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In the pickup and delivery problem with time windows (PDPTW), vehicles have to transport loads 
from origins to destinations respecting capacity and time constraints. In this paper, we present a 
two-phase method to solve the PDPTW. In the first phase, we apply a novel construction 
heuristics to generate an initial solution. In the second phase, a tabu search method is proposed to 
improve the solution. Another contribution of this paper is a strategy to generate good problem 
instances and benchmarking solutions for PDPTW, based on Solomon’s benchmark test cases for 
VRPTW.  Experimental results show that our approach yields very good solutions when 
compared with the benchmarking solutions. 
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1.  Introduction 
 
The Pickup and Delivery Problem with Time Windows (PDPTW) models the situation in 
which a fleet of vehicles must service a collection of transportation requests. Each request 
specifies a pickup and delivery location. Vehicles must be routed to service all requests, 
satisfying time windows and vehicle capacity constraints while optimizing a certain 
objective function such as total distance traveled. PDPTW can be used to model many 
core problems arising in logistics and public transit. Finding good solutions to these 
problems is important because it enables planners to utilize the existing fleet in the most 
cost-effective fashion to meet customer demands.  
 
PDPTW is a generalization of well-known Vehicle Routing Problem with Time Window 
(VRPTW).  PDPTW is an NP-hard problem, since VRP is a well-known NP-hard 
problem [1].  While VRPTW is well-studied (for a comprehensive survey, see [2], there 
is relatively less literature on PDPTW. Moreover, no one has developed comprehensive 
benchmark PDPTW instances that facilitate experimentation of new approaches.  
 
In this paper, we propose a new approach for PDPTW, extending and improving the 
results of [3].   We also propose a method to generate good problem instances and 
solutions for PDPTW, based on Solomon’s benchmark data sets for VRPTW. This turns 
out to be an interesting exercise, because good solutions for VRPTW do not imply good 
solutions for PDPTW, mainly due to the fact that while the vehicle load cumulatively 
increases along each route for VRPTW, it is not the case for PDPTW as pickups and 
deliveries occur in juxtaposition.  
 
 



2.  Problem Formulation 
 
In our model, we assume there are an unlimited number of vehicles and all vehicles have 
the same capacity. Let N be the set of transportation requests. For each request i ∈ N, a 
load of size qi is to be transported from an origin Ni

+ to a destination Ni
− (positive qi for 

pickup and negative qi for delivery). Each pickup or delivery is also referred to as a job. 
Define U Ni iNN

∈

++ ≡  and U Ni iNN
∈

−− ≡ as the sets of all origins and destinations 

respectively. For simplicity, assume Ni+ and Ni
− to be disjoint. Let −+≡ NNV U  and n = 

|V|. Let M and m denote the set and number of vehicles. Each vehicle has a capacity Q, 
starting from and ending with the depot O with no cargo. For all OVji U∈, , let dij 
denote the travel distance and tij the travel time. Let [ ]ii le ,  denote the time window, i.e. 

time interval in which service at location i must take place. Note that the service 
durations at the origins and destinations can be easily incorporated in the travel times and 
hence will not be considered explicitly in this paper.  
 

 

Definition 1 A pickup and delivery route 
kR  for vehicle k is a directed route through a 

subset VVk ⊂ such that:  

1.  kR  starts and ends in O .    

2. Both or neither Ni
+ and Ni

− belongs to 
kV  for all i ∈ N. 

3. If both Ni
+ and Ni

− belong to 
kV , Ni

+ is visited before Ni
−. 

4. Vehicle k visits each location in 
kV exactly once. 

5. The vehicle load at any one time never exceeds Q.  
6. The arrival time iA  and departure time 

iD  of any location i satisfy ],[ iii leD ∈ , 

where },max{ iii eAD =  (i.e. if 
ii eA < , the vehicle has to wait at location i ). 

 
 
Definition 2 A pickup and delivery plan is a set of routes }|{ MkRR k ∈≡  such that  

1. kR  is a pickup and delivery route for vehicle k, for all Mk ∈ . 

2. }|{ MkVk ∈  is a partition of V . 

 
Define )(Rf  as the cost of plan R  corresponding to a certain objective function f .  

PDPTW is defined as the optimization problem of finding a pickup and delivery plan R  
that minimizes the function )(Rf . 

 
There are a wide variety of objective functions for PDPTW. In this paper, we consider 
the following: 
1. Minimize the number of vehicles, which is almost always the most dominant part of 

the cost.   
2. Minimize travel distance. That is, the sum of lengths of all the routes in the plan. 
  
