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1 Introduction

Nonlinearity is important in spatial dependence models. As was argued in Paelinck and Klaassen
(1979, pp. 6-9), econometric relations in space result more often than not in highly non-linear
specifications. Despite this observation, most theoretical studies on spatial autoregressive (SAR)
models ignore potential nonlinear functional forms. A few exceptions include van Gastel and Paelinck
(1995), Baltagi and Li (2001), Pace, Barry, Slawsoon, and Sirmans (2004), and Yang, Li, and Tse
(2006), who have considered flexible functional forms to account for certain forms of nonlinearities.
On the application side, recent researches have started addressing the importance of nonparametric
modeling in spatial econometrics. For example, in modelling hedonic housing price, Gress (2004)
introduced two semiparametric spatial autocorrelation models and compare them with a variety of
competing parametric spatial models, in which the exogeous regressors include house size, house
age, latitude, longitude, and some dummy variables for the zip code area where the house resides.
He found that the semiparametric models offer more accurate and stable estimates of the regression
parameters and better out-of-sample predictions than do the alternative parametric models. Basile
and Gress (2004) proposed a semiparametric spatial auto-covariance specification of the growth
model for the European economy, where the dependent variable is the average per capita GDP
growth rate in the period 1988-2000 and the exogenous regressors include the initial per capita GDP,
average proportion of real physical investment to real GDP, average growth rate of the population,
and average unemployment rate. They found that nonlinearities are important in regional growth in
Europe even when the spatial dependence is controlled for. As a result, assuming a common linear
relationship between economic growth and inputs is misleading.

Recently, Su and Jin (2010) propose a quasi-maximum-likelihood-based estimator of partially
linear spatial autoregressive models and demonstrate that the rates of consistency for the finite-
dimensional parameters in the model depend on some general features of the spatial weight matrix.
Unfortunately, like the quasi-maximum likelihood estimator (QMLE) of Lee (2004) in the parametric
setup, their estimator does not have a closed form expression and thus is not easy to implement in
practice.

In this paper we propose semi-parametric GMM (SPGMM hereafter) estimation of semi-parametric
SAR models where the spatial lag effect (endogenous variable) enters the model linearly and the ex-
ogenous variables enter the model nonparametrically. Based on some moment conditions implied by
the model, we propose a two-stage estimation strategy for both the one-dimensional spatial parame-
ter and the nonparametric component and term the resulting estimators as SPGMM estimators. In
the first stage, we treat the spatial parameter as if it were known, and use some local instruments
to estimate the nonparametric component locally as a function of the spatial parameter. In the
second stage we use the global instruments to estimate the spatial parameter by profiling out the
nonparametric component, and recover the estimate of the nonparametric component. It is worth
mentioning that the idea of nonparametric profiling is not new in the literature; see Su and Ullah
(2006) and Henderson, Carroll, and Li (2008) for recent applications in econometrics. Nevertheless,

to the best of our knowledge, this paper is the first to apply the idea of nonparametrically profiling



out a nonparametric function of the exogenous regressor before applying instrumental variables to
estimate the coefficient of the endogenous regressor. As a referee kindly points out, this idea seems
quite general and can be applied to estimate various semiparametric conditional mean or quantile
models with endogeneity in which the endogenous variables enter the model parametrically (linear
or nonlinear) while the exogeous variables enter nonparametrically.

In comparison with the estimation strategy of Su and Jin (2010), our SPGMM approach has
several advantages. First, our estimation is based upon some moment conditions instead of a quasi-
likelihood function. As a result, we can have an analytic form for our estimator, and it is easy
to implement in practice. Second, we can obtain the usual parametric consistency rate for our
estimator of the parametric component in the model whereas the consistency rate of Su and Jin’s
(2010) estimator depends on some general features of the spatial weight matrix. Third, unlike Su and
Jin (2010) who only consider homoskedastic and independent errors, we allow the stochastic error
terms to exhibit both heteroskedasticity of unknown form and certain form of spatial dependence.
Fourth, we allow for both continuous and discrete exogenous regressors in the model whereas Su and
Jin (2010) consider only continuous regressors in their nonparametric component. Fifth, our method
can be easily extended to semi-parametric spatial panel data autoregressive models or applied to
other types of semiparametric models with endogeneity.

The paper is structured as follows. In Section 2 we introduce the semi-parametric SAR model and
the semi-parametric GMM approach to estimate the finite and infinite dimensional parameters in the
model. In Section 3 we first make some basic assumptions underlying our analysis and then study the
asymptotic properties of the estimators for both the parametric and nonparametric parts. We explore
the estimation of the spatial parameter in the spatial error process and derive the joint asymptotic
distribution of both spatial parameters in Section 4. Section 5 discusses consistent estimation of
the asymptotic variance-covariance matrices. We conduct a small set of Monte Carlo simulations
to check the finite-sample performance of the proposed estimators in Section 6. Final remarks are
contained in Section 7. All technical details are relegated to the appendices.

Like Kelejian and Prucha (2001), we adopt the following notation and conventions. For a matrix
Ay, we denote its norm as ||A,|| = [tr (AnA;)}l/Q

eigenvalue as Apmin(A4,) when A, is a square matrix. For a vector a,, we use a,; to denote its ith

, its (¢, j)th element as ay ;;j, and its minimum

element and diag(a,,) a diagonal matrix with a,, ; as its (i,7)th element. An analogous convention is
adopted for matrices and vectors that do not depend on the index n, where n is frequently suppressed.
We say A, is uniformly bounded in absolute value if sup;<;<, 1<j<n an,ij| < ¢ for some ¢ < oo.
Following Lee (2002), we say that the row (resp. column) sums of A, are uniformly bounded in
absolute value if sup;<;<,, 51 251 [@n,ij| < o < 00 (18P, SUDI<j<p 1 2oimy |njij] < Ca < 00).
Similarly, we say that the row (resp. column) sums of A, are uniformly bounded in absolute value
for sufficiently large n if SUP;<;<p, >Ny, 2ojmi [n,ijl < o < 00 (T€SP. SUD < <y >Ny Doim [Gnig] <
cq < 00) for some large integer N;. For p. x 1 vectors a = (au, ..., ap,)" and b = (b1, ..., by, ), define
a/b = (a1/b1,...,ap,/bp,.) . Let 04, x4, denote a di x dy matrix of zeros. Let ® and ® denote the

Hadamard and Kronecker products, respectively.



2 Model and semi-parametric GMM estimation

2.1 Model and moment conditions

Consider the following semi-parametric spatial autoregressive model:
Y, =m(X,) + pd W, Y, + U, (2.1)

where X,, = (£p1,..,Zn,n) 1S an n x p matrix of fixed regressors that do not contain the constant
term, W1, is a pre-specified constant n x n spatial weight matrix, m(X,,) = (m(zn.1); ..., m(Tn.n))’
m (") is an unknown function defined on RP, and U,, = (un,1, ..., Un,n)" is an n-dimensional vector
of zero mean random variables that are not necessarily identically distributed and may also exhibit
spatial dependence structure such as spatial autoregressive or spatial moving average (SMA) forms.
When U, also exhibits a SAR form, we will call the model in (2.1) as a semi-parametric SARAR
model. When U,, exhibits a SMA form, we will call the model in (2.1) as a semi-parametric SARMA
model.

If W1, Y, were not endogenous, we could extend the procedure of Robinson (1988) to our frame-
work and estimate both the parametric component and nonparametric component in (2.1). Never-
theless, since W1,,Y,, is endogenously generated here, one can show that the estimator of Robinson
(1988) is generally inconsistent. (An exception occurs when the elements of the spatial weight matrix
Wi, are uniformly of the order o(n=/2).)

Let Y,, = W1,Y, and denote its ith element as 7, ;. When p% # 0, we can assume that there
exists a ¢ x 1 vector of nonstochastic instruments z, ; for z,, ;= (x;m,@n’i)/ such that we have the
following orthogonality condition

E (znun:) = 0. (2.2)

For example, z,; = (1,:%!2»,?;“14)/, where Z,, ; is the ith row of X,, = W1, X,,. In the following, we
assume that z,, ; contains 1. We will propose semi-parametric GMM estimation of both p2 and m (-)

based upon (2.2).

2.2 Semi-parametric GMM estimation

The moment condition in (2.2) implies that!

E{zni [Yni — AT — m (Tni)] } = 0. (2.3)

Clearly, (2.3) provides moment restrictions and can lead to an estimation approach similar to the
generalized method of moments (GMM) procedure of Hansen (1982) for parametric models. Since
the functional form m (-) is unknown, one can approximate it with a sieve and estimate p and the

sieve parameters jointly. Such an approach was taken by Ai and Chen (2003) who show that the

! Alternatively, we can impose the following conditional moment restrictions: E{y, ; — p%@mi —m(@n,i)|2n,i} =0,
where zp, ; contains @, ; and is treated as random. In this case, we have E{b (z,i) [yn,i — pOT,, ; — m (zn,i)]} for any

vector function b (zp,;) .



sieve estimator of the nonparametric component (m here) is consistent with a rate faster than n~1/4

under certain metric, and the estimator of the parametric component (p here) is \/n-consistent
and asymptotically normally distributed. It is worth mentioning that the data are assumed to be
independent and identically distributed (i.i.d.) in Ai and Chen (2003) so that their theory can not
be applied directly to our framework. In addition, the asymptotic distribution of the estimator of
the nonparametric component is also of our main interest, which is unfortunately not addressed in
Ai and Chen (2003).

In this paper we propose to approximate m (-) by using the local linear fitting method of Fan
(1992) and Fan and Gijbels (1996). Fan and Gijbels (1996) have documented the advantages of
local linear method or more generally, local polynomial method, over the conventional local constant
(Nadaraya-Watson) method or the sieve/series method. In particular, when the support of z, ;
is compact, the local linear/polynomial method automatically adjusts to boundary points so that
it is not subject to the “boundary bias” problem associated with the local constant method. In
comparison with the sieve method, one can readily establish asymptotic normality for the local
linear/polynomial estimator. In the following, we will focus on the local linear method for the sake
of notational simplicity. Nevertheless, as remarked after Assumption 4, if x,, ; contains at least four
continuous regressors, one will need to use higher order local polynomial as in Masry (1996).

/ !

. . . . /
To allow for both continuous and discrete regressors in w,,;, write z,; = (z¢,,2,) where
.

n,i’
zy,; denotes a p. x 1 vector of continuous regressors in z,; and :rg’i denotes a pg x 1 vector of
remaining discrete regressors with p; = p—p.. We assume that some of the discrete regressors have a
natural ordering, examples of which would include environmental conditions (excellent, good, poor)

or preference ordering (like, indifference, dislike) etc. Let ?Z,i denote a p; x 1 vector (say, the first
d

p1 components of x7, ;, 0 < p1 < pg) of discrete regressors that have a natural ordering. Let me

denote the remaining po = py — p; discrete regressors that do not have a natural ordering. We use
d d
Toyis n,is t0 denote the sth element of z7, ; and z7, ;,

For the continuous exogenous regressor, we choose a product kernel function Q (*) of ¢ (-) and a
vector of smoothing parameters h = (ha, ..., hy,)'. Let Qpi (#°) = < htq (28 ;5 — 2¢) /hs) and

n,is

x¢ .. and respectively (s = 1,...,pe or pg).

