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Abstract
An outstanding fact (OF) is a striking claim by which some entities

stand out from their peers on some attribute. OFs serve data journal-

ism, fact checking, and recommendation. However, one could jump
to conclusions by selecting truthful OFs while intentionally or inad-

vertently ignoring lateral contexts and data that render them less

striking. This jumping conclusion bias from unstable OFs may dis-

orient the public, including voters and consumers, raising concerns

about fairness and transparency in political and business compe-

tition. It is thus ethically imperative for several stakeholders to

measure the robustness of OFs with respect to lateral contexts and

data. Unfortunately, a capacity for such inspection of OFs mined

from knowledge graphs (KGs) is missing. In this paper, we propose

a methodology that inspects the robustness of OFs in KGs by per-

turbation analysis. We define (1) entity perturbation, which detects

outlying contexts by perturbing context entities in the OF; and

(2) data perturbation, which considers plausible data that render

an OF less striking. We compute the expected strikingness scores of

OFs over perturbation relevance distributions and assess an OF as ro-

bust if itsmeasured strikingness does not deviate significantly from

the expected. We devise a suite of exact and sampling algorithms for

perturbation analysis on large KGs. Extensive experiments reveal

that our methodology accurately and efficiently detects frail OFs

generated by existing mining approaches on KGs. We also show

the effectiveness of our approaches through case and user studies.
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1 Introduction
The discovery of outstanding facts (OFs) is central to a wide range

of application domains, including data journalism [8, 11, 25], fact

checking [2, 20–24], and recommendation [31, 55, 58, 59]. An OF

is a striking statement that an attribute of one or a few entities

stands out among their peer entities. For instance, the news media

often use OFs as leads to draft news stories and attract audiences:

“Kamala Harris is the first woman to hold the position of Vice President
of the United States” [39]. This statement reveals an OF regarding

gender (attribute) over all politicians (peer entities) who have held

the position of US vice president. Manual discovery of OFs can be

tedious and time-consuming, requiring extensive human effort to

sift through vast amounts of data. As such, there have been many

studies on automatic OF mining [5, 10, 27, 50, 55, 58].

Despite the traction of OFs in engaging with a diversity of au-

diences, from journalists in the first place to citizens as voters or

consumers, their striking and captivating nature also entails the

risk that they may induce misinformation by misleading people

to jump to conclusions [28], i.e., crafting rushed interpretations

and making biased decisions [2, 30, 52]. For example, in sales cam-

paigns, rare product attributes may be framed as OFs by strategi-

cally placing products in specific contexts, potentially misinforming

customers [12]. Such OF-induced misinformation may violate legis-

lation; in the UK, for instance, it is classified asmisleading action and
omission, a trading practice that violates the Consumer Protection
from Unfair Trading Regulations (CPRs) [36]. Likewise, advances
in data journalism come with the perils of misinformation; whilst

media scholars have long shown the power of media in shaping

public opinion [9], legal scholars have been debating the legal im-

plications of disinformation as a fundamental rights violation [43].

To address the perils of OF-induced misinformation in particular,

prior studies conduct perturbation analysis, i.e., assess OFs using
a context-aware robustness measure while perturbing numerical

parameters [52], group-by attributes [30], and time intervals [2] in
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Figure 1: The workflow of the OF mining process.

the query that defines the OF context. However, existing robustness

measures and perturbation analysis methods overlook two types

of hasty generalizations: (1) context entity generalization and (2)

limited data generalization.

Context Entity Generalization. The cause of gender parity in
academia engenders extensive and controversial discourse within on-
line communities and academic circles [32, 35]. To seize public atten-
tion, one may generate eye-catching OFs using existing OF discovery
methods [55, 58]: for instance, the American Council on Education
(ACE), a prominent US higher education association, boasts a diverse
membership comprising numerous accredited colleges and univer-
sities. Notably, among the individuals employed by ACE member
institutions, the male demographic constitutes 31%.

This fact might mislead the public to generalize about a perceived

disparity of male faculty members in US universities. However,

considering other associations, such as the American Association

of State Colleges and Universities, the male percentage rises to 50%.

In fact, the aggregate male percentage among US academics is 66%.

We conclude that ACE is an untypical context entity that deliberately
or inadvertently provokes generalizations about the gender gap.

Limited Data Generalization. Seed investing in startups generates
returns from the capital market once a company is publicly listed.
Reddit, a US social media site, has filed for its initial public offering
(IPO) [14]. An OF generated by [55, 58] on Wikidata yields Uber as
the only success case of an IPO backed by Reddit’s investors.

The noted OF regarding Reddit’s investors could undermine

confidence in Reddit’s IPO due to an apparent lack of investor ex-

perience in IPO cases. However, start-up enterprises often progress

through multiple funding rounds, rendering such a generalization

dubious, as Reddit has the potential to attract more investors in the

future. Remarkably, Sequoia Capital invested in Reddit during its

2017 Series C funding round [6], a fact undocumented in Wikidata

at the time of writing, and has also invested in several publicly

traded companies, including Apple, Airbnb, and Nvidia.

Perturbation Analysis of OFs. To mitigate such potential rami-

fications, we propose a novel perturbation analysis methodology

that evaluates OF robustness. We focus on OFs mined from knowl-

edge graphs (KGs) [45, 47, 55, 58], as there is currently no method

to assess their robustness, while the richness of facts available in

large KGs, such as DBpedia [29], Freebase [4], and Wikidata [44],

allows semantically relevant perturbations to curb both context

entity and limited data generalizations. We define (1) entity pertur-
bation, which evaluates the strikingness of an OF by substituting

the context entity with a similar entity from the KG (e.g., replacing

“ACE” with a similar association), and (2) data perturbation, which
introduces a plausible edge into the KG to evaluate the continued

validity of the OF claim (e.g., including another investor, Sequoia

Capital, to Reddit).

Moreover, we calculate an OF’s expected strikingness over a

perturbation relevance distribution (PRD) that assigns weights to

(entity or data) perturbations by their relevance to the OF. An OF

whose strikingness is significantly higher than the expected value

derived from the respective PRD is less robust than others and

should be inspected by domain experts. Our methodology can be

seamlessly integrated into the overall OF mining process, as the

dashed-box component in Figure 1 illustrates. Using our method-

ology, stakeholders such as data journalists, fact-checkers, civil

society organizations, and other interested parties can cross-check,

evaluate, and verify the robustness of OFs on which they intend to

base decisions. We summarize our main contributions as follows:

• We formalize the perturbation analysis of OFs from KGs by entity
and data perturbation. To our best knowledge, this is the first

attempt to measure the robustness of OFs extracted from KGs.

• We devise efficient exact algorithms for entity and data perturba-

tion analysis. We further propose sampling-based approximation

algorithms that scale to large perturbation spaces.

• We conduct extensive experiments to evaluate our approaches.

The results demonstrate that our analysis discovers frail OFs

generated by existing OF mining approaches [55]. Furthermore,

our approximation algorithms complete the perturbation analysis

within five minutes for over 90% of OFs, with a mean estimation

error around 2.7% and 1.3% for entity and data perturbation,

respectively. Finally, we validate the effectiveness of our system

with a crowdsourced user study.

2 Background
A knowledge graph (KG) is denoted as G(V, E,L), whereV and E
represent the sets of node and edge instances, respectively. An

edge instance 𝑒 ∈ E connects two node instances 𝑢, 𝑣 ∈ V . The

function L maps each node or edge instance 𝑣 or 𝑒 to its type L(𝑣)
or L(𝑒). We define a node variable 𝑣 ∈ {𝑣,L(𝑣)} to be either a

node instance 𝑣 or a node type L(𝑣). N(𝑣,L(𝑒)) and N(𝑉 ,L(𝑒))
represent the neighbors of node 𝑣 and node set𝑉 via edge typeL(𝑒),
respectively.N(𝑣) andN(𝑉 ) are the neighbors of node 𝑣 and node
set 𝑉 without the edge type constraint. For ease of presentation,

we simply use G(V, E) or G to refer to the KG.

We study OFs discovered by path queries, as path queries can be

easily and intuitively translated into natural language claims [55].