To model PDPTW as an integer linear program (ILP), two types of binary variables are 
introduced. Let ),( MkVizik ∈∈  become true iff request i  is assigned to vehicle 

k , ),,( MkVjVixijk ∈∈∈ is true iff vehicle k is traveling from node i to node j. Let jy  



denote an intermediate variable that stores the total load of the vehicle visiting job j.   
PDPTW is to minimize )(xf  subject to the following constraints: 

 
Ni ∈∀ , 1=∑ ∈ Mk ikz  (1)   

1, =∈∀ ∑ ∑∈ ∈Mk Vj ijkxVi  (2) 

1, =∈∀ ∑ ∈ Vi iOkxMk  (3) 

1, =∈∀ ∑ ∈Vj OjkxMk  (4) 

0),)(( =−∈∀∈∀ ∑∑ ∈∈ Vj hjkVi ihk xxMkVh  (5) 

jVi ijk yQxMkVj ≥∈∀∈∀ ∑ ∈),)((  (6) 

))(,( MkOVji ∈∀∪∈∀ , jiiijk yqyx =+⇒= 1  (7) 

0=
O

y    (8) 

0, ≥∈∀ iyVi    (9) 

))(,( MkVji ∈∀∈∀ , jijiijk DtDx ≤+⇒= 1  (10) 

qpii DDNqNpNi ≤==∈∀ −+ ,,,  (11) 

0=OD    (12) 

 
Constraint (1) ensures that each request is assigned to exactly one vehicle. Constraint (2) 
ensures that each job is visited exactly once. Constraints (3) and (4) ensure that each 
vehicle departs from and arrives at the depot. (5) ensures that if a vehicle arrives at a node 
then it must also depart from that node. (6)-(9) together form the capacity constraints. 
The time windows and precedence constraints are ensured by (10)-(12). 
 
To model the duo-objective of minimizing (a) the total number of vehicles and (b) total 
travel distance as a linear function, we multiply a coefficient for each objective and then 
add them together. Since the number of vehicles is more important than the total distance 
of a plan, the cost of each vehicle (route) is penalized with a coefficient P , which is set 
to be greater than the maximum possible total travel distance. Hence, the objective 
function of the problem is: 
 
    minimize ∑ ∑ ∑∈ ∈ ∈

+×
Mk Vi Vj ijkij xdmP      (*) 

 
This formulation of the problem has )( 2mnO  constraints and )( 2mnO  variables. For 

large-scale problems, an ILP solver almost always experiences combinatorial explosion.  
 
 
3. Literature Review 
 
Most previous work focused on the single vehicle dial-a-ride problem with time windows 
(1-PDPTW). For the objective to minimize the total customer inconvenience, Psarafis 
([4],[5]) developed a dynamic programming algorithm with a O(n23n) time complexity, 
which could only solve small-sized problems with 10 or fewer requests. In Sexton and 
Bodin ([6],[7]), the problem was de-coupled into a coordinating routing master problem 
formulated as an integer program, and a scheduling subproblem for a fixed route, which 



was formulated as linear program. By using a heuristic version of Benders' 
decomposition, the routing master problem and the scheduling subproblem were solved 
individually. Real problems with sizes from 7 to 20 could be solved in an average of 18 
seconds of UNIVAC 1100/81A CPU time. Sexton and Choi [8] used a similar approach 
to minimize a linear combination of total vehicle operating time and total customer 
penalty due to missing any of the time windows. For minimizing the schedule duration, 
Van der Bruggen et al. [9] developed a two-phase heuristic algorithm based on 
arc-exchange procedures and an alternative algorithm based on simulated annealing. 
Their approaches produced high quality solutions on real-life problems in reasonable 
computational time. Finally, for minimizing the total travel cost, a forward dynamic 
programming approach was developed by Dumas et al. [10]. The efficiency of the 
algorithm is improved by eliminating states that are incompatible with vehicle capacity, 
precedence and time window constraints. 
 
The multiple vehicle pickup and delivery problem with time windows has received few 
attention until recently. The only optimal algorithm to our knowledge developed by 
Dumas et al. [11] who employed a column generation scheme with a shortest path 
subproblem with capacity, time window, precedence and coupling constraints. Their 
algorithm can solve 1-PDPTW problems up to 55 paired requests and multiple- vehicle 
PDPTW with a small size of paired requests per vehicle.  
 
