
Mining Antagonistic Communities from Social
Networks

Kuan Zhang, David Lo, and Ee-Peng Lim

School of Information Systems, Singapore Management University
{kuang.zhang.2008, davidlo, eplim}@smu.edu.sg

Abstract. During social interactions in a community, there are often
sub-communities that behave in opposite manner. These antagonistic
sub-communities could represent groups of people with opposite tastes,
factions within a community distrusting one another, etc. Taking as in-
put a set of interactions within a community, we develop a novel pattern
mining approach that extracts for a set of antagonistic sub-communities.
In particular, based on a set of user specified thresholds, we extract a set
of pairs of sub-communities that behave in opposite ways with one an-
other. To prevent a blow up in these set of pairs, we focus on extracting
a compact lossless representation based on the concept of closed pat-
terns. To test the scalability of our approach, we built a synthetic data
generator and experimented on the scalability of the algorithm when
the size of the dataset and mining parameters are varied. Case studies
on an Amazon book rating dataset show the efficiency of our approach
and the utility of our technique in extracting interesting information on
antagonistic sub-communities.

1 Introduction

We form opinions and at times strong convictions on various issues and questions.
Based on similarity in opinions and ideals, it is common that sub-groups or
communities of users are formed. As members support or uphold a particular
view or even conviction, we also observe the dynamics of human social interaction
of antagonistic groups, i.e., two groups that consistently differ in opinions.

Opposing groups and their nature have been studied in the sociology do-
main [17, 5, 4, 14, 10, 6]. Understanding the formation of these groups and wide-
spread-ness of opposing communities are of research interest. They could po-
tentially signify signs of disunity in the larger community and point to sub-
communities that oppose one another. If these issues could be detected early,
unwanted tensions between communities could potentially be averted. Identifi-
cation of antagonistic communities is also the first step to further studies on:
e.g., how the antagonistic communities are formed, why they are formed, how
does the antagonistic communities grow over time, when do the communities
stop being antagonistic, etc.

Aside from enriching studies on dynamics of social interactions, information
on groups of people having opposing opinions could potentially be used for:
designing better marketing/product survey strategy by deeper understanding



2 Zhang, Lo and Lim

on the nature of each sub-community and potentially an opposing one, better
recommendation of friends, or even recommendation of “non-friends”, e.g., those
whose reviews one could ignore, etc.

In this study, our goal is to discover antagonistic communities automati-
cally from their history of interactions. We design a novel pattern mining algo-
rithm to directly mine antagonistic communities. We take as input a database
of user opinions/views over things, bucketized into high/medium/low or posi-
tive/neutral/negative. From this database, we extract every two sets of users
that are antagonistic over enough number of common items/issues with a high
likelihood. Each mined pattern identifies a group of users that oppose another
group over a sufficient number of common issues/items of interest (i.e., enough
support) with a high likelihood (i.e., enough confidence).

Our approach explores the search space of all possible opposing communities
and prunes those that appear with not enough frequency/support. An apriori-
like anti-monotonicity property is used to prune the search space. Eventually the
patterns mined are checked if the confidence is sufficient. If it is, it would then
be reported. As a frequent opposing pattern would have many sub-patterns that
are frequent we only report patterns that are closed. A pattern is closed if there
exists no super-pattern having the same support and confidence.

To show the scalability of our approach, we developed a synthetic data gen-
erator in a similar fashion as the IBM data generator used for mining association
rules [2]. The data generator is used to test the scalability of our approach on
several dimensions of interest. The result shows that our algorithm is able to run
well on various parameter settings. We also investigates a rating dataset from
Amazon. Our algorithm is able to run on the real dataset and extract antago-
nistic communities. A few hundred communities are mined from the dataset.

The contributions of our work are as follows:

1. We propose a new problem of mining antagonistic communities from so-
cial network. Mined antagonistic communities could potentially be used to
shed better light on social interactions, prevent unwanted tensions in the
communities, improve recommendations and marketing strategies, etc.

