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Abstract

Empty taxi cruising represents a wastage of
resources in the context of urban taxi ser-
vices. In this work, we seek to minimize
such wastage. An analysis of a large trace of
taxi operations reveals that the services’ inef-
ficiency is caused by drivers’ greedy cruising
behavior. We model the existing system as
a continuous time Markov chain. To address
the problem, we propose that each taxi be
equipped with an intelligent agent that will
guide the driver when cruising for passengers.
Then, drawing from AI literature on multi-
agent planning, we explore two possible ways
to compute such guidance. The first formula-
tion assumes fully cooperative drivers. This
allows us, in principle, to compute system-
wide optimal cruising policy. This is modeled
as a Markov decision process. The second
formulation assumes rational drivers, seeking
to maximize their own profit. This is mod-
eled as a stochastic congestion game, a spe-
cialization of stochastic games. Nash equi-
librium policy is proposed as the solution to
the game, where no driver has the incentive
to singly deviate from it. Empirical result
shows that both formulations improve the ef-
ficiency of the service significantly.

1 INTRODUCTION

Taxis are a major mode of transport in every urban
city in the world. In Singapore, as of April 2009, there
were about 24,000 taxis and 87,000 licensed drivers,
providing around 850,000 trips daily. These are op-
erated by a small number of companies. The largest
company, ComfortDelgro, operates over 15,000 taxis,
and captures the majority of the market share in terms
of ridership. Like many congested cities in the world,

commuters in Singapore often view taxis as a more
efficient mode of transport compared to private cars.
Data from the Singapore Land Transport Authority
(the regulatory agency for land transportation) show
that taxis on average chalk up higher mileage than pri-
vate cars, with single-shift taxis traveling some 120,000
km a year. More than a third of this travel is empty
cruising, as shown in the next section, see (Tan et al.,
2009) as well, which represents a significant wastage
of resources.

Taxi services have been studied extensively in the lit-
erature. Research has been conducted to investigate
the services’ demand-supply interaction and the re-
sulting market equilibrium (Cairns and Liston-Heyes,
1996; Yang et al., 2002). These studies aim to pre-
dict the economic consequences of regulatory policies,
such as entry restriction and fare control. At the op-
erational level, quantitative models have been built to
capture, for example, passengers’ and drivers’ bilateral
searching behavior (Wong et al., 2005). While these
models tend to be descriptive, our work is operative
by nature. We seek to provide solutions to a specific
problem, namely, we improve the inefficiency of exist-
ing cruising policy by providing alternative policies de-
rived from multi-agent planning and decision making
models. We believe the public transport arena offers
a rich domain for application of multi-agent concepts
and methodologies.

We start by analyzing a dataset obtained from a ma-
jor taxi operator, which traces the movement of a large
number of taxis in Singapore. Using the data for the
month of July 2009, our analysis shows that the cur-
rent system’s inefficiency, measured in terms of cruis-
ing hours, is due to the inherently greedy behavior of
drivers. This, in turn, is caused by the lack of visibil-
ity in regards to the distribution of cruising taxis on
the network at different time periods. We then model
the existing taxi service by a continuous-time Markov
chain, whose parameters are derived from the dataset.
The result is used as the baseline for empirical com-



parison with our approach.

We proceed to propose two models: a cooperative and
a non-cooperative model. In our formulations, each
driver is endowed with a guidance agent that provides
suggestions on how to cruise in search of passengers.
In the first formulation, we assume that each driver is
fully cooperative, and therefore willing to follow a cen-
tralized policy (that could be suboptimal for him/her
individually). This allows us, in principle, to compute
the system-wide optimal policy, where the objective is
to maximize overall occupied time. For this purpose,
we model the problem as a Markov decision process. In
the second formulation, we assume that drivers are ra-
tional who seek to maximize their respective occupied
time. Here, there is an implicit competition among
drivers, simply because an increase in the number of
cruising taxis in a zone decreases each driver’s chance
of finding passengers within a given time. This leads
directly to a game theoretic formulation. We model
the problem as a stochastic congestion game (a special-
ization of stochastic games) and seek to find a Nash
equilibrium policy. Given an equilibrium policy, no
driver has the incentive to singly deviate from it. Both
problems are solved for finite horizon using value iter-
ation coupled with a sampling technique.

