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ABSTRACT
Many spectrum-based fault localization techniques have been pro-
posed to measure how likely each program element is the root cause
of a program failure. For various bugs, the best technique to lo-
calize the bugs may differ due to the characteristics of the buggy
programs and their program spectra. In this paper, we leverage the
diversity of existing spectrum-based fault localization techniques
to better localize bugs using data fusion methods. Our proposed
approach consists of three steps: score normalization, technique
selection, and data fusion. We investigate two score normaliza-
tion methods, two technique selection methods, and five data fu-
sion methods resulting in twenty variants of Fusion Localizer. Our
approach is bug specific in which the set of techniques to be fused
are adaptively selected for each buggy program based on its spec-
tra. Also, it requires no training data, i.e., execution traces of the
past buggy programs.

We evaluate our approach on a common benchmark dataset and
a dataset consisting of real bugs from three medium to large pro-
grams. Our evaluation demonstrates that our approach can signif-
icantly improve the effectiveness of existing state-of-the-art fault
localization techniques. Compared to these state-of-the-art tech-
niques, the best variants of Fusion Localizer can statistically sig-
nificantly reduce the amount of code to be inspected to find all
bugs. Our best variants can increase the proportion of bugs lo-
calized when developers only inspect the top 10% most suspicious
program elements by more than 10% and increase the number of
bugs that can be successfully localized when developers only in-
spect up to 10 program blocks by more than 20%.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging – Debugging Aids; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement – Cor-
rections

Keywords: Fault Localization; Data Fusion

1. INTRODUCTION
Many fault localization techniques have been proposed to locate

the root cause of a program failure by analyzing the program traces
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(i.e., the abstraction of program behaviors). Spectrum-based fault
localization techniques [3, 6, 18, 22, 24, 48] compare the spectra of
correct and failed executions to identify program elements (i.e.,
statements, blocks, methods, and components) that are likely to be
the root cause of a program failure. These techniques often use sta-
tistical analysis to assign a suspiciousness score to each program
element based on its likelihood to be faulty. The higher the score,
the more suspicious an element is. A list of the most suspicious
program elements is then presented to developers. Developers can
then inspect the list starting from the most suspicious elements. Lu-
cia et al. have found that the best performing spectrum-based fault
localization techniques vary for different buggy programs [26, 27].
Some techniques can rank faulty elements at the top positions for
some buggy programs, while for other buggy programs, they rank
faulty elements low in the list.

In this work, we aim to better localize the bugs by leveraging
diversity of existing spectrum-based fault localization techniques
(in particular 40 association measures [27], Tarantula [18], and
Ochiai [3]). Since these techniques are lightweight, we could in-
expensively obtain suspiciousness scores for program elements by
using different techniques. Different from the approach proposed
by Santelices et al. [36] that analyze several types of program spec-
tra using a single technique, we combine many techniques that an-
alyze a single type of program spectra (i.e., block hit spectra).

Data fusion methods have been proposed in the domain of infor-
mation retrieval to rank documents such that the most relevant ones
are in the top positions by combining ranking information from dif-
ferent retrieval systems [42]. We incorporate data fusion methods
with the goal of ranking the faulty program elements higher in the
list by combining the scores or ranks assigned to program elements
by different fault localization techniques. Our approach, referred
to as Fusion Localizer, normalizes the suspiciousness scores
of different fault localization techniques, selects fault localization
techniques to be fused, and combines the selected techniques us-
ing a data fusion method. We propose 20 variants of Fusion
Localizer that use different score normalization, technique se-
lection, and data fusion methods.

Related to our work, Wang et al. [39] propose an approach that
linearly combines the scores of a number of association measures to
rank faulty program elements at the top positions. Their approach
generates a weight for each association measure using genetic algo-
rithm based on a set of training data (i.e., program traces of the past
program failures and the corresponding faults of the past failures).
However, training data is often unavailable in many cases such as
when developers work on a new software or when developers do
not store traces of the past program failures. Furthermore, the bugs
and failures in the training set may not be representative enough for
the incoming buggy programs, which could limit the effectiveness
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of the approach in localizing faults. Different from this technique,
our approach requires no training set to leverage diversity of fault
localization techniques. Furthermore, our approach is bug specific
– it adaptively chooses a different set of techniques to be fused for
different buggy programs based on their program spectra.

We have evaluated our approach on a commonly used benchmark
dataset consisting of 10 small to medium sized programs written in
C and Java, and our own dataset consisting of 30 real bugs collected
from 3 larger programs – namely Rhino, Lucene, and Ant. We com-
pare our approach against a number of state-of-the-art spectrum-
based fault localization techniques that also do not require train-
ing data and analyze a single type of program spectra, i.e., Taran-
tula [17,18], Ochiai [3], theoretically best spectrum-based fault lo-
calization techniques [44], and theoretically best genetic program-
ming (GP) based fault localization techniques [45]. Our experiment
results show that our approach outperforms these techniques. The
best performing variants of Fusion Localizer (i.e., zZero−One,Bias

CombANZ

and zZero−One,Overlap
CombANZ ) statistically significantly outperform the

state-of-the-art spectrum-based fault localization techniques. These
best variants require statistically significantly smaller average per-
centage of code inspected to locate faulty elements as compared
to the best performing state-of-the-art fault localization techniques
(i.e., 21% vs. 24%). When developers only inspect 10% of the most
suspicious program elements, these best variants could improve the
percentage of bugs localized by the best performing state-of-the-art
fault localization techniques by 11% to 26%. Furthermore when
developers only inspect the top 10 most suspicious program blocks,
these best variants could improve the number of bugs localized by
the best performing state-of-the-art fault localization techniques by
23% to 26%.

The main contributions of this work are as follow:
1. We leverage diversity of 40 association measures [27], Taran-

tula [18], and Ochiai [3] to better localize bugs using data fusion
methods.

2. We provide a bug specific approach which adaptively selects a
set of techniques to be fused for each buggy program.

3. We propose an approach that does not require any training data
(e.g., program traces of the past program failures) to select which
techniques to be fused to better localize bugs in programs.

4. We show that combining the lists of most suspicious pro-
gram elements recommended by different fault localization tech-
niques (i.e., association measures, Tarantula, and Ochiai) using
data fusion methods can improve the effectiveness in localizing
faults and statistically significantly outperform the state-of-the-
art spectrum-based fault localization techniques.

We organize this work as follows. We first present closely re-
lated work in Section 2. Section 3 provides a motivating example
to illustrate the benefit of our data fusion approach. We elaborate
our approach in Section 4. Section 5 presents our experiment re-
sults that demonstrate the effectiveness of our approach. We finally
conclude and mention future work in Section 6.

