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1 Without loss of generality, notation NNk(q) repre
2 For the rest of this paper, we refer to the data ob
a b s t r a c t

This paper studies a new form of nearest neighbor queries in spatial databases, namely,
mutual nearest neighbor (MNN) search. Given a set D of objects and a query object q, an
MNN query returns from D, the set of objects that are among the k1 (P1) nearest neighbors
(NNs) of q; meanwhile, have q as one of their k2 (P1) NNs. Although MNN queries are use-
ful in many applications involving decision making, data mining, and pattern recognition, it
cannot be efficiently handled by existing spatial query processing approaches. In this
paper, we present the first piece of work for tackling MNN queries efficiently. Our methods
utilize a conventional data-partitioning index (e.g., R-tree, etc.) on the dataset, employ the
state-of-the-art database techniques including best-first based k nearest neighbor (kNN)
retrieval and reverse kNN search with TPL pruning, and make use of the advantages of
batch processing and reusing technique. An extensive empirical study, based on experi-
ments performed using both real and synthetic datasets, has been conducted to demon-
strate the efficiency and effectiveness of our proposed algorithms under various
experimental settings.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

This paper studies a new form of nearest neighbor (NN) queries, namely mutual nearest neighbor (MNN) search. Given
a dataset D, a query point q, and two parameters k1 and k2, an MNN query retrieves those objects p 2 D such that
p 2 NNk1(q)1 and q 2 NNk2(p), i.e., it requires each answer object2 to be one of the k1 nearest neighbors (NNs) to q and
meanwhile has q as one of its k2NNs. Consequently, it considers not only the spatial proximity of the answer objects
to q, but also the spatial proximity of q to the answer objects. In other words, the conventional NN query is asymmetric,
while MNN retrieval is symmetric. Although it is well known that asymmetric NN search fits the requirements of lots of
applications, there are still many other practical applications that require symmetric NN queries. Some real-life applica-
tions are presented as follows.

Resource allocation. Consider that a logistic company A has six branches (labeled as p1,p2,p3,p4,p5,p6), as shown in
Fig. 1a. In order to guarantee the quality of service, company A assigns each branch two nearby branches as backup to provide
necessary supports in cases such as running out of cargo; meanwhile, it has to balance the workload of each branch, and thus
assigns one branch to only two other branches. Suppose that we employ conventional k (P2) nearest neighbor (kNN) search,
and process the branches in the order of p1, p2, p3, p4, p5, p6. In particular, p1 is the first branch evaluated and it is linked to its
. All rights reserved.
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Fig. 1. Example of resource allocation application.
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2 nearest branches (i.e., p2 and p4). Next, p2 is evaluated. As p2 is already linked to p1, we only need to find one branch out of
branches p3, p4, p5, and p6 that is the closest to p2, i.e., p4. Then, p3 is evaluated. Since p1, p2, and p4 are all linked to two other
branches, they are out of the consideration. Hence, p3 is linked to branches p5 and p6. The process continues, and Fig. 1b de-
picts the result of assignment3. Although kNN retrieval provides one assignment, it can only ensure that the assigned two
branches to p (denoted as p0 and p00) are the nearest (or close) to p, but it does not consider whether p0 and p00 are more suitable
to p than to other branches. On the other hand, MNN search considers symmetric NN relationship. If p is assigned to p0 using the
MNN retrieval with respect to k1 and k2, it means that p is one of k1NNs to p0 and meanwhile p0 is one of k2NNs to p. Continuing
the running example, we utilize MNN queries to deal with the assignment of branches. Initially, both k1 and k2 are set to one in
order to retrieve the objects that are closest to each other. Consequently, p3 is linked to p6 and p4 is linked to p5 because they are
NN objects to each other. Then, we increase either k1 or k2 by one (i.e., k1 = 1, k2 = 2 or k1 = 2, k2 = 1). Branch p4 is linked to p2 as
p4 is the NN object of p2 and meanwhile p2 is one of p4’s 2 NN objects, i.e., p4 satisfies an MNN query with k1 = 1 and k2 = 2 issued
at p2. Next, we set both k1 and k2 to 2, and p2 is linked to p5 since p2 and p5 are MNN objects to each other with respect to
k1 = k2 = 2. Here, p2, p4, and p5 will be out of the consideration in the subsequent assignment as they are all linked to two other
branches, and the only left branch is p1. Finally, p1 is linked to branches p3 and p6 to finish the assignment. Fig. 1c illustrates the
assignment which is generated by MNN queries. Observe that, the assignment derived from MNN queries reduces the average
distance between a branch and its backup to 17.75, compared with the average distance 21.5 generated by kNN search.

Matchmaking. A matchmaking service provider B has lots of members and its responsibility is to, for a new member, rec-
ommend a set of candidate members that may have interests on the new members. As the popularity of B highly depends on
the success probability of the matchmaking, all the matches it recommends have to be perfect. For a new member m, 2NN
search can identify two members, say m1 and m2, that are closest to the conditions (e.g., age, education level, hobbies, loca-
tion, etc.) specified by m, but it ignores the fact that m might not be appealing to m1 and m2. On the other hand, reverse k(=2)
NN (i.e., R2NN) retrieval can identify those members, say m3, m4, and m5, who will rank m as their top-2 choices. However, it
again ignores the fact that m might have more interest on members other than m3, m4, and m5. In summary, both kNN search
and RkNN search are asymmetric, while matchmaking service is symmetric. Thus, MNN search is more suitable. By carefully
3 Note that the assignment using kNN queries depends on the processing order of the branches.



Y. Gao et al. / Data & Knowledge Engineering 68 (2009) 705–727 707
selecting k1 and k2, MNN query can find m0 for m such that m0 is one of the top-k1 choices for m and meanwhile m is one of the
top-k2 choices for m0, and thus improves the success ratio of the matching.

In addition, MNN search is useful for data analysis operation. Specifically, Gowda and Krishna [15] use the mutual neigh-
borhood value (MNV)4 [22] for every pair of data points to produce a hierarchical clustering tree, and utilize the notation of
mutual nearest neighborhood to obtain a modified condensed training set [16]. Ding and He [12] report that the k-mutual
nearest neighbor (kMN) consistency5 can be used to improve the performance of K-means algorithm, which is the most pop-
ular clustering method. In [6,18,34,48], the authors study applications of the k-mutual neighborhood graph6 [21] (that can be
computed with MNN retrieval) for knowledge discovery. In particular, the authors discuss the application of k-mutual neigh-
borhood graph in data mining operations such as clustering and outlier detection tasks. Jin et al. [24] develop an efficient
measure of local outliers based on a symmetric neighborhood relationship which takes both the NNs and reverse NNs into
consideration, and proposes several mining algorithms to detect top-n outliers [23] efficiently.

More recently, Wong et al. [45] introduce the concept of bichromatic MNN that considers two datasets and employ it to
deal with the spatial matching problem. Gao et al. [14] explore the MNN query over moving object trajectories. In particular,
they thoroughly investigate two classes of queries, viz. MNNP and MNNT queries, which are MNN search defined with respect
to stationary query points and moving query trajectories, respectively. Different from all the above work, this paper focuses
on monochromatic MNN (that involves a single dataset) query processing for spatial (instead of spatiotemporal) objects. Fur-
thermore, the MNN retrieval also differs from the existing k-closest pair query [2,8–10,36], which considers two spatial data-
sets DA,DB, and return k pairs of objects (oa,ob) such that oa 2 DA,ob 2 DB, and these k pair-wise distances are the smallest
among all possible object pairs in DA � DB.

