back stack of activities, intent broadcast-
ing, XML configurations, etc.) in constructing accurate
call graphs for Android. The graphs are exported to Net-
workX’s pickle format [12] for more efficient analysis.

Data: listOfPermissionWords = {“permission”, “check”, “mode”, “allow”};
Data: callGraph = the call graphs of the whole Android system;
Result: Set of methods in call graphs containing permission query words.
Set allMethods = callGraph.getAllMethods();
Set methodsContainPermissionChecks = ∅;
// Identify methods directly containing permission checks:
foreach method in allMethods do

Body bodyMethod = method.getBody();
if bodyMethod CONTAIN a word in listOfPermissionCheckWords then

methodsContainPermissionChecks.add(method);
end

end
Set methodsContainPermisisonCheckClosure = ∅;
Set checkedMethods = methodsContainPermissionChecks;
// Identify all callers that are indirectly guarded by their callees:
while checkedMethods IS NOT empty do

currentMethod = checkedMethods.pop();
methodsContainPermisisonCheckClosure.add(currentMethod);
Set callerMethods = callGraph.getCallerMethods(currentMethod);
foreach caller in callerMethods do

if caller is NOT in methodsContainPermisisonCheckClosure then
checkedMethods.add(caller);

end
end

end
return methodsContainPermisisonCheckClosure;
Algorithm 1: Detecting methods containing permission checks.

2) We use query words (“permission”, “check”, “mode”,
“allow”) as a heuristic to identify permission checks in
Android code in a path- and context-insensitive way.
If a method body has a function call or a conditional
expression that involves identifier names containing a
query word, we assume it has a permission check; and the
caller of the method would be assumed to be guarded by
the permission check too. Algorithm 1 is applied to detect
methods contain permission check in whole-system call
graph. Then, we get the difference between the set of all
methods and the set of methods containing permission
checks, and treat the methods in the difference set as the
methods missing permission check.

3) We also use query words provided by users (e.g., “loca-
tion”) to identify methods that may be relevant for sensi-
tive data. The matching technique is based on information
retrieval used in the literature ([13]–[16], e.g., similarity
measurement based on term-frequency/inverse-document-
frequency). Algorithm 2 filters methods based on whether
they can match a sensitive query word. 1

4) Finally, we take the intersection of the results from (2)
and (3) to verify whether the methods in the intersection
may indicate methods that may access sensitive data and
be invoked by applications without sufficient permissions.

IV. EVALUATION

A. Setups
For Soot to construct call graphs for a version of Android,

we feed it with jar files in the Android SDK. For versions
from 4.1.1 to 4.4.4, we used all of jar files in /system/framework

converted from the dex files in the Genymotion Nexus 4 emu-
lator [17]. Since version 5.0, Android changed its architecture,
and the dex files were combined to Linux binary (ELF) files.

1Methods that are in the dependence slice of a sensitive method can also be
included as matching methods. Our prototype implementation does not include
the dependencies, which will affect the later permission checking results; we
leave the evaluation of various query matching heuristics for future work.

Data: sensitiveWords = {“account”, “bluetooth”, “contact”, “database”, “camera”,
“fingerprint”, “usb”, “location”, “media”, “audio”, “volume”, “wifi”, “http”,
“nfc”, “storage”, “notification”, “voice”, “keystore”, “telecom”,
“telephony”, “radio”, “gsm”, “cdma”, “sms”};

Data: callGraph = the call graphs of the whole Android system;
Result: Set of methods containing sensitive words
Set methodsContainSensitiveWords = ∅;
foreach method in allMethods do

if method.getBody() CONTAIN a word in sensitiveWords then
methodsContainSensitiveWords.add(method);

end
end
return methodsContainSensitiveWords;

Algorithm 2: Detecting methods containing sensitive words

Since Soot did not support ELF, we used the Android packages
from Grepcode [18] for versions 5.1.0 and 6.0.1.