In [12], Savelsbergh and Sol divided the General Pickup and Delivery Problem into four 
categories, which are Static Single -Vehicle PDP, Static Multi-Vehicle PDP, Dynamic 
Single -Vehicle PDP and Dynamic Multi-Vehicle PDP. He presented a general model that 
can handle the practical constraints. The paper aimed to isolate and discuss some of the 
characteristics that differentiate pickup and delivery problems from traditional vehicle 
routing problem, 
 
Recently, Nanry  and Barnes  [3] proposed a reactive tabu search approach to minimizing 
the travel cost by using a penalty objective function in terms of travel time, penalty for 
violation of overload and time window constraints. The approach was tested on 
25-customer instances, 50-customer instances and 9 100-customer instances constructed 
from Solomon's C1 VRPTW benchmark instances. They first used a greedy insertion 
method to construct a feasible PDPTW plan. Then, a reactive tabu search method was 
used to improve the plan. They proposed three neighborhoods, namely, Single paired 
insertion (SPI) , Swapping pairs between routes (SBR)  and Within route insertion (WRI) .  
In their work, the data sets were built based on Solomon test cases for VRPTW. The 
vehicle capacity, the spatial information and time window of each location is the same as 
the original Solomon test cases. Jobs are paired randomly based on the optimal solution 
provided by [13], while assuring that feasibility was maintained. However, it is not clear 
from their work how the load of each pickup-delivery pair is set. This is an important 
consideration because it would determine whether the given solutions (from [13] in this 
case) are still the optimal solutions for the corresponding PDPTW test cases. In this 
paper, we will address this issue by proposing a more rigorous test case generation 
strategy.  
 
 



4. Two Phase Method 
 
In this section, we propose our two-phase method for solving PDPTW.  This two-phase 
method comprises the Construction heuristic and the Tabu Search.  
 
4.1   Construction heuristics 
Our construction heuristic, which we name as partitioned insertion heuristic, is a hybrid 
heuristic combining the advantages of the standard insertion heuristic and sweep 
heuristic.  
 
Insertion Heuristic 
Insertion Heuristic is one of the most commonly used construction heuristics for VRP. To 
solve PDPTW, the Insertion heuristic can be adapted as shown below: 
1. Let all vehicles have empty routes. 
2. Let L be the list of unassigned requests. 
3. Take a job pair v in L. 
4. Insert v in a route at a feasible position where there is the least increase in cost. 
5. Remove v from L. 
6. If L is not empty, go to 3. 
 
Figure 1 shows a PDPTW instance. Using the above insertion heuristic, the solution 
generated is shown in Figure 2. Observe that, in this instance, all the jobs close to depot 
(i.e. −+−+ BBAA ,,, ) are also close to one another; hence, they will be served by the 
same vehicle. Consequently, all the jobs further away are far from one another, to the 
extent that each vehicle can only serve one pair of jobs at a time. In order to avoid such 
kind of imbalance (some very good routes and some very bad routes), another 
construction heuristic, the Sweep Heuristic, is often used. 
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Figure 1. Example PDPTW instance 
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Figure 2. Solution Using Insertion Heuristic 

 
Sweep Heuristic 
Sweep heuristic is the other well-known construction heuristic method for VRP. It builds 
routes by a sweep technique around the depot. The Sweep heuristic for VRP is shown 
below: 
1. Let O be a site from which vehicles leave (usually the depot), and let A (different 

from O) be another location, which serves as a reference. 
2. Sort jobs by increasing angle AOS∠  where S is the job location. Put the result in a 

list L. 
3. The jobs in L will be allocated to the vehicles in that order as long as constraints are 

respected. 
 
The advantage of sweep heuristic is that near and far jobs are mixed in the same route. 
This makes the solution more balanced, i.e. there are no extremely good routes and 
extremely bad routes.  Notice that in PDPTW, geographically close destinations may 
have origins that are far away; consequently, a pickup and delivery pair may not be 
served by the same vehicle using the above algorithm! The following modifications are 
done to adapt the sweep heuristic for PDPTW: 
1. Let O be a site from which vehicles leave, and let A (different from O) be another 

location, which serves as a reference. 
2. Sort pickup jobs by increasing angle AOS∠  where S is the job location. Put result 

in a list L. 
3. Pick a pickup job in L with location I and its delivery job with location J and create a 

new route with this job pair.  
4. Until no more jobs can be added the route do: 

a. If there are uninserted pickup jobs located in the sector IOJ∠ , insert the pair that 
is best feasible. Otherwise, insert an uninserted pickup-delivery job pair, in 
which the pickup job is at location K  where JOK∠  is smallest and all the 
constraints are respected. 

b. Remove this pickup job from L.  
5. If L is not empty, go to 3.  
 