Nonetheless, our perturbation analysis can be extended to support

general KG queries. Formally, we define path queries as follows:

Definition 2.1 (Path Query). A path query is a sequence of node

variables and edge types. We use 𝑃 (𝑣0, 𝐸0, 𝑣1, . . . , 𝑣𝑘−1, 𝐸𝑘−1, ˜𝑣𝑘 ), or
simply 𝑃 (𝑣0, ˜𝑣𝑘 ), to denote a 𝑘-hop path query, where 𝐸𝑖 is the edge

type of the 𝑖th edge and 𝑖 ∈ {0, ..., 𝑘−1}. 𝐸−1
𝑖

represents the syntactic
reverse edge type of 𝐸𝑖 , i.e., for an edge 𝑒 = (𝑢, 𝑣) where L(𝑒) = 𝐸𝑖 ,

we denote by L(𝑒′) = 𝐸−1
𝑖

the type of its reverse edge 𝑒′ = (𝑣,𝑢).

Definition 2.2 (Matching Instance). A matching instance to a path
query 𝑃 (𝑣0, ˜𝑣𝑘 ) is a sequence of node and edge instances in G
denoted by 𝑝 (𝑣0, 𝑒0, 𝑣1, . . . , 𝑣𝑘−1, 𝑒𝑘−1, 𝑣𝑘 ) or 𝑝 (𝑣0, 𝑣𝑘 ) satisfying:
• ∀𝑖 ∈ {0, . . . , 𝑘}, L(𝑣𝑖 ) = 𝑣𝑖 , where 𝑣𝑖 is a node type L(𝑣);
• ∀𝑖 ∈ {0, . . . , 𝑘}, 𝑣𝑖 = 𝑣𝑖 , where 𝑣𝑖 is a node instance 𝑣 ; and

• ∀𝑖 ∈ {0, . . . , 𝑘 − 1}, 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) ∈ E and L(𝑒𝑖 ) = 𝐸𝑖 .

We use 𝑝 ⊲ 𝑃 to represent that path 𝑝 is a matching instance of

path query 𝑃 . For each node variable 𝑣𝑖 in path query 𝑃 , we denote
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Figure 2: An example of OF discovery.

the matching node set of 𝑣𝑖 (i.e., the set of all node instances that
correspond to 𝑣𝑖 in 𝑃 ) as 𝑉𝑖 ⊆ V for all 𝑖 ∈ {0, . . . , 𝑘}.

Most existing studies [55, 58] discover attribute-value pairs (e.g.,

Gender-Female) in OFs by defining peer entities. To generate diver-

sified OFs, e.g., news stories in different contexts, they acquire peer

entities from context path queries by specifying a node constraint

as context information. Formally:

Definition 2.3 (Peer Entities). Given a target attribute A and a

path query 𝑃 (𝑣0, ˜𝑣𝑘 = 𝑐) where 𝑐 is a context entity, an instance 𝑣0
is a peer entity of 𝑐 under 𝑃 andA if ∃ 𝑝 (𝑣0, 𝑐) ⊲ 𝑃 (𝑣0, 𝑐) and 𝑣0 has
the target attribute A. We denote by 𝑉0 the set of peer entities of 𝑐

under a path query 𝑃 and attribute A.

Example 2.4. Consider the path query in Figure 2 and the target

attribute Gender. The query 𝑃 (𝑣0, 𝐸0, 𝑣1, 𝐸1, ‘American Council on
Education’) uses the ACE as a context entity for OF discovery,

where 𝐸0 = ‘Employee Of’ and 𝐸1 = ‘Member Of’. Under query 𝑃 ,
set 𝑉1 contains all universities with ACE membership, while the

set of peer entities 𝑉0 includes all people who have worked with at

least one of these universities and have the Gender attribute.

Definition 2.5 (Candidate OF). A candidate OF is a triplet 𝑄 =

(A,X, 𝑃), where A, X and 𝑃 denote the following:

• X is a value in the domain of attribute A; and

• 𝑃 is a path query 𝑃 (𝑣0, 𝑐) that implicitly defines peer entities
of the context entity 𝑐 under attribute A.

The value X in a candidate OF is considered striking if it stands

out among the values of the same attributeA in the peer entity set

defined by 𝑃 . Specifically, we adopt the OF strikingness measure, i.e.,
the measure used by existing OF discovery approaches [51, 55, 58]

to rank the candidate OFs and identify the most striking ones.

Definition 2.6 (Strikingness Measure). Given a candidate OF 𝑄 =

(A,X, 𝑃), 𝐹 (A,X,𝑉0) denotes the frequency of value X for at-

tribute A among peer entities in 𝑉0. The strikingness of 𝑄 is:

I(𝑄) =
∑︁
X′∈X

𝐹 (A,X′,𝑉0),

where X = {X′ |𝐹 (A,X′,𝑉0) > 𝐹 (A,X,𝑉0)}, i.e., the set of val-

ues 𝑋 ′ whose frequency for attribute A is higher than that of X
among the peer entities. Note that if X = ∅, the I(𝑄) = 0.

Example 2.7. Figure 2 presents a candidate OF regarding the gen-
der gap among US university employees. As detailed in Example 2.4,

the peer entity set 𝑉0 includes all people who have the attribute

Margo Glantz

𝐸! Eric Barnum

Watson Parker

Male

Female

𝐸" 

Oak Ridge Associated 
Universities

𝐸" 𝐸! 

American Association of State 
Colleges and Universities

... ...

Gender

Gender

Freq: 0.494

Freq: 0.79

Montclair State 
University

... ...

University of 
Wisconsin-Oshkosh

Freq: 0.506

Freq: 0.21

Male

Female

Claude Frank

Bonnie Bartel

Gordon Tullock

... ...

Duke University

... ...

Rice University

Figure 3: An example of entity perturbation.

Gender and have worked with an ACE member. The frequency of

appearance of the attribute-value pair Gender-Male in 𝑉0 is 0.31.

Given that the sum of frequencies for Gender values higher than
that of Male (i.e., in this case, for value Female) is 0.69, by Defi-

nition 2.6, the OF’s strikingness score for the attribute-value pair

Gender-Male is 0.69. In simple terms, there are fewer male employees
among ACE universities, with a strikingness of 0.69.

We emphasize that OF discovery is independent of the challenge

we address in this paper. Our task is rather to help assess whether

a given OF is robust, as the workflow in Figure 1 depicts.

3 Perturbation Model
In this section, we first introduce the two perturbation types we

examine and define their respective perturbation spaces. Then, we

formalize the perturbation relevance distribution in these perturba-

tion spaces, which we use to assess the robustness of OFs.

3.1 Perturbation Space
We introduce two types of perturbation: entity perturbation and

data perturbation. An entity perturbation assesses the robustness

of an OF-generating query by changing its context entity. Formally,

Definition 3.1 (Entity Perturbation Space). An entity perturba-
tion 𝑄 ′ of an OF 𝑄 = (A,X, 𝑃 (𝑣0, 𝑐)) replaces the context entity
path constraint 𝑐 with another entity 𝑐′ ∈ V such that:

• ∃ 𝑝 (𝑣0, 𝑐′) ⊲ 𝑃 ′ = 𝑃 (𝑣0, 𝑐′); and
• 𝑣0 has the same value X on attribute A as the OF 𝑄 .

We denote the perturbed OF by 𝑄 ′ = (A,X, 𝑃 ′). The entity pertur-
bation space of𝑄 is denoted as Q and contains all possible substitute

OFs 𝑄 ′ for 𝑄 with different context entities 𝑐′.

Intuitively, a valid entity perturbation changes the context entity

path constraint 𝑐 to 𝑐′ such that the perturbed peer entities still

contain the attribute-value pair (A,X) of the original OF.

Example 3.2. Figure 3 shows two examples of entity pertur-

bation for the OF in Figure 2. When we replace the context en-

tity ‘American Council on Education’ in the original OF with the

‘American Association of State Colleges and Universities’ (AASCU),
the matching instances for the resulting path query differ signifi-

cantly. The peer entity set now includes faculty members in other

universities, e.g., the University of Wisconsin–Oshkosh, bringing

the strikingness of the Gender-Male pair down to 0.506 (from 0.69

in the original OF). The Oak Ridge Associated Universities (ORAU),

a consortium of US universities, is another possible entity pertur-

bation. With ORAU as the context entity, the strikingness of “male

employees” drops even lower, to 0, since no other Gender value has
higher frequency than Male in the respective 𝑉0.
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Figure 4: An example of data perturbation.