Given an MNN search, a naive solution is to find the set of k1 NNs of a given query point q, denoted by NNk1(q), and then
verify whether each point p in NNk1(q) has q as one of its k2 NNs; If yes, p is an actual MNN of q with respect to k1 and k2.
Unfortunately, this method is extremely inefficient because it needs to browse the dataset multiple times, resulting in high I/
O overhead and expensive CPU cost, especially for large values of k1 and k2.

Motivated by the significance of MNN queries and the lack of efficient algorithms, in this paper, we propose four novel
and efficient MNN query processing algorithms, namely, two-step algorithm (TS), reuse two-heap algorithm (RTH), algorithm
using NN search with pruning(NNP), and algorithm using RNN search with pruning (RNNP). Our approaches (i) utilize a data-
partitioning index (i.e., R*-tree [3]) on the dataset, (ii) employ the state-of-the-art database techniques including best-first
based kNN retrieval [19] and reverse kNN (RkNN) search with TPL pruning [41], and (iii) make use of the advantages of batch
processing and reusing technique. To the best of our knowledge, this paper is the first piece of work aiming at efficiently
tackling monochromatic MNN queries in spatial databases. The efficiency and effectiveness of our proposed algorithms
are demonstrated through extensive experiments using both real and synthetic datasets.

The rest of this paper is organized as follows. Section 2 reviews related work, including NN and RNN queries. Section 3
formalizes the MNN query and analyzes its characteristics, followed by a baseline algorithm. Four improved algorithms
(i.e., TS, RTH, NNP, and RNNP) for MNN queries and their corresponding efficiency are elaborated in Section 4. Section 5 pre-
sents extensive experimental results and reports our findings. Finally, Section 6 concludes the paper with some directions for
future work.

2. Related work

In this section, we briefly review algorithms for NN/kNN retrieval, and that for RNN/RkNN search. Although there are mul-
tiple indexes available, our work adopts R-tree, one of the most well-known spatial indexes, and hence the related work sur-
veyed in this section is based on R-tree and its variants.

2.1. NN/kNN query algorithms

Following the common methodology in the relevant literature, we assume that the dataset is indexed by an R-tree due to
its efficiency and popularity. Our solutions, however, are applicable to other access methods (e.g., X-tree [5], etc.). The R-tree
[17] and its variants (most notably the R*-tree [3]) are generalizations of B-trees in a multi-dimensional space. Fig. 2 shows a
set of data points D = {a,b,c,d,e, f,g,h, i, j} and a corresponding R-tree that indexes D, assuming that the node capacity is three.
Points close in space (e.g., a,b,c) are clustered in the same leaf node (e.g., N3). Nodes are then recursively grouped together
with the same principle until the top level, which consists of a single root node denoted by Root.

The algorithms for NN/kNN search on R-trees follow the branch-and-bound paradigm and utilize some metrics to prune
the search space: (i) mindist(q,N), (ii) maxdist(q,N), and (iii) minmaxdist(q,N), where q is a query point and N is the minimum
bounding rectangle (MBR) associated with a node. The mindist(q,N) and maxdist(q,N) give the lower and upper bounds of the
distance from q to any point in the subtree of N. The minmaxdist(q,N) defines an upper bound of the distance between q and
4 Let xj be the mth NN of xi and xi be the nth NN of xj. Then, the MNV between xi and xj, denoted by MNV(xi, xj), is defined as m + n, i.e., MNV(xi,xj) = m + n,
where m,n = 1,2, . . . ,K and K is a given neighborhood depth.

5 If xi is (k + 1)-MN consistent with respect to cluster Cp, then xi must be kMN consistent with respect to Cp (see [12] for details).
6 Generally, each vertex of the k-mutual neighborhood graph represents a data item. For each pair of data items, only if both of them are among the k-most

similar data items of each other, can there be an edge between the two corresponding vertices.
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Table 1
The trace of BF algorithm for 3NN search.

Action Heap content NNs

visit Root {N2,N1} ;
follow N2 {N6,N1,N5} ;
follow N6 {i,N1,j,h,N5} ;
remove i {N1, j,h,N5} {i}
follow N1 {N4, j,N3,h,N5} {i}
follow N4 {e, j,d,N3,h,N5} {i}
remove e {j,d,N3,h,N5} {i,e}
remove j {d,N3,h,N5} {i,e, j}
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its NN in N. In other words, there is at least one point located inside N whose distance to q does not exceed minmaxdist(q,N).
Fig. 2a illustrates these pruning metrics between q and nodes N1, N2.

Existing NN/kNN query methods are based on either best-first (BF) or depth-first (DF) traversal. The DF algorithms [7,35]
retrieve the NN(s) by traversing the R-trees in the depth-first fashion. As demonstrated in [33], the DF algorithm is subop-
timal, i.e., it accesses more I/O than necessary. Nevertheless, it requires only bounded memory and at most a single tree path
resides in memory during search.

The BF algorithm proposed in [19] achieves the optimal I/O performance, meaning that it visits only the qualified entries
that may contain/be the NN(s) of q, e.g., the entries (including Root, N2, and N6) covered by the so-called search region (the
shaded circle) in Fig. 2a. BF maintains a priority queue (e.g., a heap H used in this paper) with the entries visited so far, sorted
in ascending order of their mindist. Starting from the root of the tree, BF inserts all the root entries into H together with their
mindist. Then, the top entry e with the smallest mindist is de-heaped from H and evaluated. There are two cases: (i) e is a leaf
entry and the corresponding data object is reported as an actual NN of q; or (ii) e is an intermediate (i.e., non-leaf) entry and
the child entries of e are inserted into H. BF proceeds to evaluate the top entry de-heaped from H in the same manner until k
(P1) NN(s) of q are retrieved.

As an example, consider the R-tree R depicted in Fig. 2b, where the number in each entry e refers to the mindist(q,e). Note
that when e refers to a point, mindist(q,e) = dist(q,e),7 and these numbers are derived on-the-fly during query processing. Now
suppose a 3NN query is issued at point q. The detailed steps of BF algorithm are illustrated in Table 1 where, for simplicity, we
omit associated distances to q for node MBRs and data points.

Recently, many variants of NN search have been studied. Ferhatosmanoglu et al. [13] discuss constrained NN search that
discovers the NN(s) in a constrained area of the data space. Song and Roussopoulos [38] and Tao et al. [43] investigate con-
tinuous NN search independently, in which the goal is to handle the NN retrieval in the setting of moving query objects and
static dataset. Papadias et al. [31,32] explore group NN and aggregate NN queries. Zhang et al. [47] introduce all NN queries
where, given two datasets D1 and D2, the goal is to retrieve for each point p1 2 D1 its NN p2 2 D2. Aghbari [1] proposes a plug &
7 Without loss of generality, dist(pi,pj) is a function to compute the Euclidean distance between any two points pi, pj, although any distance metric can be
used in general.
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search approach to significantly speed up the kNN search of existing data partitioning methods. Deng et al. [11] consider sur-
face kNN search, where the distance is calculated from the shortest path along a terrain surface. Hu and Lee [20] study the
range NN query that retrieves the NN(s) for every point in a range. However, to the best knowledge of the authors, none
existing work has solved the MNN query.

2.2. RNN/RkNN query algorithms

A reverse NN (RNN) query finds all the points in a data set D that take a specified query point q as their nearest neighbor.
Reverse kNN (RkNN) search generalizes RNN to retrieve the points in D that have q as one of their kNNs. Early algorithms
[26,29,30,46] are based on pre-computation. For each point p, it pre-computes the distance between p and its NN p0, and
forms a vicinity circle cir(p,p0) that is centered at p and has dist(p,p0) as the radius. Then, it checks a given query point q
against all the vicinity circles cir(p,p0) for p 2 D, and returns those having their vicinity circles enclosing q as the answer ob-
jects. To facilitate the examination, all the vicinity circles are indexed with RNN-tree [26] or RdNN-tree [46]. This method has
two major shortcomings: (i) the index construction cost and update overhead is very expensive; and (ii) although the ap-
proach can be extended to deal with the RkNN query (if the corresponding kNN information for each point is available), it
is limited to answer RkNN retrieval for a fixed k.

