

PICKUP AND DELIVERY WITH TIME WINDOWS:
ALGORITHMS AND TEST CASE GENERATION

HOONG CHUIN LAU ZHE LIANG

 School of Computing, National University of Singapore, Singapore 117543.

In the pickup and delivery problem with time windows (PDPTW), vehicles have to transport loads
from origins to destinations respecting capacity and time constraints. In this paper, we present a
two-phase method to solve the PDPTW. In the first phase, we apply a novel construction
heuristics to generate an initial solution. In the second phase, a tabu search method is proposed to
improve the solution. Another contribution of this paper is a strategy to generate good problem
instances and benchmarking solutions for PDPTW, based on Solomon’s benchmark test cases for
VRPTW. Experimental results show that our approach yields very good solutions when
compared with the benchmarking solutions.

Keywords: Pickup and delivery problem, vehicle routing problem, tabu search, test case
generation.

1. Introduction

The Pickup and Delivery Problem with Time Windows (PDPTW) models the situation in
which a fleet of vehicles must service a collection of transportation requests. Each request
specifies a pickup and delivery location. Vehicles must be routed to service all requests,
satisfying time windows and vehicle capacity constraints while optimizing a certain
objective function such as total distance traveled. PDPTW can be used to model many
core problems arising in logistics and public transit. Finding good solutions to these
problems is important because it enables planners to utilize the existing fleet in the most
cost-effective fashion to meet customer demands.

PDPTW is a generalization of well-known Vehicle Routing Problem with Time Window
(VRPTW). PDPTW is an NP-hard problem, since VRP is a well-known NP-hard
problem [1]. While VRPTW is well-studied (for a comprehensive survey, see [2], there
is relatively less literature on PDPTW. Moreover, no one has developed comprehensive
benchmark PDPTW instances that facilitate experimentation of new approaches.

In this paper, we propose a new approach for PDPTW, extending and improving the
results of [3]. We also propose a method to generate good problem instances and
solutions for PDPTW, based on Solomon’s benchmark data sets for VRPTW. This turns
out to be an interesting exercise, because good solutions for VRPTW do not imply good
solutions for PDPTW, mainly due to the fact that while the vehicle load cumulatively
increases along each route for VRPTW, it is not the case for PDPTW as pickups and
deliveries occur in juxtaposition.

2. Problem Formulation

In our model, we assume there are an unlimited number of vehicles and all vehicles have
the same capacity. Let N be the set of transportation requests. For each request i ∈ N, a
load of size qi is to be transported from an origin Ni

+ to a destination Ni
− (positive qi for

pickup and negative qi for delivery). Each pickup or delivery is also referred to as a job.
Define U Ni iNN

∈

++ ≡ and U Ni iNN
∈

−− ≡ as the sets of all origins and destinations

respectively. For simplicity, assume Ni+ and Ni
− to be disjoint. Let −+≡ NNV U and n =

|V|. Let M and m denote the set and number of vehicles. Each vehicle has a capacity Q,
starting from and ending with the depot O with no cargo. For all OVji U∈, , let dij
denote the travel distance and tij the travel time. Let []ii le , denote the time window, i.e.

time interval in which service at location i must take place. Note that the service
durations at the origins and destinations can be easily incorporated in the travel times and
hence will not be considered explicitly in this paper.

Definition 1 A pickup and delivery route
kR for vehicle k is a directed route through a

subset VVk ⊂ such that:

1. kR starts and ends in O .

2. Both or neither Ni
+ and Ni

− belongs to
kV for all i ∈ N.

3. If both Ni
+ and Ni

− belong to
kV , Ni

+ is visited before Ni
−.

4. Vehicle k visits each location in
kV exactly once.

5. The vehicle load at any one time never exceeds Q.
6. The arrival time iA and departure time

iD of any location i satisfy],[iii leD ∈ ,

where },max{ iii eAD = (i.e. if
ii eA < , the vehicle has to wait at location i).

Definition 2 A pickup and delivery plan is a set of routes }|{ MkRR k ∈≡ such that

1. kR is a pickup and delivery route for vehicle k, for all Mk ∈ .

2. }|{ MkVk ∈ is a partition of V .

Define)(Rf as the cost of plan R corresponding to a certain objective function f .

PDPTW is defined as the optimization problem of finding a pickup and delivery plan R
that minimizes the function)(Rf .

There are a wide variety of objective functions for PDPTW. In this paper, we consider
the following:
1. Minimize the number of vehicles, which is almost always the most dominant part of

the cost.
2. Minimize travel distance. That is, the sum of lengths of all the routes in the plan.