Figure 3 shows the solution generated using the modified Sweep Heuristic. 
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Figure 3. Solution Using Sweep Heuristic 

 

Partitioned Insertion Heuristic 
We now present our construction heuristic, the Partitioned Insertion Heuristic: 
1. Set all vehicles to empty routes. 
2. Let L be the list of unassigned visits. 
3. Sort jobs by increasing angle AOS∠  where S is the job location. Put the result in a 

list L. 
4. Divide L into K sub-lists such that ],,1[ Ki ∈∀  all the jobs in the ith sub-list satisfy 

)/)1(,/[ ππ +∈∠ iiAOS . 

5. Randomly find a partition and insert the farthest job v in L. 
6. Insert v in a route at a feasible position where there will be the least increase in cost. 
7. Use the Insertion Heuristic to form a route. 
8. If L is not empty, go to 5. 
 
In our algorithm, both advantages of the insertion heuristic and modified sweep heuristic 
are merged. The furthest job within a sub-list is always selected as the first job to be 
inserted in a new route. This will ensure that the “bad” jobs (since they are far) are taken 
care of at the onset, thus avoiding the formation of imbalance routes. The number of the 
partition is set to the number of the established routes needed. In Section 6, we will 
illustrate the proposed algorithm in terms of both speed and quality of solutions. 
 
4.2 Tabu Search   
 
We introduce three different neighborhood moves, namely, Single Pair Insertion (SPI), 
Swap Pairs between Routes (SBR) and Within Routes Insertion (WRI). These moves 
are adapted from [3].   
 
The Notion of Cluster 
In [14], multiple consecutive jobs exchange was presented as a local move. This is 
because often a segment with consecutive jobs is a good component to forming a good 
route. This move is extended to PDPTW as follows. Consider a situation that pickup jobs 

+A , +B  and delivery jobs −− BA ,  are in the same route (Fig. 4). If we move both pairs 
together as done in [4], they must be consecutive. We define such a consecutive segment 
as a cluster. In other words, the vehicle can enter and leave the cluster with no other jobs 



involved. Another property of cluster is that vehicle will enter and leave the cluster with 
the same load.  
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Figure 4. Example of Cluster  

 

Single Pair Insertion (SPI) 
The first move neighborhood attempts to move a pickup-delivery pair or a cluster from its 
current vehicle route to another vehicle route in the solution. SPI performs the following 
process for all n/2 pickup-delivery job pairs in the current solution. Once a 
pickup-delivery job pair or a cluster is identified, the method attempts to place it on 
another route. An admissible placement is one where both jobs (pickup and delivery) 
satisfy both time window and capacity constraints. There are n/2 ways of choosing 
pickup-delivery job pair. There are )(nO  positions to place the pickup and delivery jobs 

respectively. Hence, SPI has an )( 3nO  search neighborhood. 

 
To reduce the number of routes, the search process should be biased such that it tries to 
remove the job pairs from the shorter routes and insert them into longer routes. Assume 
that a pickup-delivery job pair is selected from route 1r , and are inserted into route 

2r . 

The routes after this move are denoted as '
2

'
1 , rr . Originally, there are 

1n  jobs in 1r  and 

2n  jobs in 
2r . The cost of a route r is denoted as )(rf  and the pure saving cost (PSC) 

is defined as )()()()(),( '
2

'
12121 rfrfrfrfrrPSC −−+= . To bias the search, we 

introduce a new saving cost known as the bias route saving cost (BRSC) , defined as:  

2/)2(2/
),(),(

21
2121 +

−+=
n

P
n

P
rrPSCrrBRSC . 

Clearly, if 
21 nn < , ),( 21 rrBRSC will likely become positive; if 21 nn = , 

),( 21 rrBRSC  and ),( 12 rrBRSC  will only depend on ),( 21 rrPSC  and ),( 12 rrPSC ; 

if 
21 nn > , ),( 12 rrBRSC  will likely become positive.  

