
“sdm08”
2008/5/4
page 1

i

i

i

i

i

i

i

i

Mining and Ranking Generators of Sequential Patterns

David Lo∗ Siau-Cheng Khoo∗ Jinyan Li†

Abstract
Sequential pattern mining first proposed by Agrawal and
Srikant has received intensive research due to its wide range
applicability in many real-life domains. Various improve-
ments have been proposed which include mining a closed
set of sequential patterns. Sequential patterns supported
by the same sequences in the database can be considered
as belonging to an equivalence class. Each equivalence class
contains patterns partially-ordered by sub-sequence relation-
ship and having the same support. Within an equivalence
class, the set of maximal and minimal patterns are referred
to as closed patterns and generators respectively. Genera-
tors used together with closed patterns can provide addi-
tional information which closed patterns alone are not able
to provide. Also, as generators are the minimal members,
they are preferable over closed patterns for model selection
and classification based on the Minimum Description Length
(MDL) principle. Several algorithms have been proposed for
mining closed sequential patterns, but none so far for mining
sequential generators. This paper fills this research gap by
investigating properties of sequential generators and propos-
ing an algorithm to efficiently mine sequential generators.
The algorithm works on a three-step process of search space
compaction, non-generator pruning and a final filtering step.
We also introduce ranking of mined generators and propose
mining of a unique generator per equivalence class. Perfor-
mance study has been conducted on various synthetic and
real benchmark datasets. They show that mining generators
can be as fast as mining closed patterns even at low support
thresholds.

1 Introduction

Sequential pattern mining first proposed by Agrawal
and Srikant [1] has been the subject of active re-
search [3, 6, 21, 28]. Given a database containing se-
quences, sequential pattern mining identifies sequential
patterns appearing with enough support. It has been
used in various fields including bioinformatics [29], cus-
tomer and weblog analysis [12], security [9], and even
recently in software engineering [16, 18, 19]. Address-
ing challenges to mining all frequent sequential patterns,
namely large number of mined patterns and long run-
ning time, closed sequential pattern mining has been

∗Department of Computer Science, National University of
Singapore. Email: {dlo,khoosc}@comp.nus.edu.sg.

†School of Computer Engineering, Nanyang Technological
University, Singapore. Email: jyli@ntu.edu.sg.

proposed recently [27, 26]. In this paper, along a simi-
lar line of research, we investigate the concept of equiva-
lence classes of frequent sequential patterns and develop
an algorithm to efficiently mine generators, the minimal
members of equivalence classes as compared to closed
patterns, the maximal members of equivalence classes.

The concept of equivalence class is first introduced
by Pasquier et al. and applied to frequent itemsets [20].
An equivalence class corresponds to the set of fre-
quent patterns that is supported by the same set of
transactions in the database. Translating to sequen-
tial patterns, an equivalence class corresponds to a set
of sequential patterns supported by the same set of
sequences in the sequential database. Each equiva-
lence class contains patterns partially-ordered by sub-
sequence relationship and having the same support.
Within an equivalence class, closed patterns refer to
those without any super-sequence in the same class (i.e.,
the maximal ones). On the other hand, generators refer
to patterns without any sub-sequence in the same class
(i.e., the minimal ones).

The set of closed patterns and generators are poten-
tially of much smaller size than the full-set of frequent
patterns. Yan et al. and Wang et al. have shown that
closed sequential patterns can be mined much more effi-
ciently than the full set of frequent patterns [27, 26]. As
generators are minimal members of equivalence classes,
according to the Minimum Description Length (MDL)
principle [7], generators are the preferred descriptions
or representations of the classes. Also, as argued by
Li et al, generators are better candidates than closed
patterns for their applications in model selection and
classification [13].

Generators used together with closed patterns can
provide additional information which closed patterns
alone are not able to provide. Consider the marketing
campaign design example presented in [5]. Given a
database of customer purchase histories, one would
like to mine and predict the behaviors of customers.
Generators used with closed patterns can be used to
form rules expressing minimum pre-cursor series of
purchasing events that causes a maximum series of
resultant purchasing events to happen. Suppose the
rule is 〈A,B〉 → 〈C,D, E〉, where 〈A,B〉 is a generator
and 〈A, B,C, D, E〉 is a closed pattern. The rule states

“sdm08”
2008/5/4
page 2

i

i

i

i

i

i

i

i

that a customer buying A and then B is likely to buy
C, D and E. A marketing manager can then send
advertisements of products C, D and E to clients who
have bought A and then B. Also, if products C, D and
E have high profits and B is an inexpensive product,
the marketing manager can promote product B (e.g.,
by giving discounts) to customers who have bought A.

Using a closed pattern (which is longer) rather than
a generator as the premise of such a customer behavioral
rule might cause the marketing strategy to fail. This is
the case as the identification of a customer behavior
only happens latter after the longer series of purchasing
events corresponding to the closed pattern occurred.
Also, since the closed pattern is longer, the premise
might tend to ‘overfit’ existing data and potentially has
less power in predicting future customer behaviors (see
also discussion in Section 5).

In frequent itemset mining, Li et al. have intro-
duced efficient mining of itemset generators [13, 14].
Unfortunately, in sequential pattern mining, there has
not been any research done in mining sequential gener-
ators. Our attempt to reuse the techniques devised for
mining generators of frequent itemsets has failed due to
inherent differences exhibited between sequential pat-
tern mining and itemset mining. We elaborate these
differences below.

First, the number of closed sequential patterns
found in an equivalence class might be more than
one. This is in contrast with the itemset mining
where there is only a single closed itemset for every
equivalence class. Table 1 provides a comparison on the
singularity of closed itemsets/patterns and generators
in an equivalence class for itemsets and sequential
patterns.

Possible In an Equivalence Class of
Number of Sequential Patterns Itemsets

Closed patterns Many Single

Generators Many Many

Table 1: Singularity of Closed Itemsets/Patterns and
Generators within an Equivalence Class

Also, more importantly, itemset generators exhibit
a nice a-priori property stating that every subset of
a generator must also be a generator. Employing this
property, effective search space pruning strategy can be
deployed to significantly reduces runtime. As we shall
see, sequential generators do not possess this property.
Thus, a new scheme for mining generators need to be
devised.

This paper fills this research gap by investigating
properties of sequential generators, and by proposing a
method to mine these generators efficiently. Also, since
an equivalence class might have more than one closed

pattern, the number of equivalence classes is less than
or equal to the number of closed patterns (similarly for
generators). Consequently, we propose a technique for
fast identification of equivalence classes of sequential
patterns. Furthermore, we propose a method to rank
generators within an equivalence class and to efficiently
mine the one with the highest rank from each class.

Our algorithm works on a three-step process of
search space compaction, non-generator pruning and
a final filtering step. After the non-generator pruning
step, our algorithm produces a set of candidate gener-
ators which is a super-set of all generators. This set is
later subjected to a final filtering step to reduce it to
a set of generators. Our generation process is driven
by the application of a novel apriori property of non-
generators. This property enables effective pruning of
sub-search spaces of non-generators.

In this paper, we first present an algorithm to mine
a full-set of generators. We then extend it to identify
generators belonging to the same equivalence class, rank
generators in the same class and present one generator
with the highest rank from each class.

A performance study has been conducted on various
simulated and real benchmark datasets. The study
shows that mining generators greatly reduces the time
needed to mine all frequent sequential patterns. It also
shows that the runtime of our algorithm can be on par
with, and at times faster than, that of mining closed
patterns using state-of-the-art closed pattern miners.

