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ABSTRACT

Effective bug localization is important for realizing aotated de-
bugging. One attractive approach is to apply statisticginegues
on a collection of evaluation profiles of program properteselp
localize bugs. Previous research has proposed variousatped
techniques to isolate certain program predicates as butigboes.
However, because many bugs may not be directly associated wi
these predicates, these techniques are often ineffentleealizing
bugs. Relevant control flow paths that may contain bug looati
are more informative than stand-alone predicates for didog
and understanding bugs. In this paper, we propose an apptoac
automatically generate such faulty control flow paths timktinany
bug predictors together for revealing bugs. Our approaah-co
binesfeature selectior{to accurately select failure-related predi-
cates as bug predictorgjustering(to group correlated predicates),
and control flow graph traversal in a novel way to help gererat
the paths. We have evaluated our approach on code inclulding t
Siemens test suite and rhythmbox (a large music managerpent a
plication for GNOME). Our experiments show that the faulone
trol flow paths are accurate, useful for localizing many hlaysd
helped to discover previously unknown errors in rhythmbox.

Categories and Subject DescriptorsD.2.4/D.2.5 Boftware En-

states looking for causes of the problem. Such a manual &k ¢
be tedious, challenging, and error-prone because thesiate is
typically very large and may not even be completely avaddblg,

in the case of a failed user run). It is desirable to autontaele-
bugging process as much as possible.

Bug localizationis a step towards automated debugging: much
code unrelated to bugs is filtered out and only the remaingugc
needs further debugging. Effective bug localization téghes can
potentially save much developer time by not only pinpoigtiug
locations in code but also providing useful contextual infation
for understanding the bug causes.

In recent years, much research has been devoted to this area.
One general, attractive approach is to rely on feedback fdaa
the large number of users of deployed software, as showngn Fi
ures 1(a)—(d): (1) an application is first (lightly) instranted to
profile certain program properties; (2) users of the insentad
application send execution profiles to a central database;(3)
postmortem analyses, suchsatistical debuggingare performed
on the gathered profiles to identify bug predictors that nmefemr
to actual bug locations. Statistical debugging [2, 38, 3959] is
based on a low-overhead, privacy-safe instrumentatiaastiuc-
ture within the context of Cooperative Bug Isolation (CB3)]. In
this infrastructure, program predicates, such as the nupoflignes

gineering]: Testing and Debugging, Software/Program Verification—a branch condition is taken, are recorded, then statisticalels are

Reliability, Statistical methods, Debugging aids
General Terms: Experimentation, Reliability

Keywords: Bug localization, Statistical debugging, control flow
analysis, machine learning

1. INTRODUCTION

Debugging is an important part of the software developmemt p
cess because developers spend significant fraction oftthrgron
debugging. Traditionally, debugging is a manual processadten
done in two steps: (1) under testing, an application exhibit-
expected behavior, and (2) the developer examines the xecu
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applied to rank the predicates in terms of how closely théatedo
bugs. Developers can then inspect highly ranked predi¢téso-
lation) for actual bugs. If users are willing to tolerate mgerfor-
mance overhead, more heavyweight instrumentation mesimani
may be deployed to gather more information for identifyinggb
predictors. For example, Tarantula [30, 31] instrumentsast ev-
ery statement in a program, and ranks and visualizes thenstaits
according to their potential relations with bugs.

These techniques may be effective at locativigerebugs may
lie, but often do not provide sufficient information for dejging,
which may require additional contextual informatiand, control
and data dependency, or concrete execution traces) tosiaddr
how highly ranked predicates lead to program failuresvbry they
are related to real bugs. In this paper, we aim at answeritig bo
whereandhow program failures happen and thus improving exist-
ing statistical debugging techniques. In particular, weoiduce a
context-awar@pproach that considers not only individual bug pre-
dictors but also predicate correlations and control flonhpdhat
connect the bug predictors and correlated predicates fterbei-
agnosis of bugs. We extend the general approach shown in Fig-
ures 1(a)—(d) in two aspects: (1) we exploit the profiles gath
from users further to discover correlations among prograetip
cates (Figure 1(e)), and (2) we propose an efficient algorifibr
constructing such faulty control flow paths to help diagnpse&n-
tial bugs (Figure 1(f)).
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return;

// The selection_lock is FALSE now,
// so it may cause a race condition:
...modify entries...;

view->selection_lock = FALSE;

void rb_entry_view_select_entry (RBEntryView *view, ) {

view->priv->selection_lock i TRUE/

rb_entry_view_select_none (view); 4 ——
if® ( rhythmdb_query_model_entry_to_iter(:-

void rb_entry_view_select_none (view) {
view->priv->selection_lock = TRUE;
...clear all selected entries...;
view->priv->selection_lock = FALSE;
3 return;
call

cal GList *sel;

return

if® ( sel 1= NULL )~

gboolean rhythmdb_query_model_entry_to_iter (...) { ) .
{ branching

if® ( G_UNLIKELY (ptr == NULL)
...; return FALSE; }
retrm branching

H
y\, return TRUE«—
¥ ¥

branching ...access to the enfries...;

g_list_free (sel);

void rb_entry_view_selection_changed_cb (view,...) {

if® (view->priv->selection_lock == TRUE)~

sel = ...get a list of pointers to the selected entries...;

branching

(@

(e) ®

Figure 2: Sample code fragment extracted from rhythmbox 0.64 (solid arrows indicate control flow transfers).

We use a real-world example to illustrate how our extended ap
proach can be more useful for localizing bugs than existiatissi-
cal debugging. Figures 2(d)—(f) show code extracted fragthmbox
0.6.4, a music management application for GNOME with a toftal
56484 lines of code [39]. In fact, the code in Figures 2(d) and 2(e)
can be executed concurrently with the code in Figure 2(f) ,ranes
may occur because all the code snippets write to the unpeatec
variableview->priv->selection_lock.

Without considering bug context, our approach can predastyn
program predicates, including the seemingly unrelatedghavn
in Figure 2(b), as bug predictors. Although the predicatextse
to actual bug locations, presenting developers such ptsticn
isolation is not very helpful for them to understand the bum
improve the situation, (1) our approach further discovemrsdp
cate correlations and predicts branching directions baseexe-
cution profiles. E.g., the two predicates in Figure 2(b) amlewe-
lated predicates are grouped into the same correlatiotec|(fSig-
ure 2(c)), indicating that they may be all responsible far Hug
under the predicted branching directions; (2) Control flosthgs
that connect these predicates are constructed to helpl teesaug
cause (Figures 2(d)—(f)).