There has been a surge of interest, in recent years,
among AI and complexity theory communities in com-
putational problems related to game theory. The cen-
tral problem in the area is the computation of Nash
equilibrium in different game settings. Classical algo-
rithms to solve the standard simultaneous games have
relied on homotopy methods, which solve fixpoint (one
instance of which is the Nash equilibrium) problems.
The most well-known of such methods is the Lemke-
Howson algorithm. See (Herings and Peeters, 2009)
for a recent survey, and (Goldberg et al., 2011) for a
discussion on the complexity of such methods. Non-
homotopy attempts in the literature include enumer-
ation of strategy supports (Porter et al., 2004) and
mixed-integer programming (Sandholm et al., 2005).

In the setting of dynamic games, specifically in
stochastic games (Shapley, 1953), the problem of com-
puting Nash equilibrium has been cast in the context
of multiagent reinforcement learning, first introduced
by (Littman, 1994), who shows the convergence of
value iteration in 2-player zero-sum stochastic games.
(Hu and Wellman, 2003) attempts to generalize the
result to n-player general-sum games by extending Q-
learning algorithm. Their algorithm converges to Nash
equilibrium in a restrictive case. Recent attempt by
(Kearns et al., 2000) proposes an algorithm that con-
verges to an equilibrium-like joint policy but not Nash
equilibrium. Finding an algorithm that converges to
Nash equilibrium in n-player general-sum stochastic

games remains an important open problem.

Despite the tremendous interest, many interesting
real-world problems (such as the one presented here)
are so large that even the best algorithms have no hope
of computing an equilibrium directly. Furthermore, it
has been shown that the problem is likely to be in-
tractable even for the case of two-player simultaneous
games (Chen and Deng, 2006), it being complete for
the complexity class PPAD. The standard approach
to overcome this problem is to construct a smaller
game that is similar to the original game, and solve
the smaller game. Then, the solution is mapped to
a strategy profile in the original game (Ganzfried and
Sandholm, 2011).

In this work, we tackle a moderate-size real-world
problem, by solving for finite horizon approximate
equilibrium. Our aim is to extend this solution ap-
proach to cover the full scale problem in the future.
Our experimental results show that the optimal pol-
icy (derived from the cooperative model) manages to
reduce the cruising time of the existing policy by ap-
proximately 30%. This result may be viewed as what
can be achieved theoretically. In real-life implementa-
tion, however, the improvement will be closer to that
of equilibrium policy, which is approximately 20%.

2 ANALYSIS OF CURRENT

SYSTEM

Figure 1 and 2 summarize the taxi operation on week-
days (Mon-Thu) for the month of July 2009. In Figure
1a, we see the comparison of average daily time spent
between delivering passengers, cruising, and picking
up passengers (for booked trips) for different periods
of the day. The average number of operating taxis
is also shown in the figure. To book a taxi, passen-
gers may send their request to the central operator
and specify their current location. The central oper-
ator will then broadcast the request to cruising taxis
around the specified location. Drivers who receive the
request may bid for the job by specifying the time re-
quired to reach the pickup point. The job is given to
the driver with the shortest pickup time. The pro-
portion of street-hail vs. booked trips, for different
periods of the day, is shown in Figure 1b. From Fig-
ure 1a, we observe that taxi cruising time is almost
constant throughout the day, accounting for roughly
half of the total operating hours. On the other hand,
pickup time accounts for only a small percentage of
operating hours. For this reason, in this work, we are
focusing on reducing the cruising time for street-hail
jobs.

