
Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 69 2009-1-30 #3

Chapter 4
Mining Frequent Approximate
Sequential Patterns

Feida Zhu, Xifeng Yan, Jiawei Han, and Philip S. Yu

Contents

4.1 Introduction . 69
4.2 Problem Formulation . 71
4.3 Algorithm Design . 72

4.3.1 Growing Strand . 75
4.3.2 Grouping Strand . 78
4.3.3 Completeness of Mining Result . 78
4.3.4 Local Search . 80

4.4 Performance Study . 81
4.5 Related Work . 85
4.6 Future Work . 86
4.7 Conclusions . 87
Acknowledgment . 87
References . 87

4.1 Introduction

Frequent sequential pattern mining remains one of the most important data-mining
tasks since its introduction in Ref. [1]. With the ubiquity of sequential data, it has
found broad applications in customer analysis, query log analysis, financial stream
data analysis, and pattern discovery in genomic DNA sequences in bioinformatics.
Extensive research on the topic has brought about general sequential pattern min-
ing algorithms like Refs. [2–7] and constraint-based ones like Refs. [8,9]. Periodic
pattern mining in temporal data sequences has also been studied [10,11].

However, all these mining algorithms follow the exact matching sequential pat-
tern definition. It has been shown that the capacity to accommodate approximation
in the mining process has become critical due to inherent noise and imprecision in
data, e.g., gene mutations in genomic DNA sequence mining. The notion of approxi-
mate sequential pattern has been proposed in Ref. [12], in which an algorithm called
ApproxMap is designed to mine consensus patterns. While mining consensus pat-
terns provide one way to produce compact mining result under general distance

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 70 2009-1-30 #4

measures, it remains a challenge how to efficiently mine the complete set of approx-
imate sequential patterns under some distance measure that is stricter yet equally
useful in many cases. The Hamming distance model, which counts only mismatches,
is one of such.
We look at bioinformatics: for example (1) The identification of repeats serves as
a critical step in many biological applications on a higher level such as a preprocess-
ing step for genome alignment, whole genome assembly, and a postprocessing step
for BLAST queries. For repeat families that are relatively new in the evolution, the
set of repeats found under the Hamming distance model captures almost the com-
plete set. (2) The limited knowledge that biologists currently have of these repeats
makes it often hard for them to evaluate the relative significance among different
repeats. It is therefore worth the effort to mine the complete set. Existing tools like
RepeatMasker [13] only solve the problem of pattern matching, rather than pattern
discovery without prior knowledge. (3) Many research works for the repeating pat-
terns have been on an important subtype: the tandem repeats [14], where repeating
copies occur together in the sequence. However, as shown by our experiments, these
methods would miss those patterns whose supporting occurrences appear globally
in the entire data sequence, which account for the majority of the complete set of
frequent patterns.

REPuter [15] is the closest effort toward mining frequent approximate sequential
patterns under the Hamming distance model. Unfortunately, REPuter achieves its
efficiency by strictly relying on the suffix tree for constant-time longest common
prefix computation in seed extension. Consequently, the type of approximate patterns
that REPuter is able to mine is inevitably limited. In particular, it can only discover
patterns with two occurrences and mismatches at identical positions across the
support set. The mining problem targeted by REPuter is essentially a different one.

To uncover more interesting approximate patterns in DNA sequences, we establish
a more general model for approximate sequential pattern mining problem. Our gen-
eral philosophy is a “break-down-and-build-up” one based on the following observa-
tion. Although for an approximate pattern, the sequences in its support set may have
different patterns of substitutions, they can in fact be classified into groups, which
we call strands. Each strand is a set of sequences sharing a unified pattern represen-
tation together with its support. The idea is that by “breaking down” the support sets
of the approximate patterns into strands, we are able to design efficient algorithms
to compute them. Using a suffix-tree-based algorithm, we can in linear time mine
out the initial strands, which are all the exact-matching repeats. These initial strands
will then be iteratively assembled into longer strands in a local search fashion, until
no longer strands can be found. In the second “build-up” stage, different strands are
then grouped based on their constituting sequences to form a support set so that the
frequent approximate patterns would be identified. By avoiding incremental growth
and global search, we are able to achieve great efficiency without losing the com-
pleteness of the mining result. Instead of mining only the patterns repeating within
a sliding window of some fixed size, our algorithm is able to mine all globally
repeating approximate patterns.
� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 71 2009-1-30 #5

4.2 Problem Formulation

In our problem setting, we focus on mining approximate sequential patterns under

the Hamming distance model. Hamming distance, which is defined for two strings
of equal length, is the number of substitutions required to change one into the other.

DEFINITION 4.1 Hamming Distance
For two strings S = 〈s1,s2, . . . ,sn〉 and P = 〈p1,p2, . . . ,pn〉 of a same length n, the

Hamming distance between them is defined as

Dist(S,P) = |I|, I = {i|si �= pi,1≤ i≤ n}

The Hamming distance between two strings S and P is denoted as Dist(S,P). In our
model, two sequential patterns are considered approximately the same if and only if
they are of equal length and their distance is within a user-specified error tolerance.
We therefore use string or substring to refer to all sequential patterns in the rest of the
chapter. Given a string S = 〈s1,s2, . . . ,sn〉 of length n, another string Z = 〈z1, . . . ,zm〉
is a substring of S if there exists an index i of S such that z j = si+ j for all 1≤ j ≤ m.
In this case, S is a superstring of Z. We use |S| to denote the length of a string S.