2. RELATED WORK
A number of fault localization techniques have been proposed to

help developers find the locations of faults in programs [3, 7, 12,
12, 14, 17, 18, 20, 21, 24, 26, 27, 32–34, 49, 50]. In this section, we
discuss several techniques that are closely related to this work. The
survey here is by no means complete.

One family of fault localization techniques is spectrum-based
fault localization techniques that analyze program spectra of cor-
rect and failed executions using statistical analysis to identify pos-
sible faulty program elements (e.g., statements, basic blocks, func-

tions, and components) [3, 17, 18, 26, 27]. Jones and Harrold pro-
pose a technique called Tarantula to measure the suspiciousness of
program elements to be the root cause of program failures based
on the spectra of correct and failed executions of the programs, and
then descendingly rank the elements based on their suspiciousness
scores [17, 18]. Similarly, Abreu et al. propose a technique called
Ochiai similarity coefficient, which is well-known in the Biology
community, to localize faults, and show that Ochiai can effectively
localize bugs [3]. A number of association measures introduced
in statistic and data mining community have also been applied for
fault localization [26, 27]. The studies in [26, 27] show that there
is no single measure that outperforms other measures for all bugs.
Our technique aims to leverage diversity of the above techniques to
better localize bugs.

Instead of empirically studying the effectiveness of a fault local-
ization technique on various faults, Naish et al. theoretically ana-
lyze a number of formulas that can be used to compute suspicious-
ness scores of program elements in “idealized conditions” [28].
Their study is later extended by Xie et al. which theoretically an-
alyze 30 formulas and group them into equivalence classes [44].
They prove that, under some conditions, two families (i.e., ER1
and and ER5) outperform the rest. These families include five for-
mulas: Naish1, Naish2, Wong1, Russel & Rao, and Binary.

Instead of manually designing fault localization formulas, Yoo
generates a number of formulas using Genetic Programming [47].
The effectiveness of these formulas are then theoretically studied
by Xie et al. [45]. They find that GP13,GP02, GP03, and GP19
are the best ones for fault localization. Instead of generating new
formulas, we combine multiple formulas to improve their effective-
ness in localizing faults.

The above techniques [3, 17, 18, 26, 27, 45, 47] analyze a single
type of program spectra to assign suspiciousness scores to program
elements. Differently, Santelices et al. collect a number of program
spectra types (i.e., statement, branches, and du-pair spectra), where
for each program spectra, a single fault localization technique (i.e.,
Ochiai) is used to assign a suspiciousness score for each program
element [36]. For each program element, they combine its suspi-
ciousness scores produced by analyzing different types of program
spectra. Different from Santelices et al.’s technique, our technique
analyzes a single program spectra type (i.e., block spectra) using a
number of fault localization techniques. Thus, we are investigating
orthogonal directions and it is possible to combine our approach
and Santelices et al.’s approach in a future work.

Our technique is also related to the technique proposed by Wang
et al. [39]. For every program element, their technique linearly
combines the scores of a number of association measures where
each measure obtains a weight which is calculated based on a set
of training data using genetic algorithm. Different from their tech-
nique, our technique does not require any training data which makes
our technique applicable to new programs or when program spectra
of relevant past program failures are unavailable. Also, their tech-
nique applies the same set of measures and the same set of weights
to localize bugs for different buggy programs. Different from Wang
et al.’s technique, our technique selects a different set of techniques
or set of weights to localize faults for each buggy program based
on its program spectra. While Wang et al.’s approach is one-size-
fits-all, our approach is bug specific.

3. MOTIVATING EXAMPLE
This section provides an illustration of the benefit of using data

fusion to leverage different techniques to help ranking faulty pro-
gram elements at the top positions. Figure 1 contains a sample
program code, excerpted from one of our subject programs, i.e.,
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Ochiai Klosgen Ochiai Klosgen
Piatetsky

Shapiro

2 { return 0.0;} 0.39 0.06 0 0 0 1 1

`

Block

I D

Program Element s

Suspicious Scores Normalized Scores

CombSUM

0.79 0.9 0.75 2.44

3
del =  sum =  1.0 /  (ap =  a);

for ( n =  1; n < =  ITMAX; + + n ){
0.93 0.34 -0.15 1

1

double a, x;

double ap, del, sum;

int n;

double temp;

if ( x < =  0.0 )

0.82 0.31 -0.04

1 0 2

4
sum + =  del * =  x /  + + ap;

if ( Abs( del ) <  Abs( sum ) *  EPS ){
0.93 0.34 -0.15 1 1

3

0 2

5

/* BUGS: supposed to be:* /

/* temp =  sum *  exp(-x +  a* log(x)-LGamma(a))* /

temp =  sum *  exp( x +  a *  log( x ) - LGamma(a));

return temp; } }

0.93 0.34 0 1 1 1

Piatetsky

Shapiro

Figure 1: An Example of Using a Data Fusion Method

method gser of tot_info version 8. In this example, we divide the
code into five program blocks. The bug is in Block 5 where the
value assigned to a variable temp is incorrectly calculated.

Various spectrum-based fault localization techniques, such as
Ochiai [3], Klosgen [27], and Piatetsky Shapiro [27], can be used
to assign a suspiciousness score to each program block. Based on
the score of each program block, developers could inspect the pro-
gram blocks starting from the most suspicious blocks. Figure 1 also
shows the suspiciousness score of each program block as output by
Ochiai, Klosgen, and Piatetsky Shapiro. These scores are computed
by analyzing the program traces collected during the executions of
the test cases that come with the program (i.e., tot_info).1

According to Ochiai and Klosgen, the most suspicious program
blocks are Blocks 3 to 5, followed by Block 1, then Block 2. Since
Blocks 3 to 5 receive the same score, in the worst case, developers
need to inspect three blocks to find the buggy block. According
to Piatetsky Shapiro, Blocks 2 and 5 are the most suspicious pro-
gram blocks, followed by Blocks 3, 4, and 1. Since Blocks 2 and
5 receive the same score, in the worst case, developers need to in-
spect two blocks to find the buggy block. In this example, locating
the faulty block based on the recommendation by Piatetsky Shapiro
requires examining fewer blocks than when following the recom-
mendation by Ochiai or Klosgen.

A simple data fusion method to combine a set of techniques is
CombSUM [10,11]. CombSUM can be used to combine the scores
output by Ochiai, Klosgen, and Piatetsky Shapiro to produce a new
score for each program block. For each program block, the new
score is calculated by summing up the normalized scores given by
Ochiai, Klosgen, and Piatetsky Shapiro. As the ranges of the scores
produced by these techniques may be different, we need to nor-
malize the scores to make them comparable.2 From Figure 1, the
CombSUM score for Block 5 is 1 + 1 + 1 = 3. We also compute
the CombSUM score for the other blocks similarly. Finally, we
find that Block 5 is the most suspicious block as it has the highest
score among all of the blocks. Using the list of most suspicious
blocks recommended by CombSUM, developers could locate the
faulty block by only inspecting the first block, which is more effec-
tive than using the list of most suspicious blocks recommended by
either Ochiai, Klosgen, or Piatetsky Shapiro. In this example, we
show that a data fusion method can be used to boost the effective-
ness of fault localization techniques.

