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Preface

These notes were written to accompany the econometrics courses that I teach at the School of
Economics, Singapore Management University (SMU):

• ECON207 Intermediate Econometrics (BSc Econ)
• ECON682 Econometric Analysis (Econometrics core for MSc Econ / MSc Fin. Econ.)
• ECON6001 Time Series Econometrics (MSc Economics - Quantitative Economics Track)
There are (will be) about 20 to 30 chapters in total; the specific chapters you will use are

listed in your course outline.

What is Econometrics?

Econometrics draws on statistics, economic theory, and mathematics to develop tools for esti-
mating economic relationships, for the purposes of decision making, prediction and forecasting,
inferring causal effects, evaluating the efficacy of policy interventions and initiatives, testing the
validity of economic theories and their underlying assumptions, and answering a multitude of
questions that are ultimately empirical in nature. Examples include:

• Pricing decisions by firms require knowledge of the price sensitivity of demand for their
products. These are provided by estimates of the products’ price elasticities of demand.

• Monetary authorities / central banks build empirical forecasting models of the economy
to help anticipate outcomes such as high inflation or economic recessions and predict the
outcome of potential policy responses.

• House prices that are very much higher than that predicted by an empirical model link-
ing house prices to economic fundamentals may indicate imbalances in the economy that
require policy intervention.

• There is a long list of public initiatives undertaken by authorities to encourage certain
behaviors in people and firms, or to improve economic, health, educational and other
outcomes in populations. To what extent do they work?

• Many theories in various fields such as industrial organization, economic growth, economic
geography among others, assume constant returns to scale in production. Are such as-
sumptions in line with empirical evidence, or would they fall when tested against data.

• Estimates of the economic effect of climate change must factor in adaptation by industries.
While we can expect industries to at least try to adapt, is there evidence that they are
able to do so effectively and quickly enough?

Such applications present many challenges. The challenge in forecasting applications is to
find predictors that have stable relationships with the variable being forecast, and to determine
and estimate the form of these relationships. In some cases there are many potential predictors,
each limited in predictive ability on its own, but perhaps powerful in totality. The challenge is
to estimate usable forecasting relationships with those predictors.

Causal inference – empirically teasing out causal relations from correlative ones – must deal
with confounding effects. For example, the causal link from years of education to earnings is
tangled up with the effects of individual characteristics such as ability, work experience at the
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2 Preface

time of sampling, family background, among others things, all of which drive both earnings and
the decision to pursue more years of education. Any attempt to interpret a correlation between
years of education and earnings as a causal effect must somehow control for these factors. The
ideal situation is if we could hold everything fixed apart from the candidate “causal” variable 𝑥
and observe what happens to the ‘explained’ variable 𝑦 when we change 𝑥, but of course this
is impossible. What are the alternatives? In some applications, one might be able to employ
a randomized controlled trial (RCT) wherein subjects are randomly assigned into a treatment
group and a non-treatment group. The randomization breaks the link between the confounding
characteristics and the treatment, and enables one to interpret the correlation between treatment
and outcome as evidence of causation. In most cases, however, researchers have to depend on
observational data, where information regarding a sample drawn from a population is observed
without any intervention from the researcher. In these cases, clever methods must be devised
to tease out causality from correlation.

Econometric methods must also take into consideration the data structures found in economic
data – whether data is made up of a sample from a population taken at some point in time (we call
this “cross-sectional data”), or several cross-sections resampled over multiple periods (“pooled
cross-sections”) or the same cross-sectional sample re-observed over multiple periods (“panel
or logistical data”), or observations of variables taken over multiple time periods (“time-series
data”), and so on. In some applications, the researcher has to take special steps to counter the
complications that arise because of this structure. In other examples, the features of certain
data structures can be exploited to assist in empirical causal inference. Other data related issues
include measurement error, and the fact that we often are only able to employ data that are, at
best, proxies of the actual variables we would like to study.

Econometricians have always relied on computers to implement their formulas. This reliance
has further increased as computer-based statistical methods – where algorithms have replaced
formulas – have become more important over the past few decades. The econometrician now
must add computing skills, in addition to economic theory, mathematics and statistics, to her
list of competencies.

Mathematical Prerequisites
I assume that the reader is able to do simple differentiation and integration. What we need of
optimization theory is reviewed in a section in the mathematics review chapter. We will use a
considerable amount of matrix algebra, and detailed notes are provided on this topic. We will,
of course, use probability theory and statistics extensively. These notes include chapter-length
reviews of both.

Software
The computations in these notes were done in R. Data are available from your course webpages,
and I assume these are stored in a ‘data’ folder in your working directory. There are many
introductions to R on the web. I will proceed on the assumption that you have studied some
of these, and that you have a working installation on your computer. I recommend running R
within the RStudio Integrated Development Environment (IDE). The chapter “Introduction to
R” contains brief instructions on installing R and RStudio, and a quick primer on using R.



Chapter 1
A Brief Introduction to R

1.1 Getting Set Up
First download and install the R software from The R Project for Statistical Computing website.
Then download and install RStudio from the RStudio website (go to Products, RStudio under
the Open Source tab, and download the Open Source Edition of RStudio Desktop). RStudio is
an “integrated development environment” (IDE) comprising a set of programs that help you to
develop and run R code. You do not need RStudio to run R, but this is what we will do.

When you first run RStudio, you will see an RStudio desktop open up with three or four win-
dows. There will be one with tabs such as Files, Plots, Packages, Help, and Viewer, another
window with tabs marked Console, Terminal, Jobs, and a third window with Environments,
History, Connections, and other tabs. If you go to the menu and select File>New File>R
Script, a fourth window will open up with an Untitled1 tab. This is the Editor window, and
the Untitled1 tab is a blank R Script file.

You will issue commands in the Console tab, or write your instructions in a R script file and
execute them from the Editor window. If you ask R to display the results o calculations, these
will show up in the Console tab. Graphics produced will show up in the Plots tab. Objects
created will be listed in the Environment tab. Executing commands from an R script is best
practice; you can save the commands, modify them, correct errors and redo computations easily.
Use the console to test commands, make inquiries of objects, and for other one-off actions.

Activity: Go to your console tab, type x <- 4.5 and press enter. Type x and enter.

x <- 4.5
x

[1] 4.5

You have just used the assignment operator <- to create an object named x containing
the number 4.5.1 The object x now appears in your Environment tab. You can also use the =
operator, but we almost always use <- for assignment and = when giving values to parameters
in functions. The second line prints the value of x to your console.

If you make a calculation, say 2+2, and don’t assign the result to a name, the result of that
calculation is displayed in the console window, but is thereafter inaccessible, lost in computer
memory until overwritten by R.

1Technically, R stores the value 4.5 as binary code somewhere in your computer, creates a name x, and a
pointer linking the name to the memory location where the value is stored. But at this stage, you can think of it
as having created an object named x with the value 4.5.
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4 CHAPTER 1. A BRIEF INTRODUCTION TO R

Activity: Open a new R Script in the Editor window (or use the ‘untitled’ script if it is already
open), and type in the following lines.

# Any line or part of line following a '#' is ignored by R
# We use this feature to add comments to code

y <- seq(1,10) # Create an integer sequence from 1 to 10
plot(y,1/y,type='l') # Create a line plot

2 4 6 8 10

0.
2

0.
6

1.
0

y

1/
y

On your Editor window, click on the Source button (alternatively, select all lines and hit
Ctrl+Enter). This will cause all of the lines in the R script to run one after the other. A line
plot will appear on your Plots tab. If you select Export>Copy to Clipboard, the plot appears
in a pop-up window. If you click Copy Plot, the plot is placed on your clipboard and you can
then paste the plot into, say, a Word document. New plots are placed over current plots. Use
the arrows in the plot window to go back and forth between plots. Press the red circle with a
white X to erase the current plot. Press the broom icon to erase all plots. To save your script,
click on the floppy disk icon and save the file with an appropriate name. The saved file will
have the “.R” extension.

In R, you store your data in vectors, matrices, lists, data frames (and variants of it), and
time series objects (and variants of it). These are different data structures, i.e., different
ways that R can organize your data.

You will work with different kinds of data types, including integer (whole numbers, without
decimals), double (or floating-point for numbers with decimals), character (for text data),
logical (or boolean, to indicate TRUE or FALSE), and complex (for complex numbers). Numbers
such as 1 and 2 can be stored either as integers or doubles. To force a whole number to be an
integer, we append an L after the number, e.g., 1L. Integer and double are also collectively known
as numeric data types. There is also a factor data type for categorical data.

All actions in R are carried out using functions such as seq() and plot(), and operators
such as <- and : (operators are actually also functions). Functions in R are sets of instruc-
tions designed to perform certain tasks. Pre-written R functions are organized into packages.
Every installation of R comes with some packages pre-installed (including the base, datasets,
graphics and stats packages) and which are automatically loaded every time you start R.
There are many other packages written by independent programmers that provide additional
functionality and that are not pre-installed in R. To access these functions, you have first to
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install the package into your R installation. You can then load the package into any R session
that requires the functions in that package. Finally, you can write your own functions.2

To find out more about any given R function, enter ? function_name into the console and
the relevant documentation will come up, e.g.,

? seq # Enter this and see what happens
? `:` # With this sort of operators, you have to use surround them by backticks

As we mentioned earlier, objects that you create go into your “environment”. To see what is
in your environment, use ls(). To remove all objects in your environment, use rm(list=ls()).
Try the following line-by-line.

ls() # ls ~ list objects
rm(list=ls()) # rm ~ remove. Environment is now clear.

Most of the data that you work with will be imported from an external files (.csv, .xlsx,
etc.) and stored data frames. We will import some later. You will also want to “create” data
within R. For instance, you may want to create a sequence of integers, or a value that will be
used as a constant in your work, or generate a sequence of random numbers and so on.

1.2 Data Types

Activity: Run the following commands and queries as suggested, line by line.

## The following illustrate some of the major data types in R
a1 <- 1L # Integer
a2 <- 4 # Integer or Double?
a3 <- 2.3 # Double
a4 <- TRUE # Logical
a5 <- "Two" # Character, making up a "string"
a6 <- "12" # Another string
a7 <- 2+1i # Complex

## Use typeof() to query the data type of the object
typeof(a1) # Try with the others objects you created

## The is.integer(), is.double(), is.numeric(), is.character(), is.complex()
## functions make more specific queries as to the object's data type. An example
## is shown. Try each of the query function on each of the objects above.
is.integer(a2)
## In some cases, you can "coerce" R to change data types using functions like
## as.integer(), as.double(), as.numeric(), as.logical(), as.character(), as.complex().
## An example is shown below. Try these functions of each of the objects created so far.
as.integer(a4)

## Sometimes R will do the coercion for you
3 + TRUE

2We will use the packages tidyverse (Wickham et al. (2019)) for data management and plotting, readxl
(Wickham and Bryan (2023)) for importing data, car (Fox and Weisberg (2019)) and sandwich (Zeileis, Köll, and
Graham (2020)) for econometrics related algorithms, and patchwork (Pedersen (2023)), latex2exp (Meschiari
(2023)), gridExtra (Auguie (2015)) and plot3D (Karline (2015)) for additional plotting functionality.
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There are special values in R:
• NA stands for “Not Available” or “Missing”. It is by default a logical datatype, but can be

converted to other data types.
• NULL is an empty object, with no datatype.
• Inf stands for “Infinity” and comes about when you do operations like 1/0. It is by default

a numeric datatype (specifically double, but coerce-able to complex).
• NaN stands for “Not a Number” and comes about when you do operations like Inf-Inf. It

is, ironically, of numeric datatype by default (specifically double, coerce-able to complex).
The following are examples of how these values can arise, or how they may be used.

1/0 # This will give you Inf
Inf - Inf # Gives NaN. Inf - Inf is NOT equal to zero
0/0 # Also gives NaN. 0/0 is NOT equal to one. Please.
a <- NA # Basically saying the data that's suppose to be there is missing

NULL, NA, Inf and NaN are reserved words. You cannot use them as names of objects. Other
reserved words include: if, else, while, repeat, for, next, in, function, break, TRUE, FALSE.

Computers can only store real numbers up to some degree of accuracy:
Activity: The sqrt() function returns the square root of a number. Execute the following
code. Do the results surprise you?

sqrt(2)
sqrt(2)*sqrt(2)
sqrt(2)*sqrt(2) == 2 # use == to make equality comparisons
sqrt(2)*sqrt(2) - 2

The e-16 in the output stands for ×10−16. Computers, of course, cannot store irrational
numbers to infinite accuracy, and this can lead to surprising results when making comparisons,
or inaccurate results when performing complicated tasks that involve a very large number of
calculations. For now, just bear this in mind. The degree of accuracy is generally not going to
be an issue for us (except when making comparisons).

1.2.1 Arithmetic and Logical Operators

The arithmetic operators include: Addition (+), Subtraction (-), Multiplication (*), Di-
vision (/), and Exponent (^). The usual operator precedence apply: operations in paren-
theses are evaluated first, followed by ^, followed by (*,/), followed by (+/-). Ties between
multiplication and division, and between addition and subtraction, are broken by evaluating
from left to right. Always use parentheses when in doubt.

Activity: Enter 8/2 ∗ (2 + 2). Do you agree with the result?

8 / 2 * (2+2)

You may recognize this from an internet meme, asking what is 8 ÷ 2(2 + 2) and the answer
depends on whether you treat 2(2 + 2) as a single entity. If I say “4 divided by 2𝑛” do I mean
“4 divided by (2𝑛)” or “4 divided by 2, times 𝑛”. I mean the former. In R, you cannot write
8/2(2+2), you have to write 8/2*(2+2) which means 8 divided by 2 times 4.
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The relational operators are:
• Less than <
• Greater than >
• Less than or equal to <=
• Greater than or equal to >=
• Equal to ==
• Not equal to !=
Comparisons using relational operators result in the logical outcomes TRUE or FALSE.

2 != 3

[1] TRUE

There are usually a number of different ways to make a comparison, e.g.,

2 != 3
!(2 == 3)

The ! is the logical operator “not”, or negation. The logical operators are:
• Logical Negation: !
• Logical And: &, &&
• Logical Or: |, ||
We will use & and | for now, and explain && and || later.
Let A and B be two statements, each of which are either true or false. If A is true, !A is

false. If A is false, then !A is true. The statement A & B is true only if both are true. If one or
both statements are false, then A & B is false. The statement A | B is true if one or both are
true. If both statements are false, then A | B is false.

In mathematics and computer programming, “or” is always non-exclusive. A or B is true
means either (i) A is true, (ii) B is true, or (iii) both are true. Also note that ‘and’ takes
precedence over ‘or’, so the statement “A or B and C” means “A or (B and C)”. Question: will
R evaluate the following as true or false?

# Is the following TRUE or FALSE
(1 < 2) | (2 < 3) & (4 < 2)
# What about this?
(1 < 2) | (4 < 2) & (6 < 5)

The order of precedence is, from highest to lowest: not, and, or, implies, equivalent to. Use
parentheses to ensure the order is as you want it.

1.3 Data Structures

1.3.1 Vectors

The vector datatype is the most basic data structure in R. It is an ordered set of data items.
Even single values are stored as a vector.
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Activity: Earlier we created the data objects x and y. Enter the following commands one at a
time, and study the outcome.

is.vector(x) # query if object is data type
length(x) # how many items are in it?
typeof(x) # what data type does it contain?
## Repeat the above with the object "y"

Activity: The following commands all produce vectors. Run the following lines one at a time.
After each line output the variable to your console, and study them

b01 <- 5
b02 <- 1:26 # `:` ~ colon operator, gives integers from:to
b03 <- seq(from=2, to=15, by=2) # the seq() function is more flexible
b04 <- c(37, 42, 29, pi) # c() ~ "combine" things in a vector or list
b05 <- c("Q1", "Q2", "Q3", "Q4") # A piece of character data is a "string"
b06 <- rep(1, times=5) # rep() ~ "replicate". Can simply say rep(1,5)
b07 <- rep(b05, times=4) # what happens here?
b08 <- rep(1980:1983, each=4) # and here?
b09 <- c(1<2, 2==4, 4>=3, 1+1==2) # gives logical values!
b10 <- c(1+1i, 0+1i, 2+3i) # complex numbers!!
b11 <- letters # built-in vector, like "pi" in a04
b12 <- LETTERS # built-in vector
b13 <- month.abb # built-in vector
b14 <- month.name # built-in vector

Use is.vector() to verify that all the objects you just created are vectors. Use typeof()
to check their data types. Use is.integer(), is.double(), is.numeric(), is.character(),
is.logical(), is.complex() to query to data type of the elements of an object. For example:

is.vector(b01) # Should return TRUE
typeof(b05) # Should return 'character'
is.double(b02) # Should return FALSE. R has opted to store these as integer.
is.integer(b02)
is.logical(b09)

A few things to remember about R vectors:
• In matrix algebra, we have row vectors and column vector:

a row vector: [1 2 4 8] a column vector:
⎡
⎢
⎢
⎢
⎣

1
2
4
8

⎤
⎥
⎥
⎥
⎦

.

In R, vectors have no shape: they are simply ordered collections of data items, one item
following another, but not organized into a row or a column. Vectors have length (here
meaning “number of items”) but no dimension.

• There are no scalars. The object b01 is just a vector (of length 1).
• Each vector can only hold data of a single datatype. You cannot mix datatypes in a vector
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You access elements of a vector using the “extract and replace” operator [.

Activity: What do the following do?

b12[2] # indexing from R starts with 1. This returns the 2nd item in b.
b12[c(1,1,3)] # returns the 1st, 1st, and 3rd items
b12[22:26] # returns 22nd to 26th items
b12[-(1:3)] # negative indices remove items. Cannot mix with positive indices

head(b12,5) #
head(b12,-5) # Frequently helpful if accessing the start or end of vectors
tail(b12,5) # Check them out!
tail(b12,-5) #

c01 <- 1:4 # A new vector
c02 <- c01[c(2,4)] # Copies 2nd and 4th elements of c01 into c02
c02 # Check it out.
c01[2] <- 20 # What does this do?
c01 # 2nd element of c01 has been changed,
c02 # but c02 is not changed. It is its own object.

Activity: What happens in the next activity is a bit tough to figure out. First find out about
the %% operator. Then try to figure out what the following lines do? Remember b02 is 1, 2, …,
26 and b11 is a, b, …, z. The point of this activity is to show that you can extract from a vector
using logical values.

i <- !(b02 %% 2) # First check out b02 %% 2, then check out !(b02 %% 2)
evenletters <- b11[i] # Then see what 'evenletters' is

You can also gives names to the positions of elements in a vector, and access the elements by
their position name.

Activity: Try the following.

names(b02) <- b12
b02
b02[c("A","C","D","C")]

Since a vector can hold data of one type only, if you attempt to mix data types in a vector, R
will try to coerce the data types “upwards” – logicals become integers or higher, integers become
doubles or higher, doubles becomes complex or higher, complex becomes character. In the first
vector in the following example, we try to mix a logical, double, and complex values. The result
is a complex vector. In the second case, we mix a logical with an integer and a character. The
result is a character vector.

c1 <- c(F, 4.5, 1+1i)
c2 <- c(T, 1, "r")
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1.3.2 Factor Datatype

The factor datatype is used for categorical variables. The following vectors contain the names
of a sample of people, their ages, the region of Singapore they live in3, and birth month.

name <- c("Abe", "Ben", "Claire", "Daniel", "Edwin",
"Fred", "Gina", "Harry", "Ivy", "Judy")

age <- c(16, 24, 16, 23, 25, 40, 33, 31, 31, 60)
region <- c("West", "North-East", "West", "Central", "East",

"North-East", "West", "West", "East", "North")
bmonth <- c("Apr", "Jun", "Oct", "Jan", "Apr",

"Sep", "Jun", "Jul", "Aug", "Apr")

Both name, region, and bmonth are currently character vectors. We can convert region into
factor datatype.

region <- factor(region)
region

[1] West North-East West Central East North-East
[7] West West East North
Levels: Central East North North-East West

We’ll convert bmonth into an ordered factor data type:

bmonth <- factor(bmonth, levels=month.abb, ordered=TRUE) # remember what month.abb is?
bmonth

[1] Apr Jun Oct Jan Apr Sep Jun Jul Aug Apr
12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < ... < Dec

1.3.3 Data Frames
Most of the time, you will store your data for analysis in a data structure called a data frame,
or one of its variants. You can think of this as a rectangular “spreadsheet” of data, each column
containing data on some variable, with different data types allowed per columns.

customers <- data.frame(Name=name, Age=age, Region=region, BMonth = bmonth)
customers

Name Age Region BMonth
1 Abe 16 West Apr
2 Ben 24 North-East Jun
3 Claire 16 West Oct
4 Daniel 23 Central Jan
5 Edwin 25 East Apr
6 Fred 40 North-East Sep
7 Gina 33 West Jun
8 Harry 31 West Jul
9 Ivy 31 East Aug
10 Judy 60 North Apr

3For purposes of urban planning, Singapore’s Urban Redevelopment Authority (URA) divides the country into
five regions: Central, East, North, North-East and West. These are further subdivided into 55 planning areas.
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You can access the contents of this data frame in various ways, illustrated below.

customers[1:3,] # All columns of the first three rows

Name Age Region BMonth
1 Abe 16 West Apr
2 Ben 24 North-East Jun
3 Claire 16 West Oct

customers[age==16,c("Name", "BMonth")] # Name and Birth month of customers aged 16

Name BMonth
1 Abe Apr
3 Claire Oct

customers$Name[6:10] # Names of all customers 6 to 10

[1] "Fred" "Gina" "Harry" "Ivy" "Judy"

1.3.4 Matrices, Lists
Other useful data structures include matrices and lists. A matrix is a vector given a “dimension
attribute.” The following code creates a matrix with two rows from a vector.

mat1 <- matrix(c(1,2,3,4,5,6), nrow=2)
mat1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

attributes(mat1)

$dim
[1] 2 3

Notice that the matrix is filled up by columns. This is the default. To fill by rows, use the
byrow==TRUE option

Lists are like vectors, except that you can have different data types and even different data
structures in a list (including other lists). You access items in a list using [[..]]. In the
following code, we create a list of six items, from previously defined objects.

mylist <- list(first=b01, second=b02, third=b03, fourth=b04, fifth=b05, sixth=mat1)
mylist

$first
[1] 5

$second
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

$third
[1] 2 4 6 8 10 12 14
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$fourth
[1] 37.000000 42.000000 29.000000 3.141593

$fifth
[1] "Q1" "Q2" "Q3" "Q4"

$sixth
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6

We gave names to the items in the list when creating the list. This is optional. The following
are some examples of how items in a list can be accessed.

mylist[[3]]

[1] 2 4 6 8 10 12 14

mylist[["second"]]

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

mylist[[6]][1,1:2]

[1] 1 3

In the last example, mylist[[3]] returns a matrix, and mylist[[3]][1,1:2] returns the
(1,1)th and (1,2)th items of this matrix.

1.3.5 Time Series

Another data structure is time-series, for holding data ordered in time. The following example
converts a numerical vector of random numbers into a “quarterly” time series.

set.seed(13) # for replicability, use own choice of integer
u <- runif(8) # generates a vector of 8 numbers from a U(0,1) distribution
u.ts <- ts(u, start=c(2010,1), frequency = 4)
u.ts

Qtr1 Qtr2 Qtr3 Qtr4
2010 0.71032245 0.24613730 0.38963444 0.09138367
2011 0.96206454 0.01093333 0.57429518 0.76439799

The ts() function converts a vector to time series. The frequency=4 indicates that the data
are quarterly (4 observations per year), and the start option then gives the starting period.
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You can use the class() function to query an object as to its data structure.

class(name) # For vectors, this function returns the datatype.
class(age) # E.g., class(age) returns "numeric" instead of "vector".
class(region) # You should read that as "age is 'a numeric vector'".
class(bmonth)
class(customers)
class(mat1)
class(mylist)
class(ts)

[1] "character"
[1] "numeric"
[1] "factor"
[1] "ordered" "factor"
[1] "data.frame"
[1] "matrix" "array"
[1] "list"
[1] "function"

The class() function returns the “class” attribute which identifies the data structure of the
object. You should see what you get when you apply the attribute() function to the objects
listed above, for example:

attributes(region)

$levels
[1] "Central" "East" "North" "North-East" "West"

$class
[1] "factor"

Notice that class(m) returns "matrix" "array". An R array is a data structure with more
than two dimensions. Matrices are 2-dimensional arrays.

1.4 Importing Data

Most of the time, we will read in our data from an external file.

Example 1.1. I assume you have the data set Anscombe.xlsx (available on course website)
stored in a ‘data’ sub-folder of your working directory. We will use the function read_excel()
from the package readxl to read in the data. If the package has not yet been installed, install
it with the command

install.packages("readxl") # don't forget the quotes

You only have to do install a package once (unless you want to update it). Thereafter, just
load the package with library() whenever you want to use the functions in this package.

library(readxl) # No quotes!

Now we read in the data:
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df2 <- read_excel("data\\Anscombe.xlsx")
df2

# A tibble: 11 x 8
x1 y1 x2 y2 x3 y3 x4 y4

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 10 8.04 10 9.14 10 7.46 8 6.58
2 8 6.95 8 8.14 8 6.77 8 5.76
3 13 7.58 13 8.74 13 12.7 8 7.71
4 9 8.81 9 8.77 9 7.11 8 8.84
5 11 8.33 11 9.26 11 7.81 8 8.47
6 14 9.96 14 8.1 14 8.84 8 7.04
7 6 7.24 6 6.13 6 6.08 8 5.25
8 4 4.26 4 3.1 4 5.39 19 12.5
9 12 10.8 12 9.13 12 8.15 8 5.56

10 7 4.82 7 7.26 7 6.42 8 7.91
11 5 5.68 5 4.74 5 5.73 8 6.89

Investigating a large data frame by simply printing it out to screen is not feasible. You can
use head() and tail() to print only the first few or last few observations. Alternatively, you
can use str() to give you a summary of the data frame (str = structure).

head(df2,3)

# A tibble: 3 x 8
x1 y1 x2 y2 x3 y3 x4 y4

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 10 8.04 10 9.14 10 7.46 8 6.58
2 8 6.95 8 8.14 8 6.77 8 5.76
3 13 7.58 13 8.74 13 12.7 8 7.71

tail(df2,3)

# A tibble: 3 x 8
x1 y1 x2 y2 x3 y3 x4 y4

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 12 10.8 12 9.13 12 8.15 8 5.56
2 7 4.82 7 7.26 7 6.42 8 7.91
3 5 5.68 5 4.74 5 5.73 8 6.89

str(df2)

tibble [11 x 8] (S3: tbl_df/tbl/data.frame)
$ x1: num [1:11] 10 8 13 9 11 14 6 4 12 7 ...
$ y1: num [1:11] 8.04 6.95 7.58 8.81 8.33 ...
$ x2: num [1:11] 10 8 13 9 11 14 6 4 12 7 ...
$ y2: num [1:11] 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...
$ x3: num [1:11] 10 8 13 9 11 14 6 4 12 7 ...
$ y3: num [1:11] 7.46 6.77 12.74 7.11 7.81 ...
$ x4: num [1:11] 8 8 8 8 8 8 8 19 8 8 ...
$ y4: num [1:11] 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
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The read_excel() function reads data into a modified data frame called a tibble. This
modification is part of the larger “tidyverse” initiative. For the moment, we can treat the two
data structures (tibble vs data frame) as essentially the same thing. We will use the tidyverse
suite of packages for data wrangling, and for graphics.

1.5 Plotting Data

R comes with a very good base graphics package pre-installed (and automatically loaded when-
ever you start an R session). We used the plot() function from this package earlier. There is
another package called ggplot2 that contains many functions for producing very good graphics
(gg = Grammar of Graphics). We will use both in these notes, but for now we use the latter.

You can install the ggplot2 package separately, but we will instead install the tidyverse
package which includes several packages, ggplot2 being one of them.

install.packages("tidyverse") # don't forget the quotes

Once the tidyverse package is installed, you can load it into your R session if you need to use it. Remember
you don’t need to re-install packages once you have done so (unless you are updating the package). However, you
do need to load the package every time you start an R session, should you be planning to use the functions in
that package in the session.

library(tidyverse) # no quotes!

-- Attaching packages --------------------------------------- tidyverse 1.3.2 --
v ggplot2 3.4.0 v purrr 0.3.5
v tibble 3.1.7 v dplyr 1.0.10
v tidyr 1.2.0 v stringr 1.4.0
v readr 2.1.2 v forcats 0.5.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

In addition to ggplot2, there are other packages that are helpful for constructing plots.
One such package used in this book is patchwork. We assume you have already installed this
package. In the example below, we use these ggplot and patchwork to plot the data that we
just imported into R.

library(patchwork)
p1 <- df2 %>% ggplot() + geom_point(aes(x=x1, y=y1), size=1) + theme_classic()
p2 <- df2 %>% ggplot() + geom_point(aes(x=x1, y=y1), size=1) + theme_classic()
p3 <- df2 %>% ggplot() + geom_point(aes(x=x3, y=y3), size=1) + theme_classic()
p4 <- df2 %>% ggplot() + geom_point(aes(x=x4, y=y4), size=1) + theme_classic()
(p1 | p2) / (p3 | p4) # this is from patchwork package

https://www.tidyverse.org/
https://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448/ref=as_li_ss_tl
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Figure 1.1: Anscombe Quartet.

In the code above, we created four separate figures, named p1, p2, p3, p4 and used the
patchwork library to create a composite figure comprising the four plots. When creating the
individual scatterplots, we used the pipe operator %>% to “send” the dataframe / tibble to
the ggplot function, and then ‘added’ a scatterplot with the geom_point() function. The aes
option (which stands for aesthetics) is used to indicate the x-variable, y-variable, color-variable,
and so on. The theme_classic() function is used to create a certain “look” for the plots.

The pipe operator %>% is helpful when doing several things to a data frame in sequence, and
can help create very readable code. This operator is not part of base R, but is provided by the
package magrittr which is included in the dplyr package which is included in the tidyverse
package.

1.6 More on the R Environment

In your Environment tab, look for the menu button marked “Global Environment” and click on
the little black triangle on the right of it. You will see a large list of “environments”, most of
which are packages that were loaded in your R session, either automatically or by yourself using
the library() command. The “Global Environment”, which contains all the variables that you
created in your session, is always first. The packages are ordered as they were loaded (latest on
top). To see all the functions in a loaded package, say the package ggplot2, you can use the
command ls("package:ggplot2"). Just entering ls() will list the the contents of the Global
Environment.

One issue that you should pay attention to is ‘masking’. When we loaded the tidyverse
package we saw two warnings: that dplyr::filter() masks stats::filter() and dplyr::lag()
masks stats::lag(). Both dplyr and stats packages have a lag() function. Because the dplyr
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package was loaded on top of the stats package, the dplyr version ‘masks’ the stats version,
and calling lag() will call the dplyr version. However, the two versions behave differently: the
stats version requires the input to be a time series object, whereas the input to the dplyr
version cannot be a time series object. Worse, lag(x,1) in one means something quite different
from lag(x,1) in the other. We illustrate this issue in the next example. To be explicit about
which version you wish to use, indicate the package using ::, as in stats::lag().

Example 1.2. In this example, we create a vector 1:10, and convert it into a time series
object from 2019Q1 to 2021Q2. We then apply the dplyr version to the vector, and the stats
version to the time series.

x <- 1:10
x

[1] 1 2 3 4 5 6 7 8 9 10

lag(x,1) # dplyr version is used

[1] NA 1 2 3 4 5 6 7 8 9

x.ts <- ts(1:10, start=c(2019,1), frequency=4)
x.ts

Qtr1 Qtr2 Qtr3 Qtr4
2019 1 2 3 4
2020 5 6 7 8
2021 9 10

stats::lag(x.ts,1)

Qtr1 Qtr2 Qtr3 Qtr4
2018 1
2019 2 3 4 5
2020 6 7 8 9
2021 10

We see that the dplyr version lags the data whereas the stats version creates a “leading”
series. To use the stats version to lag, we have to say stats::lag(x.ts,-1).

1.7 User-Defined Functions, Conditional Statements, Loops

You can define your own functions.

Example 1.3. A one-line function to calculate the area of a circle.

area_circle <- function(r){pi*r^2}
area_circle(2)

[1] 12.56637

Example 1.4. A more complicated function
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circle_summary <- function(r=1){
if (!is.numeric(r)){

stop("Error: Input is not numeric.")
} else if (r<=0 | is.nan(r) | is.infinite(r)) {

print("Error: Please input a positive finite value for the radius.")
return(NULL)

} else {
result = list("radius" = r, "area"=pi*r^2, "circumference"=2*pi*r)
return(result)

}
}

When the set of instructions is executed, a function object named circle_summary appears in
your environment. Thereafter we can call it whenever we want to use it.

A1 = circle_summary(); A1 # radius defaults to 1

$radius
[1] 1

$area
[1] 3.141593

$circumference
[1] 6.283185

A2 = circle_summary(2); A2;

$radius
[1] 2

$area
[1] 12.56637

$circumference
[1] 12.56637

A3 = circle_summary(-1); A3

[1] "Error: Please input a positive finite value for the radius."
NULL

A4 = circle_summary("two"); A4

Error in circle_summary("two"): Error: Input is not numeric.
Error in eval(expr, envir, enclos): object 'A4' not found

The circle_summary() function requires one input r, which has the default value of 1. The
function also contains “if-else” statements that carry out the following conditional actions:

• check if you put in a non-numeric value;
• if you did, print a error message and stop;
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• If you did not input a non-numeric, check if it is negative or NaN or Inf;
• If so, print a different error message and return NULL (but don’t stop the program);
• If the numeric value is not negative and not NaN and not Inf, then return a list comprising

the radius, area and circumference of the circle.
Blocks of code are bound with “{…}”. The way we placed the braces is somewhat conventional.

Indentations and writing long commands over several lines also help with readability.

Every function call has its “own namespace”:

Example 1.5. In the following example, the assignment of the value 3 to x inside the function
does not change the value of x outside of the function.

an_example_function <- function(x){
cat("x =", x, "was passed into the function.\n")
x <- 3;
cat("The function changes the value to: x = ", x, ".\n", sep="")

}
x <- 1
cat("The declared value of x: x = ", x, ".\n", sep="")
an_example_function(x)
cat("The value outside the function remains unchanged: x = ", x, ".\n")

The declared value of x: x = 1.
x = 1 was passed into the function.
The function changes the value to: x = 3.
The value outside the function remains unchanged: x = 1 .

We use the function cat() to print to screen (cat == “concatenate and print”). The special
code “\n” refers to a line break. The function automatically adds a space between entries. To
tell the function not to add the space, set the option sep="".

Another essential programming technique is the “for-loop”. The following code, which con-
tains a loop and a nested loop, illustrates how they work.

Example 1.6. Can you figure out what is going on in the program below?

for (A in c(TRUE,FALSE)){
for (B in c(TRUE,FALSE)){

cat("A is",A,"and B is",B,"then A & B is",A & B,"\n")
}

}

A is TRUE and B is TRUE then A & B is TRUE
A is TRUE and B is FALSE then A & B is FALSE
A is FALSE and B is TRUE then A & B is FALSE
A is FALSE and B is FALSE then A & B is FALSE

Finally, we illustrate the “while” loop:
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x <- 0
while (x<10){

cat("x = ", x, ", x < 10 is ", x<10, " so we enter the loop,\n", sep="")
x=x+2 # this means replace current value of x with current value + 2

}
cat("x = ", x, ", x < 10 is ", x<10, " so we skip the loop.\n", sep="")

x = 0, x < 10 is TRUE so we enter the loop,
x = 2, x < 10 is TRUE so we enter the loop,
x = 4, x < 10 is TRUE so we enter the loop,
x = 6, x < 10 is TRUE so we enter the loop,
x = 8, x < 10 is TRUE so we enter the loop,
x = 10, x < 10 is FALSE so we skip the loop.

Can you see the danger of inadvertently entering an infinite loop?



Chapter 2
Miscellaneous Mathematics Topics
We briefly review some math prerequisites, specifically: how to use the summation notation, an
introduction to matrices, and a little optimization theory. We follow up on matrix algebra in
later chapters. The R code uses the tidyverse and patchwork libraries.

library(tidyverse)
library(patchwork) # for laying out plots

2.1 The Summation Notation
We use the uppercase sigma “Σ” in the following way to denote summation. For a set of numbers
{𝑥1, 𝑥2, ..., 𝑥𝑛}, define

𝑛
∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + ... + 𝑥𝑛.

Example 2.1. The sample mean of a set of numbers {𝑥1, 𝑥2, ..., 𝑥𝑛} is

𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 .

Example 2.2. Write 4 + 8 + 12 + 16 + 20 + 24 in summation notation. Ans: ∑6
𝑖=1 4𝑖.

Example 2.3. The present value of a future amount of money is the amount today that, if
invested at a certain rate, would return that future sum. Suppose the following payments are
to be made: 𝑎1 at the end of the first period, 𝑎2 at the end of the second period, and so on, for
𝑛 periods. At a fixed interest rate of 𝑟 per period, the present value of the payments is

𝑎1
1 + 𝑟 + 𝑎2

(1 + 𝑟)2 +⋯+ 𝑎𝑛
(1 + 𝑟)𝑛 =

𝑛
∑
𝑖=1

𝑎𝑖
(1 + 𝑟)𝑖 .

Example 2.4. ∑𝑛
𝑖=1 𝑐 = 𝑐 + 𝑐 + … + 𝑐⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 terms, one for each 𝑖
= 𝑛𝑐.

In the first example, the index of summation 𝑖 enters as subscripts that identify the terms
of the summation, but otherwise does not enter into the computation of the sum. In the second
example, the value of the index is used in the computation of the terms. In the third example,
the index is used both ways. In the fourth example there is no index in the terms. We run
through 𝑖 = 1 to 𝑛 regardless.

21
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Example 2.5. Let 𝑖 = 1, 2, ..., 𝑛 represent a “basket” of goods, and
• 𝑞0𝑖 be the quantity of good 𝑖 purchased in period 0 (the “base year”),
• 𝑝0𝑖 be the price of good 𝑖 in the base year,
• 𝑝𝑡𝑖 be the price of good 𝑖 in period 𝑡.
The Laspeyres price index is defined as

𝐿𝑎𝑠𝑝𝑒𝑦𝑟𝑒𝑠𝑡 =
∑𝑛

𝑖=1 𝑝𝑡𝑖𝑞0𝑖
∑𝑛

𝑖=1 𝑝0𝑖𝑞0𝑖
.