The contributions of this work are as follows:

1. We explore and present novel properties of sequen-
tial generators. Also, we propose a novel algorithm
to efficiently mine all sequential generators from a
sequence database.

2. We are the first to investigate the concept of equiv-
alence class in sequential pattern mining. Based on
the concept, we develop an efficient method to iden-
tify generators belonging to an equivalence class,
rank generators within an equivalence class, and
for each equivalence class, mine the one with the
highest rank.

3. We show, by our performance study, new inter-
esting results and observations on the efficiency of
closed sequential pattern mining algorithms in com-
parison with our generator mining algorithms on
various datasets.

The structure of this paper is as follows. Section 2
discusses related work. Section 3 describes terminolo-
gies used and highlights differences between generators
and closed patterns. Section 4 presents novel proper-
ties and characteristics of generators. Section 5 out-
lines a description on why MDL favors generators. Sec-

“sdm08”
2008/5/4
page 3

i

i

i

i

i

i

i

i

tion 6 describes our mining algorithm. Section 7 dis-
cusses ranking of generators and efficient mining of the
highest rank generator per equivalence class. Section 8
presents the performance study results on several bench-
mark datasets. Finally, Section 9 summarizes and con-
cludes our work.

2 Related Work

Two related research threads are mining itemset gener-
ator (e.g., [20, 13, 14]) and sequential pattern mining
(e.g., [1, 27, 26, 25]). In this section, we will compare
the above studies with our work and discuss their dif-
ferences.

Pasquier et al. first introduces the concept of equiv-
alence classes to characterize the set of mined frequent
itemsets [20]. Li et al. improves the algorithm in [20],
by employing a depth-first mining strategy rather than
a breadth-first strategy previously employed in [20].
In [14], Li et al. extends their work further by concur-
rently obtaining both closed itemsets & generators and
computing delta discriminative non-redundant equiva-
lent classes.

Similar to the above work, we investigate equiva-
lence classes of frequent patterns and develop an algo-
rithm to efficiently mine generators. However, we fo-
cus on sequential patterns, rather than itemsets, mined
from a sequence database. In sequential pattern mining,
ordering of events is important. Much real-life data is
in sequence format, e.g., purchase history, employment
history, protein sequence, DNA, program traces, etc.

Agrawal and Srikant first proposes sequential pat-
tern mining in [1]. The above work has been improved
by others e.g., [3, 21, 28, 27, 26]. In [3, 21, 28], a full
set of frequent sequential patterns is mined. However,
mining a full-set of frequent sequential patterns is often
not feasible, as the number of patterns mined can be
too large and correspondingly the runtime can be too
long. To address these problems Yan et al. present an
algorithm named CloSpan to mine a closed set of se-
quential patterns [27]. In [26], Wang et al. proposed
another algorithm called BIDE which has been shown
to be more efficient than CloSpan on a click stream and
two biological datasets.

Similar to mining frequent itemsets, equivalence
classes can characterize the set of mined sequential
patterns. Closed patterns correspond to the members of
equivalence classes each having no super-sequence in its
class. Generators corresponds to those members having
no sub-sequence.

Our work is the first on mining sequential gener-
ators. According to the Minimum Description Length
(MDL) principle [7], generators are the preferred repre-
sentation of a class. Also, as argued in [13], generators

are better candidates than closed patterns for their ap-
plications in model selection and classification (see also
Section 5).

An equivalence class of frequent sequential patterns
can contain more than one closed patterns and gener-
ators. Hence, the number of equivalence classes is less
than or equal to the number of closed patterns and gen-
erators. This is the first work that identifies equivalence
classes of sequential patterns by identifying generators
belonging to the same class, ranking them and extract-
ing the highest rank generator for each class.

Rather than re-inventing the wheel, we borrow the
concept of projected database first introduced in [21]
and prefix sequence lattice in [27]. In our final filter-
ing step, we also adapt the fast subsumption checking
mechanism first introduced in [28]. However there are a
number of significant differences. Output-wise we pro-
duce a set of sequential generators rather than a full set
of frequent sequential patterns, a set of closed sequential
patterns, or a set of closed itemsets produced by tech-
niques in [21], [27], [28] respectively. Data structure-
wise, different from the prefix sequence lattice (PSL)
introduced in [27], we need to attach labels to PSL’s
edges and manage these labels in order to aid pruning
of non-generators. Algorithm-wise, we present a set of
unique properties of sequential generators and employ
new pruning strategies. Additionally, we also introduce
new data structure and methods to identify equivalence
classes, rank generators of each class and mine the gen-
erator with the highest rank from each class efficiently.

3 Preliminaries

In this section, we describe preliminaries on: notations
used, basic property of sequential patterns, basic op-
erations performed on a sequential database and the
concept of equivalence class.

Let I be a set of distinct items. Let a sequence
S be an ordered list of events. We denote S by
〈e1, e2, . . . , eend〉 where each ei is an item from I.
A pattern P1 (〈e1, e2, . . . , en〉) is considered a subse-
quence of another pattern P2 (〈f1, f2, . . . , fm〉), de-
noted by P1 v P2, if there exist integers 1 ≤ i1 < i2
< i3 < i4 . . . < in ≤ m such that e1 = fi1 , e2 =
fi2 , · · · , en = fin . We also say that P2 is a super-
sequence of P1. The sequence database under consider-
ation is denoted by SeqDB. The length of P is denoted
by |P |. An empty pattern has length 0 and is written
as 〈〉. A pattern P1++P2 denotes the concatenation of
pattern P1 and pattern P2.

The absolute support of a pattern with respect to a
sequence database SeqDB is the number of sequences
in SeqDB that are super-sequences of the pattern. The
relative support of a pattern wrt SeqDB is the ratio of

“sdm08”
2008/5/4
page 4

i

i

i

i

i

i

i

i

its absolute support to the total number of sequences
in SeqDB. The support (either absolute or relative) of
a pattern P in a sequence database SeqDB is denoted
by sup(P, SeqDB). We ignore the mentioning of the
database when it is clear from the context (i.e., denoted
as sup(P)).

From the definitions of “support” and “frequent
pattern”, sequential patterns possess ‘apriori’ property
[8]: If a sequential pattern is frequent then all its
subsequences are also frequent. In other words, support
of a pattern is greater or equal to support of its super-
sequences.

A pattern P is frequent when its support, sup(P),
exceeds a certain threshold (min sup). A frequent
pattern P is closed if there exists no super-sequence of
P having the same support as P . A frequent pattern
P is a generator if there exists no sub-sequence of P
having the same support as P .

Similar to the work by Wang and Han in [26], we
only consider single-item sequences (i.e., all transac-
tions in a sequence is of size 1). This simplifies our
presentation. Furthermore, single-item sequences also
represent many important types of sequences (eg. DNA
sequences, protein sequences, web click streams, pro-
gram API traces, etc.).

Patterns supported by the same set of sequences
in the database can be viewed as belonging to an
equivalence class. Mathematically, the problem can be
described as follows. Consider a dataset being described
as Data = 〈E, SDB〉, where E is a set of events and
SDB ⊆ E∗ is a sequence database. For a pattern P ,
we define a function f(P) = {S ∈ SDB|P v S}. Two
patterns P1 and P2 belong to the same equivalence class
iff f(P1) = f(P2). Given an equivalence class EQ, the
set {P ∈ EQ|¬∃PS ∈ EQ.(P 6= PS ∧ PS w P)} is
the set of closed patterns in EQ. Similarly, the set
{P ∈ EQ|¬∃PS ∈ EQ.(P 6= PS ∧ PS v P)}) is the
set of generators in EQ.

