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Abstract

In this paper we prove the strong consistency of several methods based on the spectral clus-
tering techniques that are widely used to study the community detection problem in stochastic
block models (SBMs). We show that under some weak conditions on the minimal degree, the
number of communities, and the eigenvalues of the probability block matrix, the K-means al-
gorithm applied to the eigenvectors of the graph Laplacian associated with its first few largest
eigenvalues can classify all individuals into the true community uniformly correctly almost
surely. Extensions to both regularized spectral clustering and degree-corrected SBMs are also
considered. We illustrate the performance of different methods on simulated networks.

Key words and phrases: Community detection, degree-corrected stochastic block model,
K-means, regularization, strong consistency.

1 Introduction

Community detection is one of the fundamental problems in network analysis, where communities
are groups of nodes that are, in some sense, more similar to each other than to the other nodes.
The stochastic block model (SBM) that was first proposed by Holland, Laskey and Leinhardt
(1983) is a common tool for model-based community detection that has been widely studied in
the statistics literature. Within the SBM framework, the most essential task is to recover the
community membership of the nodes from a single observation of the network. Various procedures
have been proposed to solve this problem in the last decade or so. These include method of
moments (Bickel, Chen and Levina, 2011), modularity maximization (Newman and Girvan, 2004),
semidefinite programming (Abbe, Bandeira and Hall, 2016; Cai and Li, 2015), spectral clustering
(Joseph and Yu, 2016; Lei and Rinaldo, 2015; Qin and Rohe, 2013; Rohe, Chatterjee and Yu, 2011;
Sarkar and Bickel, 2015; Vu, 2018; Yun and Proutiere, 2014, 2016), likelihood methods (Amini,
Chen, Bickel and Levina, 2013; Bickel and Chen, 2009; Choi, Wolfe and Airoldi, 2012; Zhao,
Levina and Zhu, 2012), and spectral embedding (Lyzinski, Sussman, Tang, Athreya and Priebe,
2014; Sussman, Tang, Fishkind and Priebe, 2012). Abbe (2018) provides an excellent survey on
recent developments on community detection and stochastic block models. Among the methods
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mentioned above, spectral clustering is arguably one of the most widely used methods due to its
computational tractability.

Bickel and Chen (2009) introduce the notion of strong consistency of community detection
as the number of nodes, n, grows.1 By strong consistency, they mean that one can identify the
members of the block model communities perfectly in large samples. Based on the parameters of
the block model, properties of the modularities, and expected degree of the graph (λn), Bickel and
Chen (2009) give the sufficient conditions for strong consistency, which is λn/ log(n) → ∞. Zhao
et al. (2012) define weak consistency of community detection, which essentially means that the
number of misclassified nodes is of smaller order than the number of nodes. Bickel and Chen (2012)
find that weak consistency requires that λn → ∞ for the SBM. Similarly, under the conditions
that λn/ log(n)→∞ (λn →∞), Zhao et al. (2012) establish the strong (weak) consistency under
both standard SBMs and degree-corrected SBMs.

If the community detection method is strongly consistent, then it means that the communities
are exactly recoverable. From an information-theory perspective, Abbe and Sandon (2015), Abbe
et al. (2016), Mossel, Neeman and Sly (2014), and Vu (2018) study the phase transition threshold
for exact recovery, which requires λn = Ω(log(n)). It is well known that some methods like the
modularity maximization of Newman and Girvan (2004) and the likelihood method of Bickel and
Chen (2009) yield strongly consistent community recovery, but they either rely on combinatorial
methods that are computationally demanding or are guaranteed to be successful only when the
starting values are well-chosen. Abbe et al. (2016) show that semidefinite programming can achieve
exact recovery when there are two equal-sized communities. Yun and Proutiere (2014), Yun and
Proutiere (2016), and Vu (2018) establish strong consistency for the variants of spectral method,
which involve graph splitting, trimming, and a final improvement step. The pure spectral clustering
method has been shown to enjoy weak consistency under standard or degree-corrected SBMs by
various researchers; see Joseph and Yu (2016), Lei and Rinaldo (2015), Qin and Rohe (2013), and
Rohe et al. (2011). Weak consistency here means that the fraction of misclassified nodes decreases
to zero as n grows. Because the decrease rates established in above papers are usually slower than
n, the above weak consistency results imply that the number of misclassified nodes still increases
to infinity as n grows. On the contrary, strong consistency implies that the number of misclassified
nodes is zero for sufficiently large n, which greatly improves upon weak consistency.

The aim of this paper is to formally establish the strong consistency of spectral clustering
for standard/regular SBMs without any extra refinement steps, under a set of conditions on the
minimal degree of nodes (µn), the number of communities (K), the minimal value of the nonzero
eigenvalue of the normalized block probability matrix, and some other parameters of the block
model. In the special case where K is fixed and the normalized block probability matrix has
minimal eigenvalue bounded away from zero in absolute value, we show that µn/ log(n) being
sufficiently large can ensure strong consistency. In other words, the spectral clustering method
achieves the optimal rate for exact recovery, as pointed out in Abbe et al. (2016) and Abbe and
Sandon (2015).

As demonstrated by Amini et al. (2013), the performance of spectral clustering can be consid-
erably improved via regularization. Joseph and Yu (2016) provide an attempt at quantifying this
improvement through theoretical analysis and find that the typical minimal degree assumption for
the consistency of spectral clustering can potentially be removed with suitable regularization. In
this paper, we also establish the strong consistency of regularized spectral clustering.

1Bickel and Chen (2009) use the terminology “asymptotic consistency” in place of strong consistency.
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The SBM is limited by its assumption that all nodes within a community are stochastically
equivalent and thus provides a poor fit to real-world networks with hubs or highly varying node de-
grees within communities. For this reason, Karrer and Newman (2011) propose a degree-corrected
SBM (DC-SBM) to allow variation in node degrees within a community while preserving the over-
all block community structure. The DC-SBM greatly enhances the flexibility of modeling degree
heterogeneity and enables us to fit network data with varying degree distributions. We also prove
the strong consistency of spectral clustering for regularized DC-SBMs.

Our paper is mostly related to Abbe, Fan, Wang and Zhong (2017). Abbe et al. (2017) derive
the L∞ bound for the entrywise eigenvector of random matrices with low expected rank. Then
they apply their general results to SBM with two communities, where both within- and cross-
community probabilities are of order log(n)/n and show that classifying nodes based on the sign
of the entries in the second eigenvector can achieve exact recovery. Our paper complements theirs
in the following three aspects. First, we consider the eigenvectors of normalized graph Laplacian
L rather than the adjacency matrix A. Therefore, the entrywise bound of the eigenvectors derived
in Abbe et al. (2017) cannot be directly used in our case. Our proof relies on the construction of a
contraction mapping for the entrywise bound, via which we can iteratively refine the bound. Such
strategy is different from that in Abbe et al. (2017).

Second, we consider SBM with a general block probability matrix whereas Abbe et al. (2017)
consider a 2×2 block probability matrix. Even though Abbe et al. (2017) establish general theories
of L∞ bound for the entrywise eigenvector of random matrices, when applying their theory to
SBMs, they only study the model with the following block probability matrix:(

a log(n)
n

b log(n)
n

b log(n)
n

a log(n)
n

)
. (1.1)

Their block probability matrix assumes that there are two groups, the connection probability within
groups are the same for the two groups, and the within- and cross-group connection probabilities
are of the same order of log(n)/n. In contrast, our paper studies the general SBM with generic K
groups, where K is allowed to diverge to infinity at a slow rate and the decay rates for different
elements in the block probability matrix can be different. When there are two communities, Abbe
et al. (2017) use the sign of the eigenvector associated with the second largest eigenvalue (in
absolute value) to identify the node’s membership. When K > 2, just checking the sign is not
sufficient to identify all K groups. Our paper shows that applying the K-means algorithm to the
first K eigenvectors can achieve strong consistency.

Third, we consider SBM with both regularization and degree correction. We show that, by
regularization, the strong consistency is still possible even when the minimal degree does not
diverge at all. For the DC-SBM with regularization, we also derive the conditions for strong
consistency. Neither regularization nor degree-corrected SBM is discussed in Abbe et al. (2017).

In the simulation, we consider both standard SBMs and DC-SBMs. For standard SBMs, we
adopt Joseph and Yu (2016)’s regularization method and choose the tuning parameter τ according
to their recommendation. The results show that in terms of classification, spectral clustering
tends to outperform the unconditional pseudo-likelihood (UPL) method, which also has the strong
consistency property ((Amini et al., 2013)). In contrast, for the DC-SBMs our simulations suggest
that the regularized spectral clustering tends to slightly underperform the conditional pseudo-
likelihood (CPL) method even though both are strongly consistent under some conditions. We
also show that an adaptive procedure helps the regularized spectral clustering to achieve much
better performance than the CPL method.
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The rest of the paper is organized as follows. We study the strong consistency of spectral
clustering for the basic SBMs in Section 2. We consider the extensions to regularized spectral
clustering and degree-corrected SBMs in Section 3. Section 4 reports the numerical performance
of various spectral-clustering-based methods for a range of simulated networks. Section 5 describes
the proof strategy of the key theorem in our paper. Section 6 concludes. The proofs of the main
results are relegated to the mathematical appendix.

Notation. Throughout the paper, we use [M ]ij and [M ]i· to denote the (i, j)-th entry and i-th
row of matrix M , respectively. Without confusion, we sometimes simplify [M ]ij as Mij . ‖M‖ and
‖M‖F denote the spectral norm and Frobenius norm of M, respectively. Note that ‖M‖ = ‖M‖F
when M is a vector. In addition, let ‖M‖2→∞ = supi ‖[M ]i·‖. We use 1 {·} to denote the indicator
function which takes value 1 when · holds and 0 otherwise. C1 and c1 denote specific absolute
constants that remain the same throughout the paper.