Qhij = Qn,i (xfu) = Hg;lhglq ((xfus - mfm,js) /hs) . (2.4)
For the unordered discrete regressor, we follow Racine and Li (2004) and Li and Racine (2007) and
use a variation of the kernel function of Aitchison and Aitken (1976):
e=d  _ d
HETE PN I S 25)
’ ’ As otherwise

where A € [0,1] is the smoothing parameter. In the special case where A\; = 0, l~(, -,+) reduces to

the usual indicator function as used in the nonparametric frequency approach. Similarly, A\; = 1
d

n,is

out in the sense that it will not affect the nonparametric estimation result. For the ordered discrete

leads to a uniform weight function, in which case, the Z regressor will be completely smoothed

_ .
regressors, we assume that for s = 1,--- | py, xfms take only integer values 0, 1, 2,--- | cs, where



1 < ¢s < 00. We follow Racine and Li (2004) and use the following kernel

— 1 if 7d. =79
—d —d n,ts n,js
l (ac : xn,jsa)‘S) = T _pd (2.6)

n,18)7 x .
As el otherwise

Again, choosing A\; = 0 or 1 leads to similar remarks as above.
Combining (2.5) and (2.6), we obtain the product kernel function for the discrete regressors:
_—d

n,is L n,js 1 1Inz< In s
Ly = Do (ot [HA | HHME ”]7 @)

where A = (Aq,---,Ap,)", and 1 (A) =1 if A holds and 0 otherwise. Combining (2.4) and (2.7), we
obtain the product kernel function for all the exogenous regressors:

Knxij = Knni (wn5) = Qni (25, ) Laa (24 ;) - (2.8)
Now, fix a point z,, ; = (¢ T x4 ) It follows from the first order Taylor expansion that
M (Tn,i) = m (o) + 0 (Tn) (25, — 2 ;) (2.9)
for any xf ; in the neighborhood of zf ; and xzf; = xf ;, where m (z) = dm () /0z°, i.e., the

’

derivative is only taken with respect to the continuous component z¢ of = = (z¢,z%)". So (2.3) can
be approximated as follows

E{zni [yni = puTn; —m (x) —m(2) (27, —2°)]} =0, (2.10)

s

where z7, ; is close to z¢ and acn , = x%. If the above relationship held exactly, we could follow
the approach of Newey (1990) to construct optimal instruments for the efficient estimation of both
P2 and (m(z), m (z)"). Alternatively one could follow Ai and Chen (2003) and construct optimal
instruments for the efficient estimation of p? based upon (2.3). In either case, difficulty arises here
due to the approximation nature of the relationship in (2.10), the non-i.i.d. observations, potential
heteroskedasticity of unknown form, and potential spatial dependence in the disturbances. For this
reason, we will focus on a convenient choice of z, ; and leave the optimality issue as an open question.
Furthermore, due to the local nature of the approximation in (2.10), we will allow the instruments
Zn,i to be locally dependent on the point of approximation (x) and certain parameter used in the
approximation when we consider profiling out the nonparametric component.

Noting that the unknown parameters in (2.10) include both the global parameter pQ and the non-
parametric local parameter vector (m (z),m (z)), we now propose a two-step procedure to estimate
these unknown parameters by profiling out the nonparametric component first.

In the first step, we treat p? as if it were known in (2.10) and consider the estimation of m (x)
and m (z) as a function of p,,. At the sample level, the orthogonality condition in (2.10) implies the
following locally weighted orthogonality conditions

0 2 {Yni = PuTni — ThigMi (Tn)} Knaig =0, (2.11)
1=1



where M, (z) is a (p. + 1) x 1 vector of parameters whose true value corresponds to (m (z),(h ®

m(x)) ) s Thij = Thi(Tnj) = (1, (x5, ; — 5, ;)/h)"). Here we allow the “local instruments” zy,;; to
depend on the smoothing parameter h and the particular point x, ; at which we approximate the

function m (-) . Motivated by the idea of local linear fitting, we can choose zj, ;; simply as

(1)

c Zni

Zpij = Zh,i (xn,j) = ( z(l) ® ((;L'C n,: e ) /h) ) y (212)
n,i n,i n,j

(€]

n,t

where ® is the Kronecker product and z
1)

n,i

is a subset of z, ;. In an extreme case, one can take
(1)

Z n,t

= zn,i. In the other extreme case, it is fine to take z, ; = 1 and then zj ;; = T4 5, which results
in the local linear profile estimator of My, (z,, ;) by regressing yn; — p,¥,; on zj, ; and treating p,,
as if it were known. In either case, it is sufficient to identify M, in (2.11) for any given p,, and point
Zn, ;. Noting that unless the dimension of z ;; is same as that of 74 ;;, the number of equations in
(2.11) is greater than the number of parameters (p. + 1) for any fixed p,, and z,, ;, so that the model
is overidentified and we may not have a unique My, satisfying (2.11). To ensure a unique solution,

we premultiply (2.11) by A, pa (xn,j)/ =n 130, Th)ijZ%7inh)\7ij to obtain

An,h)\ (i[,’n)j)/ TL_I Z zh,ij {ymi - pnyn,i - T;ijh (an‘)} Kh,\ﬂ'j = 0 (213)
=1

Solving the above equation for My, yields the following solution

1
Mpn,h/\ (xn,j) = (An,h/\ (xn,j)l An,h)\ (xn,j)) An,h/\ (xn,j)l Bnpn,h)\ (xn,])

where By, na (2n5) =171 Y00 KixijZn,ij (Yni — Pn¥n.) - In particular, the estimator of m (2, ;)
is given by

mpn,h)\ (xn,j) = e/lmpn,h)\ (xn,j) = Sh\ (xn,j)/ (Yn - anInYn) ;

where e; = (1,0, ,0) isa (p. + 1)-vector, spa (z)' = €] (A (7) Apia (:E))il A (@) Zp (2)
diag(knx (), Zin,n (%) = (2n,1 (%) -+ 2o (29))', and kpx (2) = (K (2) - Knan (2))

In the second step, we can estimate the parameter p! by the global IV IBethod. Let Z, =
(Zn,lv ) Zn,n)/- Let Sp) = (Sh)\ ($n,1) y " 3 Sh ($n,n))/ Yy = ([n - ShA) Y., and ?n = (In - ShA) WinYn.
Then

n
> 2 {ng = Puling = T, (ng)} = 2 (Vo = p, Y ). (2.14)
j=1
Let Q,, be a symmetric ¢ x ¢ matrix that is positive semidefinite for large n. We can choose p,, to
minimize

HZ’;L()A}H - pn?n) (2.15)

Qpn

where [|Allg, = VAQ,A. It is easy to see the minimizer of (2.15) is given by

~1 ~
. Y, ZnQ0n ZLY,,
=~/ ~
Y, ZnQ0 2 Y



We will study the optimal choice of €2,, for the given choice of z,_ ;. (The optimal choice of z, ; is
beyond the scope of this paper.) After we obtain p,, we can obtain the estimator of Mj (x) by
M;5 (z) = Mﬁn,ﬁ (z) and that of m (z) by mj5 (z) = Y () =s75 () (Yo — 5 WinYn) .

Note that we allow for different choices of smoothing parameters (h, ) used in the estimation of

pY and M (x). We will explore the asymptotic properties of p,, and M%X () in the next section.

3 Asymptotic theory

In this section, we study the asymptotic properties of p,, and MEX ().

3.1 Assumptions
To provide a rigorous asymptotic analysis, we maintain the following assumptions.
Assumption 1. (i) All diagonal elements wiy,;; of Wiy, are zero. (it) p° € (—a

0<a

Yons

The row and column sums of the sequences of matrices {Wh,} and {(In — p?LWln)fl} are uniformly

o Tpn) with

Gpn, < a, < oo. (iii) The matriz I, — pWhy, is nonsingular for all p € (=a,,,@pn)- ()

bounded in absolute value.

Assumption 1 concerns the essential features of spatial weights matrix. Assumptions 1(i)-(iii)
parallel Assumptions 1(a)-(c) in Kelejian and Prucha (2010). Assumption 1(i) is clearly a normal-
ization rule. Assumption 1(ii) concerns the parameter space of p!) which may vary as the sample size
changes. See Section 2.2 of Kelejian and Prucha (2010) for an excellent discussion on the parameter
space for an autoregressive parameter. Assumption 1(iii) ensures that Y,, defined in (2.1) has the
reduced form

Yo = (In — 20Win)~ m(X,0) + (I, — p2 W) " U (3.1)

Assumption 1(iv) parallels Assumption 5 of Lee (2004). Kelejian and Prucha (1998, 1999, 2001, 2007)
also assume Assumption 1(iv) which limits the spatial correlation to some degree but facilitates the

study of the asymptotic properties of the spatial parameter estimator.

Assumption 2. (i) U, = A&, such that the row and column sums of the sequences of matrices
A, are uniformly bounded in absolute value: supi<j<pn>1 Y iy [An,ij| < Ca and supi<i<nn>1 Z?:1
|an,ij| < cq for some cq < 00. (i) The error terms {e,; : 1 <1 < n, n > 1} satisfy: E(en;) = 0;
E(z—:fm-) = afm- with Suplgign,nZIU%’i <72 < oo sup1§i§n7n21E|6n,i|4+"1 < Hyqy, < 00 for some
small n; > 0. (i) ep1,- - ,€n,n are totally independent.

Assumption 2 is fairly weak. It allows for not only heteroskedasticity but also spatial dependence
in U,. When A,, = I, such that U, = ¢,, we have only heteroskedasticity in the error terms. In
the presence of heteroscedasticity, the QMLE of Lee (2004) in the linear SAR models is generally
inconsistent. For this reason, Kelejian and Prucha (2010) and Lin and Lee (2010) explore the GMM
estimation of the linear SAR models with heteroscedasticity. They also require the existence of

(4 + n1)th moments of w,,; or &, ; for some n; > 0. More recently, Su and Yang (2009) study the



instrumental variable quantile estimation of SAR models. They only require the existence of first
moment of u, ; but do not allow dependence among uy;, ¢ =1,2,--- ,n.

It is possible that U, follows a SAR process, e.g., U, = 72Ws,U, + &, with Wy, being a
nonstochastic spatial weight matrix and 7% a spatial parameter in the error process. Under the
condition that sup,, H’y%Wan < 1, U, has a reduced form: U, = A&, where A,, = (I, — 2 Wa,)?
will meet the conditions in Assumption 2(i). It is also possible that U, forms a SMA process:
U, = YOWane, + €n, in which case A,, = I,, + 72 Ws,, will meet Assumption 2(i) if the row and

column sums of Wy, are uniformly bounded in absolute value.

Assumption 3. (i) x,;, i = 1,...,n, are nonstochastic regressors with x,,; = (mf;,i,xf;i)/ €
X¢ x X4 C RP, where XS is a bounded set in RPc and X2 is the support of z& . in RP4 (the set
of values that {xl,i=1,..n,} can take). (ii) There exist a function ¢, (z¢,2%) and a positive
probability density/mass function f, (xc,xd) with support X,= X< x X9 such that

n,t

n,i’

lim — z(l) n (Tn,i) = lim Z / @ (26, 2%) vy, (2%, 2%) fr (26, 27) da (3.2)

n—oon, n—oo
i=1 zdexd
for any bounded function v, (xc,xd) that is continuous in z¢, and ¢, (wc,xd) and fy (wc,xd) are
continuous in x¢ and uniformly bounded on the support X,. (iii) lim,—op, () = ¢ (z) and
limn oo frn () = f () eist for each x on the support X = X°x X% of f (xc,a:d) . (iv) m (xc,asd) is

second order continuously differentiable in ¢ for each x@ on X¢ and sup,exm (z) < ¢ < 00.

For notational simplicity, hereafter we will write [ a, (z)dz for Y i xd Je @n (2¢,2%) dz® for
any function a,,, where the summation is over all possible values of 2 on Xfll.nThe fixed bounded
design assumption in Assumption 3(i) is typically assumed in the spatial econometrics literature,
see Kelejian and Prucha (1998, 1999, 2001, 2010), Lee (2002, 2004) and Lin and Lee (2010), among
others. Also, it allows for the fixed regressors to depend on n. Assumptions 3(ii)-(iii) are typical in
nonparametric regression with fixed regressor. For stationary random observations, ¢,, (z,,;) can be
regarded as the conditional expectation of z(l) given x, ;. As in Linton (1995), Assumption 3(ii)
does not preclude {z,, l} , from being generated by some random mechanism. For example, if x,, ;
were i.i.d. with density fn( ), then (3.2) holds with probability one. So even though we focus on
the fixed regressor case, our analysis holds with probability one if {z,, 1}7 , are generated randomly,
and in this case, we can interpret our analysis as being conditional on {x, ;};_, . Assumption 3(iv)

is required for the second order Taylor expansion of m(z¢, z?) with respect to z°.

Assumption 4. (i) The kernel function q () is a continuous symmetric density function. There
exists some small 1, > 0 and a constant cq < oo such that [ |ug (w)|**"2 du < cgs [ q* (u)du < cq,
supyq (u) < g, and sup, |u| g (u) < cq. (15) As n— oo, ||h]| — 0, |A]] = 0, |[A|| is of the same order
as |h||*, nhy - by, — 0o, and n||h||* — 0. (iii) As n — oo, ||h]| — 0, ||A|]| = 0, ||X|| is of the same
order as ||h]|?, nhy -- -Epc — 00, and n(I1’=, hy)||h||* — ¢ € [0, 00).