In other words, the Laspeyres price index tracks the relative cost over time of a bundle of goods
put together in the base year. The Consumer Price Index uses this methodology. For details,
see International Monetary Fund et al. (2020). An alternative index is the “Paasche Price
Index” which is defined as

𝑃𝑎𝑎𝑠𝑐ℎ𝑒𝑡 =
∑𝑛

𝑖=1 𝑝𝑡𝑖𝑞𝑡𝑖
∑𝑛

𝑖=1 𝑝0𝑖𝑞𝑡𝑖
.

where 𝑞𝑡𝑖 is the quantity of good 𝑖 purchased in period 𝑡. The intention is to track the cost of an
evolving basket of goods. It has the disadvantage that the basket of goods has to be redefined
each period, which can be an expensive exercise if the basket is intended to be reflective of the
quantities of goods consumed by a representative member of an economy. An advantage is that
the updated quantities would reflect the effects of the price changes.

Expressions using the summation notation are not unique; more than one expression can be
used to represent any given sum.

Example 2.6. Write 1 − 1
3 + 1

5 − 1
7 + 1

9 − 1
11 in summation notation.

Ans:
6

∑
𝑖=1

(−1)𝑖−1 1
2𝑖 − 1. Alternative Ans:

5
∑
𝑖=0

(−1)𝑖 1
2𝑖 + 1.

2.1.1 Rules for Summation Notation

The summation notation greatly simplifies notation but this is only helpful if you know how to
manipulate expressions written with it. There are only two rules to learn:

•  ∑𝑛
𝑖=1(𝑎𝑖 + 𝑏𝑖) = ∑𝑛

𝑖=1 𝑎𝑖 +∑𝑛
𝑖=1 𝑏𝑖,

•  ∑𝑛
𝑖=1(𝑐𝑎𝑖) = 𝑐∑𝑛

𝑖=1 𝑎𝑖, where 𝑐 is some constant.

Example 2.7. ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥) = 0, where 𝑥 = 1

𝑛 ∑𝑛
𝑖=1 𝑥𝑖.

Proof: ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥) = ∑𝑛

𝑖=1 𝑥𝑖 −∑𝑛
𝑖=1 𝑥 = 𝑛𝑥 − 𝑛𝑥 = 0.

That is, the sum of deviations of any set of numbers from its sample mean is always zero.
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Example 2.8. Given 𝑛 pairs of numbers (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, ..., 𝑛, we have

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) =
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦𝑖 =
𝑛

∑
𝑖=1

𝑥𝑖(𝑦𝑖 − 𝑦) . (2.1)

Proof: For the first equality in (2.1), we have

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) =
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦𝑖 −
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦

=
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦𝑖 − 𝑦
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)
⏟⏟⏟⏟⏟

=0

=
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦𝑖.

The second equality (2.1) can be shown in similar fashion.

The sum in (2.1) appears in the sample covariance of observations {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1 of two vari-
ables, defined as

𝑠𝑥𝑦 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦).

If for each observation 𝑖, 𝑥𝑖 and 𝑦𝑖 tend to be either both above or both below their respective
sample means, then the product (𝑥𝑖−𝑥)(𝑦𝑖−𝑦) will be positive for most of the observations, and
𝑠𝑥𝑦 will likely be positive. If the variables tend to appear on opposite sides of their respective
means, then 𝑠𝑥𝑦 will likely be negative. If there are no tendencies in the relative sizes of the two
variables, then 𝑠𝑥𝑦 should be close to zero. We will explain in a later chapter why the sum is
divided by 𝑛 − 1 and not 𝑛.

2.1.2 Some Useful Formulas

For every positive integer 𝑛, we have

𝑛
∑
𝑖=1

𝑖 = 1 + 2 + 3 + ⋯+ 𝑛 = 𝑛(𝑛 + 1)
2

𝑛
∑
𝑖=1

𝑖2 = 12 + 22 + 32 +⋯+ 𝑛2 = 𝑛(𝑛 + 1)(2𝑛 + 1)
6

𝑛
∑
𝑖=1

𝑖3 = 13 + 23 + 33 +⋯+ 𝑛3 = (
𝑛

∑
𝑖=1

𝑖)
2

These can be proven by induction, or derived directly. We can get the first equation from

2∑𝑛
𝑖=1 𝑖 = 1 + 2 + ⋯ + 𝑛

+ 𝑛 + (𝑛 − 1) + ⋯ + 1 = 𝑛(𝑛 + 1).
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For ∑𝑛
𝑖=1 𝑖2, we can use the fact that 𝑖3 − (𝑖 − 1)3 = 3𝑖2 − 3𝑖 + 1. Summing both sides over

𝑖 = 1, 2, ..., 𝑛 gives
𝑛

∑
𝑖=1

(𝑖3 − (𝑖 − 1)3) = 3
𝑛

∑
𝑖=1

𝑖2 − 3
𝑛

∑
𝑖=1

𝑖 +
𝑛

∑
𝑖=1

1.

The “telescopic sum” on the left hand side adds to 𝑛3, therefore

𝑛3 = 3
𝑛

∑
𝑖=1

𝑖2 − 3
𝑛

∑
𝑖=1

𝑖 +
𝑛

∑
𝑖=1

1 = 3
𝑛

∑
𝑖=1

𝑖2 − 3𝑛(𝑛 + 1)
2 + 𝑛 ,

which can be solved for ∑𝑛
𝑖=1 𝑖2. The same trick can be used for ∑𝑛

𝑖=1 𝑖3: sum

𝑖4 − (𝑖 − 1)4 = 4𝑖3 − 6𝑖2 + 4𝑖 − 1

from 𝑖 = 1 to 𝑛 on both sides to get

𝑛4 = 4
𝑛

∑
𝑖=1

𝑖3 − 6
𝑛

∑
𝑖=1

𝑖2 + 4
𝑛

∑
𝑖=1

𝑖 − 𝑛 ,

then plug in the formulas for ∑𝑛
𝑖=1 𝑖2 and ∑𝑛

𝑖=1 𝑖, and solve for ∑𝑛
𝑖=1 𝑖3. This trick can be used

recursively to obtain expressions for ∑𝑛
𝑖=1 𝑖4, ∑

𝑛
𝑖=1 𝑖5, etc.

Arithmetic Series:

𝑛
∑
𝑖=1

(𝑎 + (𝑖 − 1)𝑑) = 𝑛𝑎 + 𝑑
𝑛−1
∑
𝑖=1

𝑖 = 𝑛𝑎 + 𝑛(𝑛 − 1)𝑑
2 . (2.2)

Geometric Series:
𝑛

∑
𝑖=1

𝑎𝑟𝑖−1 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 +⋯+ 𝑎𝑟𝑛−1 = 𝑎(1 − 𝑟𝑛)
1 − 𝑟 . (2.3)

To derive (2.3), let 𝑆 = ∑𝑛
𝑖=1 𝑎𝑟𝑖−1. We have

𝑆 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1

𝑟𝑆 = 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1 + 𝑎𝑟𝑛 .

Subtracting the second equation from the first gives (1 − 𝑟)𝑆 = 𝑎(1 − 𝑟𝑛) which you can solve
for 𝑆.

The Binomial Formula  For any integer 𝑛,

(𝑎 + 𝑏)𝑛 = (𝑛
0)𝑎𝑛𝑏0 +(𝑛

1)𝑎𝑛−1𝑏1 +⋯+( 𝑛
𝑛 − 1)𝑎1𝑏𝑛−1 +(𝑛

𝑛)𝑎0𝑏𝑛

=
𝑛

∑
𝑖=0

(𝑛
𝑖)𝑎𝑛−𝑖𝑏𝑖

where
(𝑛
𝑖) = 𝑛!

(𝑛 − 𝑖)!𝑖! .
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The binomial formula can be proven by induction. It certainly holds for 𝑛 = 1. For the induction
step, we want to show that if the formula holds for 𝑛, then it also holds for 𝑛 + 1. We have

(𝑎 + 𝑏)𝑛+1 = (𝑎 + 𝑏)𝑛(𝑎 + 𝑏)

= (𝑛
0)𝑎𝑛+1𝑏0 +(𝑛

1)𝑎𝑛𝑏1 +(𝑛
2)𝑎𝑛−1𝑏2 +⋯+( 𝑛

𝑛 − 1)𝑎2𝑏𝑛−1 +(𝑛
𝑛)𝑎1𝑏𝑛

+(𝑛
0)𝑎𝑛𝑏1 +(𝑛

1)𝑎𝑛−1𝑏2 +⋯+( 𝑛
𝑛 − 2)𝑎2𝑏𝑛−1 +( 𝑛

𝑛 − 1)𝑎1𝑏𝑛 +(𝑛
𝑛)𝑎0𝑏𝑛+1

= (𝑛
0)𝑎𝑛+1𝑏0 + [(𝑛

1) + (𝑛
0)]𝑎𝑛𝑏1 + [(𝑛

2) + (𝑛
1)]𝑎𝑛−1𝑏2 +⋯

+ [( 𝑛
𝑛 − 1) + ( 𝑛

𝑛 − 2)]𝑎2𝑏𝑛−1 + [(𝑛
𝑛) + ( 𝑛

𝑛 − 1)]𝑎1𝑏𝑛 +(𝑛
𝑛)𝑎0𝑏𝑛+1 .

The binomial formula for 𝑛 + 1 follows from

(𝑛
0) = (𝑛 + 1

0 ) = 1 = (𝑛
𝑛) = (𝑛 + 1

𝑛 + 1)

and (see exercises)

(𝑛
𝑖) + ( 𝑛

𝑖 − 1) = (𝑛 + 1
𝑖 ) , 𝑖 = 1, 2, ..., 𝑛.

2.1.3 Double Summations
Suppose we want to write the sum 𝑆 of all of the terms in the rectangular block of numbers
below using summation notation:

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

We can first add up each row, then add up the row totals:

𝑆 =
𝑛

∑
𝑗=1

𝑎1𝑗 +
𝑛

∑
𝑗=1

𝑎2𝑗 +⋯+
𝑛

∑
𝑗=1

𝑎𝑚𝑗 =
𝑚
∑
𝑖=1

(
𝑛

∑
𝑗=1

𝑎𝑖𝑗).

Alternatively, we can add up the columns, then add up the column totals, i.e.,

𝑆 =
𝑚
∑
𝑖=1

𝑎𝑖1 +
𝑚
∑
𝑖=1

𝑎𝑖2 +⋯+
𝑚
∑
𝑖=1

𝑎𝑖𝑛 =
𝑛

∑
𝑗=1

(
𝑚
∑
𝑖=1

𝑎𝑖𝑗).

Obviously it doesn’t matter which approach we take. In other words, the order of summation
does not matter. The parentheses make it clear which summation is to be done first, but we
can leave out the parentheses and just write

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑗 or
𝑛

∑
𝑗=1

𝑚
∑
𝑖=1

𝑎𝑖𝑗

with the understanding that the summations are carried out from the inner summation to the
outer summation.
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Example 2.9. Expand ∑𝑚
𝑖=1 ∑

𝑛
𝑗=1 𝑖𝑗2.

Solution:
𝑚
∑
𝑖=1

(
𝑛

∑
𝑗=1

𝑖𝑗2) =
𝑚
∑
𝑖=1

(𝑖
𝑛

∑
𝑗=1

𝑗2)

= (
𝑚
∑
𝑖=1

𝑖)(
𝑛

∑
𝑗=1

𝑗2)

= (1 + 2 + ⋯+𝑚)(12 + 22 +⋯+ 𝑛2) .

We cannot interchange the order of summation if the limits of the inner summation depend on
the index of the outer summation.

Example 2.10. Suppose we have the triangular array of numbers below:

𝑎11
𝑎21 𝑎22
⋮ ⋮ ⋱

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑚

We can write the sum of the elements of this array as

𝑚
∑
𝑖=1

𝑖
∑
𝑗=1

𝑎𝑖𝑗 .

We added up the rows first, then added up the total. In this example, we cannot interchange the
order of summation because the inner upper limit depends on the index of the outer summation;
the expression ∑𝑖

𝑗=1 ∑
𝑚
𝑖=1 𝑎𝑖𝑗 simply makes no sense. If we want to add up the columns first,

and then add up the total, we would write ∑𝑚
𝑗=1 ∑

𝑚
𝑖=𝑗 𝑎𝑖𝑗.

Example 2.11. Suppose we have the triangular array of numbers below:

𝑎11
𝑎21 𝑎22
⋮ ⋮ ⋱

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑚
⋮ ⋮ ⋱

𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑚

where 𝑛 ≥ 𝑚. We can write the sum of the elements of this array as

𝑚
∑
𝑗=1

𝑛
∑
𝑖=𝑗

𝑎𝑖𝑗.

2.1.4 Exercises

In all of the exercises, 𝑥 = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖 and 𝑦 = 1
𝑛 ∑𝑛

𝑖=1 𝑦𝑖.

Exercise 2.1. Write 2 + 3/2 + 4/3 + 5/4 + 6/5 using the summation notation in two ways:
a. with the index of summation 𝑖 starting at 1,
b. with the index of summation 𝑖 starting at 2.
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Exercise 2.2. Show that
a. ∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)2 = ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)𝑥𝑖 = ∑𝑛

𝑖=1 𝑥2
𝑖 − 𝑛𝑥2,

b. ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) = ∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖 − 𝑛𝑥𝑦,
c. ∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) = ∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 if 𝑥 = 0 or 𝑦 = 0 (or both),

d. ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)(𝑥𝑖 − 1) = ∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)(𝑥𝑖 − 1000000).

Exercise 2.3. Prove that
a. ∑𝑛

𝑖=1 𝑖3 = (∑𝑛
𝑖=1 𝑖)

2
using the identity

𝑖4 − (𝑖 − 1)4 = 4𝑖3 − 6𝑖2 + 4𝑖 − 1.

b. ∑𝑛
𝑖=1 𝑖4 = 𝑛(𝑛 + 1)(2𝑛 + 1)(3𝑛2 + 3𝑛 − 1)

30 .

Exercise 2.4. Show that for 𝑖 = 1, 2, ..., 𝑛, we have

(𝑛
𝑖) + ( 𝑛

𝑖 − 1) = (𝑛 + 1
𝑖 ).

Exercise 2.5. Run the R code below, with your choice of numbers in the x vector. You can
put whatever numbers you want, and as many of them as you want. What is the value of
sum(x-mean(x))?

x <- c(pi, 2, 4.2, 54, 12.1212, 16)
sum(x-mean(x))

2.2 An Introduction to Matrices

2.2.1 Definitions and Notation

A matrix is a rectangular collection of numbers. The following is a matrix with 𝑚 rows and 𝑛
columns:

⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥
⎥
⎥
⎦

.

Such a matrix is said to have “dimension” (𝑚 × 𝑛). The number that appears in the (𝑖, 𝑗)th
position, i.e., in the 𝑖th row and 𝑗th column, is called the (𝑖, 𝑗)th element/entry/component of
the matrix. We count rows from top to bottom, and columns from left to right.

• If 𝑚 = 𝑛, the matrix is a square matrix,
• If 𝑚 = 1 and 𝑛 > 1, we have a row vector,
• If 𝑚 > 1 and 𝑛 = 1, we have a column vector.
The term “vector” is used in many ways in mathematics. Sometimes a vector refers to an

ordered list of numbers (𝑥1, 𝑥2,… , 𝑥𝑛). Such an object has no dimension. It is merely an ordered
sequence of length 𝑛. Column and row vectors, on the other hand, are two-dimensional objects.
In the context of matrix algebra, the word “vector” alone usually means a column vector, but
not always.

• If 𝑚 = 𝑛 = 1, then we have a scalar.



28 CHAPTER 2. MISCELLANEOUS MATHEMATICS TOPICS

Example 2.12. A row vector 𝑐 = [𝑐1 𝑐2 ⋯ 𝑐𝑛], a column vector 𝑏 =
⎡
⎢
⎢
⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥
⎥
⎥
⎦

.

A (2 × 2) square matrix 𝐴 = [𝑎11 𝑎12
𝑎21 𝑎22

].

Matrices and vectors are often written in bold lettering, or with some sort of mark to dis-
tinguish them from scalars and other objects. We will not do so in these notes, and the reader
will have to rely on context to distinguish scalars from vectors and matrices. Where context is
unclear, we will be more explicit. Some additional notation:

• It is often convenient to indicate an (𝑚 × 𝑛) matrix by (𝑎𝑖𝑗)𝑚×𝑛.
• To refer to the (𝑖, 𝑗)th element of a matrix 𝐴, we sometimes write [𝐴]𝑖𝑗.
Two matrices of the same dimension (𝑚×𝑛) are said to be equal if each of their corresponding

elements are equal, i.e.,

𝐴 = 𝐵 ⇔ [𝐴]𝑖𝑗 = [𝐵]𝑖𝑗 for all 𝑖 = 1, 2,… ,𝑚; 𝑗 = 1, 2,… , 𝑛.

Two matrices of different dimensions cannot be equal. A zero matrix is one whose elements
are all zero. It is simply written as 0 although sometimes subscripts are added to indicate the
dimension of the zero matrix.

The diagonal elements of an (𝑛 × 𝑛) square matrix refer to the (𝑖, 𝑖)th elements of the
matrix, i.e., to the elements [𝐴]𝑖𝑖, 𝑖 = 1, 2,… , 𝑛. A diagonal matrix is a square matrix with
off-diagonal elements equal to zero, i.e., a square matrix 𝐴 is diagonal if [𝐴]𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗,
𝑖, 𝑗 = 1, 2, ..., 𝑛. Diagonal matrices are sometimes written diag(𝑎1, 𝑎2, ..., 𝑎𝑛).
Example 2.13. The matrix

𝐴 = ⎡⎢⎢
⎣

1 0 0
0 4 0
0 0 0

⎤⎥⎥
⎦

= diag(1, 4, 0)

is a diagonal matrix. Note that there is nothing in the definition of a diagonal matrix that says
its diagonal elements cannot be zero.

An identity matrix is a square matrix with diagonal elements equal to one and off-diagonal
elements equal to zero, i.e.,

𝐼𝑛 =
⎡
⎢
⎢
⎢
⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎦

.

An identity matrix is always written 𝐼 . A subscript is sometimes added to indicate its dimension,
although this is often left out. We will see shortly that the identity matrix plays a role in matrix
algebra akin to the role played by the number “1” in the real number system.

A symmetric matrix is a square matrix 𝐴 such that [𝐴]𝑖𝑗 = [𝐴]𝑗𝑖 for all 𝑖, 𝑗 = 1, 2, ..., 𝑛.
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Example 2.14. The matrix 𝐴 = ⎡⎢⎢
⎣

1 3 2
3 4 6
2 6 3

⎤⎥⎥
⎦

is symmetric. The matrix 𝐵 = ⎡⎢⎢
⎣

1 3 2
7 4 6
2 6 3

⎤⎥⎥
⎦

is not.

2.2.2 Addition, Scalar Multiplication and Transpose

Addition:  Let 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 and 𝐵 = (𝑏𝑖𝑗)𝑚×𝑛. Then

𝐴+𝐵 = (𝑎𝑖𝑗 + 𝑏𝑖𝑗)𝑚×𝑛.

That is, addition of matrices is defined as element-by-element addition.

Example 2.15.
⎡⎢⎢
⎣

1 4
3 2
6 5

⎤⎥⎥
⎦
+ ⎡⎢⎢

⎣

6 9
1 2
1 10

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

1 + 6 4 + 9
3 + 1 2 + 2
6 + 1 5 + 10

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

7 13
4 4
7 15

⎤⎥⎥
⎦

.

Matrices being added together obviously have to have the same dimensions. It should also
be obvious that

𝐴+𝐵 = 𝐵 +𝐴 ,
(𝐴 + 𝐵) + 𝐶 = 𝐴+ (𝐵 + 𝐶) .

This means that as far as addition is concerned, we can manipulate matrices in the same way we
manipulate ordinary numbers (as long as the matrices being added have the same dimensions).
Scalar Multiplication:  Let 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛, and let 𝛼 be a scalar. Then we define

𝛼𝐴 = 𝐴𝛼 = (𝛼𝑎𝑖𝑗)𝑚×𝑛,

i.e., the product of a scalar and a matrix is defined to be the multiplication of each element of
the matrix by the scalar.

Example 2.16. 𝑏 ⎡⎢⎢
⎣

𝑎11 𝑎12
𝑎21 𝑎22
𝑎31 𝑎32

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

𝑏𝑎11 𝑏𝑎12
𝑏𝑎21 𝑏𝑎22
𝑏𝑎31 𝑏𝑎32

⎤⎥⎥
⎦

.

We can use scalar multiplication to define matrix subtraction:

𝐴−𝐵 = 𝐴+ (−1)𝐵.

Transpose:  When we transpose a matrix, we write its rows as its columns, and its columns as
its rows. That is, the transpose of an (𝑚× 𝑛) matrix 𝐴, denoted either by 𝐴T or 𝐴′, is defined
by

[𝐴T]𝑖𝑗 = [𝐴]𝑗𝑖 for all 𝑖 = 1, 2, ...,𝑚, 𝑗 = 1, 2, ..., 𝑛.

Example 2.17.
⎡⎢⎢
⎣

1 4
3 2
6 5

⎤⎥⎥
⎦

T

= [1 3 6
4 2 5] .
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We can use the transpose operator to define symmetric matrices: a symmetric matrix is
simply one where 𝐴T = 𝐴. We will often write a column vector

𝑥 =
⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤
⎥
⎥
⎥
⎦

as 𝑥 = [𝑥1 𝑥2 … 𝑥𝑛]
T

or 𝑥T = [𝑥1 𝑥2 … 𝑥𝑛] in order to use space more efficiently.

2.2.3 Exercises

Exercise 2.6. Let 𝐴 = ⎡⎢⎢
⎣

7 13
4 4
7 15

⎤⎥⎥
⎦

. What is the dimension of 𝐴? What is [𝐴]12? What is [𝐴]31?

Exercise 2.7. Suppose 𝐴 = (𝑎𝑖𝑗)2×4 where 𝑎𝑖𝑗 = 𝑖 + 𝑗. Write out the matrix in full.

Exercise 2.8. Write out in full the matrices:
i.  (𝑎𝑖𝑗)4×4 where 𝑎𝑖𝑗 = 1 when 𝑖 = 𝑗, 0 otherwise.
ii.  (𝑎𝑖𝑗)4×4 where 𝑎𝑖𝑗 = 0 if 𝑖 ≠ 𝑗 (fill the rest of the entries with “∗”).
iii.  (𝑎𝑖𝑗)5×5 where 𝑎𝑖𝑗 = 0 if 𝑖 < 𝑗 (fill the rest of the entries with “∗”).
iv.  (𝑎𝑖𝑗)5×5 where 𝑎𝑖𝑗 = 0 if 𝑖 > 𝑗 (fill the rest of the entries with “∗”).

These are all square matrices. Matrix (iii) is a “lower triangular matrix” and (iv) is an “upper
triangular matrix” (so we have in (iii) and (iv) matrices that are square and triangular!)

Exercise 2.9. Give an example of a (4 × 4) matrix such that [𝐴]𝑖𝑗 = [𝐴]𝑗𝑖.
Exercise 2.10. What is 𝑢 and 𝑣 if

⎡⎢⎢
⎣

𝑢 + 2𝑣 1 3
9 0 4
3 4 7

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

1 1 3
9 0 𝑢 + 𝑣
3 4 7

⎤⎥⎥
⎦

?

Exercise 2.11. Let 𝑣1,𝑣2,𝑣3,𝑣4 represent cities and suppose there are one-way flights from 𝑣1
to 𝑣2 and 𝑣3, from 𝑣2 to 𝑣3 and 𝑣4, and two-way flights between 𝑣1 and 𝑣4. Write out a matrix
𝐴 such that [𝐴]𝑖𝑗 = 1 if there is a flight from 𝑣𝑖 to 𝑣𝑗, and zero otherwise.

Exercise 2.12. What is the dimension of the matrix
⎡⎢⎢
⎣

1 8 3
9 1 9
0 0 0

⎤⎥⎥
⎦

?

Exercise 2.13. Let 𝐴 = [0 0 0
0 0 0] and 𝐵 = ⎡⎢⎢

⎣

0 0
0 0
0 0

⎤⎥⎥
⎦

. Is 𝐴 = 𝐵?

Exercise 2.14. If 2𝐴 = ⎡⎢⎢
⎣

3 4
2 8
1 5

⎤⎥⎥
⎦

, what is 𝐴? If 𝐵 − 1
2
⎡⎢⎢
⎣

3 4
1 8
1 4

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

6 4
2 5
3 1

⎤⎥⎥
⎦

, what is 𝐵?
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Exercise 2.15. Which of the following matrices are symmetric?

a.  
⎡
⎢
⎢
⎢
⎣

1 2 3 5
2 5 4 𝑏
3 4 3 3
5 𝑏 3 1

⎤
⎥
⎥
⎥
⎦

 b.
⎡
⎢
⎢
⎢
⎣

1 2 3 5
0 5 4 𝑏
0 0 3 3
0 0 0 1

⎤
⎥
⎥
⎥
⎦

 c.
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 5 0 0
0 0 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

d.  
⎡
⎢
⎢
⎢
⎣

1 1 3 5
2 5 4 𝑏
3 4 3 3
5 𝑏 3 1

⎤
⎥
⎥
⎥
⎦

 e.
⎡
⎢
⎢
⎢
⎣

1 1
1 1
1 1
1 1

⎤
⎥
⎥
⎥
⎦

Exercise 2.16. True or False?
a.  Symmetric matrices must be square.
b.  A scalar is symmetric
c.  If 𝐴 is symmetric, then 𝛼𝐴 is symmetric.
d.  The sum of symmetric matrices is symmetric.
e.  If (𝐴T)T = 𝐴, then 𝐴 is symmetric.

Exercise 2.17.
a. Find 𝐴 and 𝐵 if they simultaneously satisfy

2𝐴 + 𝐵 = [1 2 1
4 3 0] and 𝐴+ 2𝐵 = [4 2 3

5 1 1] .

b. If 𝐴+𝐵 = 𝐶 and 3𝐴 − 2𝐵 = 0 simultaneously, find 𝐴 and 𝐵 in terms of 𝐶.

2.2.4 Matrix Multiplication

Let 𝐴 be (𝑚 × 𝑛) and 𝐵 be (𝑛 × 𝑝) – here we require the number of columns in 𝐴 and the
number of rows in 𝐵 to be the same. Then the product 𝐴𝐵 is defined as the (𝑚 × 𝑝) matrix
whose (𝑖, 𝑗)th element is defined by

[𝐴𝐵]𝑖𝑗 =
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗 .

That is, the (𝑖, 𝑗)th element of the product 𝐴𝐵 is defined as the sum of the product of the
elements of the 𝑖th row of 𝐴 with the corresponding elements in the 𝑗th column of 𝐵. For
example, the (1, 1)th element of 𝐴𝐵 is

[𝐴𝐵]11 =
𝑛

∑
𝑘=1

𝑎1𝑘𝑏𝑘1 = 𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 +⋯+ 𝑎1𝑛𝑏𝑛1 .

The (2, 3)th element of 𝐴𝐵 is

[𝐴𝐵]2,3 =
𝑛

∑
𝑘=1

𝑎2𝑘𝑏𝑘3 = 𝑎21𝑏13 + 𝑎22𝑏23 + 𝑎23𝑏33 +⋯+ 𝑎2𝑛𝑏𝑛3 ,
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and so on. Visually, for a product of a (3 × 3) matrix into a (3 × 2) matrix, we have

⎡
⎢
⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤
⎥
⎥
⎦

⎡
⎢⎢
⎣

𝑏11
𝑏21
𝑏31

𝑏12
𝑏22
𝑏32

⎤
⎥⎥
⎦

= ⎡⎢⎢
⎣

𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 •
• •
• •

⎤⎥⎥
⎦

⎡
⎢
⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤
⎥
⎥
⎦

⎡
⎢⎢
⎣

𝑏11
𝑏21
𝑏31

𝑏12
𝑏22
𝑏32

⎤
⎥⎥
⎦

= ⎡⎢⎢
⎣

𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32
• •
• •

⎤⎥⎥
⎦

⎡
⎢
⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤
⎥
⎥
⎦

⎡
⎢⎢
⎣

𝑏11
𝑏21
𝑏31

𝑏12
𝑏22
𝑏32

⎤
⎥⎥
⎦

= ⎡⎢⎢
⎣

𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32
𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 •

• •

⎤⎥⎥
⎦

and so on.

Example 2.18. Let 𝐴 = ⎡⎢⎢
⎣

2 8
3 0
5 1

⎤⎥⎥
⎦

and 𝐵 = [4 7
6 9]. Then

𝐴𝐵 = ⎡⎢⎢
⎣

2 8
3 0
5 1

⎤⎥⎥
⎦
[4 7
6 9] = ⎡⎢⎢

⎣

(2)(4) + (8)(6) (2)(7) + (8)(9)
(3)(4) + (0)(6) (3)(7) + (0)(9)
(5)(4) + (1)(6) (5)(7) + (1)(9)

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

56 86
12 21
26 44

⎤⎥⎥
⎦
.

Example 2.19. The simultaneous equations

2𝑥1 − 𝑥2 = 4
𝑥1 + 2𝑥2 = 2

can be written in matrix form as

[2 −1
1 2 ][𝑥1

𝑥2
] = [42] , or 𝐴𝑥 = 𝑏

where 𝐴 = [2 −1
1 2 ], 𝑥 = [𝑥1

𝑥2
], and 𝑏 = [42].

2.2.5 Exercises

The following exercises illustrate very important aspects of matrix multiplication. You should
work through each exercise and be sure to understand the point being made.

Exercise 2.18. Let 𝐴 = ⎡⎢⎢
⎣

2 8
3 0
5 1

⎤⎥⎥
⎦

, 𝐵 = [2 0
3 8] and 𝐶 = [7 2

6 3].

a.  Compute the matrices 𝐵𝐶, 𝐶𝐵, and 𝐴𝐵,
b.  Can 𝐵𝐴 even be computed?

Remark: This exercise shows that for any two matrices 𝐴 and 𝐵, 𝐴𝐵 ≠ 𝐵𝐴 in general. That
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is, we have to distinguish between pre-multiplication and post-multiplication. In the product 𝐴𝐵,
we say that 𝐵 is pre-multiplied by 𝐴, or that 𝐴 is post-multiplied by 𝐵.

Exercise 2.19. Show that 𝑥T𝑥 ≥ 0 for any vector 𝑥 = [𝑥1 𝑥2 … 𝑥𝑛]
T
. When will 𝑥T𝑥 = 0?

Remark: For any column vector 𝑥, the product 𝑥T𝑥 is the sum of the squares of its elements.

Exercise 2.20.

a. Compute [2 4
1 2][−2 4

1 −2].

b.  Let 𝐴 = [ 1 𝑏
−1

𝑏 −1] where 𝑏 ≠ 0. Compute 𝐴2, i.e., compute the product 𝐴𝐴.

Remark: This exercise shows that you can multiply two non-zero matrices and end up with a
zero matrix. Therefore 𝐴𝐵 = 0 does not imply 𝐴 = 0 or 𝐵 = 0. It is even possible for the
square of a non-zero matrix to be a zero matrix. Of course, if 𝐴 = 0 or 𝐵 = 0, then 𝐴𝐵 = 0.

Matrix multiplication therefore does not behave like the usual multiplication of numbers: the
order of multiplication matters, and 𝐴𝐵 = 0 does not imply 𝐴 = 0 or 𝐵 = 0. In other ways
matrix multiplication does behave like regular multiplication of numbers, as the next exercise
shows.

Exercise 2.21.
a. Prove that (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) where 𝐴, 𝐵, and 𝐶 are (𝑚×𝑛), (𝑛×𝑝) and (𝑝×𝑞) respectively.
b. Prove that 𝐴(𝐵 + 𝐶) = 𝐴𝐵 +𝐴𝐶 where 𝐴 is (𝑚 × 𝑛), and 𝐵 and 𝐶 are (𝑛 × 𝑝).
c. Prove that (𝐴 + 𝐵)𝐶 = (𝐴𝐶 +𝐵𝐶) where 𝐴 and 𝐵 are (𝑚 × 𝑛) and 𝐶 is (𝑛 × 𝑝).

We give the proof for part (a).

[(𝐴𝐵)𝐶]𝑖𝑗 =
𝑝

∑
𝑘=1

[𝐴𝐵]𝑖𝑘[𝐶]𝑘𝑗

=
𝑝

∑
𝑘=1

(
𝑛

∑
𝑙=1

[𝐴]𝑖𝑙[𝐵]𝑙𝑘)[𝐶]𝑘𝑗

=
𝑛

∑
𝑙=1

[𝐴]𝑖𝑙 (
𝑝

∑
𝑘=1

[𝐵]𝑙𝑘[𝐶]𝑘𝑗)

=
𝑛

∑
𝑙=1

[𝐴]𝑖𝑙[𝐵𝐶]𝑙𝑗

= [𝐴(𝐵𝐶)]𝑖𝑗.

Exercise 2.22. Let 𝐴 be an (𝑚×𝑛) matrix, and let 𝐼𝑛 and 𝐼𝑚 be identity matrices of dimensions
(𝑛 × 𝑛) and (𝑚 ×𝑚) respectively. Show that 𝐼𝑚𝐴 = 𝐴𝐼𝑛 = 𝐴.

Exercise 2.23. Show that

⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33
𝑎41 𝑎42 𝑎43

⎤
⎥
⎥
⎥
⎦

⎡⎢⎢
⎣

𝑏1
𝑏2
𝑏3

⎤⎥⎥
⎦

= 𝑏1
⎡
⎢
⎢
⎢
⎣

𝑎11
𝑎21
𝑎31
𝑎41

⎤
⎥
⎥
⎥
⎦

+ 𝑏2
⎡
⎢
⎢
⎢
⎣

𝑎12
𝑎22
𝑎32
𝑎42

⎤
⎥
⎥
⎥
⎦

+ 𝑏3
⎡
⎢
⎢
⎢
⎣

𝑎13
𝑎23
𝑎33
𝑎43

⎤
⎥
⎥
⎥
⎦

.

In other words, 𝐴𝑏 is a “linear combination” of the columns of 𝐴, with weights given in 𝑏.
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Exercise 2.24.

a. For 𝐴 = [𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6

] and 𝐵 = ⎡⎢⎢
⎣

𝑏1 𝑏2 𝑏3
𝑏4 𝑏5 𝑏6
𝑏7 𝑏8 𝑏9

⎤⎥⎥
⎦

, prove that (𝐴𝐵)T = 𝐵T𝐴T by multiplying

out the matrices.

Remark: This result holds generally. For any (𝑚 × 𝑛) matrix 𝐴 and any (𝑛 × 𝑝) matrix 𝐵, we
have (𝐴𝐵)T = 𝐵T𝐴T. We want to show that the (𝑖, 𝑗)th element of (𝐴𝐵)T is equal to the (𝑖, 𝑗)th
element of 𝐵T𝐴T. By definition of the transpose, the (𝑖, 𝑗)th element of (𝐴𝐵)T is the (𝑗, 𝑖)th
element of 𝐴𝐵, therefore

[(𝐴𝐵)T]𝑖𝑗 = [𝐴𝐵]𝑗𝑖 =
𝑛

∑
𝑘=1

𝑎𝑗𝑘𝑏𝑘𝑖 =
𝑛

∑
𝑘=1

𝑏𝑘𝑖𝑎𝑗𝑘 =
𝑛

∑
𝑘=1

[𝐵T]𝑖𝑘[𝐴T]𝑘𝑗 = [𝐵T𝐴T]𝑖𝑗.

b.  Prove that (𝐴𝐵𝐶)T = 𝐶T𝐵T𝐴T.

Exercise 2.25. Let 𝑋 be a general (𝑛×𝑘) matrix. Explain why 𝑋T𝑋 is square and symmetric.

Remark: The matrix 𝑋T𝑋 is encountered frequently in econometrics.

Exercise 2.26. The trace of an (𝑛 × 𝑛) matrix 𝐴 is defined to be

tr(𝐴) =
𝑛

∑
𝑖=1

𝑎𝑖𝑖.

That is, the trace of a square matrix is simply the sum of its diagonal elements. The trace of a
scalar is the scalar itself.

a. If 𝐴 and 𝐵 are square matrices of the same dimensions, show that

tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵).

b. If 𝐴 is a square matrix, show that tr(𝐴T) = tr(𝐴).
c. If 𝐴 is (𝑚 × 𝑛) and 𝐵 is (𝑛 ×𝑚), show that tr(𝐴𝐵) = tr(𝐵𝐴).
d. If 𝑥 is an (𝑛 × 1) column vector, show that 𝑥T𝑥 = tr(𝑥𝑥T). Show this by

i. direct multiplication,
ii. using the result in part(c) and the fact that the trace of a scalar is the scalar itself.

Exercise 2.27. Let 𝑖𝑛 be an (𝑛 × 1) vector of ones, i.e., 𝑖𝑛 = [1 1 ⋯ 1]
T
. Show that the

sample mean of the elements of the column vector 𝑦 = [𝑦1 𝑦2 ⋯ 𝑦𝑛]
T

can be written

𝑦 = (𝑖T𝑛𝑖𝑛)−1𝑖T𝑛𝑦.

Exercise 2.28. Prove that 𝐴(𝛼𝐵) = (𝛼𝐴)𝐵 = 𝛼(𝐴𝐵).
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2.2.6 Partitioned Matrices

We can partition the contents of an (𝑚×𝑛) matrix into blocks of submatrices. For instance, we
can write

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [𝐴11 𝐴12
𝐴21 𝐴22

]

where 𝐴11 is [12], 𝐴21 is
⎡⎢⎢
⎣

3
4
3

⎤⎥⎥
⎦

, 𝐴12 is [3 2 6
8 2 1], and 𝐴22 is

⎡⎢⎢
⎣

1 2 4
2 1 3
1 1 7

⎤⎥⎥
⎦

.

Of course, there are many ways of partitioning any given matrix:

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

It can be shown that addition and multiplication of partitioned matrices can be carried out as
though the blocks are elements, as long as the matrices are partitioned conformably.

Addition of Partitioned Matrices  Consider two (𝑚× 𝑛) matrices 𝐴 and 𝐵 partitioned in the
following manner:

𝐴 =
⎡
⎢
⎢
⎣

𝐴11⏟
𝑚1×𝑛1

𝐴12⏟
𝑚1×𝑛2

𝐴21⏟
𝑚2×𝑛1

𝐴22⏟
𝑚2×𝑛2

⎤
⎥
⎥
⎦

and 𝐵 =
⎡
⎢
⎢
⎣

𝐵11⏟
𝑚1×𝑛1

𝐵12⏟
𝑚1×𝑛2

𝐵21⏟
𝑚2×𝑛1

𝐵22⏟
𝑚2×𝑛2

⎤
⎥
⎥
⎦

where 𝑛1 + 𝑛2 = 𝑛 and 𝑚1 + 𝑚2 = 𝑚. We emphasize that 𝐴 and 𝐵 must be of the same size
and partitioned identically. Then

𝐴+𝐵 =
⎡
⎢
⎢
⎣

𝐴11 +𝐵11⏟⏟⏟⏟⏟
𝑚1×𝑛1

𝐴12 +𝐵12⏟⏟⏟⏟⏟
𝑚1×𝑛2

𝐴21 +𝐵21⏟⏟⏟⏟⏟
𝑚2×𝑛1

𝐴22 +𝐵22⏟⏟⏟⏟⏟
𝑚2×𝑛2

⎤
⎥
⎥
⎦

. (2.4)

Multiplication of Partitioned Matrices  Now consider two matrices 𝐴 and 𝐵 with dimensions
(𝑚 × 𝑝) and (𝑝 × 𝑛) respectively. Suppose they are partitioned as follows:

𝐴 =
⎡
⎢
⎢
⎣

𝐴11⏟
𝑚1×𝑝1

𝐴12⏟
𝑚1×𝑝2

𝐴21⏟
𝑚2×𝑝1

𝐴22⏟
𝑚2×𝑝2

⎤
⎥
⎥
⎦

and 𝐵 =
⎡
⎢
⎢
⎣

𝐵11⏟
𝑝1×𝑛1

𝐵12⏟
𝑝1×𝑛2

𝐵21⏟
𝑝2×𝑛1

𝐵22⏟
𝑝2×𝑛2

⎤
⎥
⎥
⎦

.