The paths in Figures 2(d)—(e) involve three functions an@p
imately20 lines of code (excluding blank lines). By inspecting this
control flow path, one can see thatew->priv->selection_lock
is alwaysFALSE on the line ofif® and the condition fot£® is

TRUE. Thus, the modification in the true-branch may easily cause
races if different threads in rhythmbox run the code at theesa
time. In addition, the path in Figure 2(f) (involving apprdx lines
of code) shows thatiew->priv->selection_lock iS never set
to TRUE after if(*) and the operations in the true-branchidf®
may cause another ratelf we had isolated the bug predictors
without predicate clustering and control flow paths, it wbhave
been more difficult to understand the bug.

Our approach is based on a novel combination of the CBI in-
strumentation infrastructure [36], feature selection endtering in
machine learning, and control flow graph analysis. Figure@®s
the organization of our approach. First, a program is ims&nted
and execution profiles for certain program predicates alleated
(Section 2.1). Second, the data are preprocessed and ethat
chine learning algorithms to produce two kinds of inforroati One
is about which program predicates are most likely bug ptedic
We obtain this information vigeature selectiofSection 3.1) using
two well-known classification algorithms: support vectachines
(SVMs) and random forests (RFs) (Section 2.2). The othevasia
which predicates are correlated in terms of similar evaduahis-
tories viaclustering(Section 3.2) using a variant of tHemeans
clustering algorithm. Next, we utilize this information beuristi-

The latest version of rhythmbox has been modified to use tlhgramming
models (real locks and critical sections) provided ®§K+, instead of the naive
selection_lock, to avoid such races.
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cally predict the directions of conditional branches (8st8.3).
Then, guided by such branch predictions, our approach rsase
the program’s control flow graph (CFG) to identify faulty ¢om
flow paths that connect the bug predictors and correlatediqates
(Section 3.4). Finally, the developer can inspect the ifledtpaths
to locate actual bugs.

We also present an empirical evaluation of our approach &nd d
cuss potential threats to its validity (Section 4). The lssshow
that our context-aware approach helps developers morky esi
agnose program errors, in terms of numbers of revealed bugs a
the amount of code examined, than existing bug localizagch-
niques which provide only stand-alone bug predictors. Iriga
lar, we locatedr9 bugs out ofl 32 in the Siemens test suite [24] by
inspecting the constructed faulty control flow patB8,of which
were located by inspecting at mos}, of the code in each pro-
gram. Also, five real bugs in rhythmbox 0.6.4 (a real-worldiltin
threaded music management application [51] for GNOME) with
two previously unknown were discovered; each bug required i
specting tens to hundreds of lines of code (oui®£84 lines).

2. TECHNICAL BACKGROUND
2.1 Program Instrumentation Infrastructure

Our approach uses execution profiles collected by the CBI in-
frastructure [36]. CBI lightly instruments a program wittaically
fixed n predicates, and an execution of the instrumented program
is recorded as an-dimensional vector, where thieth value of the
vector counts the number of times that ik predicate is observed
to be true during the execution. The vector for each exeouiso
has a label, indicating failure or success of the executisrkey
observation from CBI andtatistical debugging?, 38,39,41,59] is
that although it is practically impossible to recover pamrbehav-
ior (or user specific information) from one vector, a largéexiion
of such vectors from many users can be useful for undersigndi
its (mis)behavior. In this paper, we use the following thkeels of
predicates instrumented by CBI:
branches: Given a branch conditior”, two predicatesC’ ==
true (abbr. Cr) andC == false (abbr. Cr) may be in-
strumented to count how many times an execution takes the
true branch and the false branch respectively.

returns: Given a function call site with return value, three pred-
icatesR < 0, R == 0, andR > 0 may be instrumented to
track the sign of the return value.

scalar-pairs: Given two program variables and B (B can also
be0 instead) of the same scalar or pointer type, three predi-
catesA < B, A == B, andA > B may be instrumented to
track the arithmetic relationship betwednand B.

Different predicates may indicate various types of bugsongr
branch conditions may indicate that a program enters abaslorm

paths; wrong return values may indicate failures of functtivoca-
tions; and scalar-pair relations may help reveal null-poinleref-
erences and out-of-boundary issues.

2.2 Machine Learning

We now introduce several machine learning concepts [48} rel
vant to our approach.

2.2.1 Definitions

In machine learning, a data skt is usually given: each data
pointu € U (1) is a value vectofvy, ..., v,) for a set of pre-
selected featureB = {p1, ..., pn}, and (2) has an associated label
L, that indicates the class to whiatbelongs. Vectors collected by
CBI correspond naturally to such a data Eeteach instrumented
predicate corresponds to a featyrg each execution profile cor-
responds to a data point, and the execution resulsccesor
failure) corresponds to the class laliel .

Classification feature selectionand clusteringare three com-
mon learning tasks performed @f

Classification: GivenU and P, establish a classification function
M(u) to map eachu € U to a class, maximizinglas-
sification accuracyi.e., maximizing the number of correct
mappings (compared witli's own label), even ifJ contains
noise data (that are irrelevant for the final function or that
have wrong labels) or data with missing values.

Feature Selection: Given U and P, select a subset of features
Py, = {ps,,.--,ps, } C P, suchthat the classification func-
tion based orUU;, and P, is still accurate enough compared
with the classification function based @n and P, where
Uy is U projected ontoPy, i.e, Uy = {(vsy,...,0s) |
(v1,v2,...,vn) € U}. Usuallyk is restricted to a constant,
and it is referred to as-feature selectionThe selected fea-
tures have more impact on the classification function thian al
other features, and thus they can be the best choice as bug
predictors for the purpose of bug localization.

Clustering: Given U and P without labels, divideU into sub-
sets €lusterg such that data points in each subset are similar
w.r.t. certain distance measures [4]. In this paper, weyappl
clustering techniques to discover correlated predicdias t
are similar w.r.t. evaluation histories (Section 3.2).