Given an input string S, we are interested in finding all frequent approximate sub-
strings of S, i.e., for each such substring, the set of substrings that are considered
approximately the same must be sufficiently large.

DEFINITION 4.2 Frequent Approximate Substring
Given a string S, a substring P of S is a frequent approximate substring if and only

if there exists a set U of substrings of S and for each W ∈U, Dist(P,W)≤ |P|δ , and
|U | ≥ θ , where θ is the minimum frequency threshold and δ is the error tolerance
threshold. U is called the support set of P, denoted as Psup.

Notice that U is represented as a set of indices of S as all substrings in U share the
same length with P.

As in frequent itemset mining, the definition of frequent approximate substring
also gives rise to redundancy in the mining result. Consider the three substrings in
Figure 4.1.

Suppose S1 is a frequent approximate substring, with its distances to S2 and S3

being both 2 in this case. If we delete the last character A from all three strings, the
resulting substring S1 is still a frequent approximate substring with its distances to S2

T A C T A T G T T C A G T T G C A G C C A

A T C C G G A C T A T G A T C A G T T G C A G C C A

A T C C G A A C T A T G G T C A G T T G C A G C C A

AS1

S2

S3

T C C G
FIGURE 4.1: Three substrings from input.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 72 2009-1-30 #6

ATCCG

ATCCGTACTATG

ATCCGTACTATGT TCAGTTGCAGCCA

ACTATG TCAGTTGCAGCCA
Gap = 0
P1 = P2 =

P5 =

P3 =

P4 =

P6 =

ACTATGTTCAGTTGCAGCCA
Gap = 1

Gap = 2

FIGURE 4.2: Ideal mining result.

and S3 unchanged. This remains true as we delete more characters so long as the error
tolerance requirement is satisfied. It would be considered redundancy in many cases
if all such shorter substrings of S1 are also reported. Ideally, we would like to report
a substring only when it can not be extended without changing its distance to some

substring in its support set. In the example of Figure 4.1, we would like to report
six frequent approximate substrings as shown in Figure 4.2. We therefore define the
closeness for a frequent approximate substring.

DEFINITION 4.3 Closed Frequent Approximate Substring
Given a string S, a frequent approximate substring P of S is closed if and only if

there exists no frequent approximate substring Z of S such that (1) Z is a superstring
of P, (2) there exists a bijection between Zsup and Psup such that for each Si ∈ Psup,
there exists a S′i ∈ Zsup such that S′i is a superstring of Si, and (3) Dist(Z,S′i) =
Dist(P,Si) for some Si ∈ Psup.

In this chapter, we study the problem of mining all closed frequent approximate
substrings from a given data string. For brevity, all frequent approximate substrings
mined by our algorithm are closed for the rest of the chapter. A frequent approximate
substring will be abbreviated as a FAS. Formally, the frequent approximate substring
mining problem (FASM) is defined as follows.

DEFINITION 4.4 FASM
Given a string S, a minimum frequency threshold θ and an error tolerance

threshold δ , the FASM problem is to find all closed frequent approximate substrings
P of S.

4.3 Algorithm Design

In general, for a FAS P, consider any two substrings S1 and S2 in Psup. Aligning
S1 and S2, we observe an alternating sequence of maximal-matching substrings and
gaps of mismatches: Pattern(S1,S2) = 〈M1,g1,M2,g2, . . . ,Mk〉, where Mi,1 ≤ i ≤ k
denote the maximal-matching substrings shared by S1 and S2. gi,1≤ i < k denote the
� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 73 2009-1-30 #7

S1 =
S2 =
S3 =
S4 = A T C

A T C
A T C
A T C

A
T
C
C

G
G
G
G

G
G
G
G

G
G
G
T

G
C
T
T

T
T
T
T

C
C
C
T

C
C
C
C

A
A
A
A

A
A
A
A

G
G
G
G

C
C
C
C

A
A
A
A

C
C
C
C

A
A
A
A

G
G
G
G

A
A
A
A

FIGURE 4.3: Alignment of S1, S3, and S4 against S2.

number of mismatches in the ith gap. Consider four substrings S1,S2,S3, and S4 as
shown in Figure 4.3.

In this case, Pattern(S1,S2) = 〈ATCCG,1,ACAG,1,TCAGTTGCA〉. All four
substrings are of length 20. If the error tolerance threshold δ = 0.1 and minimum

frequency threshold θ = 4, then S2 is a FAS since the other three substrings are
within Hamming distance 2 from S2. For each substring, the bounding boxes indi-
cate the parts that match exactly with S2. We can therefore define the notion of a
strand, which is a set of substrings that share one same matching pattern.

DEFINITION 4.5
A set U of substrings U = {S1, . . . ,Sk} is a strand if and only if for any two pairs

of substrings {Si1 ,S j1} and {Si2 ,S j2} of U, Pattern(Si1,S j1) = Pattern(Si2,S j2).

By definition, all the substrings in a strand U share the same alternating sequence
of maximal-matching substrings and gaps of mismatches, which we call Pat(U).
We use |Pat(U)| to denote the length of the substrings in U . We use Gap(U) to
denote the number of gaps in Pat(U) and Miss(U) to denote the number of total
mismatches in Pat(U). Given a strand U with its corresponding matching pattern
Pat(U) = 〈M1,g1, . . . ,Mk〉, Dist(Si,S j) = Miss(U) = ∑k−1

i=1 gi, for all Si,S j ∈ U and
i �= j. All substrings in a strand share a same distance from one another. Define
Plist(U) to be the support set of a strand U , i.e., Plist(U) is the set of indices where
each substring in U occurs. A strand U is represented by the pair 〈Pat(U),Plist(U)〉.