2 Strong consistency of spectral clustering

2.1 Basic setup

Let A ∈ {0, 1}n×n be the adjacency matrix. By convention, we do not allow self-connection,
i.e., Aii = 0. Let d̂i =

∑n
j=1Aij denote the degree of node i, D = diag(d̂1, . . . , d̂n), and L =

D−1/2AD−1/2 be the graph Laplacian. The graph is generated from a SBM with K communities.
We assume that K is known and potentially depends on the number of nodes n. We omit the
dependence of K on n for notation simplicity. If K is unknown, it can be determined by either
Lei’s 2016 sequential goodness-of-fit testing procedure, the likelihood-based model selection method
proposed by Wang and Bickel (2017), or the network cross-validation method proposed by Chen
and Lei (2017). The communities, which represent a partition of the n nodes, are assumed to be
fixed beforehand. Denote these by C1, . . . , CK . Let nk, for k = 1, . . . ,K, be the number of nodes
belonging to each of the clusters.

Given the communities, the edge between nodes i and j are chosen independently with proba-
bility depending on the communities i and j belong to. In particular, for nodes i and j belonging to
cluster Ck1 and Ck2 , respectively, the probability of edge between i and j is given by Pij = Bk1k2 ,
where the block probability matrix B = {Bk1k2}, k1, k2 = 1, . . . ,K, is a symmetric matrix with
each entry between [0, 1]. The n× n edge probability matrix P = {Pij} represents the population
counterpart of the adjacency matrix A. Frequently we suppress the dependence of matrices and
their elements on n.

Denote Z = {Zik} as the n × K binary matrix providing the cluster membership of each
node, i.e., Zik = 1 if node i is in Ck and Zik = 0 otherwise. Then we have P = ZBZT . Let
D = diag(d1, . . . , dn) where di =

∑n
j=1 Pij . The population version of the graph Laplacian is

L = D−1/2PD−1/2. The standard spectral clustering corresponds to classifying the eigenvectors of
L by K-means algorithm. In this paper, we focus on the strong consistency of both the standard
spectral clustering and its variant.

2.2 Identification of the group membership

Let πkn = nk/n, Wk = [B]k·Z
T ιn/n =

∑K
l=1Bklπln, DB = diag(W1, . . . ,WK), and B0 =

D−1/2
B BD−1/2

B , where ιn is a vector of ones in <n. We can view Wk as the weighted average
of the k-th row of B with weights given by πkn. Similarly, B0 is a normalized version of B. Note
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that B0 is symmetric as B is. Let Πn = diag(π1n, . . . , πKn). Throughout the paper, we allow for
the elements in the block probability matrix B to depend on n and decay to zero as n grows, which
leads to a sparse graph.

Assumption 1. B0 has rank K and the spectral decomposition of Π
1/2
n B0Π

1/2
n is SnΩnS

T
n , in

which Sn is a K × K matrix such that STn Sn = IK and Ωn = diag(ω1n, . . . , ωKn) such that
|ω1n| ≥ · · · ≥ |ωKn| > 0.

Assumption 1 implies that B = D1/2
B Π

−1/2
n SnΩnS

T
nΠ
−1/2
n D1/2

B and B0 = Π
−1/2
n SnΩnS

T
nΠ
−1/2
n .

The full-rank assumption is also made in Rohe et al. (2011), Lei and Rinaldo (2015), and Joseph
and Yu (2016) and can be relaxed at the cost of more complicated notation.2 In addition, we
allows for the possibility that K → ∞ and/or ωKn → 0 as n → ∞ below. This also mitigates
concern of the full-rank condition. Assumption 1 implies that L has rank K and the following
spectral decomposition:

L = UnΣnU
T
n = U1nΣ1nU

T
1n,

where Σn = diag(σ1n, . . . , σKn, 0, . . . , 0) is a n× n matrix that contains the eigenvalues of L such
that |σ1n| ≥ |σ2n| ≥ · · · ≥ |σKn| > 0, Σ1n = diag(σ1n, . . . , σKn), the columns of Un contain the
eigenvectors of L associated with the eigenvalues in Σn, Un = (U1n, U2n), and UTn Un = In. As
shown in Theorem 2.1 below, σkn = ωkn for k = 1, . . . ,K.

Assumption 2. There exist some constants C1 and c1 such that

∞ > C1 ≥ lim sup
n

sup
k
nkK/n ≥ lim inf

n
inf
k
nkK/n ≥ c1 > 0.

Assumption 2 implies that the network has balanced communities. It is commonly assumed
in the literature on strong consistency of community detection; see, e.g., Bickel and Chen (2009),
Zhao et al. (2012), Amini et al. (2013), and Abbe and Sandon (2015).

Theorem 2.1. Let zTi = [Z]i· , the i-th row of Z. If Assumptions 1 and 2 hold, then Ωn = Σ1n,
U1n = Z(ZTZ)−1/2Sn and

sup
1≤i≤n

(n/K)1/2‖zTi (ZTZ)−1/2Sn‖ ≤ c−1/2
1 .

In addition, for n sufficiently large, if zi 6= zj, then

(n/K)1/2‖(zTi − zTj )(ZTZ)−1/2Sn‖ ≥ C−1/2
1

√
2 > 0.

Noting that the ith row of U1n is given by zTi (ZTZ)−1/2Sn. Theorem 2.1 indicates that the rows
of U1n contain the same community information as Z for all nodes in the network. Therefore, we
can infer each node’s community membership based on the eigenvector matrix U1n if L is observed.

In practice, L is not observed. But we can estimate it by L. We show below that the eigenvectors
of L associated with its K largest eigenvalues in absolute value consistently estimate those of L up
to an orthogonal matrix so that the rows of the eigenvector matrix of L also contains the useful
community information.

2The first version of our paper only requires that B0 has distinct rows and rank K∗, which can be less than K.
Then, researchers need to apply K-means algorithm to the first K∗ eigenvectors. By modifying the corresponding
assumptions accordingly, the strong consistency result in this paper still holds. We stick to the full rank case mainly
for notation simplicity.
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2.3 Uniform bound for the estimated eigenvectors

To study the upper bound of the eigenvectors of L associated with its K largest eigenvalues, we
add the following assumption.

Assumption 3. Let µn = mini di and ρn = max(supk1k2 [B0]k1k2 , 1). Then, for n being sufficiently
large,

Kρn log1/2(n)

µ
1/2
n σ2

Kn

(
1 + ρn +

(
1

K
+

log(5)

log(n)

)1/2

ρ1/2
n

)
≤ 10−8C−1

1 c
1/2
1 .

Several remarks are in order. First, ρn is a measure of heterogeneity of the normalized block
probability matrix B0. If all the entries in B are of the same order of magnitude, then ρn is
bounded. In addition, by Assumption 2 and the fact that

(πk1nπk2n)1/2[B0]k1k2 =
(πk1nπk2n)1/2Bk1k2

(
∑K

l=1 πlnBk1l)
1/2(

∑K
l=1 πlnBk2l)

1/2
≤ 1,

we have lim supn ρn ≤ c−1
1 K. Therefore, if the number of blocks is fixed, then ρn is also bounded.

Second, if K is fixed and lim infn |σKn| is bounded away from zero, then Assumption 3 reduces
to the requirement that µn ≥ C log(n) for some constant C. Therefore, Assumption 3 allows for
µn = Ω(log(n)). Such condition is the minimal requirement for strong consistency (exact recovery),
as established in Abbe et al. (2016) and Abbe and Sandon (2015). Our results in Theorem 2.3
based on Assumption 3 imply that, in the baseline case, the spectral clustering method achieve
strong consistency under this minimal rate requirement.

Third, to provide a more detailed comparison between Assumption 3 and the phase transition
threshold, let us consider the special case that there are two equal sized communities and the block
probability matrix is

B =

(
a log(n)

n
b log(n)

n
b log(n)

n
a log(n)

n

)
,

where a > b. In this case, K = 2, Πn = diag(0.5, 0.5), DB = diag( (a+b) log(n)
2n , (a+b) log(n)

2n ), and

B0 = D−1/2
B BD−1/2

B =

( 2a
a+b

2b
a+b

2b
a+b

2a
a+b

)
.

Note that µn = (a+b) log(n)
2 , ρn = 2a

a+b ∈ (1, 2), and σ2n, the second eigenvalue of Π
1/2
n B0Π

1/2
n , is

a−b
a+b . Then, Assumption 3 boils down to(

2a

a+ b

)2
√

2

a+ b

(
a+ b

a− b

)2

≤ c

for some small constant 0.0001 > c > 0. Since 2a
a+b ≥ 1 and a+b

a−b > 1, the above condition implies
that

c ≥
(

2a

a+ b

)2
√

2

a+ b

(
a+ b

a− b

)2

≥
√

2(a+ b)

a− b
≥
√
a+
√
b

a− b
=

1
√
a−
√
b
,

or equivalently, √
a−
√
b ≥ c−1 >

√
2.
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Because
√

2 is the information-theoretic threshold for exact recovery established in Abbe et al.
(2016), Assumption 3 ensures that the SBM under our consideration is in the region that exact
recovery is solvable.

Fourth, the constants in Assumption 3, and thus, c in the above remark, are not optimal.
We choose these constants purely for their technical ease. We conjecture that more sophisticated
arguments such as those in Abbe and Sandon (2015), Abbe et al. (2016), and Abbe et al. (2017)
are needed to establish the optimal constant for the exact recovery of spectral clustering method.
On the other hand, although our method cannot show the exact recovery all the way down to
the information-theoretic threshold, it can be easily extended to handle degree-corrected and/or
regularized SBM, as shown in Section 3.