1Please refer to [3,27] for the formulas that these techniques use to
compute the suspiciousness scores.
2We elaborate the details of the normalization process in Section 4.

4. FUSION LOCALIZER
In this section, we present our approach that incorporates data

fusion methods to locate the source of a program failure. The
overview of this approach is presented in Section 4.1. Three main
steps of our approach namely score normalization, technique se-
lection, and data fusion are elaborated in Sections 4.2, 4.3, and 4.4
respectively. For each step, we present several techniques that we
can use to achieve the respective goal.

4.1 Overview
Our approach combines the scores from different spectrum-based

fault localization techniques to produce a new ranking with the
goal of improving fault localization effectiveness. In this work,
we employ spectrum-based fault localization techniques because
they are lightweight and have good accuracies. Nevertheless, it is
also possible to use other fault localization techniques that can as-
sign scores to program elements. The overall framework of our
approach named Fusion Localizer is shown in Figure 2.

The input to our approach is a set of spectrum-based fault local-
ization techniques which computes the suspiciousness scores of all
program elements in a buggy program. In this work, we use two
well-known spectrum-based fault localization techniques: Taran-
tula [17,18] and Ochiai [3], as well as 40 association measures that
have been studied for fault localization [26, 27].

Different techniques use different formulas to calculate suspi-
ciousness scores. Each formula has its own characteristics, espe-
cially in terms of the range and distribution of the suspiciousness
scores computed using it. Thus, normalizing the scores is essen-
tial so that scores produced by different measures can be compared
with one another. For every technique, the suspiciousness scores
that are assigned to program elements can be normalized into a
new set of scores that fall in the range of zero to one. Section 4.2
elaborates methods that we use in this work to normalize the scores.

After the scores are normalized, our approach adaptively selects
techniques to be fused together based on the spectra of the buggy
program. Our goal is to select a set of techniques that complement
one another well for a particular buggy program. Section 4.3 elab-
orates the methods that we use in this work to select the techniques.

Given a set of normalized scores from the selected techniques,
we combine the scores using a number of existing data fusion meth-
ods. A new set of scores would then be assigned to program ele-
ments for the given buggy program. These new scores can be used
to create a new list for developer’s inspection. Section 4.4 elab-
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Figure 2: Overview of Fusion Localizer

orates the methods that we use to combine the normalized scores
from the selected fault localization techniques.

4.2 Step 1: Score Normalization
In this work, we apply two score normalization methods: Zero-

One score normalization [42] and Reciprocal ranking normaliza-
tion [23, 42]. Each of them can be used as the first step of Fusion
Localizer. The following paragraphs discuss how these normaliza-
tion methods work.

1) Zero-One Score Normalization: This method transforms scores
from different fault localization techniques into the same range i.e.,
zero to one. The method works as follows.

Let n be the total number of techniques and m be the total num-
ber of program elements for a given buggy program, then si(ej)
denotes the score of the j-th program element, assigned by the i-
th technique, where 1 ≤ j ≤ m and 1≤ i ≤ n. Furthermore, let
max_si denotes the maximum score produced by the i-th tech-
nique, and min_si denotes the minimum score produced by the
i-th technique. The normalized score of the j-th program element
given by the i-th technique is calculated as follows:

s_normi(ej) =
si(ej)−min_si
max_si −min_si

2) Reciprocal Rank Normalization: Instead of directly normaliz-
ing a list of scores produced by different techniques, this method
considers the ranks of program elements and transforms them into
normalized scores. The method works as follows.

Let n be the total number of techniques and m be the total num-
ber of program elements in a buggy program. Also, let ri(ej) de-
notes the rank of the j-th program element, assigned by the i-th
technique, where 1≤ j ≤m and 1≤ i≤ n. The rank of a program
element is the number of program elements with higher or the same
scores. The normalized score of the j-th program element ranked
by the i-th technique is calculated as follows:

s_normi(ej) =
1

ri(ej)

4.3 Step 2: Technique Selection
In this work, we adapt overlap-based selection [42] and bias-

based selection [30] to select a subset of techniques to be fused

Table 1: Example: Overlap Based Selection

Technique Top 5 Most Suspicious Blocks
Ochiai Block 2, Block 3, Block 4, Block 7, Block 8
Klosgen Block 4, Block 5, Block 6, Block 7, Block 9
Piatetsky Shapiro Block 1, Block 4, Block 5, Block 6, Block 8
Tarantula Block 4, Block 5, Block 6, Block 8, Block 10

together from the input set of fault localization techniques. The
adapted methods are instance (or bug) specific since the selected
techniques may differ for different buggy programs. Furthermore,
these methods do not require any training data to select techniques.
Each of them can be used as the second step of Fusion Localizer.
The following paragraphs elaborate how we adapt these two meth-
ods for fault localization.

1) Overlap-Based Selection: This method selects techniques to be
fused together based on the overlap between the list of top-K most
suspicious program elements produced by a fault localization tech-
nique and the top-K lists produced by other techniques. By default,
we set K to be 10% of the total number of program elements that
the input buggy program has. If this number is less than 10, we
set K to 10. This method first measures the overlap rate of each
technique with other techniques as follows:

DEFINITION 4.1 (OVERLAP RATE). Let Lall be a set of pro-
gram elements that appears in at least one of the top-K lists pro-
duced by the set of fault localization techniques. Also, let Li be a
set of program elements that appears in the top-K list of the i-th
technique but not in the top-K lists of other techniques. The over-
lap rate the i-th technique with other techniques is calculated as
follows:

o_ratei =
Lall − Li

Lall

Example: Given a buggy program, consider four fault localiza-
tion techniques (i.e., Ochiai [3], Klosgen [27], Piatetsky Shapiro [27],
and Tarantula [17, 18]) that return the top 5 most suspicious pro-
gram elements (i.e., program blocks) as shown in Table 1.

Based on Table 1, the set of program blocks returned by at least
one of the four techniques, denoted by Lall, is {Block 1, Block
2, Block 3, Block 4, Block 5, Block 6, Block 7, Block 8, Block
9, Block 10}. Ochiai recommends two program blocks that are
not recommended by the other techniques, i.e., LOchiai={Block
2, Block 3}. As for Klosgen, Piatetsky Shapiro, and Tarantula,
each of them recommends one block that is not recommended by
other techniques – LKlosgen={Block 9}, LPiatetsky Shapiro={Block
1}, and LTarantula={Block 10}. Hence, the overlap rate of Ochiai
among the other techniques can be calculated as (10−2)

10
= 0.8. We

can compute the overlap rate of the other three techniques in the
same way– they are (10−1)

10
= 0.9.