To model PDPTW as an integer linear program (ILP), two types of binary variables are
introduced. Let),(MkVizik ∈∈ become true iff request i is assigned to vehicle

k ,),,(MkVjVixijk ∈∈∈ is true iff vehicle k is traveling from node i to node j. Let jy

denote an intermediate variable that stores the total load of the vehicle visiting job j.
PDPTW is to minimize)(xf subject to the following constraints:

Ni ∈∀ , 1=∑ ∈ Mk ikz (1)

1, =∈∀ ∑ ∑∈ ∈Mk Vj ijkxVi (2)

1, =∈∀ ∑ ∈ Vi iOkxMk (3)

1, =∈∀ ∑ ∈Vj OjkxMk (4)

0),)((=−∈∀∈∀ ∑∑ ∈∈ Vj hjkVi ihk xxMkVh (5)

jVi ijk yQxMkVj ≥∈∀∈∀ ∑ ∈),)(((6)

))(,(MkOVji ∈∀∪∈∀ , jiiijk yqyx =+⇒= 1 (7)

0=
O

y (8)

0, ≥∈∀ iyVi (9)

))(,(MkVji ∈∀∈∀ , jijiijk DtDx ≤+⇒= 1 (10)

qpii DDNqNpNi ≤==∈∀ −+ ,,, (11)

0=OD (12)

Constraint (1) ensures that each request is assigned to exactly one vehicle. Constraint (2)
ensures that each job is visited exactly once. Constraints (3) and (4) ensure that each
vehicle departs from and arrives at the depot. (5) ensures that if a vehicle arrives at a node
then it must also depart from that node. (6)-(9) together form the capacity constraints.
The time windows and precedence constraints are ensured by (10)-(12).

To model the duo-objective of minimizing (a) the total number of vehicles and (b) total
travel distance as a linear function, we multiply a coefficient for each objective and then
add them together. Since the number of vehicles is more important than the total distance
of a plan, the cost of each vehicle (route) is penalized with a coefficient P , which is set
to be greater than the maximum possible total travel distance. Hence, the objective
function of the problem is:

 minimize ∑ ∑ ∑∈ ∈ ∈

+×
Mk Vi Vj ijkij xdmP (*)

This formulation of the problem has)(2mnO constraints and)(2mnO variables. For

large-scale problems, an ILP solver almost always experiences combinatorial explosion.

3. Literature Review

Most previous work focused on the single vehicle dial-a-ride problem with time windows
(1-PDPTW). For the objective to minimize the total customer inconvenience, Psarafis
([4],[5]) developed a dynamic programming algorithm with a O(n23n) time complexity,
which could only solve small-sized problems with 10 or fewer requests. In Sexton and
Bodin ([6],[7]), the problem was de-coupled into a coordinating routing master problem
formulated as an integer program, and a scheduling subproblem for a fixed route, which

was formulated as linear program. By using a heuristic version of Benders'
decomposition, the routing master problem and the scheduling subproblem were solved
individually. Real problems with sizes from 7 to 20 could be solved in an average of 18
seconds of UNIVAC 1100/81A CPU time. Sexton and Choi [8] used a similar approach
to minimize a linear combination of total vehicle operating time and total customer
penalty due to missing any of the time windows. For minimizing the schedule duration,
Van der Bruggen et al. [9] developed a two-phase heuristic algorithm based on
arc-exchange procedures and an alternative algorithm based on simulated annealing.
Their approaches produced high quality solutions on real-life problems in reasonable
computational time. Finally, for minimizing the total travel cost, a forward dynamic
programming approach was developed by Dumas et al. [10]. The efficiency of the
algorithm is improved by eliminating states that are incompatible with vehicle capacity,
precedence and time window constraints.

The multiple vehicle pickup and delivery problem with time windows has received few
attention until recently. The only optimal algorithm to our knowledge developed by
Dumas et al. [11] who employed a column generation scheme with a shortest path
subproblem with capacity, time window, precedence and coupling constraints. Their
algorithm can solve 1-PDPTW problems up to 55 paired requests and multiple- vehicle
PDPTW with a small size of paired requests per vehicle.

