Cross-Language Bug Localization

Xin Xia'; David Lo?, Xingen Wang!, Chenyi Zhang'*, and Xinyu Wang*
!College of Computer Science and Technology, Zhejiang University, China
2School of Information Systems, Singapore Management University, Singapore
xxkidd@zju.edu.cn, davidlo@smu.edu.sg, {newroot, chenyizhang,

wangxinyu}@zju.edu.cn

ABSTRACT

Bug localization refers to the process of identifying source
code files that contain defects from textual descriptions in
bug reports. Existing bug localization techniques work on the
assumption that bug reports, and identifiers and comments
in source code files, are written in the same language (i.e.,
English). However, software users from non-English speaking
countries (e.g., China) often use their native languages (e.g.,
Chinese) to write bug reports. For this setting, existing
studies on bug localization would not work as the terms that
appear in the bug reports do not appear in the source code.
We refer to this problem as cross-language bug localization.
In this paper, we propose a cross-language bug localization
algorithm named CrosLocator, which is based on language
translation.

Since different online translators (e.g., Google and Mi-
crosoft translators) have different translation accuracies for
various texts, CrosLocator uses multiple translators to con-
vert a non-English textual description of a bug report into
English — each bug report would then have multiple translat-
ed versions. For each translated version, CrosLocator applies
a bug localization technique to rank source code files. Finally,
CrosLocator combines the multiple ranked lists of source code
files. Our preliminary experiment on Ruby-China shows that
CrosLocator could achieve mean reciprocal rank (mrr) and
mean average precision (map) scores of up to 0.146 and 0.116,
which outperforms a baseline approach by an average of 10%
and 12% respectively.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Algorithms and Experimentation

*The work was done while the two authors were visiting
Singapore Management University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ICPC’14, June 2-3, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2879-1/14/06...$15.00
http://dx.doi.org/10.1145/2597008.2597788

275

Keywords

Bug Localization, Cross-language, Translator, Rank

1. INTRODUCTION

Bug fixing is one of the most important activities in the
whole lifecycle of software development and maintenance.
Once a bug report is submitted and confirmed, developers
need to spend much time to locate relevant source code files.
To address this problem, in recent years, many information
retrieval based (IR-based) bug localization techniques have
been proposed [8, 6, 9, 11, 10]. IR-based bug localization
techniques consider textual description in a bug report as a
query, and leverage IR techniques to rank source code files
by their relevance to the query (i.e., bug report). Existing
techniques work well if the bug report, and their identifiers
and comments in the source code files, are written in the
same language [11, 9].

However, in practice, for users from a non-English speak-
ing country (e.g., China), they often use their own native
languages (e.g., Chinese) to write bug reports. On the other
hand, due to various reasons (e.g., international collabora-
tion, etc.), identifiers and comments in source code files are
often written in English. In this situation, IR-based bug
localization would not work since bug reports and source
code files contain different words in different languages. We
refer to the bug localization problem where identifiers and
comments in source code files and bug reports are written in
different languages as cross-language bug localization.

One way to solve the cross-language bug localization prob-
lem is to first translate a non-English bug report (i.e., query)
into English by using an online translator (e.g., Google' and
Microsoft? translators), and then use a standard IR-based
bug localization technique to rank source code files by using
the translated bug report. However, we notice that different
online translators have different translation accuracies for
different texts, which would translate to different effective-
ness for different bug reports. Also, given a non-English
text, there could be many correct translations, c.f. [7]. For
example, “UH15KE” in Chinese is translated as “software
fix” by Google translator, and “software repair” by Microsoft
translator, and both of them are correct translations. Thus,
it is good to make use and combine the results of multiple
online translators.