2.2.2 Machine Learning Algorithms

To identify bug predictorsi(e., to perform feature selection), we
utilize two machine learning algorithms in this paper:

Support Vector Machines (SVMs): SVMs [9] are a family of ma-
chine learning algorithms. Briefly speaking, a SVM is a clas-
sification function é.g, a linear function: - w, wherew is an
adjustable parameter), and it iteratively adjusts the mpara
eters to maximize classification accuracy while minimizing
certain inevitable errors in machine learning.

Random Forests (RFs):An RF [7] is basically a collection ale-
cision trees(DTs) [43]. Each decision tree is built on a dif-
ferent subset of/; it computes ranks for every feature and
decides the class label of a data painbased on the ranks.
The final label ofu is then decided by the majority votes of
all the trees in the forest.

In this paper, we use both SVMs and RFs. For large data sets,
RFs are usually more efficient than others, while SVMs arallgu
more accurate, especially for small data sets.

3. BUG LOCALIZATION FRAMEWORK

In this section, we describe more details about the main cemp
nents of our bug localization approach (as shown in Figure 3)



3.1 Feature Selection

Feature selectiori.g., select critical program predicates that can
be accurate bug predictors) is a fundamental step in ouoappr
In this paper, we apply classification algorithms to perfésfieature
selection: we assign d@mportance scor¢o each feature based on
its impact on the classification functiond(, each predicate is asso-
ciated with a score indicating how likely it may reveal bughen
we choose the tog-features with the highest scores as the bug
predictors. The following describes how we compute suchiesco
based on SVMs and RFs.

In SVMs with a linear classification functiof/ (v) = u - w,
wherew = (w1, ...,wn), largerw; intuitively has bigger impact
on the computed class. Thus, itis natural to define thefeature’s
importance scoré (p;) as|w;| or w? [25]. In our setting for bug
localization, importance scores are slightly differentdgese we
need predicates that have not only the biggest impact batthés
biggestpositiveimpact {.e., causing an execution to fail). There-
fore, we usev; directly as the importance score for the predigate
if we assign a positive value (typically to the label for failure and
a negative value (typically-1) to the label for success during the
learning of M (u). Generally, in SVMs with non-linear functions,
the importance score for a predicefig; (p;) can be defined as the
partial derivative ofM (u) w.r.t. thei-th predicate:

N a OM(u)
Sm(pi) = o0

RFs use another interesting heuristic to compute impoetanores:
if a predicate has a big impact on the classification functiban
when the data values for this predicate change, the clastfiab
this data point is very likely to change too; otherwise, tlass label
is likely to remain the same. After the classification fuooti/ (u)
is established, RFs randomly permute the data values forgrad-
icatep; and useM (u) to classify the permuted data points. Then,
the difference between the classification accuracies eefod af-
ter the permutation can be used as the importance scoge.fdhe
larger the difference, the bigger impactafon M ().

In addition, each individual machine learning algorithnrmist
a panacea for any learning problem. It would be better to “com
bine” results from different algorithms. So, we propose simple
strategies to “combine” differerit-feature selection results.

Halving: Given two lists of ranked features of sizel £ |, choose
at least the topj% | features from each list.

Rank Mediation: Select the final toge features according to the
average ranks of all feature ranks from different algorishm

For example, suppose a set of predicdigs. . . , p1o) is ranked
by an SVM as(1,2,2,4,4,4,7,8,9,9) and ranked by an RF as
(5,5,4,1,2,2,7,7,7,7). If we want tops predicates, a halving
strategy would returip:, p2, ps, p4, ps) as the selected predicates,
while a rank mediation strategy would assign new ranks tpthd-
icates a$3, 3.5, 3,2.5, 3,3, 7,7.5,8,8) and return(pa, p1, p3, ps, D6 )
as the final five predicatés.

3.2 Clustering

Previous work has focused on discovering how different exec
tions relate and how predicates and executions relate.niskyg
such work is based on \eertical view of evaluation profilesi.e.,
the profile for one execution is viewed as one unit for conguari
Little has been done to discover how predicates relate adliffer-
ent executions. This can be achieved with a henizontalview of
the profiles: the profiles for each predicate across all i@tsiare

2it would be interesting to investigate how to “combine” difnt machine learning
algorithms in general and what effects different “comhioas” may have. The two
simple strategies showed little impact on our evaluati®ults and we only show
results based on the halving strategy in this paper.

viewed as one unit, and predicate correlations can be dised\by
looking for “similar” horizontal units. For example, supgmo we
have three executions of a program with three instrumented-p
icatesp1, p2, andps, and the three profiles are represented under
the traditional vertical view as:1 = (5, 10, 5), e2 = (2, 8,2), and

es = (4,6,4). Under the horizontal view, the profiles are repre-
sented asp: = (5,2,4), p2 = (10,8, 6), andps = (5,2,4), and

it becomes clear that; has the same evaluation historymsand
this may indicate thgt, has correlationship witjps.

Predicate correlations that can be discovered based orptire h
zontal view are interesting because program failures mayaheed
by or influence many predicates in an execution and corogiati
among those predicates can provide additional contexniat-i
mation for debugging. For example, let the branch condstifor
i£f@® £ andif® in Figure 2(d)-(f) be4, B, andC respec-
tively, then the clustering result in Figure 2(c) can tellthat the
predicatesA == true, B == false, andC' == true had similar
evaluation histories in failed executions. Such a coriatehelped
(1) reveal more information about the state of a program wihen
fails, (2) disclose a more accurate execution path ther&aitnay
take, and (3) provide additional contextual informatiom i3 to
understand the failure.

We apply a variant ok-means clusteringg] to discover pred-
icate correlations: all predicates are partitioned intestgrs such
that (1) thedistancebetween any two predicates in the same clus-
ter is less than a specified parameteand (2) the distance be-
tweenmass centergthe arithmetic average of all data points in
a cluster) of any two clusters is larger than The distance can
be defined in many ways. We use a metric based on normalized
Manhattan distance. Suppose under the horizontal viewpted-
icatesp: andp, are characterized by: = (vi1,...,vn1) and
p2 = (v12,...,vn2), the distance between andp. is defined as:

 |ri1 — i
D(p1,p2) & Z %
i=1

wherer;; andr;2 arev;; andv;; linearly scaled tdo, 1] respec-
tively, i.e,,

0 if max;(v;) =min;(v;) =0
r=4 1 ' if  max;(v;) =min;(v;) #0
vi —min, (v;) otherwise

max ; (vj)—min; (v;)

3.3 Branch Prediction

In this and the following subsections, we present an algarit
to construct faulty control flow paths based on the predgaten-
tified as bug predictors and their correlated predicatesjraj to
provide more contextual information to help developersarstand
betterhowthe predicates relate to bugs.