In [12], Savelsbergh and Sol divided the General Pickup and Delivery Problem into four
categories, which are Static Single -Vehicle PDP, Static Multi-Vehicle PDP, Dynamic
Single -Vehicle PDP and Dynamic Multi-Vehicle PDP. He presented a general model that
can handle the practical constraints. The paper aimed to isolate and discuss some of the
characteristics that differentiate pickup and delivery problems from traditional vehicle
routing problem,

Recently, Nanry and Barnes [3] proposed a reactive tabu search approach to minimizing
the travel cost by using a penalty objective function in terms of travel time, penalty for
violation of overload and time window constraints. The approach was tested on
25-customer instances, 50-customer instances and 9 100-customer instances constructed
from Solomon's C1 VRPTW benchmark instances. They first used a greedy insertion
method to construct a feasible PDPTW plan. Then, a reactive tabu search method was
used to improve the plan. They proposed three neighborhoods, namely, Single paired
insertion (SPI) , Swapping pairs between routes (SBR) and Within route insertion (WRI) .
In their work, the data sets were built based on Solomon test cases for VRPTW. The
vehicle capacity, the spatial information and time window of each location is the same as
the original Solomon test cases. Jobs are paired randomly based on the optimal solution
provided by [13], while assuring that feasibility was maintained. However, it is not clear
from their work how the load of each pickup-delivery pair is set. This is an important
consideration because it would determine whether the given solutions (from [13] in this
case) are still the optimal solutions for the corresponding PDPTW test cases. In this
paper, we will address this issue by proposing a more rigorous test case generation
strategy.

4. Two Phase Method

In this section, we propose our two-phase method for solving PDPTW. This two-phase
method comprises the Construction heuristic and the Tabu Search.

4.1 Construction heuristics
Our construction heuristic, which we name as partitioned insertion heuristic, is a hybrid
heuristic combining the advantages of the standard insertion heuristic and sweep
heuristic.

Insertion Heuristic
Insertion Heuristic is one of the most commonly used construction heuristics for VRP. To
solve PDPTW, the Insertion heuristic can be adapted as shown below:
1. Let all vehicles have empty routes.
2. Let L be the list of unassigned requests.
3. Take a job pair v in L.
4. Insert v in a route at a feasible position where there is the least increase in cost.
5. Remove v from L.
6. If L is not empty, go to 3.

Figure 1 shows a PDPTW instance. Using the above insertion heuristic, the solution
generated is shown in Figure 2. Observe that, in this instance, all the jobs close to depot
(i.e. −+−+ BBAA ,,,) are also close to one another; hence, they will be served by the
same vehicle. Consequently, all the jobs further away are far from one another, to the
extent that each vehicle can only serve one pair of jobs at a time. In order to avoid such
kind of imbalance (some very good routes and some very bad routes), another
construction heuristic, the Sweep Heuristic, is often used.

+A

−A

+B

−B

+H

−H

+E

−E

+D

−D

−C

+C

Depot

Pickup Job

Delivery Job

+X
−X

Figure 1. Example PDPTW instance

+A

−A

+B

−B

+H

−H

+E

−E
+D

−D

−C

+C

Figure 2. Solution Using Insertion Heuristic

Sweep Heuristic
Sweep heuristic is the other well-known construction heuristic method for VRP. It builds
routes by a sweep technique around the depot. The Sweep heuristic for VRP is shown
below:
1. Let O be a site from which vehicles leave (usually the depot), and let A (different

from O) be another location, which serves as a reference.
2. Sort jobs by increasing angle AOS∠ where S is the job location. Put the result in a

list L.
3. The jobs in L will be allocated to the vehicles in that order as long as constraints are

respected.

The advantage of sweep heuristic is that near and far jobs are mixed in the same route.
This makes the solution more balanced, i.e. there are no extremely good routes and
extremely bad routes. Notice that in PDPTW, geographically close destinations may
have origins that are far away; consequently, a pickup and delivery pair may not be
served by the same vehicle using the above algorithm! The following modifications are
done to adapt the sweep heuristic for PDPTW:
1. Let O be a site from which vehicles leave, and let A (different from O) be another

location, which serves as a reference.
2. Sort pickup jobs by increasing angle AOS∠ where S is the job location. Put result

in a list L.
3. Pick a pickup job in L with location I and its delivery job with location J and create a

new route with this job pair.
4. Until no more jobs can be added the route do:

a. If there are uninserted pickup jobs located in the sector IOJ∠ , insert the pair that
is best feasible. Otherwise, insert an uninserted pickup-delivery job pair, in
which the pickup job is at location K where JOK∠ is smallest and all the
constraints are respected.

b. Remove this pickup job from L.
5. If L is not empty, go to 3.

Figure 3 shows the solution generated using the modified Sweep Heuristic.

+A

−A

+B

−B

+H

−H

+E

−E
+D

−D

−C

+C

Figure 3. Solution Using Sweep Heuristic

Partitioned Insertion Heuristic
We now present our construction heuristic, the Partitioned Insertion Heuristic:
1. Set all vehicles to empty routes.
2. Let L be the list of unassigned visits.
3. Sort jobs by increasing angle AOS∠ where S is the job location. Put the result in a

list L.
4. Divide L into K sub-lists such that],,1[Ki ∈∀ all the jobs in the ith sub-list satisfy

)/)1(,/[ππ +∈∠ iiAOS .