 
Swapping Pair Between Routes (SBR) 
The second move neighborhood involves exchanges of pickup-delivery pairs and/or 
clusters between two different routes. Assume that n  jobs are evenly distributed in m  

routes, the computational time complexity of swap neighborhood is .
2

4









m
n

O  

Within Route Insertion (WRI) 
WRI is used to improve routes by moving indiv idual nodes forward or backward within 
their respective routes. Note however that since there are )!/( mn  possible ways to 

sequence the jobs, local search is used again. For each route, do the following: 
1. Move one pickup and delivery pair in the route. 
2. If the cost is reduced and all constraints are satisfied, goto Step 1. 
3. When all such moves have been tried, move clusters consisting of two pairs. 
4. Eventually, move clusters consisting of three pairs. 



 
Composite Neighborhood 
Of the three move neighborhoods, SPI has the greatest potential for improvement in the 
objective function, and it is the only move that can reduce the number of routes. When 
SPI reaches a barrier where no more admissible SPI exists, SBR is used to overcome the 
barrier. Finally, WRI is applied, which is especially helpful when large time windows are 
prevalent.  The application of three neighborhood moves in our tabu search is shown 
below: 
1. Find SPI move with highest PSC and implement the move. 
2. If no more SPI move with positive PSC exists, find the best SPI move with BRSC 

and implement the move. Goto 1. 
3. If no more SPI move with positive BRSC, find the SBR move with the greatest 

saving and implement the move. Goto 1. 
4. If no more SBR move with positive saving, find the best WRI move and implement 

the move. Goto 1. 
5. If no WRI move found, stop. 
 
 
5.  Test Case Generation 
 
We performed a careful literature survey, and to our knowledge, no comprehensive 
benchmark test cases for PDPTW are available. Fortunately, from the VRPTW literature, 
there are well-established benchmark test cases for VRPTW by Solomon [15], as well as 
good solutions to those instances.  In this section, we present how we adapt Solomon 
instances and the best-published solutions to generate good PDPTW instances and their 
corresponding benchmark solutions.   
 
Our strategy is to reuse the best-published VRPTW solutions as benchmark solutions for 
PDPTW instances. In essence, two issues need to be resolved. First, how we ensure that a 
VRPTW solution remains feasible for the PDPTW instance, given that the latter is more 
constrained than a VRPTW instance. Second, given that pickup and dropoff occur 
throughout the route, how to ensure that the VRPTW solution remains to be good (in the 
sense of its optimality) for the PDPTW instance.  
 
5.1 Preserving Feasibility 
 
Unlike VRPTW in which jobs have no precedence constraints, a PDPTW instance does. 
Hence, any feasible solution y for a given VRPTW instance X may not be feasible on a 
PDPTW instance resulting from randomly or arbitrarily designating the jobs in X as 
pickup or delivery jobs.  Hence, rather than pairing jobs on X, we pair jobs based on y.  
We do so in such a way that y  remains feasible under the generated PDPTW instance, as 
shown below: 
 
Algorithm GENERATE: 

For each route r in y do 
a. Randomly select two jobs (j1, j2) in r to be paired 
b. Randomly select either j1 or j2’s load as pickup and delivery load for both j1 and j2 
c. If there are still jobs not paired 

i. If the number of jobs is more than 1, go to step a. 



ii. If number of jobs is 1, set it as a pickup job; create a dummy delivery job, 
whose time window is set to the largest possible time window, service time is 
set to 0, and load is equal to the load of the remaining pickup job.  

 
5.2   Preserving Optimality  
 
Unlike VRPTW where the total load (sum of job loads) on each route remains static, each 
route in PDPTW will have different cumulative loads as the vehicle picks up and drops 
off the loads throughout the route.  Hence, if we keep the vehicle capacity as it is (as 
done in [3]), the vehicle capacity constraint is no longer as tight as intended for the given 
VRPTW instance. This makes it unclear whether an optimal solution for a VRPTW 
instance is still optimal, or there exists even better solutions for the corresponding 
PDPTW test case generated from the VRPTW instance. On the other hand, however, if 
the vehicle capacity were changed to become too tight, then the neighborhood space will 
be naturally limited.  Hence, the key issue is to adjust the vehicle capacity so that a good 
(i.e. near optimal) solution for a given VRPTW instance remains to be good for the 
corresponding PDPTW instance.  
 
Given a PDPTW instance and its solution, we first compute the maximum load of each 
route on the solution (which is the maximum possible load that the vehicle is carrying at 
any one point throughout the route). The vehicle capacity for that instance is then set as 
the highest maximum load over all routes.  
 