A data perturbation adds a plausible edge to the KG that may

render an OF less striking. While many plausible edges may be

added to the KG, most would not affect the OF at hand. We only

consider admissible data perturbations, i.e., edges whose addition
results in a different peer entity set for path query 𝑃 (𝑣0, 𝑐):

Definition 3.3 (Data Perturbation Space). An admissible data per-
turbation 𝑄 ′ of an OF 𝑄 = (A,X, 𝑃 (𝑣0, 𝑐)) adds an edge 𝑒′ = (𝑢, 𝑣)
to the KG G such that 𝑉 ′

0
≠ 𝑉0, where 𝑉

′
0
is the new peer entity set

of the original path query 𝑃 (𝑣0, 𝑐) after adding 𝑒′ to G.

For a perturbation to be admissible, the node variable corre-

sponding to 𝑢 in the path query 𝑃 (𝑣0, 𝑐) should be a node type.

Example 3.4. Figure 4 illustrates two admissible data perturba-

tions under the Reddit OF mentioned in Section 1. The first adds a

plausible edge 𝑒 = (‘Pinduoduo’, ‘Tencent’) for 𝐸0. Consequently,
Pinduoduo is added to the peer entity set𝑉0, rendering the Is_listed-
True pair less striking in the updated𝑉0 since Pinduoduo has already
been publicly listed on NASDAQ in July 2018. Another plausible

edge 𝑒′ = (‘Y Combinator’, ‘Reddit’) is also an admissible pertur-

bation, for 𝐸1 this time. Recovering 𝑒′ reveals more publicly listed

companies invested by Y Combinator, including Airbnb, CoinBase,

Twillo, PagerDuty, and Rackspace Technology.

3.2 Perturbation Relevance Distribution
Naturally, some perturbations are more relevant to an OF than

others. For instance, if one values the attributes of the association,

ORAU presents a compelling alternative to ACE in Example 2.4

since both associations welcome non-state-supported universities.

Conversely, if one values members’ constitution, AASCU emerges

as a convincing substitute since Montclair State University (under

ACE) is also affiliatedwith AASCU. Similarly, among the data pertur-

bations (‘Pinduoduo’, ‘Tencent’) and (‘Y Combinator’, ‘Reddit’) in
Example 3.4, the perturbation more relevant to the Reddit OF in

the KG would be more convincing. To formalize the relevance of

entity and data perturbations, we introduce relevance distributions.

Entity Perturbation Relevance. For a relevant entity perturba-

tion, the context entity 𝑐′ in the perturbed OF𝑄 ′ should be semanti-

cally relevant to the context entity 𝑐 in the original OF 𝑄 . Given an

OF𝑄 produced by path query 𝑃 (𝑣0, 𝑐), we model the relevance of an
entity perturbation 𝑄 ′ ∈ Q from 𝑐 to 𝑐′ as the node similarity score
between 𝑐 and 𝑐′. The choice of similarity function is orthogonal

to our method and any measure applicable to KGs [33, 38] can be

used. Here, we opt for the Jaccard distance S(𝑐, 𝑐′) between the

neighbor sets of 𝑐 and 𝑐′, that is, between N(𝑐) and N(𝑐′).

Data Perturbation Relevance. For a data perturbation to be rele-

vant to an OF 𝑄 , the added edges should be (i) semantically related

to 𝑄 and (ii) plausibly existing now or in the near future.

To address both desiderata, we propose an efficiently computed

function, head-tail relevance. Conceptually, head relevancemeasures

the semantic relevance of an added edge 𝑒 = (𝑢, 𝑣) to OF𝑄 through

the similarity of 𝑒 to edges in the matching path instances of 𝑄 ,

in particular, the similarity of 𝑢 to the neighbors of 𝑣 that appear

in the matching node set 𝑉 of the node type of 𝑢. Nevertheless,

head relevance alone may spawn relevant yet implausible edges. To

account for the plausibility of edge 𝑒 , we augment the function with

tail relevance, which measures the similarity between 𝑢’s neighbors

of type 𝐸 and the tail node 𝑣 .

Given an admissible data perturbation 𝑒 = (𝑢, 𝑣) for edge type 𝐸
of OF 𝑄 , we formally define the head-tail relevance as:

S(𝑒) =
( ∑︁
𝑢′∈N(𝑣,𝐸−1 )∩𝑉

S(𝑢,𝑢′)
)

︸                           ︷︷                           ︸
head relevance

( ∑︁
𝑣′∈N(𝑢,𝐸 )

S(𝑣, 𝑣 ′)
)

︸                    ︷︷                    ︸
tail relevance

To accommodate space constraints, we present an example that

illustrates the rationale by which we define the head-tail relevance

in Appendix A.

Discussion. Existing link prediction methods can suggest plausible

edges in a KG [3, 7, 53, 56]; such methods may provide orthogonal

validation to strengthen the perturbations identified by ourmethods.

However, these methods aim to predict any edge in a graph as an

end in itself; contrariwise, we are interested in suggesting plausible

edges with respect to an OF 𝑄 for the larger objective of building a

distribution over them, as we explain next.

Based on the above concepts, we now formally define the per-
turbation relevance distribution (PRD) for an OF 𝑄 :

Definition 3.5 (Perturbation Relevance Distribution (PRD)). Given
an OF 𝑄 , we denote as D(𝑄) the PRD for entity/data perturbation.

The probability mass function of D(𝑄) is proportional to the cor-

responding perturbation relevance function, i.e., PD (·) ∝ S(𝑐, 𝑐′)
for entity perturbation and PD (·) ∝ S(𝑒) for data perturbation.

DeviationMeasure. Intuitively, an OF is not robust if many highly

relevant perturbations thereof have substantially smaller striking-

ness scores. In effect, we may compute the mean scores under both

PRDs of entity and data perturbations, and if the strikingness score

of an OF 𝑄 substantially deviates from the means, we regard 𝑄 as

a less robust claim. We thus define the deviation measure of 𝑄 as:

Δ(𝑄) =
E𝑄 ′∼D [I(𝑄) − I(𝑄 ′)]
E𝑄 ′∼D [I(𝑄 ′)]

(1)

for a PRD D defined on 𝑄 , in a manner resembling robustness

scores used in other contexts [30]. In addition, as a counterar-
gument to OF 𝑄 , we return the perturbation 𝑄 ′ that maximizes

(𝐼 (𝑄) − 𝐼 (𝑄 ′)) · PD (𝑄 ′). I(𝑄) − I(𝑄 ′) measures the extent to

which a perturbation 𝑄 ′ deviates from the original fact in terms of

strikingness, while the weight for each perturbation is determined

by the PRD D.

Before presenting our algorithms for perturbation analysis, we

summarize the frequently used notation in Table 1.
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Table 1: Frequently used notation.
Symbol Description

G(V, E, L) Knowledge graph (KG)

𝑣̃ Node variable, instantiated to either a node or a node type

L(𝑣), L(𝑒 ) Node type and edge type

N(𝑣),N(𝑉 ) Neighbors of node 𝑣 and node set𝑉

N(𝑣, L(𝑒 ) ) Neighbors of node 𝑣 via edge type L(𝑒 )
N(𝑉 , L(𝑒 ) ) Neighbors of node set𝑉 via edge type L(𝑒 )
𝑃 (𝑣0, 𝑣𝑘 ) 𝑘-hop path query from 𝑣0 to 𝑣𝑘

𝑄 (A, X, 𝑃 ) OF with attribute A and value X based on query 𝑃

𝑉𝑖 Matching node set w.r.t. 𝑣𝑖 of a path pattern

𝑉0 Peer entity set

I(·) Strikingness measure

Q Entity perturbation space

PD Probability mass function of the PRD

Δ(𝑄 ) Deviation measure

4 Entity Perturbation Algorithms
In this section, we first present an exact entity perturbation algo-

rithm and then a sampling-based estimation algorithm.