We call a strand U valid if the distance between any two substrings of U satisfy
the user-specified error tolerance threshold, i.e., Miss(U)≤ |Pat(U)|δ . Similar to the
notion of the closeness of a FAS, we have the definition for the closeness of a strand.
A strand U is closed if and only if there exists no strand U ′ such that (1) there exists
a bijection between the set of substrings of U and U ′ such that for each P ∈U , there
is a P′ ∈U ′ and P′ is a superstring of P, and (2) Miss(U) = Miss(U ′).

A FAS could belong to multiple strands. For any given FAS, the observation is
that its support set is exactly the union of all its closed valid strands.

LEMMA 4.1
For a FAS P, its support set Psup = ∪U∈XU, where X is the set of all P’s closed

valid strands.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 74 2009-1-30 #8

PROOF We first prove Psup ⊆ ∪U∈XU . For any substring W ∈ Psup, by the defi-
nition of Psup, we have Dist(P,W) ≤ |P|δ . Let U be the strand uniquely defined by
P and W . Then Miss(U) = Dist(P,W) ≤ |P|δ , which means U is valid. Since P is
closed, extending P would change Dist(P,W), and accordingly Miss(U). As such

U is also closed. Hence W ∈ ∪U∈XU . We then show ∪U∈XU ⊆ Psup. For any sub-
string W ∈ ∪U∈XU , let U ′ be a valid and closed strand of P which contains W . Then
Dist(P,W) = Miss(U ′) ≤ |P|δ by the definition of a valid strand. Since P and W
belong to a same strand, they are of equal length. The fact that U ′ is closed means
that extending P would change Dist(P,W). Hence W ∈ Psup.

We therefore have the following approach to decide if a given substring P is a
FAS: Find all the closed valid strands of P and let the union of them be X . P is a FAS
if and only if the cardinality of X is at least θ . Consider the example in Figure 4.3 in
which the error tolerance is 0.1 and minimum frequency threshold is 4. Both strands
{S1,S2} and {S2,S3,S4} are valid. Suppose these two strands are also closed, then
combining them we get a support set of size 4, satisfying the frequency requirement.
As such, S2 is a FAS.

Our algorithm solves the FASM in two steps.

1. Growing strand: Compute a set of closed valid strands initially. The set of ini-
tial strands is the set of all maximal exact repeats. More precisely, for each
initial strand U , Pat(U) = 〈M1〉, Miss(U) = 0, and U is closed. These initial
strands are computed by InitStrand using the suffix tree of the input sequence
S. Similar approach has been used in REPuter [15] to mine exact repeats. By
a linear-time suffix tree implementation as in Ref. [16], we are able to iden-
tify all initial strands in time linear to the input size. To mine out all closed
valid strands, we iteratively call the following procedure to grow the current
set of strands until no new strands are found: We scan the entire tape and, for
each strand encountered, checks on both ends to see if the current strand can
be grown by assembling neighboring strands. Let the result set be X .

2. Grouping strand: Once we have mined out all the closed valid strands in the
first step, we compute the support set for each frequent approximate substring.
The idea of grouping the strands is the following. Given the set X of all closed
valid strands, we construct a substring relation graph G from X . The vertex
set is all the substrings in the strands of X , each vertex representing a distinct
substring. There is an edge between two substrings if and only if the Hamming
distance between two substrings is within the error tolerance. Since all the
substrings in one valid strand share the same distance among each other and
the distance is within the error tolerance, all corresponding vertices in G form
a clique. After scanning all the strands in X , we would construct a graph G
which is a union of cliques. Then by our observation, a substring is a frequent
approximate substring if and only if the degree of the corresponding vertex is
greater than or equal to the minimum frequency threshold. Figure 4.4 illustrates
the idea.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 75 2009-1-30 #9

Strand U1

Substring relation graph

S2
S4

S3
S8

S7S6

S1
S5

Strand U2

S1

S1
S5
S6
S7
S8

S2
S3
S4

FIGURE 4.4: Two strands U1 and U2 and their substring relation graph.

4.3.1 Growing Strand

The main algorithm for growing strands is shown in Algorithm 4.1. The procedure
GrowthOnce() is shown in Algorithm 4.2.
ALGORITHM 4.1 StrandGrowth

Input: The original sequence S
Error tolerance threshold δ

Output: Tape[1 . . . |S|]

1: Tape← InitStrand(S);
2: while new valid strands are found
3: Tape← GrowthOnce(S,Tape,δ);
4: return Tape;

ALGORITHM 4.2 GrowthOnce

Input: The original sequence S
Tape[1 . . . |S|]
Error tolerance threshold δ

Output: Tape

1: for i = 1 to |S|
2: for each substring Ui

3: Check for a distance d to the right of Ui

4: for each U ′j found at distance d′

5: Pat(U ′′)← 〈Pat(U),d′,Pat(U ′)〉
6: if U ′′ is valid
7: Plist(U ′′)← Plist(U)⊗d′ Plist(U ′);

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 76 2009-1-30 #10

8: Insert Plist(U ′′) into Tape;
9: Check for a distance d to the left of Ui

10: for each U ′j found at distance d′

11: Pat(U ′′)← 〈Pat(U ′),d′,Pat(U)〉

12: if U ′′ is valid
13: Plist(U ′′)← Plist(U ′)⊗d′ Plist(U);
14: Insert Plist(U ′′) into Tape;
15: return Tape;