After calculating the overlap rate of each technique, we sort the
techniques in ascending order of their overlap rates and select the
top-N techniques. In this way, we include techniques that have
more unique results (i.e., top-K lists). By default, we set N to be
50% of all input techniques.

2) Bias-Based Selection: This method selects a subset of tech-
niques to be fused based on the bias rate of each technique towards
the norm considering the top-K lists returned by each technique.
By default, we set K to be 10% of the total number of program ele-
ments that the input buggy program has. If this number is less than
10, we set K to 10.
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This method represents each technique as a vector of zeroes and
ones representing whether each of the program elements occurs in
its top-K list. It constructs the norm which is a vector containing
the number of top-K lists each program element belongs to. This
method then computes a bias rate for each technique as follows:

DEFINITION 4.2 (BIAS RATE). Let n be the number of input
techniques and m be the number of program elements that appear
in a top-K list produced by at least one of the techniques. Let Li be
a vector of zeros and ones that represents whether each program
element appears in the top-K list of the i-th technique, where 1 ≤
i ≤ n. The norm Lall is a vector containing the number of top-K
lists each program element appears in. The bias rate of the i-th
technique is calculated as follows:

Bias(Li, Lall) = 1− Sim(Li, Lall)

Sim(Li, Lall) =

∑m
j=1 Lj × Lallj√∑m

j=1 L
2
j ×

√∑m
j=1 L

2
allj

In the above formulas, Sim(Li, Lall) is the cosine similarity be-
tween vector Li and vector Lall [46].

Example: Based on Table 1, the set of program blocks that ap-
pears in at least one top-5 lists is {Block 1, Block 2, Block 3, Block
4, Block 5, Block 6, Block 7, Block 8, Block 9, Block 10}. Block
4 is recommended by four techniques, while Blocks 5, 6, and 8 are
recommended by three techniques. Block 7 is recommended by
two techniques, and the rest of the blocks are recommended by only
one technique. From these pieces of information, the norm Lall is
{1, 1, 1, 4, 3, 3, 2, 3, 1, 1}. To calculate the bias rate of Ochiai to
the norm, i.e., Bias(LOchiai, Lall), we first calculate the similarity
score of Ochiai with the norm. The similarity score of LOchiai

with the norm Lall is 0.4824 which is calculated as follows:

Sim(L1, Lall) =
(1 + 1 + 4 + 2 + 3)√

10× 52

Based on the similarity score, the bias rate of Ochiai is 1 - 0.4824
= 0.5176. We can compute the bias rate of the other techniques in
the same way. The bias rate of Klosgen is 1 − 13√

10×52
=0.43. Pi-

atetsky Shapiro has the same bias rate as Tarantula, i.e., 1− 14√
10×52

=0.386.
For each technique, we calculate the bias rate of the results and

sort them in decreasing order of their bias rates. We then select the
top-N of the techniques, with the aim of including techniques that
are less similar towards the norm. By default, we set N to be 50%
of the input fault localization techniques.

4.4 Step 3: Data Fusion
Our approach adapts an unsupervised data fusion method pro-

posed in the information retrieval community to combine normal-
ized scores from selected fault localization techniques. In this work,
we leverage five well-known unsupervised data fusion methods in
the domain of information retrieval, namely CombSUM [10, 11],
CombMNZ [10, 11], CombANZ [10, 11], correlation-based fusion
methods [42], and Borda count [4]. Each of them can be used as
the third step of Fusion Localizer.

The following paragraphs elaborate how the five popular fusion
methods can be adapted for fault localization. We use the example
shown in Figure 1 to illustrate how each method works.

1) CombSUM: This method combines the scores from different
techniques, by simply summing up their scores. This method as-
sumes that each technique is equally important.

Example. Based on Figure 1, the set of new scores of Blocks 1
to 5 would be {2.44, 1, 2, 2, and 3}.

2) CombANZ: This method combines the scores from different tech-
niques, by computing the average of the non-zero scores. Let ej
denotes the j-th program element and Ti denotes the i-th tech-
nique. The score assigned to program element ej by technique Ti

is denoted as Ti(ej). Suppose there are n techniques and mej de-
notes the number of techniques that assign a non-zero score to ej ,
CombANZ calculates the new score for ej as follows:

Score(ej) = 1/mej ×
n∑

i=1

Ti(ej)

Example. Based on Figure 1, the set of new scores of Blocks 1
to 5 would be { 2.44

3
, 1
1
, 2
2
, 2
2
, 3
3

}={0.81, 1, 1, 1, 1}.

3) CombMNZ: CombMNZ is a variant of CombANZ; it multiplies
the summation of all scores for a given element with the number
of techniques that assign a non-zero score to the element. Let
ej denotes the j-th program element and Ti denotes the i-th tech-
nique. The score assigned to program element ej by technique Ti

is denoted as Ti(ej). Suppose there are n techniques and mej

denotes the number of systems that give a non-zero score to ej ,
CombMNZ calculates the new score for ej as follows:

Score(ej) = mej ×
n∑

i=1

Ti(ej)

Example. Based on Figure 1, the set of new scores of Blocks 1 to
5 would be {2.44 × 3, 1 × 1, 2 × 2, 2 × 2, 3 × 3} = {0.732, 1, 4,
4, 9}.

4) Correlation-based methods: Different from the above methods,
correlation-based methods assume each technique is not equally
important. The importance of a technique is represented by its
weight. Based on the weights of the techniques, these methods lin-
early combine (i.e., sum up) the scores assigned by different tech-
niques multiplied by their weights. Let ej denotes the j-th program
element and Ti(ej) denotes the score assigned to program element
ej by the i-th technique. Also, let wi denotes the weight assigned
to the i-th technique and n be the number of techniques. The new
score of program element ej is calculated as follows:

Score(ej) =

n∑
i=1

wi × Ti(ej) (1)

The following paragraphs describe the weight calculation proce-
dures of two correlation-based methods: CorrA and CorrB.

4.1) CorrA: This method computes the correlation among the tech-
niques based on the overlap of the lists of top-N most suspicious
program elements returned by the techniques. The method aims
to minimize the domination of a certain group of techniques that
tend to return similar results, by assigning a heavier weight to a
technique that has less correlation with other techniques.