Inspired by the defects of pre-computation based approaches, several alternative RNN/RkNN search methods without
pre-computation have been proposed. First, Stanoi et al. [39] develop a query algorithm based on filter-refinement frame-
work. It partitions a 2D space around q into six equal regions, and guarantees that only the nearest object to q in each
sub-region may become the result. Consequently, the candidate set only contains 6 objects, retrieved by constraint NN
search [13] at each sub-region. It then validates each candidate by checking whether q is its nearest neighbor. The efficiency
of this algorithm is assured by the small cardinality of the candidate set, whose size increases exponentially with the dimen-
sionality. In order to break the curse of dimensionality, Singh et al. [37] present a multi-step algorithm for the RNN query in a
high-dimensional space. Nevertheless, the algorithm may incur false misses, that is, it cannot guarantee that all the answer
objects are returned. To address the deficiencies of the above algorithms, Tao et al. [41] propose a novel solution to RkNN
search, called TPL. TPL is very efficient in a low-dimensional space. Since our proposed algorithms utilize RkNN retrieval with
TPL pruning, in the following we describe the TPL algorithm via an illustrative example.

To explain the rationale of TPL, we consider the dataset shown in Fig. 3a. Let ? ðp; qÞ be the perpendicular bisector of the
segment connecting point p and point q. The bisector ? ðp; qÞ divides the data space into two half-planes: HPq(p,q) that con-
tains q and HPp(p,q) that contains p. Any point p0 or MBR N falling inside HPp(p,q) must have p closer to it than q. Thus, p0/N
cannot be/contain an RNN of q and can be safely pruned away. As illustrated in Fig. 3a, the bisector ? ðp1; qÞ partitions the
data space into two half-planes, i.e., HPq(p1,q) and HPp1 (p1,q). As points p6, p7 (contained in N1) fall inside the half-plane
HPp1(p1,q), they are closer to p1 than to q, and hence they for sure are not answer objects. Similarly, N3 can also be discarded
because it falls into the half-plane HPp2(p2,q). It is important to note that the pruning of an MBR may require multiple half-
planes in some cases. In Fig. 3a, for example, N2 can be pruned since it lies entirely in HPp1(p1,q) [ HPp2(p2,q) (the shaded
area). In addition, the number of half-planes HPp(p,q) that a given point p0 falls in represents the number of data points that
q

query point

N1

N2

p1

p2

p3 p4

p6 p5

p7

Pruned by p1

 (p1, q)

 (p2, q)

Pruned by 
p1 and p2

Pruned by p2

Contents omitted

N3

q

a

b
c

d

e

f

g
i

h j

N6

N5

N3

N4

N2

N1

2 4 6 8 100

2

4

6

8

10

query point

 (i, q)

 (e, q)

Pruned by i
Pruned by e

l1

l2

BA

CD

E

F

G

H

(a) TPL pruning  (b) RNN search with TPL pruning  

Fig. 3. Example of TPL algorithm.



710 Y. Gao et al. / Data & Knowledge Engineering 68 (2009) 705–727
are closer to p0 than q. Consequently, if a data point is inside at least k HPp(p,q) half-planes, it cannot be an RkNN candidate,
and thus can be safely pruned away.

TPL follows a filter-refinement framework. In the filter step, TPL continuously prunes the search space based on the bisec-
tor(s) between q and its NN(s), until all the objects located inside the search space are evaluated. This idea is depicted in
Fig. 3b. TPL assumes an R-tree on the dataset, and uses the BF based NN query algorithm to retrieve the points. In this exam-
ple, the first point (i.e., the first NN of q) evaluated is i, which is added to a candidate set Sc. Then, TPL obtains the bisector
? ði; qÞ (i.e., line l1), and shrinks the search space from the entire space (i.e., ABCD) to a trapezoid EFCD. Therefore, points h, j in
N6 can be pruned, which are maintained by a refinement set Srfn. Similarly, node N5 does not need to be accessed and is added
to Srfn, as it falls fully in ABFE.

Next, among the objects enclosed in EFCD, TPL identifies the point e (i.e., the second NN of q) and inserts it into Sc. Here
TPL captures another bisector ? ðe; qÞ (i.e., line l2) and further shrinks the search region (from EFCD) to quadrilateral GFCH.
Obviously, both point d and node N3 can be pruned. At this time, the filter step of the TPL algorithm terminates because there
is no any data object left inside GFCH. Similar to Table 1, Table 2 lists the executive processes of TPL during the filter stage.

After the termination of the filter step, TPL has a candidate set Sc (={i,e}), and a set Srfn (={j,d,N3,h,N5}). In the refinement
step, TPL eliminates false hits by reusing the pruned points/MBRs maintained in Srfn. For instance, continue the running exam-
ple, point e 2 Sc is a false hit since it is closer to d 2 Srfn than to q; and point i 2 Sc is the final RNN of q.

In addition to conventional RNN/RkNN search, various variants of RNN/RkNN queries have been well-studied in the data-
base literature, e.g., Benetis et al. [4] and Tao et al. [42] investigate RkNN search over linearly moving objects with fixed
velocities; Stanoi et al. [40] discuss bichromatic RNN search; Korn et al. [27] examine aggregate RNN retrieval on data
streams; Xia and Zhang [44] and Kang et al. [25] study continuous RNN monitoring; Lee et al. [28] explore ranked RkNN
search, and so forth.

3. Preliminaries

In this section, we formally define the MNN query, and then reveal some important characteristics of MNN. Subsequently,
we present a baseline algorithm for MNN search, and analyze its performance. Table 3 summarizes the symbols to be used in
the rest of this paper.
Table 2
The trace of the filter step in the RNN search using TPL algorithm.

Action Heap content Sc Srfn

visit Root {N2,N1} ; ;
visit N2 {N6,N1,N5} ; ;
visit N6 {i,N1, j,h,N5} ; ;
process i {N1, j,h,N5} {i} ;
visit N1 {N4, j,N3,h,N5} {i} ;
visit N4 {e, j,d,N3,h,N5} {i} ;
process e {j,d,N3,h,N5} {i,e} ;
process j {d,N3,h,N5} {i,e} {j}
process d {N3,h,N5} {i,e} {j,d}
process N3 {h,N5} {i,e} {j,d,N3}
process h {N5} {i,e} {j,d,N3,h}
process N5 ; {i,e} {j,d,N3,h,N5}

Table 3
Summary of symbols.

Notation Description

D A data set
q A query point
TD The R-tree on D
jTDj The size of R-tree TD
e An entry (data object or node MBR) in an R-tree
H A heap
Srslt A query result set
Sc A candidate set
jScj The cardinality of set Sc

NNk(q) Result set of a k nearest neighbor query issued at point q
RNNk(q) Result set of a reverse k nearest neighbor query issued at point q
MNNk1,k2(q) Result set of a mutual nearest neighbor query with respect to k1 and k2 issued at point q
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3.1. Problem definition

Definition 1 (Mutual nearest neighbor query). Given a dataset D, a query point q, and two parameters k1, k2, a mutual nearest
neighbor (MNN) query retrieves the set of objects S # D, such that (i) "p 2 S, p 2 NNk1(q); and (ii) "p 2 S, q 2 NNk2(p).
Formally, MNNk1,k2(q) = {p 2 Sjp 2 NNk1(q) ^ q 2 NNk2(p)}.8

As defined in Definition 1, an MNN query returns all the objects in D that are among the k1 NNs of q and meanwhile have q
as one of their k2NNs. It has two important properties, which make it different from conventional NN search.