In particular, the partition is such that the column-wise partition of 𝐴 matches the row-wise
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partition of 𝐵. Then

𝐴𝐵 =
⎡
⎢
⎢
⎣

𝐴11⏟
𝑚1×𝑝1

𝐴12⏟
𝑚1×𝑝2

𝐴21⏟
𝑚2×𝑝1

𝐴22⏟
𝑚2×𝑝2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐵11⏟
𝑝1×𝑛1

𝐵12⏟
𝑝1×𝑛2

𝐵21⏟
𝑝2×𝑛1

𝐵22⏟
𝑝2×𝑛2

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝐴11𝐵11 +𝐴12𝐵21⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚1×𝑛1

𝐴11𝐵12 +𝐴12𝐵22⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚1×𝑛2

𝐴21𝐵11 +𝐴22𝐵21⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚2×𝑛1

𝐴21𝐵12 +𝐴22𝐵22⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚2×𝑛2

⎤
⎥
⎥
⎦

. (2.5)

Transposition of Partitioned Matrices  It is straightforward to show that

𝐴 =
⎡
⎢
⎢
⎣

𝐴11⏟
𝑚1×𝑛1

𝐴12⏟
𝑚1×𝑛2

𝐴21⏟
𝑚2×𝑛1

𝐴22⏟
𝑚2×𝑛2

⎤
⎥
⎥
⎦

⇒ 𝐴T =
⎡
⎢
⎢
⎣

𝐴T
11⏟

𝑛1×𝑚1

𝐴T
21⏟

𝑛1×𝑚2

𝐴T
12⏟

𝑛2×𝑚1

𝐴T
22⏟

𝑛2×𝑚2

⎤
⎥
⎥
⎦

. (2.6)

2.2.7 Determinants and Inverses

Suppose 𝐴 is a square matrix of dimension (𝑛 × 𝑛). The inverse of 𝐴, if it exists, is the matrix
which we will denote as 𝐴−1, such that

𝐴−1𝐴 = 𝐼

Example 2.20. The inverse of the matrix

𝐴 = [1 3
2 4] is 𝐴−1 = 1

−2 [ 4 −3
−2 1 ] .

This can be verified by direct multiplication:

𝐴−1𝐴 = 1
−2 [ 4 −3

−2 1 ][1 3
2 4] = [1 0

0 1] .

If 𝐴−1𝐴 = 𝐼 , it will also be true that 𝐴𝐴−1 = 𝐼 .

The formula for the inverse of an arbitrary (2 × 2) matrix [𝑎11 𝑎12
𝑎21 𝑎22

] is

𝐴−1 = 1
|𝐴| [

𝑎22 −𝑎12
−𝑎21 𝑎11

] where |𝐴| = 𝑎11𝑎22 − 𝑎12𝑎21. (2.7)

You can easily verify this by direct multiplication. It is worth your while to commit (2.7) to
memory. The expression |𝐴| in (2.7) is called the determinant of the (2 × 2) matrix 𝐴. Notice
that if |𝐴| = 0, then the inverse will not exist (in that case, we say that 𝐴 is ‘singular’). If
|𝐴| ≠ 0, then the inverse will exist.

Example 2.21. The matrix 𝐴 = [1 3
2 6] has determinant zero:

|𝐴| = (1)(6) − (2)(3) = 0.

It does not have an inverse.
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When will |𝐴| = 0? For the (2 × 2) case, it will be when one or more row or columns are all
zero, or if one row is a multiple of the other, or if one column is a multiple of the other.

We will omit the formula for the determinant and inverse of larger square matrices, but
the same story applies: the inverse of a square matrix exists if and only if it has a non-zero
determinant. We will discuss a way of computing the determinant of a general square matrix in
a later chapter.

One application of matrix inverse is in solving simultaneous equations, e.g.,

2𝑥1 − 𝑥2 = 4
𝑥1 + 2𝑥2 = 2

which can be written in matrix form a 𝐴𝑥 = 𝑏 where

𝐴 = [2 −1
1 2 ] , 𝑥 = [𝑥1

𝑥2
] , and 𝑏 = [42] .

Since

𝐴−1 = 1
5 [ 2 1

−1 2] ,

we can simply (pre-)multiply both sides of 𝐴𝑥 = 𝑏 by 𝐴−1 to get the solution:

𝐴𝑥 = 𝑏 ⇒ 𝐴−1𝐴𝑥 = 𝐴−1𝑏 ⇒ 𝑥 = 𝐴−1𝑏.

For our specific example, we have

𝑥 = 𝐴−1𝑏 = 1
5 [ 2 1

−1 2][42] = [20] .

2.2.8 Exercises

Exercise 2.29. Let

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎥
⎦

and 𝐵 =
⎡
⎢⎢⎢
⎣

2 0 1
3 1 3
1 5 4
4 1 1

⎤
⎥⎥⎥
⎦

.

Verify the partitioned matrix multiplication formulas by multiplying in the usual way, then
multiplying using (Eq. 2.5). Verify the transposition formula (2.6) for both matrices.

Exercise 2.30. Consider the following two partitions of an (𝑚 × 𝑛) matrix 𝐴:

𝐴 =
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥
⎥
⎥
⎦

= [𝐴1 𝐴2 ⋯𝐴𝑛] and 𝐴 =
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑎T
1

𝑎T
2
⋮

𝑎T
𝑚

⎤
⎥
⎥
⎥
⎦

.
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Let 𝑐 = [𝑐1 𝑐2 … 𝑐𝑚]
T
, 𝑏 = [𝑏1 𝑏2 … 𝑏𝑛]

T
. Show that

a. 𝑐T𝐴 = 𝑐1𝑎T
1 + 𝑐2𝑎T

2 +⋯+ 𝑐𝑚𝑎T
𝑚, i.e., 𝑐T𝐴 is a linear combination of the rows of 𝐴.

b. 𝐴𝑏 = 𝑏1𝐴1 + 𝑏2𝐴2 +⋯+ 𝑏𝑛𝐴𝑛, i.e., 𝐴𝑏 is a linear combination of the columns of 𝐴.

Exercise 2.31. Let 𝑋 be a (𝑛 × 3) data matrix containing 𝑛 observations of three variables:

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33
⋮ ⋮ ⋮

𝑥𝑛1 𝑥𝑛2 𝑥𝑛3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where 𝑥𝑖𝑗 represents the 𝑖th observation of variable 𝑗. We can partition this matrix to emphasize
the variables by writing 𝑋 as 𝑋 = [𝑋1 𝑋2 𝑋3] where

𝑋1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥11
𝑥21
𝑥31
⋮

𝑥𝑛1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,𝑋2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥12
𝑥22
𝑥32
⋮

𝑥𝑛2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, and 𝑋3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥13
𝑥23
𝑥33
⋮

𝑥𝑛3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Alternatively, we can partition the data matrix to emphasize observations:

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥T
1

𝑥T
2

𝑥T
3
⋮
𝑥T
𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

where

𝑥𝑖 =
⎡⎢⎢
⎣

𝑥𝑖1
𝑥𝑖2
𝑥𝑖3

⎤⎥⎥
⎦

𝑖 = 1, 2, ..., 𝑛,

is the column vector containing the 𝑖th observations of all three variables. Show that the matrix
𝑋T𝑋 can be written as

𝑋T𝑋 = ⎡⎢⎢
⎣

𝑋T
1 𝑋1 𝑋T

1 𝑋2 𝑋T
1 𝑋3

𝑋T
2 𝑋1 𝑋T

2 𝑋2 𝑋T
2 𝑋3

𝑋T
3 𝑋1 𝑋T

3 𝑋2 𝑋T
3 𝑋3

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

∑𝑛
𝑖=1 𝑥2

𝑖1 ∑𝑛
𝑖=1 𝑥𝑖1𝑥𝑖2 ∑𝑛

𝑖=1 𝑥𝑖1𝑥𝑖3
∑𝑛

𝑖=1 𝑥𝑖1𝑥𝑖2 ∑𝑛
𝑖=1 𝑥2

𝑖2 ∑𝑛
𝑖=1 𝑥𝑖2𝑥𝑖3

∑𝑛
𝑖=1 𝑥𝑖1𝑥𝑖3 ∑𝑛

𝑖=1 𝑥𝑖2𝑥𝑖3 ∑𝑛
𝑖=1 𝑥2

𝑖3

⎤⎥⎥
⎦

=
𝑛

∑
𝑖=1

𝑥𝑖𝑥T
𝑖 .
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2.2.9 Matrices in R
We have already learnt how to create matrices in R. Here are three matrices:

A = matrix(c(2,3,5,9,0,1),3,2); A

[,1] [,2]
[1,] 2 9
[2,] 3 0
[3,] 5 1

B = matrix(c(2,3,0,8),2,2); B

[,1] [,2]
[1,] 2 0
[2,] 3 8

C = matrix(c(7,6,2,3),2,2); C

[,1] [,2]
[1,] 7 2
[2,] 6 3

D = matrix(0,2,2); D

[,1] [,2]
[1,] 0 0
[2,] 0 0

I3 = diag(c(1,1,1)); I3

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Feeding an R vector into diag() creates a diagonal matrix. Feeding a square matrix into diag()
draws out the diagonal elements:

diag(C)

[1] 7 3

In R, the * operator refers to element-by-element multiplication.

B*C

[,1] [,2]
[1,] 14 0
[2,] 18 24
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To do matrix multiplication, we use the %*% operator. Of course, the matrices must be compatible
for multiplication.

B%*%C

[,1] [,2]
[1,] 14 4
[2,] 69 30

A%*%B

[,1] [,2]
[1,] 31 72
[2,] 6 0
[3,] 13 8

B%*%A

Error in B %*% A: non-conformable arguments

We can use * for scalar multiplication

3*B

[,1] [,2]
[1,] 6 0
[2,] 9 24

Addition and subtraction can be done with the + and - operators. A matrix can be transposed
using the function t().

Example 2.22. We transpose the matrix 𝐴 defined earlier.

A

[,1] [,2]
[1,] 2 9
[2,] 3 0
[3,] 5 1

t(A)

[,1] [,2] [,3]
[1,] 2 3 5
[2,] 9 0 1

The determinant of a square matrix can be obtained using the det() function:

Example 2.23. Consider the matrices

𝐴 = [2 −1
1 2 ] , 𝐷 = ⎡⎢⎢

⎣

0 3 4
3 1 2
6 2 1

⎤⎥⎥
⎦
, and 𝐸 = ⎡⎢⎢

⎣

2 2 4
2 1 3
2 5 7

⎤⎥⎥
⎦
,

Their determinants are:
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A = matrix(c(2,1,-1,2), 2, 2); A; cat("Determinant is", det(A), "\n\n")

[,1] [,2]
[1,] 2 -1
[2,] 1 2
Determinant is 5

D = matrix(c(0,3,6,3,1,2,4,2,1), 3, 3); D; cat("Determinant is", det(D),"\n\n")

[,1] [,2] [,3]
[1,] 0 3 4
[2,] 3 1 2
[3,] 6 2 1
Determinant is 27

E = matrix(c(2,2,2,2,1,5,4,3,7), 3, 3); E; cat("Determinant is", det(E),"\n\n")

[,1] [,2] [,3]
[1,] 2 2 4
[2,] 2 1 3
[3,] 2 5 7
Determinant is 0

To calculate the inverse of square matrices, use the solve() function

solve(A)

[,1] [,2]
[1,] 0.4 0.2
[2,] -0.2 0.4

solve(D)

[,1] [,2] [,3]
[1,] -0.1111111 0.1851852 0.07407407
[2,] 0.3333333 -0.8888889 0.44444444
[3,] 0.0000000 0.6666667 -0.33333333

solve(E) # not going to work, since det(E)=0

Error in solve.default(E): Lapack routine dgesv: system is exactly singular: U[3,3] = 0

To solve a system of linear equations 𝐴𝑥 = 𝑏 in R, you can use solve(A)%*%b or solve(A,b).

A = matrix(c(2,1,-1,2), 2, 2);
b = matrix(c(4,2),2,1)
x = solve(A,b)
x

[,1]
[1,] 2
[2,] 0
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The trace of a matrix can be computed with sum(diag()):

sum(diag(A)); sum(diag(D)); sum(diag(E))

[1] 4
[1] 2
[1] 10

2.3 A Brief Review of Optimization Theory

Many estimators used in econometrics are based on the optimization (i.e., finding the minimum
or maximum point) of some objective function. Optimization can be complicated when dealing
with ‘poorly behaved’ functions, but is straightforward for certain classes of functions.

2.3.1 Functions of One Variable

The minimum point of a function 𝑓 is the point 𝑥∗ in the domain of 𝑓 such that 𝑓(𝑥) ≥ 𝑓(𝑥∗)
for all 𝑥 in its domain. If it is the case that 𝑓(𝑥) > 𝑓(𝑥∗) for all 𝑥 ≠ 𝑥∗ in its domain, then 𝑥∗

is said to be a strict minimum point. Maximum points and strict maximum points are
defined similarly, with the reverse inequalities.

Consider for the moment functions 𝑓 that satisfy the following two conditions:
1. the domain of 𝑓 is an open interval (𝑎, 𝑏),
2. the function is twice differentiable, i.e., 𝑓 ′(𝑥) and 𝑓″(𝑥) exist for every 𝑥 in (𝑎, 𝑏).
The first tool for finding the maximum or minimum points of such functions is the fact that

minimum and maximum points, if they exist, must satisfy

𝑓 ′(𝑥∗) = 0. (2.8)

The rough intuition is that if the slope of the function at 𝑥∗ is not zero, then moving 𝑥∗ to the
left or right will lead to higher or lower values of the function. We call any 𝑥∗ that satisfies (2.8)
a “stationary point”.

This result is useful because, as a necessary condition, it helps us sieve out all candidate
minimum and maximum points. However, the result is not sufficient because it can also pick
out points that are neither maximum or minimum points.

Example 2.24. Consider the functions 𝑓(𝑥) = (𝑥 − 2)2 + 3, 𝑔(𝑥) = −(𝑥 − 2)2 + 3 and ℎ(𝑥) =
(𝑥 − 2)3. All three are defined and twice-differentiable over the entire real line (−∞,∞). The
three functions are shown below:

x <- seq(0,4, by=0.01)
fx <- (x-2)^2 + 3
gx <- -(x-2)^2 + 3
hx <- (x-2)^3
dat <- data.frame(x=x,fx=fx,gx=gx,hx=hx)
p1 <- ggplot(data=dat) + geom_line(aes(x=x,y=fx)) + ggtitle("f(x)") +

geom_segment(aes(x=1,y=3,xend=3,yend=3), color='red') + theme_bw()
p2 <- ggplot(data=dat) + geom_line(aes(x=x,y=gx)) + ggtitle("g(x)") +

geom_segment(aes(x=1,y=3,xend=3,yend=3), color='red') + theme_bw()
p3 <- ggplot(data=dat) + geom_line(aes(x=x,y=hx)) + ggtitle("h(x)") +
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geom_segment(aes(x=1,y=0,xend=3,yend=0), color='red') + theme_bw()
(p1 | p2 | p3)
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0
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x
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In all three cases, the point 𝑥∗ = 2 satisfies 𝑓 ′(𝑥∗) = 0, 𝑔′(𝑥∗) = 0 and ℎ′(𝑥∗) = 0, but in the
case of ℎ(𝑥), 𝑥∗ = 2 is neither a maximum or minimum point (it is an inflection point).

Quite often we find ourselves in situations where our function behaves like 𝑓(𝑥) or 𝑔(𝑥) in
the example above, in which case the first order condition does pick out the strict minimum or
strict maximum point. For twice-differentiable functions we can use the second-order derivative
to see if we are indeed working with such functions. If

 3a.  𝑓″(𝑥) > 0 for all 𝑥 ∈ (𝑎, 𝑏)
then the point 𝑥∗ such that 𝑓 ′(𝑥∗) = 0 gives the minimum point of the function. The condition
3a says that moving from left to right the slope of the function always increases, so the function
arcs upwards (we say the function is convex, or convex upwards). If

 3b.  𝑓″(𝑥) < 0 for all 𝑥 ∈ (𝑎, 𝑏), then the slope of the function is always decreases as 𝑥
increases. The function therefore arcs downwards (i.e., is concave, or concave downwards), and
the stationary point then gives a strict maximum point.

We refer to 𝑓 ′(𝑥∗) = 0 as the “first-order condition”, and 𝑓″(𝑥∗) > 0 as the “second-order
condition” for a minimum, and 𝑓″(𝑥∗) < 0 as the second-order condition for a maximum.

Example 2.25. The point 𝑥 = 2 is the minimum point of 𝑓(𝑥) = (𝑥 − 2)2 + 3 since 𝑓 ′(𝑥) =
2(𝑥 − 2) = 0 at 𝑥 = 2 and 𝑓″(𝑥) = 2 > 0 for all 𝑥. The point 𝑥 = 2 is the maximum point
of 𝑔(𝑥) = −(𝑥 − 2)2 − 3 since 𝑓 ′(𝑥) = −2(𝑥 − 2) = 0 at 𝑥 = 2 and 𝑓″(𝑥) = −2 < 0 for all 𝑥.
The first derivative of the function ℎ(𝑥) = (𝑥 − 2)3 is zero at 𝑥 = 2: ℎ′(𝑥) = 3(𝑥 − 2)2 = 0
at 𝑥 = 2. However, it fails the second order condition for both a maximum and a minimum as
ℎ″(𝑥) = 6(𝑥 − 2) is neither always positive or always negative.

Note the 𝑓(𝑥∗) = 0 together with 𝑓″(𝑥∗) > 0 or 𝑓″(𝑥∗) < 0 is sufficient to guarantee that
𝑥∗ is a minimum or maximum point, but they are not necessary conditions. In ℎ(𝑥) above, the
point 𝑥 = 2 turned out to be neither a maximum or a minimum of the function ℎ(𝑥) = (𝑥−2)3,
but we could not have claimed this solely on the basis of the function’s failure to satisfy the
second-order condition. It is possible for a function to fail the second-order condition and yet
yield a maximum or minimum point at the point 𝑥∗ where the first derivative is zero.
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Example 2.26. Suppose we wish to maximize the function 𝑓(𝑥) = 𝑒−𝑥2 defined over the open
interval (−∞,∞). It is twice-differentiable everywhere on this interval. The first derivative is
𝑓 ′(𝑥) = −2𝑥𝑒−𝑥2 which is zero at 𝑥 = 0 so 𝑥 = 0 is a candidate maximum point. However, the
second derivative

𝑓″(𝑥) = 2𝑒−𝑥2(2𝑥2 − 1)
is not strictly positive or strictly negative everywhere: 𝑓″(𝑥) < 0 when −1

√
2 < 𝑥 < 1/

√
2,

and 𝑓″(𝑥) > 0 when 𝑥 < −1
√
2 or 𝑥 > 1

√
2. It fails to satisfy the second-order condition for a

maximum (or a minimum). Yet the point 𝑥 = 0 is a maximum point (see plot below).

x <- seq(-4,4, by=0.01)
fx <- exp(-x^2)
dat <- data.frame(x=x,fx=fx)
ggplot(data=dat) + geom_line(aes(x=x,y=fx)) + ggtitle("f(x)") +

geom_segment(aes(x=-1,y=1,xend=1,yend=1), color='red') +
theme(plot.title = element_text(size = 10)) + theme_bw()
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We have noted that the first order condition (2.8) cannot distinguish between maximum and
minimum points. It also cannot distinguish between strict vs non-strict maximum/minimum
points.

Example 2.27. Consider the function 𝑓(𝑥) = 𝑥2 exp(−𝑥2) shown below.

x <- seq(-3,3, by=0.01)
f <- function(x){x^2*exp(-x^2)}
dat <- data.frame(x=x,fx=f(x))
x1 <- -1; x2 <- 0; x3 <- 1
ggplot(data=dat) + geom_line(aes(x=x,y=fx)) +

ggtitle("f(x)=x^2*exp(-x/2)") + ylab("") +
geom_segment(aes(x=x1-0.25,y=f(x1),xend=x1+0.25,yend=f(x1)), color='red') +
geom_segment(aes(x=x2-0.25,y=0,xend=x2+0.25,yend=0), color='red') +
geom_segment(aes(x=x3-0.25,y=f(x3),xend=x3+0.25,yend=f(x3)), color='red') +
theme(plot.title = element_text(size = 9)) + theme_bw()
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f(x)=x^2*exp(−x/2)

This function has three stationary points. The points 𝑥 = −1 and 𝑥 = 1 are (non-strict)
maximum points. The point 𝑥 = 0 is a strict minimum point.

We have shown an example where the first order condition yields neither a maximum point
nor minimum point. Sometimes the first order condition yields points that are maximum or
minimum, but only “locally” so.

Example 2.28. Take the function 𝑓(𝑥) = (𝑥 − 0.5)2 exp(−𝑥2) shown below.

x <- seq(-3,3, by=0.01)
f <- function(x){(x-0.5)^2*exp(-x^2)}
dat <- data.frame(x=x,fx=f(x))
x1 <- (1-sqrt(17))/4; x2 <- 0.5; x3 <- (1+sqrt(17))/4
ggplot(data=dat) + geom_line(aes(x=x,y=fx)) + ggtitle("f(x)") + ylab("") +

geom_segment(aes(x=x1-0.25,y=f(x1),xend=x1+0.25,yend=f(x1)), color='red') +
geom_segment(aes(x=x2-0.25,y=0,xend=x2+0.15,yend=0), color='red') +
geom_segment(aes(x=x3-0.25,y=f(x3),xend=x3+0.25,yend=f(x3)), color='red') +
theme(plot.title = element_text(size = 9)) + theme_bw()
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In this example the first order condition picks out three candidate maximum and minimum
points. The points 𝑥 = (1 −

√
17)/4 ≈ −0.78 is a strict maximum point, where as 𝑥 = 0.5 is a

strict minimum point. The point 𝑥 = (1 +
√
17)/4 ≈ 1.28 is strictly speaking not a maximum

point, but it is if we consider only a small enough neighborhood about 𝑥 = (1+
√
17)/4. We call

this a local maximum point. The first order condition picks out local maximum and local
minimum points, in addition to the “global” ones.
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Concave/convex functions need not have maximum/minimum points.

Example 2.29. Let 𝑓(𝑥) = 1 − 1/𝑥, 𝑥 ∈ (0,∞). This function is twice-differentiable over its
domain which is an open interval. We have 𝑓 ′(𝑥) = 1/𝑥2 and 𝑓″(𝑥) = −2/𝑥3. The second
derivative is negative for all 𝑥 ∈ (0,∞). However, there is no point 𝑥∗ such that 𝑓 ′(𝑥∗) = 0.
The function is concave, but it is strictly increasing and has no maximum point (even though it
is bounded from above!).

The discussion above assume twice-differentiable functions defined over open intervals.
Things can get a little more complicated once we depart from this scenario, as the following
examples show:

Example 2.30. The function 𝑓(𝑥) = |𝑥| has a minimum point at 𝑥 = 0. Yet there are no points
at which 𝑓 ′(𝑥) = 0 (the function is not differentiable at 𝑥 = 0).

Example 2.31. Consider the function 𝑓(𝑥) = 𝑥2 defined over the restricted domain 𝑥 ∈ [1, 2].
Note that the domain is now not an open interval. At no point in the domain do we have
𝑓 ′(𝑥) = 0. Yet 𝑥 = 2 is a global maximum point, and 𝑥 = 1 is a global minimum point.

For the moment, we will not need to go beyond the class of twice-differentiable con-
cave/convex functions defined over an open interval. However, we will have to consider
functions of many variables.

2.3.2 Functions of Many Variables

We will only consider the simplest cases. First consider a function 𝑓(𝑥, 𝑦), and assume that the
first and second partial derivatives exist everywhere in its domain, which we take to be ℝ2. The
first order condition in this case is that a minimum or maximum point (𝑥∗, 𝑦∗), if it exists, must
satisfy

𝑓 ′
𝑥(𝑥∗, 𝑦∗) = 0
𝑓 ′
𝑦(𝑥∗, 𝑦∗) = 0

(2.9)

Intuitively, if the slope of the function at (𝑥∗, 𝑦∗) in any given direction is not zero, then we
can increase or decrease the function by moving along that direction. If (2.9) holds, then the
slope of the function in the 𝑥-direction and the 𝑦-direction are both zero at the stationary point
(𝑥∗, 𝑦∗). This in turn guarantees that the slope in every direction is zero.

Like the univariate case, (2.9) is only necessary, not sufficient. The plots below are three-
dimensional plots, from left to right, of the functions

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 , 𝑓(𝑥, 𝑦) = −𝑥2 − 𝑦2 and 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 .

x <- y <- seq(-10,10,length.out=30)
funcs <- list(NA,NA,NA)
funcs[[1]] <- function(x,y){r <- x^2 + y^2}
funcs[[2]] <- function(x,y){r <- -x^2 - y^2}
funcs[[3]] <- function(x,y){r <- x^2 - y^2}
fneqs<-c("x^2+y^2","-x^2-y^2","x^2-y^2")
op <- par(bg="white", oma=c(0,0,0,0), mfrow=c(1,3))
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for (i in 1:3){
z <- outer(x,y,funcs[[i]])
z[is.na(z)] <- 1
par(mar=c(0,2,0,2), pin=c(2,2.5))
persp(x,y,z,theta=30, phi=10,r=10, expand=0.8, col="cadetblue1",

ltheta=120, shade=0.75,ticktype="detailed", xlab="X", ylab="Y", zlab="")
mtext(fneqs[i],side=3, line=-3, adj=0)

}
mtext("Three functions with stationary point at (0,0)", line=-3, side=1, outer=TRUE)
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Three functions with stationary point at (0,0)

All three have a stationary point at (𝑥∗, 𝑦∗) = (0, 0), but in the first case we have a minimum,
in the second a maximum, and in the third case neither. In the first case, the function is convex
throughout. In the second, the function is concave throughout, and in the third case neither.
For the most part we will deal with concave or convex functions. How do we tell if a function is
concave or convex? For functions of one variable we look at the second derivative. For a function
of many variables, we look at the matrix of second-order partial derivatives. For example, for
the function 𝑓(𝑥, 𝑦, 𝑧), we would look at the matrix

𝐻𝑓 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕2𝑓
𝜕𝑥2

𝜕2𝑓
𝜕𝑥𝜕𝑦

𝜕2𝑓
𝜕𝑥𝜕𝑧

𝜕2𝑓
𝜕𝑦𝜕𝑥

𝜕2𝑓
𝜕𝑦2

𝜕2𝑓
𝜕𝑦𝜕𝑧

𝜕2𝑓
𝜕𝑧𝜕𝑥

𝜕2𝑓
𝜕𝑧𝜕𝑦

𝜕2𝑓
𝜕𝑧2

⎤
⎥
⎥
⎥
⎥
⎦

This matrix, which is symmetric, is called the Hessian of the function 𝑓 . If it is the case that
the Hessian satisfies

𝑎′𝐻𝑓𝑎 > 0 (2.10)

for all non-zero vectors 𝑎, then the function is convex (we also say that the Hessian is positive
definite). In this case we say that the “second-order condition” for a minimum holds, and the
stationary point is a minimum point. If

𝑎′𝐻𝑓𝑎 < 0 (2.11)
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then the Hessian is negative definitive, and the function is concave. The second-order condi-
tion for a maximum holds, and the stationary point is the maximum point. If neither condition
holds, then the second order condition is silent about the status of the stationary point.

Example 2.32. For the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2, we have

𝐻𝑓 =
⎡
⎢⎢
⎣

𝜕2𝑓
𝜕𝑥2

𝜕2𝑓
𝜕𝑥𝜕𝑦

𝜕2𝑓
𝜕𝑦𝜕𝑥

𝜕2𝑓
𝜕𝑦2

⎤
⎥⎥
⎦

= [2 0
0 2] .

Therefore

𝑎′𝐻𝑓𝑎 = [𝑎1 𝑎2][
2 0
0 2][𝑎1𝑎2

] = 2𝑎21 + 2𝑎22

which is strictly positive for all non-zero vectors 𝑎.
For the function 𝑓(𝑥, 𝑦) = −𝑥2 − 𝑦2, we have

𝑎′𝐻𝑓𝑎 = [𝑎1 𝑎2][
−2 0
0 −2][𝑎1𝑎2

] = −2(𝑎21 + 𝑎22)

which is strictly negative for all non-zero vectors 𝑎. In the case of 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2, we have

𝑎′𝐻𝑓𝑎 = [𝑎1 𝑎2][
2 0
0 −2][𝑎1𝑎2

] = 2(𝑎21 − 𝑎22)

which can be negative or positive or zero, depending on the values of 𝑎1 and 𝑎2.

The first and second order conditions stated in this section extend to functions of more than
two variables.

2.3.3 Exercises

Exercise 2.32. Find the first and second derivatives of the function

𝑓(𝑥) = 𝑥
1 + 𝑥2 .

Show that 𝑓 ′(𝑥) = 0 at 𝑥 = 1 and 𝑥 = −1. Find the regions over which 𝑓″(𝑥) is positive, and
the regions over which 𝑓″(𝑥) is negative. What argument can you give to prove that 𝑥 = 1 is a
global maximum point, and 𝑥 = −1 is a global minimum point of the function?

Exercise 2.33. Let {𝑋𝑖}𝑁𝑖=1 be a sample of 𝑁 observations of a random variable 𝑋 with pop-
ulation mean E[𝑋] = 𝜇. Show that the sample mean ̂𝜇 = 1

𝑁 ∑𝑁
𝑖=1 𝑋𝑖 minimizes the function

𝑓( ̂𝜇) =
𝑁
∑
𝑖=1

(𝑋𝑖 − ̂𝜇)2.

Exercise 2.34. Show that 𝑓(𝑥) = 2𝑥3 − 6𝑥 has stationary points at 𝑥 = 1 and 𝑥 = −1. Show
that 𝑥 = −1 is a local maximum point, and 𝑥 = 1 is a local minimum point.
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Exercise 2.35. Let 𝐴 be the following matrix, which can be decomposed into the product of
two matrices as shown:

𝐴 = [5 5
5 10] = [1 2

3 1][1 3
2 1] .

Explain why this shows 𝐴 is positive definite. Find the stationary point of the function

𝑓(𝑥, 𝑦) = 5𝑥2 + 10𝑥𝑦 + 10𝑦2.

Is this point a maximum point, a minimum point, or neither?

2.4 Application: Fitting a Straight Line by Least Squares
For an application of the ideas we have just reviewed, consider the problem of fitting a straight
line through a scatterplot of 𝑛 points {𝑋𝑖, 𝑌𝑖}𝑛𝑖=1. For illustration, we will use data in the file
ols01.csv which comprises 10 observations of variables 𝑋 and 𝑌 .

# The function read_csv() is from tidyverse::readr
# The option show_col_types=F shuts some automated messages from read_csv()
df <- read_csv("data\\ols01.csv", show_col_types=F)
glimpse(df) # tidyverse version of str() to quickly explore tibble

Rows: 10
Columns: 2
$ X <dbl> 2.514333, 5.169248, 1.731986, 3.421461, 4.028095, 4.577327, 8.194569~
$ Y <dbl> 7.639444, 10.668647, 3.110330, 1.846599, 11.782167, 10.582858, 15.45~

The glimpse() function gives you a quick look at the data. Although the data is presented in
transposed form, there are 2 columns of data, 10 rows each. The data are plotted in Fig. 2.1.

p1 <- df %>%
ggplot(aes(x=X,y=Y)) + geom_point(size=1) + theme_minimal() +
xlim(0,10) + ylim(0,16) + coord_fixed(ratio=1/3) +
theme(axis.title=element_text(size=10))

p1

0

5

10

15

0.0 2.5 5.0 7.5 10.0
X

Y

Figure 2.1: The data set ols01.csv.
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There are many ways to fit a straight line through these points, including
i. minimizing the sum of vertical distances from each point to the line;
ii. minimizing the sum of horizontal distances from each point to the line;
iii. minimizing the sum perpendicular distances from each point to the line;
iv. use the square distances rather than the absolute distances;
v. give different weights to each observation.

You can think of many other variations. For this exercise, we will minimize the sum of the squared
vertical distances of each observation to the fitted line (we will refer to this as “ordinary least
squares” or “OLS”). The vertical distances are marked out in Fig. 2.2. For the moment there is
no particular reason for choosing this method, and no statistical / probabilistic / econometric
meaning to this exercise at all. We are simply fitting a straight line to the data points, and
exploring the mathematical properties of such a line. Everything we say in this section will
apply to any set of data points {𝑋𝑖, 𝑌𝑖}𝑛𝑖=1, regardless of the source of the data.

Write the line to be fitted as
̂𝑌 = ̂𝛽0 + ̂𝛽1𝑋

where ̂𝛽0 and ̂𝛽1 are the 𝑦-intercept and slope of the line respectively. Choosing a straight line
means choosing values for these two objects. For each 𝑖 = 1, 2, ..., 𝑛, let ̂𝑌𝑖 be the 𝑦-value of this
line at 𝑋 = 𝑋𝑖 (the points (𝑋𝑖, ̂𝑌𝑖) are shown on Fig. 2.2 as hollow circles). Then the vertical
distances from the data points to the line, are 𝑌𝑖 − ̂𝑌𝑖 which we will denote by ̂𝜖𝑖:

̂𝜖𝑖 = 𝑌𝑖 − ̂𝑌𝑖 where ̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖 .

We will call ̂𝑌𝑖 the “fitted values” of 𝑌 , and ̂𝜖𝑖 the “residuals”. The residual for the fourth
observation in our data set is marked out in Fig. 2.2. 1

Ŷ = β̂0 + β̂1X

ε̂4

0

5

10

15

0.0 2.5 5.0 7.5 10.0
X

Y,
 Ŷ

Figure 2.2: Fitting a Straight Line to Data by Least Squares.

1I’ll show code for most of the figures in this book, but I’ll skip the code for this figure as it is a bit distracting.
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The sum of squared vertical distances, or “sum of squared residuals” can then be written as

𝑆𝑆𝑅 =
𝑁
∑
𝑖=1

̂𝜖𝑖
2 =

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖)2. (2.12)

We want to
• derive the formulas for ̂𝛽0 and ̂𝛽1 that minimizes the expression in (5.5).
• understand the algebraic properties of OLS estimators.
Once again, we are not making any statistical or econometric interpretations at this point.
Let ̂𝛽𝑜𝑙𝑠

0 and ̂𝛽𝑜𝑙𝑠
1 be the values of ̂𝛽0 and ̂𝛽1 that minimizes SSR in (5.5). These can be found

by solving the first order conditions:

𝜕𝑆𝑆𝑅
𝜕 ̂𝛽0

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

= −2
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖) = 0

𝜕𝑆𝑆𝑅
𝜕 ̂𝛽1

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

= −2
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖)𝑋𝑖 = 0
(2.13)

where the notation 𝜕𝑆𝑆𝑅
𝜕 ̂𝛽0

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

refers to the derivative 𝜕𝑆𝑆𝑅
𝜕 ̂𝛽0

evaluated at ̂𝛽𝑜𝑙𝑠
0 and ̂𝛽𝑜𝑙𝑠

1 , and

likewise for 𝜕𝑆𝑆𝑅
𝜕 ̂𝛽1

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1
.

We can solve the equations in (2.13) in the following way. Divide the first equation in (2.13)
by 𝑁 and solve for ̂𝛽𝑜𝑙𝑠

0 to get
̂𝛽𝑜𝑙𝑠
0 = 𝑌 − ̂𝛽𝑜𝑙𝑠

1 𝑋 . (2.14)

Then substitute (2.14) into the second equation. This gives

𝑁
∑
𝑖=1

((𝑌𝑖 − 𝑌 ) − ̂𝛽𝑜𝑙𝑠
1 (𝑋𝑖 −𝑋))𝑋𝑖 = 0

which we can solve to get

̂𝛽𝑜𝑙𝑠
1 = ∑𝑁

𝑖=1(𝑌𝑖 − 𝑌 )𝑋𝑖

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖

. (2.15)

We can substitute this expression back into (2.14) to get the full formula for ̂𝛽𝑜𝑙𝑠
0 , but we’ll leave

(2.14) as it is.
We can show that the second order condition for a global minimum is satisfied, so that ̂𝛽𝑜𝑙𝑠

0
and ̂𝛽𝑜𝑙𝑠

1 does in fact minimize the SSR. This is left as an exercise.
The fitted line is therefore

̂𝑌 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋

where ̂𝛽𝑜𝑙𝑠
0 and ̂𝛽𝑜𝑙𝑠

1 are as given in (2.14) and (2.15). For our data, we have

beta1hat = sum((df$X - mean(df$X)) * df$Y) / sum((df$X - mean(df$X))^2)
beta0hat = mean(df$Y) - beta1hat*mean(df$X)
cat("Intercept:", round(beta0hat,3), "; Slope:", round(beta1hat,3))

Intercept: 1.943 ; Slope: 1.506
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2.4.1 Algebraic Properties

From this point on, we will refer to the fitted line as the “sample regression line”. The fitted
values ̂𝑌𝑖 and residuals ̂𝜖𝑖 should be understood to be the “least squares” or “OLS” fitted values
and residuals, i.e.,

̂𝑌𝑖 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖 and ̂𝜖𝑖 = 𝑌𝑖 − ̂𝑌𝑖 = 𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖 .

Ideally we ought to place “𝑜𝑙𝑠” superscripts on these, to distinguish them from fitted values and
residuals obtained from other fitting methods, but we will neglect this detail. We will leave the
superscripts on ̂𝛽𝑜𝑙𝑠

0 and ̂𝛽𝑜𝑙𝑠
1 . We call {𝑌𝑖} the regressand, and {𝑋𝑖} the regressor.

The sample regression line has a number of useful algebraic properties.

[P1] If all of the 𝑋 observations are of the same value, i.e., 𝑋1 = 𝑋2 = ... = 𝑋𝑁 , then 𝑋 will
have this same value, and ∑𝑁

𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖 will be zero. As a result, we will not be able to
compute (2.15) (nor (2.14). This is the case where all of your data points line up in a vertical
straight line.