Figure 2 describes the cruising behavior of drivers. In
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Figure 1: Summary of weekday data for July 2009
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Figure 2: Inefficiency of existing cruising policy

Figure 2a, we see that cruising time is high for zones
with a high number of available trips. This indicates
that drivers are spending time cruising in high trip-
frequency zones. The same can be observed from Fig-
ure 2b and 2c. Figure 2b shows that taxis are entering
high trip-frequency zones in anticipation for the surge
of passengers. The number of cruising taxis will drop
with the surge, but starts to build up again for the next
surge, and the cycle continues. On the other hand,
in low trip-frequency zones, except for early morning
hours, the number of cruising taxis stays proportional
to trip-frequency. We can conclude that drivers are
employing a greedy cruising policy, spending a large
amount of time cruising in high trip-frequency zone.
This is one of the causes for the system’s inefficiency,
which is verified in the empirical study, when this pol-
icy is substituted for better cruising policies.

2.1 A MODEL FOR THE EXISTING

SYSTEM

In this section, we model the aggregate behavior of a
taxi service as a continuous time Markov chain. In
our model, the taxi service operates on a road net-
work which can be divided into logical cruising zones.
We denote the network of zones by a directed graph
G = (N, E). At any point of time, a taxi is in one of
the following states, which corresponds to the states in
the Markov chain S = {Okl, Ck,Wk|k, l ∈ N}: (1) the
taxi is occupied and is delivering its passenger from
zone k to l, denoted by the state Okl, or (2) the taxi is
empty and cruising in a zone k, denoted by Ck, or (3)
the taxi is in zone k but not in operation, denoted by
Wk. Here, we assume that drivers have uniform cruis-
ing behavior that are independent of each other. As an
example, Figure 3 shows a subset of Singapore’s road
network and the corresponding Markov chain, model-
ing the taxi service operating on the network.

In a continuous time Markov chain, the time spent in
a state before moving to another state is a continu-
ous random variable that is exponentially distributed.
The rates of transition between the states constitute
the generator matrix (or Q-matrix) of the Markov
chain. In our model, the generator matrix consists
of the following four components. The first compo-
nent, {λkl|(k, l) ∈ E}, describes a driver’s cruising
behavior. Since a driver does not have visibility in
regards to the state and location of other drivers, we
can assume that they are approximately independent
of each other. The second component, {πkl|k, l ∈ N},
describes the likelihood of finding passengers in a zone,
where πkl is the rate of finding passengers in zone k
with a destination point in zone l. Assuming indepen-
dence for πkl, the total rate of finding passengers in
zone k is given by

∑

l πkl (a combination of Poisson



Figure 3: An example of a road network, divided
into its cruising zones, and the corresponding Markov
chain, modeling a taxi operating on the network. The
shaded nodes indicate the states where the taxi is oc-
cupied. Here, we assume that taxis are uniform and
independent of each other.

processes). The third component, {ρkl|k, l ∈ N}, de-
scribes the time needed to deliver passengers to their
destination point. The nondeterminism of these vari-
ables is due to the variability of pickup and drop-off
points within zones and the congestion on the road
network. The forth component, {σk, σ′

k|k ∈ N}, de-
scribes the likelihood of a driver taking a break within
a zone (σk) and the length of the break (σ′

k). Most
taxis are operated by two or more drivers taking turns
continuously. This accounts for the nondeterminism
of the forth component.

We define the system efficiency as the steady state
(stationary) probability of a taxi being in the occupied
state. Let θ(s), for s ∈ S, denote the steady state
probability of being in the state s. This probability
distribution can be obtained by solving the following
system of equations:

∀k ∈ N,
∑

l:(l,k)∈E

λlkθ(Cl) +
∑

l:l∈N

ρlkθ(Olk) + σ′
kθ(Wk)

=





∑

l:(k,l)∈E

λkl +
∑

l:l∈N

πkl + σk



 θ(Ck),

∀k, l ∈ N, πklθ(Ck) = ρklθ(Okl),

∀k ∈ N, σkθ(Ck) = σ′
kθ(Wk),

and normalizing the solution such that
∑

s∈S θ(s) = 1.
The steady state probability of a taxi being in the
occupied state is thus given by

∑

k,l∈N θ(Okl).