Property 1. MNN is symmetric. That is to say for any two given objects oi,oj 2 D, and fixed k1,k2, if object oi 2MNNk1,k2(oj), then
oj 2MNNk2,k1(oi).

kNN search is asymmetric. As shown in Fig. 4, point p4 has p1 as its NN, while p1 has p2 but not p4, as its NN. However,
MNN retrieval is symmetric. For example, MNN1,2(p1) = {p2} indicating that p2 2 NN1(p1) and p1 2 NN2(p2). Hence, according
to the definition of the MNN query, p1 2MNN2,1(p2) satisfies as well.

Property 2. Given a query point q, the cardinality of q’s mutual nearest neighbors (MNNs), denoted by jMNNk1,k2(q)j, varies as the
data distribution of D changes.

kNN search consistently returns k answer objects, whereas MNN queries with the same k1 and k2 issued at different query
points might return result sets with different cardinalities. For instance, jMNN1,2(q)j = j;j = 0, jMNN1,2(p1)j = j{p2}j = 1, as de-
picted in Fig. 4.

Taking the definitions of MNN, kNN, and RkNN queries into consideration, we elicit the following lemma and theorems,
which constitute the basis of our proposed algorithms for MNN search. Some straightforward proofs are omitted for space
saving.

Lemma 1. If the distance from each data object in D to q is unique, then the cardinality of MNNk1,k2(q) varies in the range of [0,
k1].9

Proof. According to Definition 1, MNNk1,k2(q) = {p 2 Sjp 2 NNk1(q) ^ q 2 NNk2(p)}. Thus, jMNNk1,k2(q)j 6 jNNk1(q)j (=k1). h

Theorem 1. MNNk1,k2(q) is a subset of NNk1(q), i.e., MNNk1,k2(q) # NNk1(q).

Theorem 2. MNNk1,k2(q) is a subset of RNNk2(q), i.e., MNNk1,k2 (q) # RNNk2(q).
3.2. Baseline algorithm for MNN search

Based on the definition of MNN query, a naive approach, called simple processing algorithm (SP) is proposed. It adopts a
filtering-verification framework, i.e., first conducting a kNN search to retrieve the candidate set Sc = NNk1(q) and then verifying
each candidate c 2 Sc. The verification of a candidate c can be conducted again via a kNN search to check whether q 2 NNk2(c).
If yes, it means that q is among the k2NNs of c and hence c is returned as an answer object. Otherwise, c is discarded, i.e., it is a
false hit. Fig. 5 shows the pseudo-code of SP algorithm. Note that SP invokes the BF-kNN function, a BF algorithm for kNN
8 The MNN search can also be formulized as MNNk1,k2(q) = {p 2 Sjp 2 NNk1(q) ^ p 2 RNNk2(q)}.
9 Note that the distance between each data object in D and q might not be unique, i.e., there may have multiple data objects with the same distances to q, and

thus q could have more than k1 MNNs.



Algorithm SP (q, k1, k2, Srslt)  
Input: q: a query point; k1: the number of NNs; k2: the number of NNs  
Output: Srslt: a query result set  

1.   perform BF-kNN (q, k1, Sc) using min-heap H1  // BF algorithm for kNN search proposed in [19]  
2.   for each point c ∈ Sc do
3.     perform BF-kNN (c, k2, St) using min-heap H2

4.     if q ∈ St then
5.       Srslt = Srslt  {c}  // c is an actual MNN of q w.r.t. k1 and k2

6.   return Srslt

Fig. 5. Simple processing algorithm (SP).
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search [19] (described in Section 2.1), to retrieve kNNs of a specified query point; and employs an in-memory heap to facil-
itate the best-first traversal paradigm.

Consider an MNN3,1 query q shown in Fig. 6a, where we use the same data set as Fig. 2. The SP first calls BF-kNN to retrieve
the k1 (=3) NNs of q, i.e., NN3(q) = {i,e, j} (enclosed in a dotted circle). Then, SP examines each point in NN3(q). Finally, SP con-
firms that i 2 NN3(q) is indeed an MNN of q and it is returned as an answer object; whereas points e and j in NN3(q) are false
hits as NN1(e) = {d} and NN1(j) = {i}.

The correctness of SP is obvious. Observe that the candidate set returned by BF-kNN is always a superset (i.e., NNk1(q)) of
the final result set (i.e., MNNk1,k2(q)), that is, it does not incur false misses because MNNk1,k2(q) # NNk1(q) according to The-
orem 1. Every false hit p 2 NNk1(q) is subsequently eliminated during the verification step by verifying whether q is among
NNk2(p). Consequently, SP can return the exact set of MNNs.

Lemma 2. The SP algorithm loads some entries (node MBRs or data objects) of the R-tree TD from the disk multiple times.

Proof. Since the SP algorithm requires traversing the R-tree TD repeatedly for filtering and verifying the MNN candidates, it
loads/accesses some index entries (e.g., the root of TD) multiple times. h

As an example, Fig. 6b illustrates the repeated access region (RAR) (shaded area) in the filtering and verification steps of the
MNN3,1 query depicted in Fig. 6a. As seen from this diagram, SP visits entries N1, N2, N6, i, j thrice, and visits entries N4, e twice.

For the SP algorithm, let jH1j be the size of heap H1, and jH2j be the size of heap H2. The time and space complexities of SP
algorithm are analyzed in Theorem 3.

Theorem 3. The time and space complexities of the SP algorithm are O ((jScj + 1) � log jTDj) and O (jH1j + jH2j), respectively.

Proof. The SP algorithm follows the filtering-verification framework. In the filtering step, SP takes O (log jTDj) for obtaining
candidate set Sc; in the verification step, SP incurs O (jScj � log jTDj) in order to check whether each candidate in Sc is an actual
MNN of q. Thus, the time complexity of the algorithm is O ((jScj + 1) � log jTDj). The storage of the SP algorithm is dominated
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by heap H1 (used in the filtering step) and heap H2 (utilized in the verification step). Hence, the space complexity of the algo-
rithm is O (jH1j + jH2j). h

SP is very inefficient in terms of I/O overhead and CPU cost, especially for large values of k1 and k2, as also demonstrated
by our experimental results to be presented in Section 5. To overcome this deficiency, we propose four algorithms to improve
the performance of MNN query processing via different optimization techniques.

4. Optimizations

In this section, we focus on the optimizations of MNN query. Our objective is to reduce the number of node accesses (i.e.,
I/O cost) and speed up search performance accordingly. For this purpose, several enhanced algorithms for MNN search,
namely two-step algorithm (TS), reuse two-heap algorithm (RTH), algorithm using NN search with pruning (NNP), and algorithm
using RNN search with pruning (RNNP), are developed.

4.1. Two-step algorithm

The SP algorithm has to verify every single object included in the candidate set Sc, and thus the verification process may
need access the dataset jScj times. Since the only objective of the verification step is to validate whether each candidate in Sc

has a specified query point q as one of its k2NNs, we can issue an Rk2NN query at point q to find out the set of objects that
have q as one of their k2NNs, which is guaranteed to be a superset of the final result set of MNN retrieval, i.e., MNNk1,k2

(q) # RNNk2(q), as stated in Theorem 2. In view of this, we propose two-step algorithm (TS), and the pseudo-code of TS algo-
rithm is depicted in Fig. 7.

Based on Definition 1, MNNk1,k2(q) = {p 2 Sjp 2 NNk1 (q) ^ p 2 RNNk2(q)}. Consequently, the correctness of TS algorithm is
evident. On the other hand, TS has to scan the dataset twice, one for kNN search and the other for RkNN search. Compared
with SP algorithm which needs access the dataset (jScj + 1) times, TS can decrease the I/O overhead, especially when k1 is very
large and k2 is very small, i.e., k1� k2.