[P2] Since

𝑁
∑
𝑖=1

(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 ) =
𝑁
∑
𝑖=1

(𝑋𝑖 −𝑋)𝑌𝑖 and
𝑁
∑
𝑖=1

(𝑋𝑖 −𝑋)2 =
𝑁
∑
𝑖=1

(𝑋𝑖 −𝑋)𝑋𝑖 ,

we can write (2.15) as

̂𝛽𝑜𝑙𝑠
1 = ∑𝑁

𝑖=1(𝑋𝑖 −𝑋)𝑌𝑖

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖

= ∑𝑁
𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )
∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2
. (2.16)

If you divide both numerator and denominator by 𝑁 − 1, the numerator becomes the sample
covariance of 𝑋𝑖 and 𝑌𝑖, and the denominator becomes the sample variance of 𝑋𝑖.

[P3] The first equation in the first order condition (2.13) can be written as

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖) =
𝑁
∑
𝑖=1

̂𝜖𝑖 = 0 . (2.17)

It follows that the sample mean of the least squares residuals is zero.

[P4] The second equation in the first order condition (2.13) can be written as

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖)𝑋𝑖 =
𝑁
∑
𝑖=1

̂𝜖𝑖𝑋𝑖 = 0 . (2.18)

We say that the OLS residuals ̂𝜖𝑖 and the regressors 𝑋𝑖 are orthogonal. This result and [P3]
imply that the fitted values and the residuals are also orthogonal.

𝑁
∑
𝑖=1

̂𝑌𝑖 ̂𝜖𝑖 = ̂𝛽𝑜𝑙𝑠
0

𝑁
∑
𝑖=1

̂𝜖𝑖 + ̂𝛽𝑜𝑙𝑠
1

𝑁
∑
𝑖=1

𝑋𝑖 ̂𝜖𝑖 = 0 . (2.19)
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[P5] Because the residuals have sample mean zero, it follows from (2.18) that the sample covari-
ance between the residuals and the regressors is zero. This is because the sample covariance is
1
𝑁 ∑𝑁

𝑖=1( ̂𝜖𝑖 − 𝜖𝑖)(𝑋𝑖 −𝑋) and

𝑁
∑
𝑖=1

( ̂𝜖𝑖 − 𝜖𝑖)(𝑋𝑖 −𝑋) =
𝑁
∑
𝑖=1

( ̂𝜖𝑖 − 𝜖𝑖)𝑋𝑖 (why?)

=
𝑁
∑
𝑖=1

̂𝜖𝑖𝑋𝑖 (why?)

[P6] Summing the equation

𝑌𝑖 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖 + ̂𝜖𝑖
over 𝑖 = 1, 2, ..., 𝑁 and dividing by 𝑁 gives

𝑌 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋

since the residuals have sample mean zero. This means that the sample regression line (the
fitted line) passes through the point (𝑋, 𝑌 ).

[P7] Similarly, taking sample means on both sides of 𝑌𝑖 = ̂𝑌𝑖 + ̂𝜖𝑖 gives

𝑌 = ̂𝑌 , where ̂𝑌 = (1/𝑁)
𝑁
∑
𝑖=1

̂𝑌𝑖 .

In words, the OLS fitted values and the regressand both have the same sample mean.

[P8] We have the useful decomposition

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 =
𝑁
∑
𝑖=1

( ̂𝑌𝑖 − ̂𝑌 )2 +
𝑁
∑
𝑖=1

̂𝜖2𝑖 . (2.20)

We read (2.20) as “Sum of Squared Total = Sum of Squared Explained + Sum of Squared
Residuals” or “SST = SSE + SSR”. It is essentially a variance decomposition result. To get this
result, substract 𝑌 on both sides, then square and sum both sides:

𝑌𝑖 = ̂𝑌𝑖 + ̂𝜖𝑖
𝑌𝑖 − 𝑌 = ̂𝑌𝑖 − 𝑌 + ̂𝜖𝑖

(𝑌𝑖 − 𝑌 )2 = ( ̂𝑌𝑖 − 𝑌 )2 + ̂𝜖2𝑖 + 2( ̂𝑌𝑖 − 𝑌 ) ̂𝜖𝑖
𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 =
𝑁
∑
𝑖=1

( ̂𝑌𝑖 − 𝑌 )2 +
𝑁
∑
𝑖=1

̂𝜖2𝑖 + 2
𝑁
∑
𝑖=1

( ̂𝑌𝑖 − 𝑌 ) ̂𝜖𝑖 .

Since 𝑌 = ̂𝑌 , replace ∑𝑁
𝑖=1( ̂𝑌𝑖 − 𝑌 )2 with ∑𝑁

𝑖=1( ̂𝑌𝑖 − ̂𝑌 )2. Complete the proof by noting that

𝑁
∑
𝑖=1

( ̂𝑌𝑖 − 𝑌 ) ̂𝜖𝑖 =
𝑁
∑
𝑖=1

̂𝑌𝑖 ̂𝜖𝑖 − 𝑌
𝑁
∑
𝑖=1

̂𝜖𝑖 = 0 .
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The identity in (2.20) forms the basis of the classic “goodness-of-fit” 𝑅2 measure. We can
think of the SST as a measure of the total “variation” in 𝑌𝑖. Dividing by 𝑁 − 1 gives you the
sample variance of 𝑌𝑖. The SST is decomposed into the total “variation in ̂𝑌𝑖 and the residuals.
Dividing (2.20) throughout by SST, we have

1 = 𝑆𝑆𝐸
𝑆𝑆𝑇 + 𝑆𝑆𝑅

𝑆𝑆𝑇

from which we can define
𝑅2 = 1 − 𝑆𝑆𝑅

𝑆𝑆𝑇 . (2.21)

Since 1−𝑆𝑆𝑅/𝑆𝑆𝑇 = 𝑆𝑆𝐸/𝑆𝑆𝑇 , the 𝑅2 has the interpretation as the proportion of variation
in 𝑌𝑖 that is accounted for (sometimes the word “explained” is used) by ̂𝑌𝑖, or by 𝑋𝑖, since ̂𝑌𝑖 is
just a linear function of 𝑋𝑖.

By construction, 𝑅2 lies between 0 and 1 (inclusive). An 𝑅2 of one indicates a perfect fit,
since 𝑅2 = 1 only when 𝑆𝑆𝑅 = 0, which means that ̂𝜖𝑖 = 0 for all 𝑖. On the other hand, 𝑅2 = 0
when 𝑆𝑆𝑅 = 𝑆𝑆𝑇 , which means that 𝑆𝑆𝐸 = ∑𝑁

𝑖=1( ̂𝑌𝑖 − 𝑌 )2 = 0, or ̂𝑌𝑖 = 𝑌 for all 𝑖 (this
implies also that ̂𝛽1 = 0). All intermediate fits result in values of 𝑅2 strictly between 0 and 1.
For our data set and regression, we have

ehat <- df$Y - Yhat
SSR <- sum(ehat^2) # we defined ehat = residuals(mdl) earlier
SST <- sum((df$Y-mean(df$Y))^2)
Rsqr <- 1 - SSR/SST
print(paste("The R-squared for the sample regression line is:", round(Rsqr,3)))

[1] "The R-squared for the sample regression line is: 0.644"

That is, the fitted line accounts for around 64.5 percent of the variation in 𝑌𝑖.

As you might have guessed, there are built-in function in R for making all the computations
demonstrated here. The usual function for calculating the coefficient values is lm() from the
(auto-loaded) package stats.

mdl <- lm(Y~X, data=df) # Y~X means regress Y on X, including an intercept term.
coef(mdl) # "mdl" contains a lot of stuff, coef(mdl) picks out the coefficient vector.

(Intercept) X
1.943349 1.506138

We can get the fitted values and residuals using

Yhat <- fitted(mdl)
ehat <- residuals(mdl)

We can extract the 𝑅2 from the summary.lm object returned when summary() function is
applied to the lm object mdl:

summary(mdl)$r.squared

[1] 0.6444797
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2.5 Exercises

Exercise 2.36. Show that ̂𝛽𝑜𝑙𝑠
1 in (2.15) can be written as ̂𝛽𝑜𝑙𝑠

1 = ∑𝑁
𝑖=1 𝑋𝑖𝑌𝑖−𝑁𝑋𝑌
∑𝑁

𝑖=1 𝑋2
𝑖−𝑁𝑋2 .

Exercise 2.37. The second order condition for the OLS minimization of the SSR in (5.5) is
that

𝐻 =
⎡
⎢
⎢
⎣

𝜕2𝑆𝑆𝑅
𝜕 ̂𝛽2

0

𝜕2𝑆𝑆𝑅
𝜕 ̂𝛽0𝜕 ̂𝛽1

𝜕2𝑆𝑆𝑅
𝜕 ̂𝛽0𝜕 ̂𝛽1

𝜕2𝑆𝑆𝑅
𝜕 ̂𝛽2

1

⎤
⎥
⎥
⎦

is positive definite.

i.e., 𝑐T𝐻𝑐 > 0 for all 𝑐 ≠ 0. Show that this condition is satisfied. Hint: Show that

𝐻 = 2[ 𝑁 ∑𝑁
𝑖=1 𝑋𝑖

∑𝑁
𝑖=1 𝑋𝑖 ∑𝑁

𝑖=1 𝑋2
𝑖
] = 2(𝑋T𝑋) where 𝑋 =

⎡
⎢
⎢
⎢
⎣

1 𝑋1
1 𝑋2
⋮ ⋮
1 𝑋𝑁

⎤
⎥
⎥
⎥
⎦

and explain why this implies that 𝐻 is positive definite, assuming ∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2 ≠ 0.

Exercise 2.38. In order to fit the straight line to your data points by least squares, you require
the condition that ∑𝑁

𝑖=1(𝑋𝑖 − 𝑋)2 ≠ 0, i.e., 𝑋𝑖 cannot all be equal to a single constant value.
What is ̂𝛽𝑜𝑙𝑠

0 and ̂𝛽𝑜𝑙𝑠
1 if this condition is met, but 𝑌𝑖 = 𝑐 for all 𝑖 = 1, ..., 𝑁? What is the 𝑅2 in

this case?

Exercise 2.39. Suppose you fit a straight line to your data with the additional constraint that
the line must pass through the origin. In other words, you fit the sample regression line

̂𝑌𝑖 = ̂𝛽1𝑋𝑖

to your data points. Find the value of ̂𝛽1 that minimizes the sum of squared residuals, where
the residuals are now ̂𝜖𝑖 = 𝑌𝑖 − ̂𝛽1𝑋𝑖.

Which algebraic properties of the sample regression line [P1]-[P8] continue to hold and which
are lost? Will the 𝑅2 as defined in (2.21) still necessarily lie between 0 and 1? (Hint: it can go
below 0, but why?) What does it mean if it goes below zero?

Exercise 2.40. (Continuing with the straight line passing through the origin.) The formula for
̂𝛽1 when fitting the straight line with no intercept ̂𝑌 = ̂𝛽1𝑋 is

̂𝛽𝑜𝑙𝑠
1 = ∑𝑁

𝑖=1 𝑋𝑖𝑌𝑖

∑𝑁
𝑖=1 𝑋2

𝑖
.

For this formula to be feasible, we require ∑𝑁
𝑖=1 𝑋2

𝑖 ≠ 0, but OLS estimation is still feasible if
∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2 = 0. In other words, we no longer require variation in the 𝑋𝑖. Why is this so?
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Chapter 3
Probability and Expectations Review
We describe the outcomes of “experiments” as random variables. By “experiment”, we mean
any sort of activity (human or otherwise) that can result in a range of outcomes, and such that
which outcomes occur can be thought of (at some level) as random. This chapter contains a
few examples to review the idea of random variables and related concepts. The R code in this
chapter uses the tidyverse and patchwork packages.

library(tidyverse)
library(patchwork)
library(latex2exp)

3.1 Random Variables, Mean and Variance
For our first example, suppose there are two urns A and B each containing 100 balls numbered
1 to 10. We will call a ball that is numbered 𝑖 an “𝑖-ball” (so we have 1-balls, 2-balls, 3-balls,
and so on). The number of 𝑖-balls in each urn is shown below.

UrnA <- c(3, 4, 8, 15, 20, 20, 15, 8, 4, 3);
UrnB <- c(16, 50, 16, 8, 4, 2, 1, 1, 1, 1);
ballnum = 1:10
ballnames <- paste0(ballnum,"-Ball")
names(UrnA) <- ballnames
names(UrnB) <- ballnames
cat("Urn A:\n"); UrnA
cat("Urn B:\n"); UrnB

Urn A:
1-Ball 2-Ball 3-Ball 4-Ball 5-Ball 6-Ball 7-Ball 8-Ball 9-Ball 10-Ball

3 4 8 15 20 20 15 8 4 3
Urn B:
1-Ball 2-Ball 3-Ball 4-Ball 5-Ball 6-Ball 7-Ball 8-Ball 9-Ball 10-Ball

16 50 16 8 4 2 1 1 1 1

Suppose you pick one ball at random from Urn A (suppose the balls are well mixed, you
don’t look, etc.). It seems reasonable to think that the chance, or probability, of drawing a
1-ball, 2-ball, 3-ball, etc. is 0.03, 0.04, 0.08, and so on. If 𝑋 be the number on the ball that
is drawn, then 𝑋 is a random variable, with probability distribution function (pdf)
𝑝(𝑥) = 𝑃𝑟[𝑋 = 𝑥] as shown in Fig. 3.1(a) below. Likewise, if 𝑌 is the number on a ball drawn
from Urn B, then it too is a random variable, with pdf as shown in Fig. 3.1(b).

pdfX = data.frame(x=ballnum, probx=UrnA/100)
pdfY = data.frame(y=ballnum, proby=UrnB/100)
my_theme <- theme_bw() + theme(axis.title=element_text(size=10), aspect.ratio = 0.8)
p1 <- pdfX %>% mutate(x=as.factor(x)) %>% ggplot(aes(x=x, y=probx)) + ggtitle("Urn A") +

geom_bar(stat="identity", width=0.2) + ylim(0,0.52) + ylab("P(X=x)") + my_theme
p2 <- pdfY %>% mutate(y=as.factor(y)) %>% ggplot(aes(x=y, y=proby)) + ggtitle("Urn B") +

geom_bar(stat="identity", width=0.2) + ylim(0,0.52) + ylab("P(Y=y)") + my_theme
(p1|p2)

57
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Figure 3.1: Probability distributions of value of ball from Urn A and Urn B.

It seems the “central location” as well as the “spread” of the two probability distributions
are quite different. Can we come up with What indicators can we use to describe these features?

Suppose a random variable 𝑋 takes possible values 𝑥𝑖 with probabilities 𝑝(𝑥𝑖) = Pr[𝑋 = 𝑥𝑖],
𝑖 = 1, 2, ..., 𝑁 . For central location the following indicators are popular:

mean: 𝐸[𝑋] =
𝑁
∑
𝑖=1

𝑥𝑖 Pr[𝑋 = 𝑥𝑖] ,

median: mdn[𝑋] = 𝑚 such that Pr[𝑋 ≤ 𝑚] = 0.5 and Pr[𝑋 ≥ 𝑚] = 0.5 ,

mode: mo[𝑋] = 𝑥𝑗 such that Pr[𝑋 = 𝑥𝑗] ≥ Pr[𝑋 = 𝑥𝑖] for all 𝑖 = 1, 2, ..., 𝑁 .

(3.1)

The definitions are for a random variable taking 𝑛 possible values. Later we extend the definition
to other kinds of random variables.

The mean, also called the expected value, is a weighted average. Imagine that the proba-
bilities are weights resting on a plank under which you place a pivot. The mean is the location
of the pivot such that the probabilities on either side balances and the plank rests horizontally
on the pivot. For this reason, the mean is called a moment. For out random variables:

mu_X <- sum(pdfX$x*pdfX$probx)
mu_Y <- sum(pdfY$y*pdfY$proby)
cat("E[X] =", round(mu_X,3), "and E[Y] =", round(mu_Y,3), ".")

E[X] = 5.5 and E[Y] = 2.62 .

The definition of the mean is easy to extend to functions of 𝑋, e.g., the mean of 𝑔(𝑋) is just

𝐸[𝑔(𝑋)] =
𝑁
∑
𝑖=1

𝑔(𝑥𝑖)Pr[𝑋 = 𝑥𝑖] . (3.2)

The median is a value such that the probabilities on either side of it add to 0.5. One problem
with this measure is that there may be many values or none (for 𝑋, all values from 5 to 6
inclusive are medians, and we cannot calculate the median of 𝑌 ). The mode is a value that
has the highest probability. Again, the mode may not be unique. The mode of 𝑌 is 2, but the
modes of 𝑋 are 5 and 6.
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For spread, a popular indicator is the variance:

variance: 𝑣𝑎𝑟[𝑋] =
𝑛

∑
𝑖=1

(𝑥𝑖 −𝐸[𝑋])2 Pr[𝑋 = 𝑥𝑖]

= 𝐸[(𝑋 − 𝐸[𝑋])2] .
(3.3)

The second line in Eq. 3.3 is just a restatement of the first, using the definition of an expectation.
The variance is the probability-weighted average of the squared deviations of the possible

values from the mean. If the bulk of the probabilities are on values near the mean, then small
(𝑥𝑖 − 𝐸[𝑋])2 will be given more weight and the variance will be smaller. For our random
variables:

var_X <- sum((pdfX$x-mu_X)^2*pdfX$probx)
var_Y <- sum((pdfY$y-mu_Y)^2*pdfY$proby)
cat("var[X] =", round(var_X,3), "and var[Y] =", round(var_Y,3), ".")

var[X] = 3.97 and var[Y] = 2.676 .

Expanding the square in Eq. 3.3, we get an alternative way of computing the variance:

𝑛
∑
𝑖=1

(𝑥𝑖 −𝐸[𝑋])2 Pr[𝑋 = 𝑥𝑖] =
𝑛

∑
𝑖=1

(𝑥2
𝑖 − 2𝐸[𝑋]𝑥𝑖 +𝐸[𝑋]2)Pr[𝑋 = 𝑥𝑖]

=
𝑛

∑
𝑖=1

𝑥2
𝑖 Pr[𝑋 = 𝑥𝑖] − 2𝐸[𝑋]

𝑛
∑
𝑖=1

𝑥𝑖 Pr[𝑋 = 𝑥𝑖] + 𝐸[𝑋]2
𝑛

∑
𝑖=1

𝑃𝑟[𝑋 = 𝑥𝑖]

=
𝑛

∑
𝑖=1

𝑥2
𝑖 Pr[𝑋 = 𝑥𝑖] − 2𝐸[𝑋]2 +𝐸[𝑋]2

= 𝐸[𝑋2] − 𝐸[𝑋]2

(3.4)

This version is often easier to use. The variance is also known as the “second central moment”.
The square root of the variance is the standard deviation. There are other measures such as
the “inter-quartile range” but we won’t be using these.

The mean and variance are popular measures because they are easy to work with and manip-
ulate. For instance, it is easy to show from the definitions of the mean and variance in Eq. 3.1
and Eq. 3.3 that for any random variable 𝑋, we have

• 𝐸[𝑎𝑋 + 𝑏] = 𝑎𝐸[𝑋] + 𝑏

• 𝑣𝑎𝑟[𝑎𝑋 + 𝑏] = 𝑎2𝑣𝑎𝑟[𝑋]

These are left as an exercise.

Suppose the game is: you get to pick one ball from one urn, and you win in dollars 100 times
the number on the ball. To pick from Urn A, you first have to pay $500. To pick from Urn B,
you only pay $250. Which urn would you choose to play, or would you not play? (Just asking.)
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3.2 Joint and Conditional Distributions
Suppose you live in a place with no seasons, and seemingly random variations in temperature
and precipitation from day to day, with the following probabilities.

Weather = matrix(c(0.05, 0.15, 0.35, 0.10, 0.15, 0.20), nrow=2, byrow=T)
colnames(Weather) <- c("Cool", "Warm", "Hot")
rownames(Weather) <- c("Dry", "Rainy")
cat("Joint Probability Distribution of Temperature and Precipitation:\n")
Weather
SumWeather <- sum(Weather)
cat("Total Probabilities = ", SumWeather)

Joint Probability Distribution of Temperature and Precipitation:
Cool Warm Hot

Dry 0.05 0.15 0.35
Rainy 0.10 0.15 0.20
Total Probabilities = 1

This is an example of a joint probability distribution1 for two variables: Temperature
(Temp) taking values ‘Cool’, ‘Warm’ and ‘Hot’, and Precipitation (Prcp) taking values ‘Dry’
and ‘Rainy’. It gives the probabilities of joint Temperature-Precipitation events like ‘Cool and
Rainy’, ‘Hot and Dry’, and so on. In notation

Pr[Temp = Cool,Prcp = Dry] = 0.05 , Pr[Temp = Warm,Prcp = Rainy] = 0.15, etc.

with probabilities adding to one. So, out of every hundred days, we should see about 20 Hot
and Rainy days, 5 Cool and Dry days, etc. In what follows, I will just write Pr[Cool,Dry] for
Pr[Temp = Cool,Prcp = Dry].

What is the probability of Dry days (regardless of temperature)? “Dry regardless of tempera-
ture” means Dry & Cool, Dry & Warm, and Dry & Hot all count, so we add up the probabilities
in the first row to get Pr[Dry] = 0.55. Likewise, Pr[Rainy] = 0.45. These two probabilities
make up the marginal, or unconditional, probability distribution for Precipitation. To get
the marginal or unconditional probability distribution for Temperature, we add up the columns.
We get: Pr[Cool] = 0.15, Pr[Warm] = 0.3, Pr[Hot] = 0.55. We show these two marginal
distributions in the last column and row of the table below:

cat("Joint and Marginal Probability Distribution of Prec and Temp:\n")
MargPrcp <- rowSums(Weather)
MargTemp <- colSums(Weather)
WeatherWithMarg <- cbind(Weather, MargPrcp)
WeatherWithMarg <- rbind(WeatherWithMarg, MargTemp=c(MargTemp, SumWeather) )
WeatherWithMarg

Joint and Marginal Probability Distribution of Prec and Temp:
Cool Warm Hot MargPrcp

Dry 0.05 0.15 0.35 0.55
Rainy 0.10 0.15 0.20 0.45
MargTemp 0.15 0.30 0.55 1.00

1This is obviously a simplified description of the weather, discretized for expositional purposes!



3.2. JOINT AND CONDITIONAL DISTRIBUTIONS 61

We can ask a different sort of question about the weather in this place. E.g., what is the
precipitation like on Cool days? From the “Cool” column in the joint distribution, we see that
on Cool days it is twice as likely to be Rainy than Dry. We want to describe precipitation on
Cool days as a probability distribution, and total probabilities must add to one, so we divide the
“Cool” column of the joint distribution by Pr[Cool]. This gives the Conditional Probability
Distribution of Precipitation given Temperature = Cool. In notation:

Pr[Dry |Cool ] = Pr[Dry, Cool ]
Pr[Cool ] = 0.05

0.15 = 1/3

Pr[Rainy |Cool ] = Pr[Rainy, Cool ]
Pr[Cool ] = 0.1

0.15 = 2/3
(3.5)

We can make similar calculations for Warm and Hot days to get the conditional distributions for
Precipitation given Temperature = Warm, and given Temperature = Hot. All three conditional
distributions are shown in the columns of the output below:

PrcpGivenTemp = Weather
PrcpGivenTemp[, 'Cool'] <- Weather[, 'Cool'] / MargTemp['Cool']
PrcpGivenTemp[, 'Warm'] <- Weather[, 'Warm'] / MargTemp['Warm']
PrcpGivenTemp[, 'Hot'] <- Weather[, 'Hot'] / MargTemp['Hot']
rownames(PrcpGivenTemp) <- c("Pr[Dry|Temp]", "Pr[Rainy|Temp]")
cat("Conditional Distribution of Precipitation Given Temperature (columns):\n")
round(PrcpGivenTemp,3)

Conditional Distribution of Precipitation Given Temperature (columns):
Cool Warm Hot

Pr[Dry|Temp] 0.333 0.5 0.636
Pr[Rainy|Temp] 0.667 0.5 0.364

On warm days, it is fifty-fifty whether it is Dry or Rainy. On Hot days, it is more likely to be Dry
than Rainy. We emphasize that each column is a distribution, so the conditional distribution of
Precipitation given Temperature is really a collection of three distribution different distributions.

Similar calculations gives the conditional distribution of Temperature given Precipitation,
e.g., what are the probabilities each of Cool, Warm, and Hot days given it is Dry? By the same
reasoning as before,

Pr[Cool |Dry ] = Pr[Dry, Cool ]
Pr[Dry ] = 0.05

0.55 = 1/11

Pr[Warm |Dry ] = Pr[Dry, Warm ]
Pr[Dry ] = 0.15

0.55 = 3/11

Pr[Hot |Dry ] = Pr[Dry, Hot ]
Pr[Dry ] = 0.35

0.55 = 7/11

(3.6)

Likewise for Rainy days. The two conditional distributions of temperature given precipitation
are shown in the rows of the output below, with probabilities rounded to 3 decimal places.
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TempGivenPrcp = Weather
TempGivenPrcp['Dry',] <- Weather['Dry',] / MargPrcp['Dry']
TempGivenPrcp['Rainy',] <- Weather['Rainy',] / MargPrcp['Rainy']
colnames(TempGivenPrcp) <- c("Pr[Cool|Prcp]","Pr[Warm|Prcp]","Pr[Hot|Prcp]")
cat("Conditional Distribution of Temperature Given Precipitation (rows):\n")
round(TempGivenPrcp,3)

Conditional Distribution of Temperature Given Precipitation (rows):
Pr[Cool|Prcp] Pr[Warm|Prcp] Pr[Hot|Prcp]

Dry 0.091 0.273 0.636
Rainy 0.222 0.333 0.444

3.2.1 Bayes’ Theorm

There is a tidy relationship between the conditional distributions. From the first equations of
Eq. 3.5 and Eq. 3.6, we can deduce that

Pr[Dry |Cool ] Pr[Cool ] = Pr[Cool |Dry ] Pr[Dry ] ,

since both are equal to Pr[Cool, Dry ]. It follows that

Pr[Dry |Cool ] = Pr[Cool |Dry ]Pr[Dry ]
Pr[Cool ] . (3.7)

In our example, we found that Pr[Dry |Cool ] = 1/3 whereas Pr[Cool |Dry ] = 1/11 which goes
to show that the two can be very different. Furthermore we can verify that 1/3 = ((1/11) ×
0.55)/0.15, where Pr[Dry ] = 0.55 and Pr[Cool ] = 0.15.

Since
Pr[Cool ] = Pr[Cool, Dry ] + Pr[Cool, Rainy ]

= Pr[Cool |Dry ]Pr[Dry ] + Pr[Cool |Rainy ]Pr[Rainy ] ,
another version of Eq. 3.7 is

Pr[Dry |Cool ] = Pr[Cool |Dry ]Pr[Dry ]
Pr[Cool |Dry ]Pr[Dry ] + Pr[Cool |Rainy]Pr[Rainy ] .

You can write similar equations for the other combinations of temperature and precipitation.

Eq. 3.7 is an example of Bayes’ Theorem. If 𝐴 and 𝐵 are two events such that Pr[𝐴] ≠ 0
and Pr[𝐵] ≠ 0, then

Pr[𝐴|𝐵] = Pr[𝐵|𝐴]Pr[𝐴]
Pr[𝐵] .

Likewise, we have
Pr[𝐵|𝐴] = Pr[𝐴|𝐵]Pr[𝐵]

Pr[𝐴] .
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The following example might be a helpful illustration of the theorem.

Example 3.1. Imagine that an infectious disease enters a population of 101,000 people but
that a large percentage – 100,000 out of 101,000 members of the population have vaccinated
themselves against this disease. Of the 1000 not vaccinated, 50 percent (500 people) caught
the disease. Only one percentage of these 100,000 vaccinated people (1000 people) eventually
caught the disease, so the vaccine is effective.

Of those that caught the disease, more were vaccinated than un-vaccinated, but this is simply
because a large proportion of the population received the vaccine, and 1 percent of 100,000 is
more than 50 percent of 1000. The proportion of those that caught the disease being vaccinated
(1000 out of 1500, or 0.67) is analogous to the probability of having been vaccinated conditional
on catching the disease, Pr[ vaccinated | infected ], but this proportion doesn’t say much about
the effectiveness of the vaccine, if that is what we are interested in. What we want instead is the
probability of being infected conditional on being vaccinated, i.e., Pr[infected|vaccinated], which
is 1000/100, 000.

How do we get from

Pr[ vaccinated | infected ] = 1000
1500 to Pr[ infected | vaccinated ] = 1000

100, 000 ?

If we multiply by the ratio of the percentage of the population that caught the disease
Pr[ infected ] to the percentage of those who got vaccinated Pr[ vaccinated ], then

Pr[ infected | vaccinated ] = Pr[ vaccinated | infected ]Pr[ infected ]
Pr[ vaccinated ]

=
1000
1500

1500
101,000

100,000
101,000

= 1000
100000 = 0.01 .

3.2.2 Mean and Variance, Covariance

At this point we cannot calculate things like means and variance for precipitation and temper-
ature because we have only expressed the outcomes as categories, not quantities. Suppose Dry
= 0mm of rain per day, and Rainy = 30mm of rain per day, and Hot=34 deg C, Warm=28C
and Cool=22C. Then the joint distribution is

𝑝(𝑡𝑒𝑚𝑝, 𝑝𝑟𝑐𝑝) = Pr[Temp = 𝑡𝑒𝑚𝑝 , Prcp = 𝑝𝑟𝑐𝑝 ] ,

where 𝑡𝑒𝑚𝑝 = 22, 28, 34 and 𝑝𝑟𝑐𝑝 = 0, 30, as defined in the table below:

prcp <- c(0,30); temp <- c(22, 28, 34)
rownames(Weather) <- paste0(prcp, "mm"); colnames(Weather) <- paste0(temp, "C")
cat("Joint Distribution Pr[Temp = temp, Prcp = prcp]\n")
Weather

Joint Distribution Pr[Temp = temp, Prcp = prcp]
22C 28C 34C

0mm 0.05 0.15 0.35
30mm 0.10 0.15 0.20
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The marginal distributions are

names(MargPrcp) <- NULL
tbl <- cbind(prcp, MargPrcp); colnames(tbl) <- c("prcp(mm)", "Pr[Prcp=prcp]"); tbl
cat("\n")
names(MargTemp) <- NULL
tbl <- cbind(temp, MargTemp); colnames(tbl) <- c("temp(C)", "Pr[Temp=temp]"); tbl

prcp(mm) Pr[Prcp=prcp]
[1,] 0 0.55
[2,] 30 0.45

temp(C) Pr[Temp=temp]
[1,] 22 0.15
[2,] 28 0.30
[3,] 34 0.55

From these we can calculate the mean and variance of Prcp and Temp:

muPrcp <- sum(prcp*MargPrcp); muTemp <- sum(temp*MargTemp)
varPrcp <- sum((prcp-muPrcp)^2*MargPrcp); varTemp <- sum((temp-muTemp)^2*MargTemp)
cat(" E[Prcp] =", muPrcp, "mm"); cat(" "); cat(" E[Temp] =", muTemp, "C\n");
cat("var[Prcp] =", varPrcp, "sqr mm"); cat(" "); cat("var[Temp] =", varTemp, "sqr C\n");
cat(" sd[Prcp] =", round(sqrt(varPrcp),2), "mm"); cat(" ");
cat(" sd[Temp] =", round(sqrt(varTemp),2), "C")

E[Prcp] = 13.5 mm E[Temp] = 30.4 C
var[Prcp] = 222.75 sqr mm var[Temp] = 19.44 sqr C
sd[Prcp] = 14.92 mm sd[Temp] = 4.41 C

Note the units of measurements on these moments, which are often not included when the
moments are reported.

Do you notice a negative relationship between temperature and precipitation? One indicator
of such an association is the covariance between two variables 𝑋 and 𝑌 defined as

𝑐𝑜𝑣[𝑋, 𝑌 ] =
𝑁
∑
𝑖=1

𝑀
∑
𝑗=1

(𝑥𝑖 −𝐸[𝑋])(𝑦𝑗 −𝐸[𝑌 ])Pr[𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗]

= 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌 ])]

= 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ]

(3.8)

where we assume 𝑋 has 𝑁 possible values and 𝑌 has 𝑀 possible values. The second expression
is just a restatement of the first. Notice that the “outer” expectation is with respect to the joint
probabilities. To make this clear, we might write

𝑐𝑜𝑣[𝑋, 𝑌 ] = 𝐸𝑋,𝑌 [(𝑋 − 𝐸𝑋[𝑋])(𝑌 − 𝐸𝑌 [𝑌 ])] ,

but the subscripts are usually omitted. For 𝐸𝑋[𝑋] and 𝐸𝑌 [𝑌 ], it doesn’t matter whether you
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use the marginal or joint probabilities, since

𝐸𝑋,𝑌 [𝑋] =
𝑁
∑
𝑖=1

𝑀
∑
𝑗=1

𝑥𝑖𝑃𝑟[𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗]

=
𝑁
∑
𝑖=1

𝑥𝑖
𝑀
∑
𝑗=1

𝑃𝑟[𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗] =
𝑁
∑
𝑖=1

𝑥𝑖𝑃𝑟[𝑋 = 𝑥𝑖] = 𝐸𝑋[𝑋] .

The third expression in Eq. 3.8 can be obtained by multiplying 𝑥𝑖 −𝐸[𝑋] and 𝑦𝑗 −𝐸[𝑌 ] in the
first expression.

Eq. 3.8 works in capturing positive or negative associations in the following way: if there is
more probability placed on events where 𝑥𝑖 and 𝑦𝑗 are both above or both below their means,
then events where the product of the deviation from means is positive is given more weight, and
the covariance will be positive. If more probability is placed on events where 𝑥𝑖 and 𝑦𝑗 are on
opposites sides of their means, then events where the product of the deviation from means is
negative is given more weight, and the covariance will be negative. For our example:

# Find out what the outer() function does!
devfrmmeans <- outer(prcp - muPrcp, temp - muTemp)
covar <- sum(devfrmmeans * Weather)
cat("cov[Temp,Prcp] =", covar, "mm C")

cov[Temp,Prcp] = -14.4 mm C

so in fact yes, there is an association between lower temperatures and higher precipitation.
Notice again the unit of measurement on the covariance. By convention this is usually

omitted, but covariance is not “scale-less”, and changing the unit of measurement changes the
covariance. For instance, if we measure temperature in Fahrenheit (𝐹 = 32 + 9

5𝐶), then the
covariance becomes:

# Find out what the outer() function does!
devfrmmeans <- outer(prcp - muPrcp, (temp - muTemp)*9/5+32)
covar <- sum(devfrmmeans * Weather)
cat("cov[Temp(F),Prcp] =", round(covar,2), "mm F")

cov[Temp(F),Prcp] = -25.92 mm F

For this reason, we usually use the correlation instead of covariance, where

𝑐𝑜𝑟𝑟[𝑋, 𝑌 ] = 𝑐𝑜𝑣[𝑋, 𝑌 ]
√𝑣𝑎𝑟[𝑋]√𝑣𝑎𝑟[𝑌 ]

.

This scales the covariance so that the result lies between −1 and 1, a consequence of an inequality
called the “Cauchy-Schwarz Inequality”. Furthermore, the correlation is scale-less, so changing
the unit of measure does not change its value. For our example:

corr <- covar / (sqrt(varPrcp)*sqrt(varTemp))
cat("corr[Temp,Prcp] =", round(corr,2))

corr[Temp,Prcp] = -0.39

The correlation is negative, but moderate.
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3.2.3 Conditional Means and Variances
Our conditional distributions are:

tbl <- cbind(prcp,PrcpGivenTemp)
rownames(tbl) <- NULL
colnames(tbl) <- c("prcp", "Pr[Prcp=prcp|Temp=22]", "Pr[Prcp=prcp|Temp=28]", "Pr[Prcp=prcp|Temp=34]")
cat("Conditional Distribution Pr[Prcp | Temp]\n")
round(tbl, 3)
cat("\n")
tbl <- cbind(temp,t(TempGivenPrcp))
rownames(tbl) <- NULL
colnames(tbl) <- c("temp", "Pr[Temp=temp|Prcp=0]", "Pr[Temp=temp|Prcp=30]")
cat("Conditional Distribution Pr[Temp | Prcp]\n")
round(tbl, 3)

Conditional Distribution Pr[Prcp | Temp]
prcp Pr[Prcp=prcp|Temp=22] Pr[Prcp=prcp|Temp=28] Pr[Prcp=prcp|Temp=34]

[1,] 0 0.333 0.5 0.636
[2,] 30 0.667 0.5 0.364

Conditional Distribution Pr[Temp | Prcp]
temp Pr[Temp=temp|Prcp=0] Pr[Temp=temp|Prcp=30]

[1,] 22 0.091 0.222
[2,] 28 0.273 0.333
[3,] 34 0.636 0.444

For any two random variables 𝑋 and 𝑌 taking 𝑁 and 𝑀 values respectively, we can calculate
the conditional means and variances from the conditional distribution, e.g., for any 𝑖,

𝐸[𝑌 |𝑋 = 𝑥𝑖] =
𝑀
∑
𝑗=1

𝑦𝑗 Pr[𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖] ,

𝑣𝑎𝑟[𝑌 |𝑋 = 𝑥𝑖] =
𝑀
∑
𝑗=1

(𝑦𝑗 −𝐸[𝑌 |𝑋 = 𝑥𝑖])2 Pr[𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖] .

The conditional standard deviation is the square root of the conditional variance. These condi-
tional moments tell us how 𝑌 behave when 𝑋 is at some particular value. Is the expected value
of 𝑌 higher or lower when 𝑋 is higher? Is the variance of 𝑌 different at different values of 𝑋?

The conditional mean and variance of Temperature on Dry and Rainy Days in our example
are:

muTempGivenDry <- sum(temp*TempGivenPrcp["Dry",])
varTempGivenDry <- sum((temp-muTempGivenDry)^2*TempGivenPrcp["Dry",])
cat("E[Temp|Prcp=0] =", round(muTempGivenDry, 2), "C.\n")
cat("var[Temp|Prcp=0] =", round(varTempGivenDry, 2), "sqr C.\n")
cat("std.dev.[Temp|Prcp=0] =", round(sqrt(varTempGivenDry), 2), "C.\n")

E[Temp|Prcp=0] = 31.27 C.
var[Temp|Prcp=0] = 15.47 sqr C.
std.dev.[Temp|Prcp=0] = 3.93 C.
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muTempGivenRainy <- sum(temp*TempGivenPrcp["Rainy",])
varTempGivenRainy <- sum((temp-muTempGivenRainy)^2*TempGivenPrcp["Rainy",])
cat("E[Temp|Prcp=30] =", round(muTempGivenRainy, 2), "C.\n")
cat("var[Temp|Prcp=30] =", round(varTempGivenRainy, 2), "sqr C.\n")
cat("std.dev.[Temp|Prcp=30] =", round(sqrt(varTempGivenRainy), 2), "C.\n")

E[Temp|Prcp=30] = 29.33 C.
var[Temp|Prcp=30] = 22.22 sqr C.
std.dev.[Temp|Prcp=30] = 4.71 C.