From Algorithm GENERATE  presented in Section 5.1, we see that numerous PDPTW 
instances can be generated from a given VRPTW instance.  Hence, to ensure that the 
vehicle capacity is sufficiently tight over the many possible PDPTW instances derived 
from a given VRPTW instance, we apply the following procedure: 
 
1.  Apply Algorithm GENERATE to generate 100 different PDPTW instances and 

compute their corresponding vehicle capacities based on the max load argument 
above.  

2.   Compute the average vehicle capacity by averaging over the vehicle capacities for 
all instances.  

 
Using the above approach, we present statistics on the average vehicle capacities of 
several R1 type test cases (rounded to the nearest integer). These figures were presented 
using the solutions presented in the [16] and [17]: 
 

 
Test case R103 R104 R107 R108 R109R110 R111 

Avg Vehicle Capacity 83 91 86 91 85 89 85 

Table 1.  Average Vehicle Capacity for PDPTW R1 instances 

 
Notice that for Solomon’s VRPTW test cases, all problem instances belonging to the 
same type category (R1, for example) have the same vehicle capacity. Likewise, to be 
consistent with this standard, we compute the average of all R1 test instances, which 
turns out to be 86.13. Hence, we set the R1 type vehicle capacity as 85 (rounded to the 



nearest 5 or 10, like Solomon test cases). Likewise, the vehicle capacities for RC1, R2 
and RC2 are computed, as shown in Table 2. 
 
 

Test case type R1 RC1 R2 RC2 

Avg Vehicle 
Capacity 

85 
(86.13) 

95 
(96.07) 

205 
(205.55) 

210 
(211.38) 

Min Veh Cap 46 60 109 116 

Max Veh Cap 137 137 353 333 
Table 2. Average Vehicle Capacit ies for all PDPTW Test Cases  

 
In this table, we also list the minimum and maximum vehicle capacity computed over 
different PDPTW test cases within each category. We observe that even within each type 
category, there is a large gap of between the minimum and maximum vehicle capacities 
over all generated PDPTW instances. This implies that we should set a vehicle capacity 
for each test case type (R1, RC1, R2, RC2) according to its respective average vehicle 
capacity, in order to ensure that the problem instances generated under each type is 
consistently tight. 
 
5.3   Illustration 

 
We perform the following experiments to demonstrate that the hardness of PDPTW 
instances are sensitive to vehicle capacities. Specifically, we show that PDPTW instances 
with the right vehicle capacity setting are hard, in the sense that it makes an algorithm 
work hard.  
 
We impose a maximum of 30 minutes on the CPU run time on our algorithm to 
demonstrate that, within that timing: 
1. the algorithm (and conceivably any such similar algorithm) produces good solutions 

very easily when the test cases are easy; and 
2. the algorithm (and conceivably any such similar algorithm) does not yield good 

performance when the test cases are hard.  
In these experiments, we consider the number of vehicles as the performance metric.   
 
For each test case, we subject it to 4 different vehicle capacity values: 
a) the average capacity computed above,  
b) (upper bound) the original Solomon test case capacity,  
c) (lower bound) the maximum load of all jobs, and 
d) an intermediate value between c) and a).  
 
We will demonstrate that, if the value is too high (case (b)), the algorithm easily produces 
solutions that match best-published results, and hence says nothing about the 
effectiveness of the algorithm. On the contrary, if the value is set too low (case (c)), then 
the solution obtained is too poor relative to the best-published results for any meaningful 
comparison to be made.  
  
Tables 3 and 4 give the results of the experiments. Row 1 is best-published results for the 
purpose of benchmarking. Rows 2 and below show the behavior of our algorithm under 



the different vehicle capacities (whose specific values are given in brackets). The test 
instances chosen are those R-instances for which best-published solutions have been 
publis hed in [16] and [17].  

 
From the tables, we observe that the following: 
 
1. When the capacity is the upper bound, our tabu search produces good solutions much 

more readily, compared with setting the vehicle capacity by other values. 
Particularly, when capacity is the upper bound, the algorithm yields number of 
vehicles that are equal to the best-published results in 8 out of 13 instances, 
compared with 4 out of 13, when the capacity is average. The average capacity is 
tight from above, in the sense that the number of vehicles obtained by the algorithm 
is no more than 1 greater than the best-published results (with the exception of 
R210).  

 
2. On the other extreme, when the vehicle capacity is the lower bound, we observe that 

our tabu search algorithm produces solutions where the number of vehicles are too 
far from the best-published results for any meaningful benchmarking to occur. 
Again, the average capacity is tight from below, in the sense that for intermediate 
values that are below the average, the number of vehicles obtained is still poor.  