Initial Strand Computation
The set of initial strands is the set of all maximal exact repeats. More precisely, for
each initial strand U , Pat(U) = 〈M1〉, Miss(U) = 0, and U is closed. These initial
strands are computed by InitStrand using the suffix tree of the input sequence S.
Similar approach has been used in REPuter [15] to mine exact repeats. A suffix tree
is a data structure that compactly encodes the internal structure of a string. As such,
it can be used to solve some complicated string problems in linear time. In particular,
it enables us to mine out all frequent maximal exact-matching substrings of S with a
running time linear in the length of S. A suffix tree T for a string S of n characters
is a rooted directed tree with exactly n leaves numbered 1 to n. Each internal node
of T , except for the root has at least two children. Each edge is labeled with a
nonempty substring of S. No two edges going out of a node have the labels on the
edge beginning with the same character. A suffix tree encodes all suffixes of S by
the following: for any leaf node i, the concatenation of edge-labels on the path from
the root to leaf i corresponds exactly to the suffix of S beginning from index i, which
is S[i, . . . ,n]. For instance, if S = 〈ATTCGATTAC〉, the suffix tree for S is as shown
in Figure 4.5.

The first linear-time algorithm for constructing a suffix tree was given by Weiner
[17] in 1973. We therefore have the following theorem:

String
S = ATTCGATTAC

 T T A G A TC

Suffix tree of S
Internal node

C A T T A G C

C A

C
 A

C

A

C

A

T

T

 A

G

 C

 T
 TC G

 A
 T

 T
 A

 C

C
 T A C G

 A T T A C

Leaf node

FIGURE 4.5: Suffix tree for a string S.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 77 2009-1-30 #11

THEOREM 4.1 (Weiner 1973 [17])
Given a data sequence S, a suffix tree T can be constructed for S in O(|S|) time.

The size of T is O(|S|).
InitStrand mines out all maximal frequent exact-matching substrings of length at
least lmin and occurs at least θ times. The algorithm first constructs in linear time
a suffix tree for S and then use the same idea as in Ref. [16] to identify the left
diverse nodes in linear time to find all maximal frequent exact-matching substrings,
as shown in Algorithm 4.3. For each node v of a suffix tree, define the label of the
path for v as the concatenation of edge labels from the root to v, and is denoted as
Ξ(v). Denote as Childnum(v) the number of leaves in the subtree rooted at v. Notice
that Childnum(v) for each node v can be computed along the tree traversal. Once we
find a set of substrings matching with each other exactly at a node v, we can create a
valid strand U for the set by setting the strand’s pattern Pat(U) as Ξ(v) and Plist(U)
as the list of the numbers of all the leaves in v’s subtree sorted in increasing order.

ALGORITHM 4.3 InitStrand

Input: The original sequence S
The minimum length threshold lmin

The minimum frequency threshold θ
Output: Tape[1 . . . |S|]

1: Build the suffix tree T for S
2: Traverse T
3: for each internal node v
4: if |Ξ(v)| ≥ lmin and Childnum(v)≥ θ
5: Generate a strand U for Ξ(v)
6: Insert U into Tape
7: return Tape;

Notice that the suffix tree T can be built in linear time. Since Line 2 to Line 7 is
a tree traversal and thus takes time proportional to the size of the tree, we conclude
that InitStrand runs in time linear in the length of S. We have the following theorem
from Ref. [16]. We conclude from Theorem 4.2 that InitStrand runs in time O(|S|)
for a given input string S.

THEOREM 4.2
All maximal frequent repeats in S can be found in O(|S|) time.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 78 2009-1-30 #12

4.3.2 Grouping Strand

Once we have mined out all the closed valid strands in the first step, we use
StrandGroup to compute the support set for each frequent approximate substring.

The idea of grouping the strands is the following. Given the set X of all closed valid
strands, we construct a substring relation graph G from X . The vertex set is all the
substrings in the strands of X , each vertex representing a distinct substring. There
is an edge between two substrings if and only if the Hamming distance between
two substrings is within the error tolerance. Since all the substrings in one valid
strand share the same distance among each other and the distance is within the
error tolerance, all corresponding vertices in G form a clique. After scanning all
the strands in X , we would construct a graph G which is a union of cliques. Then
by Lemma 4.1, a substring is a frequent approximate substring if and only if the
degree of the corresponding vertex is greater than or equal to the minimum fre-
quency threshold, as illustrated in Figure 4.4. Algorithm 4.4 shows the following
algorithm.

ALGORITHM 4.4 StrandGroup

Input: Tape[1 . . . |S|]
The minimum frequency threshold θ

Output: all frequent approximate substrings

1: for each strand U found while scanning Tape
2: for each substring P ∈ Plist(U)
3: Add |Plist(U)|−1 neighbors to P
4: for each substring P
5: if P has at least θ neighbors
6: Output P

4.3.3 Completeness of Mining Result

We now prove that our algorithm would generate the complete set of FASs. The
sketch of the proof is as follows. We first prove that StrandGrowth would generate
all closed valid strands by induction on the number of gaps of the strands. Lemma
4.1 then tells us that we could compute the support sets of all FASs and identify them
by grouping the strands by Algorithm 4.4.

LEMMA 4.2
InitStrand would generate all closed valid strands U such that Gap(U) = 0.