The basic idea is to use the predicates to guide the travefrsal
control flow graphs since the locations of the predicatelsu®l
where the constructed paths should traverse. Also, we wbder
that much information about branch directions taken irefhiluns
can be inferred from the bug predictors and the executiofileso
Such knowledge thus helps to prune unlikely faulty pathédithe
traversal and make our algorithm efficient. This subseqii@sents
the heuristics that we use to predict branch directions,thadol-
lowing subsection will describe how to utilize these préidits to
efficiently construct faulty control flow paths.

For each branch conditio@, we have two profiled predicates
Cr andCF (cf. Section 2.1). We can decide the truth values of
these predicates ifailed runs as follows:

e The predicates identified by feature selection are the ones
that are most likely related with failures, and so are thelpre



icates identified by clustering. We let the truth values ekt Algorithm 1 Construct Faulty Control Flow PathsaPH GEN
predicates to be true. Input: P = {p1,...,pn} (apredicate cluster}; (a CFG)

e The truth values of other predicates may also be heuritical Output: PATHS (a set of generated paths)
decided by analyzing the horizontal views of the execution Notation: p € ¢ (predicatep is contained in path);

profiles. Suppose the horizontal view of a predicatas FC (a stack storing function calling contexts);
projected tofailed runs {.e., values from successful runs in Flag = {f1,..., f»}, and

the view are filtered out), and recall that each scalar value fi = trueiff p; is contained in some path PATHS
in the view is the number of timeB is observed to be true.  Initialization: PATHS « (); Vf; € Flag: f; « false

Then we may infer that the truth value #f wasnevertrue

; . . : . . 1: repeat
in failed runs if all values in the projected view are zeroes. : . . . .
Also, if most values ¢ 50%) in the projected view are non- gj E'Cdﬁ’i@_efﬂ't;i_ false and closest taain
zeroes, then we decide the truth valugrok true; otherwise, : e , .
we decide it to be unknowh. 4: c— shortestPath(entry of p;’s function,p;)
i ) 5: TraverseZ, starting from the node fagy;:
Now we can predict which branch 6f to take based on the truth 6: repeat given the current node, do:
values ofC'r andC'r: 7 if all successors af have been visitedhen
(Cr == false N Cp == false) = C == neither (1) g 3;);_65200?";?‘?;:;72 exit of n's function)
(Cr == false N Cp # false ) = C==false (2) 10: PATHS — {concatPath(c, co)} U PATHS
( Cr # false N Cp == false) = C==true (3) 11 break
12: else /*visit n and find the next node */
( Cr # false N Crp # false ) = C ==both (4) 13 ¢ — concatPath(c, {n})
Case (1): If both Cr andCr are false, the conditiod is likely 14: Vp; € n: fj < true
not executed at all in failed runs, and all paths afteshould 15: if kindOf(n) = branch then
be pruned during the CFG traversal. 16: Select a branch (Sec. 3.3)
Case (2): If Cr is false and”'z is true or unknown, the true branch ~ 17: else if kindOf(n) = function-call then
of C'is likely not taken in failed runs and should be pruned.  18: Push the current nodeonto FC
Case (3): If Cr is true or unknown and’ is false,C's false 19 Let the next node be thawtry of the callee
branch is likely not taken in failed runs and should be pruned 20: else if kindOf(n) = function-exit then

if —isEmpty(FC) then

Case (4): If both C'r andC'r are true or unknown, then both branches22 Pop a nodgn from FC

may be taken and should be traversed.

23: Let the next node bén’s successor
3.4 Faulty Control Flow Path Construction 24: else /finish all paths starting fronp; */
- . 25: PATHS «— {c¢} U PATHS
Based on the branch predictions, we can now easily traverse c break

trol flow graphs to greedily find paths that connect as many bug 27:
predictors as possible. Algorithm 1 describes how we tisver :
CFG and find the paths we want. It is essentially a depth-first
search except that we use heuristics to reduce backtraokied)in

end if
else if kindOf(n) = program-exit then
PATHS «— {c¢} U PATHS

the standard depth-first search algorithms and prune uylfiaalty 31: els : reak

paths. The algorithm chooses a bug predictor closest (nstef 32: Let the next node be's successor
the length of its shortest path) to the main entry of a progiame . end if

2) and starts the traversal from the function containing gredi- 34j end if

cate (lines 4 and 5), then it repeatedly selects a next noekténd 35; until no more next node

the path (lines 6-35) until there is no more next node for t p
(lines 11, 26, 30, and 35). Such a process is repeated untibral
related predicates are covered (lines 1-36).

The main heuristic used inaAPHGEN is to decide which branch
to take during the CFG traversal (line 16). For each braneh co
dition C, (1) if we predict neither branch should be visited, then
we backtrack to the last visited branching node or start ait@w
ation to search for a new path; (2) if we predict that the félaee)
branch should be pruned, then we take the true (false) bramc
continue the traversal; (3) otherwise, we pick a random diran
follow; and (4) to avoid traversing a branch twice, we chotse
other branch if this one has already been visited.

Our second heuristic is to make the constructed paths albeys
gin at function entries and end at function exits to provielatively
complete paths. The two calls shortestPath (lines 4 and 8) are
added for this purpose (and may be disabled).

Algorithm 2 post-processes all the constructed faulty @ ftiow
paths, to remove unnecessary portions of the paths and theter
for inspection. The step at line 3 imPHPOST s used to prune

36: until Vi: f; = true

likely irrelevant portions of the faulty control flow pathSome-
times a path may pass through a function that contains nouinst
mented predicates, and the subpaths within such a funcgiome

h pruned to reduce inspection burden because the develageuna
likely interested in a function they do not instrument. Hoerit is
also possible that a function does not have any instrumeartsti-
cate simply because it has been overlooked. Thus, when wetan
locate a bug in the pruned paths, this pruning step can beraly
disabled to present longer paths for inspection. Such andative
feature helps to better balance the length of constructéus @and
their information content for localizing bugs.