 

Vehicle used R103 R104 R107 R108 R109 R110 R111 
Best 

 
13 9 10 9 11 11 10 

Upper bound 
(200) 

13 10 10 10 11 12 11 

Average 
(85) 

14 11 11 10 11 12 11 

Intermediate 
(60) 

16 13 15 14 14 15 13 

Lower bound 
(36) 

22 19 20 19 21 21 17 

Table 3. Testing different capacities on R1 -instances 
 

Vehicle used R201 R204 R205 R207 R208 R210 
Best  

 
4 2 3 2 2 3 

Upper bound 
(1000) 

4 2 3 3 2 3 

Average 
(205) 

4 3 3 3 2 5 

Intermediate 1 
(155) 

4 3 5 4 3 5 

Intermediate 2 
(95) 

7 5 6 4 4 5 

Lower bound 
(36) 

13 11 12 10 11 10 

Table 4. Testing different capacities on R2 -instances 
 

 



6 Experimental Results  
 
In this section, we present an experimental analysis on the effectiveness of the three 
construction heuristics proposed, and a comparison of our approach against published 
PDPTW algorithms.  
 
In our implementation, we set the penalty value for each route to be 1000, which is 
approximately the total distance traveled for all solutions.  
 
6.1 Analysis of Construction Heuristics Results  
 
Using the above test generation algorithm, we generate 4 types of test cases (R1, R2, 
RC1, RC2) for PDPTW, which consists of 27 test cases. We did not generate C type test 
cases. Instead, we used those provided by [3]1. Each of the test cases was run 100 times 
against each construction heuristic and the best solutions returned were picked. The 
detailed result is listed in Table 5. The four columns respectively represent the results 
obtained by the Insertion Heuristic, Partitioned Insertion Heuristic, Sweep Heuristic and 
the best-published results. These are the objective values of the VRPTW solutions 
obtained from [16] and [17], based on the objective function (*)defined in Section 2. 

 
 

Data Best IH Best PIH Best SH Best Pub. 

C101 10846.9 10860.6 13325.7 10827.3 

C104 10166.3 10128.5 10341 10822.9 

C105 10888.7 10860.6 12377.6 10827.3 

C106 10867.4 10879.2 12558.9 10822.9 

C107 10934.2 10854.4 11226.8 10827.3 

C108 10985.8 10854.4 12286.6 10826.1 

C109 11007 11021 11689.6 10827.3 

R103 16643 16583.3 18149.4 14292.67 

R104 13249.8 13239.9 15791.5 10007.31 

R107 13304.9 13306.4 16942.2 11104.65 

R108 12223.8 12249.6 15814.4 9963.99 

R109 15530.3 15482.3 18948.5 12197.41 

R110 14413.3 13377.7 16987.4 11135.07 

R111 14429.4 14389 17912.7 11096.72 

RC103 15562.2 14604.2 18214.8 12261.67 

RC104 13425.8 12292.9 14821.1 11135.48 

RC107 15578 14512.6 17055 12230.48 

R201 5874.04 5718.64 7483.85 5253.23 

                                                 
1 During our experiments, we found some bugs for the C102 and C103 test cases reported in [NB2000]. In 
particular, the pickup and delivery jobs in these cases do not match. We have done some patching to ensure 
the correctness of the test cases.  



R204 4080.61 4207.16 4671.28 2856.36 

R205 5744.09 5486.67 5953.3 3998.72 

R207 4321.78 4249.99 4654.09 2894.89 

R208 4139.85 3970.63 4466.46 2726.82 

R210 5595.67 5658.27 5925.34 3958.24 

RC201 6927.4 7039.28 7693.85 5406.94 

RC202 6115.65 6031.86 7775.59 4377.09 

RC203 5633.1 5704.28 6196.7 4062.3 

RC207 5716.38 4514.17 7445.28 4068.86 

Table 5.  Construction heuristics Results 

 
In this table, the bold figures represent the best among the three heuristics. The Italic 
fonts represent that the results use the same number of vehicles in best result and the 
underline fonts represent that the solution use less number of vehicles than other 
construction heuristics. Several observations can be made.   
 
First, it shows that while the Partitioned Insertion Heuristic yield best results in 18 out of 
27 instances, the Sweep Heuristic has no good effect on the PDPTW instances. This is 
attributed to the time windows constraints. In fact, the tighter the time windows are, the 
worse the solutions obtained by Sweep.  
 