In this paper, we propose an approach named CrosLocator,
which leverages multiple online translators, to address the

"http://translate.google.com
http://www.bing.com/translator

mingming1222 opened this issue September 04, 2013

BT RROG AN, 2B T google BT

No milestone

No one is assigned

31 https://www.google.com.hk/#

Figure 1: Bug Report of Ruby-China with BugID =
211.

cross-language bug localization problem. CrosLocator first
translates bug reports by using multiple online translators.
At the end of this step, a bug report would have multiple
translated versions. For each translated version, CrosLocator
applies an IR-based bug localization technique to rank source
code files. After this step, we have several ranked lists of
files, one for each translated version. Finally, CrosLocator
uses a learning to rank technique [5] to combine the multiple
ranked lists of source code files into one. In this paper, we
consider several learning to rank techniques, such as Borda
count [1], CombSUM, CombMNZ, and CombANZ [2]. We
evaluate CrosLocator on 50 bug reports from Ruby-China3.
The experiment results show that CrosLocator could achieve
mrr and map scores of 0.146 and 0.116 which are in similar
score ranges reported in several recent conventional (single-
language) bug localization studies, c.f., [9, 10]. CrosLocator
also outperforms a baseline approach, which only uses one
translator and does not perform learning to rank, by an
average of 10% and 12% for mrr and map scores, respectively.
The main contributions of the paper are:

1. To our best knowledge, we are the first to propose the
cross-language bug localization problem.

. To solve the problem, we propose CrosLocator, which
uses multiple online translators and combines multiple
translated bug report versions using a learning to rank
technique to achieve a better performance. The prelim-
inary experiment results show that CrosLocator could
achieve mean reciprocal rank (mrr) and mean average
precision (map) scores of up to 0.146 and 0.116, which
outperform the performance of a baseline approach by
a substantial margin.

2. MOTIVATION

Figure 1 presents a bug report of Ruby-China written in
Chinese with BugID = 211.* The bug report describes a
problem in the search functionality. To fix the bug, developers
need to modify the source file “search_controller.rb”.

We translate the textual description of the bug report
by using Google and Microsoft translators. The translat-
ed versions of the bug report using Google and Microsoft
translators are:

Google: Search in the search box with "#” character, it will
Jump to the google homepage, I will jump here specifically to
https://www.google.com.hk/#

Microsoft: Search in the search box contains "#” character, will
go to Google Home, I will go to hitps://www.Google.com.hk/#

When using each of these two translated versions of the
bug report to locate the relevant source code file (i.e., search_
controller.rb), we find its rank and score for the translated
version produced by Google to be 7 and 0.174 respectively,
while its rank and score for the version produced by Microsoft

3https://github.com/ruby-china/ruby-china
*https://github.com /ruby-china/ruby-china/issues/211

276

A Bug Report

|
Cmr)

Translated Version Translated Version

IR-Based Bug Localization IR-Based Bug Localization

Intermediary List Intermediary List
I]

Learning to Rank

Final List

Figure 2: CrosLocator Architecture

to be 9 and 0.164 respectively.® However, if we combine the
two versions, the rank would become 5.

From the example, we have the following observations:

1. Different online translators have different translation
accuracies, which cause different bug localization effec-
tiveness.

2. Combining multiple translators could improve the ef-
fectiveness of bug localization.

3. PROPOSED APPROACH
3.1 Overall Architecture

Figure 2 presents the architecture of CrosLocator. Notice
that CrosLocator does not requires any training data. It
has 3 components: online translator component, IR-based
bug localization component, and learning to rank component.
The main task of the online translator component is to
translate the textual description of a bug report into English.
The main task of the IR-based bug localization component is
to compute and output a ranked list of source code files given
a translated bug report (intermediary list). The main task of
the learning component is to combine multiple intermediary
lists produced by the IR-based bug localization component
into one list (final list).

When a new bug report is received, CrosLocator first uses
Google and Microsoft online translators to translate the
textual description of the bug report into English. At the
end of this process, we have two translated versions of the
bug report. Next, these two translated versions would be
input into the IR-based bug localization component to get
two ranked list of source code files. Finally, we merge the two
ranked lists into one using a learning to rank technique [5].