To illustrate the concepts of equivalence class,
generator and closed pattern consider the following
database shown in the following table.

Seq ID. Sequence Seq ID. Sequence

S1 〈A, D, A〉 S2 〈B, A, D, A〉
S3 〈A, B, C, B〉 S4 〈A, B, B, C〉
S5 〈B, B, A, B〉 S6 〈D, X, Y〉

Considering min sup set at 2, the frequent pattern
space corresponds to the following lattice in Figure 1.
There are 16 frequent patterns including the empty
pattern 〈〉 which is trivially frequent.

Among the 16 frequent patterns, there are 8 equiva-
lence classes marked by the dotted lines and referred to
as EQ1–EQ8 in Figure 1. In each equivalence classes,
generally those patterns at the bottom are the closed

<B,A>:2

<>:6

<A>:5 :4 <C>:2

<A,A>:2 <A,D>:2 <D,A>:2 <A,B>:3 <B,B>:3 <A,C>:2 <B,C>:2

<A,D,A>:2 <A,B,B>:2 <A,B,C>:2

<D>:3

EQ5

EQ2 EQ3 EQ4

EQ8

EQ6 EQ7

EQ1

Figure 1: Frequent Pattern Space & Equivalence Classes

patterns while those at the top are the generators. For
example, consider the equivalence class EQ5 which is
supported by S1 and S2 in the database. The closed
pattern of EQ5 is 〈A,D, A〉, while the set of generators
is {〈A,A〉, 〈A,D〉, 〈D, A〉}. Also consider EQ8 which is
supported by S3 and S4 in the database. The set of
closed patterns of EQ8 is {〈A, B,B〉, 〈A,B, C〉}. The
set of generators of EQ8 is the set {〈A, B,B〉,〈C〉}. Note
that an equivalence class can have more than one closed
pattern and more than one generator.

Another important concept is the notion of pro-
jected database [21, 27]:

Definition 1. (Projected Database) A sequence
database projected on a pattern p is defined as a multi-
set as follows:
SeqDBP = { sx| s ∈ SeqDB , s = px++sx,

px is the minimum prefix of s containing p}.
To illustrate, let’s refer to the last example se-

quence database as SeqDB. The projected database
SeqDB〈A,D〉 is {〈A〉, 〈A〉}. Also, the projected database
SeqDB〈A,B〉 is {〈C, B〉,〈B, C〉,〈〉}.
4 Unique Characteristics of Sequential

Generators

Itemset generators exhibit an elegant property that
enables its efficient mining. This is termed as the apriori
property of itemset generators [13]. It is defined as
follows:

Property 1. (Apriori P. of Itemset Generators)
If an itemset is a generator, then all its subsets are

also generators.

One might be tempted to adapt this property to
mining of generators for sequential patterns. That
is, “If a sequential pattern is a generator, then all
its subsequences are also generators”. Unfortunately,
this property does not hold for sequential generators.
Consider the following counter-example:

Seq ID. Sequence Seq ID. Sequence

S1 〈A, B, C〉 S2 〈A, C, B〉
S3 〈A, B, C〉 S4 〈B, C〉

“sdm08”
2008/5/4
page 5

i

i

i

i

i

i

i

i

The set of sequential generators, with min sup set as
2, is {〈〉 : 4, 〈A〉 : 3, 〈B, C〉 : 3, 〈A, B, C〉 : 2}. Note that
although 〈A, B, C〉 is a generator (of support 2), some
of its subsequences, such as 〈A, B〉, 〈B〉 and 〈C〉, are not
generators. The pattern 〈A, B〉 is not a generator since it
is in the same class as its subsequence 〈A〉. The patterns
〈B〉 and 〈C〉 are not generators since they are in the same
class as the trivial generator 〈〉.

Non-generators of sequential patterns, on the other
hand, possess the following apriori property which can
help to speed up the mining of sequential generators.

Property 2. (Apriori P. of Non-Generators)
Given a sequential pattern P1, if ∃ another pattern P2

such that SeqDBP1 = SeqDBP2 and P1 = P2 then P1

and any extension of it (i.e., P1++PX where PX is a
sequence of events) are not generators.
Proof. That P1 is not a generator is obvious from the
premises. Next, since P1 and P2 has the same projected
database, if we can extend pattern P1 (resp. P2) by a
series of events PX to form a subsequence of a sequence
in the database, we can always extend pattern P2 (resp.
P1) by the same PX to form a subsequence of that
sequence. Thus, for any series of events PX , the support
of P1++PX will always be the same as P2++PX . Hence,
all extensions of P1 (i.e., P1++PX) are not generators.2

One might think that the number of generators in
an equivalence class must be more than the number
of closed patterns. This is true for frequent itemsets:
There is only one closed itemset for each equivalence
class. For frequent sequential patterns, however, an
equivalence class can have more than one closed pattern.
In fact, the following property is observed.

Property 3. (|Closed | vs. |Generators|) There ex-
ists sequential databases where the number of closed pat-
terns is more than the number of generators.

Proof. An example of such a database is as follows:

Seq ID. Sequence Seq ID. Sequence

S1 〈D, C, E, E, D, C〉 S2 〈E, C, D, D, C, E〉
S3 〈X〉

By setting min sup to 2, the set of closed patterns
is: {〈〉:3, 〈C, D, C〉:2, 〈D, C, E〉:2, 〈D, D, C〉:2, 〈E, D, C〉:2,
〈E, E〉:2}. The set of generators is: {〈〉:3, 〈D〉:2, 〈C〉:2,
〈E〉:2}. Thus, the number of closed patterns is more
than that of generators. Other databases observing
Property 3 can be similarly constructed. 2

5 MDL Favors Generators

Generators can be more useful than closed patterns in
some applications, especially those where the principle
of Minimum Description Length (MDL) applies.

Rissanen first proposed the notion of Minimum
Description Length (MDL) [24]. A recent book [7]
describes this subject. This principle has been widely
used for model selection (e.g., [22, 23]). It is founded
on well-established concepts of Bayesian-inference and
Kolmogorov complexity (c.f., [15]). In [13], Li et al.
propose an MDL formula for frequent itemsets and
argue for the benefit of itemset generators over closed
itemsets. We adapt their formulation and argument on
the benefits of generators and apply them to sequential
patterns.

Consider a set of hypothesis, H = {H1,H2, ...,Hn}
describing a piece of data D. The MDL principle dictates
that the best hypothesis is one with minimum length
(the simplest one – Occam’s Razor). The description
of a piece of data usually comprises of two elements,
namely the model and the description of the data
given the model. Hence, the best hypothesis H ∈ H
describing the data D, is the one that minimizes the
description length formula, L(H,D) = L(H)+L(D|H),
where:
• L(H) is the description length (in bits) of the

hypothesis H.
• L(D|H) is the description length (in bits) of the

data D encoded with prior knowledge of the hy-
pothesis H.
Following the description in [13], closed patterns

and generators can be considered as two hypotheses de-
scribing the sequence datasets. Consider an equivalence
class of patterns EQ supported by a set of sequences
SSet. For a closed pattern C ∈ EQ describing SSet, the
Minimum Description Length formula is L(C, SSet) =
L(C) + L(SSet|C). For a generator G ∈ EQ describing
SSet, the formula is L(G,SSet) = L(G) + L(SSet|G).
Since, both C and G occur in the same data SSet,
L(SSet|C) = L(SSet|G). Since length of C is often
longer than G, L(C) is often larger than L(G). Hence,
L(C, SSet) > L(G,SSet) in most cases. According to
MDL principle, the generator G is hence preferred over
the closed pattern C.