We estimate the transition rates of the Markov chain
using the dataset. The random variables cruising time
(with rate λkl) and passenger find time (with rate πk)
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Figure 4: The frequency histograms (for one day) for
cruising time in a randomly chosen zone, and delivery
time between two randomly chosen zones, respectively.

can be estimated accurately with exponential distribu-
tions. The other variables, however, are closer to Er-
lang distributions than exponential distributions. Fig-
ure 4 shows, for example, two frequency histograms,
one for each of these cases. In this work, we approx-
imate both cases by exponential distributions using
maximum likelihood estimate. These approximations
are better when the zones are adequately close to each
other, which is the case for Singapore.

One can derive the system efficiency once the param-
eters of the Markov chain are obtained. Since we also
like to compute efficiency under different customer ar-
rival rates and different numbers of operating taxis
(for empirical study), we model the passenger-driver
dynamics in a zone as an M/M/1 queue. Consider
the subset of the Markov chain consisting only the
states {Ck|k ∈ N} and the transitions rate between
them {λkl|(k, l) ∈ E}. Each zone is modeled as a
FIFO queue, where its arrival rate is the arrival rate
of cruising taxis in the zone, and its service rate is the
passengers arrival rate in the zone. Let µk denote the
passengers arrival rate in zone k, then the waiting time
in the queue (queueing time + service time) is expo-
nentially distributed with the following rate, which we
associate with πk:

πk = µk − n





∑

l:(l,k)∈E

φ(Cl)λlk



 ,

where n is the number of taxis in operation and φ(Cl)
the steady state probability of being in the state Cl.
The steady state probabilities φ can be obtained, sim-
ilar to θ, by solving the following system of equations:

∀k ∈ N,
∑

l:(l,k)∈E

λl,kφ(Cl) = φ(Ck)
∑

l:(k,l)∈E

λkl ,

subject to
∑

k∈N φ(Ck) = 1. Now, given the drivers’
cruising behaviors (in the form of smaller Markov
chain parameterized by {λkl|(k, l) ∈ E}), travel time
information {ρkl|k, l ∈ N}, and nonoperating profile
{σk, σ′

k|k ∈ N}, we can derive the system efficiency as
the function of passenger arrival rates {µk|k ∈ N} and



the total number of taxis n, by first constructing the
full Markov chain, and then deriving its steady state
probabilities.

3 A COOPERATIVE MODEL

The cooperative model is based on Markov decision
process, which is a special case of stochastic games,
where there is only one player. The player, in this
case, is a central operator whose actions are all pos-
sible joint actions of the drivers, and whose objective
is the overall occupied time of the service. The model
is similar to the noncooperative case. The difference
lies in the formulation of the utility function. In the
noncooperative case, we have a set of utility functions
to be optimized simultaneously, while in the coopera-
tive case, we have a single aggregated utility function.
We choose to present our models under the more gen-
eral setting of stochastic games (next section). We will
highlight the differences for the cooperative case.

4 A NONCOOPERATIVE MODEL

Stochastic games (Shapley, 1953; Littman, 1994) are a
generalization of Markov decision processes to a multi-
agent setting by allowing the state transitions to be
influenced by their joint action. They are also a gen-
eralization of sequential games with perfect informa-
tion, by introducing different states. The state (and
thus the payoff matrix) changes as a result of both na-
ture and the joint action of the agents. In congestion
games, agents share a set of facilities (facilities can be
viewed as resources, such as machines), and the utility
an agent derives from using a facility reduces as the
number of agents using the same facility increases. In
the taxi context, the facilities correspond to the zones
where taxi agents can cruise. Each zone has a fixed
arrival rate of passengers, and therefore, an increase
in the number of cruising taxis in the zone, decreases
the likelihood that each would find passengers within
a certain time period. Stochastic congestion games
therefore are a generalization of congestion games, al-
lowing the games to be played indefinitely. They are
also a specialization of stochastic games, to the case
where the underlying games are congestion games. A
state in a stochastic congestion game defines an assign-
ment of agents to facilities, and transitions to a new
state are dependent on the old state and the agents’
joint action. In this work, we consider only games with
finite horizon.