Assumption 4(i) concerns the choice of kernel function. It is fairly standard in the nonparametric

estimation literature. Assumptions 4(ii) and (iii) concern the choice of smoothing parameters used



in the first stage estimation of the parametric component (p!) and the second stage estimation
of the nonparametric component (m (z)), respectively. They are standard in the nonparametric
regression with both continuous and discrete regressors with the only exception that undersmoothing
is required for the bandwidth sequences used in the first stage. The conditions in Assumption 4(ii)
imply implicitly that p. < 3. This is not too restrictive given the “curse of dimensionality” in the
nonparametric literature. In the case where p. > 4, one can apply higher order local polynomial

estimation in place of the local linear procedure in the first stage.

Let X, =Var(e,) =diag(c?) with 62 = (62 ,,---,02,,) Let By, = n~'Z], (I, — Spx) WipYa.
The next assumption concerns the global instruments Z,,, and the weight matrix €2,,.

Assumption 5. (i) Q, = Q+ o0, (1) where Q is positive semidefinite. (i) The elements z,; of
Zy, are uniformly bounded such that supi<i<nn>1|%n,ill < c. < oo and B, = B+0,(1) fora ¢ x1
vector B with B'QB > 0. (iii) © = lim, oo n 1Z! (I, — Spy) A X, AL (I, — Sh,\)' Z,, exists and
B'QO0B > 0.

Assumption 5(i) is standard and it allows the weight matrix €2,, to be estimated from the data.
The first part of Assumption 5(ii) is also standard in the spatial econometrics literature, whereas the
second part of Assumption 5(ii) indicates the instruments relevance. Assumption 5(iii) allows © to

be positive semidefinite which occurs if z, ; contains x, ;.

3.2 Asymptotic property of p,

We first study the asymptotic property of p,,. This is given in Theorem 3.1.
Theorem 3.1 Under Assumptions 1-5,
Vi (p— %) S N (o, (B'QB) B'Q@QB) .

The proof of the above theorem is tedious and relegated to the appendix. Theorem 3.1 implies that
the optimal choice of Q is given by 2 = ©F where ©% is the Moore-Penrose generalized inverse of ©.
With this choice of weight, the asymptotic variance of p,, (©%) is minimized and given by (B'©* B) 1.
In the special case where uy,;, ¢ = 1,--- ,n, are independent and homoskedastic such that A,, = I,
and o7, ; = op for all 4, it is easy to see that © = o limy, oo n™"Z), (I — Spa) (I — Siz)' Zy,. For
statistical inference, we need to estimate the asymptotic variance of \/n(p,, — p2). We postpone this

study to Section 5.

3.3 Asymptotic property of Mﬁi (x)

To consider the asymptotic property of i\V/ITJ (z), we define the following notation:

A (.’E) = ' ($> Oq1 XPe and
0gip.x1 ko1 (2) @ I,

r,(z) = n*lng’;ﬁsz;ﬁ (z) diag(kyz () AnEn 4, diag(kss (2))Z, 5 (2)

10



1)

where ¢ is the dimension of z,, ;, and K91 = f s°q (s) ds. Furthermore, for s =1,--- | py, let

1s($i,ia$d) = ( n,is #T )Hp/d;es ( fm-s/ = x‘j,) 1(s>p1)
1 (|20 — 28] = DI (2,0 = 29) 1(s < 1) (3.3)
Define
b (z) = Z [m (2, vd) —m (z€, xd)} i Nelg(v? 2% f (z, v?) ¢ (z, v?). (3.4)
vdexd s=1

That is, 1,(zf ;,2%) = 1 requires that all the elements of z ; but one should be identical to those
of z*. When s > p1, = is the unique element of mfu- that is not shared by z¢. When s < py,
z?| = 1. As shown in the proof of Theorem 3.2, b5 (z)

will be a part of the asymptotic bias of our estimator of m (z) .

TL’LS

1(x ;,2%) = 1 further requires that |z ;, —

The following theorem shows that the nonparametric component m (x) and its first derivatives
with respect to its continuous component can be estimated at the regular nonparametric convergence

rates.

Theorem 3.2 Under Assumptions 1-5, if T' (z) = limy, o0 'y, (z) exists and x¢ is an interior point
of X¢, then

Y Lo (2) P, B2myg, (2€, 24 < (x
\/nH’Zzlhs(sz(x)Mz(:n)A*(x)(Z () Koz At “b*()))

OQ1pc><1
LN (0,A% ()T (2) A" (2)' [ (2)) ,

AN

where My (z) = (m (), (h @ m(z))), mes(z€,z?) = 0*m(a®,2%)/(25,)% s = 1, -+ , pe, b (v) is
defined in (3.4), and A* (z) = (A (z) A (z))" A (z)".

Theorem 3.2 allows for both heteroskedasticity and spatial dependence in U,,. This general result
does not come free. It requires that the limit of I',, should exist, which may not be easily verified for

general specification of U,,. In the special case where U,, = ¢,, and z( ) =1, it is easy to see that

Y (5., — =)/ s (o2
= lim n 1h ~ 75\ T) o,
PR Z( c—at) (s~ 2) /(s — ) R )Kh“( e

If further 0'721)1» = 0% (xp,), i.e., the error terms up,; are conditionally heteroskedastic, it is easy to
show that

pe—1
0 Ro2 HQQI .

F—f(:v)CfQ(x)< w0 ) (3.5)

where k;; = [s'q’ (s)ds for i,j = 0,1,2. This implies the asymptotic independence between the

estimator of m (x) and that of its first derivative with respect to the continuous component of x.
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4 Joint asymptotic distribution for the estimators of both

spatial parameters in SARAR Models

In this section we demonstrate that after we obtain the estimates of pO and m (x), we can also
estimate the spatial parameter in the error term U,,. For clarity, we focus on the case where U,, also

follows the SAR structure. In this case, we write
U, = ’Y?LWQnUn + €n,

where Wy, is the spatial weight matrix in the error process that may be different from W3,,. Since the
elements u,, ; of U, are not observed, we need to base our estimator of 79 on a consistent estimator
of Uy,:

Un

Yn - fﬁ (Xn) - 5nW1nYn7

where m (X,,) = (m (zp,1),- -, M (Tnn)) and m (z) = my5 ().

4.1 Estimation of the spatial parameter 72

In this subsection, we study the consistent estimation of the spatial parameter «,,. Following the

literature, we assume that the diagonal elements of Ws,, are zero. Let g, = Was,e,. Then we have
nE[EE)] =n tr (W, 8, Wy, } and n 'E[E,e,] = 0. (4.1)
Like Kelejian and Prucha (2010), it is convenient to rewrite the above moment conditions as

n—l

’ A
Enfincn 1, (4.2)
el Aonen

where Ay, = W3, Wa, —diag(way,), A2n = (Wan+Ws,,) /2, and wa, = (w3, qWan 1, , Why, . Wan,-n)
with ws,, .; denoting the ith column of Wa,,. We will estimate 42 based upon the moment conditions
in (4.2).

Noting that €, = (In — 'y?len) U,., we can substitute this expression into (4.2) to yield

¥, —U,0° =0, (4.3)

2

I,

— wn,l —
w” B [ qz[}n,Q ‘|

where 6° = [79, (fy%)

n~lE (U;lAann)

, and (4.4)
n1E (U}, A2,U,)

D J—— wn,ll wn,u _ 2n'E (U W3, A1nUn) -n'E (U W3, A1nWanUy,) (4.5)
T [ e Y 207 B (U WS, AnUn) - =0 E (U W5, AgaWanUn) |
We then obtain the estimators ¥, = W"’ij}ijﬂ , and 1, = [@val,iﬂz)nvg]/ for the elements of

v, = [wnvij]ij:l , and ¥, = (4,15 %0, 2]" Dy suppressing the expectation operator and replacing

12



the disturbance vector U,, by U,. Let an (7,) = 17)" — \T/nﬂn, where 6,, = [7,,,72]’. We obtain the
generalized methods of moments estimator ¥,, = ¥,, (Y,) for 79 by minimizing the following objective

function
Qn ={(n ('Yn)/ TnQn (’Yn) y (46)

where T, is a 2 X 2 symmetric positive semidefinite matrix.
As shown in the appendix (see (C.5) and (C.7)), the dominant term of\/n (¥, — %) can be

written as a linear combination of

v, =12 EI;Alnsn + a/’lnsn 1 (4.7)
el Aonen + ab,en)
where for k =1, 2,
d},, = —n " Ele,Crnen(B'QB) ' B'QZ, (I, — Shy) (In —10Wan) ", (4.8)
Gin = Win (In — pOWin)
Chn =2 (L, —0Wh,) Gy (I —10Wh,) Agn. (4.9)

Noticing that the diagonal elements of the matrices Ag,, (k = 1,2) are zero, we can apply Theorem
A1 to deduce that the asymptotic variance-covariance (VC) matrix of the vector of linear quadratic
forms in (4.7) is given by ®,, ., = [¢

ey kilk,1=1,2, Where

Py kit = 20t [Apn X0 A S0 + 0k, Snarn. (4.10)

To state the next theorem, we add the following assumption.

Assumption 6. (i) All diagonal elements way i; of Way, are zero. (ii) 75 € (=@, Tyn) with
0 < @, a8y < ay < oo (111) The matriz I, — YWa, is nonsingular for all v € (1—g,m, Tyn). (W)
The row and column sums of the sequences of matrices {Way} and {(I, —v9Way) "} are uniformly

bounded in absolute value.

Assumption 6 parallels Assumption 1 so that a discussion similar to that after Assumption 1 also

applies here. The following theorem concerns the asymptotic normal distribution of 7,,.

Theorem 4.1 Suppose that Assumptions 1-6 hold. Furthermore, suppose that n||h||®8 — 0 and
n(Hﬁ;lﬁs logn)? — 0o as n — oo. Suppose that Amin (P, ¥,,) > cp > 0, Ain (Tr) > cx > 0 and
Amin (Pryy) > co., > 0. Then

Vi (G =70) = (00 dn) LT, 02 € 40, (1) % N (0,0,),

.Yy

where J, = U,[1,2997, @, = limy oo (JiCndn) Ti 0@y Yndi (S L0 o) > ¢ > 0, and

¢, =0, 2, L N(0,1).

n =

Like Assumption 4(ii), the extra conditions on h in Theorem 4.1 require that p. < 3. As p.
increases, it becomes more and more difficult to estimate m (z) so that the distance between m (zy, ;)

13



and m (z, ;) gets larger and larger. Unless we can estimate m (z) at a sufficiently accurate rate, we
cannot estimate the spatial parameter 40 at the usual y/n-parametric rate. From the proof of Lemma
C.1 in the appendix, we need the bias of 7 (z,,;) to be o(n™/4), which is a typical requirement in
the semi-parametric literature where nonparametric estimation is conducted before one obtains a
parametric estimator.

Clearly, the choice T,, = @;,EW minimizes (2,, and in this case, £, = lim, (J,’L@,_L}WJH)_I.
In practice, T,, may not be observable and one can replace Y,, by its consistent estimate in (4.6)

without altering the asymptotic results in Theorem 4.1.

4.2 Joint asymptotic distribution of p, and 7,

In this subsection, we study the joint asymptotic distribution of the estimators for pO and /2. Let
8% = (p°,~42) and &, = (5,,7,)". In light of the proofs of Theorems 3.1 and 4.1,

v (p,—0%) = (B'QB) ' BOn Y2Pc, +0,(1), and
Vi (Fn = a0) = (Tada) T v+ 0, (1),

where P! = Z! (I,, — Sp)) (In — ’y%WQn)_l, and v, is defined in (4.7). Hence, the joint limiting
distribution of /n (ﬁQ — pg) and +/n (ﬁn — 72) will depend on the limiting distribution of v =
[n=Y2(P'e,)’, v,)'. Observe that v? is a vector of linear and linear quadratic forms studied in

Appendix A. Its variance-covariance matrix is given by

Prnpp Do,
e 2 o ] o
n,py n,yy

where ®,, ,, =n " 1P.%, P,, ®, ,, =n 1P.%,[a1p, az,), and elements of @, .., are defined in (4.10).