Consider the spectral decomposition

L = ÛnΣ̂nÛ
T
n ,

where Σ̂n = diag(σ̂1n, . . . , σ̂nn) with |σ̂1n| ≥ |σ̂2n| ≥ · · · ≥ |σ̂nn| ≥ 0, and Ûn is the corresponding
eigenvectors. Let Σ̂1n = diag(σ̂1n, . . . , σ̂Kn), Σ̂2n = diag(σ̂K+1,n, . . . , σ̂nn), and Ûn = (Û1n, Û2n),

where Û1n contains the eigenvectors associated with eigenvalues σ̂1n, . . . , σ̂Kn. Then, ÛT1nÛ1n = IK ,
ÛT2nÛ1n = 0, and

L = Û1nΣ̂1nÛ
T
1n + Û2nΣ̂2nÛ

T
2n.

The following lemma indicates that L and Û1n are close to their population counterparts, and up
to an orthogonal matrix in the latter case.

Lemma 2.1. If Assumptions 1–3 hold, then there exists a K×K orthogonal (random) matrix Ôn
such that

‖L − L‖ ≤ 7 log1/2(n)µ−1/2
n a.s.

and
‖Û1nÔn − U1n‖ ≤ 10 log1/2(n)µ−1/2

n |σ−1
Kn| a.s.

Two variants of Lemma 2.1 have been derived in Joseph and Yu (2016) and Qin and Rohe
(2013) as special cases. The main difference is that we obtain the almost sure bound for the
objects of interest instead of the probability bound in those papers. As illustrated in Abbe et al.
(2017),

Ôn = Ū V̄ T ,

where Ū Σ̄V̄ T is the singular value decomposition of ÛT1nU1n. Apparently, Ôn is random.
In order to study the strong consistency, we have to derive the uniform bound for ‖ûT1iÔn−uT1i‖,

where ûT1i and uT1i are the i-th rows of Û1n and U1n, respectively.

Theorem 2.2. If Assumptions 1–3 hold, then

sup
i

√
n/K‖ûT1iÔn − uT1i‖ ≤ C∗

ρn log1/2(n)

µ
1/2
n σ2

Kn

(
1 + ρn +

(
1

K
+

log(5)

log(n)

)1/2

ρ1/2
n

)
a.s.,

where C∗ is the same absolute constant as in Theorem 3.5.

We consider the four-parameter SBM studied in Rohe et al. (2011) to illustrate the upper
bound in Theorem 2.2.
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Example 2.1. The SBM is parametrized by K, s, r and p, where the K communities contain
s nodes each, and r and r + p denote the probability of a connection between two nodes in two
separate blocks and in the same block, respectively. For this model, ρn = (p+r)K

p+rK , σKn = p
Kr+p , and

µn = n(p+rK)
K − (p+ r). Therefore, the probability bound of supi

√
n/K‖û1i −OTnu1i‖ is of order(

K log(n)

n(p+ rK)

)1/2((p+ r)2K2

p2

)
. (2.1)

The above display is small if K5 log (n) /(np) is small and rK/p→ c ∈ (0,∞), or if K4 log (n) /(nr)
is small and r/p→ c ∈ (0,∞) . If we further restrict our attention to the dense SBM with both r and
p bounded away from zero, then the displayed item in (2.1) becomes small as long as K4 log (n) /n
is small.

Since both U1n and Û1n have orthonormal columns, they have a typical element of order
(n/K)−1/2. This explains why we need the normalization constant (n/K)1/2 in Theorem 2.2. An
important implication of Theorem 2.2 is that like U1n, the rows of Û1n also contain the community
membership information. Let β̂in = (n/K)1/2ûT1i. Let g0

i ∈ {1, . . . ,K} denote the true community
that node i belongs to. Theorems 2.1-2.2 and the fact that ÔnÔ

T
n = IK imply that there exist

βkn = (Kπkn)−1/2[SnÔ
T
n ]k·, k = 1, · · · ,K such that

(n/K)1/2uT1iÔ
T
n = βg0i n

, ||βkn|| ≤ c
−1/2
1 ,

and

sup
i
‖β̂in − βg0i n‖ ≤ C

∗ ρn log1/2(n)

µ
1/2
n σ2

Kn

(
1 + ρn +

(
1

K
+

log(5)

log(n)

)1/2

ρ1/2
n

)
a.s.

If the distance between β̂in and βg0i n
is much smaller than that among distinctive {βkn}Kk=1, then

K-means algorithm applying to {β̂in}ni=1 are expected to recover the true community memberships.
The statistical properties of K-means method are studied in the next two sections.

2.4 Strong consistency of the K-means algorithm

By abuse of notation, let β̂in ∈ <K be a generic estimator of βg0i n
∈ <K for i = 1, . . . , n. To recover

the community membership structure (i.e., to estimate g0
i ), it is natural to apply the K-means

clustering algorithm to {β̂in}. Specifically, let A = {α1, . . . , αK} be a set of K arbitrary K × 1
vectors: α1, . . . , αK . Define

Q̂n(A) =
1

n

n∑
i=1

min
1≤l≤K

‖β̂in − αl‖2

and Ân = {α̂1, . . . , α̂K}, where Ân = arg minA Q̂n(A). Then we compute the estimated cluster
identity as

ĝi = arg min
1≤l≤K

‖β̂in − α̂l‖,

where if there are multiple l’s that achieve the minimum, ĝi takes value of the smallest one. Next,
we consider the case in which the estimates {β̂in}ni=1 and the true vectors {βkn}Kk=1 satisfy the
following restrictions.
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Assumption 4. 1. There exists a constant M such that

lim sup
n

sup
1≤k≤K

‖βkn‖ ≤M <∞.

2. There exist some deterministic sequences c1n and c2n such that supi ‖β̂in− βg0i n‖ ≤ c2n ≤M
a.s. and inf1≤k<k′≤K ‖βkn − βk′n‖ ≥ c1n > 0.

3. (2c2nc
1/2
1 + 16K3/4M1/2c

1/2
2n )2 ≤ c1c

2
1n.

Assumption 4.1 requires that the centroids are uniformly bounded. Assumption 4.2 requires
that the centroids are well-separated and the vectors to be classified (i.e., {β̂in}) are sufficiently
close to one of the centroids. Assumption 4.3 requires that the distance between the estimated
vector and the corresponding centroid is smaller than that among any of the two distinctive
centroids. When the number of clusters K is fixed and the gap c1n between the centroids is
bounded away from zero, Assumption 4.3 holds as long as c2n is sufficiently small. Note here, we
do not necessarily need c2n = o(1), i.e., β̂in is not necessarily consistent.

Let H(·, ·) denote the Hausdorff distance between two sets and Bn = {β1n, . . . , βKn}. The
following lemma shows that the K-means algorithm can estimate the true centroids {βkn}Kk=1 up

to the rate Oa.s.(c
1/2
2n K

3/4).

Lemma 2.2. Suppose that Assumptions 2 and 4 hold. Then

H(Ân,Bn) ≤ (15M/c1)1/2c
1/2
2n K

3/4 a.s.

Theorem 2.3. Suppose that Assumptions 2 and 4 hold. Then for sufficiently large n, we have

sup
1≤i≤n

1{ĝi 6= g0
i } = 0 a.s.

Theorem 2.3 establishes that, under the given conditions, the K-means algorithm yields perfect
classification in large samples. Intuitively, as long as the estimated vectors {β̂in}ni=1 are uniformly
much closer to the true centroid βg0i n

rather than others, the K-means algorithm can divide each
individual into the right group. To achieve strong consistency for our SBM, we need the following
condition.

Assumption 5. For n sufficiently large,

C∗
K3/2ρn log1/2(n)

µ
1/2
n σ2

Kn

(
1 + ρn +

(
1

K
+

log(5)

log(n)

)1/2

ρ1/2
n

)
≤ 2c

3/2
1 C−1

1

257
,

where C∗ is the absolute constant in Theorem 2.2.

Corollary 2.1. Suppose that Assumptions 1–3 and 5 hold and the K-means algorithm is applied
to β̂in = (n/K)1/2û1i and βg0i n

= (n/K)1/2Ônu1i Then,

sup
1≤i≤n

1{ĝi 6= g0
i } = 0 a.s.

Corollary 2.1 shows that the spectral-clustering-based K-means algorithm consistently recovers
the community membership for all nodes almost surely in large samples.
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Example 2.1 (cont.). For the four-parameter model in Example 2.1, Assumption 3 is equivalent
to

(p+ r)4K8 log(n)

p4n(p+ rK)
(2.2)

being sufficiently small. If rK/p is bounded, then the above display further reduces to K8 log(n)/ (np),
which allows K = O((np/ log(n))1/8). As long as p decays to zero no faster than log(n)/n, As-
sumption 3 holds even when K grows slowly to infinity. On the other hand, if r/p → c ∈ (0,∞) ,
(2.2) reduces to K7 log(n)/ (nr). In addition, if both p and r are bounded away from zero, then
(2.2) requires that K7 log(n)/n is sufficiently small. In contrast, Rohe et al. (2011) find that when
K = O

(
n1/4/ log (n)

)
and p is bounded away from 0, the number of misclassified nodes from the

K-means algorithm in the four-parameter SBM is of order o
(
K3 log2 (n)

)
= o

(
n3/4

)
.

2.5 Strong consistency of the modified K-means algorithm

It is possible to improve the rate requirement for the number of communities in Assumption 5 by
considering a modified K-means algorithm:

Q̃n(A) =
1

n

n∑
i=1

min
1≤l≤K

‖β̂in − αl‖

and Ãn = arg minA Q̃n(A), where ||·|| still denote the Euclidean distance. Denote Ã as {α̃1, · · · , α̃K}.
Then, we compute the estimated cluster identity as

g̃i = arg min
1≤l≤K

‖β̂in − α̃l‖,

where if there are multiple l’s that achieve the minimum, g̃i takes value of the smallest one.

Assumption 6. 1. There exist some deterministic sequences c1n and c2n such that supi ‖β̂in−
βg0i n
‖ ≤ c2n a.s. and inf1≤k<k′≤K ‖βkn − βk′n‖ ≥ c1n > 0.

2. 15Kc2n ≤ c1c1n.