The mean temperature is slightly higher on Dry days than Rainy days, but the temperature
variance is larger on Rainy days. The calculation of the conditional mean and variance of
precipitation given temperature is left as an exercise for you.

Manipulation of conditional expectations and variances follows one simple principle: whatever
is being conditioned on can be treated as “fixed” (i.e., like a constant) as far as that expectation
or variance is concerned.

Example 3.2.
• 𝐸[𝑎𝑋𝑌 |𝑋] = 𝑎𝑋𝐸[𝑌 |𝑋] , 𝑣𝑎𝑟[𝑎𝑋𝑌 |𝑋] = 𝑎2𝑋2𝑣𝑎𝑟[𝑌 |𝑋],
• 𝐸[𝑎𝑋|𝑋] = 𝑎𝑋 (contrast with 𝐸[𝑎𝑋] = 𝑎𝐸[𝑋], a constant),
• 𝑣𝑎𝑟[𝑎𝑋|𝑋] = 0 (contrast with 𝑣𝑎𝑟[𝑎𝑋] = 𝑎2𝑣𝑎𝑟[𝑋]),
• If 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 with 𝐸[𝜖|𝑋] = 0 and 𝑣𝑎𝑟[𝜖|𝑋] = 𝜎2, then

𝐸[𝑌 |𝑋] = 𝛽0 + 𝛽1𝑋 and 𝑣𝑎𝑟[𝑌 |𝑋] = 𝜎2.

3.2.4 Law of Iterated Expectations
In our weather example, we have two values of the conditional mean of Temp, one for Dry days
and one for Rainy days. But precipitation is a random variable with probabilities Pr[ Dry ] =
0.55 and Pr[ Rainy ] = 0.45. Therefore 𝐸[ Temp | Prcp ] is itself a random variable:

CondTempPrcp = cbind(prcp, MargPrcp, c(muTempGivenDry, muTempGivenRainy))
colnames(CondTempPrcp) <- c("prcp", "Pr(Prcp=prcp)", "E[Temp|Prcp=prcp]")
CondTempPrcp %>% round(2)

prcp Pr(Prcp=prcp) E[Temp|Prcp=prcp]
[1,] 0 0.55 31.27
[2,] 30 0.45 29.33

We can take the mean and variance of the conditional mean of Temp given Prcp, over all
possible values of Prcp.

EETemp <- sum(CondTempPrcp[,"E[Temp|Prcp=prcp]"]*CondTempPrcp[,"Pr(Prcp=prcp)"])
varETemp <- sum((CondTempPrcp[,"E[Temp|Prcp=prcp]"]-EETemp)^2*CondTempPrcp[,"Pr(Prcp=prcp)"])
cat("E[E[Temp|Prcp]] =", EETemp, "\n")

E[E[Temp|Prcp]] = 30.4

cat("var[E[Temp|Prcp]] =", varETemp)

var[E[Temp|Prcp]] = 0.9309091
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Notice that the 𝐸[𝐸[ Temp | Prcp ]] = 𝐸[ Temp ]. This is not a coincidence, but an instance
of the Law of Iterated Expectations. Given two variables 𝑋 and 𝑌 with 𝑁 and 𝑀 possible
values respectively, we have

𝐸𝑋[𝐸𝑌 |𝑋[𝑌 |𝑋]] = 𝐸𝑌 [𝑌 ] .

The Law of Iterated Expectations says (roughly speaking) that we can get the ‘overall’
expectation of 𝑌 by taking the conditional expectations of 𝑌 for each possible value of 𝑋, and
then taking the mean of all of those conditional expectations.

We demonstrate two results implied by the Law of Iterated Expectations:
i.   If 𝐸[𝑌 |𝑋] = 𝑐, then 𝐸[𝑌 ] = 𝑐,
ii.  If 𝐸[𝑌 |𝑋] = 𝑐, then 𝑐𝑜𝑣[𝑋, 𝑌 ] = 0.

Result (i) says that if the expected value of 𝑌 is 𝑐 for every possible value of 𝑋, then the “overall”
mean must be that same constant, and (ii) says that 𝐸[𝑌 |𝑋] = 𝑐 is a sufficient condition for
𝑐𝑜𝑣[𝑋, 𝑌 ] = 0.

The derivation of these results is straightforward: For (i), if 𝐸[𝑌 |𝑋] = 𝑐, then

𝐸[𝑌 ] = 𝐸[𝐸[𝑌 |𝑋]] = 𝐸[𝑐] = 𝑐.

For (ii), we note that

𝐸[𝑌 𝑋] = 𝐸[𝐸[𝑌 𝑋|𝑋]] = 𝐸[𝑋𝐸[𝑌 |𝑋]] = 𝐸[𝑐𝑋] = 𝑐𝐸[𝑋] .

Therefore
𝑐𝑜𝑣[𝑋, 𝑌 ] = 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ] = 𝑐𝐸[𝑋] − 𝑐𝐸[𝑋] = 0.

Although constant conditional mean implies zero covariance, the converse does not necessarily
hold. For instance, suppose 𝑋 is zero mean and has a symmetric distribution (which together
implies that 𝐸[𝑋3] = 0). Suppose 𝑌 = 𝑋2. Then 𝐸[𝑌 |𝑋] = 𝑋2 but

𝑐𝑜𝑣[𝑋, 𝑌 ] = 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ] = 𝐸[𝑋𝐸[𝑌 |𝑋]] − 0𝐸[𝑌 ] = 𝐸[𝑋3] = 0.

Two quick remarks. First, the idea of conditional distributions, conditional mean, etc. can
be extended to conditioning on more than one variable. The Law of Iterated Expectations can
also be extended to more than two variables. For example, for random variables 𝑊 , 𝑋 and 𝑌 ,
we have

𝐸[𝑋|𝑌 ] = 𝐸[𝐸[𝑋|𝑊, 𝑌 ]|𝑌 ] .

Second, while we do not have a “Law of Iterated Variance”, we do have the following:

𝑣𝑎𝑟[𝑌 ] = 𝐸[𝑣𝑎𝑟[𝑌 |𝑋]] + 𝑣𝑎𝑟[𝐸[𝑌 |𝑋]]. (3.9)
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3.2.5 Independent Random Variables

Consider two other places A and B with slightly different weather patterns. In Place A,

WeatherA = matrix(c(0.05, 0.3, 0.05, 0.2, 0.2, 0.2), nrow=2, byrow=T)
colnames(WeatherA) <- c("22C (Cool)", "28C (Warm)", "34C (Hot)")
rownames(WeatherA) <- c("0mm (Dry)", "30mm (Rainy)")
cat("Joint Probability Distribution of Temperature and Precipitation (Place A):\n")
WeatherA
SumWeatherA <- sum(WeatherA)
cat("Total Probabilities = ", SumWeatherA)

Joint Probability Distribution of Temperature and Precipitation (Place A):
22C (Cool) 28C (Warm) 34C (Hot)

0mm (Dry) 0.05 0.3 0.05
30mm (Rainy) 0.20 0.2 0.20
Total Probabilities = 1

The probability of Dry days on Place B is 0.4 and the probability of Rainy days is 0.6.
Dividing each row by their respective total probabilities gives the conditional distribution of
Temperature given Precipitation:

TempGivenPrcpA <- WeatherA
TempGivenPrcpA["0mm (Dry)", ] <-

TempGivenPrcpA["0mm (Dry)", ] / sum(TempGivenPrcpA["0mm (Dry)", ])
TempGivenPrcpA["30mm (Rainy)", ] <-

TempGivenPrcpA["30mm (Rainy)", ] / sum(TempGivenPrcpA["30mm (Rainy)", ])
cat("Conditional Probability Pr[Temperature | Precipitation] (Place A):\n")
round(TempGivenPrcpA,3)

Conditional Probability Pr[Temperature | Precipitation] (Place A):
22C (Cool) 28C (Warm) 34C (Hot)

0mm (Dry) 0.125 0.750 0.125
30mm (Rainy) 0.333 0.333 0.333

Without much more calculations we can claim that
• 𝐸[Temp|Prcp = 0] = [Temp|Prcp = 30] = 28 (why?)
• 𝑐𝑜𝑣[Temp,Prcp] = 0. (why?)
The first claim comes because the conditional distributions of Temp are symmetric about

28C. The second claim comes because the constant conditional mean implies zero covariance,
which we proved earlier. However, if you calculate 𝐸[Prcp|Temp = 𝑡𝑒𝑚𝑝] for 𝑡𝑒𝑚𝑝 = 22, 28, 34,
you will find that the expected value of Precipitation given Temperature is not constant. This
shows that while constant conditional expectation implies zero covariance, zero covariance does
not imply constant conditional mean.

If we calculate the conditional variance of Temperature given Precipitation, we will get:

cat("var[Temp|Prcp=0] =", sum((temp-28)^2*TempGivenPrcpA["0mm (Dry)",]),"\n")
cat("var[Temp|Prcp=30] =", sum((temp-28)^2*TempGivenPrcpA["30mm (Rainy)",]))

var[Temp|Prcp=0] = 9
var[Temp|Prcp=30] = 24

So although Temperature and Precipitation are not correlated in Place A, the two variables are
not unrelated. Temperature has a higher variance on Rainy Days than on Dry days.
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Now we turn our attention to Place B, where

WeatherB = matrix(c(0.05, 0.15, 0.05, 0.15, 0.45, 0.15), nrow=2, byrow=T)
colnames(WeatherB) <- c("22C (Cool)", "28C (Warm)", "34C (Hot)")
rownames(WeatherB) <- c("0mm (Dry)", "30mm (Rainy)")
cat("Joint Probability Distribution of Temperature and Precipitation (Place B):\n")
WeatherB
SumWeatherB <- sum(WeatherB)
cat("Total Probabilities = ", SumWeatherB)

Joint Probability Distribution of Temperature and Precipitation (Place B):
22C (Cool) 28C (Warm) 34C (Hot)

0mm (Dry) 0.05 0.15 0.05
30mm (Rainy) 0.15 0.45 0.15
Total Probabilities = 1

The probability of Rainy days here is 0.75, and the probability of Dry days is 0.25. If we
calculate the conditional distribution of Temperature given Precipitation, we get

TempGivenPrcpB <- WeatherB
TempGivenPrcpB["0mm (Dry)", ] <-

TempGivenPrcpB["0mm (Dry)", ] / sum(TempGivenPrcpB["0mm (Dry)", ])
TempGivenPrcpB["30mm (Rainy)", ] <-

TempGivenPrcpB["30mm (Rainy)", ] / sum(TempGivenPrcpB["30mm (Rainy)", ])
cat("Conditional Probability Pr[Temperature | Precipitation] (Place B):\n")
round(TempGivenPrcpB,3)

Conditional Probability Pr[Temperature | Precipitation] (Place B):
22C (Cool) 28C (Warm) 34C (Hot)

0mm (Dry) 0.2 0.6 0.2
30mm (Rainy) 0.2 0.6 0.2

The conditional distributions are the same, which means the temperature distribution in
Place B is the same regardless of precipitation, and in fact is the same as the unconditional
distribution of temperature:

Pr[Temp = 𝑡𝑒𝑚𝑝 |Prcp = 𝑝𝑟𝑐𝑝 ] = Pr[Temp = 𝑡𝑒𝑚𝑝 ] for all 𝑡𝑒𝑚𝑝 , 𝑝𝑟𝑒𝑐 .

The conditional expectation and conditional variance of Temp given Prcp will also be the same
here (since the conditional distributions are the same). Naturally the covariance will be zero.

In such a case, we say that Temperature and Precipitation are independent. Two random
variables 𝑋 and 𝑌 are independent if

Pr[ 𝑌 = 𝑦𝑗 | 𝑋 = 𝑥𝑖 ] = Pr[𝑌 = 𝑦𝑗] for all 𝑖, 𝑗.

In this case it must also be that

Pr[ 𝑋 = 𝑥𝑖 | 𝑌 = 𝑦𝑗 ] = Pr[𝑋 = 𝑥𝑖] for all 𝑖, 𝑗 (why?)

Pr[ 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 ] = Pr[𝑋 = 𝑥𝑖]Pr[𝑌 = 𝑦𝑗] for all 𝑖, 𝑗 (why?)

You can verify for yourself that Pr[Prcp = 𝑝𝑟𝑐𝑝 |Temp = 𝑡𝑒𝑚𝑝 ] = Pr[Prcp = 𝑝𝑟𝑐𝑝 ] for all
temperatures and precipitation in Place B.
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3.2.6 Exercises

Exercise 3.1. Show that 𝐸[𝑎𝑋 + 𝑏] = 𝑎𝐸[𝑋] + 𝑏 and 𝑣𝑎𝑟[𝑎𝑋 + 𝑏] = 𝑎2𝑣𝑎𝑟[𝑋] where 𝑋 is a
random variable and 𝑎 and 𝑏 are constants.

Exercise 3.2. Starting from the definition 𝑐𝑜𝑣[𝑋, 𝑌 ] = 𝐸[(𝑋−𝐸[𝑋])(𝑌 −𝐸[𝑌 ])] and using the
properties of expectations, show that 𝑐𝑜𝑣[𝑋, 𝑌 ] = 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ].

Exercise 3.3. For random variables 𝑋1, 𝑋2 and 𝑋3 and constants 𝑎1, 𝑎2 and 𝑎3, show that

𝑣𝑎𝑟[𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3]

= 𝑎21𝑣𝑎𝑟[𝑋1] + 𝑎22𝑣𝑎𝑟[𝑋2] + 𝑎23𝑣𝑎𝑟[𝑋3]

+ 2𝑎1𝑎2𝑐𝑜𝑣[𝑋1, 𝑋2] + 2𝑎1𝑎3𝑐𝑜𝑣[𝑋1, 𝑋3] + 2𝑎2𝑎3𝑐𝑜𝑣[𝑋2, 𝑋3]

=
3

∑
𝑖=1

3
∑
𝑗=1

𝑎𝑖𝑎𝑗𝑐𝑜𝑣[𝑋𝑖, 𝑋𝑗].

Exercise 3.4. Show that

𝑐𝑜𝑣[𝑎1𝑋1 + 𝑎2𝑋2, 𝑏1𝑌1 + 𝑏2𝑌2 + 𝑏3𝑌3] =
2

∑
𝑖=1

3
∑
𝑗=1

𝑎𝑖𝑏𝑗𝑐𝑜𝑣[𝑋𝑖, 𝑌𝑗].

Exercise 3.5. Explain why the correlation coefficient always lies between −1 and 1, inclusive.
Hint: For arbitrary 𝛼, we have 𝑣𝑎𝑟[𝑋 − 𝛼𝑌 ] ≥ 0. Expand 𝑣𝑎𝑟[𝑋 − 𝛼𝑌 ] and let
𝛼 = 𝑐𝑜𝑣[𝑋, 𝑌 ]/𝑣𝑎𝑟[𝑌 ]

Exercise 3.6. Suppose 𝑋 and 𝑌 are two random variables with the joint pdf

6 0 0 0 0 1
20

5.5 0 0 0 1
20

2
20

5 0 0 1
20

2
20

1
20

𝑌 4.5 0 1
20

2
20

1
20 0

4 1
20

2
20

1
20 0 0

3.5 2
20

1
20 0 0 0

3 1
20 0 0 0 0
1 2 3 4 5

𝑋

(3.10)

a. Find the marginal distributions, means and variances of 𝑋 and 𝑌 .
b. Show that the covariance is equal to 1 and the correlation is equal to 0.8944.
c. Find the conditional distribution, mean and variance of 𝑌 given 𝑋.
d. Find the conditional distribution, mean and variance of 𝑋 given 𝑌 .
e. Are the two variables independent?

Exercise 3.7. Show that if 𝐸[𝑌 |𝑋] = 𝑎 + 𝑏𝑋, then

𝑏 = 𝑐𝑜𝑣[𝑋, 𝑌 ]
𝑣𝑎𝑟[𝑋] and 𝑎 = 𝐸[𝑌 ] − 𝑏𝐸[𝑋] .



72 CHAPTER 3. PROBABILITY AND EXPECTATIONS REVIEW

Exercise 3.8. Prove Eq. 3.9. Use this relationship to show that
a. 𝑣𝑎𝑟[𝑌 ] = 𝐸[𝑣𝑎𝑟[𝑌 |𝑋]] if 𝐸[𝑌 |𝑋] is constant.
b. 𝑣𝑎𝑟[𝑌 |𝑋] ≤ 𝑣𝑎𝑟[𝑌 ] if 𝑣𝑎𝑟[𝑌 |𝑋] is constant.

Exercise 3.9. Suppose 𝑌 and 𝑋 have the following joint distribution function:

10 0 0 0 0 1
10

9 0 0 0 1
10 0

8 0 0 1
10 0 0

7 0 1
10 0 0 0

6 1
10 0 0 0 0

𝑌 5 1
10 0 0 0 0

4 0 1
10 0 0 0

3 0 0 1
10 0 0

2 0 0 0 1
10 0

1 0 0 0 0 1
10

1 2 3 4 5
𝑋

i. Find the marginal distribution of 𝑋 and of 𝑌 .
ii. Find the conditional distribution, conditional mean, and conditional variance of 𝑌 given

𝑋.
iii. Find 𝑐𝑜𝑣[𝑋, 𝑌 ].
iv. In what way is the conditional distribution of 𝑌 related to 𝑋?

Exercise 3.10. Suppose 𝑌 and 𝑋 have the following joint pdf:

5 0.01 0.04 0.03 0.01 0.01
4 0.02 0.08 0.06 0.02 0.02

𝑌 3 0.04 0.16 0.12 0.04 0.04
2 0.02 0.08 0.06 0.02 0.02
1 0.01 0.04 0.03 0.01 0.01

1 2 3 4 5
𝑋

Are the variables independent? Are they identically distributed (i.e., do they have the same
marginal distributions?) Change the probabilities in the joint pdf of 𝑋 and 𝑌 so that the two
variables are independently and identically distributed.

3.3 A Few More Distributions

We have seen the Bernoulli and Binomial Distributions, which are distributions of “discrete”
random variables with finite number of possible outcomes. In this section we will look at a
few random variables with countably infinite (discrete, but infinite) possible outcomes, as well
as “uncountably infinite” number of possible outcomes (or outcomes over some continuum, like
from 0 to 1). The latter type of random variables are called continuous random variables.
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3.3.1 Geometric Distribution

Example 3.3. Suppose an experiment with two outcomes “Success” and “Failure” with proba-
bilities 𝑝 and 1−𝑝 respectively is carried out a number of times. Suppose that the outcome of one
experiment does not affect the outcome of subsequent experiments. Then the number of “Fail-
ures” before a “Success” is observed is a random variable 𝑋 with the geometric distribution,
i.e., with pdf

𝑓𝑋(𝑥) = 𝑝(1 − 𝑝)𝑥, 𝑥 = 0, 1, 2, ... (3.11)

We write 𝑋 ∼ Geometric(𝑝). Probabilities over all possible outcomes must sum to one, and we
leave it as an exercise to show that this is the case for Eq. 3.11. Sometimes we describe the
probabilistic behavior of a random variable using a cumulative distribution function (cdf)
instead of a probability density function. The cdf is defined as

𝐹𝑋(𝑥) = Pr[𝑋 ≤ 𝑥] , 𝑥 ∈ ℝ.

For discrete random variables, 𝐹𝑋(𝑥) is just the sum of all of the probabilities for 𝑋 = 𝑥𝑖 where
𝑥𝑖 ≤ 𝑥. For continuous random variables, we have

𝐹𝑋(𝑥) = ∫
𝑥

−∞
𝑓𝑋(𝑢) 𝑑𝑢 .

Whereas the pdf is defined over the possible outcomes for 𝑋, the cdf is defined over the real
line. Sometimes it is easier to use the pdf to describe the probabilistic behavior of a random
variable, sometimes it is easier to use the cdf. For continuous variables the derivative of the cdf
gives the pdf.

The cdf of a Geometric random variable is

𝐹𝑋(𝑥) =
⎧{
⎨{⎩

0 , 𝑥 < 0
1 − (1 − 𝑝)𝑘+1 , 𝑘 ≤ 𝑥 < 𝑘 + 1 , 𝑘 = 0, 1, 2, ...

(3.12)

Eq. 3.12 follows from the formula for geometric series:

Pr[𝑋 ≤ 𝑘] =
𝑘

∑
𝑖=0

𝑝(1 − 𝑝)𝑖 = 𝑝 − 𝑝(1 − 𝑝)𝑘+1

1 − (1 − 𝑝) = 1 − (1 − 𝑝)𝑘+1 , 𝑘 = 0, 1, 2, ....

The Geometric pdf and cdf with 0.25 is shown in Fig. 3.2 (for 𝑥 up to 10 only).

plot_theme <- theme_minimal() +
theme(aspect.ratio = 1:1, plot.title = element_text(size = 12))

## Set parameter
p = 0.25
x <- 0:10
fx_geom <- dgeom(x,prob=p)
Fx_geom <- pgeom(x,prob=p)
## Plot the PDF
p1 <- ggplot() +

geom_col(data=data.frame(x, fx_geom), aes(x=x, y=fx_geom), color="black", width=0.01) +
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ggtitle('(a) pdf') + scale_x_continuous(breaks=seq(0,11,2)) +
ylim(0,0.3) + ylab(NULL) + plot_theme

Fx_geom_1 <- c(0,Fx_geom[1:length(x)-1]) ## Addition stuff for plotting discrete CDF
xstart <- c(-0.9,x)
xend <- c(x,10.4)
ystart <- c(0,Fx_geom)
yend <- c(Fx_geom_1,Fx_geom[length(x)])
df2a <- data.frame(x, Fx_geom)
df2b <- data.frame(x, Fx_geom_1)
df2c <- data.frame(xstart, ystart, xend, yend)
## Plot the CDF
p2 <- ggplot() +

geom_point(data=df2a, aes(x=x,y=Fx_geom), color="black") + # the black dots
geom_point(data=df2b, aes(x=x,y=Fx_geom_1), color="black", shape=1) + # the hollow dots
geom_segment(data=df2c, aes(x=xstart,y=ystart,xend=xend, yend=yend)) + # the vertical lines
ggtitle('(b) cdf') + scale_x_continuous(breaks=seq(0,10.4,2)) +
ylim(0,1) + ylab(NULL) + plot_theme

p1 | p2 + plot_annotation("Geometric PDF and CDF with p=0.25")

0.0

0.1

0.2

0.3

0 2 4 6 8 10
x

(a) pdf

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
x

(b) cdf

Figure 3.2: Geometric distribution pdf and cdf

The probability density function of a discrete random variable is sometimes called a proba-
bility mass function and the cdf a cumulative probability mass function.

3.3.2 Uniform Distribution

Example 3.4. A random variable 𝑋 has a Uniform(0, 1) distribution, written 𝑋 ∼ 𝑈(0, 1), if
its pdf is

𝑓𝑋(𝑥) = 1 , 𝑥 ∈ [0, 1]. (3.13)

Whereas the probability density/mass function of a discrete random variable has the inter-
pretation as 𝑓𝑋(𝑥) = Pr[𝑋 = 𝑥], this interpretation must be modified for continuous random
variables. For continuous variables, the probability of obtaining an outcome between 𝑎 and 𝑏 is
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the area between the pdf and the 𝑥-axis from 𝑥 = 𝑎 to 𝑥 = 𝑏. That is,

Pr[𝑎 ≤ 𝑋 ≤ 𝑏] = ∫
𝑏

𝑎
𝑓𝑋(𝑢) 𝑑𝑢.

For the Uniform (0,1) distribution, Pr[𝑎 ≤ 𝑋 ≤ 𝑏] is straightforward to compute. If 𝑋 ∼ 𝑈(0, 1),
then Pr[0.1 < 𝑋 < 0.3] = 0.2, Pr[𝑋 = 0.5] = 0, Pr[0 ≤ 𝑋 ≤ 1] = 1, and so on. The cdf of the
Uniform (0,1) random variable is

𝐹𝑋(𝑥) = Pr[𝑋 ≤ 𝑥] =
⎧{{
⎨{{⎩

0 , 𝑥 < 0
𝑥 , 0 ≤ 𝑥 ≤ 1
1 , 𝑥 > 1.

## PDF
p1 <- ggplot() +

geom_segment(data=data.frame(xstart=0, xend=1,ystart=1, yend=1),
aes(x=xstart,y=ystart,xend=xend, yend=yend)) + ggtitle('(a) pdf') +

xlim(-0.5,1.5) + ylim(0,1.2) + xlab("x") + ylab(NULL) + plot_theme
# CDF
p2 <- ggplot() +

geom_segment(data=data.frame(xstart=c(-0.5,0,1), xend=c(0,1,1.5),
ystart=c(0,0,1), yend=c(0,1,1)),

aes(x=xstart,y=ystart,xend=xend, yend=yend)) + ggtitle('(a) cdf') + xlim(-0.5,1.5) +
ylim(0,1.2) + xlab("x") + ylab(NULL) + plot_theme

p1 | p2
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1.25
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Figure 3.3: Uniform[0,1] distribution pdf and cdf

3.3.3 Mean, Variance and Other Moments

We have earlier introduced the mean and variance of discrete random variables with a finite
number of outcomes. We extend these definitions to discrete random variables with countably
infinite number of outcomes, and continuous random variables.
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• If 𝑋 has a finite number of possible outcomes 𝑥1,𝑥2, …, 𝑥𝑛 with probabilities 𝑝1,𝑝2, …, 𝑝𝑛
respectively, then

𝐸[𝑋] =
𝑛

∑
𝑖=1

𝑥𝑖𝑝𝑖

𝑣𝑎𝑟[𝑋] =
𝑛

∑
𝑖=1

(𝑥𝑖 −𝐸[𝑋])2𝑝𝑖

• If 𝑋 has a infinitely countable number of possible outcomes 𝑥1,𝑥2, … with probabilities
𝑝1,𝑝2, … respectively, then

𝐸[𝑋] =
∞
∑
𝑖=1

𝑥𝑖𝑝𝑖

𝑣𝑎𝑟[𝑋] =
∞
∑
𝑖=1

(𝑥𝑖 −𝐸[𝑋])2𝑝𝑖

• If the possible values of 𝑋 range over a continuum, and it has pdf 𝑓𝑋(𝑥), then

𝐸[𝑋] = ∫𝑥𝑓𝑋(𝑥) 𝑑𝑥

𝑣𝑎𝑟[𝑋] = ∫(𝑥 − 𝐸[𝑋])2𝑓𝑋(𝑥) 𝑑𝑥
(3.14)

where the integrals are over the range of possible values of 𝑋. We can also write the
variance definition as

var[𝑋] = E[(𝑋 − E[𝑋])2]. (3.15)

Sometimes easier to use
var[𝑋] = E[𝑋2] − E[𝑋]2. (3.16)

which you can derive from Eq. 3.15. The square root of the variance is called the standard
deviation of 𝑋.

Example 3.5.

• If 𝑋 ∼ Bernoulli(𝑝), then 𝐸[𝑋] = 1.𝑝 + 0.(1 − 𝑝) = 𝑝 and 𝑣𝑎𝑟[𝑋] = 𝑝(1 − 𝑝).
• If 𝑋 ∼ Geometric(𝑝), then

𝐸[𝑋] =
∞
∑
𝑥=0

𝑥𝑝(1 − 𝑝)𝑥 = 1 − 𝑝
𝑝 (see exercises) .

Furthermore, 𝐸[𝑋2] = ∑∞
𝑥=0 𝑥2𝑝(1 − 𝑝)𝑥 = (1 − 𝑝)2 + (1 − 𝑝)

𝑝2 , therefore

𝑣𝑎𝑟[𝑋] = 1 − 𝑝
𝑝2 (see exercises) .

• If 𝑋 ∼ Uniform(0, 1), then

𝐸[𝑋] = ∫
1

0
𝑥 𝑑𝑥 = 𝑥2

2 ∣
1

0
= 1

2 .
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Furthermore, 𝐸[𝑋2] = ∫1
0 𝑥2 𝑑𝑥 = 𝑥3

3 ∣
1

0
= 1

3 , therefore

𝑣𝑎𝑟[𝑋] = 1
3 − 1

4 = 1
12.

The important properties of the mean and variance continue to hold, i.e.,
• 𝐸[𝑎𝑋 + 𝑏] = 𝑎𝐸[𝑋] + 𝑏
• 𝑣𝑎𝑟[𝑎𝑋 + 𝑏] = 𝑎2𝑣𝑎𝑟[𝑋]
where 𝑎 and 𝑏 are constants.

Besides the mean and variance, we occasionally refer to higher moments. The skewness
coefficient of a random variable is defined to be

𝑆 = 𝐸[(𝑋 − 𝐸[𝑋])3]
𝜎3

where 𝜎 is the standard deviation of 𝑋. It is used as a measure of symmetry. If a distribution
is symmetric about the mean, then corresponding negative and positive deviations from mean
receive the same weight, and retain their signs when raised to the third power. They therefore
cancel out when summed or integrated, resulting in 𝑆 = 0. E.g., the skewness coefficient of the
normal distribution is zero.

The kurtosis of a random variable 𝑋 is defined as

𝐾 = 𝐸[(𝑋 − 𝐸[𝑋])4]
𝜎4 .

When raised to the fourth power, small deviation from means (< 1) become very small and do
not contribute to 𝐾 whereas large deviations from mean contribute substantially. The kurtosis
is therefore a measure of how “fat-tailed” a distribution is. It turns out that 𝐾 = 3 for a normal-
distributed random variable. A random variable with 𝐾 > 3 is said to have excess kurtosis,
or have a “fat-tailed” distribution.

3.3.4 The Normal Distribution

A random variable 𝑋 has the normal distribution Normal(𝜇, 𝜎2) if it takes possible values
over the entire real line, and its pdf is

𝑓𝑋(𝑥) = 1
𝜎
√
2𝜋 exp{−(𝑥 − 𝜇)2

2𝜎2 } , 𝑥 ∈ ℝ. (3.17)

The pdf of the normal distribution has the familiar symmetric bell-shape, centered at 𝜇,
which is centered at 𝜇. The variance is 𝜎2. The normal distribution with mean 0 and variance
1 is called the standard normal distribution; it has no parameters, and has a special place
in probability theory for reasons you will see in the next chapter.

Fig. 3.4 show 5 normal pdfs. The three centered at zero have mean zero. The thinner of
these has variance 1/2, and the flatter, broader one as variance 4. The one in bold is the pdf of
the standard normal. On either side are pdfs of normal variates with variance 1 and means -6
(left) and 6 (right).
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x = seq(-10,10,0.01)
# dnorm(x,mu,sd) gives normal pdf at x with mean mu and standard deviation sd
fx_data = data.frame(x=x, fx_norm1=dnorm(x,0,1),

fx_norm2 = dnorm(x,0,sqrt(0.25)),
fx_norm3 = dnorm(x,0,sqrt(4)),
fx_norm4 = dnorm(x,-6,1),
fx_norm5 = dnorm(x,6,1))

p1 <- ggplot(data = fx_data) +
geom_line(aes(x=x, y=fx_norm1), linewidth=1) +
geom_line(aes(x=x, y=fx_norm2), linetype='dashed') +
geom_line(aes(x=x, y=fx_norm3), linetype='dotted') +
geom_line(aes(x=x, y=fx_norm4), color='blue', linewidth=0.75) +
geom_line(aes(x=x, y=fx_norm5), color='magenta', linewidth=0.75) +
annotate('text', -7.9, 0.4, label="Normal(-6,1)", color='blue', size=3) +
annotate('text', 7.8, 0.4, label="Normal(6,1)", color='magenta', size=3) +
annotate('text', 2.6, 0.25, label="Normal(0,1)", fontface='bold', size=3) +
annotate('text', 2.3, 0.6, label="Normal(0,1/2)", size=3) +
annotate('text', 4.3, 0.1, label="Normal(0,4)", size=3) +
plot_theme + ylim(0,0.8) + ylab(NULL) + theme(aspect.ratio = 0.5)

p1

Normal(−6,1) Normal(6,1)

Normal(0,1)

Normal(0,1/2)

Normal(0,4)

0.0

0.2

0.4

0.6

0.8

−10 −5 0 5 10
x

Figure 3.4: Normal pdf, various means and variances

Substituting 𝜇 = 0 and 𝜎2 = 1 into Eq. 3.17 gives the pdf of the standard normal distribution,
which is given the special notation 𝜙():

𝜙(𝑥) = 1√
2𝜋 exp{−𝑥2

2 } , 𝑥 ∈ ℝ. (3.18)

The normal distribution has the property that if 𝑋 ∼ Normal(𝜇, 𝜎2), then

𝑎𝑋 + 𝑏 ∼ Normal(𝑎𝜇 + 𝑏, 𝑎2𝜎2)
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The change in mean and variance will be true for all random variables; the important part here
is that the distribution itself doesn’t change under the variable transformation. An important
application of this result is:

𝑋 − 𝜇
𝜎 ∼ Normal(0, 1) .

The cdf of the normal distribution is

𝐹𝑋(𝑥) = Pr[𝑋 ≤ 𝑥] = ∫
∞

−∞

1
𝜎
√
2𝜋 exp{−(𝑥 − 𝜇)2

2𝜎2 } 𝑑𝑥 , 𝑥 ∈ ℝ. (3.19)

The normal cdf does not have a “closed form” expression (there isn’t a simple formula for it)
but there are algorithms that can calculate it. The cdf of the standard normal is denoted Φ(𝑥).

x = seq(-4,4,0.01)
# pnorm(x,mu,sd) gives normal pdf at x with mean mu and standard deviation sd
fx_data = data.frame(x=x, fx_pnorm1 = pnorm(x,0,1))
p1 <- ggplot(data = fx_data) + geom_line(aes(x=x, y=fx_pnorm1), linewidth=0.75) +

plot_theme + ylim(0,1.1) + ylab(NULL) + theme(aspect.ratio = 0.5)
p1

0.0

0.3

0.6

0.9

−4 −2 0 2 4
x

Figure 3.5: Standard normal cdf

It is sometimes useful to express the pdf of a non-standard normal distribution in terms of
the pdf and cdf of a standard normal. This is easily done given that linear transformations do
not change the distributional form of a normal random variate. If 𝑋 ∼ 𝑁(𝜇, 𝜎2), then its cdf
can be written as

𝐹𝑋(𝑥) = Φ(𝑥 − 𝜇
𝜎 ) ,

since
𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) = Pr(𝑋 − 𝜇

𝜎 ≤ 𝑥 − 𝜇
𝜎 ) = Φ(𝑥 − 𝜇

𝜎 ) .

Since the pdf is the derivative of the cdf, we have

𝑓𝑋(𝑥) = 1
𝜎𝜙(𝑥 − 𝜇

𝜎 ) .
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The R function for the cdf of a normal variate with mean 𝜇 and standard deviation 𝜎 is pnorm().

cat("pnorm(1,1,2) =", pnorm(1, mean=1, sd=2))
cat("\npnorm(2,1,2) =", pnorm(2, 1, 2))
cat("\npnorm(0,0,1) =", pnorm(0, 0, 1))
cat("\npnorm(-1.96,0,1) =", pnorm(-1.96, 0, 1))
cat("\npnorm(1.96,0,1) =", pnorm(1.96, 0, 1))

pnorm(1,1,2) = 0.5
pnorm(2,1,2) = 0.6914625
pnorm(0,0,1) = 0.5
pnorm(-1.96,0,1) = 0.0249979
pnorm(1.96,0,1) = 0.9750021

To get the value of 𝑞 such that 𝑋 ≤ 𝑞, use qnorm():

cat("qnorm(0.025,0,1) =", qnorm(0.025, mean=0, sd=1))

qnorm(0.025,0,1) = -1.959964

3.3.5 The Log-Normal Distribution

The log-normal distribution is sometimes used to describe the probabilistic behavior of stock
prices. A random variable 𝑋 has the log-normal distribution with distribution 𝜇 and 𝜎2 if its
probability density function is

𝑝𝑋(𝑥) = 1
𝑥𝜎

√
2𝜋 exp{−(ln𝑥 − 𝜇)2

2𝜎2 } , 𝑥 ∈ (0,∞). (3.20)

The log-normal distribution is so-called because if 𝑋 ∼ Lognormal(𝜇, 𝜎2), then 𝑌 = ln𝑋 has
the normal distribution Normal(𝜇, 𝜎2)

The log-normal cdf does not have ‘closed form’ expressions, but as with the normal
distribution, that are computer algorithms that can compute the log-normal cdf to a good
approximation.

x = seq(0.01,8,0.01)
fx_lnorm = dlnorm(x,1,1/2)
Fx_lnorm = plnorm(x,1,1/2)
p1 <- ggplot() +

geom_line(data = data.frame(x,fx_lnorm), aes(x=x, y=fx_lnorm)) +
plot_theme + ylim(0,0.4) + ylab(NULL) + ggtitle('(a) Lognormal pdf')

p2 <- ggplot() +
geom_line(data = data.frame(x,Fx_lnorm), aes(x=x, y=Fx_lnorm)) +
plot_theme + ylim(0,1) + ylab(NULL) + ggtitle('(b) Lognormal cdf')

(p1 | p2)



3.3. A FEW MORE DISTRIBUTIONS 81

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8
x

(a) Lognormal pdf

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8
x

(b) Lognormal cdf

Figure 3.6: The Log-Normal pdf and cdf with mu=1, sigma=1/2

From the perspective of the validity of possible outcomes, the log-normal distribution, which
takes possible values in (0,∞), is more appropriate than, say, the normal distribution, since prices
cannot take negative values. However, there are many other distributions with possible outcomes
restricted to (0,∞). Whether the log-normal distribution is the appropriate distribution for a
given stock price is an empirical question.

• If 𝑋 ∼ Lognormal(𝜇, 𝜎2), then

𝐸[𝑋] = exp{𝜇 + 𝜎2

2 }

𝑣𝑎𝑟[𝑋] = [exp(𝜎2) − 1] exp(2𝜇 + 𝜎2)

3.3.6 The Chi-squared, Student-t, and F Distributions

We mention three univariate distributions that are related to the normal distribution. We will
not need to use the expression of the pdf or cdf of these distributions, but you will need to know
the properties that we list here.