2. We propose a new algorithm to mine for antagonistic communities that is
shown to be scalable.

3. We extract antagonistic communities from real datasets shedding light to
the extent of consistent antagonistic behavior in real rating datasets.

The structure of this paper is as follows. Section 2 describes some related
work. Section 3 formalizes some concepts and the semantics of antagonistic com-
munities. Section 4 describes our mining algorithm. Experiments and case stud-
ies are described in Section 5. We finally conclude and describe future work in
Section 6.

2 Related Work

There have been a number of studies on finding communities in social network [3,
9, 8]. In this study we enrich past studies by discovering not cohesive commu-



Mining Antagonistic Communities from Social Networks 3

nities but ones with opposing sub-communities. We believe these two source of
information could give more light to the social interactions among users in Web
2.0.

Antagonistic communities is also related to the concept of homophily. Mem-
bers of a pair of antagonistic communities, intuitively share more preferences
with those in the same community and share less preferences with others from
the opposing community. There have been a number of studies on homophily in
social networks [16]. In this work, our mined communities not only express sim-
ilar preferences but also opposing preferences. Homophily and trust are closely
related as users with similar preferences are more likely to trust each other [11].
In this sense, our work enriches existing studies on homophily and trust [12, 15,
13].

In the sociology, economics, and psychology communities, the concept of
inter-group antagonism has been studied by various work [17, 5, 4, 14, 10, 6]. We
extend this interesting research question by providing a computation tool to au-
tomatically identify opposing communities from a history of their behaviors. We
believe our tool could potentially be used to help sociologist in understanding the
behaviors of communities from the wealth of available data of user interactions
in Web 2.0.

Our algorithm belongs to a family of pattern mining algorithms. There have
been a number of pattern mining algorithms including those mining associa-
tion rules (e.g., [2]), frequent sequences (e.g., [18]), frequent repetitive sequences
(e.g., [7]), frequent graphs, etc. The closest to our study is the body of work on
association rule mining [2]. Association rule mining also employs the concept of
support and confidence like us. However, association rule mining extracts fre-
quent transactions, and relationship between transactions. On the other hand,
we extract two sets of opposing users that share many common interests/form
opinions/commonly rated items but oppose each other with high likelihood.
This problem is inherently different from association rule mining. We show that
a similar apriori-like anti-monotonicity property holds but we employ a different
algorithm to mine for antagonistic communities. Similar to the work in [18], we
do not report all frequent and confident groups rather only the closed ones.

3 Antagonistic Group

We formalize past histories of user social interactions in terms of ratings to items
which can be objects, views, or even ideas. Hence there is a bipartite graph
between users and objects where the arrows are labeled with rating scores. We
divide all rating scores to be high, medium, low rating polarities depending
on the score ranges. For example in Epinions where there is a 5-point scale
assigned to an item by a user, we bucketize rating scores of 1 − 2 to be of low
rating polarity, 3 to be of medium rating polarity, and 4− 5 to be of high rating
polarity. We formalize our input as a database of ratings, defined in Definition 1.
We refer to the size of a rating database DBR as |DBR| which is equal to the
number of mapping entries in the database.



4 Zhang, Lo and Lim

Definition 1. Consider a set of users U and a set of items I. A database of
ratings consists of a set of mappings of item identifiers to a set of pairs, where
each pair consists of user identifier and rating score. There are three types of
rating scores considered: high (hi), medium (mid), and low (lo). The database of
ratings could be formally represented as:

DBR = {itid 7→ {(usid, rtg), . . .}|itid ∈ I ∧ usid ∈ U ∧ rtg ∈ {hi,mid, lo} ∧
usid gives itid a rating of rtg}

Two ratings are said to be common between two users if the ratings are
assigned by the two users on the same item. A set of ratings is said to be common
among a set of users if these ratings are on a common set of items rated by the
set of users.

Definition 2. (Opposing Group): Let Ui and Uj be two disjoint sets of users.
(Ui, Uj) is called an opposing group (or simply, o-group).