The following theorem establishes the joint asymptotic normality of p,, and 7,,.

Theorem 4.2 Suppose that the conditions in Theorem 4.1 hold. Suppose that Amin (Pr) > co > 0.
Then

(B'QB)' B'Q

®L/%¢% 4 0,(1) % N (0,0

\/E(En _53) _

QB (BQB)™! 0
where Qs = limy, oo Qns, Qs = H, @, Hy, Hy, = ( )

€8 =0,%00 4 N(0,1,42).

Theorem 4.2 implies that we can make joint statistical inference on both spatial parameters pQ
and 79. To do so, consistent estimation of the asymptotic VC matrix 25 is needed. See the next

section for the exploration.
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4.3 An alternative method: joint estimation of p9 and ~?

In this subsection, we study the joint estimation of the spatial parameters p! and 4% based on
the moment conditions in (4.2).2 Let &, (6,) = (In — v,Wan) (Yo — m(X,,) — p,W1,Y,) where
On = (P, V) and m (Xy) = (M5 (1) s g5 (@) Let g5 (6n) = (g7, (6n) , 65, (6n)]', Where
i, (6n) =n"te, (0n) Agnen (8,,) for k = 1,2. We propose to estimate 6% by minimizing the following
objective function

Q= (6,) YTha (6n), (4.12)

where Y7 is a 2x 2 matrix that is positive definite for sufficiently large n. Let 0 = (P, V) denote the
solution to the above minimization problem. As shown in the appendix, dg;; (gn) /06, = Ji 40, (1),

where

E{ULGY, (In = /0Wap) Avn (I = VOWa,) Un b E{ULWS, Ay (I, — 710 Way) Uy}

E{ULGY, (In — A0Wap) Ay (I —VOWay) Uy b E{ULWS, Agy, (I — 1O Wan) Uy}
(4.13)

The dominant term ofy/n (gn — 52) can be written as a linear combination of v} = n=1/2[¢/ A1,e,

Jr=2n""

el Aanen)’. Then Theorem A.1 implies that the asymptotic VC matrix of v} is given by & =
(D, kilki=1,2, where ¢, 1 = 2n" Mr(Apn Xn Aimn) -

Let @, (6n) = (@5, (0) T5, (6)]' where i, (35) = 0 E[Ey (3,) AnEr (3,)] and &, (6,) =
(In — v, Wan) (Y, — m (X,,) — p,W1,Y). The following theorem concerns the asymptotic normal

distribution of gn

Theorem 4.3 Suppose that Assumptions 1-6 hold. Suppose that n||h|[® — 0 and TL(HIS);JVLS logn)?
— 00 as n — 00. Suppose that infis, .5, —s0||>¢y 1T (0n)l| = cg= > 0 for each € > 0, Amin (J3'J57) >
ey >0, Amin (T2) > ey« >0 and Apin (92) > co« > 0. Then

Vi (0 = 080) = (000 TR @52, + 0, (1) 5 N (0,9%5),

where QO = iy, oo (S XETE) L THLEELET: (JETET) Y and €, = &5 ?0r S N (0,1).

n-—m-n

*—1
n

Similar remarks to those after Theorem 4.1 hold. In particular, the choice T} = ®,7 minimizes
25 asymptotically, and in this case 0§ = lim, . (J;’@Z*J;)fl .

Even though it is hard to compare the asymptotic VC matrix of 3,, with that of 0,,, a noticeable
difference is that the former does not depend on matrices like B and 2. This implies that the
preliminary estimation of the nonparametric component plays asymptotically negligible role in the
joint estimation of pO and 4Y. In addition, it is easy to verify that the condition on J; is violated
when p0 = ~Y = 0 and Wi,, = Wa,. In this case, the asymptotic VC matrix of Sn is singular. For

this reason, we only implement Sn in Section 6.

2More generally, one could consider the GMM estimation of p% and 72 based on both linear and quadratic moment

conditions for &, as in Liu, Lee, and Bollinger (2008).
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5 Estimation of the asymptotic VC matrices

In this section, we discuss the estimation of the asymptotic variance-covariance matrices for both
estimators of the parametric and nonparametric components in the model. In particular, we focus
on the consistent estimation of the two asymptotic covariance matrices in Theorem 4.2 and Theorem
3.2.

We first define a HAC type estimator for ®,, defined in (4.11). For this purpose, let g, =
(In — 3, Wa)Up = Guts- 18nm), &2 = (531,--. 22 ) B, =diag(El), a;m = —n 12 Crnin
(B;LQHB7l)71B;LQnZ/ (I, = Shy) (In 'YnWQn) , and Ckn =2 —7,W3,)" ( n = ’ﬁnwlln)il Wi,

I, — 7, W3,) Agn where k = 1,2. We also need to specify an estimator for P, : Pn = Z! (I, — Spy)

X (I — 4, Wan) ™' . Let
&) = l @ n,pp ?n,p'v 1

!
(I)n SPY (I)"a’Y’Y

with EI;n’pp = n‘lﬁ’i WP, ®, o= n_lﬁ'E [Eln,&'gn] o, noyy = @mv kl)kl 1,2, where gbm%kl =
2n_1tr(A;mZnAln n)+n” aan Q. Let J, =0, [1,27,] and Qn s=H' <I>an, where

H, =

Q. B, (B, B,) " 0
0 Yodn (T L dp) ™t |

The following theorem says that we can consistently estimate 25 by fvlms.

Theorem 5.1 Suppose the conditions in Theorem 4.2 hold. Suppose in addition that sup, }p2| < Py
and supy, |79 | < 7, such that ||p,Win|loo < 1 and ||, Wanl| o, < 1, where ||-||, denotes the mazimum

row sum norm. Then &)n —®, =0,(1) and Qn,(; —Qns=0,(1).

Let U, =Y, 102 (X)) =P Wian Yo, 80 = (I~ 'ynVVgn)U —(enl,--- gnn)',giz(gil,---,gim)'

and En =diag(g2). Let G1, = Wi, (In—p, Win) ! and ®F = [¢n i)k 1=1,2 where g[)n o =20t (Apn S,
A2 n) Define

UI / n (In 'YnW2n) (In - ﬁnWQn) fjn /U\Y’I{LWQI’ILAln (In — 7, Wan) ﬁn

~ Ay
Jr=op7t tn ~ A ~
" UI /1n ( n ’YnWQTL) AQTL ([n - ?nWQH) Un UylLWQInAQn (In - :?nWQn) Un

Let ;5 = (J*’T* J*) N 5

~ SO
J;L“ J¥ T;Ji{) . The following theorem establishes the con-

sistency of Qn s for Q5.

Theorem 5.2 Suppose the conditions in Theorem 4.3 hold. Suppose in addition that sup, }p2| < Py
and supy, |79| < v, such that |p,Winll < 1 and |7, Wanllo < 1. Then 1 — & = op (1) and
92,5 - QZ,& = Op (1).

Statistical inference associated with 50 = (p2,49) can now be conducted based upon the above
theorems and Theorems 4.2-4.3. For example, we can test the hypothesis of zero spatial correlation
in both the regression model and the disturbance term, i.e., Hy: p2 =% = 0. As special cases, we

can also test the simple null hypothesis Hy : p = 0 or Hp : 7% = 0.
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In practice, we may be also interested in making statistical inference on the nonparametric compo-
nent. For this purpose, we need to estimate the asymptotic VC matrix in Theorem 3.2. Let fn (x) =
nT I heZ) 5 () diag (ks () AnZn Ar diag(kys (2))Z,, 5 (2), fo(z) = 07 3000, K5, (@), and
O () =ntY0 Zr(leKﬁXz(l’) /fn (). Define A, (z) as A (z) with &, (z) replacing ¢, (z). Let
A (z) = (A, (z) A, (2)) A, (z), and Q ur (z) = A% (2) T, (2) A% (2) /fn (2)° . The following

result is sufficient to establish the consistency of the estimator for the asymptotic VC matrix.

Theorem 5.3 Suppose that the conditions in Theorem 3.2 hold. Then T, (z) — T\, (z) = o, (1),
fo (@) = fn(2) = 0(1), @y (2) =y, (2) = 0 (1), and Qp,pr (2) = Qnar (2) = 0p (1), where Ly ar () =
A*(2)T (z) A* (2) / f3 (x).-

In proving the above theorem, we assume that A,, is known. In the case of spatial autoregression
error, A, = I,, —y2Wa,,, which is not observed. It is easy to show that the replacement of A,, by, say,
jn = I,, —7,,Wa, in the definition of fn will have asymptotically negligible effect on the consistent

result in Theorem 5.3 provided Assumption 6 is also satisfied.

6 Monte Carlo simulations

We now present a small set of Monte Carlo experiments to examine the finite sample performance
of our semi-parametric GMM estimators. Like Su and Yang (2009), we generate the spatial weight
matrix W,, = Wy, according to Rook contiguity, by randomly allocating the n spatial units on a
lattice of 5 x m (> n) squares, finding the neighbors for each unit, and then row normalizing,.

We generate the data from the following data generating processes (DGPs):

DGP 1: Y, =1+ X%, + Xd) + X, + AW, Y, + X5 © XE, + Uy,

DGP 2: Y, = 14+ X% + X2, + XS, + pO W, Y, +0.5X 4 @exp(XEy) + 05X, © XG4 © Xy + Uy,

DGP 3: Y, = 1+ X% + X% + X + XS, +pO W, Y, + X4 ©cos (0.57XE, )+ X L0 sin(0.57 X ) +
0.5X5, © X5y + Uy,
where ® denotes the Hadamard product, X& = (25 11, .., 2 1)+ XGp = (€5 210 eees 6 0) 261,78
are i.i.d. and each is equal to the sum of 48 independent random variables each uniformly distributed
on [-0.25, 0.25], and zf ,’s are iid. U (—2,2); fort =1,2, Xg, = (¢t ,,,--- ,a )/, Pz, =1)=

»¥n,tn

C

0.5 for [ = 0,1. According to the central limit theorem, we can treat 7, ;;

as being nearly a normal
random variable with truncated support on [-12, 12]. The error term is generated according to the
SAR process: U, =YW, U,, + &5, where €, = (g, 1, ..., En’n)l, €ni = 41/0.5(1+ acffu)ni, and 7,’s are
iid. N(0,1). We will consider different population values of (p%,+%) : (0,0), (0.3,0), (0,0.3), and
(0.3,0.3).

To implement our estimation procedure, we need to choose the kernel function and bandwidth
sequences. Throughout, we will choose a Gaussian kernel (for DGPs 1-2) or the product of a Gaussian
kernel (for DGP 3). That is, for DGPs 1 and 2 where there is only one continuous exogenous regressor,
we choose ¢ (z) = (27r)71/2 exp (—?/2) ; for DGP 3 where there are two non-constant exogenous

regressors, we choose Q (21, x5) = IIZ_, (27) /% exp (—27/2).
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As it is difficult to specify the optimal bandwidth sequences h = (h, ..., hy, )’ and h= (El, - lNLpC)’
(pc = 1, or 2 here), we propose to choose them via the following two-step procedure. (1) Choose
h = (h1,....,hy,) and A = (A1,...,Ap,) with hy = slen_l/?"5 and \; = ngln_Z/?"f’ to obtain
a preliminary estimate 7', of p, where s xe, denotes the sample standard deviation of X7, for
l=1,---,p., and s x4, is similarly defined. (2) Conduct the least squares cross validation (LSCV)
to choose (h, \) by regressing Y,,— p W, Y, on X,,. Since undersmoothing is required for h and A,
we set h = hn~V/35H1/(petd) and X = Ap~2/3-542/(r+4) and obtain an updated estimator 7, of 0.

To be concrete, let 77“1- denote the ith element of Y,,— 7 ,W,Y,. Let m_; (@n.,;) be the leave-
one-out local linear estimator of m (x,, ;) by leaving the observation (x,, ;, ¥ ;) out in the estimation

procedure and by using the smoothing parameters (h, ). We choose (E, X) to be

n
(h,\) = arg min DN [ — Mo ()] w(@s ),
: s

where w(zy, ;) is a nonnegative weight function. In our simulations, we set w(zy, ;) = 5=, 1(|5, ;, —
Z5)| < 2sxc ) with TF being the sample mean of X,

After obtaining p,,, we obtain the estimate m (zy, ;) of m (2, ;) as in Section 2 and the estimate
¥, of 7% as in Section 4.