The following two results parallel Lemma 2.2 and Theorem 2.3.

Lemma 2.3. Suppose that Assumptions 2 and 6 hold. Then

H(Ãn,Bn) ≤ 3Kc−1
1 c2n a.s.

Theorem 2.4. Suppose that Assumptions 2 and 6 hold. Then for sufficiently large n, we have

sup
1≤i≤n

1{g̃i 6= g0
i } = 0 a.s.

In order to apply the modified K-means algorithm in spectral clustering, we only need to verify
conditions in Assumption 6.

Assumption 7. Suppose there exists some constant c∗ such that, for n sufficiently large,

15C∗
Kρn log1/2(n)

µ
1/2
n σ2

Kn

(
1 + ρn +

(
1

K
+

log(5)

log(n)

)1/2

ρ1/2
n

)
≤ c1C

−1/2
1

√
2,

where C∗ is the absolute constant in Theorem 2.2.
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Corollary 2.2. Suppose that Assumptions 1–3 and 7 hold and the K-means algorithm is applied
to β̂in = (n/K)1/2û1i and βg0i n

= (n/K)1/2Ônu1i Then,

sup
1≤i≤n

1{g̃i 6= g0
i } = 0 a.s.

Corollary 2.2 implies that the community memberships estimated by the modified K-means can
recover the truth. Assumption 7 implies a weaker requirement in the rate of K than Assumption
5, as the exponent for K is reduced from 1.5 in Assumption 5 to 1 in Assumption 7. To derive the
optimal rate for K may be much more difficult. We leave it as one topic for future research. We
investigate the performance of the K-means algorithm in Section 4.

Like spectral clustering, semidefinite programming (SDP) has also become very popular in the
community detection literature. Numerically, SDP relaxation enjoys the computational feasibility
that spectral clustering has, and various efficient algorithms have been proposed to solve different
types of SDP. Theoretically, under the ordinary SBM, SDP methods have been shown to be capable
in detecting communities; see, Abbe et al. (2016), Ames (2014), Bandeira, Boumal and Voroninski
(2016), Chen, Sanghavi and Xu (2012), Chen, Jalali, Sanghavi and Xu (2014), Cai and Li (2015),
Hajek, Wu and Xu (2016a), and Hajek, Wu and Xu (2016b), among others, and Li, Chen and Xu
(2018) for an excellent survey. In particular, Abbe et al. (2016) propose an efficient SDP algorithm
to solve a standard SBM with two communities, and show that it succeeds in recovering the true
communities with high probability when certain threshold conditions are satisfied; Cai and Li
(2015) propose a new SDP-based convex optimization method for a generalized SBM and show
that a SDP relaxation followed by a K-means clustering can accurately detect the communities with
small misclassification rate and the method is both computationally fast and robust to different
kinds of outliers. In contrast, Cai and Li (2015) and Joseph and Yu (2016) show that the standard
spectral clustering applied to the graph Laplacian may not work due to the existence of small and
weak clusters. The possible presence of weak clusters in SBMs motivates the use of regularization
to be studied in the following section.

3 Extensions

In this section we consider two extensions of the above results: regularized spectral clustering of
the standard and degree-corrected SBMs.

3.1 Regularized spectral clustering analysis for standard SBMs

The SBM is the same as considered in the previous section. Following Amini et al. (2013) and
Joseph and Yu (2016), we regularize the adjacency matrix A to be Aτ = A + τn−1ιnι

T
n , where

τ ≤ n is the regularization parameter and ιn is the n × 1 vector of ones. Given the regularized
adjacency matrix, we can compute the regularized degree for each node as d̂τi = d̂i + τ and
Dτ = diag(d̂1 + τ, . . . , d̂n + τ). The regularized version of P and D are denoted as Pτ and Dτ and
defined as

Pτ = P + τn−1ιnι
T
n and Dτ = diag(d1 + τ, . . . , dn + τ),

respectively. Consequently, the regularized graph Laplacian and its population counterpart are
denoted as Lτ and Lτ and written as

Lτ = D−1/2
τ AτD

−1/2
τ and Lτ = D−1/2

τ PτD−1/2
τ ,

11



respectively. Noting that ιn = ZιK , we have

Pτ = P + τn−1ιnι
T
n = ZBZT + τn−1ZιKι

T
KZ

T = ZBτZT ,

where Bτ = B+τn−1ιKι
T
K . Apparently, the block model structure is preserved after regularization.

Given Bτ , we can define Bτ
0 , the normalized version of Bτ as in the previous section. Let W τ

k =

[Bτ ]k·Z
T ιn/n =

∑K
l=1[Bτ ]klπln, DτB = diag(W τ

1 , . . . ,W
τ
K), and Bτ

0 = (DτB)−1/2Bτ (DτB)−1/2.
In order to follow the identification analysis in the previous section, we need to modify As-

sumption 1 as follows.

Assumption 8. Suppose Bτ
0 has rank K and the spectral decomposition of Π

1/2
n Bτ

0 Π
1/2
n is SτnΩτ

n(Sτn)T ,
in which Sτn is a K ×K matrix such that (Sτn)TSτn = IK and Ωτ

n = diag(ωτ1n, . . . , ω
τ
Kn) such that

|ωτ1n| ≥ · · · ≥ |ωτKn| > 0.

We consider the eigenvalue decomposition of Lτ as

Lτ = U τnΣτ
n(U τn)T = U τ1nΣτ

1n(U τ1n)T

where Στ
n = diag(στ1n, . . . , σ

τ
Kn, 0, . . . , 0) is an n×n matrix that contains the eigenvalues of Lτ such

that |στ1n| ≥ |στ2n| ≥ · · · ≥ |στKn| > 0, Στ
1n = diag(στ1n, . . . , σ

τ
Kn), the columns of U τn contain the

eigenvectors of Lτ associated with the eigenvalues in Στ
n, U τn = (U τ1n, U

τ
2n), and (U τn)TU τn = In.

The following theorem parallels Theorem 2.1 in Section 2.2.

Theorem 3.1. If Assumptions 2 and 8 hold, then Ωτ
n = Στ

n, U τ1n = Z(ZTZ)−1/2Sτn and

sup
1≤i≤n

(n/K)1/2‖zTi (ZTZ)−1/2Sτn‖ ≤ c
−1/2
1 .

In addition, there exists a constant c independent of n such that if zi 6= zj,

(n/K)1/2‖(zTi − zTj )(ZTZ)−1/2Sτn‖ ≥ C
−1/2
1

√
2 > 0.

Since Lτ = n−1ZBτ
0Z, the proof of Theorem 3.1 is exactly the same as that of Theorem

2.1 with obvious modifications. Theorem 3.1 indicates that we can infer each node’s community
membership based on the eigenvector matrix U τ1n if Lτ is observed.

As before, we consider the spectral decomposition of Lτ :

Lτ = Û τn Σ̂τ
n(Û τn)T = Û τ1nΣ̂τ

1n(Û τ1n)T + Û τ2nΣ̂τ
2n(Û τ2n)T .

where Σ̂τ
n = diag(σ̂τ1n, . . . , σ̂

τ
nn) = diag(Σ̂τ

1n, Σ̂
τ
2n) with |σ̂τ1n| ≥ |σ̂τ2n| ≥ · · · ≥ |σ̂τnn| ≥ 0, Σ̂τ

1n =
diag(σ̂τ1n, . . . , σ̂

τ
Kn), and Σ̂τ

2n = diag(σ̂τK+1,n, . . . , σ̂
τ
nn); Û τn = (Û τ1n, Û

τ
2n) is the corresponding eigen-

vectors such that (Û τ1n)T Û1n = IK and ÛT2nÛ1n = 0. Note that Û τ1n contains the eigenvectors
associated with eigenvalues σ̂τ1n, . . . , σ̂

τ
Kn. To study the asymptotic properties of Û τ1n, we modify

Assumption 3 as follows.

Assumption 9. Denote µτn = mini di + τ and ρτn = max(supk1k2 [Bτ
0 ]k1k2 , 1). Then, for n suffi-

ciently large,

Kρτn log1/2(n)

(µτn)1/2(στKn)2

(
1 + ρτn +

(
1

K
+

log(5)

log(n)

)1/2

(ρτn)1/2

)
≤ 10−8C−1

1 c
1/2
1 .
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The above modification is natural because node i’s degree becomes dτi ≡ di + τ after regular-
ization. µτn can be interpreted as the effective minimum expected degree after regularization.

Let (uτ1i)
T and (ûτ1i)

T be the i-th row of U τ1n and Û τ1n, respectively.

Theorem 3.2. Suppose that Assumptions 2, 8, and 9 hold. Then there exists a K×K orthonormal
matrix Ôτn such that

sup
1≤i≤n

√
n/K‖(ûτ1i)T Ôτn−(uτ1i)

T ‖ ≤ C∗ ρτn log1/2(n)

(µτn)1/2(στKn)2

(
1 + ρτn +

(
1

K
+

log(5)

log(n)

)1/2

(ρτn)1/2

)
a.s.,

where C∗ is the same absolute constant defined in Theorem 2.2.

The following assumption parallels Assumptions 5 and 7. The following theorem parallels
Theorem 2.2.

Assumption 10. 1. For n sufficiently large,

C∗
K3/2ρτn log1/2(n)

(µτn)1/2(στKn)2

(
1 + ρτn +

(
1

K
+

log(5)

log(n)

)1/2

(ρτn)1/2

)
≤ 2c

3/2
1 C−1

1

257
,

where C∗ is the absolute constant in Theorem 3.2.

2. For n sufficiently large,

15C∗
Kρτn log1/2(n)

(µτn)1/2(στKn)2

(
1 + ρτn +

(
1

K
+

log(5)

log(n)

)1/2

(ρτn)1/2

)
≤ c1C

−1/2
1

√
2,

where C∗ is the absolute constant in Theorem 3.2.

The following theorem parallels Corollaries 2.1 and 2.2 in Section 2.3.