The number of common ratings between the two sets of users Ui and Uj

of an opposing group is known as their support count and is denoted by
count(Ui, Uj). The support of the two user sets support(Ui, Uj) is defined as
count(Ui,Uj)

|I| where I represents the set of all items.
The number of common ratings between Ui and Uj that satisfy three condi-

tions:

– Users from Ui share the same rating polarity pi;
– Users from Uj share the same rating polarity pj ; and
– pi and pj are opposite polarities.

is called the antagonistic count, denoted by antcount(Ui, Uj). Obviously, antc-
ount(Ui, Uj) ≤ count(Ui, Uj). The antagonistic support of the two user sets
asupport(Ui, Uj) is defined as antcount(Ui,Uj)

|I| . We also define the antagonistic

confidence of a a-group (Ui, Uj) to be aconf(Ui, Uj) = antcount(Ui,Uj)
count(Ui,Uj)

.

Definition 3. (Frequent Opposing Group): An opposing group (Ui, Uj) is a
frequent opposing group (or, frequent o-group for short) if support(Ui, Uj) ≥ λ
and asupport(Ui, Uj) ≥ λ× σ where λ is the support threshold (∈ (0, 1)), and σ
is the antagonistic confidence threshold (∈ (0, 1)).

We consider (Ui, Uj) to subsume (U ′
i , U

′
j) if: (a) U ′

i ⊂ Ui and U ′
j ⊆ Uj ; or

(b) U ′
i ⊆ Ui and U ′

j ⊂ Uj . We denote this by (U ′
i , U

′
j) ⊂ (Ui, Uj).

Frequent o-groups satisfy the important Apriori property as stated below.
Due to space constraint, we move the proof to [1].

Property 1. (Apriori Property of Freq. O-group): Every size (k−1) o-group
(U ′

i , U
′
j) subsumed by a size-k frequent o-group (Ui, Uj) is a frequent o-group.

Definition 4. (Antagonistic Group): An opposing group (Ui, Uj) is an an-
tagonistic group (or, a-group for short) if it is a frequent o-group and aconf(Ui, Uj)
≥ σ.



Mining Antagonistic Communities from Social Networks 5

Definition 5. (Closed Antagonistic Group): An a-group (Ui, Uj) is closed
if ¬∃(U ′

i , U
′
j).(Ui, Uj) ⊂ (U ′

i , U
′
j), count(U ′

i , U
′
j) = count(Ui, Uj) and

antcount(U ′
i , U

′
j) = antcount(Ui, Uj).

Example 1. Consider the example rating database in Table 1 (left). Suppose
λ = 0.5 and σ = 0.5. Both (a, d) and (a, bd) are a-groups. However, since
count(a, d) = count(a, bd) = 3 and antcount(a, d) = antcount(a, bd) = 2, (a, d)
is not a closed a-group and is subsumed by (a, bd). Hence, (a, d) is considered as
redundant. On the other hand, both (a, b) and (a, bc) are closed a-groups even
though both aconf(a, b) and aconf(a, bc) has the same value which is 2

3 . This is
so as count(a, b) 6= count(a, bc) and antcount(a, b) 6= antcount(a, bc).

Table 1. Example Rating Database 1 (DBEX1), 2, and 3

Item User ratings

i1 a-hi, b-lo, d-lo
i2 a-hi, b-lo, d-lo
i3 a-hi, b-hi, d-hi
i4 a-hi, b-lo, c-lo
i5 a-hi, b-lo, c-lo
i6 a-hi, b-hi, c-lo

Item User ratings

i1 a-hi, b-lo, c-lo
i2 a-hi, b-lo, c-lo
i3 a-hi, b-lo, c-hi
i4 d-hi, e-lo, f -lo
i5 d-hi, e-hi

Item User ratings

i1 a-hi, b-lo, d-lo
i2 a-hi, b-lo, d-lo
i3 a-hi, b-hi, d-hi

Note that count(Ui, Uj) = count(U ′
i , U

′
j) does not imply that antcount(Ui, Uj) =

antcount(U ′
i , U

′
j) for any (Ui, Uj) ⊂ (U ′

i , U
′
j), and vice versa. We can show this

using the rating database example in Table 1 (middle). In this example, we have
count(a, b) = count(a, bc) = 3 but (antcount(a, b) = 3) > (antcount(a, bc) = 2).
We also have antcount(d, e) = antcount(d, ef) = 1 but (count(d, e) = 2) >
(count(d, ef) = 1).