5. Randomly find a partition and insert the farthest job v in L.
6. Insert v in a route at a feasible position where there will be the least increase in cost.
7. Use the Insertion Heuristic to form a route.
8. If L is not empty, go to 5.

In our algorithm, both advantages of the insertion heuristic and modified sweep heuristic
are merged. The furthest job within a sub-list is always selected as the first job to be
inserted in a new route. This will ensure that the “bad” jobs (since they are far) are taken
care of at the onset, thus avoiding the formation of imbalance routes. The number of the
partition is set to the number of the established routes needed. In Section 6, we will
illustrate the proposed algorithm in terms of both speed and quality of solutions.

4.2 Tabu Search

We introduce three different neighborhood moves, namely, Single Pair Insertion (SPI),
Swap Pairs between Routes (SBR) and Within Routes Insertion (WRI). These moves
are adapted from [3].

The Notion of Cluster
In [14], multiple consecutive jobs exchange was presented as a local move. This is
because often a segment with consecutive jobs is a good component to forming a good
route. This move is extended to PDPTW as follows. Consider a situation that pickup jobs

+A , +B and delivery jobs −− BA , are in the same route (Fig. 4). If we move both pairs
together as done in [4], they must be consecutive. We define such a consecutive segment
as a cluster. In other words, the vehicle can enter and leave the cluster with no other jobs

involved. Another property of cluster is that vehicle will enter and leave the cluster with
the same load.

+C −B

+B

−A

+A

−C

Figure 4. Example of Cluster

Single Pair Insertion (SPI)
The first move neighborhood attempts to move a pickup-delivery pair or a cluster from its
current vehicle route to another vehicle route in the solution. SPI performs the following
process for all n/2 pickup-delivery job pairs in the current solution. Once a
pickup-delivery job pair or a cluster is identified, the method attempts to place it on
another route. An admissible placement is one where both jobs (pickup and delivery)
satisfy both time window and capacity constraints. There are n/2 ways of choosing
pickup-delivery job pair. There are)(nO positions to place the pickup and delivery jobs

respectively. Hence, SPI has an)(3nO search neighborhood.

To reduce the number of routes, the search process should be biased such that it tries to
remove the job pairs from the shorter routes and insert them into longer routes. Assume
that a pickup-delivery job pair is selected from route 1r , and are inserted into route

2r .

The routes after this move are denoted as '
2

'
1 , rr . Originally, there are

1n jobs in 1r and

2n jobs in
2r . The cost of a route r is denoted as)(rf and the pure saving cost (PSC)

is defined as)()()()(),('
2

'
12121 rfrfrfrfrrPSC −−+= . To bias the search, we

introduce a new saving cost known as the bias route saving cost (BRSC) , defined as:

2/)2(2/
),(),(

21
2121 +

−+=
n

P
n

P
rrPSCrrBRSC .

Clearly, if
21 nn < ,),(21 rrBRSC will likely become positive; if 21 nn = ,

),(21 rrBRSC and),(12 rrBRSC will only depend on),(21 rrPSC and),(12 rrPSC ;

if
21 nn > ,),(12 rrBRSC will likely become positive.

Swapping Pair Between Routes (SBR)
The second move neighborhood involves exchanges of pickup-delivery pairs and/or
clusters between two different routes. Assume that n jobs are evenly distributed in m

routes, the computational time complexity of swap neighborhood is .
2

4









m
n

O

Within Route Insertion (WRI)
WRI is used to improve routes by moving indiv idual nodes forward or backward within
their respective routes. Note however that since there are)!/(mn possible ways to

sequence the jobs, local search is used again. For each route, do the following:
1. Move one pickup and delivery pair in the route.
2. If the cost is reduced and all constraints are satisfied, goto Step 1.
3. When all such moves have been tried, move clusters consisting of two pairs.
4. Eventually, move clusters consisting of three pairs.

Composite Neighborhood
Of the three move neighborhoods, SPI has the greatest potential for improvement in the
objective function, and it is the only move that can reduce the number of routes. When
SPI reaches a barrier where no more admissible SPI exists, SBR is used to overcome the
barrier. Finally, WRI is applied, which is especially helpful when large time windows are
prevalent. The application of three neighborhood moves in our tabu search is shown
below:
1. Find SPI move with highest PSC and implement the move.
2. If no more SPI move with positive PSC exists, find the best SPI move with BRSC

and implement the move. Goto 1.
3. If no more SPI move with positive BRSC, find the SBR move with the greatest

saving and implement the move. Goto 1.
4. If no more SBR move with positive saving, find the best WRI move and implement

the move. Goto 1.
5. If no WRI move found, stop.