This preference is particularly clear in considering
classification problem using a training set and an in-
dependent test set. Learning classification rules from
closed patterns mined from the training set results in
more specific rules than ones from generators. Closed
patterns tend to be longer and ‘overfit’ the training
data. Generators are shorter and more tolerant to noise
present in the training data. Adapting the example
given in [13], consider an application where only two
classes of sequences are involved: positive and negative.
Assume all sequences corresponding to the equivalence
class of a closed pattern C (〈e1, e2, . . . , en〉 (n>2)) and a
generator G (〈e1, e2〉) belong to the positive class. Then

“sdm08”
2008/5/4
page 6

i

i

i

i

i

i

i

i

the following two rules can be obtained from C and G
respectively:

• If a sequence is a super-sequence of ev1 followed by
ev2, followed by ev3, ..., followed by evn, then it is
positive.

• If a sequence is a super-sequence of ev1 followed by
ev2, then it is positive.

Both rules are satisfied by the same set of sequences
in the training set. The rule derived from G tends to
be more predictive (as an unknown test data will more
likely be a super-sequence of a sequence of two events
rather than n events), generalize better, not ‘overfit’ the
training data and more tolerant to noise.

6 Mining Sequential Generators

We mine sequential generators in a three-step compact-
generate-and-filter approach. The first step traverses
the search space of frequent patterns and produces a
compact representation of the space of frequent patterns
in a lattice format. This lattice is referred to as prefix
search lattice (PSL). This data structure is an extension
of the PSL previously described by Yan et al. in [27].
The second step retrieves a set of candidate generators
which is a super-set of all generators from the compact
lattice. Two pruning strategies derived from Property 2
are applied to effectively prune the sub-search spaces
containing non-generators and help to ensure that the
candidate generator set is not too large. In the final
step, non-generators from this candidate set are filtered
away, leaving behind a set of generators. Let us use
the sequence database shown in the following table as
a running example to illustrate the various operations
described in this section.

Seq ID. Sequence Seq ID. Sequence

S1 〈A, C, A, A〉 S2 〈A, B, B〉
S3 〈A, B, C, A, B〉

6.1 Prefix Search Lattice. Before describing prefix
search lattice (PSL), we will first introduce prefix search
tree (PST). A PSL is a compacted form of a PST. Both
PSL and PST represent the space containing all frequent
sequential patterns. By traversing PST or PSL, one will
be able to recover the full set of frequent patterns with
their corresponding support.

Each node in a PST is labeled with: a corresponding
event and the support of the pattern formed by travers-
ing the tree from its root to this node. Given a node N ,
we denote the support and event of the node by N.Sup
and N.Ev respectively. Given an edge E connecting
two nodes, we denote its source node by E.Source and
sink node by E.Sink. An example of a PST is shown
in Figure 2(a).

A PST represents a set of patterns. A path in a PST
is a sequence of edges from the root to a non-root node.
A pattern then corresponds to a path in the tree. Con-
sider a path PTH (E1, E2, . . . , EX). This path corre-
sponds to a pattern PX 〈E1.Sink.Ev, . . . , EX .Sink.Ev〉.
The support of this pattern is given by the support at-
tached at the end node (i.e., sup(PX) = EX .Sink.Sup).
A pattern PX is in the PST iff there is a path in the
PST corresponding to PX .

PSL is meant to avoid space explosion by identifying
and grouping common subtrees occurring in a PST. The
corresponding PSL of the PST shown in Figure 2(a)
is drawn in Figure 2(b). As is shown later in sub-
section 6.2, it is not necessary to build the PST first
before compacting it to a PSL. In fact, a PSL can be
built more efficiently than a PST.

6.2 PSL Building Step. This step begins by adding
events as nodes to a tree in a fixed order (i.e., lexico-
graphic order) and in depth-first fashion to form a PST.
In order to prevent a space explosion in PST building, a
compact representation of PST is built by merging com-
mon subtrees. The resultant representation is a prefix
sequence lattice (PSL). Identification of common sub-
trees is based on the following theorem:

Theorem 6.1. (Equivalent Projected Database)
Consider two patterns P1 and P2, where P1 < P2 and

SeqDBP1 = SeqDBP2 . Let N1 and N2 be the respective
end nodes of the paths corresponding to P1 and P2 in
PSL, then any sub-tree extending from N1 and N2 will
be equivalent.

Proof. The proof is similar to that of Property 2. 2

Conceptually, merging of common subtrees is de-
scribed in Figure 3.

 Root

A:3 C:2

A:2 A:2

B:2

B:2 B:2

B:2

C:2

A:2

 Root

C:2 A:2

B:2

B:2

L

L

S

S

A:3

L

(a) (b)
Figure 2: A sample PST and PSL

 Root

 NY

NX

P1

P2

ST1

ST2

Root

 NY

ST2

L

S Conditions:
1. P1,P2 are longest

paths frm. Root to
NX and NY resp.

2. ST1 = ST2
3. P2 is sub seq. of P1

Figure 3: PST to PSL

“sdm08”
2008/5/4
page 7

i

i

i

i

i

i

i

i

Merging is slightly complicated by the need to
label edges for pruning performed in the next step of
the mining algorithm. Specifically, labels are used to
identify some of the non-generator patterns in order to
facilitate pruning. To this end, an edge in PSL is labeled
with either ‘U’, ‘L’ or ‘S’, as explained below.

Definition 2. (Edge Labels – ‘U’, ‘L’ and ‘S’)
An edge EL sinking in a node N is labeled ‘L’ when
there is a path from root ending with EL which is a
super-sequence of another path from root ending in
N . Similarly, an edge ES sinking in a tree node N is
labeled ‘S’ when there is a path from root ending with
ES which is a sub-sequence of another path from root
ending in N . The label ‘L’ takes precedence over ‘S’,
meaning that an edge that can both be labeled ‘L’ and
‘S’, is labeled ‘L’. All other edges are labeled ‘U’.

We write E.Label to denote the label associated
with edge E. Diagrammatically, we omit the labeling of
‘U’ for clarity.

Definition 3. (Pat(PTH), L-Pat(NX)) Given a path
or a sequence of edges PTH, Pat(PTH) returns the
pattern corresponding to PTH . Given a node NX , L-
Pat(NX) returns the longest path from root to NX .

During construction of a PSL, every time a leaf node
NP is extended with a new event evnew represented by
the node Nnew, a new pattern Pnew corresponding to a
unique path from root to Nnew is added to the PSL.
This path is unique because the PSL is constructed
depth-first. A check will be made at this moment for
the following two cases 1:

1. ∃ a node NO ∈ PSL and a pattern PO = L-
Pat(NO).(PO = Pnew ∧ SeqDBPO

= SeqDBPnew).
2. ∃ a node NO ∈ PSL and a pattern PO = L-

Pat(NO).(PO < Pnew ∧ SeqDBPO = SeqDBPnew).