Definition 6. (Antagonistic Group Mining Problem): Given a set of items
I rated by a set of users U , the antagonistic group mining problem is to find all
closed antagonistic groups with the given support threshold λ and antagonistic
confidence threshold σ.

4 A-Group Mining Algorithm

We develop a new algorithm to mine for antagonistic groups from a database
of rating history. The database could be viewed as a cleaned representation of
people opinions or views or convictions on various items or issues. Our algorithm
systematically traverses the search space of possible antagonistic groups using a
search space pruning strategy to remove unfruitful search spaces.

The a-group mining algorithm runs for multiple passes. In the initialization
pass, we calculate the count and antcount of all the frequent size-2 o-group
candidates and determine which of them are frequent o-groups. In the next
pass, with the set of frequent o-groups found in the previous pass, we generate
new potential frequent o-groups, which are called candidate set. We then count
the actual count and antcount values for these candidates. At the end of this



6 Zhang, Lo and Lim

pass, we determine which of the candidates are frequent o-groups, and they are
used to generate frequent o-groups for the next pass. After that, we filter the
previous frequent o-group set with the newly generated frequent o-group set by
removing non-closed frequent o-groups. Then we move on to the next pass. This
process continues until no larger frequent o-groups are found. After successful
mining of all frequent o-groups, we derive the a-groups from them.

Input: λ; σ; rating database
Output: closed a-group of all size
L1 = frequent user set;1

C2 = {({ui}{uj})|i < j, ui ∈ L1, uj ∈ L1};2

for k = 2;k ≤ |U | and |Lk−1| 6= 0; k++ do3

if k > 2 then4

Ck=antGrpMining-gen(Lk−1);5

end6

root← buildHashTree(k,Ck);7

foreach item t ∈ D do8

Ct=subset(t,root);9

foreach candidate c in Ct do10

update count and antcount of c;11

end12

end13

Lk={gk ∈ Ck| count(gk)
|I| ≥ λ and antcount(gk)

|I| ≥ λ× σ};14

Lk−1=prune(Lk−1, Lk);15

end16

G={g ∈ ⋃
k

Lk|antcount(g)
count(g)

≥ σ};17

Output G;18

Algorithm 1: Mining Algorithm – Clagmine(λ,σ,DBR)

Algorithm 1 shows the a-group mining algorithm known as Clagmine. Two
basics data structures are maintained namely Lk the intermediary set of frequent
o-groups of size k and Ck a candidate set of size k for frequent o-groups checking.
The first two lines of the algorithm derives size-2 candidates to get the frequent
size-2 o-groups. It forms the base for subsequent processing. A subsequent pass,
say pass k, consists of three phases. First, at line 5, the frequent o-groups in
Lk−1 found in k − 1 pass are used to generate the candidate frequent o-group
set Ck, using the antGrpMining-gen method in Algorithm 2.Next, the database
is scanned and the count and antcount of candidates in Ck is updated (lines 7
to 13). We make use of the hash-tree data structure described in [2] to hold Ck

and we then use a subset function to find the candidates overlap with the raters
of an item. After we marked all the overlapped candidates, we update the count
and antcount of them. Frequent o-groups can be determined by checking count
and antcount against the support threshold and λ × σ thresholds respectively.
Following that, Lk−1 is filtered with the newly generated frequent o-groups to
remove non-closed frequent o-groups (line 15). After all the passes, the a-groups
are determined from the frequent o-group set (line 17). The following subhead-
ings zoom into the various components of the mining algorithm in more detail.