Algorithm 1: Exact Algorithm for Entity Perturbation

Input: KG G; OF𝑄 (A, X, 𝑃 (𝑣0, 𝑐 ) ) ; strikingness score I(𝑄 )
Output: Deviation measure Δ(𝑄 )

1 𝐶0 ← AttributeValueFilter(A, X, G);
2 for 𝑖 ∈ {1, . . . , 𝑘 } do
3 𝐶𝑖 ← N(𝐶𝑖−1, 𝐸𝑖−1 ) ;
4 𝜇 ← 0, 𝑍 ← 0;

5 foreach 𝑐′ ∈ 𝐶𝑘 do
6 𝑄 ′ ← (A, X, 𝑃 (𝑣0, 𝑐′ ) ) ;
7 𝑉 ′

𝑘
← {𝑐′ };

8 for 𝑖 ∈ {𝑘 − 1, . . . , 0} do
9 𝑉 ′𝑖 ← N(𝑉 ′𝑖+1, 𝐸−1𝑖 ) ;

10 I(𝑄 ′ ) ← Strikingness(𝑉 ′
0
, A, X);

11 𝜇 ← 𝜇 + I(𝑄 ′ ) · S (𝑐, 𝑐′ ) ;
12 𝑍 ← 𝑍 + S(𝑣, 𝑣′ ) ;
13 E𝑄′∼D ← Normalization(𝜇, 𝑍);

14 Δ(𝑄 ) ← DeviationMeasure(E𝑄′∼D , I(𝑄 ));
15 return Δ(𝑄 ) ;

Exact Algorithm. Given an OF 𝑄 (A,X, 𝑃 (𝑣0, 𝑐)), the exact entity
perturbation algorithm runs in two stages to produce the deviation

measure for 𝑄 , as outlined in Algorithm 1.

ForwardPass (Lines 1–3): At this stage, we aim to find the perturba-

tion space Q for the given OF. Recall that Q is the set of all feasible

substitutes of the context entity 𝑐 in the given query 𝑃 (𝑣0, 𝑐) of
length 𝑘 . We replace the original context entity 𝑐 with a node vari-

able ˜𝑣𝑘 . Then, according to Definition 3.1, we utilize the attribute-

value pair (A,X) in the given OF 𝑄 to retrieve the nodes 𝑣0 that

match the query 𝑃 (𝑣0, ˜𝑣𝑘 ) and form a candidate set 𝐶0 with them.

Thereafter, at each level 𝑖 , we find all neighbors of nodes in set𝐶𝑖−1
via edge type 𝐸𝑖−1 to form set 𝑉𝑖 . The set 𝐶𝑘 we eventually de-

rive at level 𝑘 constitutes the perturbation space Q. We call this

stage “ForwardPass” as it is performed progressively from level 0

to level 𝑘 .

BackwardPass (Lines 4–15): To evaluate the deviation measure of

the given OF𝑄 , we need to enumerate all nodes in the perturbation

space Q = 𝐶𝑘 . For each alternative 𝑐′ ∈ 𝐶𝑘 , we replace the context
entity 𝑐 in the given query 𝑃 by 𝑐′ and represent the perturbed

query as 𝑃 (𝑣0, 𝑐′). Then, starting from 𝑐′, we find the peer entity

set 𝑉 ′
0
for 𝑃 (𝑣0, 𝑐′) by performing the reverse operation of For-

wardPass from 𝑐′ to 𝑣0. Hence, this stage is called “BackwardPass”.

Thereafter, we calculate the strikingness score I(𝑄 ′) for each per-

turbed OF 𝑄 ′ and the associated relevance 𝑆 (𝑐, 𝑐′). The expected

strikingness score under the entity PRD is the normalized weighted

sum of I(𝑄 ′) following (𝑐, 𝑐′) in the space Q.
The time complexity of the ForwardPass stage is upper bounded

by 𝑂 (∑𝑖 |𝐸𝑖 |), where |𝐸𝑖 | is the number of edges of type 𝐸𝑖 in the

path query. Thus, the complexity of the exact algorithm is domi-

nated by the BackwardPass stage, i.e., upper bounded by 𝑂 ( |Q| ·∑
𝑖 |𝐸𝑖 | · 𝐽 ), where |Q| is the size of the entity perturbation space

and 𝐽 is the average time to evaluate S(𝑐, 𝑐′). In practice, the cost

of 𝐽 is low using efficient set intersections between the neighbor

lists of 𝑐 and 𝑐′.

Sampling-based Approximation. The exact algorithm enumer-

ates all possible entity perturbations to compute E𝑄 ′∼D . This enu-
meration is expensive, especially when the entity perturbation

space Q is large. Therefore, we propose a sampling strategy to get

the point estimation
ˆE𝑄 ′∼D . Given an OF (A,X, 𝑃 (𝑣0, 𝑐)), we use

the same ForwardPass process as the exact algorithm to obtain the

perturbation space. We then sample a node 𝑐′ as the perturbation
according to the relevance distribution PD . For each sample, we

evaluate the strikingness of the associated OF. The mean of 𝑛 sam-

ples is a point estimator
ˆE𝑄 ′∼D . The confidence interval (CI) for the

point estimate is defined as [ ˆE𝑄 ′∼D − 𝜖, ˆE𝑄 ′∼D + 𝜖]. Since all sam-

ples are independent and identically distributed (i.i.d.) with finite

variance, the half width 𝜖 is 𝑂 (
√︁
𝜎2/𝑛) by the Central Limit Theo-

rem, where 𝜎2 is the population variance. Further, E𝑄 ′∼D ∈ [0, 1]
since I(𝑄) ∈ [0, 1], hence the upper bound for the population vari-

ance 𝜎2 is 1/4. In effect, the half width 𝜖 is bounded by the sample

size 𝑛. Thus, 𝜖 converges at a rate of 𝑂 (1/
√
𝑛) with increasing 𝑛.

5 Data Perturbation Algorithms
A simple strategy for data perturbation is to consider any pos-

sible combination 𝑒 = (𝑢, 𝑣) ∉ E and check whether it satisfies

Definition 3.3. However, since this strategy treats both 𝑢 and 𝑣 as

free variables, the search space can be prohibitively large on real-

world KGs with millions of nodes. Thus, we first propose methods

to effectively prune the search space. Then, we develop efficient

exact and sampling algorithms based on the pruned search space.

Admissibility-based Reduction. By Definition 3.3, the peer en-

tity set 𝑉 ′
0
resulting from an admissible data perturbation should

be different from the original peer entity set 𝑉0. Therefore, each

admissible data perturbation should add at least one new peer en-

tity to 𝑉0. It follows that an edge 𝑒′ = (𝑢, 𝑣) for an admissible data

perturbation should have a node 𝑢 that partially matches the path

query associated with the OF. We define the notion of a partial
matching node as follows:

Definition 5.1 (Partial Matching Node). Given an OF 𝑄 = (A,X,
𝑃 (𝑣0, 𝑐)), a node 𝑢 is a partial match at level 𝑖 ∈ {0, . . . , 𝑘 − 1} if:
• 𝑢 ∉ 𝑉𝑖 and ∃ 𝑝 (𝑣0, . . . , 𝑢) ⊲ 𝑃 ′ = 𝑃 (𝑣0, 𝑣𝑖 ); and
• 𝑣0 ∉ 𝑉0, where 𝑣0 has attribute A.

Here, 𝑃 ′ is a part of 𝑃 from level 0 to level 𝑖 . We denote the set of

partial matching nodes at level 𝑖 as 𝑉𝑖 .

Lemma 5.2. An edge 𝑒 = (𝑢, 𝑣) is an admissible data perturbation
for edge type 𝐸𝑖 of an OF 𝑄 = (A,X, 𝑃) only if 𝑢 ∈ 𝑉𝑖 and for
a partial matching node 𝑣 ∈ 𝑉𝑖 where 𝑖 ∈ {1, . . . , 𝑘}, there exists
𝑢 ∈ 𝑉𝑖−1 such that 𝑣 ∈ N (𝑢, 𝐸𝑖−1).
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Proof. First, the necessary condition for an admissible data

perturbation holds by Definition 3.3 and 5.1. Second, since 𝑣 ∈ 𝑉𝑖 ,
∃ 𝑝 (𝑣0, . . . , 𝑢, 𝑣) ⊲ 𝑃 (𝑣0, 𝑣𝑖 ), where 𝑣0 ∉ 𝑉0 and 𝑣0 has attribute

A. Thus, 𝑝 (𝑣0, . . . , 𝑢) ⊲ 𝑃 (𝑣0, 𝑣𝑖−1) and 𝑢 is a match for 𝑣𝑖−1. It
suffices to prove that 𝑢 ∉ 𝑉𝑖−1. If 𝑢 ∈ 𝑉𝑖−1, then one can find a path

instance 𝑝 (𝑣0, . . . , 𝑢, . . . , 𝑐) ⊲𝑃 (𝑣0, 𝑐), which contradicts that 𝑣0 ∉ 𝑉0.
Hence, we conclude that 𝑢 ∈ 𝑉𝑖−1. □

By Lemma 5.2, we can reduce the search space for data perturba-

tions to the partial matching set. Also, any partial matching node

at level 𝑖 is linked to a partial matching node at level 𝑖 − 1 via

edge type 𝐸𝑖−1. Hence, we compute the partial matching sets as

follows: we initialize 𝑉0 as the nodes with attribute A that are not

in 𝑉0, i.e., 𝑉0 = VA − 𝑉0 and, at each subsequent level 𝑖 > 0, we

obtain 𝑉𝑖 = N(𝑉𝑖−1, 𝐸𝑖−1) −𝑉𝑖 .
Relevance-based Reduction. Admissibility-based reduction guar-

antees that each perturbation from the new search space is ad-

missible. However, if the relevance of a data perturbation is 0, the

perturbation does not contribute to the final deviation measure.