4.2. Reuse two-heap algorithm

Our second algorithm tries to improve the performance of SP using different optimization techniques. The SP algorithm
employs two heaps: (i) heap H1 used by the function BF-k1NN for retrieving the candidate set Sc of MNNs (Line 1 of SP); and
(ii) heap H2 utilized by the function BF-k2NN for verifying each candidate c in Sc (Line 3 of SP). As mentioned earlier, SP has to
visit some nodes (e.g., Root node of TD) multiple times. Motivated by this observation, an algorithm, namely reuse two-heap
algorithm (RTH), is proposed, which (i) attempts to fully use locally available nodes (e.g., those nodes in H1 and H2) in order to
reduce the redundant node accesses, and (ii) develops an early termination condition so that the verification process of a can-
didate c 2 Sc may be terminated earlier without finding all the k2NNs of c. Fig. 8 presents the pseudo-code of RTH algorithm.
Fig. 7. Two-step algorithm (TS).

Fig. 8. Reuse two-heap algorithm (RTH).



Fig. 9. The Verify algorithm.
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Similar as SP algorithm, RTH utilizes BF-kNN to retrieve the candidate set Sc (Line 2), and then verifies each candidate in Sc

(Lines 4–5) via Verify algorithm (shown in Fig. 9). Instead of scanning the dataset from scratch like the verification step of SP
does, Verify starts the traversal based on a local view of the dataset (Lines 1–3 of Verify). Initially, only the root node is known.
After the processing of BF-kNN algorithm, more knowledge of the data distribution (i.e., nodes of finer granularity) preserved
by the heap H and the candidate set Sc is obtained. Consequently, only the accesses to those nodes not locally available are
necessary. Since Verify continuously evaluates candidate objects, the access to some nodes will be triggered and thus more
and more knowledge of the underlying dataset is accumulated. However, the whole dataset is only visited once even in the
worst-case scenario. Compared with SP, RTH reduces the traversal of the dataset from (jScj + 1) times to once. In addition,
once RTH encounters a data object o such that o 2 NNk2(c) and dist(o,c) P dist(q,c), candidate c 2 Sc is for sure one of the
k2NNs to q, and hence the verification process of c can be terminated without finding all the k2NNs of c. This early termina-
tion condition can improve the search performance further.

It is worth noting that the auxiliary set Stemp is reset to ; in the Line 4 of Verify algorithm. This initialization is required in
order to avoid storing some unnecessary entries for every verification round. Moreover, it is possible that the number of NNs
of a candidate c is smaller than a specified k value, if the cardinality of dataset is smaller than k. This necessitates the oper-
ations involved in the Lines 18 and 19 of Verify algorithm.

Fig. 10 presents an example. Assume an MNN3,1 query is issued at the point q (as shown in Fig. 6a). After the filtering step,
{i,e, j} has been identified as the candidate set Sc and H (={d,N3,h,N5}) represents the current view of the dataset (as illus-
View0 : right after the filtering step 

H = Stemp = {i, e, j}

View1 : after performing the Lines 1-3 of Verify algorithm when verifying i 

Stemp = {i, e, j, d, N3, h, N5}
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Fig. 10. Example of RTH algorithm.
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trated in Fig. 10: View0). In the subsequent verification step, candidate objects in Sc are verified one by one. When i 2 Sc is
verified, RTH first sorts all the locally available objects/nodes in ascending order of their minimal distances to i, and en-heaps
H there (as shown in Fig. 10: View1). Thereafter, RTH de-heaps top entry from H for evaluation. As for candidate i, it can be
confirmed to be an actual answer object once object j (i.e., the entry in H having the second smallest distance to i) is accessed
due to dist(i, j) > dist(i,q). The situation of H and Stemp after verifying i is depicted in Fig. 10: View2. Compared with SP algo-
rithm, RTH does not incur any extra node access for validating i. Similarly, RTH can confirm that objects e and j are not the
final answer objects based on local knowledge, i.e., dist(e,q) > dist(e,d) and dist(j,q) > dist(j, i).

As RTH shares the same processing method as SP, we ignore the proof of its correctness. However, it significantly reduces
the number of nodes accesses, as pointed out in Lemma 3.

Lemma 3. The RTH algorithm loads any entry (node MBR or data object) in the R-tree TD from the disk only once.

Proof. The lemma is correct because RTH stores and reuses all the entries (containing node MBRs and data objects) that have
been visited so far during query processing. h
4.3. Algorithm using NN search with pruning

Although TS and RTH reduce the I/O overhead by using batch processing and reusing technology, there is still room for
performance improvement based on the following observations. TS, no matter what is the value of k1, issues an Rk2NN query
to retrieve all the objects that have q as one of their k2NNs. Nevertheless, only those objects that belong to NNk1(q) will be
included in the final result set. When k1� k2, TS might suffer from expensive RkNN query cost. If RkNN retrieval only con-
siders those objects included in NNk1(q), the search performance may be improved. On the other hand, RTH takes NNk1(q) as
the candidate set because NNk1(q) �MNNk1,k2(q) according to Theorem 1 (presented in Section 3.1). However, NNk1(q) may
contain some false hits that cannot become actual answer objects. Therefore, if we can prune away those false hits in the
filtering stage, the overall cost of verification step can be decreased. Our third algorithm, namely algorithm using NN search
with pruning (NNP), is inspired by these two observations. It incorporates several pruning strategies during the search. Fig. 11
depicts the pseudo-code of NNP algorithm.

NNP is similar to RTH, but it employs pruning heuristics at two places to improve the search performance. The first prun-
ing is integrated with kNN search (Line 3), handled by NNP-Finding algorithm; and the second one is a self-pruning (Lines 5
and 6). The main target is to remove those candidates that definitely will not belong to RNNk2(q). As the self-pruning is very
straightforward, we only explain the NNP-Finding algorithm, which is presented in Fig. 12.

NNP-Finding performs a BF algorithm for kNN (k = k1) search with respect to q and meanwhile it enables TPL pruning tech-
niques via TPL-k-Trim algorithm (proposed in [41]). As presented in [41], TPL-k-Trim takes as input a query point q, a param-
eter k, a candidate set Sc, and an entry e, and it determines whether the entry e is closer to at least k objects in Sc than to q. If
yes, q R NNk(e), i.e., e R RNNk(q), and TPL-k-Trim returns 1. Otherwise, e cannot be pruned. NNP-Finding visits the nodes/
points based on ascending order of their distances to q. If the accessed entry refers to a data object o, it invokes TPL-k-Trim

to examine whether o can be discarded, with pruned objects preserved in the refine set Srfn and un-pruned objects preserved
in the candidate set Sc (Lines 6–13). Otherwise, the accessed entry must be an intermediate (i.e., a non-leaf) node and its
child entries are de-heaped for later examinations (Lines 14–16). Thereafter, NNP-Finding checks its early termination con-
dition, i.e., whether any un-examined object o0 2 NNk1(q). The main idea is to find out a node/point e0 in H that is the closest to
q and meanwhile cannot be pruned by TPL-k-Trim algorithm, and then count the number of objects that are for sure closer to
q than e0 (Lines 17–25). Suppose set S contains the nodes/points that are closer to q than e0, we adopt a conservative approach
to estimate jSj based on

P
oi2SðfminðoiÞÞl in order to avoid any false miss. Here, fmin is the minimum node fanout (e.g., 40% of the

node capacity), and l is the level of any object oi 2 S (counting from the leaf level as level 0). If the number exceeds k1, e0 and
Fig. 11. Algorithm using NN search with pruning (NNP).