If either of the cases occurs, the sub-tree rooted
at NO will be identical to the sub-tree rooted at Nnew.
We can avoid re-traversing the search space by dropping
Nnew and adding a new edge ENew from NP to NO. If
case 1 occurs, ENew will be labeled as ‘S’, otherwise
if case 2 occurs, it will be labeled as ‘L’. Hence using
Theorem 6.1, it is not necessary to build the PST first
before compacting it to a PSL. This is the case as
common sub-trees can be identified early by checking
for the equivalence of projected databases even before
one of the sub-trees is generated.

Appropriate edge re-labeling will also be made at
this time. Two cases require consideration:

1The check involves detection of equivalence of projected
databases. Fast detection technique has been proposed in [27]
and is utilized in our algorithm.

1. An edge EX labeled as ‘S’ and sinking at node NO

will be re-labeled as ‘L’ if the pattern L-Pat(NO)
is a super sequence of Pnew.

2. An edge EX labeled as ‘U’ will be re-labeled as
‘L’ or ‘S’ if L-Pat(NO) is a super-sequence or sub-
sequence of Pnew respectively.

Based on the labels, the following property of the
PSL can then be inferred. The property identifies some
non-generator occurring in the PSL.

Property 4. (Path Property) Consider an arbi-
trary path PTHX(E0, E1 . . . EX) composed of edges
traversing nodes: root, . . . , NX−1 and NX , such that
∀i < X, Ei.Label = ‘U ′ and EX .Label = ‘L′. There al-
ways exists another path PTHY from root to NX where
Pat(PTHY) < Pat(PTHX) and SeqDBPat(PTHY) =
SeqDBPat(PTHX).

Proof. Consider PTHX−1 (E0, E1 . . . EX−1) ending in
NX−1. PTHX−1 contains only ‘U’-labeled edges and
hence it must be the unique path from root to NX−1.
Extending this argument, the path PTHX must then
be the unique path from root to NX ending at edge EX .

Since PTHX is unique and EX is labeled as
‘L’, from Definition 2 the following must hold: ∃
PTHY (EY0 , . . . , EYI) where EY0 .Source = root and
EYI

.Sink = NX and Pat(PTHY) < Pat(PTHX). Also
since both PTHX and PTHY end at the same tree node
NX , Pat(PTHX) and Pat(PTHY) share the same pro-
jected database. Hence, the above property is proven.2

In this step, a compact representation of the space
of frequent patterns in the form of PSL is produced.
Several strategies are employed to avoid redundant ex-
ploration of the search space. Labels are also computed
to aid pruning performed in the next step of the algo-
rithm. The PSL of our running example is shown in
Figure 2(b).

6.3 S-Gen Generation Step. Next, we mine a set
of candidate generators which is a super-set of all
generators (referred to as S-Gen) from the PSL.

To generate patterns from PSL, one can simply
traverse the tree from root to leaves and generate
patterns on the way. The resultant pattern set will be
a full-set of sequential patterns which can be very large.
The novelty of this step is the identification and pruning
of sub-search spaces containing non-generators. This is
based on the following two pruning lemmas.

Lemma 6.1. (Labeled Path Pruning) Given a
traversal from root to NL following path PTH
(E1, . . . , EL−1, EL), where Ei (1 ≤ i ≤ L) is a tra-
versed edge, if EL.Label = ‘L′, we can omit generating
patterns corresponding to the extensions of PTH if (¬∃
an edge E ∈ {E1, . . . , EL−1} where E.Label 6= ‘U ′).

“sdm08”
2008/5/4
page 8

i

i

i

i

i

i

i

i

Proof. The edge EL is the first non-‘U’ labeled edge
in path PTH. It is labeled by ‘L’. From Property 4,
there exists another path PTHY where Pat(PTH) =

Pat(PTHY) and SeqDBPat(PTH) = SeqDBPat(PTHY).
From Property 2, Pat(PTH) and its extensions are not
generators. Hence, there is no need to generate patterns
by extending PTH.2
Lemma 6.2. (C-Steps Look-Backward Pruning)
Consider a traversal from root to NL following a

path PTH (E1, . . . , EL−C+1, ..., EL−1, EL). The set of
C-Look backward events (CLB) are the corresponding
last C events in path PTH. If there exists another path
PTHY where Pat(PTHY) = P1++P2 such that the
following holds:
1. P1++ev++P2 = Pat(PTH) and ev ∈ CLB

2. SeqDBPat(PTHY) = SeqDBPat(PTH)

Then we can omit generation of patterns corresponding
to the extension of PTH.
Proof. From the lemma, Pat(PTH) = Pat(PTHY)
and SeqDBPat(PTHY) = SeqDBPat(PTH). From Theo-
rem 2, Pat(PTH) and its extensions are not generators.
Hence, we can stop generating patterns by extending
PTH.2

Lemma 6.2 can be checked on-the-fly during the
PSL traversal. In our experiments, the parameter C
of Lemma 6.2 is set to 2.

From the two pruning lemmas, we can generalize
the generation of S-Gen by Theorem 6.2.
Theorem 6.2. (S-Gen Generation) A super-set of
all generators (referred to as S-Gen) can be generated
by traversing the PSL from root until either a leaf node
is reached or one or both of Lemmas 6.1 & 6.2 hold.

The set of S-Gen patterns generated from the
running example is {〈A〉 : 3,〈A, A〉 : 2,〈B〉 : 2,〈B, B〉 :
2,〈C〉 : 2,〈C, A〉 : 2}.
6.4 Final Filtering Step. The result of the steps
outlined in previous sub-sections is a set of candidate
generators, which is a super-set of all generators (i.e.,
Gen-S). Next, we need to eliminate members of the
candidate set that are not generators. To check this
we need to find each pair of patterns P1 and P2 in Gen-
S such that P1 < P2 and sup(P1) = sup(P2). Here, P2

is not a generator and should be removed.2

The set of generators generated from our running
example is {〈A〉 : 3,〈A, A〉 : 2,〈B〉 : 2,〈C〉 : 2}.

Our algorithm, called GenMiner, performs the PSL
building, S-Gen generation and final filtering steps. It
is shown in Figure 4.

2A fast checking of sub-sequence relationships among patterns
having the same support can be performed via hashing. We adapt
the fast subsumption checking algorithm first introduced in [30]
and adapted in [27].

Procedure GenMiner
Inputs: SeqDB: A sequence database;

min sup: Minimum support threshold;
Outputs: Gen: The set of mined generators;
Method:
1: Let FreqEvs = {<ev, s> | (sup(ev, SeqDB) = s)

∧(s ≥ min sup)}
2: Let root = Create new root node
3: Let PSL = root
4: For each pattern <ev, s> ∈ FreqEvs
5: Let Nnew = Create new node (ev, s)
6: Append Nnew as child of root
7: Call ExtendGen (SeqDBev,Nnew,PSL,min sup)
8: Let Cand = Generate Gen-S acc. to. Theorem 6.2.
9: Set Gen = Perform final filtering step to Cand
10: Output Gen

Procedure ExtendGen
Inputs: PDB: A projected database;

ParentNode: Current node in PSL;
PSL: Prefix Sequence Lattice
min sup: Minimum support threshold;

Method:
1: Let FrNxEvs = {<ev, s> | (sup(ev, PDB) = s)

∧ (s ≥ min sup)}
2: For each pattern <ev, s> ∈ FrNxEvs
3: Let Nnew = Create new node (ev, s)
4: Append Nnew as child of ParentNode
5: Let Pnew = A new pattern corresponding to the

unique path from the PSL’s root
to Nnew

6: If ∃ node NO ∈ PSL ∧ pattern PO = L-Pat(NO).
(PO = Pnew ∧ SeqDBPO = SeqDBPnew)

7: Update PSL (see sub-section 6.2)
8: Else If

∃ node NO ∈ PSL ∧ pattern PO = L-Pat(NO).
(PO < Pnew ∧ SeqDBPO = SeqDBPnew)

9: Update PSL (see sub-section 6.2)
10: Else Call ExtendGen (PDBev,Nnew,PSL,min sup)

Figure 4: Main Algorithm – GenMiner

7 Ranking Generators

The algorithm described in Section 6 mines a full set
of generators. In this section, we will describe how we
can relate together generators belonging to the same
equivalence class efficiently. Also, an approach to rank
generators belonging to the same equivalence class will
be described. Finally, we will describe the approach to
mine a representative generator with the highest rank
from each equivalent class efficiently.