Therefore, we define relevant perturbations as:

Definition 5.3 (Relevant Data Perturbation). An edge 𝑒 = (𝑢, 𝑣)
is a relevant data perturbation at level 𝑖 if 𝑒 is an admissible data

perturbation and S(𝑒) > 0.

Lemma 5.4. An admissible perturbation 𝑒 = (𝑢, 𝑣) is relevant for
edge type 𝐸𝑖 of an OF 𝑄 = (A,X, 𝑃 (𝑣0, 𝑐)) only if 𝑣 ∈ 𝑉𝑖+1.

Proof. For an admissible perturbation 𝑒 = (𝑢, 𝑣) of type 𝐸𝑖 to
be head-relevant, there must exist a matching instance 𝑝 (𝑣0, . . . , 𝑢,
𝑣, . . . , 𝑐) ⊲ 𝑃 (𝑣0, 𝑐) after adding 𝑒 , which implies that ∃ 𝑝 (𝑣, . . . , 𝑐) ⊲
𝑃 (𝑣𝑖+1, 𝑐). Note that if ∃ 𝑢′ ∈ N (𝑣, 𝐸−1𝑖

) ∩𝑉𝑖 , we can build a path

instance 𝑝∗ by concatenating three path instances, 𝑝1 (𝑣0, . . . , 𝑢′) ⊕
𝑝2 (𝑢′, 𝐸𝑖 , 𝑣) ⊕𝑝3 (𝑣, . . . , 𝑐). Ergo, 𝑝∗ ⊲𝑃 and thus 𝑣 ∈ 𝑉𝑖+1; otherwise,
the head relevance would be 0. □

To check whether a perturbation 𝑒 = (𝑢, 𝑣) is relevant, we need
to calculate if S(𝑒) > 0, which involves finding cycles of length 6

that contain 𝑢 and 𝑣 , a computationally expensive task [19, 40].

In addition, there are a large number of node pairs to check for

relevant data perturbation, even for a single level. To enable efficient

pruning without cycle enumeration, we decompose the relevance

of a data perturbation into head and tail relevance as follows:

Definition 5.5 (Relevant Matching Set𝑉 ∗
𝑖
). 𝑢 ∈ 𝑉𝑖 is head-relevant

if there exists 𝑟 ∈ 𝑉𝑖+1 and 𝑛 ∈ N (𝑟, 𝐸−1
𝑖
) ∩ 𝑉𝑖 with S(𝑢, 𝑛) > 0.

𝑢 ∈ 𝑉𝑖 is tail-relevant if there exists 𝑟 ′ ∈ 𝑉𝑖+1 and 𝑛 ∈ N (𝑢, 𝐸𝑖 )
with S(𝑛, 𝑟 ′) > 0. A relevant matching set 𝑉 ∗

𝑖
for level 𝑖 contains

all head- and tail-relevant nodes.

Remark. Even though 𝑢 ∈ 𝑉 ∗
𝑖
is not a sufficient condition for a

relevant data perturbation 𝑒 = (𝑢, 𝑣) at level 𝑖 , it reduces the search
space from |𝑉𝑖 | · |L(𝑣𝑖+1) | to |𝑉 ∗𝑖 | · |𝑉𝑖+1 |, where |L(𝑣𝑖+1) | is the
number of node instances with the same type as the node variable

𝑣𝑖+1. This leads to significant computation savings, as we show

experimentally in Section 6. Putting everything together, we obtain

the following theorem for pruning the search space.

Theorem 5.6. An edge 𝑒 = (𝑢, 𝑣) is an admissible and relevant
data perturbation at level 𝑖 of an OF 𝑄 only if 𝑢 ∈ 𝑉 ∗

𝑖
and 𝑣 ∈ 𝑉𝑖+1.
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Figure 5: Venn diagram of perturbation space reduction.

Algorithm for Data Perturbation Space Reduction. Apart from
reducing the search space,𝑉 ∗

𝑖
can be efficiently computed from the

matching node sets𝑉𝑖 ,𝑉𝑖+1 and the partial matching set𝑉𝑖 , in linear

time. Algorithm 2 illustrates the combined process for admissibility-

and relevance-based reduction. For a given level 𝑖 with edge type 𝐸𝑖 ,

we compute three sets, namely 𝑉𝑖 (Lines 2–5), 𝑉𝑖+1 (Lines 6–9)

and 𝑉 ∗
𝑖
(Lines 10–14). Figure 5 depicts the relationship among 𝑉𝑖 ,

𝑉𝑖+1 and 𝑉 ∗𝑖 . 𝑉𝑖 denotes the set of head-relevant nodes, which are

computed from the partial matching set 𝑉𝑖 . Directly computing

the relevant matching set 𝑉 ∗
𝑖
from 𝑉𝑖 is expensive, as it requires

enumerating 3-hop paths between nodes from𝑉𝑖 to𝑉𝑖+1. Hence, we
compute the intermediate set𝑉𝑖+1, which is obtained by first finding
neighbors of 𝑉𝑖 via edge type 𝐸𝑖 , i.e., N(𝑉𝑖 , 𝐸𝑖 ), and including a

node 𝑢 ∈ N (𝑉𝑖 , 𝐸𝑖 ) to 𝑉𝑖+1 if 𝑢 shares at least a common neighbor

with the nodes in 𝑉𝑖+1. As such, any node 𝑢 ∈ 𝑉𝑖+1 serves as a

bridge between 𝑉𝑖 and 𝑉𝑖+1 to find tail-relevant nodes. Finally, if a
node 𝑢 ∈ 𝑉𝑖 connects to another node 𝑛 ∈ 𝑉𝑖+1 via edge type 𝐸𝑖 , 𝑢
is added to 𝑉 ∗

𝑖
as it is both head- and tail-relevant.

Algorithm 2: Data Perturbation Space Reduction

Input:𝑉𝑖 ,𝑉𝑖+1 , 𝐸𝑖 ,𝑉𝑖
Output:𝑉 ∗𝑖

1 𝑉𝑖 ,𝑉𝑖+1 ,𝑉 ∗𝑖 ← ∅;
2 foreach 𝑣 ∈ 𝑉𝑖 do
3 foreach 𝑛 ∈ N(𝑣) do
4 if 𝑛 ∈ N(𝑉𝑖 ) then
5 𝑉𝑖 ← 𝑉𝑖 ∪ {𝑣}; break;
6 foreach 𝑣 ∈ N(𝑉𝑖 , 𝐸𝑖 ) do
7 foreach 𝑛 ∈ N(𝑣) do
8 if 𝑛 ∈ N(𝑉𝑖+1 ) then
9 𝑉𝑖+1 ←𝑉𝑖+1 ∪ {𝑣}; break;

10 foreach 𝑣 ∈ 𝑉𝑖 do
11 foreach 𝑛 ∈ N(𝑣, 𝐸𝑖 ) do
12 if 𝑛 ∈ 𝑉𝑖+1 then
13 𝑉 ∗𝑖 ← 𝑉 ∗𝑖 ∪ {𝑣}; break;
14 return𝑉 ∗𝑖 ;

Producing 𝑉 ∗
𝑖
only requires a constant number of linear scans

on the neighbors of the matching set 𝑉𝑖 and the partial matching

set 𝑉𝑖 at each level 𝑖 . Let E(𝑉 ) denote the set of edges having one
end in node set 𝑉 . The complexity of admissibility-based reduction

is𝑂 (∑𝑖 |E(𝑉𝑖 ) |), since we can incrementally compute𝑉𝑖+1 from𝑉𝑖 .