Let the sets of top-N most suspicious program elements returned
by the i-th and j-th techniques be denoted as Li and Lj respec-
tively, where i 6= j. The overlap ratio between Li and Lj is calcu-
lated as follows:
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OverlapRatioij = 2× |Li

⋂
Lj |

2×N

Suppose, there are n techniques, we calculate the weight of the
i-th technique, based on the average of its overlap ratio with other
techniques as follows:

wi = 1− 1

n− 1

n∑
j=1,2,..,j 6=i

OverlapRatioij

Example. Based on the example in Table 1 and the top 3 most
suspicious program elements returned by each technique, the over-
lap ratio between Ochiai and Klosgen is 1, while the ratio between
Ochiai and Piatetsky Shapiro is 0.33. Thus, the weight assigned
to Ochiai is 1- 1.33

2
=0.335. Similarly, the weights for Klosgen and

Piatetsky Shapiro are 0.335 and 0.67. Based on these weights, we
calculate the set of new scores for these blocks using Equation 1 –
the set of new scores would be {1.07, 0.67, 0.67, 0.67, 1.34}.

In this work, we denote the variant of CorrA which calculates
the correlation among the measures based on the top 10% of the
most suspicious program elements by CorrA_Top10% and an-
other variant that is based on the top 50% of the most suspicious
program elements as CorrA_Top50%.

4.2) CorrB: CorrB is a correlation-based method that also com-
putes the weight of a technique based on the overlap of its list of
top-N most suspicious program elements with other lists produced
by other techniques. Let the list of top-N most suspicious program
elements returned by the i-th technique be denoted as Li. For a
program element e, let us denote the number of top-N lists it be-
longs to as list(e). Let Lall denotes a set of program elements
which appears in at least one of the lists produced by the tech-
niques. Suppose there are n techniques to be fused, the weight of
the i-th technique can be calculated as follows:

wi = 1−
(
∑

e∈Li
list(e))− |Li|

|Li| × |Lall|

where |Li| denotes the number of elements returned by the i-th
technique and |Lall| denotes the number of elements that appear in
at least one of the lists returned by the techniques.

Example. Based on the example in Table 1 and the top 3 most
suspicious program elements returned by each technique, LOchiai,
LKlosgen, and LPiatetsky Shapiro are {Block 3, Block 4, Block
5}, {Block 3, Block 4, Block 5}, and {Block 2, Block 1, Block
5} respectively. Thus, Lall is {Block 1, Block 2, Block 3, Block
4, Block 5}. Also, list(Block3), list(Block4), and list(Block5)
are 2, 2, and 3 respectively. From the above, the weight assigned
to Ochiai is 1- 7−3

3×5
= 0.73. The weights for Klosgen and Piatet-

sky Shapiro can be computed in the same way and they are 0.73
and 0.87 respectively. Therefore, the set of new scores for these
blocks calculated using Equation 1 would be {1.87, 0.87, 1.46,
1.46, 2.33}.

In this work, we denote the variant of CorrB method which cal-
culates the correlation among the measures based on the top 10%
of the most suspicious program elements by CorrB_Top10% and
another variant of CorrB method which is based on the top 50% of
the most suspicious program elements as CorrB_Top50%

5) Borda count: This method converts the normalized scores that
are assigned to program elements by each selected technique into
ranks – program elements with higher scores would obtain smaller
ranks. For each element, this method sums up the ranking points

Table 2: Example of Ranks and Ranking Points Given by
Ochiai, Klosgen, and Piatetsky Shapiro

Block Ranks Ranking Points
Block 1 {4, 4, 3} {1, 1, 2}
Block 2 {5, 5, 2} {0, 0, 3}
Block 3 {3, 3, 5} {2, 2, 0}
Block 4 {3, 3, 5} {2, 2, 0}
Block 5 {3, 3, 2} {2, 2, 3}

of an element given by a set of techniques. The ranking point of an
element given by a technique is defined as the substraction of the
element’s rank in the list produced by the technique from the total
number of program elements in the input buggy program.

Let ej denotes the j-th program element and ri(ej) denotes the
rank assigned to program element ej by the i-th technique. Also,
let Ne denotes the number of program elements and n denotes the
number of techniques. Borda count calculates the new score for
program element ej as follows:

Score(ej) =

n∑
i=1

(Ne − ri(ej))

Example. Table 2 shows the ranking points for each program
block in Figure 1 given by Ochiai, Klosgen, and Piatetsky Shapiro.
Based on the summation of their ranking points, the set of new
scores for Blocks 1 to 5 would be {4, 3, 4, 4, 7}.

5. EMPIRICAL EVALUATION
This section presents our subject programs, our evaluation met-

rics, and our experiment results. Some threats to validity are also
discussed.

5.1 Dataset
We evaluate the effectiveness of data fusion methods presented

in Section 4.4 to localize faults in 230 buggy programs. Each buggy
program contains a single bug that could span across multiple pro-
gram elements. Table 3 briefly describes our subject programs.

In this work, we evaluate eight subject programs written in C:
one real program, namely space, from the Software-artifact Infras-
tructure Repository (SIR) [37] and seven Siemens programs [16,
37], namely print_tokens, print_tokens2, replace, schedule, sched-
ule2, tcas, and tot_info. Each of the eight programs has a number
of buggy versions. We manually instrument these buggy programs
at block level. After excluding buggy versions that our instrumen-
tation cannot reach (e.g., versions with bugs in global variable dec-
larations), we evaluate 154 buggy versions.

We also analyze two real Java programs from the SIR [9] namely:
NanoXML [36] and XML-Security [36]. In this work, we analyze
four versions of NanoXML (i.e., versions 1, 2, 3, and 5) and three
versions of XML-Security (i.e., versions 1, 2, and 3). Each pro-
gram version has multiple buggy versions and we also instrument
them at block level. After excluding buggy versions that have no
failed test cases, we evaluate 46 buggy versions.

The above subject programs have often been used to evaluate
many fault localization techniques [3, 17, 18, 26, 27]. Despite their
popularity, the size of the above subject programs are relatively
small. Most of the bugs in the above subject programs are also
synthetic rather than real. Thus, we create another dataset consist-
ing of 30 real bugs from three larger programs namely Rhino [8],
Lucene [2], and Ant [1]. Rhino bugs and test suite are obtained
from the iBugs repository which was created by Dallmeier and
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Table 3: Dataset Descriptions

Dataset LOC Number
of Buggy
Versions

Number of
Test Cases

print_token 478 5 4,130
print_token2 399 10 4,115
replace 512 31 5,542
schedule 292 9 2,650
schedule2 301 9 2,710
tcas 141 36 1,608
tot_info 440 19 1,051
space 6,218 35 13,585
NanoXML v1 3,497 6 214
NanoXML v2 4,007 7 214
NanoXML v3 4,608 9 216
NanoXML v5 4,782 8 216
XML security v1 21,613 6 92
XML security v2 22,318 6 94
XML security v3 19,895 4 84
Rhino 49k 11 20-152
Lucene 88k 9 1,072-1,154
Ant 264k 10 1,024-1,555

Zimmermann [8]. As for Lucene and Ant, we obtain their bugs and
test suites from their bug tracking and version control systems fol-
lowing the procedure described by Dallmeier and Zimmermann [8].
In particular, we consider Lucene bugs that were reported for ver-
sions 2.0 to 3.1, and Ant bugs that were reported for versions 1.5.1
to 1.9.2. Kawrykow and Robillard observed that not all changes
made to fix a bug are essential; many of them are cosmetic changes
or simple refactorings that do not change the behavior of a pro-
gram [19]. Thus, to find the root cause of a real bug (i.e., the buggy
program blocks), we need to manually inspect the code that are
changed to fix the bug. To help us in the manual inspection, we
only include Rhino, Lucene, and Ant bugs whose fixes only change
at most five lines of code. Among these bugs, we also only choose
bugs that have at least one failed test case covering the faulty lines.