4.1 STOCHASTIC CONGESTION GAMES

Formally, a finite stochastic congestion game (SCG) Γ
is a tuple (I, J, P,R), where

• I = {1, . . . , n} is the set of agents.

• J = {1, . . . , m} is the set of facilities. An action
of an agent i, denoted by ai where ai ∈ J , is
to choose a facility to which it would like to be
assigned. We denote an agents’ joint action by
a = (a1, . . . , an) and the set of possible joint ac-
tions by A, that is, A = Jn. Next, we denote by
S, the set of possible states, where a state s ∈ S
is an assignment of agents to facilities, and we de-
fine sj as the number of agents assigned to facility
j in the state s.

• P : S×A→4(S) is the state transition function.
For convenience, we will also write P (s, a, s′) for
the probability that the next state is s′ given that
the current state is s and the players’ joint action
is a = (a1, . . . , an) ∈ A,

• R = {rj}j∈J is the reward function, where each
rj : {0, . . . , n} → R is a nonincreasing function
that maps the number of agents assigned to fa-
cility j to the reward that each of the agents in
j receives. We define s(i, j) such that s(i, j) = 1
if agent i is assigned to facility j in the state s,
and s(i, j) = 0 otherwise. The reward received
by agent i in a state s, denoted by Ri(s), is thus
given by

∑

j∈J s(i, j)rj(sj).

The game proceeds in steps, starting from some ini-
tial state sT (the subscript indicates the number of re-
maining steps). In each step, the agents first observe
the current state st, the number of remaining steps t,
and simultaneously choose actions according to their
respective policy. An agent i’s policy is the function
πi : S × {1, . . . , T} → 4(J), where πi(st, t) computes
agent i’s mixed strategy, i.e., a probability distribution
over the set of facilities, given the current state st and
the number of remaining steps t. Each agent i’s ac-
tion in this step, denoted by ai

t, is then drawn from the
distribution given by πi(st, t), forming the joint action
at = (ai

t, . . . , a
n
t ). Nature then selects the next state

st−1 according to the probabilities given by P (st, at).
In the new state st−1, each agent i receives Ri(st−1)
as its reward, and the game proceeds to the next step.

Given a possible outcome of the game, agent i’s utility,
denoted by U i, is defined such that

U i
T (sT , aT , sT−1, . . . , s1, a1, s0) =

T−1
∑

t=0

Ri(st).

A Nash equilibrium of the game is a joint policy π,
such that, for each agent i, πi maximizes the expected
utility of agent i given that the other players follow
their respective policy specified by π. The expectation
is taken over all possible outcomes of the game. For
the cooperative case, there is only one utility formed



by summing up individual agent’s utility. Here, we
seek to find a joint policy that maximizes the expected
value of this utility.

4.2 MODELING TAXI SYSTEM AS AN

SCG

The drivers correspond to the set of agents I. The set
of facilities J corresponds to the states of the Markov
chain, S = {Ck,Okl,Wk|k, l ∈ N}, defined previously.
We will refer to them as facilities here. A state of the
game is an assignment of agents to facilities. When an
agent is assigned to facility Ck, it means that the cor-
responding taxi is cruising in zone k. Similarly, when
it is assigned to facility Okl and Wk, it means that
the corresponding taxi is occupied and not in opera-
tion, respectively. One step in the SCG represents the
period of one minute.