Theorem 3.3. Suppose that Assumptions 2, 8, and 9 hold. If Assumption 10.1 holds and the K-
means algorithm defined in Section 2.4 is applied to β̂in =

√
n/K(ûτ1i)

T and βg0i n
= (n/K)1/2Ôτnu

τ
1i.

Denote the estimated community identities as {ĝi}ni=1. Then for sufficiently large n, we have

sup
1≤i≤n

1{ĝi 6= g0
i } = 0 a.s.

If Assumption 10.2 holds and the modified K-means algorithm defined in Section 2.5 is applied
to β̂in =

√
n/K(ûτ1i)

T and βg0i n
= (n/K)1/2Ôτnu

τ
1i. Denote the estimated community identities as

{g̃i}ni=1. Then, for sufficiently large n, we have

sup
1≤i≤n

1{g̃i 6= g0
i } = 0 a.s.

As in the standard SBM case, Ôτn = Ū τ (V̄ τ )T , where Ū τ Σ̄τ (V̄ τ )T is the singular value decompo-
sition of (Û τ1n)TU τ1n.Theorem 3.3 indicates that the regularized spectral clustering, in conjunction
with the standard or modified K-means algorithm, consistently recovers the community member-
ship for all nodes almost surely in large samples.

To see the effect of regularization, let K be fixed and |στKn| be bounded away from zero. Then,
Assumption 9 boils down to log(n)/µτn ≤ c for some sufficiently small c. Even if mini di grows
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slower than log(n) or does not grow to infinity at all, we can still choose τ with τ/ log(n) = Ω(1)
such that Assumption 9 holds. This implies that we can obtain strong consistency for some SBMs
in which some nodes have very limited number of links.

In addition, regularization introduces a trade-off between |στKn| and µτn. As τ increases, µτn
increases and the rows of Bτ

0 become more similar, which means that |στKn| decreases. Rohe et al.
(2011) and Joseph and Yu (2016) explore such intuition to choose the regularizer. Following their
leads, we choose over a grid of τ and find the one that minimizes

Q(τ) ≡ ||Lτ − L̂τ ||/|σ̂τKn|,

where L̂τ is an estimator of Lτ . We refer to our Section 4 for more details.
The following is a non-trivial SBM which does not satisfy Assumption 3 but satisfies Assump-

tion 9.

Example 3.1. Consider a SBM with two groups such that n1 = n2 = n/2 and

B =

(
0.4 2/n
2/n 4/n

)
.

In this case, di = 0.4(n2−1)+ 2
n ·

n
2 = 0.2n+0.6 for node i in cluster 1 and di = 2

n ·
n
2 + 4

n(n2−1) = 3− 4
n

for node i in cluster 2. Therefore, Assumption 3 does not hold. However, for some τ such that
τ = Ω(log(n)), we have

Bτ =

(
0.4 + τ/n (2 + τ)/n
(2 + τ)/n (4 + τ)/n

)
and dτi = 0.2n+ 0.6 + τ(1− n−1) for node i in cluster 1 and dτi = 3− 4n−1 + τ(1− n−1) for node
i in cluster 2. In addition, it is easy to see that

Bτ
0 =

(
0.4+τn−1

0.2+(1+τ)n−1
2+τ

[0.2n+(1+τ)]1/2(3+τ)1/2
2+τ

[0.2n+(1+τ)]1/2(3+τ)1/2
4+τ
3+τ

)
→

 0.4+c0
0.2+c0

√
c0

0.2+c0√
c0

0.2+c0
1

 ,

when c0 = limn→∞ τ/n ∈ [0, 1). Apparently, Bτ
0 has full rank and Assumption 9 holds. Therefore,

the strong consistency of the regularized spectral clustering still holds.

Let στ2,n denote the second eigenvalue of Π
1/2
n Bτ

0 Π
1/2
n . Then as n→∞,

στ2,n →
0.3 + c0 −

√
c2

0 + 0.2c0 + 0.01

2(c0 + 0.2)
=

0.2

0.3 + c0 +
√
c2

0 + 0.2c0 + 0.01
,

where c0 ∈ [0, 1). The minimal degree µτn � τ . Then, Q(τ) = O( 1
στ2,n(µτn)1/2

) where

1

στ2,n(µτn)1/2
� 0.3 + c0 +

√
c2

0 + 0.2c0 + 0.01

0.2τ1/2
.

In order to achieve maximal convergence rate, we need c0 6= 0. For simplicity, we just assume

τ = c0n. Then, the constant
0.3+c0+

√
c20+0.2c0+0.01

c
1/2
0

achieves minimum on (0, 1) at c0 = 0.2.

The previous example illustrates that the regularization works for the case when one cluster
has strong links and the other one has weak links. However, if both clusters have weak links, it is
hard to separate them.
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Example 3.2. Consider the above example with B replaced by

B =

(
4/n 2/n
2/n 4/n

)
,

and τ/ log(n) = Ω(1). Then we can verify that

Bτ
0 =

(
(4 + τ)/(3 + τ) (2 + τ)/(3 + τ)
(2 + τ)/(3 + τ) (4 + τ)/(3 + τ)

)
such that Bτ

0 has two eigenvalues given by 2 and 2/ (3 + τ). But Assumption 9 cannot be satisfied
in this case because µτn|στKn|4/ log(n) is converging to zero at rate 1/(τ3 log(n)). Consequently, we

cannot show that supi
√
n‖(Ôτn)T ûτ1i − uτ1i‖ is sufficiently small or prove strong consistency in this

case.

The above example shows that the regularization may not work for the case in which we have
multiple clusters with weak links.

3.2 Regularized spectral clustering analysis for degree-corrected SBMs

In this subsection, we extend our early analyses to the spectral clustering for a degree-corrected
stochastic block model (DC-SBM).

3.2.1 Degree-corrected SBMs

Since Karrer and Newman (2011), degree-corrected SBMs have become widely used in communica-
tion detection. The major advantage of a DC-SBM lies in the fact that it allows variation in node
degrees within a community while preserving the overall block community structure. Given the K
communities, the edge between nodes i and j are chosen independently with probability depending
on the communities that nodes i and j belong to. In particular, for nodes i and j belonging to
clusters Ck1 and Ck2 , respectively, the probability of edge between i and j is given by

Pij = θiθjBk1k2 ,

where the block probability matrix B = {Bk1k2}, k1, k2 = 1, . . . ,K, is a symmetric matrix with
each entry between [0, 1]. The n× n edge probability matrix P = {Pij} represents the population
counterpart of the adjacency matrix A. We continue to use Z = {Zik} to denote the cluster
membership matrix for all n nodes. Let Θ = diag(θ1, . . . , θn). Then we have

P = ΘZBZTΘT .

Note Θ and B are only identifiable up to scale. We adopt the following normalization rule:∑
i∈Ck

θi = nk, k = 1, . . . ,K. (3.1)

Alternatively, one can follow the literature (e.g., (Qin and Rohe, 2013; Zhao et al., 2012)) and
apply the following normalization

∑
i∈Ck θi = 1, k = 1, . . . ,K. We use the normalization in (3.1)

because it nests the standard SBM as a special case when θi = 1 for i = 1, . . . , n.
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We first observe that, if we regularize both the adjacency matrix A and the degree matrix D,
we are unable to preserve the DC-SBM structure unless Θ is homogeneous. To see this, note that
when A is regularized to Aτ = A+ τn−1ιnι

T
n , its population counterpart is

Pτ = P + τn−1ιnι
T
n = ΘZBZTΘ + τn−1Zιkι

T
kZ.

Since Θ does not have the block structure, we are unable to find a K×K matrix Bτ and an n×n
diagonal matrix Θτ such that Pτ = ΘτZBτZTΘτ . For this reason, we follow the lead of Qin and
Rohe (2013) and only regularize the degree matrix D as Dτ = D + τIn. To differentiate from the
regularized graph Laplacian Lτ considered in Joseph and Yu (2016), we denote the new regularized
graph Laplacian as

L′τ = D−1/2
τ AD−1/2

τ ,

and its population counterpart as
L′τ = D−1/2

τ PD−1/2
τ ,

where P = ΘZBZTΘ, Dτ = D + τIn, and D = diag(d1, . . . , dn) with di =
∑n

j=1 Pij .

3.2.2 Identification of the group membership

Let πkn, Wk, DB and B0 be as defined in Section 2.2. To facilitate the asymptotic study, we assume
the following:

Assumption 11. 1. There exists a sequence ρn such that ρn ≥ 1 and B0 ≤ ρn element-wise.

2. B0 has full rank K.

As before, we consider the spectral decomposition of L′τ :

L′τ = U1nΣnU
T
1n,

where Σn = diag(σ1n, . . . , σKn) is a K ×K matrix that contains the eigenvalues of L′τ such that
|σ1n| ≥ |σ2n| ≥ · · · ≥ |σKn| > 0 and UT1nU1n = IK . Note that we suppress the dependence
of U1n and Σn on τ. Let Θτ = diag(θτ1 , . . . , θ

τ
n) where θτi = θidi/(di + τ) for i = 1, . . . , n. Let

nτk =
∑

i∈Ck θ
τ
i .

Theorem 3.4. Suppose Assumptions 11 holds and let g0
i and uTi be the node i’s true community

identity and the i-th row of U1n, respectively. Then, (1) there exists a K × K matrix Sτn such

that U1n = Θ
1/2
τ Z(ZTΘτZ)−1/2Sτn, (2) (nτ

g0i
)1/2(θτi )−1/2‖uTi ‖ = 1, and (3) if zi = zj, then ‖ ui

‖ui‖ −
uj
‖uj‖‖ = 0; if zi 6= zj , then ‖ uTi

‖uTi ‖
− uTj
‖uTj ‖
‖ =
√

2.