3.2 IR-based Bug Localization Component

In this paper, we use Buglocator proposed by Zhou et
al. [11] as the IR-based bug localization component. Given a
textual description of a bug report, BuglLocator first applies
the revised Vector Space Model (rVSM) to return a ranked
list of relevant source code files. Next, it also finds similar
closed bug reports (i.e., bug reports that have been fixed

®We use BugLocator [11] to output a ranked list of files from
each translated version.

5We use CrosLocator, with CombSum as the learning to rank
technique, to combine the two versions.

before) to the input bug report, and computes another ranked
list of relevant source code files based on the fixes of these
similar bug reports. Finally, these two lists are combined to
form one list.

CrosLocator can use various IR-based bug localization tech-
niques. However, in this paper we only experiment with one
since BugLocator is recently proposed, has been demonstrat-
ed to outperform other techniques, and its implementation
is publicly available.

3.3 Learning to Rank Component

Notice that the outputs of the IR-based bug localization
component are multiple intermediary lists. In the learning
to rank component, we want to merge them into one list
using a learning to rank technique. To do this, we first take
the top-100 files from each ranked list, and combine these
top-100 lists into one list using either one of these techniques:
Borda count [1], CombSUM, CombMNZ, or CombANZ [2].
These are well-known learning to rank techniques that do
not require any training data. In the following paragraphs,
we briefly describe each of these unsupervised learning to
rank techniques.

Borda Count: Borda count technique integrates multiple
intermediary ranked lists of files into a final ranked list of
files in the following way:

1. For each intermediary list of size n, Borda count tech-
nique assigns a number from 1 to n to each file in the
list. The first ranked file in the list would be assigned
n, the second one would be assigned n — 1, and so on.
Let us denote the number assigned to file f appearing
in list ¢ as Rank;(f).

. For each file f, we compute its Borda count using the
following formula: BordaCount(f) =Y Rank;(f).

We create a final ranked list of files based on their
Borda counts.

For example, suppose there are two intermediary ranked
lists. The first intermediary ranked list is (A, B, C), and the
second intermediary ranked list is (A, C, B). Then, the final
Borda count for A, B and C are 6, 3, and 3. This is so since:
A is assigned value 3 in both lists, B is assigned value 2 and
1 in the first and second lists respectively, and C' is assigned
value 1 and 2 in the first and second list respectively.

CombSUM, CombMNZ, and CombANZ: Borda count
only uses the rank of the files in the intermediary ranked
lists. However, often an IR-based bug localization technique
also outputs a ranking score that denotes how likely a file
is relevant to a bug report. Different from Borda count,
CombSUM, CombMNZ, and CombANZ consider not only
the rank of the files in the intermediary ranked lists but also
the ranking scores of the files in the lists.

Let f denote a source code file, score;(f) denotes the
ranking score for the source file f in the i'* intermediary
ranked list, and ny denotes the number of times the source
code file f appears in the multiple intermediary ranked lists.
In CombSUM , we compute the following score for each file
f which is used to rank source code files to produce the final
ranked list: CombSUM (f) = > Score;(f). In CombMNZ,

we compute the following score: CombMNZ(f) = ny X
>-Scorei(f). In CombANZ, we compute the following score:

é’ombANZ(f) = > Scorei(f)/ny.

277

For example, suppose there are two intermediary ranked
lists. The first intermediary ranked list (along with ranking
scores) is (A(0.7), B(0.5), D(0.2)), and the second intermedi-
ary ranked list (along with ranking scores) is (A(0.9), C(0.7),
B(0.4)). Then, ng =2,np = 2,n¢c = 1,np = 1, since A and
B appear in the two lists, while C and D only appear in one
list. Thus, the CombSUM ranking scores for A, B, C', and D
are 1.6, 0.9, 0.7, and 0.2 respectively. Also, the CombMNZ
ranking scores for A, B, C, and D are 3.2, 1.8, 0.7, and 0.2
respectively. Furthermore, the CombANZ ranking scores for
A, B, C, and D are 0.8, 0.45, 0.7, and 0.2 respectively.