Mining Antagonistic Communities from Social Networks 7

Input: size-(k − 1) frequent o-group set Lk−1

Output: size-k candidate frequent o-group set
foreach p, q ∈ Lk−1 do1

gk ← merge(p, q);2

add gk to Ck;3

forall (k − 1)-subsets s of gk do4

if s¬ ∈ Lk−1 then5

delete gk from Ck;6

end7

end8

end9

return Ck;10

Algorithm 2: antGrpMining-gen(Lk−1)

Candidate Generation and Pruning. The antGrpMining-gen function de-
scribed in Algorithm 2 takes Lk−1, the set of all frequent size-(k − 1) o-groups
as input. It returns a superset of all frequent size-k o-groups. It works as below.
First, we merge all the elements in Lk−1 that share the same sub-community of
size-(k-2). Each of them can be merged into a size-k candidate frequent o-group
consisting of the common sub-community and the two differing members. We
add the candidate frequent o-groups to Ck. Next, in the pruning stage, we delete
gk ∈ Ck if some (k − 1) subset of gk is not in Lk−1.

The pruning stage’s correctness is guaranteed by Property 1. From the prop-
erty, if gk is a frequent o-group, all its (k−1) subsets must be frequent o-groups.
In other words, if any one (k−1) subset of a frequent o-group gk is not frequent,
gk is not frequent too. We thus prune such gks. The correctness of antGrpMining-
gen function follows from Lemma 1. Due to space constraint, we move the proofs
of all lemmas and theorems to [1].

Lemma 1. For k ≥ 3, given a set of all size-(k−1) frequent o-group, i.e., Lk−1,
every size-k frequent o-group, i.e., Lk, is in the candidate set, i.e., Ck, output
by Algorithm 2.

An example to illustrate the process of candidate generation via merging and
deletion is given below.

Example 2. Let L3 be {(u1, u2u3),(u5, u2u3),(u1u4, u2),(u1u5, u2),(u4u5, u2)}. Af-
ter the merge step, C4 will be {(u1u5, u2u3), (u1u4u5, u2)}. The deletion step
serving as apriori-based pruning, will delete the frequent o-group (u1u5, u2u3)
because the opposing group (u1u5, u3) is not in L3. We will then left with only
{(u1u4u5, u2)} in C4.

Subset Function. Candidate frequent o-groups are stored in a hashtree as
mentioned in line 7 of Algorithm 1. Each node of the hashtree contains either a
hashtable (interior node), or a list of candidates (leaf). Each node is labeled with
a user identifier representing the user associated with this node. The hashtable
at interior nodes contains mappings to nodes at the next level, with each hash



8 Zhang, Lo and Lim

key being the corresponding user identifier. Every candidate is sorted according
to the user identifier, and is then inserted into the hashtree.

The subset function in line 9 of Algorithm 1 finds all the candidate frequent
o-groups among raters of item t. The raters of item t is first sorted by their user
identifiers. The raters are then traversed one by one. A pointer list is kept to
maintain a list of nodes which are visited, which initially has only the root of the
hashtree. For a rater u, we traverse through all the nodes in the pointer list, if
a child node of the current node is found with label u, the child node is further
checked to see whether it is interior or leaf. If it is an interior node, we add it to
the pointer list and if it is a leaf, every a-group stored in the leaf is marked as
a subset of raters of t. A node is removed from the pointer list if all of its child
nodes are in the list (i.e., are visited). The process is repeated through all the
raters of item t. At the end, all the candidates which are subset of raters of t
will be marked.

Filtering Non-Closed A-Group. The filtering of non-closed a-groups is guar-
anteed by filtering of non-closed frequent o-groups. It corresponds to line 15 in
Algorithm 1. The function works as follows. For each frequent o-group gk in
Lk, we traverse through every frequent o-group gk−1 in Lk−1. If gk subsumes
gk−1, and the count and antcount of the two frequent o-groups are equal, gk−1

can be filtered. This step ensures all the frequent o-groups in Lk−1 are closed.
By iterating through k, we can have all the non-closed frequent o-group of any
size filtered. Note that a closed frequent o-group could potentially subsumes a
combinatorial number of sub-groups. Removal of non-closed frequent o-group
potentially reduces the number of reported frequent o-groups significantly.