PROOF By Theorem 4.2, we know that InitStrand would generate all frequent
maximal exact-matching substrings. By the definition of a strand, the strands formed

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 79 2009-1-30 #13

by these exact-matching substrings would have their number of gaps to be zero since
no mismatches exist in these substrings. Hence the validity of the strands. The fact
that these frequent substrings are maximal means that the strands thus constructed
are closed.
StrandGrowth discovers a new strand by always attempting to assemble two cur-
rent closed valid strands. Before we prove the theorem, we need one more lemma
to show that any closed valid strand can be generated from two shorter closed valid
strands.

LEMMA 4.3
Given a closed valid strand U with Pat(U) = 〈M1,g1, . . . ,Mm〉. U can always

be divided into two shorter closed valid strands U1 and U2 such that Pat(U1) =
〈M1,g1, . . . ,Mi〉 and Pat(U2) = 〈Mi+1,gi+1, . . . ,Mm〉 for some 1≤ i≤ m−1.

PROOF Given a closed valid strand U with Pat(U) = 〈M1,g1, . . . ,Mm〉, let U1 and
U2 be such that Pat(U1) = 〈M1,g1, . . . ,Mm−1〉 and Pat(U2) = 〈Mm〉. By definition, U2

is a closed valid strand. If it is also true for U1, we are done. Otherwise, the only
possibility would be that U1 is not valid. Since the entire strand U is valid, it follows
that, if we move the last exact-matching substring Mm−1 from Pat(U1) to Pat(U2)
and obtain two new strands such that Pat(U ′1) = 〈M1,g1, . . . ,Mm−2〉 and Pat(U ′2) =
〈Mm−1,gm−1,Mm〉, we must conclude that U ′2 is again a closed valid strand. We then
check if U ′1 is valid. If not, we again move the last exact-matching substring Mm−2

from Pat(U ′1) to Pat(U ′2), and so on so forth. Since at the end, if we have Pat(U ′1) =
〈M1〉 and Pat(U ′2) = 〈M2,g2, . . . ,Mm〉, both strands must be valid, we conclude that
there exists some i,1 ≤ i ≤ m−1, such that U can be divided into U1 and U2 where
Pat(U1) = 〈M1,g1, . . . ,Mi〉 and Pat(U2) = 〈Mi+1,gi+1, . . . ,Mm〉.

Now we are ready to show that we would be able to generate all the closed valid
strands.

THEOREM 4.3
StrandGrowth would generate all closed valid strands.

PROOF We prove by induction on the number of gaps Gap(U) for any closed
valid strand U . When Gap(U) = 0, the claim is true by Lemma 4.2. Assume that
the claim is true for Gap(U) = k ≥ 0. When Gap(U) = k + 1, by Lemma 4.3, U
can be divided into two shorter closed valid strands U1 and U2 such that Pat(U1) =
〈M1,g1, . . . ,Mi〉 and Pat(U2) = 〈Mi+1,gi+1, . . . ,Mm〉 for some 1≤ i≤m−1. By induc-
tion, both U1 and U2 will be generated by StrandGrowth. As such, when d is large
enough in StrandGrowth,U1 and U2 will be assembled into U . The claim is thus also
true for Gap(U) = k +1. We therefore conclude that StrandGrowth would generate
all valid canonical strands.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 80 2009-1-30 #14

Since it is easy to verify the correctness of Algorithm 4.4 and we have proved
Lemma 4.1, we would generate the support sets of all frequent approximate sub-
strings and thus identify them. We therefore claim the following theorem for the
completeness of our mining result.
THEOREM 4.4
Given an input data string S, StrandGrowth and StrandGroup would mine the

complete set of frequent approximate substrings from S.

4.3.4 Local Search

One salient feature of StrandGrowth is that only local search is performed when
checking on both ends of a strand for strand growth. We therefore need to determine
the value of d in GrowthOnce. If d is set to be too big, then in the worst case, we
would scan the entire data string each time we check for a strand. The running time
of GrowthOnce would then be Ω(|X |2), where X is the set of all valid canonical
strands. On the other hand, if d is set to be too small, we could fail to guarantee
the completeness of the mining result. Consider the following example in Figure 4.6.
Suppose we have two valid strands U1 and U2 such that |Pat(U1)|= 20,Miss(U1) = 0
and |Pat(U2)| = 40,Miss(U2) = 0. There is a gap of 7 mismatches between them.
Suppose the error tolerance is δ = 0.1. Notice that a valid strand U can accommodate
further mismatches on either ends up to a distance of |Pat(U)|δ−Miss(U). Then U1

can accommodate d1 = 2 extra mismatches and U2 can accommodate d2 = 4 extra
mismatches.

However, as Figure 4.6 shows, the tricky part is that if we only search forward d1

from U1 and backward d2 from U2, we would fail to identify the chance to assem-
ble them due to the fact that the gap is larger than the sum of d1 and d2. Even if
we search forward from U1 for a distance that doubles d1, we could still miss U2.
Fortunately, searching backward from U2 for a distance of 2d2 would let us reach
U1. Then how to decide on the value of d such that we would guarantee the com-
pleteness of the mining result, and at the same time, scan as small a portion of the
data string as possible? It turns out we have the following theorem to help determine
the value for d.