4. PRELIMINARY EXPERIMENT

Experiment Setup. We collect bug reports and their fixes
from an open source project named Ruby-China. To collect
these, we analyze Ruby-China’s bug tracking system (i.e., its
bug tracking system in GitHub) and version control system
(i.e., git). We extract commit logs from its git. For each
commit log, we perform a regular expression check to identify
whether a bug report identifier exists in the log. If there is
an identifier, we recover the details of the bug (i.e., a bug
report) with that identifier from Github. If an identifier
is contained in multiple commit logs, we would also group
the corresponding commits together. From these pieces of
information, for each bug report whose identifier exists in
the commit logs, we would recover the code before the fix,
and the files that are changed or deleted to fix the bug. We
analyze all bug reports of Ruby-China from April 2012 to
October 2013, and we find that there are 50 of them that
are linked to their corresponding bug fixing commits. We
analyze all these 50 reports. Table 1 presents the statistics
of the collected dataset. The columns corresponds to the
number of bug reports (# Bugs), the number of source code
files (# Files), and the time period for the collected bug
reports (Time Period).

Table 1: Statistics of Collected Dataset.
Project # Bugs | # Files Time Period

Ruby-China 50 529 2012.04 - 2013.10

We compare our algorithm with a baseline approach which
simply takes a translated version of a bug report and uses
BugLocator to return a ranked list of files. We thus have two
variants of this baseline — one using Google translator and
another using Microsoft translator. We evaluate the effec-
tiveness of CrosLocator in terms of the following measures:
recall-rate@1” (topl), recall-rate@5 (top5), recall-rate@10
(topl0), mean reciprocal rank (mrr), and mean average pre-
cision (map), which are widely used in past bug localization
studies [11, 6, 9, 10]. Among these measures, mrr and map
are the well-known, standard information retrieval measures.
Our experimental environment is a Windows 7 32-bit, In-
tel(R) Core(TM) i5 CPU 3.20GHz server with 4GB RAM.

Experiment Results. We denote CrosLocator using Borda
count, CombSUM, CombMNZ, and CombANZ as CBorde,
csum CMNZ - and CANZ respectively, and the baseline
approach with Google and Microsoft translators as Goo.
and Micro. respectively. Table 2 presents the experimen-
t results of CrosLocator compared with the baseline ap-
proach. We notice that CrosLocator using CombSUM and
CombMNZ achieve the best performance, the recall-rate@1,
recall-rate@5, recall-rate@10, mrr, and map scores are 0.08,

"It is also known as top n rank in [11].

0.18, 0.30, 0.146, and 0.116, which on average outperform
the baseline approach with Google and Microsoft translators
by 33.33%, 14.29%, 11.26%, 9.72%, and 11.87% respectively.

Notice that the mrr and map scores of C°YM and CMN?
are 0.146 and 0.116. These scores are in similar score ranges
reported in several past bug localization studies. For example,
Rao et al. reported that the map scores of the Unigram model
and VSM are 0.1454 and 0.0796 for bug reports (written in
English) in the iBugs dataset [9]. Zhou et al. reported that
the average mrr and map scores of VSM are 0.13 and 0.09
for bug reports from 4 projects, i.e., ZXing, SWT, AspectJ.
and Eclipse [11]. Thus, our results are promising and on
par with results of many past conventional bug localization
techniques.

Still, cross-language bug localization is a more difficult
problem than conventional (single-language) bug localiza-
tion. CrosLocator uses Buglocator, and the performance
of BugLocator for bug reports (written in English) from 4
projects, as reported in [11], is higher than the performance
of CrosLocator for the 50 bug reports (written in Chinese)
from Ruby-China.