Correctness of the algorithm. The correctness of the algorithm is guaranteed
by Theorems 1 & 2 stated below.

Theorem 1. Mined a-group set G contains all the closed a-groups.
Theorem 2. Mined a-group set G contains only closed a-groups.
Scalability Variant: Divide and Conquer Strategy. At times, the main
memory required to generate all the candidates could be prohibitive. If there are
too many L2 patterns, storing all of them in the memory would not be feasible.
To address this issue, we perform a divide and conquer strategy by partitioning
the database, mining for each partition, and merging the result. We first state
some new definitions and describe a property.

Definition 7 (User Containment). Consider a member m = itid 7→ PairSet
in a database of ratings DBR. We say that a user ui is contained in the entry,
denoted by ui ∈ m, iff ∃ (ui, rtg) where rtg ∈ {hi, lo,mid} and (ui, rtg) is in
PairSet. We also say that a user ui is in an a-group a = (S1, S2) iff (ui ∈ S1
∨ ui ∈ S2)

Example 3. To illustrate, consider the first entry etr in the example rating
database shown in Table 1(left). The first entry etr contains users a, b and
d: a ∈ etr, b ∈ etr, and d ∈ etr.



Mining Antagonistic Communities from Social Networks 9

Definition 8 (Database Partition). Consider a user ui and a database of
ratings DBR. The partition of the database with respect to user ui, denoted as
DBR[ui] is defined as: {etr|ui ∈ etr ∧ etr ∈ DBR}
Example 4. To illustrate, projection of the database shown in Table 1(left) with
respect to user d is the database shown in Table 1(right).

Using the two definitions above, Lemma 2 describes the divide and merge
mining process.

Lemma 2 (Divide and Merge). Consider a database of ratings DBR, support
threshold λ, and confidence threshold σ. Let Uset be the set of users in DBR and
Cm be the shorthand of the Clagmine operation in Algorithm 1. The following
is guaranteed:
Cm(λ, σ,DBR) =

⋃
ui∈USet

{g|ui ∈ g ∧ g ∈ Cm( λ×|DBR|
|DBR[ui]| , σ,DBR[ui])}

Based on Lemma 2, our algorithm to perform divide and conquer is shown
in Algorithm 3. The algorithm partitions the database one item at a time and
subsequently calls the original closed antagonistic group mining algorithm de-
fined in Algorithm 1. Theorem 3 guarantees that the mined result is correct and
a complete set of a-groups are mined by Algorithm 3.

Theorem 3. Algorithm 3 would return a complete set of closed a-groups and
all returned a-group would be closed.

Note that the divide and conquer algorithm reduces memory costs however
it could potentially increase the runtime cost since the database would now need
to be scanned more number of times. In Section 5, we show the results of running
the two algorithms over a number of datasets.

5 Performance & Case Studies

In this section we describe our performance study using various data generated
from our synthetic data generator with various parameter values. We then de-
scribe a case study from a real book rating dataset.
Performance Study. As a summary, our synthetic data generator accepts as
input I (in ’000)(the number of items), U (in ’000)(the number of users), P (the
expected number of users rating an item), NG (average size of maximal potential
large a-group), and NL (in ’000) (number of maximal potential large a-group).
We use the following datasets:

DS1 I=100, U=10, P=20, NG=6, NL=2
DS2 I=100, U=50, P=20, NG=6, NL=2

The result for dataset DS1 when varying the support threshold from 0.002 to
0.006 with σ=0.7 is shown in Figure 1. The first graph shows the runtime needed
to execute the algorithm at various support thresholds. “Non-split” and “Split”
correspond to Algorithms 1 & 3 respectively. We only include 3 data points for



10 Zhang, Lo and Lim

Input: λ; σ; rating database
Output: valid and closed a-group of all size
USet = Set of all users in DBR;1

G = {};2

foreach ui ∈ USet do3

G = G ∪ {ag|ui ∈ ag ∧ ag ∈ Clagmine( λ×|DBR|
|DBR[ui]| ,σ,DBR[ui])};4

end5

Output G;6

Algorithm 3: Clagmine-partitional(λ,σ,DBR)

“Non-split”, as mining at lower thresholds are too long to complete. The second
graph shows the numbers of a-groups mined at various support thresholds.