Recently, Kelejian and Prucha (2010) study the generalized moments (GM) estimation of spatial
autoregressive models with autoregressive and heteroskedastic errors. Note that their estimation
procedure requires a complete specification of the regression model, i.e., the functional form of
m (x,,;) has to be known and is actually linear in their paper. In the case of nonlinearity, it is
hard to know the exact form of m (z,,;). To check the robustness of Kelejian and Prucha’s (2010)
procedure against nonlinearity, we will also report their GM estimators of (p%,~%) by pretending
that m (z,,;) is linear in @, ; in all DGPs. We denote their estimators of p) and 7% as pyp and
Yk p, respectively.

For each Monte Carlo experiment, we consider samples of size n = 200 and 800. The numbers of
Monte Carlo replications are 1000 and 500 for the cases n = 200 and n = 800, respectively.

Table 1 reports the empirical mean, theoretical standard deviations (theoret. std dev), simulated
standard deviations (simul. std dev), separate null hypothesis test (sep. test), and joint hypothesis
test (joint test) results regarding the parametric component in the model. The theoretical standard
deviations are calculated from the asymptotic variance-covariance formula and then averaged over
the 1000 or 500 replications; the simulated standard deviations are the empirical standard deviations
of the corresponding estimators obtained in the replications. The separate tests are conducted to
test whether each spatial parameter is significantly different from zero in each replication; the joint
tests are to test whether the two spatial parameters are jointly zero in each replication. Both tests
are performed at a nominal 5% significance level.

We summarize some important findings from Table 1. First, we see that the estimates p,, are well
behaved in all cases and the estimates ,, are well behaved for all scenarios in DGPs 1-2. For DGP
3, we observe non-negligible small sample biases when n = 200 but the biases diminish rapidly as the

sample size quadruples. Second, despite the use of linear approximation of m (*), the estimates py p
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Table 1: Parametric Estimates and Hypothesis Tests for DGPs 1-3

n = 200 n = 800

estima-  true theoret.  simul. sep. joint theoret.  simul. sep. joint

tor value mean std dev std dev  test test mean  std dev  std dev  test test

DGP 1
Pn 0 -0.034 0.117 0.135 0.067 -0.016 0.058 0.061 0.064
Y 0 0.042 0.155 0.147 0.049 0.072 0.019 0.074 0.074 0.054 0.064
PP 0 0.008 0.182 0.192 0.068 0.004 0.093 0.096 0.050
Yip 0 -0.013 0.201 0.205 0.057 0.075  0.002 0.104 0.109 0.074 0.048
P 0.3 0.268 0.112 0.131 0.689 0.284 0.055 0.058 0.996
Yn 0 0.043 0.150 0.149 0.059 0.955  0.020 0.075 0.075 0.060 1
PKP 0.3 0.310 0.172 0.182 0.483 0.297 0.088 0.091 0.900
Yip 0 -0.024 0.201 0.204 0.062 0.928 -0.001 0.103 0.109 0.078 1
P 0 -0.035 0.129 0.149 0.063 -0.012 0.064 0.068 0.054
Y 0.3 0.294 0.157 0.141 0.539 0.792  0.300 0.074 0.074 0.982 1
PP 0 0.013 0.185 0.196 0.070 0.007 0.095 0.102 0.058
Yep 0.3 0.085 0.202 0.210 0.089 0.178  0.096 0.104 0.111 0.158 0.538
P 0.3 0.266 0.125 0.145 0.633 0.288 0.061 0.066 0.970
Yn 0.3 0.296 0.151 0.144 0.546  0.998  0.300 0.075 0.076 0.980 1
PP 0.3 0.315 0.176 0.188 0.494 0.308 0.090 0.098 0.864
Yep 0.3 0.073 0.204 0.209 0.080 0.994 0.093 0.105 0.112 0.148 1
DGP 2

P 0 -0.007 0.077 0.085 0.074 -0.006 0.039 0.041 0.068
Yn 0 0.005 0.122 0.125 0.061 0.067 0.003 0.061 0.062 0.054  0.058
PKP 0 0.005 0.093 0.100 0.079 -0.002 0.048 0.049 0.042
Ykp 0 -0.012 0.131 0.134 0.058 0.072 -0.001 0.066 0.069 0.062  0.050
P 0.3 0.294 0.073 0.081 0.953 0.296 0.037 0.040 1
Yn 0 0.005 0.122 0.126 0.066 0.990 0.006 0.061 0.067 0.070 1
PP 0.3 0.305 0.088 0.094 0.897 0.297 0.046 0.047 0.998
Yip 0 -0.014 0.131 0.134 0.058 0.975 -0.001 0.067 0.066 0.040 1
P 0 0.008 0.083 0.092 0.073 -0.008 0.043 0.047 0.064
Yn 0.3 0.279 0.119 0.122 0.624 0.781 0.295 0.060 0.066 0.992 1
PP 0 0.007 0.095 0.103 0.081 -0.002 0.050 0.052 0.062
Yip 0.3 0.160 0.129 0.137 0.269 0421 0.171 0.067 0.069 0.714 0.924
Pn 0.3 0.293 0.079 0.088 0.897 0.295 0.040 0.041 1
Yn 0.3 0.270 0.119 0.123 0.619 1 0.291 0.060 0.060 0.996 1
PP 0.3 0.307 0.092 0.100 0.872 0.300 0.048 0.047 1
Yip 0.3 0.156 0.131 0.138 0.253 1 0.167 0.067 0.069 0.690 1
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Table 1: Parametric Estimates and Hypothesis Tests for DGPs 1-3 (cont.)

n = 200 n = 800

estima-  true theoret.  simul. sep. joint theoret.  simul. sep. joint

tor value mean std dev std dev  test test mean std dev  std dev  test test

DGP 3

Pn 0 0.005 0.078 0.090 0.071 -0.002 0.036 0.038 0.058
Tn 0 -0.010 0.122 0.126 0.059 0.066 -0.001 0.060 0.063 0.050  0.060
PP 0 0.007 0.090 0.095 0.056 0.001 0.045 0.043 0.044
Yk p 0 -0.018 0.130 0.130 0.063 0.053 -0.001 0.065 0.065 0.054 0.036
Pn 0.3 0.305 0.075 0.085 0.943 0.298 0.035 0.036 1
Tn 0 -0.011 0.123 0.126 0.057 0.989 -0.001 0.060 0.063 0.050 1
PP 0.3 0.309 0.085 0.090 0.915 0.301 0.042 0.040 1
Yk p 0 -0.022 0.129 0.130 0.062 0.982 -0.002 0.065 0.062 0.044 1
Pn 0 0.003 0.083 0.099 0.074 -0.000 0.039 0.043 0.058
Tn 0.3 0.259 0.120 0.127 0.655 0.839  0.287 0.057 0.060 1 1
PP 0 0.004 0.091 0.097 0.060 -0.000 0.046 0.045 0.048

Yip 0.3 0.168 0.127 0.130 0.280 0.410 0.174 0.064 0.065 0.780 0.924

P 0.3 0.306 0.079 0.092 0.907 0.300 0.037 0.040 1
Tn 0.3 0.249 0.120 0.124 0.630 1 0.286 0.058 0.061 1 1
PKP 0.3 0.312 0.088 0.096 0.896 0.300 0.044 0.043 1

Yip 0.3 0.148 0.129 0.132 0.228 0999 0.173 0.064 0.065 0.774 1

behave quite well in all cases under our investigation. In contrast, the estimates 7 p can be seriously
biased downwards. For example, when (p2,~19) = (0.3,0.3) in DGP 1, the average values of 7 p
are 0.073 and 0.093 for n = 200 and 800, respectively. Third, the simulated standard deviations are
largely consistent with theoretical standard deviations in all cases. As the sample size quadruples, we
observe that both sets of standard deviations are roughly halved as predicted by the theory. Fourth,
the rejection rates of the separate and joint tests are reasonably close to the nominal level 5% when
the corresponding null hypothesis is true. When the null hypotheses are not true, we observe larger
values of rejection rates for the tests based upon our semi-parametric estimates (p,,,7,,) than those
based upon Kelejian and Prucha’s estimates (py p, 7 p)- This is as expected because 7 p tends to
be biased downwards. For example, consider testing Hy : 7 = 0 in DGP 2 when the true value of
(p9,9%) is (0.3,0.3). The rejection rates for our test are 0.624 and 1 respectively for n = 200 and
800, whereas the rejection rates for Kelejian and Prucha’s test are 0.269 and 0.924 respectively for
n = 200 and 800.

Figures 1-2 plot the estimates m(z¢ x%) of m(x¢ z?) in DGPs 1 and 2, respectively, where
n = 200, (p2,~%) = (0.3,0.3), and 2% may take four different values: z¢ = (z¢,z4) = (0,0), (1,0),
(0,1), and (1,1). In each sub-graph of Figures 1-2, we plot the true regression curve m (z¢, z%),
the median estimate m (xc,xd) in the 1000 replications, the upper and lower 5% quantiles of the
estimates m (xc,xd) in the replications. In each case, we see the median value of the estimates

m (acc, xd) can trace the true regression curve quite well. As expected, we observe that the variations
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of m (z°,z%) become larger and larger as z° moves from the centered value (0 here) to the tailed
values (£2 here).

For DGP 1, m (xc,xd) =1+ 2+ 29+ 2°(1 +2°), so there is no interaction between z¢, ¢
and 2¢ and the true curves m (2¢,2%) for different values of z? parallel to each other. In fact we
can observe this phenomenon for m (xc,xd) in Figure 1. In contrast, for DGP 2, m (xc,xd) =
1+ 28 4+ 2 + 2¢ + 0.50¢ exp(x©) + 0.524(2°)?, so there are interactions between z¢, z¢, and z¢, and
the shapes of m(z¢, z?) are quite different from each other for different values of 2, depending on
whether z{ = 0 or 1 as well as #§ = 0 or 1. For example, if z? = (z{, ) = (0,0), then m (2°,2¢) is a
linear function of z¢; if z¢ = (x¢,2¢) = (1,0), then m(z¢, z?) is an exponentially increasing function
of z¢. Figure 2 indicates the estimates m(z¢, %) can capture such features quite well.

In Figure 3 (a)-(b), we plot the true regression curve m(z¢ z%) = 1+ 2§ + 2 + 2§ + 25+
2% cos (0.5mx§) + x4 sin (0.57x5) + 0.52$z§ in DGP 3 and its estimate m(z¢, %) for the case where
¢ = (2¢,23) = (1,1), (p2,7%) = (0.3,0.3), and n = 200. We observe that m(z¢, %) can mimic the
shape of m(x¢, z%) quite well for such small sample size as n = 200. Figure 3(c) plots the median
estimate of m(z¢, %) versus § when (2§, 2{, 29) = (0,1, 1), whereas Figure 3(d) plots the estimate of
m(z¢, x?) versus z§ when (z$,2¢, 24) = (0,1,1). For both subgraphs, we also plot the true regression
curve and the upper and lower 5% quantiles of the estimates m(x¢, %) in the replications. We see

that in each case, our estimates m(z¢, ) move closely with the true regression curve.

7 Concluding remarks

In this paper we propose semi-parametric GMM estimation of SAR models where the error term
may exhibit heteroskedasticity or spatial dependence. When the error term follows a SAR process,
we also demonstrate that the parameter in the error term can be estimated consistently and one
can establish the joint asymptotic distribution for both spatial parameters in the model. Consistent
estimation of the asymptotic variance-covariance matrices are also provided. A small set of Monte
Carlo simulations are conducted to show the proposed estimators are well behaved in finite samples.

Several extensions are possible. First we conjecture that we can extend our analysis to the
case of semi-parametric SARAR or SARMA models, where some of the exogenous regressors are
parametrically specified in the regression model. Second, after the estimation of the semi-parametric
SARAR model, we may consider updating the SPGMM estimators proposed in Section 3, say, by

considering the Cochrane-Orcutt-type transformed model
(In - wnWQn) Yn = (In - ?nWQH) m (Xn) + Pg (In - :?nWQn) WlnYn + En-

Nevertheless, due to the presence of the nonparametric component m, it is not obvious how one
should proceed along this direction (see Xiao, Linton, Carroll, and Mammen (2003) in the time series
setup). Third, one can extend the analysis in Section 4.3 by considering the joint GMM estimation
of p% and «% based on both linear and quadratic moment conditions for ¢,, = (En,1,- - ,z’:‘mn)l as in
Liu, Lee, and Bollinger (2008). In the special case where the exogenous regressors enter the SARAR
model linearly and ¢,,;, ¢ = 1,--- ,n, are i.i.d., they consider the optimal GMM estimation of the
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finite dimensional parameters within the class of linear and quadratic moment conditions. Yet it is
not clear whether one can extend their approach to our framework and find the best GMM estimator
for the finite dimension parameters pO and " within the class of linear and quadratic moment

conditions. We leave these topics for future research.