5.2 Evaluation Criteria
We evaluate the effectiveness of a fault localization technique

(either using data fusion or not) in localizing faults based on the
following commonly used metrics:

1) Percentage of Code Inspected: For each bug, we measure the
percentage of program blocks that a developer needs to inspect to
locate all the faulty program elements. This metric depends on the
rank of the faulty program elements in the list. In this paper, we
report the average percentage of program blocks inspected over all
the bugs.

2) Proportion of Bugs Localized: We compute the proportion of
bugs that can be localized when developers inspect up to a certain
percentage of program blocks.

3) Absolute Amount of Code Inspected: As studied by Panin and
Orso [29], developers may only inspect a certain number of most
suspicious program elements recommended by an automatic de-
bugging tool. Thus, we also compute the number of bugs that can
be localized when developers inspect up to E program blocks. In
this study, we set E to 10. We assume that 10 is still a reasonable
number of program elements that developer would inspect.

5.3 Experiment Results
We evaluate the effectiveness of various variants of our approach

to localize faults. We denote a variant of Fusion Localizer as zX,Y
Z

where X specifies a score normalization method (i.e., Zero-One or
Reciprocal), Y specifies a technique selection method (i.e., Overlap
or Bias), and Z specifies a data fusion method such as CombANZ,
CorrA_Top10%, CorrA_Top50%, CorrB_Top10%, CorrB_Top50%,
CombSUM, CombMNZ, or Borda count.

Their effectiveness are compared with the effectiveness of the
well-known spectrum-based fault localization techniques, namely
Tarantula [18] and Ochiai [3]. We also compare with the theoreti-
cally best spectrum-based fault localization techniques [44] namely
Naish1, Naish2, Binary, Wong1, and Russel & Rao, as well as the
theoretically best genetic programming (GP) based fault localiza-
tion techniques namely GP02, GP03, GP13, and GP19 [45].

Table 4: Average Percentage of Code Inspected to Localize All
Bugs.

Technique Average Technique Average

zZero−One,Overlap
CombANZ 21.36% Naish2 24.63%

zZero−One,Bias
CombANZ 21.39% GP13 24.78%

zZero−One,Bias
CombSUM 22.94% Ochiai 25.29%

zZero−One,Overlap
CorrB_Top50%

23.11% GP03 25.82%

zZero−One,Overlap
CombSUM 23.15% Tarantula 26.77%

zZero−One,Overlap
CorrB_Top10%

23.23% GP19 31.60%

zZero−One,Overlap
CombMNZ 23.31% Naish1 34.40%

zZero−One,Bias
CorrB_Top10%

23.33% GP02 39.48%

zZero−One,Bias
CorrB_Top50%

23.38% Russel&Rao 42.48%

zZero−One,Overlap
CorrA_Top10%

23.56% Binary 52.04%

zZero−One,Bias
CombMNZ 23.78% Wong1 86.26%

zZero−One,Bias
CorrA_Top10%

23.78%

5.3.1 Percentage of Code Inspected
In terms of average percentage of code inspected to localize all

bugs, twelve variants of Fusion Localizer perform better than the
state-of-the-art fault localization techniques. These variants fuse
the techniques using CombANZ, CorrA_Top10%, CorrA_Top50%,
CorrB_Top10%, CorrB_Top50%, CombSUM, and CombMNZ by
first normalizing the scores using Zero-one normalization and se-
lecting the techniques using either the bias-based or overlap-based
method. They could achieve smaller average percentage of code
inspected (i.e., 21.36% to 23.78%) as compared to the best per-
forming state-of-the-art fault localization technique (i.e., Naish2).
Among the state-of-the-art fault localization techniques, Naish2
achieves the smallest average percentage of code inspected (i.e.,
24.63%), followed by GP13 (i.e., 24.78%) and Ochiai (i.e., 25.29%).
See Table 4 for the details of average percentage of code inspected
for the above variants of Fusion Localizer and the state-of-the-art
fault localization techniques.

To investigate whether the differences in the average percentage
of code inspected between our twelve variants and the best per-
forming state-of-the-art fault localization techniques (i.e., Naish2,
GP13, and Ochiai) are significant or not, we perform a statistical
significance test namely Wilcoxon signed rank test [41] at 5% sig-
nificance level. This statistical test does not assume that the data
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should follow normal distribution. Based on the significance tests,
zZero−One,Bias

CombANZ and zZero−One,Overlap
CombANZ significantly outperform

Naish2 with p-values equal to 0.0135 and 0.02284, respectively.
They also significantly outperform GP13 and Ochiai with p-values
< 0.05. The other ten variants could only significantly outperform
Ochiai with p-values <0.05. Table 5 lists the p-values when we
compare each of the best performing Fusion Localizer variants with
each of the best performing state-of-the-art fault localization tech-
niques using Wilcoxon signed rank test.

Table 5: Statistical Significance Test Results

Fusion Localizer Variant p-value

over

Ochiai

p-value

over

GP13

p-value

over

Naish2

zZero−One,Overlap
CombANZ <0.0001 0.0182 0.0228

zZero−One,Bias
CombANZ <0.0001 0.0104 0.0135

zZero−One,Bias
CombSUM <0.0001 0.2464 0.2736

zZero−One,Overlap
CorrB_Top50%

<0.0001 0.2966 0.2985

zZero−One,Overlap
CombSUM <0.0001 0.5985 0.6189

zZero−One,Overlap
CorrB_Top10%

<0.0001 0.5495 0.5642

zZero−One,Overlap
CombMNZ <0.0001 0.6354 0.7402

zZero−One,Bias
CorrB_Top10%

<0.0001 0.2047 0.2464

zZero−One,Bias
CorrB_Top50%

<0.0001 0.2981 0.2948

zZero−One,Overlap
CorrA_Top10%

<0.0001 0.4842 0.5231

zZero−One,Bias
CombMNZ 0.0032 0.7860 0.8588

zZero−One,Bias
CorrA_Top10%

<0.0001 0.3065 0.3065

Figure 3: Improvement of zZero−One,Bias
CombANZ over Naish2 in

Terms of Percentage of Code Inspected

Furthermore, we plot the improvements of the best perform-
ing variant of Fusion Localizer, namely zZero−One,Bias