B. Result Summary
Our evaluation provides preliminary answers to (1) basic

statistics about methods in different versions of Android, and
(2) more importantly, whether we can find publicly accessi-
ble functions that access sensitive system/user data without
permission checks.

1) Method Statistics in the Android Versions: The total
numbers of methods (the blue line with squares in Figure 3)
increase along versions, ranging from about 110K to more
than 160K. More than 50% of the methods are public methods,
much more than what are documented in Android API/SDK
documents, implying that there may be much more ways,
either benign or malicious, to invoke system functionality.

0

200000

400000

600000

800000

1000000

1200000

0
20000
40000
60000
80000
100000
120000
140000
160000
180000

4.1.1 4.2.2 4.3.0 4.4.4 5.1.0 6.0.1

N
um

be
r	o

f	e
dg

es

N
um

be
r	o

f	m
et
ho

ds

Android	version

Number	of	public	methods	in	callgraph Number	of	methods	in	callgraph

Number	of	public	methods Number	of	methods

Number	of	edges	(right	y-axis)

Fig. 3. Numbers of Methods and Edges

We use the interaction degrees among methods in call
graphs to illustrate the complexity of Android functions.
Figure 4 shows the in-degree and out-degree distributions
for Android 4.1.1. The distributions exhibit power-law like
relations, especially for degrees in the range of [1, 100].
Other versions exhibit similar distributions. Sample meth-
ods of high in-degrees are toString, append in the general
purpose StringBuilder, Object classes. Interestingly, methods
of high out-degree may not be of high complexity. E.g.,
equals, toString methods in the Android core.KeyValueMap,
text.SpannableStringBuilder classes have almost the highest
out-degree, reflecting the fact that it deals with generic object
types, but the code of these functions are often short and
easy to understand. More complex methods are those having
tens of out-degrees and dealing with specific object types with
rich contents, e.g., parseIntent, getLastLocation in the Android
Intent, LocationManagerService classes.

2) Accessing sensitive data without permissions: Informa-
tion curated by our prototype tool with the specific query
words could be applied to find potential security and privacy
violations. Based on preliminary analysis we performed for

1

10

100

1000

10000

100000

1 10 100 1000 10000

Lo
g(
N
um

be
r	o

f	n
od

es
)

Log(In-degree)	

1

10

100

1000

10000

100000

1 10 100 1000 10000

Lo
g(
N
um

be
r	o

f	n
od

es
)

Log(Out-degree)

Fig. 4. Method call degree distributions of Android version 4.1.1

Android 4.1.1 and 4.2.2, we provide three examples here to
illustrate the capability of our approach for detecting sensitive
methods missing permission checks.

The first example is the public method setStreamVolume()

of a system class com.android.server.audio.AudioService. This
method invokes many other methods in AudioService in a certain
order, such as ensureValidStreamType(), getDeviceForStream(), rescaleIndex(),
and sendVolumeUpdate(). Along the call chain, there is no any
permission check. So, an applications could change a device
volume without any permission. This potential security bug
was fixed since Android 4.4.

The second example involves four publicly accessible
methods missing permission checks in a system class an-

droid.location.Country: getCountryIso, getSource, describeContents, and hashCode.
Especially, an application could read the system country code
(sensitive although not critical information) without any per-
mission check via getCountryIso. In latest Android version 7.1.1,
these problems are still there.

The third example, the method isSpeechRecognitionActive of a sys-
tem class android.media.AudioManager, provides the speech recogni-
tion status without permission checks. The method isSpeechRecog-

nitionActive was removed since Android version 4.4.4.

C. Discussion
Our approach for detecting methods missing permission

checks is based on heuristic queries; it is neither sound or com-
plete. When it reports a method missing permission checks, we
verify it by manually constructing a simple application without
any permission to invoke the method. The application prepares
the necessary objects for invoking the method, by normal
method calls and/or Java reflection. There are many more ways
for Android applications to invoke system functionalities, such
as broadcasting an intent that will be matched and processed
by the system. We leave studies on automated construction of
method calls to test app behavior for future work.