5. Test Case Generation

We performed a careful literature survey, and to our knowledge, no comprehensive
benchmark test cases for PDPTW are available. Fortunately, from the VRPTW literature,
there are well-established benchmark test cases for VRPTW by Solomon [15], as well as
good solutions to those instances. In this section, we present how we adapt Solomon
instances and the best-published solutions to generate good PDPTW instances and their
corresponding benchmark solutions.

Our strategy is to reuse the best-published VRPTW solutions as benchmark solutions for
PDPTW instances. In essence, two issues need to be resolved. First, how we ensure that a
VRPTW solution remains feasible for the PDPTW instance, given that the latter is more
constrained than a VRPTW instance. Second, given that pickup and dropoff occur
throughout the route, how to ensure that the VRPTW solution remains to be good (in the
sense of its optimality) for the PDPTW instance.

5.1 Preserving Feasibility

Unlike VRPTW in which jobs have no precedence constraints, a PDPTW instance does.
Hence, any feasible solution y for a given VRPTW instance X may not be feasible on a
PDPTW instance resulting from randomly or arbitrarily designating the jobs in X as
pickup or delivery jobs. Hence, rather than pairing jobs on X, we pair jobs based on y.
We do so in such a way that y remains feasible under the generated PDPTW instance, as
shown below:

Algorithm GENERATE:

For each route r in y do
a. Randomly select two jobs (j1, j2) in r to be paired
b. Randomly select either j1 or j2’s load as pickup and delivery load for both j1 and j2
c. If there are still jobs not paired

i. If the number of jobs is more than 1, go to step a.

ii. If number of jobs is 1, set it as a pickup job; create a dummy delivery job,
whose time window is set to the largest possible time window, service time is
set to 0, and load is equal to the load of the remaining pickup job.

5.2 Preserving Optimality

Unlike VRPTW where the total load (sum of job loads) on each route remains static, each
route in PDPTW will have different cumulative loads as the vehicle picks up and drops
off the loads throughout the route. Hence, if we keep the vehicle capacity as it is (as
done in [3]), the vehicle capacity constraint is no longer as tight as intended for the given
VRPTW instance. This makes it unclear whether an optimal solution for a VRPTW
instance is still optimal, or there exists even better solutions for the corresponding
PDPTW test case generated from the VRPTW instance. On the other hand, however, if
the vehicle capacity were changed to become too tight, then the neighborhood space will
be naturally limited. Hence, the key issue is to adjust the vehicle capacity so that a good
(i.e. near optimal) solution for a given VRPTW instance remains to be good for the
corresponding PDPTW instance.

Given a PDPTW instance and its solution, we first compute the maximum load of each
route on the solution (which is the maximum possible load that the vehicle is carrying at
any one point throughout the route). The vehicle capacity for that instance is then set as
the highest maximum load over all routes.

From Algorithm GENERATE presented in Section 5.1, we see that numerous PDPTW
instances can be generated from a given VRPTW instance. Hence, to ensure that the
vehicle capacity is sufficiently tight over the many possible PDPTW instances derived
from a given VRPTW instance, we apply the following procedure:

1. Apply Algorithm GENERATE to generate 100 different PDPTW instances and

compute their corresponding vehicle capacities based on the max load argument
above.

2. Compute the average vehicle capacity by averaging over the vehicle capacities for
all instances.

Using the above approach, we present statistics on the average vehicle capacities of
several R1 type test cases (rounded to the nearest integer). These figures were presented
using the solutions presented in the [16] and [17]:

Test case R103 R104 R107 R108 R109R110 R111

Avg Vehicle Capacity 83 91 86 91 85 89 85

Table 1. Average Vehicle Capacity for PDPTW R1 instances

Notice that for Solomon’s VRPTW test cases, all problem instances belonging to the
same type category (R1, for example) have the same vehicle capacity. Likewise, to be
consistent with this standard, we compute the average of all R1 test instances, which
turns out to be 86.13. Hence, we set the R1 type vehicle capacity as 85 (rounded to the

nearest 5 or 10, like Solomon test cases). Likewise, the vehicle capacities for RC1, R2
and RC2 are computed, as shown in Table 2.