The result shows that the time taken grows larger when support threshold is
reduced. This growth is accompanied by the growth in the number of a-groups
mined. Also, many longer patterns are mined as the support threshold is lowered.

For DS2, we consider a larger number of users. The results for various support
thresholds with σ=0.7 are shown in Figure 2. We have also conducted additional
performance studies and their results can be found in our technical report [1].

The performance study has shown that the algorithm is able to run well on
various settings. The lower the support threshold the more expensive it is to
mine. Also, the larger the number of users (or items or expected number of users
rating an item – see [1]), the more expensive it is to mine.
Case Study. For the case study, we consider a dataset of book ratings from
Amazon. There are a total of 99,255 users ratings 108,142 books in 935,051
reviews. The experiment is run with σ=0.5. The result is shown in Figure 3.

0

100

200

300

0.002 0.003 0.004 0.005 0.006
λ

Ru
nti

me
(s)

Non-Split
Split

0

1000
2000

3000
4000

5000

0.002 0.003 0.004 0.005 0.006
λ

Nu
mb

er 
of 

a-g
ro
up

s

Fig. 1. Runtime & Patterns: DS1 at various support values.

0
50
100
150
200
250
300
350

0.002 0.003 0.004 0.005 0.006
λ

Ru
nti

me
(s)

Non-Split
Split

0

1000

2000

3000

4000

5000

0.002 0.003 0.004 0.005 0.006
λ

Nu
mb

er 
of 

a-g
ro
up

s

Fig. 2. Runtime & Patterns: DS2 at various support values.

The number of mined a-groups in the real dataset is small even on much
lower support threshold. Interestingly, we find that antagonistic behavior is not



Mining Antagonistic Communities from Social Networks 11

0
200
400
600
800
1000

10 20 30 40 50
Absolute λ

Ru
nti

me
(s)

Non-Split
Split

Non-Split Not Minable
0

50

100

150

200

10 20 30 40 50
Absolute λ

N
um

b
er

 o
f a

-g
ro

u
ps

Fig. 3. Runtime & Patterns: Book ratings dataset at various support values.

so much apparent on item ratings.This might be the case since the objects rated
are not “sensitive” items that tend to divide people into opposing groups.

Several interesting a-groups are discovered from the Amazon dataset by run-
ning the mining algorithm with absolute support (i.e., λ× |I|) of 10 and σ=0.5.
Out of 167 a-groups generated, 147 are of size 2, 18 of them are of size 3, and 2
of them are of size 4. We post-process to retain those with aconf > 0.7, and at
least one user has (commonly-rated-items/ totally-rated-items) > 0.6.

ID Antagonistic Groups Commonly
Ratings

Ratings by
User 1

Ratings by
User 2

Ratings by
User 3

1 ({Johnston},{Weissgarber}) 12 56 13 -
2 ({Johnston, Jump},{Weissgarber}) 10 56 61 13
3 ({Johnston, Hill},{Weissgarber}) 10 56 106 13
4 ({Leeper},{Weissgarber}) 10 137 13 -
5 ({Kern},{Sklarski}) 14 452 22 -

Table 2. Interesting Examples from Amazon Book Rating Dataset

After post-processing, we note 5 of the most interesting a-groups. We select
those having highest aconf and average (common-item/total item) over all con-
stituent users. They are represented in table 2. We select the first a-group and
observe the following:

– High antagonistic level : We observe that the two users in the first a-group
rated with a high level of antagonism. Among Jason Johnston’s 56 rated
books, 12 have ratings opposite to the ratings by Luke Weissgarber. Similarly
for Weissgarber, 12 of all his 13 rated books have ratings opposite to those by
Johnston, which means more than 92% of Weissgarber’s ratings are opposite
to Johnston’s. It is a significantly high figure.

