

		Syn	Syn + Seq	Syn + Dep	All
ME	Ρ	0.726	0.737	0.695	0.724
	R	0.688	0.694	0.731	0.702
	F	0.683	0.715	0.712	0.713
SVM	Ρ	0.679	0.689	0.687	0.691
	R	0.681	0.686	0.682	0.686
	F	0.680	0.688	0.684	0.688

	ME			SVM		
	Р	R	F	Р	R	F
Best	0.737	0.694	0.715	0.689	0.686	0.688
+H1	0.714	0.729	0.721	0.698	0.699	0.699
+H2	0.730	0.723	0.726	0.704	0.704	0.704
+H3	0.739	0.704	0.721	0.701	0.696	0.698
-H3+H4	0.746	0.713	0.729	0.702	0.701	0.702

	References	
 [Bunescu & Moo extraction. In Pr 	oney 05a] A shortest path dependency ke roceedings of HLT/EMNLP, 2005.	rnel for relation
 [Bunescu & Moo NIPS, 2005. 	oney 05b] Subsequence kernels for relation	on extraction. In
 [Califf & Mooney information extra Applying Machin 	y 98] Relational learning of pattern-match action. In <i>Proceedings of AAAI Spring Sy</i> ne Learning to Discourse Processing, 199	rules for mposium on 98.
• [Miller et al. 00] text. In Proceed	A novel use of statistical parsing to extract lings of NAACL, 2000.	ct information from
 [Zhang et al. 06] convolution tree] Exploring syntactic features for relation (kernel. In <i>Proceedings of HLT/NAACL</i> , 2	extraction using a 2006.
 [Zhao & Grishm kenrel methods. 	an 05] Extracting relations with integrated In Proceedings of ACL, 2005.	information using
• [Zhou et al. 05] Proceedings of	Exploring various knowledge in relation e ACL, 2005.	xtraction. In