7.1 Identifying Equivalence Classes. Before one
can rank generators belonging to an equivalence class,
one need to first group generators according to its class.
In mining frequent itemsets, as demonstrated in [14] this
can be done by growing a generator to its corresponding
closed itemset. As a closed itemset of an equivalence

“sdm08”
2008/5/4
page 9

i

i

i

i

i

i

i

i

class is unique, it can serve as a unique identifier and can
then be used to identify the class an itemset belongs to.
However, this is no longer possible in mining sequential
patterns. The number of closed patterns per equivalence
class can be more than one. There can even be more
closed patterns than generators in a class as shown in
Section 3.

By definition, an equivalence class is a set of pat-
terns supported by the same set of sequences in the
database. Hence, a unique identifier for each equiva-
lence class can be the list of its supporting sequences.
A naive approach is to keep a set of links from every can-
didate generators to its supporting sequences. However,
this is not feasible as the number of links is prohibitive.
This is the case if the set of candidates are many and
for each its support is high.

To address the above problem, we propose the fol-
lowing data structure and approach that will reduce the
required memory and runtime required in identifying
the equivalence classes. The data structure supporting
the process is shown in Figure 5.

EQ1

EQ2

EQ3

EQ4

EQ5

SID1 SID3 SID5 SID8 SID9

SID1 SID4 SID6 SID7 SID8

SID2 SID5 SID7

HK1

HK2

HK3

SeqIDList EQClassTags SSIDHash

Figure 5: Identification of Equivalence Classes – Sup-
porting Data Structure

Rather than attaching a set of links to a candidate
generator, we attach a unique identifier tag correspond-
ing to its equivalence class to each candidate. We cannot
assign a tag for each possible equivalence class statically
since the number of possible generators is the power-set
of the number of sequences in the database. Rather
every time a new equivalence class is identified, we as-
sign an unassigned tag to it. For each tag, we then
keep a set of links to its supporting sequences. These
unique equivalence class tags are kept in a EQClassTags
data structure shown in Figure 5. Each member of the
EQClassTags has a pointer to a SeqIDList data struc-
ture which is a list of identifiers of sequences supporting
the corresponding equivalence class.

To identify future candidates belonging to the same
equivalence class, the naive approach will be to compare
a candidate list of identifiers of supporting sequences
to every other existing SeqIDList data structures.
However, this approach incurs high computation cost.

Clearly, since patterns in the same equivalence class
are supported by the same sequences in the database,
the sum of identifiers of their supporting sequences
should be the same. We use this sum of identifiers
as a hash key and these keys are kept in another data

structure SSIDHash. Each bucket corresponding to a
hash key contains pointer(s) to one or more SeqIDList
data structures identifying one or more equivalence
class(es). The sparse distributivity of sums of identifiers
of supporting sequences and the feasibility of using the
sums as hash keys have been investigated by Zaki and
Yan et al. [28, 27] (see the footnote at sub-section 6.4).
With a well distributed key, hashing can significantly
reduce the computation cost in computing and assigning
tags to candidate generators.

Whenever a new candidate generator G is identified
the following steps are performed:

1. Compute the sum of identifiers of sequences sup-
porting the new candidate G. This value will serve
as G’s hash key.

2. Access SSIDHash to find a list of possible equiva-
lence classes G belongs.

3. If an equivalence class is found, attach the unique
equivalence class tag to it. Otherwise, create new
entries in SSIDHash and EQClassTags accordingly.
With the above strategy we can identify generators

belonging to the same equivalence class. The memory
consumption will not be excessive as we only keep
one SeqIDList data structure for every equivalence
class. Also, due to SSIDHash data structure only a
minimal amount of comparisons are needed to identify
the identifier of a new candidate generator.

7.2 Ranking Criteria. After identifying generators
belonging to the same class, we can then rank them
according to some criteria. By ranking generators,
we can distinguish generators belonging to the same
equivalence class. Consequently, it aids selection of
the best representative generator to be mined, one
for every class (see sub-section 7.3). The size of the
resultant representative generator set will then be equal
to the number of equivalence classes. We propose three
different ranking criteria as follows:

1. Pattern Length. According to the MDL principle,
patterns with the shortest description are preferred.
Hence, we rank the generators according to their
length in ascending order.

2. Maximum Jump. A generator in an equivalence
class must have its subsequences belonging to an-
other class. We define the maximum jump of a
generator to be the maximum ratio between the
support of the generator to that of one of its sub-
sequences. Generators in an equivalence class with
the maximum jump are the ones which are the most
different from its immediate sub-sequence patterns
and hence are more interesting than the other gen-
erators. We can then rank the generators according
to their maximum jumps.

“sdm08”
2008/5/4
page 10

i

i

i

i

i

i

i

i

3. Average Jump. This is a variant of the second cri-
teria. Rather than considering the maximum jump
of a generator we average its jumps. Generators
are then ranked based on their average jump.

In our study, we consider the above three criteria in
a pipeline. We first sort the generators based on their
length, if there is a tie, we then rank those in the tie
cases based on their maximum jumps, if a tie occurs
again, we finally rank those in the tie cases based on
their average jumps. Note that at the end of the pipeline
there might be a tie. To resolve the tie, we further sort
the generators based on lexicographic order with respect
to the alphabet set considered.

7.3 Mining One Generator per Equivalence
Class. In block diagram, our basic algorithm described
in Section 6 is composed of 4 blocks shown in the ‘De-
fault Steps’ box in Figure 6. We can then insert addi-
tional blocks to identify equivalence classes, rank gen-
erators and mine a single generator with the maximum
rank for every equivalence class.

Search Space
Compaction

Non-generators
Pruning

Final Filtering
Step

For each equivalence class,
Remove candidates
with non-minimal length

Identify equivalence classes.
Assign identifier labels for

each node in PSL.

For each equivalence class,
Remove all generators
except the one with the
highest rank based on
maximal jump, average
jump and lexicographic
ordering

Generator
Presentation

Default Steps Additional Steps

<<re-route>>

Figure 6: Algorithm Block Diagram - GenMiner-EQ

During the PSL building step, assignments of tags
can be performed on the fly using the method described
in sub-section 7.1. After pruning of non-generators we
will obtain a set of candidate generators. From this set,
for each equivalence class, we will remove candidates
with non-minimum length.