CombANZ over the
three best performing state-of-the-art fault localization techniques
namely Naish2, GP13, and Ochiai for each of the buggy versions in
Figures 3, 4, and 5, respectively. We plot the improvements made
by zZero−One,Bias

CombANZ because it achieves the most significant im-
provement over Naish2 (i.e., the lowest p-value over Naish2). The
improvement is based on the difference in percentage of code in-
spected. The graphs only show the buggy versions where the im-
provements are either positive (our technique performs better) or

negative (our technique performs worse). There are 87 buggy ver-
sions in which zZero−One,Bias

CombANZ improves Naish2 and GP13. As
compared to Ochiai, it has better performance for 91 buggy ver-
sions. In addition, there are 66, 65, and 88 buggy versions in which
zZero−One,Bias

CombANZ performs the same as Naish2, GP13, and Ochiai,
respectively. From the figures, it is clear that our best variant out-
performs the three best performing state-of-the-art fault localiza-
tion techniques for most of the buggy versions.

Figure 4: Improvement of zZero−One,Bias
CombANZ over GP13 in Terms

of Percentage of Code Inspected

5.3.2 Proportion of Bugs Localized
We also evaluate the number of buggy versions in which devel-

opers could find the faulty program elements by inspecting a cer-
tain percentage of program elements. Table 6 shows the proportion
of bug localized when developers only inspect the top 10% of the
most suspicious program elements produced by the state-of-the-art
fault localization techniques and our twelve variants that have bet-
ter average percentage of code inspected than the best performing
state-of-the-art fault localization techniques.

When 10% of the most suspicious program elements are inspected,
zZero−One,Overlap

CombANZ and zZero−One,Bias
correlation−based can localize more bugs

as compared to the other variants of Fusion Localizer and the state-
of-the-art fault localization techniques. They can localize 46.52%
to 46.96% of the bugs, while the best performing state-of-the-art
fault localization technique (i.e., Ochiai) can localize 42.17% of
the bugs. Naish2 and GP13 can localize only 36.96% of the bugs.

Figure 5: Improvement of zZero−One,Bias
CombANZ over Ochiai in

Terms of Percentage of Code Inspected
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Figure 6: Comparing zZero−One,Bias
CombANZ , zZero−One,Overlap

CombANZ

with Naish2, GP13, and Ochiai

Thus, these two best variants could improve the best performing
state-of-the-art fault localization techniques by 11.26% to 26.95%.

In addition, eight other variants of Fusion Localizer can localize
more bugs than the best performing state-of-the-art fault localiza-
tion technique (i.e., Ochiai) when 10% of program elements are
inspected. They can localize 42.17% to 43.48% of the bugs. Thus,
our best variants can improve number of bugs that can be localized
when developers only inspect a small percentage of code.

Table 6: Proportion of Bug Localized When Only 10% of
Blocks are Inspected.

Technique %Bug Technique %Bug

zZero−One,Overlap
CombANZ 46.96% zZero−One,Bias

CombMNZ 38.70%

zZero−One,Bias
CombANZ 46.52% GP03 38.70%

zZero−One,Bias
CombSUM 43.48% GP02 37.83%

zZero−One,Overlap
CombSUM 43.48% Tarantula 37.39%

zZero−One,Bias
CorrB_Top10%

43.48% Naish2 36.96%

zZero−One,Overlap
CorrB_Top10%

43.48% GP13 36.96%

zZero−One,Overlap
CorrA_Top10%

43.48% Naish1 36.09%

zZero−One,Bias
CorrA_Top10%

43.04% GP19 29.13%

zZero−One,Bias
CorrB_Top50%

43.04% Russel&Rao 5.65%

zZero−One,Overlap
CorrB_Top50%

42.61% Binary 4.78%

Ochiai 42.17% Wong1 3.04%

zZero−One,Overlap
CombMNZ 41.30%

Furthermore, we plot the proportion of bug localized using our
two best variants (i.e., zZero−One,Overlap

CombANZ and zZero−One,Bias
CombANZ ),

Naish2, GP13, Ochiai, and Tarantula when different percentage of
program elements are inspected, as shown in Figures 6. Based on
the figure, our two best variants can localize more bugs when dif-

Table 7: Number of Bugs Localized When Only up to 10 Most
Suspicious Program Elements are Inspected (i.e., Hit@10)

Technique Hit@10 Technique Hit@10

zZero−One,Bias
CombANZ 91 Ochiai 74

zZero−One,Overlap
CombANZ 87 Naish1 73

zZero−One,Overlap
CombSUM 87 Naish2 73

zZero−One,Bias
CorrA_Top10%

86 GP13 72

zZero−One,Overlap
CorrA_Top10%

86 GP03 71

zZero−One,Bias
CorrB_Top10%

85 GP02 64

zZero−One,Overlap
CorrB_Top10%

85 Tarantula 56

zZero−One,Bias
CorrB_Top50%

85 GP19 51

zZero−One,Overlap
CorrB_Top50%

84 Russel&Rao 3

zZero−One,Bias
CombSUM 84 Binary 3

zZero−One,Overlap
CombMNZ 84 Wong1 0

zZero−One,Bias
CombMNZ 78

ferent percentages of program elements are inspected as compared
to the best performing state-of-the-art fault localization techniques.

5.3.3 Absolute Amount of Code Inspected
We also investigate the number of bugs that can be localized

when only a small number of program elements (i.e., 10 program
blocks) are inspected. The results are shown in Table 7.

The table shows that our twelve variants can localize more bugs
than the state-of-the-art fault localization techniques. They can
localize 78 to 91 bugs, while the best performing state-of-the-art
fault localization technique (i.e., Ochiai) can only localize 74 bugs.
Amongst our variants, zZero−One,Bias

CombANZ can localize the largest
number of bugs as compared to the other techniques. Its relative
improvement over Ochiai, Naish2, and GP13 are 23%, 25%, and
26%, respectively. These results also show that our best variants
can substantially improve the number of bug localized when devel-
opers only inspect a small number of program elements.

5.4 Discussion
In this section, we discuss the effect of score normalization, tech-

nique selection, and varying the number of techniques to be fused
together on the performance of Fusion Localizer. At the end of this
section, we describe some threats to validity.

Effect of Score Normalization. To investigate the effect of the
score normalization step, we disable this step and evaluate the ef-
fectiveness of the resultant solution. We find that without score
normalization, the performance of the best performing variant of
Fusion Localizer is not as good as the best performing variant that
normalizes the scores.