Table 2: CrosLocator vs. Baseline.
Metric | ¢Berde [¢SUM T CMN CAN Goo. | Micro.
topl 0.06 0.08 0.08 0.08 0.06 0.06
topb 0.18 0.18 0.18 0.18 0.18 0.14
topl0 0.28 0.30 0.30 0.28 0.28 0.26
mrr 0.142 0.146 0.146 0.145 0.138 0.128
map 0.116 0.116 0.116 0.115 0.101 0.106

S. RELATED WORK

There have been a number of bug localization techniques
proposed in the literature [8, 6, 9, 11]. Poshyvanyk et al. pro-
pose PROMESIR, which leverages Latent Semantic Indexing
(LSI) and a probabilistic ranking technique to rank source
code files [8]. Lukins et al. propose the usage of Latent
Dirichlet Allocation (LDA) to locate the relevant source code
files [6]. Zhou et al. propose BugLocator which consider two
rankings, i.e., ranking based on similar source code files, and
ranking based on similar bugs [11].

All the above studies only consider single-language bug
localization setting where bug reports are written in En-
glish. We consider a new problem namely cross-language
bug localization. Our CrosLocator can leverage each of the
above studies (by using each of them as the IR-Based Bug
Localization component) for cross-language bug localization.

Hayes et al. propose a translation-based method for trace-
ability recovery [4]. They use Google translator to translate
Italian terms into English and then recover the links. Our
paper is different from theirs: 1. We combine 2 different
online translators to achieve a better performance, while
Hayes et al. only consider one translator, 2. We consider the
problem of bug localization instead of traceability recovery.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a new research problem, namely
cross-language bug localization, which focuses on ranking
source code files given that bug reports, and identifiers and
comments written in source code files, are written in different
natural languages. To solve this problem, we propose CrosLo-
cator, which is a bug localization algorithm built upon several
online translators, a conventional IR-based bug localization

278

technique, and a learning to rank technique. CrosLocator
first translates the textual description of a bug report into
multiple English versions by using multiple online transla-
tors. Next, each of these translated versions is input into an
IR-~based bug localization technique which outputs an inter-
mediary ranked list. Finally, a learning to rank technique
is used to merge the intermediary ranked lists into a final
ranked list. The experiment results show that CrosLocator
achieves mean reciprocal rank (mrr) and mean average pre-
cision (map) scores of up to 0.146 and 0.116 respectively on
a dataset extracted from Ruby-China. CrosLocator on aver-
age outperforms a baseline technique, which simply applies
BugLocator on a translated version of a bug report, by 10%
and 12% for mrr and map respectively.

In the future, we plan use query reformulations methods
(e.g., [3]) to reformulate the terms in the bug reports to
improve the performance of bug localization.

ACKNOWLEDGMENTS

This research is sponsored in part by NSFC Program (No.6110
3032) and National Key Technology R&D Program of the
Ministry of Science and Technology of China (2014BAH24F02).

7. REFERENCES

[1] J. A. Aslam and M. Montague. Models for metasearch.
In SIGIR, 2001.

[2] E. A. Fox and J. A. Shaw. Combination of multiple
searches. NIST SPECIAL PUBLICATION SP, 1994.

[3] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto,

A. De Lucia, and T. Menzies. Automatic query

reformulations for text retrieval in software engineering.

In ICSE, 2013.

J. H. Hayes, H. Sultanov, W.-K. Kong, and W. Li.

Software verification and validation research laboratory

(svvrl) of the university of kentucky: traceability

challenge 2011: language translation. In TSFSE, 2011.

H. Li. Learning to rank for information retrieval and

natural language processing. Synthesis Lectures on

Human Language Technologies, 2011.

S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug

localization using latent dirichlet allocation.

Information and Software Technology, 2010.

J.-Y. Nie. Cross-language information retrieval.

Synthesis Lectures on Human Language Technologies,

2010.

D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus,

G. Antoniol, and V. Rajlich. Feature location using

probabilistic ranking of methods based on execution

scenarios and information retrieval. T'SE, 2007.

S. Rao and A. Kak. Retrieval from software libraries for

bug localization: a comparative study of generic and

composite text models. In MSR, 2011.

B. Sisman and A. C. Kak. Incorporating version

histories in information retrieval based bug localization.

In MSR, 2012.

J. Zhou, H. Zhang, and D. Lo. Where should the bugs

be fixed? more accurate information retrieval-based

bug localization based on bug reports. In ICSE, 2013.

[4]

[5]

[6]

[10]

[11]