Note that every candidate is a pattern in an equiva-
lence class. If a pattern is one of the shortest patterns in
the class, it must be a generator. This is the case since
none of its sub-sequences is in the class. Hence, we
can skip the final filtering step and proceed to further

rank the generators based on maximal jump, average
jump and lexicographic order. The end result is a set
of generators each uniquely corresponds to the highest
rank generator of an equivalence class. We refer to the
modified algorithm returning one generator per equiva-
lence class as GenMiner-EQ. The number of generators
returned will correspond to the number of equivalence
classes in the input sequence database.

Let us consider the frequent pattern space shown in
Figure 1 and its corresponding database. There are 8
equivalence classes, hence GenMiner-EQ should return
8 generators. Three of the classes, EQ5, EQ7 and EQ8

each contains more than one generator. For EQ8, there
are 2 generators, namely 〈A,B, B〉 and 〈C〉. Ranking
them based on pattern length, 〈C〉 has a higher rank
than 〈A,B, B〉. Hence, we keep 〈C〉. For EQ7, there are
2 generators, namely 〈A,B〉 and 〈B, B〉. These two are
of the same length, hence we rank them based on their
maximum jump. Generators 〈A,B〉 and 〈B, B〉’s max-
imum jumps are 1.67 and 1.33 respectively. Hence, we
keep the one with the larger maximum jump, which is
〈A,B〉. For EQ5, there are 3 generators, namely 〈A,A〉,
〈A,D〉 and 〈D,A〉. All three generators have the same
length and the same maximum jump. Hence, we sort
them based on average jump. The average jumps of the
generators 〈A,A〉, 〈A,D〉 and 〈D, A〉 are 2.5, 2 and 2
respectively. Hence we keep the one with the highest
average jump which is 〈A,A〉. Each of the generators
returned by GenMiner-EQ corresponds to the highest
rank generator in an equivalence class. For the frequent
pattern space in Figure 1, the set of highest rank gener-
ators is {〈〉, 〈A〉, 〈B〉, 〈C〉, 〈D〉, 〈A,A〉, 〈A,B〉, 〈B, A〉}.
8 Performance Study

A performance study was performed on both synthetic
and real datasets to demonstrate the scalability of
our method. Also, we would like to compare the
performance of our algorithms with that of algorithms
mining a full set of frequent sequential patterns (as a
baseline) and a closed set of sequential patterns. The
problem of mining sequential generators is novel and
hence it is not our aim to reduce the runtime below that
of closed pattern miners. They mine different things
and thus are not comparable. Rather, our aim is to
show that mining generators can be as efficient as closed
patterns. This study also presents new insight on the
performance of existing closed pattern miners.
Datasets. We use three datasets in our study: a syn-
thetic and two real datasets. Synthetic data genera-
tor provided by IBM was used with modification to en-
sure generation of single-item sequences (i.e., transac-
tions are of size 1). We also experimented on a click
stream dataset (i.e., Gazelle dataset) from KDD Cup

“sdm08”
2008/5/4
page 11

i

i

i

i

i

i

i

i

2000 [11] which was also used to evaluate CloSpan [27]
and BIDE [26]. It contains 29369 sequences with an
average length of 3 and a maximum length of 651.

Recently, there have been active interests in ana-
lyzing program traces (e.g., [2, 16, 18, 17, 19]). We
generate traces from a simple Traffic alert and Collision
Avoidance System (TCAS) from Siemens Test Suite [10]
which is used as one of benchmarks for research in er-
ror localization (e.g., [4]). The test suite comes with
1578 correct test cases. We run the test cases and ob-
tain 1578 traces. Each trace is treated as a sequence.
The sequences are of average length of 61 and maximum
length of 97. It contains 106 different events – the events
are the line numbers of the statements being executed.
We refer to it as the TCAS dataset.

103

102

101

1

0.1

104

0.001 0.0015 0.002 0.0025 0.003
min_sup

R
u

n
tim

e
(s

) -
 (

lo
g

-s
ca

le
)

PrefixSpan

CloSpan
BIDE

GenMiner
GenMiner-EQ

Figure 7: Performance results of varying min sup
for the D5C20N10S20 dataset

0.1

1

101

102

0.00018 0.00022 0.00026 0.0003 0.00034
min_sup

R
u

n
tim

e
(s

) -
 (

lo
g

-s
ca

le
)

PrefixSpan
CloSpan
BIDE
GenMiner
GenMiner-EQ

Figure 8: Performance results of varying min sup
for the Gazelle dataset

Pattern Miner and Environment. ‘Full-set’ fre-
quent pattern miner used is PrefixSpan [21]. Closed
pattern miners used are CloSpan [27] and BIDE [26].
We compare two versions of our algorithm: with and
without ranking. We refer to the algorithm returning
all generators and the one returning one generator per
equivalence class as GenMiner and GenMiner-EQ re-
spectively. This study was performed on an Intel Pen-
tium 4, 3.0 GHz PC with a 2GB main memory, running
Windows XP Professional. PrefixSpan, CloSpan, BIDE,

103

102

10

1

0.15 0.2 0.25 0.3
min_sup

R
un

tim
e

(s
) -

 (
lo

g
-s

ca
le

)

PrefixSpan

CloSpan

BIDE
GenMiner

GenMiner-EQ

PrefixSpan doesn’t complete due
to long runtime and huge number

of generated patterns even at
min_sup = 1.0

Figure 9: Performance results of varying min sup
for the TCAS dataset

GenMiner and GenMiner-EQ are written in C++.
Experiment Results and Analysis. The experiment
results for the synthetic dataset D5C20N10S20 are
shown in Figure 7. The parameters D, C, N and S
correspond to the number of sequences (in 1000s), the
average number of events per sequence, the number of
different items (in 1000s) and the average number of
events in the maximal sequences. Experiment results
using the Gazelle and TCAS datasets are shown in
Figures 8 & 9 respectively. The ranges considered for
the D5C20N10S20 and Gazelle datasets follow similar
ranges considered in [27, 26]. Among the 3 datasets,
the dataset TCAS is the hardest to mine, shown by
the fact that the performance is poorer at much higher
support thresholds.

From the plotted results, it is noted that the perfor-
mance of our algorithms and closed pattern miners are
comparable. GenMiner and GenMiner-EQ perform best
at TCAS dataset. BIDE performs best at the simulated
and Gazelle dataset. Also, the performance of Gen-
Miner and GenMiner-EQ are comparable. GenMiner-
EQ needs to identify equivalence classes and compute
identifier labels to nodes in PSL which increase the com-
putation cost. However, GenMiner-EQ can skip the fi-
nal filtering step which reduces the computation costs.
In the experiments, these opposite factors cancel each
other out and the performance of the two algorithms
are more or less comparable.