Test case type R1 RC1 R2 RC2

Avg Vehicle
Capacity

85
(86.13)

95
(96.07)

205
(205.55)

210
(211.38)

Min Veh Cap 46 60 109 116

Max Veh Cap 137 137 353 333
Table 2. Average Vehicle Capacit ies for all PDPTW Test Cases

In this table, we also list the minimum and maximum vehicle capacity computed over
different PDPTW test cases within each category. We observe that even within each type
category, there is a large gap of between the minimum and maximum vehicle capacities
over all generated PDPTW instances. This implies that we should set a vehicle capacity
for each test case type (R1, RC1, R2, RC2) according to its respective average vehicle
capacity, in order to ensure that the problem instances generated under each type is
consistently tight.

5.3 Illustration

We perform the following experiments to demonstrate that the hardness of PDPTW
instances are sensitive to vehicle capacities. Specifically, we show that PDPTW instances
with the right vehicle capacity setting are hard, in the sense that it makes an algorithm
work hard.

We impose a maximum of 30 minutes on the CPU run time on our algorithm to
demonstrate that, within that timing:
1. the algorithm (and conceivably any such similar algorithm) produces good solutions

very easily when the test cases are easy; and
2. the algorithm (and conceivably any such similar algorithm) does not yield good

performance when the test cases are hard.
In these experiments, we consider the number of vehicles as the performance metric.

For each test case, we subject it to 4 different vehicle capacity values:
a) the average capacity computed above,
b) (upper bound) the original Solomon test case capacity,
c) (lower bound) the maximum load of all jobs, and
d) an intermediate value between c) and a).

We will demonstrate that, if the value is too high (case (b)), the algorithm easily produces
solutions that match best-published results, and hence says nothing about the
effectiveness of the algorithm. On the contrary, if the value is set too low (case (c)), then
the solution obtained is too poor relative to the best-published results for any meaningful
comparison to be made.

Tables 3 and 4 give the results of the experiments. Row 1 is best-published results for the
purpose of benchmarking. Rows 2 and below show the behavior of our algorithm under

the different vehicle capacities (whose specific values are given in brackets). The test
instances chosen are those R-instances for which best-published solutions have been
publis hed in [16] and [17].

From the tables, we observe that the following:

1. When the capacity is the upper bound, our tabu search produces good solutions much

more readily, compared with setting the vehicle capacity by other values.
Particularly, when capacity is the upper bound, the algorithm yields number of
vehicles that are equal to the best-published results in 8 out of 13 instances,
compared with 4 out of 13, when the capacity is average. The average capacity is
tight from above, in the sense that the number of vehicles obtained by the algorithm
is no more than 1 greater than the best-published results (with the exception of
R210).

2. On the other extreme, when the vehicle capacity is the lower bound, we observe that

our tabu search algorithm produces solutions where the number of vehicles are too
far from the best-published results for any meaningful benchmarking to occur.
Again, the average capacity is tight from below, in the sense that for intermediate
values that are below the average, the number of vehicles obtained is still poor.

Vehicle used R103 R104 R107 R108 R109 R110 R111
Best

13 9 10 9 11 11 10

Upper bound
(200)

13 10 10 10 11 12 11

Average
(85)

14 11 11 10 11 12 11

Intermediate
(60)

16 13 15 14 14 15 13

Lower bound
(36)

22 19 20 19 21 21 17

Table 3. Testing different capacities on R1 -instances

Vehicle used R201 R204 R205 R207 R208 R210
Best

4 2 3 2 2 3

Upper bound
(1000)

4 2 3 3 2 3

Average
(205)

4 3 3 3 2 5

Intermediate 1
(155)

4 3 5 4 3 5

Intermediate 2
(95)

7 5 6 4 4 5

Lower bound
(36)

13 11 12 10 11 10

Table 4. Testing different capacities on R2 -instances

6 Experimental Results

In this section, we present an experimental analysis on the effectiveness of the three
construction heuristics proposed, and a comparison of our approach against published
PDPTW algorithms.

In our implementation, we set the penalty value for each route to be 1000, which is
approximately the total distance traveled for all solutions.

6.1 Analysis of Construction Heuristics Results

Using the above test generation algorithm, we generate 4 types of test cases (R1, R2,
RC1, RC2) for PDPTW, which consists of 27 test cases. We did not generate C type test
cases. Instead, we used those provided by [3]1. Each of the test cases was run 100 times
against each construction heuristic and the best solutions returned were picked. The
detailed result is listed in Table 5. The four columns respectively represent the results
obtained by the Insertion Heuristic, Partitioned Insertion Heuristic, Sweep Heuristic and
the best-published results. These are the objective values of the VRPTW solutions
obtained from [16] and [17], based on the objective function (*)defined in Section 2.

Data Best IH Best PIH Best SH Best Pub.