Theorem 3.4 follows Qin and Rohe (2013, Lemma 3.3). In particular, Theorem 3.4(3) provides
useful facts about the rows of U1n. First, if two nodes i and j belong to the same cluster, then the
corresponding rows of U1n point to the same direction so that ui/‖ui‖ = uj/‖uj‖. Second, if two
nodes i and j belong to the different clusters, then the corresponding rows of U1n are orthogonal
to each other. As a result, we can detect the community membership based on a feasible version
of {ui/‖ui‖}.
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3.2.3 Uniform consistency of the estimated eigenvectors and strong consistency of
the spectral clustering

To proceed, we add the following assumptions.

Assumption 12. There exist two constants C1 and c1 such that

∞ > C1 ≥ lim sup
n

sup
1≤i≤n

nτg0i
dτiK/(ndi) ≥ lim inf

n
inf

1≤i≤n
nτg0i

dτiK/(ndi) ≥ c1 > 0.

Assumption 12 holds for the simplest case in which the degrees are homogeneous within the
same cluster. Note that in this case, nτ

g0i
= ng0i

di/d
τ
i , which may be of smaller order of magnitude

of n/K if di/τ → 0. However, Assumption 12 still holds because the factor di/d
τ
i is removed. In

general, Assumption 12 holds if di is of the same order of magnitude for all i in the same cluster.

Assumption 13. Denote µn = mini di, µ
τ
n = µn + τ , θ = maxi θi, and θ = mini θi. Then, for n

sufficiently large,

1. θ̄1/2 log1/2(n)

θ1/2(µτn)1/2ρn
≤ 10−4,

2.

(
K
ρn log1/2(n)

(µτn)1/2 σ2
Kn

)(( 1
K + log(5)

log(n)

)1/2
ρ

1/2
n θ

1/4

θ1/4
+ ρn + 1

)
≤ 10−8C−1

1 c
1/2
1 , and

3. there exists a positive constant c such that θ ≥ n−c.

Assumption 13 specifies conditions on di, θi, and σKn. The same remarks after Assumption 3
apply. Admittedly, the constants in Assumption 13 are not optimal. We choose them purely for
technical ease. If 0 < θ ≤ θ < ∞, then Assumption 13.1 is nested by Assumption 13.2, which is
similar to Assumption 3. If in addition, K is fixed and lim infn |σKn| > 0, then Assumption 13.2
further boils down to log(n)/µτn ≤ c for some sufficiently small c. This indicates that even if the
minimal degree µn is bounded, Assumption 13.2 still holds if τ = Ω(log(n)).

Consider the spectral decomposition of L′τ , the sample counterpart of L′τ , as

L′τ = ÛnΣ̂nÛ
T
n = Û1nΣ̂1nÛ

T
1n + Û2nΣ̂2nÛ

T
2n,

where Σ̂n = diag(σ̂1n, . . . , σ̂nn) = diag(Σ̂1n, Σ̂2n) with |σ̂1n| ≥ |σ̂2n| ≥ · · · ≥ |σ̂nn| ≥ 0, Σ̂1n =
diag(σ̂1n, . . . , σ̂Kn), Σ̂2n = diag(σ̂K+1,n, . . . , σ̂nn), and Ûn = (Û1n, Û2n) is the corresponding eigen-

vectors such that ÛT1nÛ1n = IK and ÛT2nÛ1n = 0.
The following lemma parallels Lemma 2.1.

Lemma 3.1. If Assumptions 11–13 hold, then

‖L′τ − L′τ‖ ≤ 7(log(n)/µτn)1/2 a.s.

and
‖Û1nÔn − U1n‖ ≤ 10(log(n)/µτn)1/2|σKn|−1 a.s.,

where Ôn = Ū V̄ T is a K × K orthogonal matrix and Ū Σ̄V̄ T for some diagonal matrix Σ̄ is the
singular value decomposition of ÛT1nU1n.
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In order to obtain the strong consistency, we need to derive the uniform bound for ‖ûTi Ôn−uTi ‖,
where ûTi and uTi are the i-th rows of Û1n and U1n, respectively.

Theorem 3.5. If Assumptions 11–13 hold, then

sup
i

(nτg0i
)1/2(θτi )−1/2‖ûTi Ôn − uTi ‖ ≤ C∗ηn a.s.,

where C∗ is an absolute constant specified in the proof and

ηn =

(
ρn log1/2(n)

(µτn)1/2 σ2
Kn

)(( 1
K + log(5)

log(n)

)1/2
ρ

1/2
n θ

1/4

θ1/4
+ ρn + 1

)
.

Theorem 3.5 is essential to establish the strong consistency result. The following Assumption
specifies the rate requirement for strong consistency depending on whether the standard or modified
K-means algorithm is used.

Assumption 14. Let C∗ denote the absolute constant in Theorem 3.5. For n sufficiently large we
have

1. C∗K3/2ηn ≤ c1
257 ,

2. 30C∗Kηn ≤ c1

√
2.

Corollary 3.1. If Assumptions 11–13 hold, then

sup
i

∥∥∥∥ ûi
‖ûi‖

− Ônui

‖Ônui‖

∥∥∥∥ ≤ 2C∗ηn a.s. (3.2)

If Assumption 14.1 holds and the K-means algorithm is applied to β̂in = û1i/‖û1i‖ and βg0i n
=

Ônu1i/‖u1i‖. Denote the obtained community memberships as {ĝi}ni=1. Then,

sup
1≤i≤n

1{ĝi 6= g0
i } = 0 a.s.

If Assumption 14.2 holds and the modified K-means algorithm is applied to β̂in = û1i/‖û1i‖ and
βg0i n

= Ônu1i/‖u1i‖. Denote the obtained community memberships as {g̃i}ni=1. Then,

sup
1≤i≤n

1{g̃i 6= g0
i } = 0 a.s.

Corollary 3.1 justifies the use of standard and modified K-means algorithms on ûin/‖ûin‖
provided the bound on the right hand side of (3.2) is O

(
1/K3/2

)
and O(K), respectively, which

is ensured by Assumptions 14.1 and 14.2, respectively.
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3.2.4 An adaptive procedure

Given the strong consistency of the spectral clustering, it is possible to consistently estimate Θ by
some estimator, namely Θ̂. Built upon Θ̂, we propose an adaptive procedure by spectral clustering
a new regularized graph Laplacian denoted as L′′τ , which is defined as

L′′τ = (D′′τ )−1/2A′′τ (D′′τ )−1/2,

where A′′τ = A+ τn−1Θ̂ιnι
T
n Θ̂ and D′′τ = diag(A′′τ ιn). The population counterpart of L′′τ is denoted

as L′′τ and defined as
L′′τ = (D′′τ )−1/2P ′′τ (D′′τ )−1/2,

where P ′′τ = P +τn−1Θιnι
T
nΘ = ΘZB′′τZ

TΘ, B′′τ = B+τn−1ιkι
T
k , and D′′τ = diag(P ′′τ ιn) = D+τΘ.

Provided Θ̂ is consistent, we conjecture that one can show the adaptive procedure is strongly
consistent by applying the same proof strategy as used in the derivation of strong consistency of
the spectral clustering based on Lτ and L′τ . We leave this important extension for future research.
In the following, we focus on establishing the consistency of Θ̂.

Given the estimated group membership {ĝi}ni=1, we follow Wilson, Stevens and Woodall (2016)
and estimate Θ by Θ̂ = diag(θ̂1, · · · , θ̂n), where

θ̂i = n̂ĝi(
∑n

j=1
Aij)/(

∑
i′:ĝi′=ĝi

∑n

j=1
Ai′j) (3.3)

and n̂k = #{i : ĝi = k}. Next, we show θ̂i → θi a.s. uniformly in i = 1, · · · , n.

Assumption 15. 1. lim supn θ <∞.

2. sup1≤i≤n 1{ĝi 6= g0
i } = 0 a.s.

Assumption 15.1 requires that the degree of heterogeneity is bounded, which is common in
practical applications. Assumption 15.2 requires the preliminary clustering is strongly consistent.
For instance, this assumption can be verified by Corollary 3.1. However, we also allow for any
other strongly consistent clustering methods, such as the conditional pseudo likelihood method
proposed by Amini et al. (2013).

Let mk =
∑n

j=1 θjBkg0j
and mn = infkmk. Note mk =

∑
i′∈Ck di′/nk is the average degree of

nodes in community k and mn is the minimal average degree.

Theorem 3.6. If Assumption 15 holds, then sup1≤i≤n |θ̂i − θi| = Oa.s.(log(n)/mn).

In order for Θ̂ to be consistent, we need the average degree for each community to grow faster
than log(n). In some cases, the average degree and the minimal degree are of the same order of
magnitude. Then we basically need µn/ log(n) → ∞ for the consistency of Θ̂. In our simulation
designs, µn/ log(n) → 0, which is, in some sense, the worst case for the adaptive procedure.
However, even in this case, the performance of the adaptive procedure improves upon that of the
spectral clustering based on L′τ .

4 Numerical Examples on Simulated Networks

In this section, we consider the finite sample performance of spectral clustering with two and three
communities, i.e., K = 2 and K = 3. The corresponding numbers of community members have
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ratio 1 : 1 and 1 : 1 : 1 for these two cases, respectively. The number of nodes is given by 50 and
200 for each community, which indicates n = 100 and 400 for the case of K = 2 and 150 and 600
for the case of K = 3. We use four variants of graph Laplacian to conduct the spectral clustering,
namely, L, Lτ , L′τ , and L′′τ defined in Sections 2 and 3.

1. L = D−1/2AD−1/2 where D = diag(Aιn). It is possible that for some realizations, the
minimum degree is 0, yielding singular D.

2. Lτ = D
−1/2
τ AτD

−1/2
τ where Aτ = A+ τJn, Dτ = diag(Aτ ιn), and Jn = n−1ιnι

T
n .

3. L′τ = D
−1/2
τ AD

−1/2
τ where Dτ = D + τIn and In is an n× n identity matrix.