U1 X X XXXXX
20 40

d1 d2

U2
X XXXXX
20 40

2d1

X XXXXX
20 40

2d2

X

X

U1

U1

U2

U2

FIGURE 4.6: Assembling two strands U1, U2.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 81 2009-1-30 #15

THEOREM 4.5
Given the error tolerance δ and a strand U, searching for a distance d = 2

(|Pat(U)|δ −Miss(U))/(1− δ) would guarantee the completeness of the mining
result.
PROOF Suppose a closed valid strand U can be assembled by two shorter strands
U1 and U2. Assuming U1 occurs before U2 in the data sequence. We only need to
show that one of the following must happen: (1) searching forward a distance d from
the end of U1 would reach U2 (2) searching backward a distance d from the beginning
of U2 would U1. Suppose when assembling U1 and U2 into U , the gap between them
is g. Since U is valid, we have Miss(U) ≤ |Pat(U)|δ , i.e., Miss(U1)+ Miss(U2)+
g≤ (|Pat(U1)|+ |Pat(U2)|+g)δ . Therefore, g≤ (|Pat(U1)|δ−Miss(U1))/(1−δ)+
(|Pat(U2)|δ −Miss(U2))/(1− δ). Without loss of generality, assume |Pat(U1)| ≥
|Pat(U2)|. As such, g≤ 2(|Pat(U1)|δ −Miss(U1))/(1−δ). This means U2 would be
encountered when searching forward a distance of d = 2(|Pat(U1)|δ −Miss(U1))/
(1− δ) from U1.

Theorem 4.5 tells us that we do not have to search too far for us to guarantee the
completeness. In fact, it is easy to observe that we at most search twice the distance
of an optimal algorithm. Notice that any strand encountered within a distance of
d̂ = (|Pat(U)|δ −Miss(U))/(1− δ) can be assembled with the current strand to
form a new valid strand, since the current strand itself can accommodate all the
mismatches in a gap of length d̂. As such to guarantee a complete mining result, any
algorithm would have to check at least a distance of d̂. We therefore check at most
twice the distance of an optimal algorithm.

4.4 Performance Study

We used a real soybean genomic DNA sequence, CloughBAC, for our experiment.
CloughBAC is 103,334 bp in length. There are altogether 182,046 closed approxi-
mate sequences of length at least 5. The longest closed approximate sequence is of
length 995. The error tolerance δ is set as 0.1. The minimum frequency threshold θ
is set as 3.

Figure 4.7 shows those of size up to 40 while Figure 4.8 shows the rest of the
mining result, which are of size from 40 to 995. It can be observed that, in this
particular soybean genomic DNA sequence, the approximate sequences are dense
around the size of 10 and become sparse from size 15 to form a long tail.

We define the spread for an approximate sequence to be the distance between
the index of its first occurrence and that of its last occurrence. A globally repeating
approximate sequence has a large spread since its occurrences are not confined to a
particular portion of the data sequence. As such, the larger the spread, the harder it is
to discover the sequence by a sliding-window-based method. The spreads of all the

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 82 2009-1-30 #16

0 10 15 20 25 30 35 40
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

�104

Sequence length

N
um

be
r o

f a
pp

ro
xi

m
at

e s
eq

ue
nc

es

20 25 30 35 40
0
2
4
6
8

10
12
14
16
18

5

FIGURE 4.7: Sequences of size up to 40 bps.

approximate sequences in the mining result are plotted in Figure 4.9. It is evident that
the majority of them actually have spreads comparable to the length of the orginal
data sequence. Indeed as shown in Figure 4.10, the advantage of our mining approach
compared against a sliding-window-based approach manifests itself in the fact that

even a sliding window half the size of the original data sequence would discover
all the occurrences of only 30% of the complete mining result. Furthermore, Figure
4.11 shows the average gaps between two successive occurrences of the approximate
sequences in the complete mining result. Most of the sequences have an average gap

9
10

en
ce

s

100 200 300 400 500 600 700 800 900 1000
0
1
2
3
4
5
6
7
8

Sequence length

N
um

be
r o

f a
pp

ro
xi

m
at

e s
eq

u

FIGURE 4.8: Sequences of size from 40 to 1000 bps.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 83 2009-1-30 #17

0 2 4 6 8 10
�104

0

50

100

150
N

um
be

r o
f a

pp
ro

xi
m

at
e s

eq
ue

nc
es

Spread

FIGURE 4.9: Spread of the mining result.

of size 1/10 of the original data sequence, which makes it hard for any locally aware
approaches with a fixed intelligence radius to identify any repeating occurrences.

Figure 4.12 shows the running time of our algorithm as the number of output
approximate sequence increases. It is compared against the one without the local

search technique to demonstrate its importance in boosting the mining efficiency.
The running time of our algorithm is observed to be linear in the output size. Figure
4.13 illustrates the run time performance with varied error tolerance δ . The bar chart,
with its y-axis on the right-hand side of the figure, shows the corresponding numbers
of output sequences as δ increases. More lenient error tolerance results in more out-
put sequences and consequently a longer running time. Figure 4.14 illustrates the run

0.8
0.9

1

0 2 4 6 8 10
�104

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Size of the sliding window

Re
ca

ll

FIGURE 4.10: Recall of sliding window approach.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 84 2009-1-30 #18

0 0.5 1 1.5 2 2.5 3 3.5
�104

0

10

20

30

40

50

60

70

80

90

100

Average occurrence gap

N
um

be
r o

f a
pp

ro
xi

m
at

e s
eq

ue
nc

es

FIGURE 4.11: Average occurrence gap.

time performance with varied minimum frequency threshold θ . The bar chart, with
its y-axis on the right-hand side of the figure, shows the corresponding numbers of
output sequences as θ increases. Observe that as the minimum frequency threshold
increases, the output size decreases sharply while the running time almost remains

the same. This is because regardless of the minimum frequency threshold for the
output, all sequences with at least two occurrences have to be computed during the
strand growing stage, which is responsible for most of the mining cost. It is only in
the strand grouping stage that a greater minimum frequency threshold helps to reduce
the running time. The influence of θ on the mining cost is therefore less significant.