Our algorithm for constructing faulty control flow paths ifie
cient. For a fixed number of execution profiles, the brancldipre
tion takes linear time w.r.t. the number of branch predisat€he
CFG traversal takes worst case linear time w.r.t. the sizeeoCFG.
30ne may exploit more information provided by the profiles;tsas the total number In practice, the traversal is more efficient than linear bseamany
of times a predicate is executed in one run, to further refieecases. branches can be pruned by the branch prediction.




Algorithm 2 Post-process PathsaPHPosT

Input: C' ={P,..., P} (predicate clusters)y (a CFG)
Output: PATHS in ascending order of path lengths
Initialization: PATHS « ()

1: VP; € C : PATHS <« PATHS U PATHGEN(FP;, G)

2: Prune duplicated portions of the pathPHTHS

3: Prune intra-procedural subpaths with no predicates
4: Sort all pathe € PATHS in ascending order gi's length

4. EMPIRICAL EVALUATION

In this section, we present evaluation results of our apyram
different programs. The main question we hope to answerws ho
effective the generated faulty control flow paths by our apph
can help localize bugs. Our own experience clearly indgétat
these faulty control paths are more informative than isalgired-
icates because they provide useful contexts in understgritie
bugs. We also performed a quantitative evaluation usingrese
test cases and based on the following metrics: (1) how magg bu
our approach can localize, and (2) how much manual codednspe
tion is required to localize the bugs.

4.1 Experimental Setup

Subject Programs.We use the HR variants [24] of the Siemens
test suite [26]. The suite contait82 faulty versions of seven pro-
grams; each has hundreds of lines of code. Each program a¢so h
thousands of test cases and from zero to hundreds of faitel ru
Some statistics on the source code can be found in Geetedss
study [19]. We instrumented the suite and collected its etkec
profiles using CBI [36].

CBI has also accumulated large data sets for many applicatio
including rhythmbox. These data sets have previously beed u
to discover interesting bugs [39]. Ben Liblit generouslypyded
his collection of execution profiles for rhythmbox 0.6.4 telfnus
evaluate our approach.

Machine Learning Tools and Platforms.For experiments with
SVMs, we used LIBSVM [11] on a Linux with a 2.4GHz Intel
Xeon processor and 1GB of RAM. For experiments with RFs, we
used an evaluation version of RandomForests [52] on a Wiadow
XP with a 2GHz Intel P4-M processor and 512MB of RAM. Also,
we implemented the variant df-means clustering for predicate
correlations (Section 3.2).

Data PreprocessingThe original data set for rhythmbox contains
about32000 executions with a total 0£32335 instrumented pred-
icates. Previous work [39] showed that hundreds to thousaifid
runs containing tens to hundreds of failed ones are ofteficirit

to find useful predicates as bug predictors. Thus, we rangoml
choose small subsets of the whole data set for our expersment
In addition, we separate each subset into three smalleetibsr-
responding to the three kinds of instrumented predicates@ihes,
returns, and scalar-pairsf. Section 2.1) in order to assess the ef-
fectiveness of different kinds of predicates on bug locdian.

Parameters for Machine Learning.Many factors may affect the
accuracy of machine learning and are subject to changeffereint
applications. Trial-and-comparisoron small sample data sets is
usually effective in choosing optimal parameters. We noespnt
some parameters we used.

First, to account founbalanceddata (.e., the number of suc-
cessful runs is much larger than the number of failed runs)adr
justed the weights for both successful and failed runs—atie of
the two weights is the reverse ratio of the numbers of the tiwdsk
of runs—so that profiles from successful runs will not oveelnhn
profiles from failed runs.

Second, we usé-feature selectionk = 3) for Siemens pro-
grams (small programs) and-feature selection for rhythmbox (a
large program). Previous work [41] suggested that the gffetess
of different k’s may only differ slightly, especially when program-
mers are only willing to inspect less thad% of the code and when
our clustering strategy can provide additional correlgtestlicates.

Third, our clustering algorithm requiregcf. Section 3.2), which
may lead to different correlation clusters. Smakemeans more
clusters and more “isolated” predicates; largemeans more corre-
lated predicates and possibly longer paths for inspectB@tause
we scale all profile data to the range[6f 1], it is intuitive to use
e = 0.01 (1% of the range). In fact, trial-and-error showed that
e € [0.005,0.02] has only negligible effects on the resulting clus-
ters in our experiments.

4.2 Evaluations On Siemens Test Suite

We first present a summarized bug localization results fer th
Siemens test suite based on branch predicates only. Itednesd-
ers can refer to our technical report [28] for more detailesutts
on the programs.

All constructed faulty control flow paths for the suite ambun
to about4000 lines of code out of a total of abodB400 lines in
the 132 versions of the seven programs. In tota$, bugs were
localized in the paths, meaning that programmers can dis¢dv
bugs by accumulatively examining abdu% of the code in all
programs. Table 1 shows more quantitative measures onfee ef
tiveness of our approach in terms of the number of bugs Ipedli
and the code inspection burd&@ur results show that a developer
can discoveB8 bugs by inspecting no more thafi of the code in
each version of the programs.

In terms of such quantitative measures, previous work ipedl
less bugs for the suite within% code limit €.g, 17 for Taran-
tula [30] and11 for SOBER [41]), while they localized more bugs
within 20% code limit €.g, 75 for Tarantula and)6 for SOBER).
However, several factors should be considered in suchtdjrem-
titative comparisons: (1) these existing techniques famugind-
ing only stand-alone bug predictors; (2) they use diffeliastru-
mentation mechanisms (Tarantula instruments almost estetg-
ment in a program; SOBER uses a different implementatiorBif C
and instruments certain different program predicates); (@ they
computed the quantitative measures by a breadth-firstisedtbe
program dependency graph of a program, instead of followlieg
faulty control flow paths as we did. We believe the fault cohtr
flow paths can provide more meaningful contextual infororato
help developers understand localized bugs than previouk. wb
would be interesting future work, however, to perform moys-s
tematic user studies.