To support efficient edge look-ups in Lines 4 and 8, we build a hash

table on N(𝑉𝑖 ) for each 𝑖 = {0, . . . , 𝑘} in 𝑂 (
∑
𝑖 |E(𝑉𝑖 ) |) time. Simi-

larity, efficient look-ups in Line 12 rely on a hash table on𝑉𝑖+1, built

in 𝑂

(∑
𝑖 |𝑉𝑖 |

)
time as 𝑉𝑖+1 ⊆ 𝑉𝑖+1 . At each level 𝑖 , computing 𝑉𝑖 ,

𝑉𝑖+1 and𝑉 ∗𝑖 requires scanning the neighbors of nodes in𝑉𝑖 and𝑉𝑖+1
in theworst case. Thus, the complexity of relevance-based reduction

is 𝑂

(∑
𝑖 |E(𝑉𝑖 ) |

)
. Combining admissibility- and relevance-based

reduction yields a time complexity of 𝑂

(∑
𝑖 ( |E(𝑉𝑖 ) | + |E(𝑉𝑖 ) |)

)
.

Exact Algorithm. The exact algorithm for data perturbation also

executes in two stages, as shown in Algorithm 3. In the first stage
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(Lines 1–4), we obtain the perturbation space by the efficient space

reduction just described. In the second stage (Lines 5–20), we eval-

uate all possible data perturbations of 𝑒 = (𝑢, 𝑣) where 𝑢 ∈ 𝑉 ∗
𝑖
, 𝑣 ∈

𝑉𝑖+1 at all levels. We calculate the head relevance Sℎ in Lines 9–11,

followed by computing the tail relevance S𝑡 in Lines 12–14 when

the head relevance is greater than 0. If the perturbation is relevant,

i.e., S(𝑒) > 0, we evaluate its strikingness measure in Lines 16–20.

We execute a BackwardPass similar to the one in Algorithm 1 to get

the perturbed peer entity set𝑉 ′
0
. Since only 𝑒 = (𝑢, 𝑣) is augmented

to the KG, we run BackwardPass for 𝑃 (𝑣0, 𝑢) from level 𝑖 < 𝑘 (in-

stead of 𝑃 (𝑣0, 𝑐) from level 𝑘) to get the additional peer entities

when considering 𝑒 . After enumerating the data perturbation space,

we normalize the weighted sum of I(𝑄 ′) and apply Equation 1 to

compute the deviation measure Δ(𝑄) in Lines 21–22.

Algorithm 3: Exact Algorithm for Data Perturbation

Input: KG G; OF𝑄 (A, X, 𝑃 (𝑣0, 𝑐 ) ) ; matching node sets {𝑉𝑖 } for𝑄 ;

strikingness score I(𝑄 )
Output: Deviation measure Δ(𝑄 )

1 𝑉0 ← VA − 𝑉0 ; // VA are nodes with attribute A
2 for 𝑖 ∈ {0, . . . , 𝑘 − 1} do
3 𝑉𝑖+1 ← N(𝑉𝑖 , 𝐸𝑖 ) − 𝑉𝑖 ;
4 𝑉 ∗𝑖 ← SearchSpaceReduction(𝑉𝑖 ,𝑉𝑖+1 , 𝐸𝑖 ,𝑉𝑖);
5 𝜇← 0 , 𝑍 ← 0;

6 for 𝑖 ∈ {0, . . . , 𝑘 − 1} do
7 foreach 𝑣 ∈ 𝑉𝑖+1 do
8 foreach 𝑢 ∈ 𝑉 ∗𝑖 do
9 𝑒 ← (𝑢, 𝑣) ; Sℎ, S𝑡 ← 0;

10 foreach 𝑢′ ∈ 𝑉𝑖 ∩ N(𝑣, 𝐸−1𝑖 ) do
11 Sℎ ← Sℎ + S(𝑢,𝑢′ ) ;
12 if Sℎ > 0 then
13 foreach 𝑣′ ∈ N(𝑢, 𝐸𝑖 ) do
14 S𝑡 ← S𝑡 + S(𝑣, 𝑣′ ) ;
15 S(𝑒 ) ← Sℎ · S𝑡 ;
16 if S(𝑒 ) > 0 then
17 𝑉 ′

0
← BackwardPass(𝑃 (𝑣0, 𝑣𝑖 = 𝑢 ));

18 I(𝑄 ′ ) ← Strikingness(𝑉0 ∪𝑉 ′
0
, A, X);

19 𝜇← 𝜇 + I(𝑄 ′ ) · S (𝑒 ) ;
20 𝑍 ← 𝑍 + S(𝑒 ) ;
21 E𝑄′∼D ← Normalization(𝜇, 𝑍);

22 Δ(𝑄 ) ← E𝑄′∼D , I(𝑄 ) ;
23 return Δ(𝑄 ) ;

The complexity of the first stage is 𝑂 (∑𝑖 ( |E(𝑉𝑖 ) | + |E(𝑉𝑖 ) |)). In
the second stage, at each level 𝑖 , the number of potentially relevant

data perturbations is |𝑉 ∗
𝑖
| · |𝑉𝑖+1 |. For each such perturbation, the

time to compute the head and tail relevance is 𝑂 ( |𝐸𝑖 | · 𝐽 ), where 𝐽
is the average time to evaluate S(𝑐, 𝑐′). The BackwardPass and

strikingness evaluation take 𝑂 (∑𝑗<𝑖 |𝐸 𝑗 |) time. To perform this

process at all levels, the exact algorithm runs in𝑂 (∑𝑖 ( |𝑉 ∗𝑖 | · |𝑉𝑖+1 |) ·∑
𝑗<𝑖 |𝐸 𝑗 | · |𝐸𝑖 | · 𝐽 ) time.

Sampling-based Approximation. Unlike entity perturbation

where the perturbation space is bounded by the number of nodes

in the KG in the worst case, the data perturbation space has a qua-

dratic complexity of𝑂 (∑𝑖 |𝑉 ∗𝑖 | · |𝑉𝑖+1 |). Thus, it is often prohibitive

to obtain the PRD for data perturbation explicitly. We devise a

sampling strategy to estimate the data PRD on the fly. We first ran-

domly sample a level 𝑖 for the 𝑘-hop query 𝑃 of the OF 𝑄 (A,X, 𝑃).
For each sampled level 𝑖 , we randomly sample 𝑢 from 𝑉 ∗

𝑖
and 𝑣

from 𝑉𝑖+1. Seen as a plausible edge 𝑒 = (𝑢, 𝑣), the sampled node

pair has a probability PU (𝑒) = 1

𝑘 · |𝑉 ∗
𝑖
| · |𝑉𝑖+1 | under our sampling dis-

tributionU to evaluate the data PRD D. We then execute Lines 7–

20 in Algorithm 3 to compute the head-tail relevance S(𝑒) and

the strikingness of the perturbed OF, I(𝑄 ′). Since PD (𝑒) ∝ S(𝑒)
by a normalizing constant 𝑐 =

∑
𝑒 S(𝑒), we employ importance

sampling to estimate E𝑄 ′∼D by taking 𝑛 samples under U as

𝜇𝑛 =

∑𝑛
𝑗=1 I(𝑄 ′𝑗 )𝑤 (𝑒 𝑗 )∑𝑛

𝑗=1 𝑤 (𝑒 𝑗 )
, where 𝑤 (𝑒) = S(𝑒)/PU (𝑒). Since all sam-

ples are i.i.d., 𝜇𝑛 converges to E𝑄 ′∼D with probability 1 [17]; the

convergence rate is again 𝑂 (1/
√
𝑛), as mentioned in Section 4.

6 Experiments
In this section, we evaluate the efficiency and effectiveness of our

framework. First, we present the experimental setup.

Knowledge Graph (KG) and Outstanding Facts (OFs). We use

the Wikidata KG [44] as our data source here, while Appendix D

also includes experiments on DBpedia [29]. We extract a subgraph

from the Wikidata dump [48] with 17.8M entities and 63.4M edges

featuring human-related knowledge. Following existing studies that

mine OFs related to celebrities [55, 58], we select 100 celebrities, the

top 70 from “The Celebrity 100” [13] and the top 30 from “Forbes

Billionaires” [15]. We divide them into three groups, Art, Sports,
and Business, based on their profile information. We extract OFs

for these celebrities using FMiner [55], the only state-of-the-art

method that can scale to large KGs. To extract an OF for a celebrity

group, we input a randomly selected celebrity as the “target” into

FMiner. We assess the scalability of our perturbation analysis by

varying the path query length 𝑘 from 2 to 4. Note that longer path

queries are rare in practice, as they are difficult to interpret in

natural language [55]. For each group and path length setting, we

mine 50 OFs with a strikingness score of at least 0.8.