Second, we observe that both Insertion Heuristic and Partitioned Insertion Heuristic 
behave quite well in C type of the test cases. Both of them can achieve the best number of 
vehicles. Notice also that the Partitioned Insertion Heuristic gives even better result in 
terms of distance traveled.  
 
Another interesting observation is that the solution for C104 is even better than the 
optimal solution. This shows that the solution of test cases given by [3] is no longer 
optimal under the corresponding PDPTW instance. The optimality is destroyed because 
they did not pay attention to setting the capacity constraints appropriately.  
 
6.2 Tabu Search Results 
 
In this section, we will present the results produced by our tabu search approach.  The 
construction heuristic we used is the Partitioned Insertion Heuristic. The tabu length was 
set to 50. Columns Veh and Dist respectively denotes the number of vehicles used and 
the total distance traveled. Our experimental results are listed below: 
 

Tabu NB2000 Best Pub. Data 
Veh Dist Veh Dist Veh Dist 

C101 10 828.9 10 (0 Iter.) 827.3 10 827.3 

C104 9 989.9 10 (300 Iter) 834.7 10 822.9 

C105 10 829.8 10 (0 Iter) 827.3 10 827.3 

C106 10 828.9 10 (0 Iter.) 827.3 10 822.9 

C107 10 828.9 10 (75 Iter) 826.1 10 827.3 



C108 10 826.1 10 (83 Iter) 826.1 10 826.1 

C109 10 828.9 10 (291 Iter) 827.3 10 827.3 

Table 6.  Tabu search results comparing with [3] and best -published results 

 
Tabu Best Pub. Data 

Veh Dist Veh Dist 
R103 13 4325.2 13 1292.67 

R104 9 1037.1 9 1007.31 

R107 10 1214.6 10 1104.65 

R108 9 964.9 9 963.99 

R109 12 1260.3 11 1197.41 

R110 10 1390.5 11 1135.07 

R111 11 1169.0 10 1096.72 

RC103 11 1540.8 11 1261.67 

RC104 10 1140.3 10 1135.48 

RC107 11 1300.6 11 1230.48 

R201 4 1306 4 1253.23 

R204 2 1004.7 2 856.36 

R205 3 1267.9 3 998.72 

R207 2 996.3 2 894.89 

R208 2 865.1 2 726.82 

R210 4 1127.8 3 958.24 

RC201 4 1613.7 4 1406.94 

RC202 3 1659.3 3 1377.09 

RC203 4 1092.4 3 1062.3 

RC207 3 1268.3 3 1068.86 

Table 7.  Tabu Search results comparing with best-published results2 

 
From Tables 6 and 7 above, we can see that our proposed tabu search yields solutions 
that are very close to the best solution for most of the cases. Considering the fact that we 
have paid careful attention in setting the vehicle capacities, we believe that the 
best-published results remain to be near optimal solutions for the PDPTW instances. This 
implies that our results are capable of generating near optimal solutions for PDPTW.  In 
fact, there are 17 out of 21 non-C-type cases that attain the number of vehicles given in 
the best solution (as shown in bold figures). The others require exactly one vehicle more. 
For the C type of the cases, our approach yields solutions that are almost equal to the 
best-published solutions. 
 
An observation is the results provided by [3] (NB2000 column in Table 6). In brackets 
are the number of the iterations that their approach required to obtain their results. There, 
4 out of 8 test cases yielded the best results without any iteration. In other words, these 

                                                 
2 No results were reported for these instances in [3]. 



results were obtained simply by the construction heuristic. In their paper, the authors 
claimed that the insertion algorithm is used as a construction heuristic. Hence, we suspect 
that there could be something wrong with their test cases. After a careful comparison 
between their test cases and the optimal solutions of VRPTW, we found that in their test 
cases, most pickup and delivery jobs were adjacent with each other! They were not well 
randomly paired and hence the problem instances became very easy to solve.  
 
6. Conclusion 
 
In this paper, we presented a two-phase approach to solve the Pickup and Delivery 
Problem with Time Windows (PDPTW). We designed a set of good (i.e. reasonably hard) 
benchmark test cases and solutions for PDPTW based on the full suite of Solomon test 
cases, thus paving the way for future PDPTW research. We conducted experimental 
comparisons over different construction heuristics on these data sets. Our experimental 
results show that our tabu search approach yields solutions that are very close to the 
benchmark solutions.   
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