4.3 Evaluations on Rhythmbox

As a brief summary, we are able to localize five bugs in rhythm-
box 0.6.4, inspecting tens to hundreds of lines of code fohexd
the bugs, out of a total d¥6484 lines of code [39]. Three of the
bugs are due to similar causes as that for the bugs discobgred
Liblit [34, 35]; two of the bugs were previously unknown.

Our experiments also show that branch predicates are mere ef
fective for bug localization than the other two kinds of poades.
This seems to agree with the hypothesis that many defectbean
revealed by certain abnormal paths which are usually détean
by branch conditions.

Our experiments were mainly performed witfi11 runs includ-
ing 247 failed ones. Although the data set is small compared with

“In order to compute such quantitative measures, we have ibcemain subjective
factors. So, we assume that a developer can determine weetime of code has a
bug whenever he sees it, as is assumed in other work [13, 41].



% code examined| < 1line | <2lines | <5lines| <10lines | <1% | <2% | <4% | <10% | <20% || Total % code examined iall
(for each version) versions:3967 / 43433
[ #0fBugsFound [ 11 ] 31 | 52 | 64 | 38 [ 45 ] 54 [ 67 [ 73 ] 79outofl32bugs |

Table 1: Summary of our results for the Siemens test suite. E# column shows how many bugs can be discovered by inspecting
to so much code in each version of the programs in the suit&ach line of code is counted as inspected if (1) it is contaiden the faulty control flow paths,
and (2) it is located before the actual bug in the paths or theg is no bug localized in the paths.

[ [[ branches [[ returns [[ scalar-pairs |
global_gconf_client==NULL g_ptr_array_free>0 i==2
i<impl_array->len g_type_check_instance_cast>0 ... (several predicates of forifeconstant
monkey_media_is_alive()==FALSE monkey_media_is_alive>0 alive==0

selected_entry!=view->priv->selected_entry g_strdup>0

!player->priv->url

rb_entry_view_get_entry_contained>0

global_gconf_client==0

rb_entry_view_get_entry_contained()

rhythmdb_query_model_entry_to_iter>0

g_threads_got_initialized

rb_entry_view_get_playing_entry>0

data->shell->priv->play_queued<1287

gdk_threads_mutex

rb_source_get_entry_view>0

cc>cce

5| ©| 00| ~f oof o1l | | M| | | 3

view->priv->change_sig_queued

g_utf8_validate>0

monkey_media_player_get_uri

monkey_media_player_get_uri>0

changed==callback_runs

Table 2: Top 10 failure-related predicates identified by LIBSVM for rhythm box.

global_gconf_client==NULL false
i<impl_array->len both
monkey_media_is_alive()==FALSE false
selected_entry!=view->priv->selected_entry both
Iplayer->priv->url true
(a)
player->priv->source!=NULL false
source!=NULL (@line 1551) false
source==NULL (@line 1566) true
monkey_media_player_playing(...) false
rb_entry_view_get_entry_contained(---) true

(b)

Figure 4: Sample predicate clusters for rhythmbox.

the whole data set, it is already helpful for identifying mamug-
related predicates. Table 2 shows the the three kinds dftigped-
icates identified by LIBSVM as bug predictors. The subsetjuen
predicate clustering and faulty control flow path constarcshow
that these predicates provide insightful information febdgging.

4.3.1 Sample Faulty Control Flow Paths

Sample predicate clusters and faulty control flow pathslzoea
in Figures 4 and 5. In the following, we explain more about how
they helped discover bugs:

e Figure 4(a) shows a cluster containing branch predicat2s 1,
3, 4, and 5 from Table 2. Also, the heuristic branch predic-
tion for each condition is shown, which can be used to direct
our CFG traversal. Several faulty control flow paths are con-
structed for the cluster using Algorithm 1. Figure 5 shows
one of the paths. A simple inspection of the path tells us that
there is a race on the global variakltive: different threads
could callmonkey_media_shutdown at the same time and
cause rhythmbox to crash on exit.

Figure 4(b) shows (partially) a larger cluster containB@
predicates, including thé-th branch predicate in Table 2.

It involves 20 functions from eight files. Because the code
heavily uses function pointers which we do not yet model
in Algorithm 1, the constructed faulty control flow paths for
the cluster were mainly restricted within procedures. Even
so, they still provided hints at bugs: the path segment be-
tween linel551 and 1566 in rb-shell-player.c implies
that a nullsource could be operated on by a callback func-
tion connected to theonkey media player in rhythmbox

static gboolean alive = FALSE;

void monkey_media_shutdown (void) {
if onkey_media_is_alive (Jy== FALSE

return;
alive = FALSE;
...release resources... H
for (...; i<impl_array->len; ...)
...free memory...;

call

gboolean monkey_media_is_alive (void) { return

return alive;

Figure 5: Sample faulty control flow path for the predicate clus-
ter in Figure 4(a).

0.6.4 throughg_signal_connect provided by GLib signal
system, due to races similar to the ones discovered by Lib-
lit etal.[34,35]. Newer versions of rhythmbox no longer
use thenonkey media player to play music; its threading
mechanism has also been rewritten for better reliability. A
of these five bugs we localized have thus been eliminated.

4.3.2 Confirming the Bugs

As an additional part of our evaluation, we constructed oetiec
test cases to confirm that the cases we localized are actgal bu
It is difficult to construct tests directly for the originahythmbox
code. Instead, we use the constructed faulty control flolWwspatth
identified bug predictors to simplify the code first. We traatc-
tions containing a bug predictor as top-level functionstésting,
and automatically prune unrelated branches and functiong éhe
paths. Then, we generate simple definitions for library atdreal
(undefined) functions. Finally, we use a specialized tasedgen-
erator for multi-threaded programs to perform random testn
the top-level functions for exhibiting their (mis)behavidhe lo-
calized bugs are all manifested as segmentation faultgsmidyy.