– Antagonistically rated books: We found that for books with opposite ratings
from Weissgarber and Johnston are some novels with similar story back-
ground. These books are clearly liked by Johnston but not by Weissgarber.

– Antagonistically behaved users: It is interesting that Weissgarber appears in
four a-groups. His ratings are opposite to other 4 users for at least 10 books.

6 Conclusion & Future Work

In this study, we proposed a new pattern mining algorithm to mine for an-
tagonistic communities. Our algorithm traverses the search space of possible
antagonistic groups and uses several pruning strategies to remove search space
containing no antagonistic pattern. We also propose a new variant of the al-
gorithm that adopts a divide and conquer strategy in mining when the first



12 Zhang, Lo and Lim

algorithm becomes prohibitively expensive to run. A performance study is con-
ducted on various synthetic datasets to show the scalability of our approach on
various parameter values. We also mine from an Amazon book rating dataset.
The result shows that antagonistic communities exists but are not particularly
many or large in the Amazon dataset. In the future, we plan to investigate more
“sensitive” datasets and further speed up the mining algorithm.

Acknowledgement. This work is supported by National Research Foundation
of Singapore under project NRF2008IDM-IDM004-036. We would like to thank
Paolo Massa for sharing his Epinions dataset. We would also like to thank Bing
Liu for sharing the book ratings dataset.

References

1. www.mysmu.edu/phdis2008/kuan.zhang.2008/agroup.pdf, 2009.
2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Pro-

ceedings of International Conference on Very Large Data Bases, 1994.
3. D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Community mining from multi-

relational networks. In PKDD, 2005.
4. I. Dasgupta. ‘living’ wage, class conflict and ethnic strife. Journal of Economic

Behavior & Organization, 2009. in press.
5. I. Dasgupta and R. Kanbur. Community and class antagonism. Journal of Public

Economics, 91(9):1816–1842, Sep 2007.
6. J. Denrell. Why most people disapprove of me: Experience sampling in impression

formation. Psychological Review, 112(4):951–978, 2005.
7. B. Ding, D. Lo, J. Han, and S.-C. Khoo. Efficient mining of closed repetitive

gapped subsequences from a sequence database. In ICDE, 2009.
8. G. Flake, S. Lawrence, C. Giles, and F. Coetzee. Self-organization and identifica-

tion of web communities. Computer, 35(3):66–71, 2002.
9. D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web communities from link

topology. In Hypertext, 1998.
10. M. Giles and A. Evans. The power approach to intergroup hostility. The Journal

of Conflict Resolution, 30(3):469–486, Sep 1986.
11. J. Golbeck. Trust and nuanced profile similarity in online social networks. ACM

TWeb, 3(4):1–33, 2009.
12. R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and

distrust. In WWW, 2004.
13. J. Kunegis, A. Lommatzsch, and C. Bauckhage. The slashdot zoo: Mining a social

network with negative edges. In WWW, 2009.
14. S. Labovitz and R. Hagedorn. A structural-behavioral theory of intergroup antag-

onism. Social Forces, 53(3):444–448, Mar 1975.
15. H. Liu, E.-P. Lim, H. Lauw, M.-T. Le, A. Sun, J. Srivastava, and Y. Kim. Predicting

trusts among users of online communities: an epinions case study. In EC, 2008.
16. M. McPerson, L. Smith-Lovin, and J. Cook. Birds of a feather: Homophily in social

networks. Annual Review of Sociology, 27(3):415–444, 2001.
17. Tolsma, Jochem, N. D. Graaf, and L. Quillian. Does intergenerational social mo-

bility affect antagonistic attitudes toward ethnic minorities? British Journal of
Sociology, 60(2):257–277, June 2009.

18. J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In
ICDE, 2004.