Next, we define available actions and the state transi-
tion function. The set of available actions for an agent
depends on the state of the agent. When in facility Ck,
the agent may take one of the following actions: (a1)
continue cruising in the current zone, or (a2) make an
attempt to move to an adjacent zone. In this state,
the agent has the chance of getting a passenger and
be moved to one of the facilities Okl in the next step.
Given that an agent is in facility Ck and takes the ac-
tion a1, the following may happen in a step: (1) The
agent manages to find a passenger with l as the desti-
nation zone. In the next step, the agent will move to
facility Okl. The probability of this event happening
is given by:

min(
µk

n(Ck)
, 1) ∗ γkl,

where γkl is the probability that a passenger’s desti-
nation zone is l given that its starting zone is k, and
n(Ck) is the number of agents in facility Ck in the cur-
rent state. γkl can be estimated by the following:

γkl ≈
πkl

∑

l∈N πkl

.

The expression µk/n(Ck) also defines the reward of the
agent in this state. (2) The agent doesn’t find any pas-
senger and stays in the same facility. The probability
of this event is given by: (1 − µk/n(Ck))e−σk , or (3)
the agent doesn’t find any passenger and moves to fa-
cility Wk with probability (1 − µk/n(Ck))(1 − e−σk).
On the other hand, if the agent chooses a2, one of the
following may occur: (1) a passenger, with destina-
tion l, is found before the agent manages to move to
a new zone. The agent moves to facility Okl in the
next step. The probability of this happening is given
by µkγkl/n(Ck). (2) Otherwise, no passenger is found,
and the agent moves to a new zone.

Algorithm FiniteNashPolicies(Γ, T ):
Initialization phase:

For all s ∈ S, joint action a ∈ A:
π(s, 0)[a]← 1

|A| ;

For all i ∈ I:
Vs,0(a, i)← 0;

Iteration phase:

For t = 1 to T , all s ∈ S:
For all pure strategy profile a ∈ A, i ∈ I:

Vs,t(a, i)←
∑

s′ P (s, a, s′)×
{

Ri(s′) +
∑

a′ π(s′, t− 1)[a′]Vs′,t−1(a
′, i)

}

;
π(s, t)← FindNash(Vs,t);

Return π;

Figure 5: Value Iteration for Finite-horizon SCGs

When in facility Okl, the agent has only one available
action. It will try to deliver its passengers to their des-
tination point and move to facility Cl. The probability
of this happening in the next step is given by 1−e−ρkl,
while the probability of staying in the same facility is
e−ρkl . The reward for the agent in this state is one.
Similarly, when in facility Wk, the agent may move
to Ck with probability 1− e−σ′

k , or otherwise stays in
the same zone. The reward for being in this facility
is zero. Note that in our model, the move to facility
Wk is involuntary on the part of the agents. An agent
will never choose to stop its operation because of the
way the reward function is structured. Rather than
being an available action, the move is treated as a re-
quirement instead, for example, when the driver has
to change shift or rest.

4.3 COMPUTING EQUILIBRIUM POLICY

In this section, we describe an algorithm to computing
equilibrium policy in SCGs based on value iteration al-
gorithm, shown in Figure 5. This algorithm takes an
SCG Γ, and a time horizon T as input. It outputs a
vector of policies (πi(s, t))i∈I , where each πi maps any
state s, and the number of remaining steps t ≤ T to
a mixed strategy for player i, which is a probability
distribution over the set of facilities. The algorithm
outputs a vector of policies that is a Nash equilibrium
for the T -step SCG Γ from any start state. This algo-
rithm is a generalization of the classical finite-horizon
value iteration for Markov decision processes (Kael-
bling et al., 1998). Instead of backup values, the al-
gorithm maintains backup matrices, denoted by Vs,t.
Each Vs,t(a, i) is a function that takes a joint action a,
a player i, and returns the expected utility of player
i in the t-step SCG Γ, if the game starts at the state
s and the first joint action of the agents is a. We can
view, therefore, each Vs,t as defining a game in the
usual sense, and associated with each Vs,t is a Nash



equilibrium π(s, t), where πi(s, t) denotes the mixed
strategy of player i. We denote by π(s, t)[a] the prob-
ability assigned by π(s, t) to the joint strategy a. Both
Vs,t and π(s, t) are constructed iteratively. The algo-
rithm uses the function FindNash that returns a Nash
equilibrium given the game Vs,t. For the cooperative
case, the function FindNash is replaced by FindOpt

which computes social optimum policy instead of Nash
equilibrium.