6000

7000

Local search
0 0.5 1 1.5 2 2.5
�104

0

1000

2000

3000

4000

5000

Number of output approximate sequences

Ru
nn

in
g t

im
e (

s)

Global search

FIGURE 4.12: Run time.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 85 2009-1-30 #19

0.05 0.1 0.15 0.2 0.250

50

100

150

200

250

300

350

400

450

Error tolerance

Ru
nn

in
g t

im
e (

s)

0

0.5

1

1.5

2

�104

N
um

be
r o

f o
ut

pu
t a

pp
ro

xi
m

at
e s

eq
ue

nc
es

FIGURE 4.13: Run time with varied δ .

4.5 Related Work

Agrawal and Srikant first introduced the sequential pattern mining problem in

Ref. [1], and later, based on the a priori property [18], continued to develop a
generalized and improved algorithm [16]. A succession of sequential pattern mining
algorithms have been proposed since then for performance improvements, including
SPADE [5], PrefixSpan [6], and SPAM [7]. These algorithms either use a vertical
id-list format (e.g., SPADE), a vertical bitmap data representation (e.g., SPAM), or a

95
100 7

�104

en
ce

s

0 5 10 15 20 25 30 35 40 45
50
55
60
65
70
75
80
85
90

Minimum frequency threshold

Ru
nn

in
g t

im
e (

s)

0

1

2

3

4

5

6

N
um

be
r o

f o
ut

pu
t a

pp
ro

xi
m

at
e s

eq
u

FIGURE 4.14: Run time with varied θ .

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 86 2009-1-30 #20

horizontal data set format (e.g., PrefixSpan) to enhance mining efficiency. There are
also constraint-based ones like Refs. [8,9]. Periodic pattern mining in temporal data
sequences have also been studied [10,11]. To make the mining result more friendly
for user understanding, algorithms have been developed to mine frequent closed

sequences. CloSpan [19] follows the candidate maintenance-and-test approach and
uses techniques like CommonPrefix and Backward Sub-Pattern Pruning. BIDE [20]
improves scalability by avoiding candidate maintenance and applying BI Direc-
tional Extension. When approximation is taken into consideration in the frequent
sequential pattern definition, the size of the mining result could be prohibitively
huge under a general distance measure. ApproxMap [12] approached this problem
by mining instead the consensus patterns, which are a subset of long and represen-
tative patterns. Algorithms aimed at mining the complete answer set like Ref. [21],
which have been studied in music information retrieval, suffer running time cost as
high as O(n4) where n is the data sequence length. Algorithms in bioinformatics
community have been focusing on approximate pattern matching and generate pop-
ular tools like RepeatMasker [13]. Most of these algorithms target at finding tandem
repeats. REPuter [15] uses suffix tree to find maximal exact repeats and employs
a suffix-tree-based constant time longest common prefix algorithm to extend them.
However, REPuter cannot discover patterns with more than two occurrences and
mismatches present at different positions across the support.

4.6 Future Work

The fast-growing data-intensive applications today present plenty of sequential
pattern mining research problems for the new generation. Some future work direc-
tions include

1. Multiple input sequences: The current mining framework can be naturally
extended to the multiple sequence scenario where the input is a set of long
sequences. In many cases, the occurrences of a frequent substring in each
input sequence are counted only once in the support computation. Suffix-tree
with certain enhancement can handle repeats in multiple sequences. However,
efficient discovery of frequent approximate substrings for multiple sequences
requires further extension of the current algorithm.

2. Other approximation definitions: It is evident that there are many approximate
sequential pattern definitions other than the Hamming distance model studied
in this Chapter. In many bio-applications, the distance between two strings is
defined in a much more complicated way than by gaps.

3. Online sequential pattern mining: The huge amount of data generated at a gal-
loping speed in many real-life applications would eventually require efficient
online mining algorithms for sequential patterns. It is interesting to study how
to discover useful frequent patterns when only partial data can be stored and
near-real-time response is desired.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 87 2009-1-30 #21

4. Anomaly mining: In many trajectory data mining, e.g., commercial logistics
applications, anomalous patterns (i.e., those outliers significantly deviate from
the frequent patterns) are the mining targets. These patterns raise alert, drawing
human attention for further examination.
4.7 Conclusions

Mining frequent approximate sequential pattern has been an important data-mining
task. Its version in biological applications—finding repeats —has long been a topic
of extensive research. Existing algorithms in bioinformatics communities solve pat-
tern matching rather than mining. In particular, most algorithms are designed to
find tandem repeats. In data-mining community, algorithms have been developed
to mine a set representative patterns to avoid the combinatorial explosion due to the
general distance definition. In this Chapter, we proposed the definition of closed fre-
quent approximate sequential patterns. We aim to solve the problem of mining the
complete set of frequent approximate sequential pattern mining under Hamming dis-
tance. Our algorithm is based on the notion of classifying a pattern’s support set into
strands, which makes possible both efficient computation and compact representa-
tion of it. By combining a suffix-tree-based initial strand mining and iterative strand
growth, we adopt a local search optimization technique to reduce time complexity.
We also proved that our local search strategy guarantees the completeness of the
mining result. Our performance study shows that our algorithm is able to mine out
globally repeating approximate patterns in biological genomic DNA data with great
efficiency.