More broadly, our approach, combining program analysis
with information retrieval, may be used to customize graph
constructions and whole-system analysis, to make them more
efficient and adaptable for queries beyond permission check-
ing. It may also be useful for both application and system
developers to navigate through the API jungle in the Android
system better.

V. CONCLUSION

This paper proposes an approach that utilizes information
retrieval queries to customize program analysis for the whole
Android system across various versions, with the intention to
enable more flexible and scalable whole-system analysis that
can be tailored for a specific need.

Based on limited studies of six Android versions, we show
that the numbers of system functions change a lot and there are
more than 50% methods that may be publicly accessible, leav-
ing many venues for potential security and privacy violations.
We then illustrate the potential usefulness of our approach
by using queries related to permission controls on sensitive
system/user data to reveal publicly accessible functions that
may access sensitive data without permission checks.

In the near future, we will improve the algorithms and
implementation to provide more flexible configurations to
customize graphs and program analysis for various kinds of
queries to help developers understand the complex Android
system functions better.

REFERENCES

[1] Gartner, “Worldwide smartphone sales grew 9.7 percent in fourth quarter
of 2015,” http://www.gartner.com/newsroom/id/3215217, Feb. 2016.

[2] OpenSignal, “Android fragmentation visualized,” http://opensignal.com/
reports/2015/08/android-fragmentation/, August 2015.

[3] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA: Detecting
inter-component privacy leaks in android apps,” in 37th IEEE/ACM In-
ternational Conference on Software Engineering, ICSE, vol. 1, Florence,
Italy, May 16–24 2015, pp. 280–291.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. McDaniel, “FlowDroid: precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), June 9–11 2014, p. 29.

[5] S. Rasthofer, I. Asrar, S. Huber, and E. Bodden, “How current android
malware seeks to evade automated code analysis,” in Information Secu-
rity Theory and Practice - 9th IFIP WG 11.2 International Conference,
WISTP, 2015, pp. 187–202.

[6] D. Yan, G. Xu, and A. Rountev, “Rethinking Soot for summary-based
whole-program analysis,” in ACM SIGPLAN International Workshop on
the State Of the Art in Java Program Analysis @ PLDI, 2012, pp. 9–13.

[7] Sable Research Group, “Soot: A framework for analyzing and transform-
ing java and android applications,” https://sable.github.io/soot/, 2016.

[8] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 229–240.

[9] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-
flow analysis of user-driven callbacks in Android applications,” in
International Conference on Software Engineering, 2015, pp. 89–99.

[10] S. Arzt and E. Bodden, “StubDroid: automatic inference of precise data-
flow summaries for the android framework,” in Proceedings of the 38th
International Conference on Software Engineering, ICSE, Austin, TX,
USA, May 14–22 2016, pp. 725–735.

[11] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for
classifying and categorizing android sources and sinks,” in 21st Annual
Network and Distributed System Security Symposium, NDSS, 2014.

[12] NetworkX, “High-productivity software for complex networks,” http:
//networkx.github.io/, 2016.

[13] S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization using
information retrieval: An empirical study on linux kernel,” in 18th
Working Conference on Reverse Engineering, Oct 2011, pp. 92–96.

[14] A. Marcus and S. Haiduc, Text Retrieval Approaches for Concept
Location in Source Code. Springer, 2013, pp. 126–158.

[15] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in 15th
International Conference on Program Comprehension (ICPC), Banff,
Alberta, Canada, June 26-29 2007, pp. 37–48.

[16] B. Dit, M. Revelle, and D. Poshyvanyk, “Integrating information
retrieval, execution and link analysis algorithms to improve feature
location in software,” Empirical Software Engineering, vol. 18, no. 2,
pp. 277–309, 2013.

[17] Genymotion, “Fast and easy android emulator,” https://www.
genymotion.com/.

[18] Grepcode, “Java source code search 2.0,” http://repository.grepcode.com/
java/ext/com/google/android/android/.