3.3.6.1 Chi-square distribution

If 𝑋 ∼ 𝑁(0, 1), then 𝑋2 has the “Chi-squared distribution with one degree of freedom”. If
𝑋1, 𝑋2,… ,𝑋𝑘 are independent standard normal variates, then ∑𝑘

𝑖=1 𝑋2
𝑖 is Chi-squared distri-

bution with 𝑘 degrees of freedom, denoted 𝜒2
(𝑘). If 𝑋 ∼ 𝜒2

(𝑘), then 𝐸[𝑋] = 𝑘 and 𝑣𝑎𝑟[𝑋] = 2𝑘.

x = seq(0.05, 30, 0.01)
df_chi <- data.frame(x = x, fx_chi1 = dchisq(x,1), fx_chi5 = dchisq(x,5),

fx_chi10 = dchisq(x,10), fx_chi20 = dchisq(x,20))
p1 <- ggplot(data = df_chi) +

geom_line(aes(x=x, y=fx_chi1), linewidth=0.5) +
geom_line(aes(x=x, y=fx_chi5), linewidth=0.5) +
geom_line(aes(x=x, y=fx_chi10), linewidth=0.5) +
geom_line(aes(x=x, y=fx_chi20), linewidth=0.5) +
annotate('text', 2.3, 0.23, label=TeX("$\\chi^{2}$(1)")) +
annotate('text', 5, 0.17, label=TeX("$\\chi^{2}$(5)")) +
annotate('text', 10, 0.12, label=TeX("$\\chi^{2}$(10)")) +
annotate('text', 21, 0.08, label=TeX("$\\chi^{2}$(20)")) +
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plot_theme + ylim(0,0.25) + ylab(NULL) + theme(aspect.ratio = 0.5)
p1

χ2(1)

χ2(5)

χ2(10)

χ2(20)

0.00
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0.10
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0.20

0.25
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x

Figure 3.7: The 𝜒2 distribution

3.3.6.2 Student-t distribution

If 𝑋 and 𝑊 are independent variables with 𝑋 ∼ 𝑁(0, 1) and 𝑊 ∼ 𝜒2(𝑘), then

𝑋
√𝑊/𝑘

∼ t(𝑣)

where t(𝑣) denotes the “Student-t distribution with 𝑣 degrees of freedom”. A student-t random
variate has zero mean, and variance 𝑣

𝑣−2 (the variance does not exist unless 𝑣 > 2). The Student-
t pdf is similar to that of the standand normal pdf in that it is symmetrically bell-shaped and
centered about zero. However, it has fatter tails than a normal distribution (its kurtosis is
always greater than 3). This means that a Student-t random variable has greater probability
of extreme realizations than a comparable normal variate. The Student-t pdf has the property
that it converges to the standard normal pdf as 𝑣 → ∞. Fig. 3.8 shows the student-t pdf with
degree-of-freedom parameter v=1, 5, 10, and 20, and also the pdf of the standard normal. The
t(1) and t(5) distributions are indicated, with the t(10) and t(20) distributions “between” the
t(5) and the Normal(0,1) pdf.

x = seq(-5, 5, 0.01)
df_t <- data.frame(x = x, fx_t1 = dt(x,1), fx_t5 = dt(x,5), fx_t10 = dt(x,10),

fx_t20 = dt(x,20), fx_norm = dnorm(x,0,1))
p1 <- ggplot(data = df_t) +

geom_line(aes(x=x, y=fx_t1), linewidth=0.5) +
geom_line(aes(x=x, y=fx_t5), linewidth=0.5) +
geom_line(aes(x=x, y=fx_t10), linewidth=0.5) +
geom_line(aes(x=x, y=fx_t20), linewidth=0.5) +
geom_line(aes(x=x, y=fx_norm), linewidth=0.6, color="magenta") +
annotate('text', 0.8, 0.13, label="t(1)") +
annotate('text', 0.08, 0.34, label="t(5)") +
annotate('text', 0.89, 0.38, label="N(0,1)", color="magenta") +
plot_theme + ylim(0, 0.42) + ylab(NULL) +
theme(aspect.ratio = 0.5)

p1
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Figure 3.8: The student t distribution

The following table compares the tail probabilities of the normal and the t distribution.

norm_vs_t_tail <- cbind(
pnorm(c(-2.57, -1.96, -1.64)),
pt(c(-2.57, -1.96, -1.64), 1),
pt(c(-2.57, -1.96, -1.64), 5),
pt(c(-2.57, -1.96, -1.64), 10),
pt(c(-2.57, -1.96, -1.64), 20),
pt(c(-2.57, -1.96, -1.64), 30))

colnames(norm_vs_t_tail) <- c("N(0,1)", "t(1)", "t(5)", "t(10)", "t(20)", "t(30)")
rownames(norm_vs_t_tail) <- c("P[X<-2.57]", "P[X<-1.96]", "P[X<-1.64]")
round(norm_vs_t_tail, 4)

N(0,1) t(1) t(5) t(10) t(20) t(30)
P[X<-2.57] 0.0051 0.1181 0.0250 0.0139 0.0091 0.0077
P[X<-1.96] 0.0250 0.1502 0.0536 0.0392 0.0320 0.0297
P[X<-1.64] 0.0505 0.1743 0.0810 0.0660 0.0583 0.0557

3.3.6.3 F distribution

If 𝑊1 and 𝑊2 are independent chi-squared random variables with degrees of freedom 𝑣1 and 𝑣2
respectively, then

𝑊1/𝑣1
𝑊2/𝑣2

∼ 𝐹(𝑣1,𝑣2)

where 𝐹(𝑣1,𝑣2) denotes the “F distribution with 𝑣1 and 𝑣2 degrees of freedom”. If 𝑋 ∼ 𝐹(𝑣1,𝑣2),
then

𝐸[𝑋] = 𝑣2
𝑣2 − 2

𝑣𝑎𝑟[𝑋] = 2( 𝑣2
𝑣2 − 2)

2 𝑣1 + 𝑣2 − 2
𝑣1(𝑣2 − 4) .

The F-distribution is also related to the t- and chi-squared distributions in that
• If 𝑋 ∼ 𝑡(𝑣), then 𝑋2 ∼ 𝐹(1,𝑣),
• If 𝑋 ∼ 𝐹(𝑣1,𝑣2), then the pdf of 𝑣1𝑋 converges to the 𝜒2(𝑣1) pdf as 𝑣2 → ∞.
Fig. 3.9 shows the 𝐹(3,10) pdf.
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x <- seq(0,5,0.01)
Fpdf <- df(x, df1=3, df2=20)
dat2 <- data.frame(x , Fpdf)
p1 <- ggplot(data = dat2) +

geom_line(aes(x=x, y = Fpdf), colour="black") +
ggtitle(TeX("$F_{(3,20)}$ pdf")) + ylab(NULL) + theme_minimal() +
theme(aspect.ratio = 0.5)

p1

0.0

0.2

0.4

0.6

0 1 2 3 4 5
x

F(3, 20) pdf

Figure 3.9: The F pdf

3.3.7 The Bivariate Normal Distribution

Two random variables 𝑋 and 𝑌 have the bivariate normal distribution if their joint pdf have
the form

𝑓𝑋,𝑌 (𝑥, 𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦√1− 𝜌2𝑥𝑦
exp{−1

2
̃𝑥2 − 2𝜌𝑥𝑦 ̃𝑥 ̃𝑦 + ̃𝑦2

1 − 𝜌2𝑥𝑦
} (3.21)

where ̃𝑥 = 𝑥 − 𝜇𝑥
𝜎𝑥

and ̃𝑦 = 𝑦 − 𝜇𝑦
𝜎𝑦

. The bivariate normal distribution has five parameters, with

the following interpretation:
• 𝜇𝑥 : unconditional mean of 𝑋,
• 𝜇𝑦 : unconditional mean of 𝑌 ,
• 𝜎2

𝑥 : unconditional variance of 𝑋,
• 𝜎2

𝑦 : unconditional variance of 𝑌 , and
• 𝜌𝑥𝑦 : correlation coefficient of 𝑋 and 𝑌 , i.e., 𝜌 = 𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
where 𝜎𝑥𝑦 = 𝑐𝑜𝑣[𝑋, 𝑌 ].

We write (𝑋, 𝑌 ) ∼ Normal2(𝜇𝑥, 𝜇𝑦, 𝜎2
𝑥, 𝜎2

𝑦, 𝜌𝑥𝑦)
Contour plots are helpful for visualizing bivariate normal distributions. We show the contour

plots of a bivariate normal distribution with

(𝜇𝑥, 𝜇𝑦, 𝜎2
𝑥, 𝜎2

𝑦, 𝜌) = (1, 0, 1, 2, 0.9).

in Fig. 3.10(a). Alternatively, one can look at the 3-d plot of the bivariate pdf in Fig. 3.10(b).
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x <- seq(-3,5,0.2)
y <- seq(-4,4,0.2)
mesh_xy <- expand.grid(x,y)
binorm1 <- function(mesh_xy, mu1, mu2, sg1, sg2, rho){

r <- (2*pi*sg1*sg2*sqrt(1-rho^2))^(-1)*exp(-1/(2*(1-rho^2))*
(((mesh_xy[,1]-mu1)/sg1)^2 - 2*rho*(mesh_xy[,1]-mu1)*(mesh_xy[,2]-mu2)/sg1/sg2

+ ((mesh_xy[,2]-mu2)/sg2)^2))
}
binorm2 <- function(x,y, mu1, mu2, sg1, sg2, rho){

r <- (2*pi*sg1*sg2*sqrt(1-rho^2))^(-1)*exp(-1/(2*(1-rho^2))*
(((x-mu1)/sg1)^2 - 2*rho*(x-mu1)*(y-mu2)/sg1/sg2 + ((y-mu2)/sg2)^2))

}
par(mfrow=c(1,2))
mu1 <- 1; mu2 <- 0; sg1 <- 1; sg2 <- sqrt(2); rho = 0.7
par(mar=c(2,1.5,1.5,1.5)) # Contour
f_xy <- binorm1(mesh_xy, mu1, mu2, sg1, sg2, rho)
f_xy <- matrix(f_xy, byrow=FALSE, nrow=length(x))
p1 <- contour(x,y,f_xy,nlevels=12, xlab="", ylab="", main="(a) Contour Plot",

cex.lab=0.6, cex.axis=0.6, cex.main=0.6)
title(ylab="y", line=-1, cex.lab=0.6)
title(xlab="x", line=-1, cex.lab=0.6)
par(mar=c(0,1,0,0)) # 3-d
z <- outer(x,y,binorm2, mu1, mu2, sg1, sg2, rho)
p2 <- persp(x,y,z,theta=20, phi=30, r=10, expand=0.8, col="lightblue",

ltheta=0, shade=0.75,ticktype="detailed", xlab="x", ylab="y", zlab="",
cex.lab=0.6, cex.axis=0.6)

title(main="(b) 3-d Plot", cex.main=0.6, line=-1)

(a) Contour Plot
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Figure 3.10: Bivariate Normal Distribution (parameter values given in text)
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The marginal and conditional distributions of a bivariate normal random variables are also
normal. To see this, we “complete the square” on ̃𝑥2 − 2𝜌𝑥𝑦 ̃𝑥 ̃𝑦 + ̃𝑦2 to get

̃𝑥2 − 2𝜌𝑥𝑦 ̃𝑥 ̃𝑦 + ̃𝑦2 = ( ̃𝑥 − 𝜌𝑥𝑦 ̃𝑦)2 + (1 − 𝜌2𝑥𝑦) ̃𝑦2

= [𝑥 − 𝜇𝑥
𝜎𝑥

− 𝜎𝑥𝑦
𝜎𝑥𝜎𝑦

𝑦 − 𝜇𝑦
𝜎𝑦

]
2
+ (1 − 𝜌2𝑥𝑦)(

𝑦 − 𝜇𝑦
𝜎𝑦

)
2

= 1
𝜎2𝑥

[𝑥 − 𝜇𝑥 − 𝜎𝑥𝑦
𝜎2𝑦

(𝑦 − 𝜇𝑦)]
2
+ (1 − 𝜌2𝑥𝑦)(

𝑦 − 𝜇𝑦
𝜎𝑦

)
2

= 1
𝜎2𝑥

[𝑥 − (𝛼 + 𝛽𝑦)]2 + (1 − 𝜌2𝑥𝑦)(
𝑦 − 𝜇𝑦
𝜎𝑦

)
2

where 𝛼 = 𝜇𝑥 − 𝛽𝜇𝑦 and 𝛽 = 𝜎𝑥𝑦
𝜎2𝑦

. Then the pdf can be written as

𝑓𝑋,𝑌 (𝑥, 𝑦)

= 1
2𝜋𝜎𝑥𝜎𝑦√1− 𝜌2𝑥𝑦

exp{−1
2

1
1 − 𝜌2𝑥𝑦

( ̃𝑥2 − 2𝜌𝑥𝑦 ̃𝑥 ̃𝑦 + ̃𝑦2)}

= 1
2𝜋𝜎𝑥𝜎𝑦√1− 𝜌2𝑥𝑦

× exp{−1
2

1
1 − 𝜌2𝑥𝑦

[ 1
𝜎2𝑥

[𝑥 − (𝛼 + 𝛽𝑦)]2 + (1 − 𝜌2𝑥𝑦)(
𝑦 − 𝜇𝑦
𝜎𝑦

)
2
]}

= 1
√
2𝜋√𝜎2𝑥(1 − 𝜌2𝑥𝑦)

exp{−1
2
[𝑥 − (𝛼 + 𝛽𝑦)]2
𝜎2𝑥(1 − 𝜌2𝑥𝑦)

}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

× 1√
2𝜋𝜎𝑦

exp{−1
2 (𝑦 − 𝜇𝑦

𝜎𝑦
)

2
}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵

If we compare expressions 𝐴 and 𝐵 with the expression for the Normal pdf, we see that 𝐵
is a normal pdf 𝑓𝑌 (𝑦) with mean 𝜇𝑦 and variance 𝜎𝑦, and if we take 𝑦 as fixed, then 𝐴 is a
(conditional) normal pdf 𝑓𝑋|𝑌 (𝑥|𝑦) with mean 𝛼 + 𝛽𝑦 and variance 𝜎2

𝑥 − 𝜎𝑥𝑦/𝜎2
𝑦. That is, if 𝑋

and 𝑌 have the bivariate normal distribution Eq. 3.21, then

• the marginal distribution of 𝑌 is Normal(𝜇𝑦, 𝜎2
𝑦),

• the conditional distribution of 𝑋 given 𝑌 is Normal(𝜇𝑥|𝑦, 𝜎𝑥|𝑦) where

𝜇𝑥|𝑦 = 𝜇𝑥 + 𝜎𝑥𝑦
𝜎2𝑦

(𝑦 − 𝜇𝑦),

𝜎𝑥|𝑦 = 𝜎2
𝑥 − 𝜎𝑥𝑦

𝜎2𝑦
.

The conditional mean can be written as 𝜇𝑥|𝑦 = 𝛼𝑥 + 𝛽𝑥𝑦 where 𝛼𝑥 = 𝜇𝑥 − 𝛽𝑥𝜇𝑦 and 𝛽𝑥 = 𝜎𝑥𝑦
𝜎2𝑦

.

Similarly,

• the marginal distribution of 𝑋 is Normal(𝜇𝑥, 𝜎2
𝑥),

• the conditional distribution of 𝑌 given 𝑋 is Normal(𝜇𝑦|𝑥, 𝜎𝑦|𝑥) where

𝜇𝑦|𝑥 = 𝜇𝑦 + 𝜎𝑥𝑦
𝜎2𝑥

(𝑥 − 𝜇𝑥),

𝜎𝑦|𝑥 = 𝜎2
𝑦 − 𝜎𝑥𝑦

𝜎2𝑥
.
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The conditional mean can be written as 𝜇𝑦|𝑥 = 𝛼𝑦+𝛽𝑦𝑥 where 𝛼𝑦 = 𝜇𝑦−𝛽𝑦𝜇𝑥 and 𝛽𝑦 = 𝜎𝑥𝑦
𝜎2𝑥

.
It follows immediately from the decomposition of the bivariate normal pdf that 𝑋 and 𝑌 are

independent if they are bivariate normal and uncorrelated (see exercises). It can also be shown
that if 𝑋 and 𝑌 are bivariate normal, then

• 𝑎𝑋 + 𝑏𝑌 ∼ Normal(𝑎𝜇𝑥 + 𝑏𝜇𝑦 , 𝑎2𝜎2
𝑥 + 𝑏2𝜎2

𝑦 + 2𝑎𝑏𝜎𝑥𝑦).
We omit the proof of this last result.

3.3.8 Exercises

Exercise 3.11. Use the fact that
∞
∑
𝑗=0

𝑗𝑟𝑗 = 𝑟
(1 − 𝑟)2 and

∞
∑
𝑗=0

𝑗2𝑟𝑗 = 𝑟2 + 𝑟
(1 − 𝑟)3

to derive the mean and variance of the Geometric distribution.

Exercise 3.12. Show that 𝑋 and 𝑌 are independent if they are bivariate normal and uncorre-
lated. Hint: show that 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑌 (𝑦)𝑓𝑋(𝑥) when 𝜌𝑥𝑦 = 0.
Exercise 3.13. The function pnorm(), when evaluated at 𝑥, returns the CDF of the normal pdf
at 𝑥, i.e., it returns the probability Pr[𝑋 ≤ 𝑥]. The quantile function qnorm(), when evaluated
at probability 𝑝, returns the value of 𝑥 for which Pr[𝑋 ≤ 𝑥] = 𝑝. For example:

pnorm(0, mean=0, sd=1) # Pr[X <= 0] for X~N(0,1)

[1] 0.5

qnorm(0.5, mean=0, sd=1) # c such that Pr[X<=c]=0.5 when X~N(0,1)

[1] 0

The corresponding functions for the t, chi-sq, and F distributions are pt(x,df) and qt(p,
df), pchisq(x,df) and qchisq(p,df), and pf(x,df1,df2) and qf(p,df1, df2) respectively.
Find:

i.  Pr[𝑋 ≤ −2.5] when 𝑋 ∼ 𝑁(0, 1)
ii.  Pr[𝑋 ≤ −2.5] when 𝑋 ∼ 𝑡(5)
iii.  𝑐 such that Pr[𝑋 > 𝑐] = 0.05 when 𝑋 ∼ 𝜒2

(5).
iv.  Pr[−1.96 ≤ 𝑋 ≤ 1.96] when 𝑋 ∼ 𝑁(0, 1)
v.  𝑐 such that Pr[−𝑐 ≤ 𝑋 ≤ 𝑐] = 0.95 when 𝑋 ∼ 𝑁(0, 1)
vi.  𝑐 such that Pr[−𝑐 ≤ 𝑋 ≤ 𝑐] = 0.95 when 𝑋 ∼ 𝑡(12)
vii.  𝑐 such that Pr[−𝑐 ≤ 𝑋 ≤ 𝑐] = 0.95 when 𝑋 ∼ 𝑡(100)
viii.  𝑐 such that Pr[𝑋 > 𝑐] = 0.05 when 𝑋 ∼ 𝐹(5,8).
ix.  5𝑐 such that Pr[𝑋 > 𝑐] = 0.05 when 𝑋 ∼ 𝐹(5,80).
x.  5𝑐 such that Pr[𝑋 > 𝑐] = 0.05 when 𝑋 ∼ 𝐹(5,8000).
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3.4 Prediction
The prediction problem is, roughly: given the realization of 𝑋, what is 𝑌 ? In other words, if
I tell you that the realization of 𝑋 is 𝑥 (this is your “information set”), what can you tell me
about 𝑌 ? Often what is wanted is some estimate of what 𝑌 will turn out to be, e.g., what is the
price of a house in a particular city given that it is in such-and-such location, is 15 years old, and
has four rooms? The desired answer is some value, such as, 1.8 million dollars. This is a “point
prediction”. Sometimes we want other types of prediction, such as “what is the probability that
inflation will exceed 5 percent over the next quarter?” This is a “probabilistic forecast”, and
the information set would presumably be current and past realizations of all variables that the
forecaster deems relevant for inflation.

Suppose what we want is a point prediction of 𝑌 given knowledge that 𝑋 = 𝑥, and suppose
we have a squared error loss function, meaning that if our prediction is ̂𝑦(𝑥) and the realization
of 𝑌 turns out to be 𝑦, then the cost of prediction error is (𝑦 − ̂𝑦(𝑥))2. Suppose the prediction
is made to minimize expected loss, i.e., we choose ̂𝑦(𝑥) to minimize the (Conditional) Mean
Squared Prediction Error (MSPE)

𝑀𝑆𝑃𝐸(𝑌 |𝑋 = 𝑥) = 𝐸[(𝑌 − ̂𝑦(𝑥))2|𝑋 = 𝑥] . (3.22)

The question is how to choose ̂𝑦(𝑥).
Unsurprisingly, the optimal prediction (the prediction that minimizes Eq. 3.22) is the condi-

tional mean 𝐸[𝑌 |𝑋 = 𝑥], as we now show. Write the MSPE as

𝑀𝑆𝑃𝐸(𝑌 |𝑋 = 𝑥) = 𝐸[(𝑌 − 𝐸[𝑌 |𝑋 = 𝑥] + 𝐸[𝑌 |𝑋 = 𝑥] − ̂𝑦(𝑥))2|𝑋 = 𝑥]

= 𝐸[(𝑌 − 𝐸[𝑌 |𝑋 = 𝑥])2|𝑋 = 𝑥] + 𝐸[(𝐸[𝑌 |𝑋 = 𝑥] − ̂𝑦(𝑥))2|𝑋 = 𝑥] +
2𝐸[(𝑌 − 𝐸[𝑌 |𝑋 = 𝑥])(𝐸[𝑌 |𝑋 = 𝑥] − ̂𝑦(𝑥))|𝑋 = 𝑥]

= 𝐸[(𝑌 − 𝐸[𝑌 |𝑋 = 𝑥])2|𝑋 = 𝑥] + (𝐸[𝑌 |𝑋 = 𝑥] − ̂𝑦(𝑥))2 .

The last equality holds because the second term in the RHS of the second line is fixed given
𝑋 = 𝑥, and the third term is zero.2 The first term on the RHS of the last line does not
depend on the prediction, and since the second term is non-negative, the prediction that min-
imizes 𝑀𝑆𝑃𝐸(𝑌 |𝑋 = 𝑥) is the conditional expectation 𝐸[𝑌 |𝑋 = 𝑥]. Since 𝐸[𝑌 |𝑋] minimizes
conditional 𝑀𝑆𝑃𝐸 for all possible values 𝑥 of 𝑋, it also minimizes the unconditional MSPE.

Of course in practice we do not know the conditional distribution 𝐸[𝑌 |𝑋 = 𝑥], and will have
to estimate it from previously taken observations of 𝑌 and 𝑋.

2We can obtain the same expression by noting that the MSPE is the expectation of a square of a random
variable, which is equal to the variance of the random variable plus the square of its mean.



Chapter 4
Statistics Review

Many problems in statistics involve estimating the population mean of a variable and testing
hypotheses regarding its value. Often the sample average of the observations are used as an
estimate of the population mean. We do so because we know a priori that in many circumstances
the sample mean is a good estimator (i.e., a good estimation rule) for the population mean.

In this chapter, we review the ideas behind parameter estimation and hypothesis testing using
the example of estimating and testing a population mean, including an extended discussion of
what “good” means in the context of parameter estimation. We then go through in detail a
simple application to illustrate the theory. The R code in this chapter uses the tidyverse and
patchwork packages.

library(tidyverse)
library(patchwork)

4.1 Estimation
Suppose 𝑌 is a random variable with mean 𝜇 and variance 𝜎2. You are interested in

• estimating 𝜇,
• getting some idea how “good” (accurate, precise, etc.) your estimate is,
• testing if 𝜇 is equal to some hypothesized value 𝜇0, i.e., checking to see if you have statistical

evidence to reject 𝜇 = 𝜇0.
Suppose you will be able to obtain a random sample of 𝑁 observations 𝑌1, 𝑌2, …, 𝑌𝑁 of this

variable, but suppose you haven’t yet obtained this sample, so for the moment, 𝑌1, 𝑌2, …, 𝑌𝑁
are all random variables. We will nonetheless continue to refer to them as the sample. The
term “random sample” means that your sample are i.i.d. random variables of 𝑋, so they are all
uncorrelated with each other, and 𝐸[𝑌𝑖] = 𝜇 and 𝑣𝑎𝑟[𝑌𝑖] = 𝜎2 for all 𝑖.
4.1.1 Unbiased Estimators

Since you are estimating a population mean, suppose you propose to use the sample mean

̂𝜇 = 1
𝑁

𝑁
∑
𝑖=1

𝑌𝑖 = 𝑌 (4.1)

as an estimator for 𝜇.
We will switch between the notation ̂𝜇 and 𝑌 , using the former especially when we want to

highlight the fact that we are estimating the population mean. Take note to distinguish between
the population mean and the sample mean. The population mean is the constant 𝐸[𝑌 ] = 𝜇.
The sample mean is the expression in Eq. 4.1, which because it is made of random variables,
is itself a random variable. You are proposing to use the sample mean as an estimator for the
population mean. When you do finally collect your sample realizations, you will plug in those
realizations into Eq. 4.1 to calculate your estimate of the population mean. An estimate (an
actual number) is a realization of the estimator (a random variable).

89
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Is your proposal to use the sample mean as an estimator for the population mean a good
one? First, what is your criteria for deciding what makes a good estimator?

One criterion used is unbiasedness. The estimator ̂𝜃 is said to be unbiased for 𝜃 if

𝐸[ ̂𝜃] = 𝜃 .

That is, the distribution of your estimator is centered about the population mean. You can
interpret this to mean that by following the estimation rule ̂𝜃 you will not be systematically
over- or under-estimating your target parameter.

Theorem 4.1. Suppose you have an i.i.d. sample 𝑌1, 𝑌2, …, 𝑌𝑁 of a random variable 𝑌 with
mean 𝐸[𝑌 ] = 𝜇 and variance 𝑣𝑎𝑟[𝑌 ] = 𝜎2. Then

𝐸[𝑌 ] = 𝐸 [ 1
𝑁

𝑁
∑
𝑖=1

𝑌𝑖] = 1
𝑁

𝑁
∑
𝑖=1

𝐸[𝑌𝑖] =
1
𝑁𝑁𝜇 = 𝜇 (4.2)

and

𝑣𝑎𝑟[𝑌 ] = 𝑣𝑎𝑟 [ 1
𝑁

𝑁
∑
𝑖=1

𝑌𝑖] = 1
𝑁2

𝑁
∑
𝑖=1

𝑣𝑎𝑟[𝑌𝑖] =
1
𝑁2𝑁𝜎2 = 𝜎2

𝑁 . (4.3)

Eq. 4.2 says that the sample mean is an unbiased estimator for the population mean. Theo-
rem 4.1 also provides an expression for the variance of the sample mean. For the variance, we
made use of the “independence” assumption, so the sample is an uncorrelated sample, and the
variance of the sum became the sum of the variance. Note that for the unbiasedness part, we
did not require uncorrelated samples.

Example 4.1 (An example of a biased estimator). We should always provide an estimate of the
variance (or standard error) of our estimator.1 For the sample mean, this requires estimating
𝜎2 = 𝑣𝑎𝑟[𝑌 ], and using this estimate in Eq. 4.3. Since 𝑣𝑎𝑟[𝑌 ] = 𝐸[(𝑌 −𝐸[𝑌 ])2] = 𝐸[𝑌 2]−𝐸[𝑌 ]2,
it seems reasonable to consider estimating 𝜎2 with

𝜎2 = 1
𝑁

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 1
𝑁

𝑁
∑
𝑖=1

𝑌 2
𝑖 − 𝑌 2 . (4.4)

However, this is a biased estimator for 𝜎2. Using 𝐸[𝑌 2
𝑖 ] = 𝑣𝑎𝑟[𝑌𝑖] + 𝐸[𝑌𝑖]2 = 𝜎2 + 𝜇2 and

𝐸[𝑌 2] = 𝑣𝑎𝑟[𝑌 ] + 𝐸[𝑌 ]2 = 𝜎2/𝑁 + 𝜇2, we have

𝐸[𝜎2] = 1
𝑁

𝑁
∑
𝑖=1

𝐸[𝑌 2
𝑖 ] − 𝐸[𝑌 2] = 𝜎2 + 𝜇2 − 𝜎2

𝑁 − 𝜇2 = 𝑁 − 1
𝑁 𝜎2.

The estimator Eq. 4.4 therefore systematically under-estimates the variance of the sample ob-
servations. If your sample size 𝑁 is large, the bias may be negligible for all intents and purposes.
Nonetheless, in this case it is easy to derive an unbiased estimator, namely

𝜎2 = 𝑁
𝑁 − 1𝜎

2 = 1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2. (4.5)

1The square root of the estimator variance is the standard error of the estimator, and can be thought of as a
measure of the size of the estimation error one might expect to make.
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The intuition for why the divisor in Eq. 4.5 has to be 𝑁 − 1 instead of 𝑁 is that the deviations
from sample mean always sum to zero. This means that there are only 𝑁 − 1 ‘free’ deviations
from sample mean. For example, given ∑𝑁

𝑖=1(𝑌𝑖 − 𝑌 ) and the first 𝑁 − 1 deviations (𝑌𝑖 − 𝑌 ),
𝑖 = 1, 2, ..., 𝑁 − 1, you can determine the 𝑁th deviation as (𝑌𝑁 − 𝑌 ) = −∑𝑁−1

𝑖=1 (𝑌𝑖 − 𝑌 ). One
“degree of freedom” was lost because we had to use the observations to compute the sample
mean in order to compute the deviations from sample mean.

4.1.2 Efficiency

Unbiasedness is obviously a desirable property for an estimator, but on its own, it is hardly
sufficient justification. After all, the estimator ̂𝜇1 = 𝑌1, where you only pick the first observation
and throw away the rest, is also unbiased: 𝐸[ ̂𝜇1] = 𝐸[𝑌1] = 𝜇. Of course we don’t want to use
just one observation; the whole point of taking the average of several observations is so that
positive and negative errors cancel out, leading to a better estimator.

The idea of positive and negative errors cancelling out is reflected in the variance of an es-
timator, which is a measure of how precise the estimator is. Since 𝑣𝑎𝑟[𝑌 ] = 𝜎2

𝑁 , using all 𝑁
observations produces an estimator that is much more precise than using just a single obser-
vation, which gives a variance of 𝜎2. Even using just two observations reduces the estimator
variance by half.

Obviously we want our sample size to be as large as possible. But we can in fact go further
and claim that the sample mean, under the conditions we have stated, is the most precise among
all “linear unbiased estimators”. In the context of statistical estimation, a linear estimator is
one that takes the form ∑𝑁

𝑖=1 𝑎𝑖𝑌𝑖, and such an estimator will be unbiased if the 𝑎𝑖’s sum to
one. The sample mean is a linear unbiased estimator2 with 𝑎𝑖 = 1/𝑁 for 𝑖 = 1, 2, ..., 𝑁 . It is
the linear estimator with the smallest variance; we cannot tweak the weights to give us a more
precise estimator.

The following argument proves that the sample mean has the smallest variance among all
linear unbiased estimators. Suppose we have a linear unbiased estimator ∑𝑁

𝑖=1 𝑎𝑖𝑌𝑖 where 𝑎𝑖 ≠
1/𝑁 for at least one 𝑖. Write 𝑎𝑖 = 1/𝑁 + 𝑏𝑖 where the 𝑏𝑖’s are not all zero, but sum to zero.
This means that the estimator differs from the sample mean, but is nonetheless unbiased, since
∑𝑁

𝑖=1 𝑎𝑖 = 1. Then

𝑣𝑎𝑟[𝑌 ] = 𝑣𝑎𝑟 [
𝑁
∑
𝑖=1

( 1
𝑁 + 𝑏𝑖)𝑌𝑖]

=
𝑁
∑
𝑖=1

( 1
𝑁 + 𝑏𝑖)

2
𝑣𝑎𝑟[𝑌𝑖]

= 𝑣𝑎𝑟[𝑌 ] + 𝜎2
𝑁
∑
𝑖=1

𝑏2𝑖 .

(4.6)

Since the 𝑏𝑖’s are not all zero, ∑𝑁
𝑖=1 𝑏2𝑖 > 0, so 𝑣𝑎𝑟[𝑌 ] > 𝑣𝑎𝑟[𝑌 ]. We say that the sample mean

is the most efficient among all linear unbiased estimators (we also say it is the ‘best linear
unbiased’ estimator).

2An example of a non-linear estimator is the geometric mean (𝑌1 × 𝑌2 × ⋯ × 𝑌𝑁)1/𝑁 which, incidentally, is
biased downwards, and can only be used for positive random variables.
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4.1.3 Mean Square Error

What we have done so far is taken a “lexicographical” approach to the criterion of unbiasedness
and efficiency. We have justified the sample mean as being unbiased, and then argued that
among all linear unbiased estimators, it is the most precise. Is there a criteria that combines
both on an equal footing?

The mean square error (MSE) of an estimator ̂𝜃 is defined as

𝑀𝑆𝐸[ ̂𝜃] = 𝐸[( ̂𝜃 − 𝜃)2] .

The MSE can be decomposed into the estimator variance and square of the bias:

𝐸[( ̂𝜃 − 𝜃)2] = 𝑣𝑎𝑟[ ̂𝜃 − 𝜃] + 𝐸[( ̂𝜃 − 𝜃)]2

= 𝑣𝑎𝑟[ ̂𝜃] + (𝐸[ ̂𝜃] − 𝜃)2]
= 𝑣𝑎𝑟[ ̂𝜃] + 𝑏𝑖𝑎𝑠2

where 𝑏𝑖𝑎𝑠 = 𝐸[ ̂𝜃] − 𝜃.
We might want an estimator that minimizes the MSE. Earlier, we found an estimator whose

bias is zero, and then conditional on unbiasedness, minimum variance. Minimizing MSE con-
siders both variance and bias simultaneously. In particular, we may find an estimator that is
slightly biased, but has a much smaller variance, thereby reducing MSE. In other words, there
may have a beneficial bias-variance trade-off.

It is easy to show that the sample mean minimizes the sample mean square error: suppose
we choose ̂𝜇 to minimize

Sample MSE =
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝜇)2 .

The first order condition is −2∑𝑁
𝑖=1(𝑌𝑖 − ̂𝜇) = 0 which you can solve for ̂𝜇 = 𝑌 . The second

derivative of the sample MSE with respect to ̂𝜇 is 2 > 0 so the sample mean solves the mini-
mization problem. However, it does not necessarily minimize the population MSE 𝐸[( ̂𝜇 − 𝜇)2],
and we may be able to find another estimator that produces a lower MSE.

We will see examples of this in the exercises.

4.2 A Coin Toss Example
How would we test if a coin is fair – that a random toss of the coin is as likely to show heads
as it would tails? We could toss the coin a number of times and see if the frequency of heads
is ‘reasonably’ close to half. How far from half should the frequency be for us to claim that the
coin is not fair?

We can model the “experiment” of tossing the coin by describing the outcome as a random
variable 𝑌 with two possible values 0 and 1, where 0 indicates tails and 1 indicates heads, and
where the probability of 𝑌 = 1 is 𝑝 and the probability of 𝑌 = 0 is 1 − 𝑝. Such a random
variable is said to have a Bernoulli distribution, 𝑌 ∼ Bern(𝑝). The hypothesis that the coin is
fair is 𝑝 = 0.5.

Suppose that each observation in our (as yet hypothetical) sample {𝑌1, 𝑌2, ..., 𝑌𝑁} is such
that no one toss affects the outcome of any other, and that each of the 𝑌𝑖 is Bernoulli with the
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same 𝑝. That is, we assume that the 𝑌𝑖’s are independently and identically distributed with
distribution Bern(𝑝):

𝑌𝑖
𝑖𝑖𝑑∼ Bern(𝑝), 𝑖 = 1, 2, .., 𝑁.

When might a sample of coin tosses not be i.i.d.? Perhaps one lazily flips a coin back and
forth, so we simply alternate between heads and tails (the observations are not uncorrelated).
Or perhaps one (somehow) damages the coin during the flipping process, so that 𝑝 changes
(observations are no longer identically distributed). Some individuals have been known to be
skillful enough to willfully control the outcome of a coin toss. We rule out all such cases.

This application nicely fits our estimation theory of the previous section. We have an i.i.d.
sample of observations of a random variable 𝑌 with mean 𝑝. The only difference here is that
there is not a separate parameter for the variance, which is 𝑝(1 − 𝑝). This does not cause any
problems for us; we simply replace all instances of 𝜎2 with 𝑝(1 − 𝑝). Another difference is that
we have more information in this example than in the previous section. In particular, we know
the whole distribution of 𝑌 , whereas in the previous section we did not.

Since 𝑝 is the population mean of 𝑌 , we estimate it using the sample mean

̂𝑝 = 𝑌 .

In this application, the sample mean is just the frequency of heads in the sample. From the
theory discussed earlier we know that the sample mean is unbiased, and minimum variance
among all linear unbiased estimators.

In fact, for this particular example the sample mean has the lowest variance among all
unbiased estimators, linear or not. This is because the variance of the sample mean achieves a
theoretical lower bound for unbiased estimators known as the Cramer-Rao Lower Bound. We
omit a discussion of this for now.

The variance of ̂𝑝 = 𝑌 is 𝑣𝑎𝑟[𝑌 ]/𝑁 . Since 𝑣𝑎𝑟[𝑌 ] = 𝑝(1 − 𝑝), and ̂𝑝 is an unbiased estimator
for 𝑝, perhaps we can estimate 𝑣𝑎𝑟[𝑌 ] using

̃𝑣𝑎𝑟[𝑌 ] = ̂𝑝(1 − ̂𝑝) = ̂𝑝 − ̂𝑝2 ?

This is a biased estimator. Although ̂𝑝 is unbiased, 𝐸[ ̂𝑝2] = 𝑣𝑎𝑟[ ̂𝑝] + 𝐸[ ̂𝑝]2 = 𝑣𝑎𝑟[ ̂𝑝] + 𝑝2 > 𝑝2.
Therefore 𝐸[ ̂𝑝 − ̂𝑝2] < 𝑝 − 𝑝2. In fact, it is easy to show that

̂𝑝 − ̂𝑝2 = 𝑌 − 𝑌 2 = 1
𝑁

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 (4.7)

which we already know to be a downward biased estimator of 𝑣𝑎𝑟[𝑌 ].
Since we also know that 1

𝑁−1 ∑𝑁
𝑖=1(𝑌𝑖 − 𝑌 )2 is an unbiased estimator for 𝑣𝑎𝑟[𝑌 ], we can

compute this directly, or use
̂𝑣𝑎𝑟[𝑌 ] = 𝑁

𝑁 − 1 ̂𝑝(1 − ̂𝑝).