C101 10846.9 10860.6 13325.7 10827.3

C104 10166.3 10128.5 10341 10822.9

C105 10888.7 10860.6 12377.6 10827.3

C106 10867.4 10879.2 12558.9 10822.9

C107 10934.2 10854.4 11226.8 10827.3

C108 10985.8 10854.4 12286.6 10826.1

C109 11007 11021 11689.6 10827.3

R103 16643 16583.3 18149.4 14292.67

R104 13249.8 13239.9 15791.5 10007.31

R107 13304.9 13306.4 16942.2 11104.65

R108 12223.8 12249.6 15814.4 9963.99

R109 15530.3 15482.3 18948.5 12197.41

R110 14413.3 13377.7 16987.4 11135.07

R111 14429.4 14389 17912.7 11096.72

RC103 15562.2 14604.2 18214.8 12261.67

RC104 13425.8 12292.9 14821.1 11135.48

RC107 15578 14512.6 17055 12230.48

R201 5874.04 5718.64 7483.85 5253.23

1 During our experiments, we found some bugs for the C102 and C103 test cases reported in [NB2000]. In
particular, the pickup and delivery jobs in these cases do not match. We have done some patching to ensure
the correctness of the test cases.

R204 4080.61 4207.16 4671.28 2856.36

R205 5744.09 5486.67 5953.3 3998.72

R207 4321.78 4249.99 4654.09 2894.89

R208 4139.85 3970.63 4466.46 2726.82

R210 5595.67 5658.27 5925.34 3958.24

RC201 6927.4 7039.28 7693.85 5406.94

RC202 6115.65 6031.86 7775.59 4377.09

RC203 5633.1 5704.28 6196.7 4062.3

RC207 5716.38 4514.17 7445.28 4068.86

Table 5. Construction heuristics Results

In this table, the bold figures represent the best among the three heuristics. The Italic
fonts represent that the results use the same number of vehicles in best result and the
underline fonts represent that the solution use less number of vehicles than other
construction heuristics. Several observations can be made.

First, it shows that while the Partitioned Insertion Heuristic yield best results in 18 out of
27 instances, the Sweep Heuristic has no good effect on the PDPTW instances. This is
attributed to the time windows constraints. In fact, the tighter the time windows are, the
worse the solutions obtained by Sweep.

Second, we observe that both Insertion Heuristic and Partitioned Insertion Heuristic
behave quite well in C type of the test cases. Both of them can achieve the best number of
vehicles. Notice also that the Partitioned Insertion Heuristic gives even better result in
terms of distance traveled.

Another interesting observation is that the solution for C104 is even better than the
optimal solution. This shows that the solution of test cases given by [3] is no longer
optimal under the corresponding PDPTW instance. The optimality is destroyed because
they did not pay attention to setting the capacity constraints appropriately.

6.2 Tabu Search Results

In this section, we will present the results produced by our tabu search approach. The
construction heuristic we used is the Partitioned Insertion Heuristic. The tabu length was
set to 50. Columns Veh and Dist respectively denotes the number of vehicles used and
the total distance traveled. Our experimental results are listed below:

Tabu NB2000 Best Pub. Data
Veh Dist Veh Dist Veh Dist

C101 10 828.9 10 (0 Iter.) 827.3 10 827.3

C104 9 989.9 10 (300 Iter) 834.7 10 822.9

C105 10 829.8 10 (0 Iter) 827.3 10 827.3

C106 10 828.9 10 (0 Iter.) 827.3 10 822.9

C107 10 828.9 10 (75 Iter) 826.1 10 827.3

C108 10 826.1 10 (83 Iter) 826.1 10 826.1

C109 10 828.9 10 (291 Iter) 827.3 10 827.3

Table 6. Tabu search results comparing with [3] and best -published results

Tabu Best Pub. Data

Veh Dist Veh Dist
R103 13 4325.2 13 1292.67

R104 9 1037.1 9 1007.31

R107 10 1214.6 10 1104.65

R108 9 964.9 9 963.99

R109 12 1260.3 11 1197.41

R110 10 1390.5 11 1135.07

R111 11 1169.0 10 1096.72

RC103 11 1540.8 11 1261.67

RC104 10 1140.3 10 1135.48

RC107 11 1300.6 11 1230.48

R201 4 1306 4 1253.23

R204 2 1004.7 2 856.36

R205 3 1267.9 3 998.72

R207 2 996.3 2 894.89

R208 2 865.1 2 726.82

R210 4 1127.8 3 958.24

RC201 4 1613.7 4 1406.94

RC202 3 1659.3 3 1377.09

RC203 4 1092.4 3 1062.3

RC207 3 1268.3 3 1068.86

Table 7. Tabu Search results comparing with best-published results2

From Tables 6 and 7 above, we can see that our proposed tabu search yields solutions
that are very close to the best solution for most of the cases. Considering the fact that we
have paid careful attention in setting the vehicle capacities, we believe that the
best-published results remain to be near optimal solutions for the PDPTW instances. This
implies that our results are capable of generating near optimal solutions for PDPTW. In
fact, there are 17 out of 21 non-C-type cases that attain the number of vehicles given in
the best solution (as shown in bold figures). The others require exactly one vehicle more.
For the C type of the cases, our approach yields solutions that are almost equal to the
best-published solutions.