Fig. 12. The NNP-Finding algorithm.
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all the remaining entries in H will not become/contain a candidate object because e0 is guaranteed not to contribute to
NNk1(q). Consequently, NNP-Finding can be terminated.

In order to facilitate the understanding of NNP-Finding, we take an MNN3,1 query issued at q, as depicted in Fig. 6a, as an
illustrative example. The trace is shown in Fig. 13, where the distances maintained in H are omitted for simplicity. Initially,
NNP-Finding accesses the root node and inserts its entries N1, N2 into heap H, sorted in ascending order of their mindist to q.
Thereafter, it continuously de-heaps the top entry from H for evaluation until the termination condition is satisfied: (i) the
cardinality of the candidate set Sc reaches k1, i.e., jScj = 3; or (ii) no remaining entry in H can contain/be the object that be-
longs to NN3(q).

The first de-heaped entry is N2, and its child nodes are inserted into H = {N6,N1,N5}. As current Sc = ; and thus the next
entry N6 might contain the objects that can contribute to NN3(q), the evaluation continues. N6 is evaluated and its child en-
tries (i.e., objects h, i, j) are en-heaped H. The algorithm then discovers the first data point i, and keeps it in the candidate set
Sc = {i}. It proceeds to the expansion of nodes N1, N4, and then encounters data point e. As e cannot be pruned, it is added to
the candidate set with Sc = {i,e}. Since all the remaining nodes/points in H = {j,d,N3,h,N5} are closer to either i or e than to q,
Fig. 13. The trace of NNP-Finding algorithm.
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none of them can become/contain the candidate object, i.e., PruneDist =1 and S = H. In other words, ObjNum(S) = 5 P k1 (=3),
and hence the algorithm can be terminated, after which Sc = {i,e} and Srfn = ;.

Similar as RTH, NNP reuses all the locally available entries during query processing. Therefore, NNP loads any entry from
the disk at most once. Compared with RTH, NNP incorporates a pruning technique into the filtering step. It is guaranteed that
the early termination does not miss any real answer object, as demonstrated in Theorem 4. Consequently, NNP can also en-
sure the correctness of the search.

Theorem 4. The NNP-Finding algorithm does not miss any answer object of an MNN query.

Proof. NNP-Finding adopts a normal BF-kNN search (i.e., terminates the search when the cardinality of the candidate set Sc

reaches k1, i.e., jScj = k1), but it meanwhile enables an early termination when no remaining entry in H can contain/be the
object that belongs to NNk1(q). Now we need to validate that the early termination will not miss any actual answer object.
Without loss of generality, we assume the algorithm early terminates after entry e is de-heaped. Consequently, there must be
an entry e0 2 H that cannot be pruned by TPL-k-Trim and meanwhile has ObjNum(S) P k1 with S = {e00 2 Hjmax-
dist(e00,q) < mindist(e0,q)}. We assume the early termination condition might cause some false miss, and assume an answer
object o 2 eo 2 H is missed. Since e0 is the first entry in H that cannot be pruned away, maxdist(s,q) < mindist(e0,q) 6min-
dist(eo,q) 6 dist(o,q) holds for "s 2 S. As ObjNum(S) P k1, it is confirmed that at least k1 objects are closer to q than o, and
hence o R NNk1(q). This finding contradicts our assumption, and thus the proof completes. h
4.4. Algorithm using RNN search with pruning

As defined in Definition 1, MNNk1,k2(q) = {p 2 Sjp 2 NNk1(q) ^ p 2 RNNk2(q)}. Our previous algorithms form the candidate
set Sc based on NNk1(q) and then verify each candidate c in Sc based on the fact that whether c 2 RNNk2(q). However, when
jRNNk2(q)j < jNNk1(q)j, it is more beneficial to constitute the candidate set based on RNNk2(q) but not NNk1(q), especially when
k1� k2. Our fourth algorithm, namely algorithm using RNN search with pruning (RNNP), is motivated by this observation.
Fig. 14 shows the pseudo-code of RNNP algorithm. The logic is very similar as NNP algorithm, but it calls RNNP-Finding algo-
rithm to form the candidate set (Line 3). Subsequently, it checks whether each candidate object c 2 NNk1(q) for verification,
by invoking NN-Verify algorithm (Line 5).

Fig. 15 depicts the pseudo-code for RNNP-Finding algorithm. The basic idea is to retrieve those objects p whose NNk2(p)
includes q, i.e., RNNk2(q), based on TPL-k-Trim and TPL-k-Refinement algorithms as in [41]. Nevertheless, different from con-
ventional RkNN search, it takes the characteristic of MNN search into consideration and tries to exclude p R NNk1(q) from the
candidate set, i.e., $S such that jSjP k1 and "s 2 S, dist(s,q) < dist(p,q). As RNNP-Finding algorithm accesses the objects accord-
ing to ascending order of their distances to q, the search can be safely terminated once a de-heaped object o is found to be
closer to k1 other objects than q, i.e., o R NNk1(q) (Lines 10–12). The reason behind is that all the remaining objects in H (i.e.,
those unvisited objects) are for sure not included in NNk1(q) (as proved in Theorem 5).

Note that in RNNP-Finding, TPL-k-Trim is applied twice for each node e: (i) when e is expanded (Line 5), and (ii) when e is
de-heaped from heap H (Line 16). The second test is necessary, since e may be pruned by some candidate that was discovered
after the insertion of e into H. In addition, as with RTH and NNP, RNNP reuses all the entries (involving nodes and data ob-
jects) that have been accessed during query processing. Therefore, RNNP also loads any entry from the disk at most once.

Theorem 5. The early termination condition of RNNP-Finding algorithm (shown in Lines 10–12) does not miss any actual answer
object of MNN search.

Proof. Without loss of generality, we assume at least one answer object o0 2MNNk1,k2(q) is missed due to the early termi-
nation condition of RNNP-Finding algorithm. In other words, o0 2 NNk1(q) ^ q 2 NNk2(o0) according to Definition 1. We further
assume that the early termination condition of RNNP-Finding algorithm is satisfied when an object ois evaluated. As o0 is
missed, o0 should not have been visited, i.e., o0 is still in the heap H with mindist(o0,q) > mindist(o,q). As for "s 2 S, max-
Fig. 14. Algorithm using RNN search with pruning (RNNP).



Fig. 15. The RNNP-Finding algorithm.

718 Y. Gao et al. / Data & Knowledge Engineering 68 (2009) 705–727
dist(s,q) < mindist(o,q), and hence it is obvious that for "s 2 S, maxdist(s,q) < mindist(o0,q). Since ObjNum(S) P k1, at least k1

objects in S are closer to q than o0, and o0 for sure does not belong to NNk1(q), i.e., o0 R NNk1(q), which contradicts our assump-
tion and completes the proof. h

Fig. 16 presents the pseudo-code for NN-Verify algorithm. The basic idea is to conduct a kNN search at the query point q.
Whenever a data object o that is included in the candidate set Sc is retrieved, it is added to the result set Srslt due to the fact
that o 2 NNk1(q) and o 2 RNNk2(q) (Lines 8 and 9). NN-Verify can be safely terminated when (i) the kNNs of q have been re-
trieved (Lines 10 and 11); or (ii) all the data objects contained in Sc have been verified (Lines 10 and 11); or (iii) heap H be-
Fig. 16. The NN-Verify algorithm.
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comes empty (Lines 15 and 16). Notice that NN-Verify verifies every candidate in Sc by reusing all the entries (including all the
candidate objects in Sc and all the pruned objects/nodes maintained in Srfn) that have been accessed in the filtering step of
RNNP (Lines 2 and 3).