Without normalization, the average percentage of program block
inspected to localize all bugs achieved by the best variant is 30.28%
which is larger than the result of the best variant that normalizes the
scores (i.e., 21.36%). When developers only inspect up to 10% of
program blocks, the best variant that does not normalize the scores
can only localize 30% of the bugs which is smaller than the per-
centage of bugs that are successfully localized by the best variant
that normalizes the scores (i.e., 46.96%). Also, when inspecting
up to 10 program blocks, the number of bugs localized by the best
variant that does not normalize the scores is not even half of those
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achieved by the best variant that normalizes the scores (38 bugs vs.
91 bugs). Therefore, normalization is an important step to improve
the performance of Fusion Localizer.

Effect of Technique Selection. To investigate the effect of the
technique selection step, we disable this step and evaluate the ef-
fectiveness of the resultant solution. When we fuse all 42 fault lo-
calization techniques, the performance of the best variant is worse
than the best variant that employs technique selection. When the
technique selection step is disabled, on average, the best variant can
localize all bugs when 22.27% of code are inspected, which is not
as good as the result achieved by the best variant that employs tech-
nique selection (i.e., 21.36%). When developers only inspect up to
10% of program blocks, the best variant that does not use technique
selection localizes a smaller percentage of bugs than the percent-
age localized by the best variant that uses technique selection (i.e.,
46.52% vs. 46.96%). Similarly, when developers only inspect up
to 10 program blocks, the best variant that does not use technique
selection localizes a smaller number of bugs than the number lo-
calized by the best variant that employs technique selection (i.e.,
87 vs. 91). Therefore, applying technique selection can improve
the performance of Fusion Localizer.

Effect of Number of Techniques to be Fused. To evaluate the ef-
fect of the number of techniques to be fused by our Fusion Local-
izer, we use one of our best variants (i.e., zZero−One,Bias

CombANZ ) and set
the number of techniques to be selected to top 25%, top 50%, top
75%, and all of the techniques. Let us refer to the 4 sub-variants of
zZero−One,Bias

CombANZ as V25, V50, V75, and V100. By default Fusion
Localizer selects top 50% of the techniques. We find that the av-
erage percentage of code inspected to locate all bugs are 27.13%,
21.36%, 21.88%, and 22.27% for V25, V50, V75, and V100, re-
spectively. When developers only inspect the top 10% of the code,
the percentage of bugs localized by V25, V50, V75, and V100 are
30%, 46.96%, 46.52%, and 46.52%, respectively. When develop-
ers only inspect the top 10 program blocks, the number of bugs
localized by V25, V50, V75, and V100 are 57, 91, 87, and 87,
respectively. The results show that selecting the top 50% of the
techniques (the default option) is the best setting.

Threats to Validity. Threats to internal validity relates to errors in
our experiments. We have checked our implementation but there
could be bugs that we do not notice. Threats to external validity re-
lates to the generalizability of our findings. We have analyzed 230
bugs from 13 programs written in C and Java. The programs vary
from small to large programs. The bugs vary from synthetic to real
bugs. In the future, we plan to reduce this threat to external validity
further by investigating more bugs from more systems written in
various programming languages.

Threats to construct validity relates to the suitability of our eval-
uation metrics. We have used common metrics used to analyze past
fault localization studies [3, 17, 18, 26, 27]. We have also used an-
other metric (i.e., Hit@10) to address the concern raised by Parnin
and Orso [29]. Hit@10 only considers the performance of a fault
localization tool when a small number of program elements (in our
case: program blocks) are inspected. The measure was previously
used by information retrieval (IR) based bug localization studies
that find buggy program files given a textual bug report [31, 35,
38, 40,43, 51]. Admittedly, there is no large scale study that shows
positive correlation (or its absence) between improving Hit@10 (or
other rank-based metrics) and time and effort saved when devel-
opers use a fault localization technique to debug various kinds of
bugs. Still, improving rank-based metrics is a step towards build-
ing a fault localization technique that can pinpoint the location of

bugs in the top position most of the time. Such a technique will be
highly effective since developers can trust its output. The location
pinpointed by such tool can be a good starting point for developers
to reason on the root cause behind a set of failures and how to fix
the bug. This location can also be used as input to other studies, for
example, automated bug fixing [13].

6. CONCLUSION AND FUTURE WORK
In this paper, we propose an approach named Fusion Localizer

to fuse a number of spectrum-based fault localization techniques.
Our propose approach consists of three steps: score normalization,
technique selection, and data fusion. We investigate two score nor-
malization methods, two technique selection methods, and five data
fusion methods resulting in twenty variants of Fusion Localizer.
Fusion Localizer does not require any training data, i.e., execu-
tion traces of past relevant program failures, to select the set of
techniques to be fused. This allows our approach to be used for
new programs or programs where program spectra of past relevant
bugs are unavailable. Furthermore, our approach is bug specific in
which the set of techniques to be fused is adaptively selected for
each buggy program based on its spectra.

We evaluate our approach using a common benchmark dataset
and a dataset that contains real bugs from three medium to large
programs. Our evaluation shows that the best performing variants
of Fusion Localizer (i.e., zZero−One,Bias

CombANZ and zZero−One,Overlap
CombANZ )

statistically significantly outperform the state-of-the-art spectrum-
based fault localization techniques (i.e., Ochiai, theoretically best
spectrum-based fault localization techniques, and theoretically best
genetic programming (GP) based fault localization techniques). Our
best variants require smaller average percentage of code inspected
to locate faulty elements as compared to the best performing state-
of-the-art fault localization techniques (i.e., 21% vs. 24%). When
developers only inspect 10% of the most suspicious program ele-
ments, these best variants could improve the best performing state-
of-the-art fault localization techniques (i.e., Ochiai, Naish2, and
GP13) by 11% to 26%. Furthermore when developers only in-
spect the top 10 most suspicious program blocks, these best vari-
ants could improve the best performing state-of-the-art fault local-
ization techniques by 23% to 26%. In addition, there are many
other variants of Fusion Localizer that can outperform the state-
of-the-art fault localization techniques (albeit not statistically sig-
nificantly). These variants use CorrA_Top10%, CorrB_Top10%,
CorrB_Top50%, CombSUM, and CombMNZ to fuse the selected
techniques, by first normalizing the scores using Zero-One nor-
malization and by selecting the techniques using the bias-based or
overlap-based selection methods.

As a future work, to improve the effectiveness of our proposed
approach further, we plan to create new technique selection and
fusion methods that are specifically designed for fault localiza-
tion. Also, rather than only returning a list of most suspicious pro-
gram elements, we plan to extend studies on bug signature mining,
e.g., [5, 15, 25], and return additional contextual information that
can help developers debug. Additionally, we plan to perform a user
study to evaluate the effectiveness of our technique in saving devel-
oper time and effort when localizing real bugs from various subject
programs written in various programming languages.
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