Computing Nash equilibrium in stochastic games is
a very difficult problem. See, for example, (Bowling,
2000; Hu and Wellman, 2003; Ganzfried and Sand-
holm, 2009) for recent works in this area. And the
value iteration algorithm (for finite horizon stochas-
tic games) is computationally very expensive for large
scale problem. In this work, we employ the sparse
sampling technique proposed by (Kearns et al., 2000).

5 EMPIRICAL RESULT

We run a simulation (on a macro level) to evaluate the
performance of our proposed solutions. We choose, as
the case study, 15 connected zones that represent the
congested central business district of Singapore and
its surrounding areas. We consider only passengers
with origins and destinations within these zones, and
restrict the cruising area of drivers to these zones as
well. The number of operating taxis is 500. From
the dataset we estimate the the passenger arrival rates
{µk|k ∈ N}, delivery time rate {ρkl|k, l ∈ N}, and
taxis nonoperating profile {σk, σ′

k|k ∈ N} for these
zones in different periods. Using this setting we com-
pare existing cruising policy (also derived from the
dataset), the optimal policy (computed from the co-
operative model), and the equilibrium policy (com-
puted from the noncooperative model). The measure
of comparison is cruising time. For both cooperative
and noncooperative model, joint actions are computed
every minute with 2-step look ahead (T = 2).

We simulate one day of operation on a weekday. The
driver-passenger dynamics in each zone is implemented
as a FIFO queue. As a passenger appears in a zone,
it joins the queue associated with the zone. If there
are some taxis cruising in the zone, the passenger at
the head of the queue is removed and assigned to a
randomly chosen taxi. The average time spent in the
queue models the average passengers waiting time.

The experimental results are shown in Figures 6, 7 and
8. Figure 6 compares the average cruising time (over
multiple runs) of the three policies. On average, the
optimal policy and the equilibrium policy reduce the
cruising time of existing policy by approximately 30%
and 20% respectively. Most of the savings are obtained
during the peak periods. This matches our intuition,
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Figure 6: Comparison of cruising time between three
policies. The optimal and equilibrium policies reduce
the cruising time by approximately 30% and 20% re-
spectively.
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Figure 7: Number of trips vs. number of cruising taxi
in a high trip-frequency zone. In general, the new
policies send lower number of cruising taxis to high
trip-frequency zones compared to existing policy.
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Figure 8: Number of trips vs. number of cruising taxi
in a low trip-frequency zone. In general, the new poli-
cies send higher number of cruising taxis to low trip-
frequency zones compared to existing policy.



that the new policies are able to better distribute cruis-
ing taxis among the zones, while the greedy policy
sends too many cruising taxis to high trip-frequency
zones. This is confirmed when we look at the number
of trips vs. cruising taxis in both high and low trip-
frequency zone (see Figure 7 and 8). The new policies
are able to maintain balance between fulfilling trips
requirement and managing cruising time.

6 Conclusion

We presented in this paper an interesting and useful
application of Markov chains to manage an urban taxi
service. The basic premise is the need to minimize
cruising time (and therefore maximize utilization) of
the taxis. There are several assumptions we made for
this to work. We assume that each taxi has a device
that guides the taxi driver. Using MDPs the system
then generates a policy that optimizes cruising among
all taxis. We showed, with the use of real data from a
taxi operator in Singapore for the study, a cooperative
model where taxis follow instructions and a noncoop-
erative one where drivers compete with one another.
Our study also assumes rational drivers that try to
maximize the time their cars are occupied. For future
works, we would need to incorporate real-world behav-
ior of the passengers as well as relax the independence
assumption of passengers and their destinations.