4.3.3 Bug Localization Cost

We also measured the time cost of our experiments on rhythm-
box with LIBSVM. Table 3 shows the results. The time in the ta-
ble includes all “machine” time, excluding the time spentooale
inspection. We were new to rhythmbox, GTK+, and GNOME re-
lated programming, and it took us minutes to hours to follaete
constructed faulty control flow path and look for potentiaigb.
During path inspection, we also manually performed simpi&d
flow analyses to help us understand the code behavior; ifcpart
lar, we performed alias analysis for function pointers tépHak
“segmented” paths together. As interesting future worg&séhanal-



Instrumen- Number Time (minutes) of Classifi-
tation of Feature | Cluster- | Path- cation
Predicates | Predicates| Selection ing Gen | Accuracy
branches 6,863 41 30 <1 99%
returns 25,287 45 770 <1 99%
scalar-pairs | 400,185 654 n/a n/a 96%
Table 3: Performance of LIBSVM-based experiments on

rhythmbox 0.6.4.
|

H*

[ Branches |
g_threads_got_initialized

children

gdk_threads_mutex
requisition->height>child_requisition.height
size != -1

monkey_media_is_alive()==FALSE
global_gconf_client==NULL
(child->widget->flags&256U) ! =0
i<impl_array->len

0 | rb_entry_view_get_entry_contained()

Table 4: Top 10 predicates identified by RandomForests as bug
predictors on rhythmbox 0.6.4.
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yses can be automated and help improve the effectivenessr of o
context-aware approach. We believe that the cost on catistgu
and inspecting faulty control flow paths is worthwhile, ccaargd
with many hours spent on traditional testing, especialtyafoeal-
world large-scale application that we are not familiar vatid that
contains unknown bugs. In addition, together with Tableghl& 3
again implies that branches are more effective for bug inatibn
than other kinds of predicates.

4.3.4 Experiments with RFs

We have also experimented with RandomForests on rhythmbox.
The experiments were done with a smaller data set includlig
successful and@7 failed runs since the evaluation version of Ran-

4.4.2 Threats to Validity

From the evaluation, we also notice that our approach cagfhot
fectively localize all bugs. There are several factors iotipey the
effectiveness of our approach, besides the machine leppairam-
eters and the parameter specifying how long a path the amount
of code) that the developer is willing to manually inspect.

The most crucial one is what kind of and how many predicates
should be instrumented. As we have mentioned, differentdskin
of predicates have different effects on bug localizatioor &am-
ple, branch predicates are not good at localizing bugseel&
data definition errorsg(g, a variable is assigned a wrong constant
in Version 7 oftcas in the Siemens suite). Also, previous work
using different instrumentation achieved different buggalization
results. Choosing the most appropriate and adequate ptedic
for bug localization remains a fundamental, interestingeegch
problem. Certain coverage criteria used to generate atedest
cases [12] may be applicable to predicate instrumentasonedl.
Also, program analysis and filtering techniques, such as43B
may help to reduce irrelevant predicates and decreaseinstita-
tion overhead but retain effectiveness on bug localization

The second factor concerns the nature of different typesigéb
Certain program locations are not directly instrumentdblg, the
erroneous macro definition in Version 36 ©fas in the Siemens
suite); certain bugs involve many locations through inmpliata
flows (e.g, callback functions heavily used in rhythmbox). Such
bugs cannot be understood if only explicit control flows are-p
sented. It would require incorporating certain data-flovalgsis
and alias analysis into path construction to improve thectiffe-
ness of our approach. In practice, there may also be mang tyfpe
bugs requiring special localization techniques. This pajie not
investigate into these special techniques; it will also hénéerest-
ing and challenging research topic for our future work.

domForests we used only handles small data sets. Table 4show The third factor concerns the adequacy of the data set, and pa

the top10 branch predicates identified by RandomForests as bug
predictors. Despite of the smaller data set used, many lusefu
predictors were still identified, more than half of which deg

with the predicates identified by LIBSVM. This fact furtharps
ports previous experiences [39] that hundreds to thousafhss
including tens to hundreds of failed ones are often suffidiefind
useful bug predictors.

4.4 Discussions
Herein, we further discuss some aspects of our approach.

4.4.1 Benefits of Predicate Clustering

An alternative for constructing faulty control flow pathddsuse
only those predicates identified by feature selection,ushnh the
clustered predicates. Compared with this alternative,obuster-
ing strategy can provide additional information for debingg (1)
predicates are separated into different clusters—diffiectusters
may indicate different bugs in programs, while predicates $ame
cluster are more likely related to the same bug; (2) additidow-
rank predicates can be included for path construction atplgre-
duce more informative faulty control flow paths.

The code in Figure 2 illustrated that clustering helps limk¢ode
shown in Figures 2(a) and 2(b) with the code in Figure 2(c)l an
thus helps identify the bugs related to the same data fielarerh

ticularly the number of failed runs which may affect the flesof
feature selection. When there are not enough failed rerg Yer-
sion 8 oftcas in the Siemens suite), our approach cannot identify
bug predictors or construct faulty control flow paths. Hoerewe
believe that it is not a major concern for an infrastructurelrsas
CBI, since in its real deployment, data can be easily gathfzoen
large number of users.

5. RELATED WORK

In this section, we survey additional research related to-au
mated debugging. We roughly classify the related work i t
following categories:

Program-behavior clustering.lIt is useful to cluster similar pro-
gram runs together for tasks such as failure identificatiwh test-
case filtering. Haraet al. [23] applied random forests to predict
whether a run succeeds or fails. Dickinsetral. [14] utilized sev-
eral cluster filtering strategies to group similar runs. @udki
et al. [48] classified and prioritized program failure reports &
agnosis using pattern classification and multivariatealigation.
Bowring et al.[5, 6] classified execution profiles with iterative, ag-
glomerative hierarchical clustering, and the profiles areamven-
tionally represented as Markov models of event and valussira
tions. Liuet al.[40] regarded profiles of two failed runs as similar if
they suggest roughly the same bug locations. Similar tchesy, all

are alsal4 cases in the Siemens test suite that can only be localized expect that differences between failed and successfulaxengood

with the additional clustered predicates in our approa@j.[2

Lal et al.[32] also present an algorithm for constructingteort-
estcontrol flow path that contains the maximum number of some
given bug predictors. However, they only used stand-aloedip
cates. We believe our clustering strategy can also helpdwepthe
effectiveness of their algorithm on bug localization.

indications of bugs. However, these techniques are magrlgé-
lecting appropriate failed test cases or profiles for furtalysis,
while ours is to select bug predictors and construct faultytiol
flow paths from the profiles.