Default Sampling Setting. Given that the sizes of the entity and

data perturbation spaces can be directly obtained, we set the sample

size 𝑛 for the sampling-based algorithms to 𝑛 = 𝑟𝑁 , where 𝑟 is the

sampling rate and 𝑁 is the size of the respective perturbation space.

By default, we set 𝑟 = 5% for both perturbation regimes.

Hardware Configuration.We conduct all experiments on a Linux

server with a 48-core CPU@3.45GHz and 256GB memory. All algo-

rithms are implemented
1
using C++ with -O3 optimization.

6.1 Empirical Study on Entity Perturbation
Efficiency.We execute the exact and sampling algorithms for all

OFs under the default setting (𝑟 = 5%). Figure 6 presents the ratio of

OFs on which the perturbation analysis is completed in 5 minutes.

The sampling algorithm processes almost all OFs in 5 minutes. The

exact algorithm performs well in certain scenarios, e.g., 𝑘 = 3 for

Art, 𝑘 = 4 for Art and Sports. As elaborated in Section 4, a larger

perturbation space implies a longer execution time. Table 2 indi-

cates the average size of the entity perturbation space for different

celebrity groups and path lengths. Notably, longer paths often lead

to a smaller entity perturbation space, as they impose more con-

straints on matching instances, rendering OFs with longer paths

easier to analyze. For example, both exact and sampling algorithms

perform well on the Sports group for 𝑘 = 4, where the size of the

perturbation space is only 13% of that for 𝑘 = 2. We also observe

that the perturbation space of the Business group is the largest

since the Business OFs contain more “general” edge types (e.g.,

1
Code and data are available at https://github.com/xhh232018/RobustFacts.

https://github.com/xhh232018/RobustFacts
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Figure 6: Efficiency studies for entity perturbation.

Table 2: Size of entity perturbation space (50 OFs per group).
Group 𝑘 = 2 𝑘 = 3 𝑘 = 4

Art 1.7×105 8.3×104 1.1×105
Sports 4.7×105 2.4×105 6.5×104
Business 1.6×106 5.1×105 7.8×105

position held) with numerous edge instances in the associated path

queries. As a result, the exact method completes the perturbation

analysis for only half of the Business OFs. Nevertheless, even in

that challenging setting, the sampling algorithm still analyzes over

90% of the OFs within 5 minutes. Appendix D presents (in Fig-

ure 16) the completion ratios for 1-minute and 3-minute time limits,

demonstrating similar trends.

Error Analysis. For a given OF 𝑄 , we use |Δ∗ (𝑄) − Δ(𝑄) | to
measure the error of the sampling algorithm, where Δ∗ (𝑄) is the
estimation of the true deviation measure Δ(𝑄). To evaluate the con-
vergence speed, we vary the sampling rate 𝑟 , testing three different

values: 1%, 5%, and 10%. To measure the error, we must focus on

those OFs where the exact algorithm completes the perturbation

analysis within 5 minutes. We run the sampling algorithm ten times

for each of these OFs and report the mean error per celebrity group

and path length. Figure 7a presents the error distribution of 3-hop

OFs, while Appendix D provides further results. With increasing

sample size, (i) the variance of the error decreases and (ii) the error
converges to a small range (2.7% on average) for all celebrity groups.

This result follows the convergence analysis in Section 4.
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Figure 7: Effectiveness studies on entity perturbation.

OF Robustness. To scrutinize the problem further, Figure 7b de-

picts deviation values Δ(𝑄) for all mined OFs where the exact

algorithm terminates within 5 minutes. Notably, under entity per-

turbation, the strikingness scores of most OFs deviate marginally

from the score expected by the entity PRD, with an average devi-

ation of 6.8%. However, some OFs exhibit high deviation. Recall

that FMiner [55] mined the original OFs orthogonally to our work.

Figure 7b leads to two critical conclusions. First, the low average de-
viation of the OFs suggests the reliability of the miner. Meanwhile,

outlier OFs with very high deviation evince that OF mining may

fumble, thus a rigorous perturbation analysis, as we propose, is

vital to assess the robustness of mined OFs before publicizing them.

Appendix B presents a case study on an OF about NBA players.

6.2 Empirical Study on Data Perturbation
Effectiveness of Perturbation Space Reduction. To assess the

effectiveness of our space reduction techniques, we report the sizes

of the perturbation spaces originally (‘Ori’), after admissibility-

based reduction (‘Adm’), and eventually after relevance-based re-

duction (‘Adm+Rel’) in Figure 8. Admissibility-based reduction

prunes over 50% of the edges in the original space (note that the

intra-bar partitions are in log scale) and relevance-based reduction

further prunes over 99% of the surviving edges on average; these

results attest to the effectiveness of our space reduction approach.
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Figure 8: Size of data perturbation space (50 OFs per group).

Efficiency. Figure 9 shows the ratio of OFs where data perturbation
analysis ends within 5 minutes. The sampling algorithm processes

over 90% of the OFs within 5 minutes. Unlike entity perturbation

(cf. Figure 6), the completion ratio drops as 𝑘 grows, because longer

paths imply larger search space in data perturbation. In Appendix D,

we try 1-minute and 3-minute cutoffs, with aligned findings.
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Figure 9: Efficiency studies for data perturbation.

Error Analysis. As in Section 6.1, we select OFs where the exact

algorithm completes the perturbation analysis in 5 minutes. Fig-

ure 10a presents the approximation error for each celebrity group

for 3-hop OFs. We defer further results to Appendix D. The estima-

tion converges as we increase the sampling rate. When 𝑟 = 10%,

the error is <1% in most cases. Generally, the error is smaller than

entity perturbation because adding an edge to the KG alters the peer

entity set much less drastically thanmatching a different path query.

The smaller extent of perturbation naturally implies a smaller error.

OF Robustness. We present the deviation values for OFs under

data perturbation in Figure 10b. The values are generally smaller

than entity perturbation because data perturbation is less invasive

to the peer entity set, as explained in the previous paragraph. The
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Figure 10: Effectiveness studies on data perturbation.

average deviation under data perturbation is 2.6%. Nonetheless, we

also detect OFs that exhibit large deviation and sensitivity to data

perturbation, seen as outliers in Figure 10b. To further showcase

our method, Appendix C analyzes an OF about US politics.

6.3 Crowdsourced User Study
While existing works on perturbation analysis rely primarily on

case studies to demonstrate their efficacy [2, 30, 52], we believe it

is valuable to complement case studies with users’ perspectives

for additional insight. To this end, we recruited 600 crowdsourced

participants from the AmazonMechanical Turk platform to validate

the effectiveness of our system for both types of perturbation.

We conduct an ablation analysis for the effectiveness of deviation

measures and counterarguments in assessing the robustness of OFs

(Appendix B details how deviation measures and counterarguments

are used in our case studies). We use 20 OFs with deviation values

ranging from 0.4% to 48%. Each participant receives an OF and one

of the following: (1) the OF alone; (2) the OF and the corresponding

counterargument; or (3) the OF, the counterargument, and the

deviation value with an explanation of what the deviation means.

Given the information provided, participants are asked to rate their

agreementwith a generalized statement on a scale from 1 (not likely)

to 10 (absolutely likely). Each setting is rated by 10 participants.

(a) Setting 1 (b) Setting 2 (c) Setting 3

Figure 11: Crowdsourced user study.

Figure 11 shows scatter plots with linear regression lines, which

show the average rating by participants of their agreement with the

generalized fact under each setting (10 responses for each point).

We verify statistical significance by the t-test for correlation. The

presentation of only an OF to participants (Setting 1) yields a pos-

itive correlation between the deviation measure and the average

rating (p-value 0.0005), implying a tendency to jump to conclusions

from a striking OF. When the OF comes with a counterargument

(Setting 2), the regression line slope falls (p-value 0.4643), yet the

decline is not statistically significant, indicating that the counterar-

gument alone does not suffice to hinder bias. Finally, when both a

counterargument and a deviation measure escort the OF (Setting 3),

a negative correlation emerges between the rating and deviation

measure (p-value 0.0048). The statistically significant shift from

positive to negative correlation underscores the effectiveness of our

approach in enhancing users’ understanding of the context, thereby

preventing jumping to conclusions. Due to space limitations, we

refer to the technical report [54] for details on statistical hypothesis

testing.