References

[1] Michael Bowling. Convergence problems of
general-sum multiagent reinforcement learning.
In Proceedings of the 17st International Confer-

ence on Machine Learning, pages 89–94, 2000.

[2] Robert D. Cairns and Catherine Liston-Heyes.
Competition and regulation in the taxi industry.
Journal of Public Economics, 59(1):1–15, 1996.

[3] Xi Chen and Xiaotie Deng. Settling the complex-
ity of two-player nash equilibrium. In Proceedings

of the 47th Symposium on Foundations of Com-

puter Science, pages 261–272, 2006.

[4] Sam Ganzfried and Tuomas Sandholm. Com-
puting Nash equilibria in multiplayer stochastic
games of imperfect information. In Proceedings

of the 21st International Joint Conference on Ar-

tificial Intelligence, pages 140–146, 2009.

[5] Sam Ganzfried and Tuomas Sandholm. Game
theory-based opponent modeling in large
imperfect-information games. In Proceedings

of the 10th International Conference on Au-

tonomous Agents and Multiagent Systems, pages
533–540, 2011.

[6] Paul W. Goldberg, Christos H. Papadimitriou,
and Rahul Savani. The complexity of the homo-
topy method, equilibrium selection, and Lemke-
Howson solutions. In Proceedings of the 52nd

Symposium on Foundations of Computer Science,
pages 67–76, 2011.

[7] P. Jean-Jacques Herings and Ronald Peeters. Ho-
motopy methods to compute equilibria in game
theory. Economic Theory, 42(1):119–156, 2009.

[8] Junling Hu and Michael P. Wellman. Nash Q-
learning for general-sum stochastic games. Jour-

nal of Machine Learning Research, 4:1039–1069,
2003.

[9] Leslie P. Kaelbling, Michael L. Littman, and An-
thony R. Cassandra. Planning and acting in par-
tially observable stochastic domains. Artificial In-

telligence, 101:99–134, 1998.

[10] Michael Kearns, Yishay Mansour, and Satinder
Singh. Fast planning in stochastic games. In Pro-

ceedings of the 16th Conference on Uncertainty in

Artificial Intelligence, pages 309–316, 2000.

[11] Michael L. Littman. Markov games as a frame-
work for multi-agent reinforcement learning. In
Proceedings of the 11th International Conference

on Machine Learning, pages 157–163, 1994.

[12] Ryan Porter, Eugene Nudelman, and Yoav
Shoham. Simple search methods for finding a
Nash equilibrium. In Proceedings of the 19th

AAAI Conference on Artificial Intelligence, pages
664–669, 2004.

[13] Tuomas Sandholm, Andrew Gilpin, and Vincent
Conitzer. Mixed-integer programming methods
for finding nash equilibria. In Proceedings of the

20th AAAI Conference on Artificial Intelligence,
pages 495–501, 2005.

[14] Lloyd S. Shapley. Stochastic games. Proceedings

of National Academy of Science, 39:1095–1100,
1953.

[15] S. T. Tan, L. F. Lin, A. L. Chan, C. M. Tan,
and D. H. Tan. Chapter 3 : Land transportation.
In Economics in Public Policy - The Singapore

Story. Marshall Cavendish Educ., 2009.

[16] K. I. Wong, S. C. Wong, M. G. H. Bell, and Hai
Yang. Modeling the bilateral micro-searching be-
havior for urban taxi services using the absorbing
Markov chain approach. Advanced Transporta-

tion, 39:81–104, 2005.

[17] Hai Yang, S. C. Wong, and K. I. Wong. Demand-
supply equilibrium of taxi services in a network
under competition and regulation. Transporta-

tion Research Part B: Methodological, 36:799–819,
2002.