Appendix

Let C signify a generic constant whose exact value may vary from case to case. Frequently we
will use two evident facts (see, e.g., Kelejian and Prucha, 1999; Lee, 2002):

Fact 1: If the row and column sums of the n x n matrices By, and By, are uniformly bounded
in absolute value, then the row and column sums of By, B, are also uniformly bounded in absolute
value.

Fact 2: If the row (resp. column) sums of By, are uniformly bounded in absolute value and Ba,
is a conformable matrix whose elements are uniformly O (0,), then so are the elements of By, Bay,
(resp. B2y Bin).

For example, the row and column sums of G, = W1, (In — ngln)fl are uniformly bounded
by Assumption 1 and Fact 1. Noting that the elements sy ;; of Sp are uniformly O(nflﬂf:;ll;;l),

so are elements of G'1,Sp) or Sp\G1, by Assumption 1 and Facts 1-2.

A Some useful results

Here we provide a theorem and a lemma that are used in the proof of the main theorems in the text.

We first consider the linear quadratic forms

/ /
an = EnAsnEn + AgnEn, S= 17 e, T
where €, = (€1, ;Enn) 1S as defined in Assumption 2, A, = (asnﬂi)ijﬂ . pisan nxn
- 3J T4 b
. . ! . .
nonstochastic matrix, and as, = (asn,1," - ,8sn,n) i an n X 1 nonstochastic real vector. Let

Qn = [anv c ;an]/-

Let pq., = EQsn and 0q,,,, =cov(Qsn, Qin) for s,t =1,--- 7. Kelejian and Prucha (2010, Lemma
A1) show

n
— 2
HQ,, = § Asn,ii0n is (A~1)
=1
n n n
2 2 2
TQun = 2D Anij@inijOniOn;+ > AeniBm,i0n;
i=1 j=1 i=1
n n
} : (4) 4 Z (3)
+ Asn,iiAtn,ii [Nn’i - 301171' + (asn,iatn,ii + atn,iasn,ii) ,un,ia (AQ)

=1 i=1
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where ,u(k) = E[Ef”] for £ = 3,4. Clearly, if a5, = 0 for all s = 1,--- ,;rand ¢ = 1,---

n,t n

) )

tq., = 0 and the last two terms in the expression of 0q,,, drop out. Let uq, = [tq,,, #q,.,)"s
2q, = (0Qun)si=1... ,» a0d Bq, = 233(253)' The following theorem is proved in Kelejian and

Prucha (2010).

Theorem A.1 (A CLT for Linear Quadratic Forms) Suppose that for s = 1,2,--- 1, Ag, is

symmetric and the row (column) sums of A, are uniformly bounded. Suppose that sup,n Sl |asn. #m

< 0o for some n; > 0. Suppose that n™ Amin (£q, ) > ¢ for some ¢ > 0. Then

202 (Qn —nq,) S N(0,1,),

where elements of pg, and Xq,, are given by (A.1) and (A.2), respectively.

Recall that Spx = (Sax (1), -, Sk (Tn,n))’. Denote the (i, j)th element of Spy as spy,i;. To

study the properties of sp ;;, we need to distinguish whether z¢ . = (x

/s
P T is a boundary

[ c )
n,j1» n,jpe

point in the compact support X¢ of f (2°, %) . Without loss of generality, we assume X = II?<, S,
where S5 = [z,,75]. A point z7, ; is said to be a boundary point in X'¢ if there exists s € {1,2,--+ ,p.}
such that xy,

we say that z7, ; is not a boundary point. In the following, when x

C

=x,+bshs or Ty s

= T —cshs for some finite positive numbers bg and c,;. Otherwise,

c
n,J

assume that it is a pure “lower” boundary point such that we can write z7, ; = z + b © h,, where

is a boundary point, we

z= (21, -z,,) and b= (b1, --bp,). Other cases of boundary points can be analogously analyzed.

Define
a - [ Fe@  e@n,
p(x)®kp1 () ®Kp2
where ry0 =[5 T2 g (us) du, ky1 = [7 ullle g (us) du, and ko = [7) ue/TIEZ g (us) du. Note
that when b = oo, Il = Il = II, where II is defined in Section 3.3.

Lemma A.2 (a) Z;—Ll Snrij = 1 and 2?21 Sh)ij (atfu — xfu) = 0p,x1 for each i;

(0) A (T ;) = [ (@n;) A (20,5) + 0 (1) for each j;

(c) the row and column sums of Spx = (Spxr,i;j) are uniformly bounded in absolute value for
sufficiently large n,
where A = A if T, 15 not a boundary point, and A=A, if Ty, ; =&+ bO h. For other cases of

boundary points, A can be similarly defined.

The proof of the above lemma and other lemmata in this paper can be found at http://www.
mysmu.edu/faculty/ljsu/Publications/Spatial NPGMM _supplement.pdf.
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B Proof of results in Section 3
Proof of Theorem 3.1 . Noting that Y,, = p® W1,,Y,, + m (X,,) + U,,, we have

~7
(0 'Yy Zn) [0 2Z;, (1o — Sha) U]
=/ ~
n=Y,, Z,)(n"12!Y,)
~7
+ (nilynZn)Qn [nil/QZ;L (In = Spa) m (X)]

~7
(n=1Y, Z,)Qn(n=121Y )

Vi (p, =) =

Noting that n=1ZY,, = B + 0, (1) and Q,, = Q + 0, (1) by Assumption 5, it suffices to prove the
theorem by showing that

Ty =n"2Z! (I, — Spa)m (X,) = o (1) (B.1)

and
Tpo =127 (I, — Spa) U > N (0,0), (B.2)

because then v/n (p,, — p%) = B/Q[nil/zg,;}ggismw"] + 0, (1) 4N (O, (B'QB)~? B’Q@QB).

We first show (B.1). Recall m (z) = dm (z) /0. Let i (z) = 0*m (z) /0z°0x. Then m (z,,;) —

m(Tn,j) =m (xmj)/ ((Z%z - xfm‘)) +% (xfm - xfm)lm (Tn,j) (mfm - x%7j)+0(||h”2) if fom - xme <
C|n|| and z¢ ; = $fw». By Lemma A.2(a),

n n
T = n /2 Z Znyi | M (@) — Z Shaij M (Tn, ;)
i=1 i=1

n n
= 7Y Y s [ (w) = m ()]
i=1 j=1

= Thi1 +Thi2 + 0(n1/2 Hh||2)’

where
n_1/2 n n 1 .. d d
Tonn = B Zznz Zshhiji (:I’le - x%g) m (Tn,;) (:I’le - ZZJ) 1 (xnl = xn,j) and
i=1 j=1
n n
Tz = 072 200 Y saaiy m(@n) = m(za )] 1 (2, # ;)
i=1 j=1

,1X

As in the proof of Lemma A.2(c), let ¢} (A (z)" A (2)) (z) = (a1 (z)', a2 (z)'). By Assumptions

27



3-4 and Lemma A.2(b),

n-1/2 M n
Ton = 5 Z zn,if xn 7, - Z |: xn z ) + a2 (xn z)/ (Zs; & ((x;’j - x%’z)/h)>] Kh)\,ij
i=1 =1
c c \ c c
X (x7li - mn,j) m ($n7j) (x7z,i - mn,j) 1 (‘T;jz,z = ng,j) {1 +o (1)}
,1/2 n

Z Zn, zf xn i / [al (zn,i), Pn (l'n,z) + ax (mn,z’)/ (<Pn (l'n,i) & U)} Hf;ﬂ] (Ut)
(h@u) 7 ( i T hOu,x )(h@u)f(xfw-+h®u,xz7i)du{1+o(l)}
= O |n|*) =0(1).

Similarly, one can show that T,,12 = O (n'/?|[A||) = 0(1). Hence T,,; = o(1).

We now show (B.2). Let ¢ be an arbitrary ¢ x 1 vector with |¢|| = 1. By the Crameér-Wold
device, it suffices to show that /T,y > N (O dOc). Clearly, E[dTus) = 0. Let s2 = E[c/T,2)* and
Tpo = c 'Th2/8n. Then by construction, E( 2) =0 and E( 2)? = 1. Write

n
—1/2 =~
2="N / § § lc Zn,j — § Czn iShA,ij an]lf‘:nl/sn § En,ls
=1

=1 j=1

where €, = €511 —1/2 Zj 20— i €20 iShaij] Gn ji/Sn. By the triangle inequality, Assump-

tion 5, and Lemma A.2(c), we have that for sufficiently large n,

§ C Zn,iSh\,ij

where c. = sup;<;<,, ,>1 [|Znll - That is, for each j = 1,...,n, |31 /2, iSha,ij| is bounded by a

< Z |C Zn,iShA 7,]‘ < Cz Z |Sh)\,ij| = Czca (BS)

i=1

constant for sufficiently large n. Hence by Assumption 3 and the C, inequality (e.g., Pagan and Ullah
(1999, p. 350)), for some small 6 > 0

n
Z E ‘gnJ ‘2-"—5
=1

2495

_n (2+0)/ / / E 2+6
= T DD |z = > znishaig | ani len.l

Sn =1 [j=1 i=1

245 245
92+8,,—(2+8)/2 " | ™ 92438, —(248)/2 * | P " )
< $2+0 Z Zczn 38n,jl +752+5 Z ZZCZn,iShA,ijan,jz
n =1 |j=1 n =1 |j=1i=1

= Spi+ Sna, say.

. Ccn”—(219)/2 (2+6)/2 _5 2\ .

By Assumptions 2 and 5, Sp1 < S Do |2 \anﬂl\ /2) = 0(1). Similarly, by

249
(B.3) and Assumptions 2 and 5, for sufficiently large n, S,o < <2 ;2:;5)/2 Sy )Z \amjl\‘ =

O(n=%/%)=o0(1).Hence 3| | E |§n7l|2+6 = 0(1). It follows from Theorems 23.6 and 23.11 of David-
son (1994) that Tpa 4N (0,1) . The result then follows from the fact that s2 = n=*c’Z! (I, — Spy) Ax
AL (I, — ShA)/ Znc — ¢ Oc by Assumption 5(iii). ®
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Proof of Theorem 3.2. By definition, M%X (r) =555 () (Y = 5, WinYy) = 7% (z) (m(X,)

~ - -1 .
—i—Un—&—(pg — pn) W1, Yy,), where Sy (x)/ =n-1 (An’m (x)/ A, p (x)) A (x)/ Z,1 (ac)/dlag(km (2)).

It follows that Van;lﬁs (Mm (z) — M; (x)) = Np1 + Np2 + Ny3, where

Not = /0l by (855 (@) m (X)) = MG (2)) ) Noo = \/nll22 S5 (2)' Uy, and
Npz = (Pg—ﬁn) \/“H 1hS (@) Win Yy

By Theorem 3.1, p,, — p% = O,(n~'/2). With this, it is easy to show N,3 = Op(\/HI;;lES) =
op (1) . We now show that N,,; and N5 contribute to the asymptotic bias and variance of M%X (z),
respectively.