Acknowledgment

We are grateful to Professor Matt Hudson and Kranthi Varala for providing us with
the genome sequence data and many helpful discussions and suggestions.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the
1995 International Conference on Data Engineering (ICDE’95), pp. 3–14,
Taipei, Taiwan, March 1995.

[2] F. Masseglia, F. Cathala, and P. Poncelet. The PSP approach for mining sequen-
tial patterns. In Proceedings of the 1998 European Symposium on Principle

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 88 2009-1-30 #22

of Data Mining and Knowledge Discovery (PKDD’98), pp. 176–184, Nantes,
France, September 1998.

[3] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and

performance improvements. In Proceedings of the 5th International Con-
ference on Extending Database Technology (EDBT’96), pp. 3–17, Avignon,
France, March 1996.

[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. FreeSpan:
Frequent pattern-projected sequential pattern mining. In Proceedings of the
2000 ACM SIGKDD International Conference on Knowledge Discovery in
Databases (KDD’00), pp. 355–359, Boston, MA, August 2000.

[5] M. Zaki. SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning, 40: 31–60, 2001.

[6] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu. PrefixSpan: Mining sequential patterns efficiently by prefix-
projected pattern growth. In Proceedings of the 2001 International Conference
on Data Engineering (ICDE’01), pp. 215–224, Heidelberg, Germany, April
2001.

[7] J. Ayres, J. Flannick, J. E. Gehrke, and T. Yiu. Sequential pattern min-
ing using bitmap representation. In Proceedings of the 2002 ACM SIGKDD
International Conference on Knowledge Discovery in Databases (KDD’02),
pp. 429–435, Edmonton, Canada, July 2002.

[8] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern min-
ing with regular expression constraints. In Proceedings of 1999 International
Conference on Very Large Data Bases (VLDB’99), pp. 223–234, Edinburgh,
UK, September 1999.

[9] J. Pei, J. Han, and W. Wang. Constraint-based sequential pattern mining in
large databases. In Proceedings of the 2002 International Conference on Infor-
mation and Knowledge Management (CIKM’02), pp. 18–25, McLean, VA,
November 2002.

[10] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in
time series database. In Proceedings of 1999 International Conference on Data
Engineering (ICDE’99), pp. 106–115, Sydney, Australia, April 1999.

[11] C. Bettini, X. Sean Wang, and S. Jajodia. Mining temporal relationships with
multiple granularities in time sequences. Bulletin of the Technical Committee
on Data Engineering, 21:32–38, 1998.

[12] H.-C. Kum, J. Pei, W. Wang, and D. Duncan. ApproxMap: Approximate min-
ing of consensus sequential patterns. In Proceedings of the 2003 SIAM Inter-
national Conference on Data Mining (SDM’03), pp. 311–315, San Francisco,
CA, May 2003.

� 2008 by Taylor & Francis Group, LLC.

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 89 2009-1-30 #23

[13] Institute for Systems Biology. Repeatmasker. In http://www.repeatmasker.
org/webrepeatmaskerhelp.html, 2003.

[14] G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats.

In Proceedings of the 4th Annual Symposium on Combinatorial Pattern
Matching, number 684, pp. 120–133, Padova, Italy, 1993. Springer-Verlag,
Berlin.

[15] S. Kurtz, J. V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye, and
R. Giegerich. Reputer: The manifold applications of repeat analysis on a
genomic scale. Nucleic Acids Research, 22: 4633–4642, 2001.

[16] D. Gusfield. Algorithms on Strings, Trees and Sequences, Computer Science
and Computation Biology. Cambridge University Press, 1997.

[17] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th
IEEE Annual Symposium on Switching and Automata Theory, pp. 1–11, 1973.

[18] R. Agrawal and R. Srikant. Fast algorithm for mining association rules in
large databases. In Research Report RJ 9839, IBM Almaden Research Center,
San Jose, CA, June 1994.

[19] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in
large datasets. In Proceedings of the 2003 SIAM International Conference on
Data Mining (SDM’03), pp. 166–177, San Fransisco, CA, May 2003.

[20] J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences.
In Proceedings of the 2004 International Conference on Data Engineering
(ICDE’04), pp. 79–90, Boston, MA, March 2004.

[21] Jia-Lien Hsu, Arbee L. P. Chen, and Hung-Chen Chen. Finding approximate
repeating patterns from sequence data. In Proceedings of the 5th Interna-
tional Conference on Music Information Retrieval (ISMIR’04), pp. 246–250,
Barcelona, Spain, October 2004.
� 2008 by Taylor & Francis Group, LLC.

http://www.repeatmasker.org
http://www.repeatmasker.org
http://www.repeatmasker.org
http://www.repeatmasker.org

Kargupta/Next Generation of Data Mining C5867 C004 Finals Page 90 2009-1-30 #24

� 2008 by Taylor & Francis Group, LLC.

	Chapter 4: Mining Frequent Approximate Sequential Patterns
	4.1 Introduction
	4.2 Problem Formulation
	4.3 Algorithm Design
	4.3.1 Growing Strand
	4.3.2 Grouping Strand
	4.3.3 Completeness of Mining Result
	4.3.4 Local Search

	4.4 Performance Study
	4.5 Related Work
	4.6 Future Work
	4.7 Conclusions
	Acknowledgment
	References