4. L′′τ = (D′′τ )−1/2A′′τ (D′′τ )−1/2 where A′′τ = A+ τn−1Θ̂ιnι
T
n Θ̂ and D′′τ = diag(A′′τ ιn).

The theoretical results in Sections 2 and 3 suggest the strong consistency of the spectral clus-
tering with Lτ and L′τ for the standard SBM and DC-SBM, respectively under some conditions.
In Sections 4.1 and 4.2, we consider these two cases. In addition, for the DC-SBM, we will also
consider the adaptive procedure introduced in Subsection 3.2.4. Additional simulation results of
spectral clustering with L and L′τ for the standard SBM and L and Lτ for the DC-SBM can be
found in the supplementary Appendix D.

For the standard SBM, after obtaining the eigenvectors corresponding to the largest K eigen-
values of the graph Laplacian (L, Lτ and L′τ ), we classify them based on K-means algorithm
(Matlab “kmedoids” function, which is more robust to noise and outliers than “kmeans” function,
with default options). For the DC-SBM, before classification, we normalize each row of the n×K
eigenvectors so that its L2 norm equals 1. For comparison, we apply the unconditional pseudo-
likelihood method (UPL) and conditional pseudo-likelihood method (CPL) proposed by Amini
et al. (2013) to detect the communities in the SBM and the DC-SBM, respectively.3 To evalu-
ate the classification performance, we consider two criteria: the Correct Classification Proportion
(CCP) and the Normalized Mutual Information (NMI). All the simulation results below are com-
puted using the modified K-means algorithm. The simulation results for the standard K-means
algorithm can be found in previous versions of this paper. When the regularizer τ is small, the
modified K-means algorithm can produce slightly more accurate classification while at the optimal
τ selected by our data-driven method explained below, the classification results in terms of CCP
and NMI for the two algorithms are basically the same.

4.1 The standard SBM

We consider two data generating processes (DGPs).
DGP 1: Let K = 2. Each community has n/2 nodes. The matrix B is set as

B =
2

n

(
log2(n) 0.2 log(n)

0.2 log(n) 0.8 log(n)

)
.

The expected degrees are of order log2(n) and log(n) respectively for communities 1 and 2.

3 As Amini et al. (2013) remark, the UPL and CPL are correctly fitting the SBM and the DC-SBM, respectively.
In both UPL and CPL, the initial classification is generated by spectral clustering with perturbations (SCP). The
SCP is spectral clustering based on Lτ with τ = d̄/4 and d̄ being the average degree.
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DGP 2: Let K = 3. Each community has n/3 nodes. The matrix B is set as

B =
3

n

 n1/2 0.1 log5/6(n) 0.1 log5/6(n)

0.1 log5/6(n) log3/2(n) 0.1 log5/6(n)

0.1 log5/6(n) 0.1 log5/6(n) 0.8 log5/6(n)

 .

The expected degrees are of order n1/2, log3/2(n) and log5/6(n) respectively for communities 1, 2
and 3.

We follow Joseph and Yu (2016) and select the regularizer τ that minimizes a feasible version
of

‖Lτ − Lτ‖/|στKn|.

In particular, for a given τ , we can obtain the community identities Ẑ based on the spectral
clustering of Lτ . Given Ẑ, we can estimate the block probability matrix B by the fraction of links
between the estimated communities, which is denoted as B̂. Let P̂ = ẐB̂ẐT , P̂τ = P̂ + τJn,

D̂τ = diag(P̂τ ιn), L̂τ = D̂−1/2
τ P̂τ D̂−1/2

τ , and σ̂τKn be the K-th largest in absolute value eigenvalue

of L̂τ . Then we can compute
Q(τ) = ‖Lτ − L̂τ‖/|σ̂τKn|.

We search for some τJY that minimizes Q(τ) over a grid of 20 points, τj , on the interval [τmin, τmax] ,
where j = 1, . . . , 20, τmin = 10−4 and τmax is set to be the expected average degree. We set
τ1 = τmin, τ2 = 1, and τj+2 = (τmax)j/18 for j = 1, . . . , 18. Qin and Rohe (2013) suggested
choosing τ as the average degree of nodes, which is approximately equal to the expected average
degree.

All results reported here are based on 500 replications. For DGPs 1 and 2, we report the

classification results based on Lτ = D
−1/2
τ AτD

−1/2
τ in Figures 1 and 2. The results based on L

and L′τ are relegated to the supplementary Appendix D.
In Figures 1 and 2, the first and second rows correspond to the results with n = 100 and n = 400,

respectively. For each replication, we can compute the feasible τJY as mentioned above. Their
averages across all replications are reported in each subplot of Figures 1 and 2. In particular, the
green dashed line represents τJY, which can be easily compared with the expected average degree,
the rightmost vertical border.

We summarize our findings from Figures 1 and 2. First, despite the fact that the minimal
degrees for neither DGP satisfies Assumption 3 so that the standard spectral clustering may not
be consistent, the regularized spectral clustering performs quite well in both DGPs. This confirms
our theoretical finding that the regularization can help to relax the requirement on the minimal
degree and to achieve the strong consistency. In addition, when a proper τ is used, the spectral
clustering based on Lτ outperforms the UPL method of Amini et al. (2013). Both results are in
line with the theoretical analysis by Joseph and Yu (2016).

4.2 The DC-SBM

The next two DGPs consider the degree-corrected SBM.
DGP 3: This DGP is the same as DGP 1 except that here P = ΘZBZTΘT , where Θ is a diagonal
matrix with each diagonal element taking a value from {0.5, 1.5} with equal probability.
DGP 4: This one is the same as DGP 2 except that here P = ΘZBZTΘT and Θ is generated as
in DGP 3.
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Figure 1: Classification results for K-means for DGP 1 (K = 2) based on Lτ = D
−1/2
τ AτD

−1/2
τ

and for UPL method. The x-axis marks τ values, and the y-axis is either CCP (left column) or
NMI (right column). The green vertical line in each subplot indicates the estimated τ value by
using the method of Joseph and Yu (2016). The first and second rows correspond to n/K = 50
and 200, respectively.
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Figure 2: Classification results for DGP 2 (K = 3) based on Lτ = D
−1/2
τ AτD

−1/2
τ . (See the

explanations in Figure 1.)
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Figure 3: Classification results for DGP 3 (K = 2, degree-corrected) based on L′τ = D
−1/2
τ AD

−1/2
τ

and L′′τ = D
−1/2
τ AτD

−1/2
τ . The red and black vertical lines correspond to the optimal regularizers

τ ′JY and τ ′′JY, respectively. (See Figure 1 for the explanation of other features of the figure.)

To compute the feasible regularizer for the DC-SBM, we modify the previous procedure to
incorporate the degree heterogeneity. In particular, given τ , by spectral clustering L′τ , we can
obtain a classification Ẑ = (Ẑ1, . . . , Ẑn)T , where Ẑi is a K by 1 vector with its ĝith entry being
1 and the rest being 0 and ĝi is an estimator of node i’s community membership. Let n̂k =
#{i : ĝi = k}. Then we can estimate the block probability matrix B and Θ by B̂ = [B̂kl]1≤k,l≤K
and Θ̂ = diag(θ̂1, . . . , θ̂n), where θ̂i is defined in (3.3) and B̂kl = (

∑
(i,j):ĝi=k,ĝj=l

Aij)/(n̂kn̂l). Let

P̂ = Θ̂ẐB̂ẐT Θ̂T , D̂τ = diag(P̂ ιn)+τIn, and L̂′τ = D̂−1/2
τ P̂ D̂−1/2

τ . Let σ̂′τKn denote the K-th largest

eigenvalue of L̂′τ (in absolute value). Let

Q′(τ) = ‖L′τ − L̂′τ‖/|σ̂′τKn|.

We search for some τ ′JY that minimizes Q′(τ) over the same aforementioned grid.

For DGPs 3 and 4, we report the classification results based on L′τ = D
−1/2
τ AD

−1/2
τ as the

orange lines in Figures 3 and 4. For each subplot, the rightmost border line and the red vertical line
represent the averages of d̄ and τ ′JY, respectively. Figures 3 and 4 show the regularized spectral
clustering based on L′τ is slightly outperformed by CPL in DC-SBMs. However, τ ′JY has the
close-to-optimal performance in terms of both CCP and NMI over a range of values for τ .

Table 1 reports the classification results for the spectral clustering with τ = τJY for DGPs
1–2 (or τ ′JY for DGPs 3–4) and d̄ in comparison with those for the UPL (or CPL for DGPs 3–4)
method over 500 replications. In general, the spectral clustering with τ = τJY outperforms the
UPL method in DGPs 1–2 but slightly underperforms the CPL method for DGPs 3 and 4. In all
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Figure 4: Classification results for DGP 4 (K = 3, degree-corrected) based on L′τ = D
−1/2
τ AD

−1/2
τ

and L′′τ = D
−1/2
τ AτD

−1/2
τ . The red and black vertical lines corresponds to the optimal regularizers

τ ′JY and τ ′′JY, respectively. (See Figure 1 for the explanation of other features of the figure.)

cases, we observe that the increase of the probability of correct classification as n increases. This
is consistent with the theory because both the UPL/CPL method and our regularized spectral
clustering method are strongly consistent.