An observation is the results provided by [3] (NB2000 column in Table 6). In brackets
are the number of the iterations that their approach required to obtain their results. There,
4 out of 8 test cases yielded the best results without any iteration. In other words, these

2 No results were reported for these instances in [3].

results were obtained simply by the construction heuristic. In their paper, the authors
claimed that the insertion algorithm is used as a construction heuristic. Hence, we suspect
that there could be something wrong with their test cases. After a careful comparison
between their test cases and the optimal solutions of VRPTW, we found that in their test
cases, most pickup and delivery jobs were adjacent with each other! They were not well
randomly paired and hence the problem instances became very easy to solve.

6. Conclusion

In this paper, we presented a two-phase approach to solve the Pickup and Delivery
Problem with Time Windows (PDPTW). We designed a set of good (i.e. reasonably hard)
benchmark test cases and solutions for PDPTW based on the full suite of Solomon test
cases, thus paving the way for future PDPTW research. We conducted experimental
comparisons over different construction heuristics on these data sets. Our experimental
results show that our tabu search approach yields solutions that are very close to the
benchmark solutions.

Reference

[1] M.W.P. Savelsbergh, “Local Search for Routing Problems with Time Windows”. Annals of

Operations Research, 4, 285-305, (1985).
[2] J. Desrosiers et al., “Time Constrained Routing and Scheduling”. In Handbooks in Operations

Research and Management Science: Network Routing. Elsevier Science Publ., 35-139, (1995).
[3] W.P. Nanry, J.W.Barnes, “Solving the pickup and delivery problem with time windows using

tabu search”. Transportation Research Part B 34, 107-121, (2000).
[4] H. Psarafis, “A dyanmic programming solution to the single vehicle many-to-many immediate

request dial-a-ride problem”. Transportation Science 14, 130-154, (1980).
[5] H. Psarafis, “An exact algorithm for the single vehicle many-to-many immediate request

dial-a-ride problem”. Transportation Science 17 (4), 351-361, (1983).
[6] T.R. Sexton, L. D. Bodin, “Optimizing single vehicle many-to-many dial-a-ride problem with

desired delivery time: I Scheduling”. Transportation Science 19, 378-410, (1985).
[7] T.R. Sexton, L. D. Bodin, “Optimizing single vehicle many-to-many dial-a-ride problem with

desired delivery time: II Routing”. Transportation Science 19, 411-435, (1985).
[8] T.R. Sexton, Y.Y. Choi, “Pickup and delivery partial loads with soft time windows”.

American Journal of Mathematical and Management Science 6, 369-398, (1986).
[9] L.J.J. Van der Bruggen, J.K. Lenstra, P.C. Schuur, “Variable-depth search for the single

vehicle pickup and delivery problem with time windows”. Transportation Science 27,
298-311, (1993).

[10] Y. Dumas, J. Desrosiers, F. Soumis, “A dynamic programming solution of the large-scale
single vehicle dial-a-ride problem with time windows”. American Journal of Mathematical
and Management Science 16, 301-325, (1986).

[11] Y. Dumas, J. Desrosiers, F. Soumis, “The pick-up and delivery problem with time windows”.
European Journal of Operational Research 54, 7-22, (1991).

[12] M.W.P. Savelsbergh, M. Sol, “The General Pickup and Delivery Problem”, Transportation
Science, 29, 17-29, (1995).

[13] N. Kohl, “Exact Methods for Time Constrained Routing and Related Scheduling Problems”,
Ph.D. Dissertation, Institute of Mathematical Modeling, Technical University of Denmark.

[14] E. Taillard et al., “A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time
Windows”, Transportation Science, 31, 170-186, (1996).

[15] M.M. Solomon, “Algorithms for the vehicle Routing and Scheduling Problem with Time
Window Constraints”, Operations Research, 35, 254-265, (1987).

[16] http://www.cs.strath.ac.uk/~ps/GreenTrip/NewBest/all.solns
[17] http://www.idsia.ch/~luca/macs-vrptw/solutions/welcome.htm

