A Two-Stage Approach to Domain Adaptation for Statistical Classifiers

Jing Jiang & ChengXiang Zhai

Department of Computer Science University of Illinois at Urbana-Champaign

What is domain adaptation?

Other examples

- Spam filtering:
 - □ Public email collection → personal inboxes
- Sentiment analysis of product reviews
 - □ Digital cameras → cell phones
 - □ Movies → books
- Can we do better than standard supervised learning?
- Domain adaptation: to design learning methods that are aware of the training and test domain difference.

Nov 7, 2007 CIKM2007

How do we solve the problem in general?

Nov 7, 2007 CIKM2007

Observation 2

generalizable features

...decapentaplegic and wingless are expressed in analogous patterns in each... ...that **CD38** is expressed by both neurons and glial cells...that **PABPC5** is expressed in fetal brain and in a range of adult tissues.

Nov 7, 2007 CIKM2007

Comparison with related work

- We explicitly model generalizable features.
 - Previous work models it implicitly [Blitzer et al. 2006, Ben-David et al. 2007, Daumé III 2007].
- We do not need labeled target data but we need multiple source (training) domains.
 - Some work requires labeled target data [Daumé III 2007].
- We have a 2nd stage of adaptation, which uses semi-supervised learning.
 - Previous work does not incorporate semi-supervised learning [Blitzer et al. 2006, Ben-David et al. 2007, Daumé III 2007].

No▼ 7, 2007 CIKM2007 1

Implementation of the twostage approach with logistic regression classifiers

Decomposition of \mathbf{w}

$$\mathbf{w}^{T}\mathbf{x} = \mathbf{v}^{T}\mathbf{z} + \mathbf{u}^{T}\mathbf{x}$$
$$= \mathbf{v}^{T}A\mathbf{x} + \mathbf{u}^{T}\mathbf{x}$$
$$= (A\mathbf{v})^{T}\mathbf{x} + \mathbf{u}^{T}\mathbf{x}$$

$$\mathbf{w} = A^T \mathbf{v} + \mathbf{u}$$

Nov 7, 2007 CIKM2007

How to find A? (1)

Joint optimization

$$(\widehat{\boldsymbol{A}})\widehat{\mathbf{v}}, \{\widehat{\mathbf{u}}^{k}\}) = \underset{(A, \mathbf{v}), \{\mathbf{u}^{k}\}}{\operatorname{arg min}} \left[\lambda \left(\|\mathbf{v}\|^{2} + \lambda_{s} \sum_{k=1}^{K} \|\mathbf{u}^{k}\|^{2} \right) - \frac{1}{K} \sum_{k=1}^{N_{k}} \frac{1}{N_{k}} \sum_{i=1}^{N_{k}} \log p(y_{i}^{k} | \mathbf{x}_{i}^{k}; A^{T}\mathbf{v} + \mathbf{u}^{k}) \right]$$

Alternating optimization

Nov 7, 2007 CIKM2007 3

How to find A? (2)

- Domain cross validation
 - □ Idea: training on (K-1) source domains and test on the held-out source domain
 - Approximation:
 - w_f^k : weight for feature f learned from domain k
 - \mathbf{w}_f^k : weight for feature f learned from other domains
 - rank features by

$$\sum_{k=1}^{K} w_f^k \cdot \underline{w}_f^k$$

See paper for details

Experiments

- Data set
 - BioCreative Challenge Task 1B
 - □ Gene/protein name recognition
 - □ 3 organisms/domains: fly, mouse and yeast
- Experiment setup
 - □ 2 organisms for training, 1 for testing
 - □ F1 as performance measure

Conclusions and future work

- Two-stage domain adaptation
 - Generalization: outperformed standard supervised learning
 - Adaptation: outperformed standard bootstrapping
- Two ways to find generalizable features
 - Domain cross validation is more effective
- Future work
 - Single source domain?
 - □ Setting parameters *h* and *m*

References

- S. Ben-David, J. Blitzer, K. Crammer & F.
 Pereira. Analysis of representations for domain adaptation. NIPS 2007.
- J. Blitzer, R. McDonald & F. Pereira. *Domain adaptation with structural correspondence learning*. EMNLP 2006.
- H. Daumé III. Frustratingly easy domain adaptation. ACL 2007.

Nov 7, 2007 CIKM2007 39

Thank you!