Table 1: Comparison of classification results

CCP NMI

Spectral clustering UPL/CPL Spectral clustering UPL/CPL

DGP K n/K d̄ τJY/τ ′JY d̄ τJY/τ ′JY

1 2 50 0.9998 0.9998 0.9980 0.9989 0.9989 0.9865

2 200 1.0000 1.0000 0.9994 1.0000 1.0000 0.9947

2 3 50 0.9951 0.9956 0.9941 0.9795 0.9812 0.9748

3 200 0.9992 0.9995 0.9979 0.9954 0.9972 0.9889

3 2 50 0.9576 0.9596 0.9623 0.7857 0.7964 0.8134

2 200 0.9764 0.9777 0.9769 0.8564 0.8689 0.8658

4 3 50 0.9460 0.9513 0.9600 0.8308 0.8444 0.8668

3 200 0.9624 0.9701 0.9745 0.8696 0.8902 0.9022

Figures 3 and 4 also report the classification results based on L′′τ , which are shown as the dark
lines. We find the performance of spectral clustering based on L′′τ is better than those using the
CPL method. In addition, our choice of τ ′′JY, marked as the dark vertical line in each subplot,
performs well in both DGPs 3 and 4.
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5 Proof strategy

In this section we outline the proof strategies for the main results in Section 3.2. First, noting that
the regularized spectral clustering for the DC-SBM nests standard SBM without regularization
by setting τ = 0 and θi = 1 ∀ i = 1, · · · , n, all the main results in Section 2 follow that in
Section 3.2. Second, based on the results in Section 2, the results for the standard SBM with
regularization in Section 3.1 can be derived by replacing B0, µn, ρn, and σKn by their counterparts
with regularization, i.e., Bτ

0 , µτn, ρτn, and στKn, respectively.
Section 3.2 contains Theorems 3.4, 3.5 and 3.6, Lemma 3.1 and Corollary 3.1. Since the proofs

of Theorems 3.4 and 3.6, Lemma 3.1 and Corollary 3.1 are relatively simple, below we focus on
the proof strategy for Theorem 3.5.

Theorem 3.5 aims to establish a uniform upper bound for each row of the gap between sample
and population eigenvectors (up to some rotation), i.e., supi ||ûTi Ôn − uTi ||, where ûTi and uTi are
the i-th rows of Û1n and U1n, respectively. Let Λ̂ = L′τ Û1nÔn = Û1nΣ̂nÔn, Λ = L′τU1n = U1nΣn,
Λ̂i = ûTi Σ̂nÔn, and Λi = uTi Σn. Our proof strategy is to obtain the upper and lower bounds for
(nτ
g0i

)1/2(θτi )−1/2||Λ̂i − Λi||, both of which involve (nτ
g0i

)1/2(θτi )−1/2||ûTi Ôn − uTi ||. The two bounds

produce a contraction mapping for supi(n
τ
g0i

)1/2(θτi )−1/2||ûTi Ôn−uTi ||. By iterating the contraction

mapping sufficiently many times, we obtain the desired bound.
Lower bound. In order to derive the lower bound for (nτ

g0i
)1/2||Λ̂i − Λi||, we note that

(nτg0i
)1/2(θτi )−1/2‖Λ̂i − Λi‖ = (nτg0i

)1/2(θτi )−1/2‖ûTi Σ̂nÔn − uTi Σn‖

≥ (nτg0i
)1/2(θτi )−1/2‖(ûTi Ôn − uTi )Σ̂n‖ − (nτg0i

)1/2(θτi )−1/2‖uTi (Σ̂n − Σn)‖

− (nτg0i
)1/2(θτi )−1/2‖ûTi (Σ̂nÔn − ÔnΣ̂n)‖

≡ Ii − IIi − IIIi. (5.1)

Clearly, by Assumption 13 and Lemma 3.1, |σ̂Kn| ≥ 0.999|σKn| a.s., and thus,

sup
i
Ii ≥ 0.999|σKn|Γn a.s.,

where Γn = supi |(nτg0i )
1/2(θτi )−1/2‖ûTi Ôn−uTi ‖. It is the leading term of the lower bound involving

Γn. In the online Appendix B, we show that supi IIi ≤ 7(log(n)/µτn)1/2 a.s. and supi IIIi ≤
34(log(n)/µτn)1/2|σKn|−1(Γn + 1) a.s. It follows that

sup
i

(nτg0i
)1/2(θτi )−1/2‖Λ̂i − Λi‖ ≥(0.999|σKn| − 34(log(n)/µτn)1/2|σ−1

Kn|)Γn − 41(log(n)/µτn)1/2|σ−1
Kn|

≥0.99|σKn|Γn − 41(log(n)/µτn)1/2|σ−1
Kn|, (5.2)

where we use the fact that 34(log(n)/µτn)1/2|σ−2
Kn| ≤ 0.09.

Upper bound. To derive the upper bound for supi(n
τ
g0i

)1/2(θτi )−1/2‖Λ̂i −Λi‖, we first denote

Λ̃ = D
−1/2
τ PD

−1/2
τ U1n and Λ̃i = (d̂τi )−1/2[P ]i·D

−1/2
τ U1n as the i-th row of Λ̃. Then, we have

sup
i

(nτg0i
)1/2(θτi )−1/2‖Λ̂i − Λi‖ ≤ sup

i
(nτg0i

)1/2(θτi )−1/2‖Λi − Λ̃i‖+ sup
i

(nτg0i
)1/2(θτi )−1/2‖Λ̂i − Λ̃i‖

≡ T1 + T2. (5.3)
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For T2, we have

T2 = sup
i

(nτg0i
)1/2(θτi )−1/2‖(d̂τi )−1/2[A]i·D

−1/2
τ Û1nÔn − (d̂τi )−1/2[P ]i·D

−1/2
τ U1n‖

≤ sup
i

(nτg0i
)1/2(θτi )−1/2(d̂τi )−1/2‖[P ]i·D

−1/2
τ (Û1nÔn − U1n)‖

+ sup
i

(nτg0i
)1/2(θτi )−1/2(d̂τi )−1/2‖([A]i· − [P ]i·)(D

−1/2
τ −D−1/2

τ )Û1nÔn‖

+ sup
i

(nτg0i
)1/2(θτi )−1/2(d̂τi )−1/2‖([A]i· − [P ]i·)D−1/2

τ Û1nÔn‖

≡ T2,1 + T2,2 + T2,3. (5.4)

Lemma C.5 in the online Appendix C provides the upper bounds for T1, T2,1, T2,2, and T2,3. Taking
T2,3 as an example, we note that

T2,3 = sup
i

sup
h=Û1nÔnf,f∈SK−1

(nτg0i
)1/2(θτi )−1/2

n∑
j=1

(Aij − Pij)(d̂τi dτj )−1/2hj .

Here, hj denotes the jth element of h. Lemma C.4 builds a Bernstein-type concentration inequality
to upper bound T2,3, which involves the l∞ and l2 norms of h, In particular, ||h||∞ depends

on the rough upper bound δ
(0)
n for Γn.4 One of the technical difficulties is that, due to the

correlation between the sample graph Laplacian and its eigenvectors, the sequence of random
variables Aij : j = 1, · · · , n are not independent of h = Û1nÔnf for some f ∈ SK−1. To deal with
it, we rely on the “leave-one-out” technique used in Abbe et al. (2017), Bean, Bickel, El Karoui
and Yu (2013), Javanmard and Montanari (2015), and Zhong and Boumal (2018). The idea is to
approximate the eigenvector by a vector which is independent of one particular row of the sample
graph Laplacian. This helps to restore the independence. Then, the approximation errors are
bounded in Lemma C.7, which further calls upon Lemmas C.6 and C.8.

At the end, Lemma C.5 establishes that

sup
i

(nτg0i
)1/2(θτi )−1/2‖Λ̂i − Λi‖

≤3450C1c
−1/2
1 ρn log1/2(n)(µτn)−1/2|σ−1

Kn|
[
δ(0)
n + 1 + ρn +

(
1
K + log(5)

log(n)

)1/2
ρ

1/2
n θ

1/4

θ1/4

]
, a.s., (5.5)

where we can choose δ
(0)
n = n1/2θ−1/2. Combining the lower and upper bounds in (5.2) and (5.5)

for supi(n
τ
g0i

)1/2(θτi )−1/2‖Λ̂i − Λi‖ and applying Assumption 13, we have

0.001δ(0)
n + 3527C1c

−1/2
1 ηn ≥ Γn, (5.6)

where ηn is defined in Theorem 3.5.

Iteration. (5.6) suggests that the initial rough upper bound δ
(0)
n for Γn can be refined to

δ
(1)
n ≡ 0.001δ

(0)
n + 3527C1c

−1/2
1 ηn. Then we can take this new upper bound into the previous

calculations to obtain
0.001δ(1)

n + 3527C1c
−1/2
1 ηn ≥ Γn.

4In fact, the upper bound for ||h||∞ in the proof, which is denoted as ψn, is δ
(0)
n + 1.
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Therefore, we have constructed a contraction mapping, through which we can refine our upper
bound for Γn via iterations. We iterate the above calculation t times for some arbitrary integer t,
and obtain that

Γn ≤ δ(t)
n , δ(t)

n = 0.001δ(t−1)
n + 3527C1c

−1/2
1 ηn.

This implies

δ(t)
n = (0.001)t

[
δ(0)
n − 3527C1c

−1/2
1 ηn

]
+ 3527C1c

−1/2
1 ηn.

Letting t = n, we have

Γn ≤ δ(n)
n ≤ 1000−nn1/2θ−1/2 + 3527C1c

−1/2
1 ηn ≤ 3528C1c

−1/2
1 ηn,

where we denote C∗ in Theorem 3.5 as 3528C1c
−1/2
1 and we use the fact that it is possible to

choose δ
(0)
n = n1/2θ−1/2 as the initial rough bound for Γn.

6 Conclusion

In this paper, we show that under suitable conditions, the K-means algorithm applied to the
eigenvectors of the graph Laplacian associated with its first few largest eigenvalues can classify
all individuals into the true community uniformly correctly almost surely in large samples. In
the special case where the number of communities is fixed and the probability block matrix has
minimal eigenvalue bounded away from zero, the strong consistency essentially requires that the
minimal degree diverges to infinity at least as fast as log(n), which is the minimal rate requirement
for the strong consistency discussed in Abbe (2018). Similar results are also established for the
regularized DC-SBMs. The simulations confirm our theoretical findings and indicate that an
adaptive procedure can improve the finite sample performance of the regularized spectral clustering
for DC-SBMs.
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