5. Experimental evaluation

In this section, the efficiency and effectiveness of our proposed MNN query processing algorithms (including SP, TS, RTH,
NNP, and RNNP) are evaluated through extensive experiments. All the algorithms are implemented in C++, and the experi-
ments are conducted on a PC with Pentium IV 3.0 GHz CPU and 2GB main memory, running Microsoft Windows XP Profes-
sional Edition. We first describe the experimental settings in Section 5.1, and then present the experimental results and our
findings in Section 5.2.

5.1. Experimental setup

We utilize both real and synthetic data sets in the experiments. Three real datasets are deployed. Specifically, LB contains
2D points representing 123,593 geometric locations in Long Beach County; Wave includes 3D points representing 60,000
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Fig. 17. Performance vs. k1 (k2 = 16).
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Fig. 18. Filtering and verification step costs of NNP vs. those of RNNP (varying k1 and k2 = 16).

Table 4
The maximal number of entries in the heap vs. k1 (k2 = 16) on LB, Wave, and Color datasets respectively.

k1 LB Wave Color

SP TS RTH NNP RNNP SP TS RTH NNP RNNP SP TS RTH NNP RNNP

1 175 163 177 139 139 344 316 347 140 140 1888 1687 1944 294 294
4 198 182 206 162 162 414 364 459 188 188 2212 2035 2528 475 475
16 247 219 296 207 207 541 473 733 244 244 2632 2485 3565 695 695
64 308 292 445 240 224 679 666 1130 342 319 3229 3224 4802 835 784
256 438 438 827 346 232 1026 1026 1868 573 369 4398 4398 6653 1228 819
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measurements of wave directions at the National Buoy Center; and Color involves 4D vectors representing the color histo-
grams of 65,000 images.10 We also create several synthetic datasets with dimensionality varying from two to five and car-
dinality changing between 128 K and 2048 K, following uniform and zipf (with skew coefficient a = 0.8) distributions. For all
the datasets, each dimension of the data space is normalized to range [0,10,000], and we assume a point’s coordinates on
various dimensions are mutually independent.

All the datasets are indexed by R*-trees [3] with page size of 1 K bytes (we choose a smaller page size to simulate practical
scenarios where the dataset cardinality is much larger, as [41]). The experiments investigate the influence of different fac-
tors, including (i) value of k1, (ii) value of k2, (iii) dimensionality, (iv) dataset cardinality, and (v) buffer size. The performance
metrics are the number of node/page accesses (i.e., I/O overhead), query cost (i.e., the sum of the I/O time and CPU time,
where the I/O time is computed by charging 10 ms for each page access, as in [41]), and the maximum number of entries
in the heap (as the heap storages dominate the space complexities of our proposed algorithms). Each reported value in
the following diagrams is the average performance of 200 queries. The query points are randomly chosen from the set of
data points, so that the queries follow the underlying dataset distribution. Unless specifically stated, the size of LRU buffer
is 0 in the experiments, i.e., the I/O cost is determined by the number of nodes accessed.
10 The LB, Wave, and Color datasets are available at the following sites: http://www.census.gov/geo/www/tiger/, http://www.ndbc.noaa.gov, and http://
www.cs.cityu.edu.hk/~taoyf/ds.html, respectively.

http://www.census.gov/geo/www/tiger/
http://www.ndbc.noaa.gov
http://www.cs.cityu.edu.hk/~taoyf/ds.html
http://www.cs.cityu.edu.hk/~taoyf/ds.html
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5.2. Performance study

The first set of experiments studies the effect of k1 on the efficiency of the algorithms using the real datasets. We fix k2 to
16 and vary k1 between 1 and 256 to measure the performance, with the number of node accesses and query cost (in sec-
onds) depicted in Fig. 17. Here, query costs for SP, RTH, NNP, and RNNP are broken into two components, corresponding to
the I/O cost and the CPU cost, respectively. The cost increases with k1 since the number of MNN candidates escalates as k1

grows. We observe that only the SP algorithm suffers from an exponential performance downgrade and it performs the worst
in all the cases. This is because it requires multiple traversals of the R-tree. Thus, SP is omitted from the remaining
experiments.

An interesting observation is that NNP and RNNP have the similar performance in most cases, but RNNP is slightly better
than NNP when k1� k2 (e.g., k1 = 256 and k2 = 16), as also demonstrated in the subsequent experiments. The reason behind
is that NNP takes NNk1(q) as the candidate set, while RNNP forms the candidate set based on RNNk2(q). When k2� k1, it is
expected thatjRNNk2(q)j < jNNk1(q)j. In order to further understand the difference between the NNP and RNNP, we divide the
query cost into the two parts, corresponding to the filtering step and the verification step, respectively. The experimental
results are plotted in Fig. 18, where NNP-Filtering (RNNP-Filtering) and NNP-Verification (RNNP-Verification) represent
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the filtering step and verification step of NNP (RNNP), respectively. Notice that, when k1� k2 (e.g., k1 = 256 and k2 = 16), the
filtering step cost of RNNP is lower than that of NNP for all datasets as jRNNk2(q)j < jNNk1(q)j holds.

However, both NNP and RNNP outperform the other algorithms (including SP, TS, and RTH) by several orders of magni-
tude in all cases, especially when k1 is large. For example, in Fig. 17b RNNP improves the query cost by 153/3/5 times, com-
pared against SP/TS/RTH for LB dataset with k1 = 256 and k2 = 16. This is because, both NNP and RNNP enable TPL pruning
techniques to discard unnecessary entries, and hence accelerate the search. On the other hand, although TS and RTH perform
not as good as NNP and RNNP, they are still much better than SP, owing to the reuse technique that significantly reduces the
number of nodes accessed. It is worth noting that when k1 = 256 and k2 = 16, TS performs better than RTH in terms of query
cost under LB and Wave datasets, as shown in Fig. 17b and d, respectively. This occasional case is due to the fact that
jRNNk2(q)j � jNNk1(q)j. In addition, both NNP and RNNP consistently outperform TS in Fig. 17, because they integrate the fil-
tering step and the verification step seamlessly, and try to prune away unqualified candidates as soon as possible to further
improve the search performance.

Table 4 shows the maximum number of entries in the heap (denoted as n) of different algorithms with respect to k1,
which causes the major run-time memory consumption. Let dim be the dimensionality. In our experiments, we allocate 4,
4 � 2 � dim, 4, 4, and 4 bytes to items (contained in a heap entry) ID, coordinate, level, key/distance, and pointer, respec-
tively. Thus, the size of each heap entry (denoted by m) equals 32, 40, 48, and 56 bytes for dimensionalities 2, 3, 4, and 5,
respectively. It needs to point out that the maximal heap sizes (calculated as (m � n) bytes) of all the algorithms are almost
negligible compared with the R-tree size. As an example, for Color dataset with k1 = 256 and k2 = 16, RTH algorithm consumes
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Fig. 20. Filtering and verification step costs of NNP vs. those of RNNP (varying k2 and k1 = 16).

Table 5
The maximal number of entries in the heap vs. k2 (k1 = 16) on LB, Wave, and Color datasets respectively.

k1 LB Wave Color

SP TS RTH NNP RNNP SP TS RTH NNP RNNP SP TS RTH NNP RNNP

1 223 219 235 157 144 476 473 540 197 158 2485 2485 2778 444 318
4 231 219 257 175 166 491 473 621 217 204 2492 2485 3132 490 455
16 247 219 296 207 207 541 473 733 244 244 2632 2485 3565 695 695
64 256 219 320 246 246 558 473 753 287 287 2823 2485 3763 992 992
256 263 219 346 273 273 560 473 755 306 306 2879 2485 3844 1243 1243
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48 � 6653 bytes �312 pages (notice that 6653 is the maximal value in Table 4). In addition, it is observed that RTH is more
memory-consuming, compared against the other algorithms. The reason behind is that RTH has to maintain all the entries
that have been visited during the query processing in order to reuse them later, whereas NNP and RNNP utilize pruning tech-
niques to discard non-qualifying entries, leading to heap size saving.