An unbiased estimator for 𝑣𝑎𝑟[ ̂𝑝] is then

𝑣𝑎𝑟[ ̂𝑝] = 1
𝑁

𝑁
𝑁 − 1 ̂𝑝(1 − ̂𝑝) = 1

𝑁 − 1 ̂𝑝(1 − ̂𝑝).
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The following are 20 simulated tosses of three coins with 𝑝 = 0.5 (Coin 1), 𝑝 = 0.6 (Coin 2), and
𝑝 = 0.9 (Coin 3), and the corresponding estimates, and (estimates of) the estimator variances
and standard errors.

set.seed(13) # Initialize random number generator for replicability
N <- 20
Coin1 <- rbinom(N,1,0.5) # 20 tosses of a fair coin
Coin2 <- rbinom(N,1,0.6) # 20 tosses of a slightly unfair coin
Coin3 <- rbinom(N,1,0.9) # 20 tosses of a very warped coin!
Tosses <- rbind(Coin1, Coin2, Coin3) # place outcomes into three rows
p_hat <- apply(Tosses,1,mean) # apply mean function to each row of Tosses
var_p_hat <- p_hat*(1-p_hat)/(N-1) # as per formula derived in notes
se_p_hat <- sqrt(var_p_hat)
cat("Coin Tosses\n")
Tosses
d <- cbind(p_hat,var_p_hat,se_p_hat)
cat("\nEstimation Results\n")
round(d, 4)

Coin Tosses
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

Coin1 1 0 0 0 1 0 1 1 1 0 1 1 1
Coin2 1 1 0 1 1 0 1 1 1 0 1 1 0
Coin3 1 1 0 1 1 0 1 1 1 1 1 1 1

[,14] [,15] [,16] [,17] [,18] [,19] [,20]
Coin1 1 1 0 0 1 1 1
Coin2 0 1 1 1 1 0 1
Coin3 0 1 1 1 1 1 1

Estimation Results
p_hat var_p_hat se_p_hat

Coin1 0.65 0.0120 0.1094
Coin2 0.70 0.0111 0.1051
Coin3 0.85 0.0067 0.0819

4.3 Hypothesis Testing

To test if the population mean is equal to some specific numerical value 𝜇0, we check if the
sample mean is ‘improbably far’ from 𝜇0. If it is, we construe this as evidence that the “null
hypothesis” 𝐻0 ∶ 𝐸[𝑌 ] = 𝜇0 is false, and reject it in favor of the alternative 𝐻𝐴 ∶ 𝐸[𝑌 ] ≠ 𝜇0. But
how far is “improbably” far? To provide an answer to this question fully, we need to derive the
distribution of the sample mean when 𝜇 = 𝜇0, and to do so we need to know the distribution of
𝑌 . If all you know is that 𝐸[𝑌 ] = 𝜇 and 𝑣𝑎𝑟[𝑌 ] = 𝜎2, then you do not have enough information
to derive the distribution of the sample mean. We will explain how to find an approximation to
the finite sample distribution in this situation later in the chapter.

In the case of the coin toss example, the structure of the problem does give us enough
information to derive the finite sample distribution of the sample mean. Suppose 𝑁 = 2. Then
the possible values of the sample mean are 0, 1/2 and 1, corresponding to sample outcomes (0, 0),
(0, 1) or (1, 0), and (1, 1) respectively. The corresponding probabilities are (1 − 𝑝)2, 2𝑝(1 − 𝑝),
and 𝑝2. For 𝑁 = 3, the possible outcomes for the sample mean are:
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• 0, corresponding to outcome (0, 0, 0), which occurs with probability (1 − 𝑝)3;
• 1/3, corresponding to outcomes with 1 head out of 3 tosses. There are (31) = 3 such

outcomes, so the probability is 3𝑝(1 − 𝑝)2.
• 2/3, corresponding to outcomes with 2 heads out of 3 tosses. There are (32) = 3 such

outcomes, so the probability is 3𝑝2(1 − 𝑝).
• 1, corresponding to outcome (1, 1, 1) which occurs with probability 𝑝3.

For a sample of size 𝑁 , the possible values of the sample mean are 𝑖/𝑁 , 𝑖 = 0, 1, ..., 𝑁 , each
corresponding to a set of (𝑁𝑖 ) outcomes comprising 𝑖 heads out of 𝑁 tosses, so the probability
of obtaining a sample mean of 𝑖/𝑁 is

Pr [𝑌 = 𝑖
𝑁 ] = (𝑁

𝑖 )𝑝𝑖(1 − 𝑝)𝑁−𝑖, 𝑖 = 0, 1, 2, ..., 𝑁. (4.8)

We can use Eq. 4.8 to help us decide whether or not to reject the hypothesis that the coin
is fair. Suppose we have a sample of 20 coin tosses, and suppose that the coin is in fact fair,
i.e., that 𝑝 is indeed equal to 0.5. The following is the probability distribution function of the
sample mean 𝑓(𝑖/𝑁) = Pr[𝑌 = 𝑖/𝑁], 𝑖 = 0, 1, ..., 𝑁 calculated using Eq. 4.8.

p <- 0.5
N <- 20
i <- 0:N # i integers from 0 to 20
phat <- 0:N/N # possible values of sample means
Pr_phat <- choose(N,i)*p^i*(1-p)^(N-i)
dim(Pr_phat) <- c(1,N+1) # make into row vector for presentation
colnames(Pr_phat) = paste0("p_hat=",i/N)
rownames(Pr_phat) = "Prob"
noquote(format(Pr_phat, scientific=T,digits=6)) # another way to print to screen

p_hat=0 p_hat=0.05 p_hat=0.1 p_hat=0.15 p_hat=0.2 p_hat=0.25
Prob 9.53674e-07 1.90735e-05 1.81198e-04 1.08719e-03 4.62055e-03 1.47858e-02

p_hat=0.3 p_hat=0.35 p_hat=0.4 p_hat=0.45 p_hat=0.5 p_hat=0.55
Prob 3.69644e-02 7.39288e-02 1.20134e-01 1.60179e-01 1.76197e-01 1.60179e-01

p_hat=0.6 p_hat=0.65 p_hat=0.7 p_hat=0.75 p_hat=0.8 p_hat=0.85
Prob 1.20134e-01 7.39288e-02 3.69644e-02 1.47858e-02 4.62055e-03 1.08719e-03

p_hat=0.9 p_hat=0.95 p_hat=1
Prob 1.81198e-04 1.90735e-05 9.53674e-07

library(latex2exp)
my_theme <- theme_bw() + theme(axis.title=element_text(size=10), aspect.ratio = 0.8)
bar_dat <- data.frame(phat=phat, Pr_phat = as.vector(Pr_phat))
bar_dat %>% ggplot(aes(x=phat, y=Pr_phat)) +

geom_bar(stat="identity", width=0.015) + ylab(TeX("$\\Pr[\\hat{p}=i/20]$")) +
xlab("possible values of sample mean, i/20, i=0,1,...,20") +
my_theme + theme(aspect.ratio = 0.5)
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Figure 4.1: Distribution of sample mean, N=20, p=0.5.

Notice that there is non-zero probability on every possible outcome of the sample mean. This
means that any reasonable decision rule that we use to reject or not reject the null hypothesis
will carry a non-zero probability of rejection even when the null hypothesis is true (we call
this a “Type 1 error”). For example, suppose we use the rule “Reject 𝑝 = 0.5 in favor of the
alternative 𝑝 ≠ 0.5 if the frequency of heads ̂𝑝 is less than 0.3 or greater than 0.7”, which seems
not unreasonable. We can calculate from the table above that in using this rule, there is a
probability of approximately

round(sum(Pr_phat[i/N<0.3])+sum(Pr_phat[i/N>0.7]),4)

[1] 0.0414

that we reject the null even though 𝑝 is in fact equal to 0.5. We can reduce the probability of
Type 1 error by allowing for a larger range for ̂𝑝 (perhaps reject if ̂𝑝 < 0.05 or ̂𝑝 > 0.95), but
then the test loses power to reject a false hypothesis (i.e., the probability of failing to reject a
wrong hypothesis – a “Type 2 error” – increases). In practice, researchers usually opt for rules
such that the probability of an incorrect rejection of a true hypothesis is around 0.01, or 0.05,
or 0.10.

4.4 Asymptotic Analysis

Our discussion so far has been “finite sample analysis”. Asymptotic analysis refers to results that
apply “in the limit”, as the sample size goes to infinity. It serves to approximate the properties
of estimators in large samples. We continue to focus on the sample mean, which we now denote
as 𝑌 𝑁 to indicate the sample size used to calculate it.



4.4. ASYMPTOTIC ANALYSIS 97

4.4.1 Consistency and the Law of Large Numbers

We have mentioned the desirability of larger sample sizes. For the general problem of estimating
the population mean of a random variable 𝑌 with mean 𝜇 and variance 𝜎2 using the sample
mean, we have 𝑣𝑎𝑟[𝑌 𝑁 ] = 𝜎2/𝑁 → 0 as 𝑁 → ∞. Since 𝑌 𝑁 is unbiased, and its variance
collapses to zero as the sample size goes to infinity, the estimator converges to the population
mean as the sample size grows larger and larger.

The convergence of 𝑌 𝑁 to 𝜇 is not quite the same as the convergence of, say, the deterministic
sequence 1/𝑁 to zero. In the latter case, I know that if 𝑁 is large enough, then 1/𝑁 will definitely
be within a certain distance of 0. For instance, if 𝑁 > 1000, then 1/𝑁 < 0.001 for sure. In the
case of 𝑌 𝑁 , which is a sequence of random variables, we cannot make such a definite claim.

The convergence concept we use for random variables is “convergence in probability”. A
sequence of random variables 𝑋𝑁 is said to converge in probability to some value 𝑐 as
𝑁 → ∞ if for any 𝜖 > 0 (no matter how small), the probability that |𝑋𝑁 −𝑐| > 𝜖 goes to zero as
𝑁 → ∞. This allows for some probability that the distance between 𝑋𝑁 and 𝑐 exceeds 𝜖 at any
sample size 𝑁 , but as 𝑁 increases towards infinity, this probability becomes vanishingly small.
We write plim𝑋𝑁 = 𝑐 or 𝑋𝑁

𝑝
→ 𝑐. We can extend this definition to “convergence in probability

to a random variable”: we say that 𝑋𝑁
𝑝
→ 𝑍𝑁 if 𝑋𝑁 − 𝑍𝑁

𝑝
→ 0.

In the context of parameter estimation, we say that an estimator is consistent if it converges
in probability to the true value of the parameter it is estimating. The sample mean 𝑌 𝑁 is a
consistent estimator for 𝜇 under quite general conditions. This result is known as a Law of
Large Numbers. There are several laws of large numbers, each describing a set of conditions
which, if met, guarantee the consistency of the sample mean. We state one such law below:

Theorem 4.2 (Khinchine’s Weak Law of Large Numbers, WLLN). If {𝑌𝑖}𝑁𝑖=1 are i.i.d. with
𝐸[𝑌𝑖] = 𝜇 < ∞ for all 𝑖, then 𝑌 𝑁

𝑝
→ 𝜇.

There are other kinds of convergence concepts for sequences of random variables, but for the
moment we consider only convergence in probability. The theorem above is referred to as a weak
law of large numbers because the convergence concept used is convergence in probability, and
there are “stronger” forms of probabilistic convergence.

The following is a result concerning convergence in probability that is used frequently:

Proposition 4.1. If 𝑔(.) is a continuous function, then

𝑋𝑁
𝑝
→ 𝑐 ⇒ 𝑔(𝑋𝑁)

𝑝
→ 𝑔(𝑐). (4.9)

That is, if plim𝑋𝑁 exists, and 𝑔(.) is continuous, then plim 𝑔(𝑋𝑁) = 𝑔(plim𝑋𝑁).

For example, if 𝑋𝑁 converges in probability to 𝑐, then 𝑋2
𝑁

𝑝
→ 𝑐2

Result Eq. 4.9 extends to continuous functions of multiple variables. This implies that if
𝑋𝑁

𝑝
→ 𝑐𝑥 and 𝑍𝑁

𝑝
→ 𝑐𝑧, then

• 𝑋𝑁 + 𝑍𝑁
𝑝
→ 𝑐𝑥 + 𝑐𝑧,

• 𝑋𝑁𝑍𝑁
𝑝
→ 𝑐𝑥𝑐𝑧,

• 𝑋𝑁/𝑍𝑁
𝑝
→ 𝑐𝑥/𝑐𝑧, as long as 𝑐𝑧 is not zero,

and similarly for other continuous functions of 𝑋𝑁 and 𝑍𝑁 .
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Example 4.2. Suppose {𝑌𝑖}𝑁𝑖=1 is an i.i.d. sample, with 𝐸[𝑌𝑖] = 𝜇 < ∞ and 𝑣𝑎𝑟[𝑌𝑖] = 𝜎2 < ∞
for all 𝑖. We show that the biased estimator

𝜎2
𝑁 = 1

𝑁
𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 𝑁)2 = 1
𝑁

𝑁
∑
𝑖=1

𝑌 2
𝑖 − 𝑌 2

𝑁

is consistent for the population variance 𝜎2. Since {𝑌𝑖}𝑁𝑖=1 are i.i.d., so are {𝑌 2
𝑖 }𝑁𝑖=1. Furthermore,

𝐸[𝑌 2
𝑖 ] = 𝜎2 + 𝜇2 < ∞, so 1

𝑁 ∑𝑁
𝑖=1 𝑌 2

𝑖
𝑝
→ 𝜎2 + 𝜇2. Since 𝑌 𝑁

𝑝
→ 𝜇 and “power of two” is a

continuous function, we have 𝑌 2
𝑁

𝑝
→ 𝜇2. Therefore 𝜎2 converges in probability to 𝜎2+𝜇2−𝜇2 =

𝜎2. This example shows that consistent estimators can be biased in finite samples.

Example 4.3. Since 𝜎2
𝑁 = 𝑁

𝑁−1𝜎2
𝑁 , and because 𝑁

𝑁−1 → 1 and 𝜎2 𝑝
→ 𝜎2, we have 𝜎2

𝑁
𝑝
→ 𝜎2.

Example 4.4. Since both 𝜎2
𝑁 and 𝜎2

𝑁 are consistent estimators for 𝜎2, both (𝜎2
𝑁)1/2 and (𝜎2

𝑁)1/2
are consistent estimators for 𝜎.

Unbiasedness, as opposed to consistency, generally does not carry over to non-linear functions
of estimators. We saw earlier that 𝐸[ ̂𝑝2] > 𝑝2 despite 𝐸[ ̂𝑝] = 𝑝. The following is another example.

Example 4.5. Unbiasedness of an estimator ̂𝜃 for some parameter 𝜃 does not imply unbiasedness
of ̂𝜃1/2 for 𝜃1/2. In fact, we can see from 𝑣𝑎𝑟[ ̂𝜃1/2] = 𝐸[ ̂𝜃] − 𝐸[ ̂𝜃1/2]2 that 𝐸[ ̂𝜃1/2]2 < 𝐸[ ̂𝜃]. If ̂𝜃 is
unbiased, we have 𝐸[ ̂𝜃1/2]2 < 𝜃. Taking square roots then gives

𝐸[ ̂𝜃1/2] < 𝜃1/2.

Both (𝜎2
𝑁)1/2 and (𝜎2

𝑁)1/2 are biased (but consistent) estimators for 𝜎.

It may seem that unbiasedness (together with efficiency) is a more relevant way to judge
an estimator than consistency since we never have infinite sample sizes, but consistency is
still useful as it captures the idea of convergence to the population parameter as sample size
increases. Furthermore, in more complex applications it can be difficult or impossible to find
unbiased estimators, but straightforward to find consistent ones. We have also seen that it is
easy to find consistent estimators of continuous functions of parameters once we have consistent
estimators for the parameters.

Earlier we derived the distribution of the sample mean in the coin toss example, and calcu-
lated this distribution for a fair coin with sample size 20. We repeat this exercise, this time for
a coin with 𝑝 = 0.25, for sample sizes of 5, 10, 20, 100, 200 and 400. We present the probability
distribution functions graphically in Fig. 4.2. The convergence in probability of the sample mean
to the true value of 𝑝 can be seen in these graphs.

p <- 0.25 # Assume probability of heads = 0.25
samplesize <- c(5,10,20,100,200,400)
pdfs <- list() # to store our plots in the loop
for (j in 1:6){

N <- samplesize[j]
i <- 0:N
phat <- 0:N/N
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Pr_phat <- choose(N,i)*p^i*(1-p)^(N-i)
data <- data.frame(phat=phat,Pr_phat=Pr_phat)
pdfs[[j]] <- ggplot(data,aes(x=phat,y=Pr_phat))+

geom_bar(stat="identity", width=0.005)+
ylab("")+xlab(paste0('N=',N)) + theme_minimal() +
theme(axis.text=element_text(size=7),

axis.title=element_text(size=7))
}
(pdfs[[1]] | pdfs[[2]] | pdfs[[3]]) /
(pdfs[[4]] | pdfs[[5]] | pdfs[[6]])
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Figure 4.2: Consistency of sample mean to p=0.25.

4.4.2 Asymptotic Normality

The distribution of the sample mean in the example above, with 𝑝 = 0.25, is unsurprisingly
skewed in small samples because of the low probability of heads relative to tails. However, the
shape of the distribution appears to quickly becomes quite symmetric as sample size grows, and
appears to converge to a familiar bell-shaped distribution. Of course, in the limit the distribution
collapses to a degenerate one with all of the probability at 𝑝 = 0.25. This is because the variance
of the sample mean, 𝑣𝑎𝑟[ ̂𝑝] = 𝑝(1 − 𝑝)/𝑁 goes to zero as 𝑁 → ∞. Suppose, however, that we
scale the sample mean (after subtracting 𝑝) by

√
𝑁 , i.e., suppose we look at the distribution of

√
𝑁( ̂𝑝 − 𝑝). (4.10)

This random variable has mean 0 and a non-collapsing variance 𝑁𝑝(1 − 𝑝)/𝑁 = 𝑝(1 − 𝑝). We
can then talk about the shape of Eq. 4.10 as 𝑁 → ∞ without the distribution collapsing to
a single point. The plots below show the same distributions as above, but after centering and
scaling as in Eq. 4.10.
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p <- 0.25 # Assume probability of heads = 0.25
samplesize <- c(5,10,20,100,200,400)
pdfs <- list() # to store our plots in the loop
for (j in 1:6){

N <- samplesize[j]
i <- 0:N
phat <- 0:N/N
phat_scaled <- sqrt(N)*(phat - p)
Pr_phat_scaled <- choose(N,i)*p^i*(1-p)^(N-i)
data <- data.frame(phat_scaled=phat_scaled,Pr_phat_scaled=Pr_phat_scaled)
pdfs[[j]] <- ggplot(data,aes(x=phat_scaled,y=Pr_phat_scaled)) +

geom_bar(stat="identity", width=0.05) + ylab("") +
xlab(paste0('N=',N)) + xlim(c(-2.5,2.5)) + theme_minimal() +
theme(axis.text=element_text(size=8),

axis.title=element_text(size=7))
}
(pdfs[[1]] | pdfs[[2]] | pdfs[[3]]) /
(pdfs[[4]] | pdfs[[5]] | pdfs[[6]])
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Figure 4.3: Convergence of distribution to normal (pdf view).

The distributions appear to take the shape of a normal distribution as sample size increases.
Of course, the sample mean in the coin toss example is a discrete random variable, whereas a
normally distributed random variable is a continuous one. The notion of a discrete pdf converging
to a continuous one is best thought of in terms of their cdfs. In the figure below, we juxtapose
the cdf of the distribution of

√
𝑁( ̂𝑝 − 𝑝) at 𝑁 = 400 (which is a step function) with the cdf of

the normal distribution with mean 0 and variance 𝑝(1 − 𝑝) where 𝑝 = 0.25.

p <- 0.25 # Assume probability of heads = 0.25
N = 400
i <- 0:N
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phat <- 0:N/N
phat_scaled <- sqrt(N)*(phat - p)
cdf_phat_scaled <- cumsum(choose(N,i)*p^i*(1-p)^(N-i))
cdf_norm <- pnorm(phat_scaled,0,sqrt(p*(1-p)))
data1 <- data.frame(phat_scaled=phat_scaled,

cdf_phat_scaled=cdf_phat_scaled)
data2 <- data.frame(phat_scaled=phat_scaled,

cdf_norm=cdf_norm)
ggplot()+

geom_step(data=data1,aes(x=phat_scaled,y=cdf_phat_scaled,color="blue"),
direction="vh")+

geom_line(data=data2,aes(x=phat_scaled,y=cdf_norm,color="red"))+
xlab(TeX("$\\sqrt{N}(\\hat{p}-p), N = 400, p=0.25"))+ylab("")+
xlim(c(-2.5,2.5))+ylim(c(0,1.1)) + theme_minimal() +
theme(axis.text=element_text(size=7), axis.title=element_text(size=8)) +
scale_colour_manual(

name = '',
values = c('blue'='blue','red'='red'),
labels = c('emp. cdf. phat_scaled','cdf. N(0,p(1-p))'))
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Figure 4.4: Convergence of distribution of sample mean to normal (cdf view).

4.4.3 The Central Limit Theorem

The convergence of the cdf of the (centered and scaled) sample mean in the coin toss example to
a normal cdf is an instance of the Central Limit Theorem (CLT), a key result in probability
theory. As with the Law of Large Numbers, there are many CLTs, each listing out a set of
conditions under which convergence to normality is guaranteed. We state one such CLT:

Theorem 4.3 (Lindeberg-Levy CLT). If {𝑌𝑖}𝑁𝑖=1 are i.i.d. with 𝐸[𝑌𝑖] = 𝜇 < ∞ and 𝑣𝑎𝑟[𝑌𝑖] =
𝜎2 < ∞ for all 𝑖, then √

𝑁(𝑌 𝑁 − 𝜇) 𝑑→ Normal(0, 𝜎2)

where
𝑑→ means convergence in distribution, meaning that the cdf of the random variable on

the left converges point-wise to the cdf of the distribution indicated on the right.
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Our plots of the distribution of
√
𝑁( ̂𝑝𝑁 −𝑝) in the coin toss example suggests convergence in

distribution to Normal(0, 𝑝(1 − 𝑝)). The sample {𝑌𝑖} in the coin toss example does in fact
meet the requirements of the Lindeberg-Levy CLT, so we can claim that

√
𝑁( ̂𝑝𝑁 − 𝑝) 𝑑→

Normal(0, 𝑝(1 − 𝑝))
Sometimes we want to indicate that a sequence of random variables 𝑋𝑁 converges in distri-

bution to the cdf of some random variable 𝑋. To so do, we write 𝑋𝑁
𝑑→ 𝑋.

Proposition 4.2 (Properties of convergence in distribution).
(a) If 𝑔(.) is a continuous function and 𝑋𝑁

𝑑→ 𝑋, then 𝑔(𝑋𝑁) 𝑑→ 𝑔(𝑋).
(b) If 𝑋𝑁

𝑝
→ 𝑋, then 𝑋𝑁

𝑑→ 𝑋.
(c) If 𝑎𝑁

𝑝
→ 𝑎 and 𝑋𝑁

𝑑→ 𝑋, then 𝑎𝑁𝑋𝑁
𝑑→ 𝑎𝑋.

Example 4.6. If 𝑋𝑁
𝑑→ 𝑋 ∼ 𝑁(0, 1), then 𝑋2

𝑁
𝑑→ 𝑋2 ∼ 𝜒2

(1), since the square of a standard
normal is 𝜒2(1).

Example 4.7. If
√
𝑁(𝑌 𝑁 −𝜇) 𝑑→ Normal(0, 𝜎2) and 𝑠2𝑁 is any consistent estimator of 𝜎2, then

1/𝑠𝑁 = (1/𝑠2𝑁)1/2 converges in probability to 1/𝜎, and therefore

𝑡 =
√
𝑁(𝑌 𝑁 − 𝜇)

𝑠𝑁
= 𝑌 𝑁 − 𝜇

√𝑠2𝑁/𝑁
𝑑→ 𝑁(0, 1). (4.11)

If
√
𝑁(𝑌 𝑁 −𝜇) 𝑑→ Normal(0, 𝜎2), we would be justified, in large enough samples, to say that

the distribution of
√
𝑁(𝑌 𝑁 − 𝜇) is approximately Normal(0, 𝜎2), or that 𝑌 is approximately

𝑁(𝜇, 𝜎2/𝑁). This last statement is sometimes written 𝑌 𝑁
𝑎∼ 𝑁(𝜇, 𝜎2/𝑁), where the “𝑎” stands

for “approximately” (some take “𝑎” to stand for “asymptotically”).

Result Eq. 4.11 is useful for hypotheses testing when one is unable or unwilling to make
an assumption regarding the distribution of the sample. Suppose {𝑌𝑖}𝑁𝑖=1 is an i.i.d. sample
with 𝐸[𝑌𝑖] = 𝜇 and 𝑣𝑎𝑟[𝑌𝑖] = 𝜎2. The sample mean 𝑌 is a consistent estimator for 𝜇 and
𝜎2 = 1

𝑁−1 ∑𝑁
𝑖=1(𝑌𝑖−𝑌 )2 is a consistent estimator for 𝜎2. To test the null hypothesis 𝐻0 ∶ 𝜇 = 𝜇0,

where 𝜇0 is some numerical value, we need to compute the distribution of the sample mean, but
you cannot do this unless you know the distribution of each 𝑌𝑖. Result Eq. 4.11, however, tells
us that if our sample size is large enough, then under the null hypothesis,

𝑡 = 𝑌 𝑁 − 𝜇0
√𝑠2𝑁/𝑁

𝑎∼ Normal(0, 1). (4.12)

It suggests that we use the decision rule “reject the null if |𝑡| > 𝑐𝛼” where 𝑐𝛼 is that value such
that Pr[|𝑡| > 𝑐𝛼] = 𝛼, where 𝛼 is the chosen “level of significance” of the test, i.e., the probability
of rejecting the null when it is true, and where the value 𝑐𝛼 is found from the normal distribution.
For 0.01, 0.05, 0.10 levels of significance, the appropriate values of 𝑐𝛼 are approximately

round(qnorm(c(0.995, 0.975, 0.95)),3)

[1] 2.576 1.960 1.645

respectively. The 0.05 level of significance test, in particular, says to reject 𝐻0 ∶ 𝜇 = 𝜇0 if the
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absolute distance from the sample mean to the hypothesized value 𝜇0 is more than 1.96 (or
approximately 2) standard errors.

A test based on the statistic in Eq. 4.12 and rejection values (or ‘critical values’) based on the
Normal(0, 1) distribution, would be an approximate test in the sense that the true significance
level may not be exactly 𝛼, as intended. Nonetheless, it is a way forward in a situation where
an exact test is unavailable. Even where the exact distribution is available, such as in our coin
toss example, the approximate test using Eq. 4.12 can be a convenient approximation.

Example 4.8. Earlier we showed an example of 20 tosses of three coins, where the true value of
𝑝 for coins 1, 2, and 3 are 0.5, 0.6, and 0.9 respectively. We replicate the results below, this time
also computing the corresponding t-statistics for the hypothesis 𝐻0 ∶ 𝑝 = 0.5, i.e., we compute

𝑡 = ̂𝑝 − 0.5
√ �̂�(1−�̂�)

𝑁−1

set.seed(13) # Initialize random number generator for replicability
N <- 20
Coin1 <- rbinom(N,1,0.5) # 20 tosses of a fair coin
Coin2 <- rbinom(N,1,0.6) # 20 tosses of a slightly unfair coin
Coin3 <- rbinom(N,1,0.9) # 20 tosses of a very warped coin!
Tosses <- rbind(Coin1, Coin2, Coin3) # place outcomes into three rows
p_hat <- apply(Tosses,1,mean) # apply mean function to each row of Tosses
var_p_hat <- p_hat*(1-p_hat)/(N-1) # as per formula derived in notes
se_p_hat <- sqrt(var_p_hat)
t_stat <- (p_hat-0.5)/se_p_hat
p_val <- 2*(1-pnorm(t_stat,0,1))
# Output
d <- cbind(p_hat,se_p_hat,t_stat,p_val)
round(d,4)

p_hat se_p_hat t_stat p_val
Coin1 0.65 0.1094 1.3708 0.1704
Coin2 0.70 0.1051 1.9024 0.0571
Coin3 0.85 0.0819 4.2726 0.0000

Using the asymptotic tests, we make the following (approximate) conclusions:
• we (correctly) fail to reject the hypothesis that Coin 1 is fair at any of the usual levels of

significance.
• we (correctly) reject the hypothesis for Coin 2 at 0.1 level of significance, but (incorrectly)

fail to reject at the 0.05 level of significance.
• Fairness of Coin 3 is resoundingly (and correctly) rejected at all conventional levels of

significance.
The result for Coin 2 illustrates the fact that it can be hard to reject a mildly incorrect

hypothesis. All tests have poor power in such cases. The results for Coin 1 and Coin 3 turned out
to be correct in this example, but it should be remembered that there were non-zero probabilities
of rejecting fairness for Coin 1, and not rejecting fairness for Coin 3.

In addition to the t-statistic, we also compute the p-value, i.e., the probability that the t-



104 CHAPTER 4. STATISTICS REVIEW

statistic, prior to realization, would exceed the value realized, in absolute terms. We reject a
hypothesis at 𝛼 level of significance if the p-value is smaller than 𝛼.

The statistic in Eq. 4.12 is sometimes called a 𝑧-statistic, and often called a t-statistic because
its exact distribution would be the t-distribution (with degree of freedom 𝑁 − 1) if the sample
were normally distributed, i.e., if 𝑌𝑖 ∼ Normal(𝜇, 𝜎2) for all 𝑖, then

𝑡 = 𝑌 𝑁 − 𝜇
√𝜎2

𝑁/𝑁
∼ 𝑡(𝑁−1) .

Since 𝑌𝑖 is not normal in the coin toss example, this result does not apply, and we rely on the
asymptotic result. Of course, the t-distribution is itself approximately standard normal when
𝑁 is large, so in this case, the 𝑡-statistic converges to the standard normal for two reasons:
because of the central limit theorem, and because the t-distribution anyway converges to the
standard normal as the degree of freedom goes to infinity. The usefulness of result Eq. 4.12 is in
its applicability regardless of the distribution of the sample, when sample sizes are large enough.

4.5 Exercises
Exercise 4.1. Prove the last equality in Eq. 4.6.

Exercise 4.2. Prove the last equality in Eq. 4.4.

Exercise 4.3. Suppose ̂𝜃 is an unbiased estimator. Prove that 𝑔( ̂𝜃) is an unbiased estimator of
𝑔(𝜃) if 𝑔(𝜃) has the form 𝑔(𝜃) = 𝑎 + 𝑏𝜃.

Exercise 4.4. A function 𝑔(.) that is differentiable and concave has the property that the
function lies on or under every tangent line. The functions 𝑔(𝑥) = √𝑥, 𝑥 ≥ 0 and 𝑔(𝑥) = ln𝑥,
𝑥 > 0 are both examples of concave functions. Follow the steps below to prove Jensen’s
Inequality, which says that if 𝑔(.) is concave, then

𝐸[𝑔(𝑋)] ≤ 𝑔(𝐸[𝑋]).

Step 1: Let 𝑙(𝑥) = 𝑎 + 𝑏𝑥 be the tangent line of the concave function 𝑔(𝑥) at the point
(𝐸[𝑋], 𝑔(𝐸[𝑋])), i.e., 𝑙(𝑥) = 𝑎 + 𝑏𝑥 satisfies

𝑙(𝑥) = 𝑎 + 𝑏𝑥 ≥ 𝑔(𝑥) and 𝑙(𝐸[𝑋]) = 𝑎 + 𝑏𝐸[𝑋] = 𝑔(𝐸[𝑋]) .

Step 2: Prove Jensen’s Inequality by using the fact that if 𝑓1(𝑥) ≤ 𝑓2(𝑥), then 𝐸[𝑓1(𝑋)] ≤
𝐸[𝑓2(𝑋)].

Exercise 4.5. Prove the last equality in Eq. 4.7.

Exercise 4.6. For the coin toss example, compute the probability of rejecting the null hypothesis
𝐻0 ∶ 𝑝 = 0.5 using the rule “Reject 𝐻0 if ̂𝑝 = 𝑌 is strictly greater than 0.7 or strictly less than
0.3” for values of 𝑝 = 0.05, 0.1, ..., 0.90, 0.95 when 𝑁 = 20. Plot these probabilities against 𝑝.
Repeat the exercise for 𝑁 = 50.
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The Bias-Variance Trade-off

Exercise 4.7. It can be shown that if 𝑌𝑖, 𝑖 = 1, 2, ..., 𝑁 are i.i.d. draws from a normal distri-
bution with mean 𝜇 and variance 𝜎2, then the variance of the unbiased variance estimator 𝜎2

defined in Eq. 4.5 is 𝑣𝑎𝑟[𝜎2] = 2𝜎4
𝑁−1 . Because 𝜎2 is an unbiased estimator, its MSE is also 2𝜎4

𝑁−1 .
a. Show that the biased estimator 𝜎2 defined in Eq. 4.4 has a smaller variance than 𝜎2.
b. Show that MSE[𝜎2] = 2𝑁−1

𝑁2 𝜎4.
c. Show that MSE[𝜎2] < MSE[𝜎2].

This is an example where MSE can be improved by trading off some bias for a reduced variance.
Note that the arguments here have assumed that 𝑌 is normally distributed.

Exercise 4.8. Consider the coin toss example with 𝑁 = 10. Let ̂𝑝 = (1/10)∑10
𝑖=1 𝑌𝑖, and let

̃𝑝 = (1/11)∑10
𝑖=1 𝑌𝑖 be an alternative estimator. We know ̂𝑝 is unbiased, and therefore ̃𝑝 is biased

(downwards).
a. Show that the variance of ̃𝑝 is (10/121)𝑝(1−𝑝) (which is lower than 𝑣𝑎𝑟[ ̂𝑝] = 𝑝(1−𝑝)/10).
b. Find the 𝑀𝑆𝐸 of ̂𝑝.
c. Find the 𝑀𝑆𝐸 of ̃𝑝.
d. Show that 𝑀𝑆𝐸[ ̃𝑝] < 𝑀𝑆𝐸[ ̂𝑝] if 𝑝 < 21/31.

Remark: The estimator ̃𝑝 is biased but it has a lower variance than the unbiased ̂𝑝. It turns out
that this bias-variance trade-off is favorable toward minimizing MSE only if 𝑝 < 21/31. If it is
believed that 𝑝 < 21/31, and the objective is minimizing MSE, then the alternate estimator may
be preferred.

4.6 Prediction

Suppose you have an iid sample 𝑌1, 𝑌2, … 𝑌𝑁 of draws from random variable 𝑌 with mean 𝐸[𝑌 ] =
𝜇 and variance 𝑣𝑎𝑟[𝑌 ] = 𝜎2. Your interest is in predicting the value of the next independent
draw 𝑌𝑁+1. In the previous chapter we learnt that the point prediction that minimizes the
mean squared prediction error is the expectation conditional on the information set 𝑋. In this
application, the 𝑋 is just your sample 𝑌1, 𝑌2, …, 𝑌𝑁 and the optimal prediction is the conditional
expectation 𝐸[𝑌𝑁+1|𝑌1, ..., 𝑌𝑁 ]. Since it is assumed that the sample is iid, the conditional mean
reduces to the unconditional mean 𝐸[𝑌𝑁+1] = 𝜇. You decide to estimate the sample mean from
your iid sample, and use this as your predictor, i.e., you choose

𝑌𝑁+1 = 𝑌 = 1
𝑁

𝑁
∑
𝑖=1

𝑌𝑖 .

What is the MSPE for this predictor? The conditional MSPE when predicting 𝑌𝑁+1 using 𝑌
estimated over 𝑌1, …, 𝑌𝑁 is

𝑀𝑆𝑃𝐸(𝑌𝑁+1, 𝑌 |𝑋) = 𝐸[(𝑌𝑁+1 − 𝑌 )2|𝑋]
= 𝐸[(𝑌𝑁+1 − 𝜇 + 𝜇 − 𝑌 )2|𝑋]
= 𝐸[(𝑌𝑁+1 − 𝜇)2|𝑋] + 𝐸[(𝜇 − 𝑌 )2|𝑋] + 2𝐸[(𝑌𝑁+1 − 𝜇)(𝜇 − 𝑌 )|𝑋]
= 𝐸[(𝑌𝑁+1 − 𝜇)2] + (𝜇 − 𝑌 )2 + 2(𝜇 − 𝑌 )𝐸[(𝑌𝑁+1 − 𝜇)|𝑋]
= 𝑣𝑎𝑟[𝑌𝑁+1] + (𝑌 − 𝜇)2
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where we have used the assumption that 𝑌𝑁+1 is independent of the sample 𝑋 = {𝑌1,… , 𝑌𝑁}.
Taking expectation over 𝑋, we get the unconditional MSPE to be

𝑀𝑆𝑃𝐸(𝑌𝑁+1, 𝑌 ) = 𝐸[𝑀𝑆𝑃𝐸(𝑌𝑁+1, 𝑌 |𝑋)]
= 𝐸[𝑣𝑎𝑟[𝑌𝑁+1]] + 𝐸[(𝑌 − 𝜇)2]
= 𝑣𝑎𝑟[𝑌𝑁+1] + 𝑣𝑎𝑟[𝑌 ] .

That is, the MSPE is

𝑀𝑆𝑃𝐸(𝑌𝑁+1, 𝑌 ) = 𝜎2 + 𝜎2

𝑁 .

The first term is due to the fact that we are predicting a new observation outside of the sample.
The second term comes from the variance of the sample mean. We can estimate the MSPE by
replacing 𝜎2 with 𝜎2, i.e.,

𝑀𝑆𝑃𝐸(𝑌𝑁+1, 𝑌 ) = 𝜎2 + 𝜎2

𝑁 . (4.13)

Often the prediction is reported as

prediction ± 2√𝑀𝑆𝑃𝐸.

This is often called the “0.95 Prediction Interval”.3 Some people use 1.96 instead of 2.
Two remarks: first, since the 𝑀𝑆𝑃𝐸(𝑌𝑁+1, 𝑌 |𝑋) = 𝐸[(𝑌𝑁+1 − ̂𝜇)2], one might be tempted

to estimate it with
1
𝑁

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 or 1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2

This is, of course, merely an estimate of 𝜎2, and would underestimate the MSPE. This is
because you are using “in-sample” or “training” data to estimate MSPE, and the result does
not generalize to out-of-sample predictions.

4.6.1 Exercises

The following questions are based on the above prediction example.

Exercise 4.9. Explain why using

𝜎2 = 1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2

in Eq. 4.13 results in an unbiased estimate of 𝑀𝑆𝑃𝐸(𝑌𝑁+1, 𝑌 ).

3The 0.95 Confidence Interval, on the other hand, uses only the sample error from estimating the mean, i.e.,

�̂� ± 2√𝜎2/𝑁 .

This is the 0.95 confidence interval for the sample mean, and is a measure of uncertainty about the estimate of
the sample mean, not the prediction.
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Exercise 4.10. Suppose instead of the estimating the MSPE using Eq. 4.13, you did the
following instead: divide your sample of 𝑁 observations into two subsamples of sizes 𝑁1 and
𝑁2. In particular, divide your 𝑁 observations into observations 𝑖 = 1, 2, ..., 𝑁1 and 𝑗 = 𝑁1 +
1,𝑁1 + 2, ..., 𝑁1 + 𝑁2. (Perhaps 𝑁2 might be 𝑁/5, but the size of split is not so important).
Then estimate 𝜇 over the 𝑁1 sample, and estimate your MSPE over the 𝑁2 sample, i.e.,

̃𝜇 = 1
𝑁1

𝑁1

∑
𝑖=1

𝑌𝑖 and 𝑀𝑆𝑃𝐸(𝑌𝑁+1, ̃𝜇) = 1
𝑁2

𝑁1+𝑁2

∑
𝑗=𝑁1+1

(𝑌𝑗 − ̃𝜇)2 .