7 Related Work
OF Mining. Early OF mining focused on top-𝑘 [10] and skyline

queries [5]. With advances in computational journalism and busi-

ness intelligence, OF mining within data subsets gained traction.

Some studies find a local subspace as the context that makes a tar-

get data point outstanding [50, 57], while others identify streaks in

temporal data [11, 27, 37, 51]. Such approaches work primarily on

relational databases, often on a single table, by defining constraints

to select context data. OF mining in KGs [58] finds OFs of a target

entity based on attribute rarity vs. peer entities defined by a graph

pattern. FMiner [55] introduces context entities to extract more

relevant OFs. Contrariwise, our work measures the robustness of

the given OFs mined from KGs.

Perturbation Analysis. Perturbation analysis is commonly used

in uncertain data management and mining [1, 26]. Wu et al. [52]

applied it to computational fact-checking; they convert facts into

parameterized SQL queries and formulate the optimization prob-

lem of finding the parameter settings that yield the weakest results

under parameter sensitivity constraints. Asudeh et al. [2] propose

a method that perturbs data points to check whether trend facts

in temporal data remain valid. Lin et al. [30] propose perturbation

analysis with OLAP operations. Although our perturbation anal-

ysis shares the spirit of prior studies, previous methods focus on

relational data and are inapplicable to our setting.

8 Conclusion
We crafted a methodology to measure the robustness of outstanding

facts mined from knowledge graphs by perturbing entities and data.

We designed exact and approximate algorithms for both types of

perturbation, along with a novel strategy to effectively reduce the

data perturbation space and hence the computational cost. Experi-

ments on the Wikidata KG validate the efficiency of our proposals

and their effectiveness in mitigating the jumping conclusion bias. In
the future, we aim to expand perturbation analysis to KG aggrega-

tion queries [8, 46] and study the robustness of other configurations,

such as stable matchings with a fairness objective [18, 41, 42, 49].
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A Head and Tail Relevance Rationale
In Figure 12, edge 𝑒 = (‘Alibaba Group’, ‘Reddit’) is a probable data
perturbation for the Reddit OF based on head relevance; both Al-

ibaba Group and Tencent are Chinese Internet conglomerates and

share common attributes in the KG, such as country, stock exchange,

and invested companies. However, retail companies Alibaba has

invested in, such as Farfetch, Sun Art Retail, and Fanatics, are less

relevant to Reddit, suggesting that Alibaba is unlikely to invest in

Reddit. Tail relevance addresses the discrepancy by downgrading

the relevance score. In Figure 13, taking tail relevance into account,

𝑒′ = (‘Sequoia Capital’, ‘Reddit’) emerges as a more suitable data

perturbation. Among Sequoia Capital’s backed companies in the KG,

there are several US social networking platforms like Instagram and

LinkedIn, that share services with Reddit. Additionally, both Reddit

and Google are partners of the Entertainment Consumers Associ-

ation and members of the Internet Association. This background

suggests Sequoia Capital’s investment in Reddit. Introducing 𝑒′

to the KG incorporates businesses that have received investments

from Sequoia Capital into the peer entity set, contradicting the

original OF. For instance, Nvidia is publicly listed.

Country, Stock Exchange, 
Invested Companies Farfetch

... ...

Uber
False

SpaceX
Fidelity Investment

Reddit

!"!
!! !"" #!"

Investor Investor Reddit

True

!"

!!

Is Listed
True

Is Listed

Is Listed

Alibaba Group

!"

Company Company

... ...

Lazada !!

Tencent

Sun Art Retail

Fanatics

......

!"

Figure 12: An example of head relevance only.
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Figure 13: An example of head-tail relevance.

B Case Study for Entity Perturbation
OFs are frequently used as evidence to bolster generalizations in

social platform discussions. An intriguing subject that arises on

Reddit is whether small-market teams prefer to draft international

players [34]. One could argue that no such preference exists, based

on the generalization of the following OF: Memphis Grizzlies, with

the 29
th

market size among a total of 30 NBA teams [16], have

only drafted 6 foreign players, with a strikingness of 𝐼 (𝑄) = 0.91.

Figure 14 shows the associated path query. Through our entity

perturbation analysis, we derive an expected strikingness score

of E𝑄 ′∼D = 0.78, which is substantially lower than 0.91, with

deviation measured at Δ(𝑄) = 16%. Furthermore, we return a coun-

terargument to the OF by identifying the perturbation 𝑄 ′ that

maximizes (𝐼 (𝑄) − 𝐼 (𝑄 ′)) · PD (𝑄 ′), whereD is the PRD for entity

perturbation. The counterargument is a relevant but less striking

perturbation than the original OF. Specifically, it suggests San Anto-

nio as the context entity to replace Memphis. San Antonio is related

to Memphis since both belong to the southwest NBA division and

are small-market teams (San Antonio ranking 20
th

among NBA

teams). However, the San Antonio Spurs have drafted 25 foreign

players, a fact that brings the strikingness down to 0.72, revealing

that the original OF is not robust under entity perturbation.
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Figure 14: Case study for entity perturbation.
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Figure 15: Case study for data perturbation.

C Case Study for Data Perturbation
To study a case on gender parity, we consider an OF on Janet Yellen,

the current US Secretary of the Treasury, who also held the chair of

the Federal Reserve in 2014–2018. According to the Wikidata KG,

among all politicians who have held any of Yellen’s posts, Yellen

is the only woman vs. 91 men. The strikingness score of this OF

is 𝐼 (𝑄) = 0.99. Figure 15 depicts the associated path query. This

uniqueness could spawn a radical generalization about the gender

gap in US politics. Still, by data perturbation, the expected strik-

ingness is only E𝑄 ′∼D = 0.91 (down from 0.99) with associated

deviation Δ(𝑄) = 8.8%, which is large by data perturbation stan-

dards. Indeed, our methodology suggests a data perturbation (edge

addition) that turns out to be valid in reality but missing from the

KG and refutes the original OF: Yellen also held the chair of the

Council of Economic Advisers, which adds three more women to

her peer entity set, namely Laura Tyson, Christina Romer, and

Cecilia Rouse. The addition brings strikingness down to 0.95. Our

methodology identified this data perturbation as highly relevant to
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Figure 16: Efficiency studies for entity perturbation within 1 and 3 minutes.
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Figure 17: Efficiency studies for data perturbation within 1 and 3 minutes
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Figure 18: Sampling error for entity perturbation.
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Figure 19: Sampling error for data perturbation.

the original OF, as the Secretary of the Treasury and the Chair of

the Council of Economic Advisers are US cabinet positions previ-

ously held by politicians like Ben Bernanke and Alan Greenspan

and economist Joseph E. Stiglitz, Yellen’s academic advisor.

D Supplemental Experiments
Runtime Analysis for Wikidata OFs. Figures 16 and 17 show

the ratio of OFs where the entity and data perturbation analysis

completes within 1 and 3 minutes, respectively. Similarly, we con-

clude that the completion ratio decreases for a larger 𝑘 in data

perturbation, which is consistent with the analysis in Section 6.

Error Analysis for Wikidata OFs. Figures 18–19 show the error

distribution per group under different path lengths for entity and

data perturbation, respectively. As in Section 6, the error variance

falls as the sample size grows and the error converges for all groups.

Experiments on DBpedia. To showcase the generality of our

method to any knowledge base, we gather a knowledge graph

of 5.2M entities and 26M edges from DBpedia [29], which has less

people-related information than Wikidata [44] (17.8M entities and
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Figure 20: OF Deviation for DBpedia OFs.

63.4M edges). We mine OFs on celebrities with FMiner [55]. In

Figure 20, we present the distribution of OF deviation values per

group, under entity and data perturbation. The results are similar

to those of Figures 7b and 10b in the main paper. While most OFs

marginally deviate from their expected score, each group includes

a few outliers. Deviation values are lower under data perturbation

than under entity perturbation, as the former is less invasive to the

peer entity set, consistent with our findings on Wikidata.
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