Next, we fix k1 to 16 and vary k2 between 1 and 256 to evaluate the impact of k2 on the performance of the algorithms, as
shown in Fig. 19. It is observed that the cost of the algorithms increases slightly as k2 grows, but their ascending trend is not
as obvious as that observed from Fig. 17. This is because, as implied by Lemma 1, the maximum number of the final MNNs in
the dataset is k1 (=16), which is fixed. Again, both NNP and RNNP perform the best in all the cases. In particular, the max-
imum speedup of these two algorithms over RTH is about 7.5 times, occurring under Color dataset with k1 = 16 and k2 = 1
(Fig. 19f). The second observation is that RNNP outperforms NNP when k1� k2 (e.g., k1 = 16 and k2 = 1). The reason behind
is that jRNNk2(q)j � jNNk1(q)j satisfies when k2� k1, as also demonstrated in Fig. 20, where the filtering step cost of RNNP is
lower than that of NNP when k1 = 16 and k2 = 1.

Table 5 compares the maximal number of entries in the heap as a function of k2, confirming the observations of Table 4.
Notice that even though TS is much better than SP, we ignore TS in Fig. 19c–f, since it is always worse than the other three
algorithms (i.e., RTH, NNP, and RNNP), especially for the large values of k2 (e.g., 256). Similarly, TS is omitted from Figs. 21
and 22 as well.

The third set of experiments explores the influence of the dimensionality on the cost of the algorithms. Due to the low
dimensionality of the real dataset, we employ the synthetic datasets with cardinality 512 K and vary dimensionality from
2 to 5. Fig. 21 plots the efficiency of different algorithms in answering MNN16,16 queries. The performance of the algorithms
degrades as the dimensionality increases. This is because, in general, R-tree becomes less efficient as the dimensionality
grows [33] due to the large overlap among the node MBRs at the same level. Moreover, the cost involved in both the filtering
and verification steps increases with the growth of dimensionality. However, both NNP and RNNP evidently outperform the
other algorithms, and the difference increases with dimensionality. Table 6 lists the maximal number of entries in the heap
for the algorithms with respect to dimensionality. As expected, the memory consumption of the algorithms increases as
dimensionality ascends. Observe that TS consumes the least memory space for Uniform dataset, while for Zipf dataset, both
NNP and RNNP consume the least in the most of cases, due to different data distributions. Nevertheless, they are consistently
better than RTH.

In the sequel, we study the behavior of the algorithms for different dataset cardinalities. The 3D Uniform and Zipf datasets
whose cardinalities range between 128 K and 2048 K are employed. Fig. 22 measures the cost of the algorithms in processing
MNN16,16 queries as a function of the dataset cardinality. It is observed that the impact of the dataset cardinality is not as
obvious as that of dimensionality. This is because given fixed k1 and k2, the expansion of all algorithms is roughly the same,
which does not depend on the size of the dataset. The step-wise cost growth corresponds to an increase of the tree height.
Specifically, for Uniform (Zipf) dataset, the increase occurs at cardinality 512 K (1024 K). In general, the relative performance
of the algorithms remains the same as that of the previous experiments in all cases, namely, both NNP and RNNP perform the
best, followed by RTH, TS, and SP is the worst. Table 7 presents the maximal number of entries in the heap (involved in the
algorithms) for the dataset cardinality. The phenomena and their explanations are the same as those in Table 6.

As mentioned at the end of Section 5.1, all the aforementioned experiments are conducted without considering buffers. In
the last set of experiments, we examine the performance of the algorithms in the presence of an LRU buffer. Towards this, we
perform MNN16,16 queries on the 2D synthetic datasets with cardinality = 512 K, varying the buffer size from 0% to 10% of the
Table 6
The maximal number of entries in the heap vs. dimensionality (k1 = k2 = 16, cardinality = 512 K) on Uniform and Zipf datasets respectively.

Dimensionality Uniform Zipf

SP TS RTH NNP RNNP SP TS RTH NNP RNNP

2D 250 199 279 229 229 233 194 282 231 231
3D 403 340 587 445 445 530 463 730 465 465
4D 747 634 1295 927 927 1478 1337 2182 964 964
5D 1449 1283 2849 2117 2117 2098 1913 3435 1910 1910

Table 7
The maximal number of entries in the heap vs. cardinality (k1 = k2 = 16, dimensionality = 3D) on Uniform and Zipf respectively.

Cardinality Uniform Zipf

SP TS RTH NNP RNNP SP TS RTH NNP RNNP

128K 328 272 505 415 415 392 336 558 389 389
256K 353 289 527 421 421 444 388 624 414 414
512K 364 304 540 431 431 476 410 657 415 415
1024K 390 327 583 446 446 504 435 708 466 466
2048K 462 390 676 475 475 602 524 838 486 486
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R-tree size. To obtain stable statistics, We further assume the first 100 queries are performed to warm up the buffer and only
measure the average performance of the last 100 queries. Fig. 23 shows the cost with respect to the buffer size for Uniform
and Zipf datasets. When the buffer size equals 0, every node access incurs a page access. Since the algorithms may retrieve
the same entries multiple times during query processing, even a small buffer ensures that some of such entries are loaded
from the disk only once, resulting in a dramatic reduction in the I/O cost and the improvement of overall query cost. In
Fig. 23a, for instance, when the buffer size changes from 0% to 2%, the number of node accesses (i.e., I/O cost) reduces
24.5, 2.4, 2.1, 2.3, and 2.3 times for algorithms SP, TS, RTH, NNP, and RNNP, respectively. It is also observed that the perfor-
mance of the algorithms stabilizes once the buffer size reaches 8%, meaning that this buffer size is sufficient for keeping all
the entries visited in memory. Both NNP and RNNP again outperform their competitors significantly in all cases.

To summarize, from the above experimental results on both real and synthetic datasets, we can conclude that both NNP
and RNNP consistently provide the best performance under all the settings, and RNNP is the best choice if k2� k1 holds.
Although both TS and RTH perform not as efficient as NNP and RNNP, they still outperform SP significantly in all cases.
SP is definitely inappropriate for MNN queries as it is always worse than the other four algorithms. In addition, the maximal
number of entries in the heap for each algorithm is negligible compared to the dataset size.
6. Conclusions

This paper presents the first piece of work that solves MNN queries in spatial databases. As a new form of NN search, MNN is
interesting from a research point of view and has practical relevance to several applications including decision making, data
mining, and pattern recognition. In this paper, we provide a formal definition of MNN retrieval and propose a suite of algo-
rithms (containing SP, TS, RTH, NNP, and RNNP) for efficient processing of MNN queries on multi-dimensional datasets. Our
methods follow a two step (i.e., filtering-verification) methodology: a filtering step for retrieving a set of candidates, and
the subsequent verification step for eliminating the false hits. An extensive experimental study upon real and synthetic data-
sets confirms that both NNP and RNNP outperform the other three algorithms significantly in terms of I/O overhead and total
query cost under all settings. The performance improvement is due to the fact that both NNP and RNNP algorithms reuse all the
entries that have been visited during the search and eliminate unnecessary node accesses by effective pruning strategies.

The proposed techniques in this paper only consider the Euclidian space. A promising direction for future work may con-
cern their extension to metric space, such as road network. In this case, the triangular inequality has to be used (instead of
bisectors) for pruning the search space. We also intend to investigate efficient algorithms for handling the MNN query with
respect to a line segment which contains continuous query points instead of a fixed query point.
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