TCAS dataset is interesting as the ‘full-set’ fre-
quent pattern miner is not able to complete even at
the support level of 100% (there is only one closed pat-
tern at the support level of 100% and it is of length
27). Also, from the TCAS dataset results plotted
in Figure 9, performance of BIDE is worse than our
algorithm (GenMiner and GenMiner-EQ) and CloSpan.
Compared with Gazelle dataset, the average length of
sequences in TCAS dataset is much longer (61 vs. 3)
and the closed patterns are long and few. The long
sequences cause the BackScan operation of BIDE to

“sdm08”
2008/5/4
page 12

i

i

i

i

i

i

i

i

be costly.3. Also, at support level 0.15, BIDE requires
more memory (over 200MB) than GenMiner (33MB),
GenMiner-EQ (35MB) and CloSpan (22MB). BIDE
doesn’t require to keep a tree or lattice in memory, while
the other 3 algorithms need to do so. However, using
BIDE for a closed pattern of length X, it needs to store
X projected databases in the memory (at min sup of
0.15, the longest pattern is of length 85). On the other
hand, the other 3 algorithms rely on the equivalence of
projected databases. A long pattern of length X in effect
is built by a series of concatenation of shorter patterns.
This finding sheds new light on closed sequential pattern
mining. In [26], it is demonstrated that on Gazelle and
various biological datasets, the performance of BIDE
is significantly faster by up to an order of magnitude
while the memory consumption is order(s) of magni-
tude less as compared to CloSpan. The above result
shows that there is still room for improvement to de-
velop new closed sequential pattern miners which excel
in all datasets.

Similar to related studies in [27, 26, 3, 14, 13, 21],
in this paper, we focus on mining algorithms and
performance issues. As future work, we are investigating
using mined sequential generators for the classification
of sequential data. Also, we are looking into using
both generators and closed patterns to form rules with
shortest pre-conditions and longest post-conditions.
Post Conference Clarification & Correction. In
the above performance study result, we compile BIDE
source code using Visual Studio .Net 2005 (with release,
i.e., optimized, option). Thanks to Jianyong Wang
enquiry and advice we try to run a binary compiled
using Visual Studio 6. We find that the with the latter,
the above result is reversed. BIDE is faster than the
other 3 algorithms on the TCAS dataset. We are not
aware of this performance slowdown due to compiling
using Visual Studio .Net 2005 before. We thus retract
our argument on runtime performance of BIDE and
CloSpan (see the text being strike-throughed above).

The result on peak memory requirement stays the
same and hence we encourage researchers in closed
sequential pattern mining to continue working in this
area to further develop closed sequential pattern miners
which excel in all datasets in terms of memory and
runtime. Note that the thrust of the paper is to present
a novel technique on mining sequential generators.

9 Conclusion

Sequential patterns supported by the same set of se-
quences in the database belong to the same equivalence
class. Closed patterns and generators of an equivalence
class correspond to the maximal and minimal mem-

3See Post Conference Clarification & Correction.

bers of the class respectively. Generators used together
with closed patterns can provide additional information
which closed patterns alone are not able to provide.
Also, as generators are usually shorter than closed pat-
terns, they are preferable over closed patterns for model
selection and classification based on the Minimum De-
scription Length (MDL) principle. Several algorithms
have been proposed on mining closed sequential pat-
terns. However, there has not been any algorithm pro-
posed for mining sequential generators. In this paper,
we fill this research gap by proposing a novel algorithm
to mine sequential generators efficiently. We also intro-
duce ranking of mined generators and propose mining of
a unique generator per equivalence class. Performance
study shows that our method can run a lot faster than
mining a full-set of frequent sequential patterns and its
speed can be on par with or at times faster than that of
mining a closed set of sequential patterns.
Acknowledgement. We thank Limsoon Wong for
his valuable comments and advice. We thank the
anonymous reviewers for their valuable feedbacks. Also,
we thank Xifeng Yan, Jiawei Han and Ramin Afshar
for providing us CloSpan. We would also like to
thank Jianyong Wang and Jiawei Han for providing
us BIDE. We wish to thank Blue Martini Software for
contributing the KDD Cup 2000 data. This research is
partially supported by an NUS research grant R-252-
000-250-112.

References
[1] R. Agrawal and R. Srikant. Mining sequential patterns. In

ICDE, 1995.
[2] G. Ammons, R. Bodik, and J. R. Larus. Mining specification.

In SIGPLAN-SIGACT POPL, 2002.
[3] J. Ayres, J.E. Gehrke, T. Yiu, and J. Flannick. Sequential

pattern mining using bitmaps. In KDD, 2002.
[4] H. Cleve and A. Zeller. Fault localization: Locating causes of

program failures. In ICSE, 2005.
[5] G. Dong and J. Pei. Sequence Data Mining. Springer, 2007.
[6] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential

pattern mining with regular expression constraints. In VLDB,
1999.

[7] P. Grunwald, I.J. Myung, and M. Pitt. Advances in Minimum
Description Length: Theory and Applications. MIT Press,
2005.

[8] J. Han and M. Kamber. Data Mining Concepts and Tech-
niques. Morgan Kaufmann, 2001.

[9] Y. Hu and B. Panda. A data mining approach for database
intrusion detection. In SIGAPP SAC, 2004.

[10] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Exper-
iments of the effectiveness of dataflow- and controlflow-based
test adequacy criteria. In ICSE, 1994.

[11] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng.
KDD-Cup 2000 organizers’ report: Peeling the onion. SIGKDD
Explorations, 2:86–98, 2000.

[12] R. Kosala and H. Blockeel. Web mining research: A survey.
SIGKDD Explorations, pages 1–15, 2000.

[13] J. Li, H. Li, L. Wong, J. Pei, and G. Dong. Minimum
description length principle: Generators are preferable to closed
patterns. In AAAI, 2006.

[14] J. Li, G. Liu, and L. Wong. Mining statistically important
equivalence classes and delta-discriminative emerging patterns.
In KDD, 2007.

[15] M. Li and P. Vitanyi. An Introduction to Kolmogorov Com-
plexity and Its Applications. Springer-Verlag, 1999.

[16] D. Lo and S-C. Khoo. SMArTIC: Toward building an accurate,
robust and scalable specification miner. In SIGSOFT FSE,
2006.

“sdm08”
2008/5/4
page 13

i

i

i

i

i

i

i

i

[17] D. Lo and S-C. Khoo. Software specification discovery : A new
data mining approach. In NSF NGDM, 2007.

[18] D. Lo, S-C. Khoo, and C. Liu. Efficient mining of iterative
patterns for software specification discovery. In KDD, 2007.

[19] D. Lo, S-C. Khoo, and C. Liu. Efficient mining of recurrent
rules from a sequence database. In DASFAA, 2008.

[20] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
frequent closed itemsets for association rules. In ICDT, 1999.

[21] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu. Prefixspan: Mining sequential patterns effi-
ciently by prefix-projected pattern growth. In ICDE, 2001.

[22] A. Raman, P. Andreae, and J.D. Patrick. A beam search algo-
rithm for PFSA inference. Pattern Analysis and Applications,
1998.

[23] A.V. Raman and J.D. Patrick. The sk-strings method for
inferring PFSA. In Proc. of the Work. on Automata Ind.,
Gram. Inf.and Lang. Acq. at ICML, 1997.

[24] J. Rissanen. Modelling by shortest data description. Automat-
ica, 14:465–471, 1978.

[25] M. Spiliopoulou. Managing interesting rules in sequence min-
ing. In PKDD, 1999.

[26] J. Wang and J. Han. BIDE: Efficient mining of frequent closed
sequences. In ICDE, 2004.

[27] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed
sequential patterns in large datasets. In SDM, 2003.

[28] M. Zaki. SPADE: An efficient algorithm for mining frequent
sequences. Machine Learning, 40:31–60, 2001.

[29] M.J. Zaki. Mining data in bioinformatics. Handbook of Data
Mining, pages 573–596, 2003.

[30] M.J. Zaki and C.J. Hsiao. Charm: An efficient algorithm for
closed itemset mining. In SDM, 2002.