Bug-predictor identification.ldentifying bug predictors helps dis-
cover actual bugs, just like symptoms help diagnose disedse



general, bug predictors can be anything, including progstates,
execution counts of statements, branches, functions.t ¢saarsi-
tions, etc. Brun and Ernst [8] identified bug-revealing peog
properties by applying decision trees and support vectahinas
on execution profiles of different versions of a program. yrased
Daikon, a dynamic invariant detection tool [16], to deteciper-
ties, instead of direct instrumentation; they also assuomedof the
versions is free of bugs and used it to determine whetherthsg r
of other versions failed or not. Jonesal. [30, 31] ranked state-
ments in a program based on coverage information of eacé-stat
ment in failed and successful runs. Both they and @itsal. [45]
utilized coloring schemes to visualize all statements agtlight
“dangerous” ones to assist code inspection. They instrtedleal-
most all statements in a program and provided hierarchicgr-
active views of source code, while we use a different inseuta-
tion and provide additional contextual information besidgenti-
fied bug predictors. Renieré&t al.[49] looked for a succeeded run
that is most similar to a given failed run from a large set affppes,
and flagged the difference between the two profiles as budgpred
tors. Their definition of similarity among profiles is simil@ ours
for clustering, but for different purposes: they look foethearest
neighbor of a failed run (based on the vertical view), and aak|
for neighbors of predicates to discover how they relate édam
the horizontal view). More recently, Arumuga Naireral.[2] used
combinations of simple, atomic predicates as bug predicand
showed informative bug localization results. Also, Joekal.[29]
proposed a parallel debugging technique and methodolag\eth
ables multiple developers to simultaneously debug meltipigs
in the same program. Our approach, the machine learning imodu
and the fault control flow path construction in particulagyralso
be extended for such compound predicates and multipleegxist
for better effectiveness on bug localization.

Feature-correlation discoveryBranch prediction in computer ar-
chitecture has explored predicate correlations for irtston-level
optimization [47,55]. Within the context of dynamic defeot of
program invariants, Dodoet al.[15] introduced several strategies,
including clustering, to select representative predicéte detect-
ing implications, and applied the predicate implicatiomgiprove
the performance of a theorem prover and separate faulty éam
rect executions of erroneous programs. Liklital.[39] also con-
sidered predicate correlations based on execution prpiiletead
of actual executions, but treated such correlated prezbcas logi-
cally redundant and eliminated them for just feature se&lagbur-
pose, while we utilize such correlated predicates to efiityecon-
struct context-aware faulty control flow paths.

If we view aslice as a set of program elements related to a
certain behavior, many studies on slicing-based debugcamgbe
classified as correlation discovery. Agravetlal.[1] assumed the
differences (calledliceg between the slices of a failed and a suc-
cessful run may contain bugs and visualized the dices to eid d
bugging. Paret al. [46] suggested a family of heuristics based on
program slices to reduce the burden of code inspection. Giyn
et al. [22] augmented dynamic slices with potentially bug-retdva
statements. Wongt al. [54] defined execution slices as features
and defined distances among the slices based on statemeits cou
and then looked for useful features. Guptal.[21] used the inter-
section of forward and backward dynamic slices started ffain
ure points for debugging. Zhareg al. [58] empirically evaluated
the effectiveness of different dynamic slicing techniqae$ug lo-
calization. To the best of our knowledge, no slicing aldorithas
utilized the information provided by identified bug predict, and
it will be interesting to investigate how to use the bug pecéafis to
“guide” slicing and improve the accuracy of slices.

Bug-revealing path generation.Such work aims to find under-
standable paths in programs, either static flows or dynaraaes,
that may reveal bugs. If we view program slices as paths, the
aforementioned slicing techniques can also be classifiedtinis
category. Also, Repst al. [50] highlighted paths in a program
that may lead to abnormal behaviors by identifying divergen
between failed and successful runs. Gotlettal. [18] generated
test cases which pass through particular program pointking
constraint systems that correspond to the program. Lebk. [37]
proposed a family of analyses to build time lines of possiirtz
gram actions that lead to failures based on certain infdonatuch

as failure points, stack traces and event logs. Delta debgd3,

56, 57] also provided automated ways to simplify failurdtining
inputs; it locates not only failure-related states, bub asuse tran-
sitions—moments when failure causes are transited from one rele-
vant variable to another. It needs detailed program statéeze-
cutes the program itself. Badlt al.[3] found possible bug causes
by exploiting the differences between correct and faultigés gen-
erated by model checkers. Maneviehal.[42] used postmortem
symbolic evaluation to produce a set of execution tracaesahthich
the program may be driven to orgven failure point. More re-
cently, Jhalaet al. [27] used path slicing to reduce counterexam-
ples from model checkers. Groegal.[20] reduced a program to a
smaller one which can produce executions consistent witkieng
(partial) trace of events. Ladt al.[32] constructed a shortest con-
trol flow path that contains the maximum number of given pred-
icates. Their algorithm is based on weighted push-downesyst
and utilizes data dependencies to prune infeasible pathsms in
linear time w.r.t. program sizes but exponential w.r.t. thenber

of given predicates. Also, symbolic and concrete execstiame
being combined in in-house testing phase, including DARA],[1
CUTE [53], and EXE [10], to generate test cases that can -effec
tively drive programs along particular erroneous paths.

6. CONCLUSIONS

In this paper, we have presented a novel context-aware agipro
for bug localization, which not only identifies accurate hurg-
dictors but also constructs faulty control flow paths. We asgd
two different views on execution profiles and combined savea-
chine learning algorithms to accurately identify bug potalis and
discover predicate correlations. Also, we developed aniefit al-
gorithm based on branch prediction and control flow grapbetra
sal to construct faulty control flow paths that connect buedjr-
tors and provide more contextual information for revealagjual
bugs. We have evaluated our approach on the Siemens tesasdit
rhythmbox within the CBI instrumentation infrastructurdval-
uation results showed that our approach is able to localiaeem
bugs than previous techniques with less code inspectiodebur
and more importantly, it can provide informative controlflpaths
to help understand and debug the code. We believe this is@ipro
ing direction for bug localization and an important step dods
realizing automated debugging.
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