By the second order Taylor expression,

(6] C 7\ 1 C C . (6] C 7
m (zni) = (1, (25, — @) /h) )M, (2) + 5 (7, — @ )7 (@) (5, — ) + o(|[A]]*) (B.4)
for sz —az¢|| < C||h|| and x4 4, = x. Denote 8j5 (zn,i, ) as a typical column of ;5 (z), ie.,
S75 () = (575 (Tn1,2) .+, 555 (Tn,n, 7). Noting that
—1 -
Ly = (A, 55 (@) A, 55 () A, s (@) A, 55 (@ Zsm g ) (1 (@5, —2)/B)).

we have N1 = Np11 + Nyi2 + 0, (1), where
Npuw = \/ nIl?e by ZS 5 (@ng @) (5,5 — xc)lm (z) (25, — )1 (mgu =a’), and
Npio = /nIP< h, Zgﬁ (@i @) [ (20,0) —m ()] 1 (2 ; # 29) .
i=1

Recall A* (z) = (A (z)' A (95))71 A (z)'. Let v, = \/nII”  h, and Tiw = e ¢, . Where g5, =
E;lq((xfm.t — xg)/ﬁt) fort=1,2,--+ ,p, zy, ;; is the tth element of xf, ;, and z{ is similarly defined.
Then by Lemma A.2(c),

Tl’L7

_ oWve - “,2 vt — 2 i (o
X(xfl)i—xc)l(x‘fm:xd)
0 Ui, De T +i~1®u z? ~
R IS /H x+h®m>2§u ¢ (ue) f(z° + 1 u,at)

x(h ©u)m (z) (h ®u)du
v Ko1p (T p:1~§mss x ~
_ —”A*(:E)( oz ”>+o<un||h||2>.

2 q1pe X1
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Similarly,

n z(l)
Nuiz = {l+oW)}vaf " (@) A" <w>n—12< ) o (e — 2\ /i )sz,i (z)
x [m (@n,i) —m ()] 1 (a5 ; # 27)

n z(l)
= {loMlvaf @A @0ty ( ROP . ) Gra.p [ (20,0) —m ()]

Pd
x {Z Asls(xi,m:cd)} +O(INP)
s=1

m (2€.v%) — m, (€. 24 ~S . Ud,{Ed :Ec,vd CL’C,’l}d
= an_l(m)A*(m) ZvdEXd[ ( ) ) ( ) )]szzl)\l( )f( )90( )

Oqlpc X1

+o(val[A])).-

where 1,(z ., 2%) is defined in (3.3). So by Assumption 4,

De T __
Npiz =1 V nILzhobs (@) +o(1)

OlecXI

9

where b5 (z) is defined in (3.4). Hence

— 1 Pe T2 -
Noy = /ol A" (x)< Lrang (x) S_lhsmss<x>+bA<x>>+o(1).

Ol]lpc x1

Note that N, = (f~(z) A*(z) + o (1))n’1/2\/H€;1l~stnﬁ (x)'diag(kﬁ (2)) Up + 0p (1) . Let

¢ = (c),cy) with |le|] = 1, where ¢; and ¢g are ¢1 x 1 and ¢1p. X 1 vectors, respectively. Let

T, = n-l/2 Y Hg;lﬁsc/z/nﬁ (z) diag (kﬁX (.’E)) Un = n1/? V Hg;lﬁs Z Z Cm‘KﬁX’i (z) Anij€n,js

j=1i=1

where (,,; = c’lz(l)+c’2(z(1) ® ((z5,; — 2¢)/h)). Then E [T,,] = 0, and

n,t n,i
2 2
2 = E[T)]
n n n
—1 c 7 2
= 0T R > YT G K (@) Koy (2) angjanoh ; — ¢Te.

j=1i=1 |=1

Let Tn =T,/S,. We can write T, = Z?Zl En,j, Where

n
Eng =1 VI B > K (%) G igen i/ Sn-

i=1
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Let anij = |an,ijl /> j— |anj| . Then @, ;; > 0 for each ¢ and Y., apn,; = 1. By Assumptions 2

and 4 and the Jensen’s inequality, we have that for some small § > 0,

n—(2+6)/2 (HgiﬁS) (2+6)/2 246

n n
248 =
§ E ‘Eﬂ,j| = SQ+5 E E
j=1 n j=1

n—(2+9)/2 (Hﬁglﬁs)@“)” . »
SQ+§ ZE ‘enaj|
n j=1

\(246)/2
flpsn~ T2 (H€;1 hs)

S%Jr )

n
enj O Cniln () an
=1

2495

IN

n n
D an i)Y ¢l Ko i (%) @n i
=1

i=1
244
o e 20 g2t
Z i |C il i (z)

IN

n
> lan,;

=1

n
Z ‘an,lj

7j=11l=1

N\ (248)/2
+6ﬁ2+6n_(2+6)/2 (H€;1h8> 246 2+5 -
S2+6 Z |<nz| K ) Z |a’"7ij|
n J=1

§
2o, gn = (2+9)/2 (H” h >(2+ vz 245 248
SQ+6 Z|<nl| * h)\z( )

- 0 ((nﬂﬁglﬁs)’5/2) =o(1),

"M

<
Il
—

1+6

—(2+6)/2 (Hpc 7
oy sm
ZMWMMH5g%>

S%—i—&

)(2+6)/

I

IN

IA

where supi<i<nn>1F |5n,i|2+§ < gy 5 < oo. It follows from Theorems 23.6 and 23.11 of Davidson
(1994) that T, 4N (0,1) . The result then follows from the fact that S2 — ¢'T" (x) c. Consequently,
AP N(0, f~2 (z) A* () T (x) A* (z)). This completes the proof. m

C Proof of results in Section 4
We first state a lemma that is used to prove the main results in Section 4.

Lemma C.1 Let A, be a real nonstochastic n x n matrixz whose row and column sums are uniformly

bounded in absolute value: supi<j<pn>1 Y iy |On,ij| < Co and supi<i<nn>1 Z?:1 |an ij| < ca for

some cq < o0. Let 9, = n=*U, AU, and 9,, = n= U} A,U,. Then

(a) E[0,] = 01), Var(9,) = O(n~") = 0(1), and 0, — B3] = O, (n™?);

(b) n=12U! AU, = n=2UL AU, — 07126, E[U Granen] + 0, (1), where 6pn = by — 02, Gin =
1o (An + AL) and Gia, = Gy (1, — 72W2n)_1

Proof of Theorem 4.1. The proof of the consistency of 7,, follows from the same argument as
that of Theorem 1 in Kelejian and Prucha (2010). One can readily check the conditions of Lemma
3.1 in Potscher and Prucha (1997) are fulfilled for our problem. We now establish the asymptotic
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normality of 7,,. Note that

n_lﬁrlzcln ('Vn) ﬁn
n=1U! Con (7,,) Un

In (Vp) = ¥y — Vi

b

Tn | _
V2

where Cipn (7,,) = (In — v, Wa,) Akn(In — v, Wan), k = 1,2. By Assumptions 2 and 6 and Fact 1,
the rows and column sums of Cj, (7,,) are uniformly bounded in absolute value. Minimizing Q,, in

(4.6) with respect to ~,, yields the first order condition

(3%_(%)

!
Tnn~ = v
5o ) 1,0, (7,) =0

Expanding only ¢, (7,,) about 7% in the above expression and reorganizing terms yields

n (Y, / 94n (Vn v 0 94 (n
(P52 ATk =) = - (P52 )) Yo/man (72), o

where 7,, lies between 7, and 72 and 7, — 7% = o0, (1) by the consistency of 7,. Noting that
94n(0m) — _, [1,27,] , we have
1 —
2Yn

vy
. The proof is complete if we can show

[Tk

li
U, U, n-

(Ps0)r 2|

li
1
Let 2, = [ 0 ] v Y,U,

297, n
\Tjn =V, + Op (1) 5 v, = @ (1) ) (CQ)
E;l =1l = op (1) with with probability approaching 1 as n — oo, (C.3)
and
Vg, (10) = ®Y2 ¢, + 0, (1) with €, 5 N (0, 1), (C.4)

because then with probability approaching to 1 as n — oo (w.p.a.l),
/

~ 1 ~
Vi (T, =) = Egllﬂ VT [ @426, + 0, (1)]

7Y
— ’:‘—l ]' \IJI T @1/2 1
- n 2797’ nfy'yg +OP( )
= (L dn) TR 2 o, (1) S N (0,9,). (C.5)

First, noting that the elements of \Tln and ¥,, are of the forms nilﬁflAnﬁn and n~'E[U. A, U,]
respectively, we apply Lemma C.1 to obtain (C.2). It then follows from the consistency of 7, and
%, and the Slutsky lemma that E, = 2, + op (1). By the assumptions on Y, and ¥,, Z, >
(1+4(7%)?) Amin (Y, 95,) Amin (Y1) = ¢ > 0 for some ¢, which implies that 0 < Z;* < oco. It follows
that w.p.a.1, =, is invertible. When this occurs, (C.3) holds.
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Next, note that g, (9) = n~'[ULCY, Uy, U,CS,U,]", where C2, = Cy,, (19) for k = 1,2. By
Lemma C.1 and the fact that U, = (I,, — 'y?LWQn)_l Ens

n_l/z(},’tC,gnﬁn = n_l/QU,'lC,gnUn — n_l/Q(San[s;la;men] +0,(1)

n~Y2e! Appen — nfl/Qéan[e'n@knsn} +0,(1),

where for k = 1,2, C, is as defined in (4.9):

Cin = 2(In—79LW2/n)—1 1,.Co (In_vngn)_l
= 2(L, —°W3,) " Gl (In =0 W3y,) Apa (C.6)

By the proof of Theorem 3.1 with A,, = (I, — 73 Way,) _1, we have 0, = p,,—p% =n"'(B'QB)"'B'QZ),
(In, — Shy) (In - 79LW2”)71 en+0p (n*1/2) . It follows that

! !
enAinen + i en

Vg, (vp) =n"1? +o, (1) (C.7)

/ /
el Aopen + as,en

where aj,,, k = 1,2, are defined in (4.8). Noticing that the diagonal elements of the matrices Ay,
(k = 1,2) are zero, we can apply Theorem A.1 to deduce that the asymptotic variance-covariance
matrix of the vector of linear quadratic forms in (C.7) is given by ®,, 1y = [@,, pilk,1=1,2, Where
Py ets kb, 1 = 1,2, are defined in (4.10).

Noting that the row and column sums of the matrices Ay, are uniformly bounded in absolute
value and the elements of ag, are uniformly bounded by a finite constant, we can readily see that
Ay, = Agy and ay, = agy, (K = 1,2) satisfy the first two conditions of Theorem A.1. By assumption,
Amin (Priyry) > .., > 0, verifying the third condition of Theorem A.1. Thus, by Theorem A.1, we

have

/ /
€ =1/ 1/ EnAinen + a1,6n
L=

n,yy

] L N(0,L). (C.8)

el Aonen + aben
By the properties of Ay, and ag,, it is straightforward to verify that the elements of &, ., are
uniformly bounded. It follows from (C.7) and (C.8) that \/ng, (73) = Qiﬁwfn +o,(1). m

Proof of Theorem 4.2. We verify the conditions of Theorem A.1 are met. We have verified
in the proof of Theorem 4.1 that the elements of Ay, and ay, (k =1,2) appearing in v,, satisfy the

first two conditions in Theorem A.1. Write
P'rlz = n_l/QZ;z (In - ShA) (In - 72W2n)71 = n_l/z[pml-a .- -pn,q-]/-

That is p’n’k‘ denote the kth row of P). Note that the elements of p,, 5. are uniformly bounded by
Assumption 5, Lemma A.2 and Facts 1-2, they satisfy the condition of Theorem A.1 on agy, = pn k-

—1/2

Pe
By assumption, Apin (®r) > co > 0. Thus, by Theorem A.1l, we have &, = ®, nEno | d

Un

N(0,I,2). m
Proof of Theorem 4.3. Let Y =Y, —m(X,), Y =Y, —m(X,), and T, (0,,) =
(@5 (6n) s T35, (90))', where Gy, (8,) = n~ " E[(Y,; — PaWinY0) (In = ¥, Wan)" Ak (In — 7, Wan) Yy
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—p, Wi, Yy)] for k = 1,2. Let Q,, (6,) = 7 (6,) T%T" (6,) . By Applying Lemma 3.1 in Potscher
and Prucha (1997) with Q7 and @:; replacing their R,, and R,,, we can prove the consistency of gn

To establish the asymptotic normality of gm we notice that minimizing Q¥ in (4.12) with respect to

—~ !
0y, yields the first order condition (&thgé")) Tiqrk (gn) = 0. By the Taylor expansion for ¢ (Sn)

we have

! !/

20, (5)\ ' og; ()
i qaa;

o~

\/ﬁ(gn,gg):f M

where 3, lies between 9,, and 69 and 8, — 6% = 0, (1) by the consistency of 0. First, noting that
17,;‘ = l?n + (ﬁn - pg) W1,.Y,,, we have

\/ﬁqzn (62) = nil/ijy/L (In - ’Y%WZn)/ Akn (In - ’Y%WQn) ﬁn
+’I’L_1/2 (ﬁn - p?L)Q YTQWIIn (In - 791W2n)/ Akn (In - ’Y%WQn) WlnYn

= Tiknd +2Tkn2 + Tkn,3, Say.

By Lemma C.1, 7,1 = n~/2U}, (I, — ’y%Wgn)/Akn (In — Y9 Wap) Uy, — 2n~125,, E{U.G",, (I,—
YOWan) Agn (In — ’y%Wzn) Uy }+op (1) . It is straightforward to show that 74,2 = n_l/Qﬁan{Ur’L n
(In — WgWgn)/ A (In — W‘QIW%) Un}+op (1) and 74y 3 = O, (n—1/2) . It follows that v/ngkn (62) =

/
enAinen

n=Y2e! Apnen + o0, (1) and v/ng}, (60) = n=1/?2 + o0, (1) 4N (0,lim,, o ®}) by Theo-

/
5nA2n5n
rem A.l.

Second, note that

gy, (&)

8/) = _2n71Yr;W1/n (In - /'?nW%)/ Akn (In - %Wzn) (f/: - ﬁnWlnYn) ’

—20 Y W, (I = 40 Wen) Atn (Tn = 45 Wan) Un + 0, (1)
= 207 B UG, (In = 45 Wan) Akn (I = 15 Wan) U + 0, (1),

and

gy, (gn)
Rz

~ / -
—2n~" (Y; - ﬁnWlnYn) WzlnAkn (Ln =4, Wan) (Y: - ﬁnWlnYn)

= =20 U Wi, An (I — 5, Wan) Uy, + 0, (1)
= =20 'E [U W3, Apn (In — Y9 W) Uy + 0, (1)

—~ ! —
Similar result holds for dqj, (6,,) /96, It follows that 8qg§i”)) T 8qg§i") = JNTr T4+ 0,(1),
where J is defined in (4.13). By assumption, Ampin (J Y5 J%) > Amin (T5) Amin (J/J%) > ¢ for some
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¢ > 0 and for sufficiently large n. Consequently,

-1

00 (3:)\ o G| (20 (3:)\
Vi -a) = - | S | i) () v 60)

= —(TIYRTE) T TG, (80) 4 0, (1) 5 N (0,95).

D Proof of results in Section 5

Proof of Theorem 5.1. By assumption, B, —B = o, (1) , and Q,, —Q = o, (1) . By the consistency
of ¥, (C.2), and the definitions of J,, and Ins /A - op (1) . Let Z, = j,’l'fnjn and 2, = J/ T, J,.
By the proof of Theorem 4.2 (see (C.3)), w.p.a.1, ;1 — -1 = 0, (1). To show the consistency of
the asymptotic variance-covariance estimator, it remains to show that <T>n —®, =0, (1).

Noting that @, ,, and ®,, ,, involve only one %, (e.g., D, ,, = n ' P,%, P,), they can regarded
as the special case of ®,, ~~. So we only prove (in,w —®,, v = 0p (1) since the proof of :I;mpp 0, pp =
op (1) and 5,1,;,7 —®,, py = 0p (1) will be similar and simpler. Note that we can write the (k,[) element

of ®,, 4, as

n

n
—1 _ _ a1 11
Py kel = (2n) Z Zakln,ijai,iai,j +n laknFrlzannaln =Gnt+ On (D.1)
i=1 j=1

where Otiin ij = (Qkn,ij + Gkn,ji) (Qin,ij + Qinji) »

Qin —E[e},Crnen] = —2E[U, (T, — p2W1,) " Wi, (In — A2 W3,) Agnenl,
F, = (BQB) 'BQZ, (I, — Shy) (I, — 1 Wa,) .

Similarly, the (k,1) element of E)nﬁw is

~ P o e == = ~1 ~11
Oy = (20) 7" Z ZakanjEi)isi’j + 07 e B 20 B @i = Gy g + G (D.2)
i=1j=1
where
arn = =20, (I, — p, W) " Wi, (In — 7, Wa,) AgnEn,
ﬁTIL = (B’:lQan)_lB:’LQnZ’;l (In - Sh"/) (In - anW%)il :

~1 ~ 11
By Lemma D.1 below, ¢,, ,; — ¢fl‘7kl = 0p (1) . By Lemma D.2 below and the Slutsky lemma, ¢,, 1,
— b = Ok (W EL 0 Fy) — ko (0 EL S, Fy) = 0, (1) . Hence @y, 0y — $ppy =0, (1). ®

2 _ (g2 2\ 2 (.2 2y ~2 _ 2 ~2
Lemma D.1 Let o;, = (0,1, ,0,) €, = (601, sen ), and €, = (E,1, -+ ,€,.,) - Let

)
_ / < _ e —1/=2 ~2
An =n"t(02) Apo2, A, = nt(e2)Anel, and A, = n™'(€,)' A€, where A, are n x n real

n n?
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symmetric and nonstochastic matrices. Suppose that the diagonal elements of A,, are zero and that
the row and column sums are uniformly bounded in absolute value by co. Then

(a) E[A,]) = A, =0 (1), Var(A,) = o(1), and hence A,, — A,, = 0, (1);

(b) Ay — R, =0, (1).

Lemma D.2 Letc, and d,, be nx 1 vectors whose elements are uniformly bounded in absolute value
by c. Let ﬁn, F, Qgn, and o, be as defined in the proof of Theorem 5.1. Recall 3, =diag(a?) and
S :diag(~2), where 02 and &2 are as defined in Lemma D.1. Then

(@) n e, Snd, = 0 (1), and n='c, (S, — B,)dy, = Op(n~/?) =0, (1);

(b) n_lF,’LZnFn =0(1), and n *F'S,F, —n  F/ %, F, = 0, (1);
(c) Qpp, — g, = 0y, (1) for k=1,2.

Proof of Theorem 5.2. The proof is analogous to and simpler than that of Theorem 5.1 and
thus omitted. m

Proof of Theorem 5.3. Let T, (z) = n '’ h, 7' - (x)diag(kss (2))An 3, AL diag(ksx (2)Z, 7 (z),
where ¥, =diag(e2) with €2 = (e2,,---,¢2,). By the triangle inequality, |T, () — T ()] <
|[An1 ()] + |Ane (z)|,, where énl () =T, (z) =T, (z), and Az (z) =Ty, (z) — Ty (z) .

First, Apy (2) = n M by 300 2 D00 1 200 2 Ty (0) Kgx 4, (%) Gnginia (65 5, =0 i) ansinin K55 4, (%)
XT3, 4, (€), where 75 . () is defined in (2.12). Let 77, ;, (#) denote the kth element of 77 ; (z) and
Ay i the (k, 1)th element in A, ( ) (s =1,2). Clearly, E [A,1 k1] = 0. Noting that Thik (x) K35 (x)

is uniformly bounded by C(I1%<, hs)~! for some constant C' by Assumption 4, we have

Var (Ap1,k1)
. n n n n n
= (MR Y DY Y YN i (@) Ky, (@) aniin B, — 0n )
. et et L
X inia K55 iy () T 000 (@) T (@) K34, (T) Cnjigin Oninis K5, (2) T 1‘57l (z)

n
< Cn _1(Hpc 1h )t Z KﬁX,il (@) |7 Thiv,k z) | Z |an, i s | Z |G igis | Z | @i | Z | inis |

1 i2=1 i3=1 14=1 i5=1

= O((nIlP=,hy)~") = o(1).

It follows from the Chebyshev inequality that Apq g = 0p(1) for k, i =1,--- ,p. + 1.

Next, write m (z)—m (z) = [s;5 (@ Y (m(X,) 4+ U, )—I—SEX ( Y Win Yo (00 =7,)] —=m () = dpy (2)+
dn2 () + dp3 (z) , where dp1 (2) = 5 ZZ 1 8ix (@i ) (25, )IT'r'L(x) (x5, —2°) 1 (2, = 2) +
ZZL 153X (xnmx) [m(mnl) —m (v )] ( Tn,i #T ) n2 (x) = S~~( ) Un,anddns( ) = 5pn§75 (x)/?n
By assumption and the proof of Theorem 3.2, d,,; ( ) = O(||h|]2 + ||X]]) = o(n=1/4) uniformly in z.
Let dpji = dpnj (Tn,:) and Dy = (dnj1,dnj2, - ,d ) for 7 =1,2,3. Then

3
Dna = S55Un, Dng = —0,nS;5Y n, and Dy =Y Dy, (D.3)

By (D.3) and the definition of €,, €, = (I, — 7, Wan) (Un —D,, — 6pn7n) = —(I, — ¥, Wan)Dpn1 +
(In =3 Wan)(In = S5:5)Un — 05, (I — ¥, Wan) (I, — S;J)?n. Hence, g, — &, = &n — (In — YO Way,)U,,
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= 7(In - ?nWQn)Dnl - (C3n + 677zc4n)5n - 6pn (In - ?nWQH)(In - Sh)\)? = "Mn = NM2n = M3n>
where 0., =7, — 1Y,

Cs, = ( 'YnWZn)S ( n — 72W2n)717 and Cy, = WQn(In - SEX)(IVL - ’Y%W2n)71- (D4)
It follows that

~2

n
AnQ,kl = 71]:[5{‘ 1 Z “k h>\ A ( )a7l7i1i2 (smiz - 5i,i2)an7i2i3KﬁX7ia (55) Th.isl (55)

— —177Pe
= n I hs

M3 H
Mz Hmi

—

1M3 M-

Thik @) K5, (@) Gngiyin Oninis K55, 5, (@) 75 5 (2)

I
-

g i3
2 2
XM is T M2nis T Mansis = 2MnsinCniiz = 2Man,isEnsia — 2M3n,isEnia
9
2010000 M2m 50 T 2M1ni0M3mis T 2N2n.inM3nsin ) = E Apoj, say,
j=1

o s
Il

where the definitions of anj are self-evident. Apsm = o0, (1) provided anj = op (1) for j =
,9. The proof of A,2; = o, (1) is analogous to but simpler than that of Ay,; = o, (1) for
j=1,---,9 in the proof of Lemma D.1(b). So we only sketch the cases of A,2; and A,2,. Not-

ing that sup;, |771n’i} = op(n_1/4), we have }an’ < C'sup; n%n’in_l ZZ:l |T5’il,k( ) 155 i (x)
Yot [Oniyis| 2 — |ninis] = 0,(n"1/2) = 0, (1). Now, by the triangle and Cauchy-Schwarz in-
equalities,
E|Zn22|
. n n n
< 20 MR by >N T g @) K, (@) [an i llan i K, (@) 175, (@) Z Cnsinia T

11=112=113=1 ig4=1

n n n
—&-255 711_[1576 1 Z Z Z T3 11k h)\ Ji1 ( ) ‘an,i1i2||an,i2i3|KﬁX7¢3 ($> |Tﬁ,i31 (.’E) |

n
X Z CiniiniaOrin = 2(Bn22.a + 02, Ana),
ig=1
where cgp5 (s = 3,4) are the (i,j) elements of Cy, defined in (D.4). Observe that A2, <
Ca? SUPi,j~|C3n,i2i4| n~! Zﬁzl |Tﬁ7i1k( ) |Kh,\ Ji1 (z) 2?221 |@n,iyis | 22:1 |G, inis] ZZ 1 |Can,izia] =
O((nnls);lhs)_l)a and similarly An22,b < Co? Sup; |C4n7i2i4‘n_1 ZZ:1 |Tﬁ,i1k ( ) |Kh>\ Ji1 (56)_22:1
|nivin| Doi—1 [@nisis| 25— 1 |Cansizis| = O(1). Tt follows from the Markov inequality that A,z =
Op((nﬂgglfzs)*l) +0,(n™1) = 0, (1) . Analogously, we can show that A2, = 0, (1) for j = 3,--- 9.

Hence Aps =0, (1) and

1T (2) = T (@) | < [[An1 (@) || + || A2 (@) [| = 05 (1) + 0, (1) = 0, (1) - (D.5)

The consistency of f, (z) and 3, (z) follows from Assumptions 3 and 4, which together with
(D.5), implies Q,, ar () — Qpar (x) = 0, (1) by the Slutsky lemma. m
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