Show that 𝑀𝑆𝑃𝐸(𝑌𝑁+1, ̃𝜇) is an unbiased estimator of 𝑀𝑆𝑃𝐸(𝑌𝑁+1, ̃𝜇), which is

𝑀𝑆𝑃𝐸(𝑌𝑁+1, ̃𝜇) = 𝜎2 + 𝜎2

𝑁1
.

Remark: An “advantage” of this method of estimating 𝑀𝑆𝑃𝐸 is that we did not have to
estimate 𝜎2, but this is a hardly an advantage since we have unbiased estimators of 𝜎2. The
major disadvantage of this method is that you are estimating the sample mean using a smaller
sample, which increases its sampling variability, and increases the MSPE. Since we have easily
derived the formula for the MSPE in this simple application, there is no advantage to the method
proposed here. However, in more advanced applications, the form of the MSPE might not be
so easy to derive. In those applications, and assuming a large enough sample size, it may
be advantageous to estimate the MSPE in the manner described in this exercise. The “cross-
validation” method used in machine learning is an extension of the method described here. The
method proposed here may also be useful in the situation where the loss function is not squared
error.

Exercise 4.11. Suppose instead of the sample mean, you use some other (possibly biased)
estimator ̂𝑔(𝑋) where 𝑋 = {𝑌1,… , 𝑌𝑁} to predict an independent observation 𝑌𝑁+1. Show that
the 𝑀𝑆𝑃𝐸 is

𝑀𝑆𝑃𝐸(𝑌𝑁+1, ̂𝑔(𝑋)) = 𝜎2 + 𝑣𝑎𝑟[ ̂𝑔(𝑋)] + (𝐸[ ̂𝑔(𝑋)] − 𝜇)2 .

Hint: Write

𝑀𝑆𝑃𝐸(𝑌𝑁+1, ̂𝑔(𝑋)) = 𝐸[(𝑌𝑁+1 − ̂𝑔(𝑋))2]
= 𝐸[(𝑌𝑁+1 − 𝜇 + 𝜇 − 𝐸[ ̂𝑔(𝑋)] + 𝐸[ ̂𝑔(𝑋)] − ̂𝑔(𝑋))2]
= 𝐸[𝐴2 +𝐵2 +𝐶2 + 2𝐴𝐵 + 2𝐴𝐶 + 2𝐵𝐶]

where 𝐴 = 𝑌𝑁+1−𝜇, 𝐵 = 𝜇−𝐸[ ̂𝑔(𝑋)] and 𝐶 = 𝐸[ ̂𝑔(𝑋)]− ̂𝑔(𝑋)). Then compute the expectation
by first taking expectations conditional on 𝑋, then take expectations over 𝑋. When taking
expectations conditional of 𝑋, ̂𝑔(𝑋) is fixed. You should find that the last three terms drop out,
and the 𝐸[𝐴2] = 𝜎2, 𝐸[𝐵2] is the squared bias, and 𝐸[𝐶2] is the variance of ̂𝑔(𝑋). When ̂𝑔(𝑋)
is the sample mean, which is unbiased, the MSPE reduces to 𝜎2 + 𝜎2/𝑁 .

Exercise 4.12. In the coin toss example, suppose you want to use 𝑁 independent coin tosses
to predict the outcome of the next coin toss. Suppose your loss function is squared error. What
is your optimal point prediction?
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Exercise 4.13. Continuing with the coin toss example, suppose you have estimated the proba-
bility of Heads to be ̂𝑝. Suppose now that your prediction 𝑌𝑁+1 for the next toss must be either
‘heads’ or ‘tails’ (i.e., 1 or 0, you cannot give fractional answers) and your loss function is “0-1”,
meaning that your loss is 1 if you are wrong, and 0 if you are right, i.e.,

𝐿(𝑌𝑁+1, 𝑌𝑁+1) =
⎧{
⎨{⎩

1, if 𝑌𝑁+1 ≠ 𝑌𝑁+1

0, if 𝑌𝑁+1 = 𝑌𝑁+1 .

Show that your optimal prediction is 𝑌𝑁+1 = 1 if ̂𝑝 ≥ 0.5, ̂𝑌𝑁+1 = 0 otherwise.
Hint: You want to choose 𝑌𝑁+1 = 1 or 0 to minimize your expected loss, which is

𝐿(𝑌𝑁+1 = 1, 𝑌𝑁+1)𝑃𝑟[𝑌𝑁+1 = 1] + 𝐿(𝑌𝑁+1 = 0, 𝑌𝑁+1)Pr[𝑌𝑁+1 = 0] .

Compare this value for the cases 𝑌𝑁+1 = 1 and 𝑌𝑁+1 = 0 and ask: which choice minimizes
expected loss when Pr[𝑌𝑁+1 = 1] ≥ 0.5? Which choice minimizes expected loss when Pr[𝑌𝑁+1 =
0] < 0.5?



Chapter 5
Simple Linear Regression

Simple linear regression is a framework for developing empirical models of the form

̂𝑌 = ̂𝛽0 + ̂𝛽1𝑋 (5.1)

for the purpose of prediction, inferring causality from 𝑋 to 𝑌 , testing hypotheses regarding 𝑋
and 𝑌 , among other applications. This chapter describes and studies this framework. The simple
linear regression framework will in many instances turn out to be insufficient for predictive,
causal inference and testing applications, but it is a good place to start, both as a first step
towards mastering the principles and technicalities of more advanced frameworks, and as a way
to better understand the issues involved in these applications.

We focus on cross-sectional regressions in this chapter. Time series regressions are discussed
in a later chapter. Our initial discussions will also focus on the problem of prediction, although
we will also discuss hypothesis testing and issues involved in trying to interpret regression results
as causal effects.

The R code in this chapter uses the following packages.

library(tidyverse) # For data handling and visualization
library(patchwork) # ]
library(gridExtra) # ] For plot management
library(latex2exp) # ]

5.1 The Simple Linear Regression Framework

Suppose you have observations {𝑋𝑖, 𝑌𝑖}𝑁𝑖=1 and you want to build an empirical model of the form
Eq. 5.1 for predicting 𝑌 for new observations at given values of 𝑋. For example, you want to
predict the price 𝑌 of new houses to be built 𝑋 = 𝑥 distance from town center, or for predicting
how much new customers with income levels 𝑋 = 𝑥 are likely to spend on some product. We’ll
keep 𝑋 and 𝑌 generic for the moment.

You know that the point prediction that minimize mean squared prediction error is the
conditional mean (and suppose that minimizing mean squared prediction error is your objective).
You plan to use the empirical model Eq. 5.1 as an estimate of the conditional expectation

𝐸[𝑌 |𝑋] ≈ 𝐸[𝑌 |𝑋] = ̂𝛽0 + ̂𝛽1𝑋 .

New observations with 𝑋 = 𝑥 will be predicted to have ̂𝑌 = ̂𝛽0 + ̂𝛽1𝑥. Estimating Eq. 5.1
amounts to using your data to come up with appropriate values of ̂𝛽0 and ̂𝛽1. What method
should you use? If you choose to use ordinary least squares (OLS) as described in Section 2.4,
under what conditions would that give you “good” estimates of the conditional expectation? Are
you able to give some indication of how much your predictions can be trusted? Is the supposed
linear form of the conditional expectation appropriate in the first place?

109
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We answer these questions by first laying out a set of assumptions, and showing that OLS
works well in under these assumptions. Then we ask what happens when one or more of the
assumptions fail. Later chapters will discuss how the basic framework can be modified to such
situations. In practice, diagnostic assessments are made to ascertain if the assumptions in the
basic framework are appropriate for your particular application. These will usually include
both data-based approaches (are the assumptions consistent with the data?) and as well as
assessments based on a knowledge of economics. Assumptions and estimation methods are then
modified accordingly.

Let 𝑋 and 𝑌 be your variables of interest, and let {𝑋𝑖, 𝑌𝑖}𝑁𝑖=1 be your data sample. We
suppose for the moment that you have a cross-sectional sample, i.e., you have data on a sample
of individuals (this could be individual people, individual firms, …) that can be considered to
have been collected at a single point in time. We consider other data structures in later chapters.

Assumption Set A:  Suppose that (A1) there are two values 𝛽0 and 𝛽1 such that the random
variable 𝜖, defined as

𝜖 = 𝑌 − 𝛽0 − 𝛽1𝑋,

satisfies
(A2)  𝐸[𝜖|𝑋] = 0,
(A3)  𝑣𝑎𝑟[𝜖|𝑋] = 𝜎2.

Suppose also that
(A4)  {𝑋𝑖, 𝑌𝑖}𝑁𝑖=1 is a random sample from the population of interest, and
(A5)  ∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2 > 0.

It is important to understand that we are placing ourselves in a position prior to observing
data, and treating the 𝑋𝑖 and 𝑌𝑖 in the sample as random variables. We want to know if
the methods to be proposed for building the empirical model will work in general situations
conforming to the scenario described in Assumption Set A.

Assumption A2 implies that

𝐸[𝑌 |𝑋] = 𝛽0 + 𝛽1𝑋 (5.2)

We call Eq. 5.2 the Population Regression Function (PRF). For obvious reasons, we call 𝛽0 the
“intercept”, and 𝛽1 the “slope coefficient”. The variable 𝜖 is called the “error” or “noise” term.
The variable 𝑌 is the “dependent/explained/response/predicted variable”, or “regressand”. The
variable 𝑋 is the “independent/explanatory/control variable” or “regressor”. In predictive ap-
plications, it is often called the “predictor”. Assumption A2 also implies that

cov[𝑋, 𝜖] = 0 ,

and
𝛽0 = 𝐸[𝑌 ] − 𝛽1𝐸[𝑋] and 𝛽1 = cov[𝑋, 𝑌 ]

𝑣𝑎𝑟[𝑋] .
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Assumption A3 is called “conditional homoskedasticity”. It says that the variance of the
noise term does not depend on 𝑋. If A3 holds, we should expect that the spread of the sample
realizations about the regression line should be more or less even, so that, roughly speaking,
each observation is equally informative about the regression line. If A3 does not hold, we say
that there is “conditional heteroskedasticity” in the noise term.1 Incidentally, if A2 holds, then
we can write A3 as 𝐸[𝜖2|𝑋] = 𝜎2.

Example 5.1. The file heterosk.csv contains observations on three variables 𝑋, 𝑌 and 𝑍.
We plot observations of 𝑌 against 𝑋 in panel (a), and 𝑍 against 𝑋 in panel (b) using data in
heterosk.csv. Visually, assumption A3 appears appropriate if your data behaves as in (a) in
Fig. 5.1, but almost surely does not hold if your data behaves as in (b). In the latter case, there
is strong visual evidence that the variance of 𝜖 increases with 𝑋.

df_het <- read_csv("data\\heterosk.csv",col_types = c("n","n","n"))
plt_het1a <- ggplot(data=df_het) + geom_point(aes(x=x,y=z), size=1) +

ggtitle("(a)") + theme_classic()
plt_het1b <- ggplot(data=df_het) + geom_point(aes(x=x,y=y), size=1) +

ggtitle("(b)") + theme_classic()
plt_het1a | plt_het1b
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Figure 5.1: Data sets with and without heteroskedasticity

One application where the data may appear as in (b) is when 𝑌 is expenditure and 𝑋 is
income. Low income earners may have to spend most of their earnings on necessary purchases,
with little room for variation, whereas high income earners have considerably more discretion
in how much of their income to spend or save.

There is a lot packed into the phrase “random sample from the population of interest”.
“Random sample” is usually taken to mean that the sample {𝑋𝑖, 𝑌𝑖}𝑁𝑖=1 are independently and
identically distributed draws. From a data sampling perspective, the term means that you have
a representative draw from the population of interest, without favoring draws from segments of
the population with with certain characteristics. Suppose you are measuring the distribution of
heights in an adult population of a certain country. If your sampling process somehow makes
it more likely to sample males than females. The result will be that the distribution of heights

1The “-scedasticity” part of the words homoskedasticity and heteroskedasticity come from an ancient greek
word that can be translated to “scatter”. “Homo-” and “Hetero-” come from words translating to “equal” and
“different” respectively.
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in your sample will not be representative of your population. You want each member of the
population to have an equal chance of getting sampled, so that your sample has the same mix
of characteristics as the entire population. If your sample comprises whole families, then there
will be dependence in heights within members of the same family. In the latter case, you could
still get a representative sample of the population, but you would need a much larger sample,
and calculations of statistics like variances will need to take the dependence into consideration.

We will discuss each of these assumptions in greater detail shortly, when they might fail to
hold, and the consequences. For now, we consider OLS estimation of the population regression
function, and the properties of the estimators under Assumption Set A.

5.2 Ordinary Least Squares

Under Assumption A2, we can write

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖 , 𝑖 = 1, 2, ..., 𝑁.

For any estimators ̂𝛽0 and ̂𝛽1 (whether obtained by OLS or otherwise), define the fitted values
to be

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖, 𝑖 = 1, 2, ..., 𝑁 (5.3)

and the residuals to be

̂𝜖𝑖 = 𝑌𝑖 − ̂𝑌𝑖 = 𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖, 𝑖 = 1, 2, ..., 𝑁. (5.4)

Ordinary Least Squares (OLS) chooses ̂𝛽𝑜𝑙𝑠
0 and ̂𝛽𝑜𝑙𝑠

1 to minimize the sum of squared residuals
(SSR):

OLS: Choose ̂𝛽0, ̂𝛽1 to minimize 𝑆𝑆𝑅 =
𝑁
∑
𝑖=1

̂𝜖𝑖2 =
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖)2. (5.5)

We have already seen in Section 2.4 how the minimization problem (5.5) can be solved. The
first order conditions are:

𝜕𝑆𝑆𝑅
𝜕 ̂𝛽0

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

= −2
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖) = 0

𝜕𝑆𝑆𝑅
𝜕 ̂𝛽1

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

= −2
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖)𝑋𝑖 = 0
(5.6)

where we use the notation 𝜕𝑆𝑆𝑅
𝜕 ̂𝛽0

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

to refer to the derivative 𝜕𝑆𝑆𝑅
𝜕 ̂𝛽0

evaluated at ̂𝛽𝑜𝑙𝑠
0 and

̂𝛽𝑜𝑙𝑠
1 , and likewise for 𝜕𝑆𝑆𝑅

𝜕 ̂𝛽1
∣

̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1
. Solving the first order conditions in Eq. 5.6 gives

̂𝛽𝑜𝑙𝑠
0 = 𝑌 − ̂𝛽𝑜𝑙𝑠

1 𝑋

̂𝛽𝑜𝑙𝑠
1 = ∑𝑁

𝑖=1(𝑌𝑖 − 𝑌 )𝑋𝑖

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖

= ∑𝑁
𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )
∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2
.

(5.7)
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You showed in an exercise that the second-order condition for a strict global minimum holds, so
that ̂𝛽𝑜𝑙𝑠

0 and ̂𝛽𝑜𝑙𝑠
1 do in fact solve the minimization problem (5.5). The OLS fitted values and

OLS residuals are
̂𝑌 𝑜𝑙𝑠
𝑖 = ̂𝛽𝑜𝑙𝑠

0 + ̂𝛽𝑜𝑙𝑠
1 𝑋𝑖

̂𝜖𝑜𝑙𝑠𝑖 = 𝑌𝑖 − ̂𝑌 𝑜𝑙𝑠
𝑖 = 𝑌𝑖 − ̂𝛽𝑜𝑙𝑠

0 − ̂𝛽𝑜𝑙𝑠
1 𝑋𝑖

for 𝑖 = 1, 2,… ,𝑁 . The OLS Sample Regression Function (SRF) is the line

̂𝑌 𝑜𝑙𝑠 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋 .

In all that follows, we will drop the “OLS” superscript from the estimators, fitted values and
residuals. These are assumed to be OLS estimators, fitted values and residuals. Where we need
to discuss non-OLS estimators, we will indicate those estimators in some way.

We have seen that several algebraic identities hold under OLS estimation. We summarize
them briefly below.

• The first-order conditions can also be written as

𝑁
∑
𝑖=1

̂𝜖𝑖 = 0

𝑁
∑
𝑖=1

𝑋𝑖 ̂𝜖𝑖 = 0
(5.8)

It follows that OLS residuals have zero sample mean and zero sample covariance with the
regressors:

1
𝑁

𝑁
∑
𝑖=1

̂𝜖𝑖 = 0

sample cov[ ̂𝜖𝑖, 𝑋𝑖] =
1
𝑁

𝑁
∑
𝑖=1

( ̂𝜖𝑖 − ̂𝜖)(𝑋𝑖 −𝑋) = 1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖 ̂𝜖𝑖 = 0 .

We describe the condition ∑𝑁
𝑖=1 𝑋𝑖 ̂𝜖𝑖 = 0 by saying that the OLS residuals ̂𝜖𝑖 and the

regressors 𝑋𝑖 are orthogonal.

• The fitted values and the residuals are also orthogonal:

𝑁
∑
𝑖=1

̂𝑌𝑖 ̂𝜖𝑖 = ̂𝛽0
𝑁
∑
𝑖=1

̂𝜖𝑖 + ̂𝛽1
𝑁
∑
𝑖=1

̂𝑋𝑖𝜖𝑖 = 0 .

• The regressand and fitted values always have the same sample average

𝑌 = ̂𝑌 , where ̂𝑌 = (1/𝑁)
𝑁
∑
𝑖=1

̂𝑌𝑖

and the sample regression line (the fitted line) passes through the point (𝑋, 𝑌 ), i.e.,

𝑌 = ̂𝛽0 + ̂𝛽1𝑋 .
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• We have the variance decomposition

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 =
𝑁
∑
𝑖=1

( ̂𝑌𝑖 − ̂𝑌 )2 +
𝑁
∑
𝑖=1

̂𝜖2𝑖 , (5.9)

which is often read as “Sum of Squared Total = Sum of Squared Explained + Sum of
Squared Residuals” or “SST = SSE + SSR”. From this decomposition, we define the
Goodness-of-Fit measure

𝑅2 = 1 − 𝑆𝑆𝑅
𝑆𝑆𝑇 . (5.10)

The 𝑅2 has the interpretation as the proportion of variation in 𝑌𝑖 that is accounted2 for
by ̂𝑌𝑖, or by 𝑋𝑖, since ̂𝑌𝑖 is just a linear function of 𝑋𝑖.

Many of these properties require that the intercept term be included in the regression.

Example 5.2. Suppose the PRF is

𝐸[𝑌 |𝑋] = 2 + 1.5𝑋

This is plotted as a blue dashed line on the left panel in Fig. 5.2. You do not observe this line.
All you observe are the data points shown as black dots.

# Simulated Data
set.seed(888) # For replicability
X <- rnorm(10, mean=5, sd=2) # Simulating some data
Y <- 2 + 1.5*X + rnorm(10, mean=0, sd=3)
df <- data.frame(X, Y)
# Fit OLS and get predicted values
Ybar <- mean(df$Y); Xbar <- mean(df$X)
b1hat <- cov(df$X, df$Y)/var(df$X)
b0hat <- Ybar - b1hat*Xbar
df <- df %>%

mutate(Yhat = b0hat + b1hat*X, # add fitted values to df data frame
ehat = Y - Yhat) %>%

arrange(X)
# Plot data and lines
p1 <- df %>% ggplot(aes(x=X,y=Y)) +

geom_point(size=1.5) + geom_line(aes(x=X, y=Yhat), size=0.6) +
theme_minimal() + ylab(TeX('Y, $\\hat{Y}$')) + theme(aspect.ratio = 0.8) +
geom_abline(intercept=2, slope=1.5, col='blue', lty='dashed', lwd=0.6) +
geom_segment(x=df$X, xend=df$X, y=df$Y, yend=df$Yhat, lty='dotted') +
annotate(geom="text", x=4.5, y=11.5,

label=TeX("$E\\[Y|X\\]=\\beta_0 + \\beta_1X_1$"), col="blue")
p1 + gridExtra::tableGrob(round(df[,c("X","Y")],4), theme=ttheme_minimal()) +

plot_layout(widths=c(2.5,1))

2Sometimes the word “explained” is used instead.
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E[Y|X] = β0 + β1X1
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Figure 5.2: Simple Linear Regression

The sample regression function is shown in black, obtained by ordinary least squares. The
vertical distances from the data points to the estimated line are shown as dashed line. OLS
chooses the black line to minimize the sum of squared lengths of these dotted lines. The param-
eter estimates are

print(c("b0hat" = b0hat, "b1hat" = b1hat))

b0hat b1hat
4.3473024 0.9078149

The residuals have zero sample mean and are uncorrelated with the regressors:

## results will be up to computer precision
cat("sample mean of residuals: ", mean(df$ehat), "\n")
cat("sample covariance, residuals and regressor: ", cov(df$ehat, df$X), "\n")

sample mean of residuals: 0
sample covariance, residuals and regressor: 2.607868e-16

If you plot the point (𝑋, 𝑌 ) in the figure, you will find that it lies on the estimated line (we did
not do this in the figure). The 𝑅2 for this regression is

SSR <- sum(df$ehat^2) # we defined SSR
SST <- sum((df$Y-mean(df$Y))^2)
Rsqr <- 1 - SSR/SST
Rsqr

[1] 0.3687383

In Example 5.2, the estimated regression line does not coincide with the true population
regression line. Of course, this will be the case in general, since the sample regression line is only
an estimate of the population regression line. The question is how the OLS procedure described
here will perform on average in situations where the circumstances described in Assumption Set
A hold. In the next section, we argue that, from a certain perspective, you cannot do much
better than OLS.
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5.2.1 Statistical Properties of OLS Estimators

It turns out that OLS produces unbiased and efficient estimators of 𝛽0 and 𝛽1, and therefore of
𝐸[𝑌 |𝑋], under Assumption Set A. In the arguments below we focus on 𝛽1; similar arguments
hold for 𝛽0. We first note that ̂𝛽1 can be written as

̂𝛽1 = ∑𝑁
𝑖=1(𝑋𝑖 −𝑋)𝑌𝑖

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

=
𝑁
∑
𝑖=1

𝑤𝑖𝑌𝑖 where 𝑤𝑖 =
(𝑋𝑖 −𝑋)

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

=
𝑁
∑
𝑖=1

𝑤𝑖(𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖)

= 𝛽0
𝑁
∑
𝑖=1

𝑤𝑖 + 𝛽1
𝑁
∑
𝑖=1

𝑤𝑖𝑋𝑖 +
𝑁
∑
𝑖=1

𝑤𝑖𝜖𝑖

= 𝛽1 +
𝑁
∑
𝑖=1

𝑤𝑖𝜖𝑖 .

(5.11)

The second line says that ̂𝛽1 is a “linear estimator”. The last line uses the fact that

𝑁
∑
𝑖=1

𝑤𝑖 =
𝑁
∑
𝑖=1

{ (𝑋𝑖 −𝑋)
∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2
} = ∑𝑁

𝑖=1(𝑋𝑖 −𝑋)
∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2
= 0

𝑁
∑
𝑖=1

𝑤𝑖𝑋𝑖 =
𝑁
∑
𝑖=1

{ (𝑋𝑖 −𝑋)𝑋𝑖
∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2
} = ∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

= 1 .

The form of ̂𝛽1 in Eq. 5.11 is useful because it expresses ̂𝛽1 in terms of 𝛽1 which enables a
comparison of the two.

Assumption Set A implies that our data sample satisfies 𝐸[𝜖𝑖|𝑋𝑖] = 0 and 𝐸[𝜖2𝑖 |𝑋𝑖] = 𝜎2.
Independence of our sample observations allows us to extend these statements to

𝐸[𝜖𝑖|𝑋1, 𝑋2,… ,𝑋𝑁 ] = 0 for all 𝑖 = 1, 2,… ,𝑁, (5.12)

and
𝐸[𝜖2𝑖 |𝑋1, 𝑋2,… ,𝑋𝑁 ] = 𝜎2 for all 𝑖 = 1, 2,… ,𝑁. (5.13)

Furthermore, we also have

𝐸[𝜖𝑖𝜖𝑗|𝑋1, 𝑋2,… ,𝑋𝑁 ] = 0 for all 𝑖 = 1, 2,… ,𝑁. (5.14)

We will use Eq. 5.12 - Eq. 5.14 in the derivation of the properties of OLS estimators.

Unbiasedness Under Assumption Set A, ̂𝛽1 is unbiased, i.e., 𝐸[ ̂𝛽1] = 𝛽1. Proof : From Eq. 5.11
we get

𝐸[ ̂𝛽1|𝑋1, 𝑋2,… ,𝑋𝑁 ] = 𝛽1 +
𝑁
∑
𝑖=1

𝑤𝑖𝐸[𝜖𝑖|𝑋1, 𝑋2,… ,𝑋𝑁 ] = 𝛽1 . (5.15)
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Since the conditional expectation is the constant 𝛽1, the unconditional mean is also 𝛽1.
Unbiasedness of ̂𝛽1 means that ̂𝛽1 does not systematically underestimate or overestimate

𝛽1. Of course, in any given application there will be sampling error. For instance, we clearly
underestimated the slope in Example 5.3, although in a non-simulated application you would
not know this since you do not observe the PRF. Unbiasedness of ̂𝛽1 means that in repeated
application under similar circumstances, ̂𝛽1 will estimate 𝛽1 correctly “on average”.

Example 5.3. We replicate the simulation exercise in Example 5.2 two hundred times. For
each replication, we collect the estimated 𝛽1.

set.seed(888)
nreps <- 200
beta1s <- rep(NA,nreps)
X <- rnorm(10, mean=5, sd=2)
for (i in 1:nreps) {

Y <- 2 + 1.5*X + rnorm(10, mean=0, sd=3)
dfsim <- data.frame(X, Y)
mdlsim <- lm(Y~X, data=dfsim)
beta1s[i] <- coef(summary(mdlsim))[2,"Estimate"]

}
cat("The mean of the simulated beta1hat estimates is", round(mean(beta1s),3), "\n")

The mean of the simulated beta1hat estimates is 1.492

The average ̂𝛽1 obtained over the 200 replications is approximately 1.492 which is quite close to
the true value of 1.5. In practice, of course, you only have one estimate, that for the data sample
that you have. Nonetheless, this simulation exercise illustrates the fact the ̂𝛽1 is unbiased.3

Notice that the proof of unbiasedness of ̂𝛽1 uses the condition in Eq. 5.12, and one of the
key assumptions in Assumption Set A underlying this condition is Assumption A2 𝐸[𝜖|𝑋] = 0.
The estimator ̂𝛽1 will be biased if this assumption is violated. We will see examples where this
assumption fails to hold. The proof of unbiasedness, on the other hand, did not make use of
assumption A3 (conditional homoskedasticity) in any way, which means that violation of A3
will not lead to bias in ̂𝛽1.

We would like to characterize the precision with which we are able to estimate 𝛽1. The
conditional variance of ̂𝛽1 under Assumption Set A is

𝑣𝑎𝑟[ ̂𝛽1|𝑋1, 𝑋2,… ,𝑋𝑁 ] = 𝑣𝑎𝑟 [𝛽1 +
𝑁
∑
𝑖=1

𝑤𝑖𝜖𝑖∣ 𝑋1, 𝑋2,… ,𝑋𝑁]

=
𝑁
∑
𝑖=1

𝑤2
𝑖 𝑣𝑎𝑟[𝜖𝑖|𝑋1, 𝑋2,… ,𝑋𝑁 ]

= 𝜎2
𝑁
∑
𝑖=1

𝑤2
𝑖

= 𝜎2

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

(5.16)

3Our simulation experiment actually illustrates “conditional unbiasedness” as in Eq. 5.15. To show “uncon-
ditional unbiasedness” in the simulation experiment, move the line X <- rnorm(10, mean=5, sd=2) from just
above the for statement to just below it (i.e., to just above Y <- 2 + 1.5*X + rnorm(10, mean=0, sd=3)).
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The derivation of 𝑣𝑎𝑟[ ̂𝛽1] makes use of the conditional homoskedasticity assumption, and the
assumption that the error terms are uncorrelated (which came from the random sampling as-
sumption). If these assumptions do not hold (in fact, if any of the assumptions do not hold),
then the formula derived in Eq. 5.16 will be incorrect. The variance derived in Eq. 5.16 is a
conditional variance. Assumption Set A does not give us enough information to calculate the
unconditional variance of ̂𝛽1.

In order to put a number on 𝑣𝑎𝑟[𝛽1|𝑋1,… ,𝑋𝑁 ], we will need an estimate of 𝜎2. An unbiased
estimator for 𝜎2 in the simple linear regression model (unbiased under Assumption Set A) is

𝜎2 = 1
𝑁 − 2

𝑁
∑
𝑖=1

̂𝜖2𝑖 . (5.17)

We shall leave the proof of unbiasedness of 𝜎2 until later. For now, we simply note that the SSR
is divided by 𝑁 − 2 instead of 𝑁 because two ‘degrees-of-freedom’ were used in computing ̂𝛽0
and ̂𝛽1, and these are used in the computation of ̂𝜖𝑖. With 𝜎2, we can estimate the conditional
variance of ̂𝛽1 with

𝑣𝑎𝑟[ ̂𝛽1|𝑋1, ..., 𝑋𝑁 ] = 𝜎2

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

(5.18)

The standard error of ̂𝛽1 is the square root of Eq. 5.18. For the data in Example 5.2:

sigma2hat <- SSR/(10-2) # SSR calculated earlier
cat("residual variance: ", round(c(sigma2hat),3), "\n")
cat("residual s.e.: ", round(sqrt(sigma2hat),3), "\n")
estvarb1hat <- sigma2hat/sum((df$X-mean(df$X))^2)
cat("b1hat variance: ", round(c(estvarb1hat),3), "\n")
cat("b1hat s.e.: ", round(sqrt(estvarb1hat),3), "\n")

residual variance: 9.849
residual s.e.: 3.138
b1hat variance: 0.176
b1hat s.e.: 0.42

Since the data in Example 5.2 is simulated with 𝜎2 = 9, the true conditional variance and
standard error of ̂𝛽1 are

var_beta1hat <- 9/sum((df$X - mean(df$X))^2)
cat("True b1hat variance: ", round(var_beta1hat,3), "\n")
cat("True b1hat s.e.: ", round(sqrt(var_beta1hat),3), "\n")

True b1hat variance: 0.161
True b1hat s.e.: 0.401

In our simulation exercise in Example 5.3, the standard deviation of the ̂𝛽1 obtained over the
200 replications is 0.395 which is very close to 0.401.

cat("Standard deviation of simulated beta1hats is", round(sd(beta1s),3), "\n")

Standard deviation of simulated beta1hats is 0.395
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The formula for 𝑣𝑎𝑟[ ̂𝛽1|𝑋1, 𝑋2,… ,𝑋𝑁 ] tells us that the estimator for ̂𝛽1 is more precise (has
smaller variance) when (i) 𝜎2 is smaller, (ii) 𝑁 is larger (since the denominator is a sum of 𝑁
non-negative terms), and (iii) if there is more variation in 𝑋𝑖. This is intuitive; you should get
more precise estimators if (i) the data are less noisy, (ii) you have more observations, and if
(iii) there is more variation in 𝑋𝑖. When 𝜎2 is smaller, your data is more informative about
the PRF. If you have more observations, you will be able to estimate your parameters more
precisely. Since 𝛽1 measures how 𝑌𝑖 changes as 𝑋𝑖 changes, it helps if 𝑋𝑖 changes a lot in your
sample.

Efficiency  OLS estimators, under Assumption Set A, are efficient in the sense that they
have the lowest variance among all linear unbiased estimators. We show this for ̂𝛽1. Let ̃𝛽1 be
another estimator of the form ̃𝛽1 = ∑𝑁

𝑖=1 𝑎𝑖𝑌𝑖 such that 𝐸[ ̃𝛽1] = 𝛽1 and where 𝑎𝑖 are weights
constructed from {𝑋𝑖}𝑁𝑖=1. We want to relate this estimator to ̂𝛽1 so write ̃𝛽1 as

̃𝛽1 =
𝑁
∑
𝑖=1

(𝑤𝑖 + 𝑣𝑖)𝑌𝑖

=
𝑁
∑
𝑖=1

𝑤𝑖𝑌𝑖 +
𝑁
∑
𝑖=1

𝑣𝑖𝑌𝑖

= 𝛽1 +
𝑁
∑
𝑖=1

𝑤𝑖𝜖𝑖 +
𝑁
∑
𝑖=1

𝑣𝑖(𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖)

= 𝛽1 + 𝛽0
𝑁
∑
𝑖=1

𝑣𝑖 + 𝛽1
𝑁
∑
𝑖=1

𝑣𝑖𝑋𝑖 +
𝑁
∑
𝑖=1

(𝑤𝑖 + 𝑣𝑖)𝜖𝑖

(5.19)

where 𝑤𝑖 are the OLS weights previously defined. We want ̃𝛽1 to be unbiased, so we limit our
choice of 𝑣𝑖 to those such that ∑𝑁

𝑖=1 𝑣𝑖 = 0 and ∑𝑁
𝑖=1 𝑋𝑖𝑣𝑖 = 0, which guarantees unbiasedness

of ̃𝛽1. Then Eq. 5.19 becomes

̃𝛽1 = 𝛽1 +
𝑁
∑
𝑖=1

(𝑤𝑖 + 𝑣𝑖)𝜖𝑖.

Taking conditional variance gives

𝑣𝑎𝑟[ ̃𝛽1|𝑋1,… ,𝑋𝑁 ] =
𝑁
∑
𝑖=1

(𝑤𝑖 + 𝑣𝑖)2𝑣𝑎𝑟[𝜖𝑖|𝑋1,… ,𝑋𝑁 ]

= 𝜎2
𝑁
∑
𝑖=1

(𝑤2
𝑖 + 𝑣2𝑖 + 2𝑤𝑖𝑣𝑖)

= 𝑣𝑎𝑟[ ̂𝛽1] + 𝜎2
𝑁
∑
𝑖=1

𝑣2𝑖

(5.20)

since 𝑣𝑎𝑟[ ̂𝛽1] = 𝜎2 ∑𝑁
𝑖=1 𝑤2

𝑖 and ∑𝑁
𝑖=1 𝑤𝑖𝑣𝑖 = 0 (why?)

In other words, you will not be able to find another linear estimator for 𝛽1 with smaller
variance than ̂𝛽1. We summarize the unbiasedness and minimum variance result by saying
that ̂𝛽1 is a “Best Linear Unbiased Estimator”, or BLUE. The result is also referred to as the
“Gauss-Markov Theorem”. The result applies also to ̂𝛽0 (and to the multiple regression case).
We present the general result later.
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We have so far only presented results for ̂𝛽1. What about ̂𝛽0. It remains true that ̂𝛽0 is
unbiased, i.e., 𝐸[ ̂𝛽0] = 𝛽0 under Assumption Set A, and that this property does not require
conditional homoskedasticity. Furthermore, we have

𝑣𝑎𝑟[ ̂𝛽0|𝑋1,… ,𝑋𝑁 ] = 𝜎2 ∑𝑁
𝑖=1 𝑋2

𝑖

𝑁 ∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

and
𝑐𝑜𝑣[ ̂𝛽0, ̂𝛽1|𝑋1,… ,𝑋𝑁 ] = −𝜎2𝑋

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

.

We will derive these results later. The sign of the correlation (which depends on 𝑋) is intuitive,
since the estimated regression line always passes through the point (𝑋, 𝑌 ).

5.3 Prediction

Since ̂𝛽0 and ̂𝛽1 are unbiased, predictions based on OLS estimators will also be (conditionally)
unbiased. Suppose there is a new independent observation (𝑌0, 𝑋0) from the same population,
so

𝑌0 = 𝛽0 + 𝛽1𝑋0 + 𝜖0
with 𝐸[𝜖0|𝑋0] = 0. You only observe 𝑋0, and you predict 𝑌0 with ̂𝑌0 = ̂𝛽0 + ̂𝛽1𝑋0. Then

𝐸[ ̂𝛽0 + ̂𝛽1𝑋0|𝑋0] = 𝐸[ ̂𝛽0|𝑋0] + 𝐸[ ̂𝛽1|𝑋0]𝑋0 = 𝛽0 + 𝛽1𝑋0 = 𝐸[𝑌0|𝑋0] .

(The expectation is with respect to your estimation sample).
Furthermore, the MSPE will

𝐸[(𝑌0 − ̂𝑌0)2|𝑋0] = 𝐸[(𝜖0 + (𝛽0 − ̂𝛽0) + (𝛽1 − ̂𝛽1)𝑋0)2|𝑋0]
= 𝐸[𝜖20|𝑋0] + 𝐸[((𝛽0 − ̂𝛽0) + (𝛽1 − ̂𝛽1)𝑋0)2|𝑋0]

The second line comes from the assumption that the new observation is independent of your
sample. Since 𝐸[𝜖0|𝑋0] = 0, the first term in the second line is just the conditional variance of
𝜖0 which is 𝜎2. Likewise, since

𝐸[(𝛽0 − ̂𝛽0) + (𝛽1 − ̂𝛽1)𝑋0|𝑋0] = 0

the second term in the second line is also just the variance of (𝛽0 − ̂𝛽0) + (𝛽1 − ̂𝛽1)𝑋0, which is

𝑣𝑎𝑟[ ̂𝛽0] + 𝑋2
0 𝑣𝑎𝑟[ ̂𝛽1] + 2𝑋0 𝑐𝑜𝑣[ ̂𝛽0, ̂𝛽1] = ( 1

𝑁 + (𝑋0 −𝑋)2
∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2
)𝜎2 (5.21)

(See exercises.) The root mean square prediction error is therefore

𝑅𝑀𝑃𝑆𝐸 = {𝜎2 [1 + 1
𝑁 + (𝑋0 −𝑋)2

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

]}
1/2

. (5.22)

Some remarks:
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• The “1” in the square brackets of Eq. 5.22 reflects the variance of the unpredictable element
of the new observation. The other two terms reflects the mean squared error in estimating
the conditional mean. In general mean squared error is variance plus squared bias, but
because the estimators are unbiased, the mean squared estimation error is simply the
variance. As 𝑁 increases, the sampling error part gets smaller (1/𝑁 is smaller for larger
𝑁 , and the denominator in the third term is the sum of 𝑁 non-negative terms).

• Notice that the RMSPE gets larger the further 𝑋0 is from the sample mean of the predictor.
• Related to the previous point, the formula in Eq. 5.22 assumes correct specification of the

conditional mean in the regression model.
• The predictions are usually reported as “prediction ±1.96 RMSPE for a”0.95 prediction

interval”, i.e., the 0.95 prediction interval is

prediction ± 1.96{𝜎2 [1 + 1
𝑁 + (𝑋0 −𝑋)2

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

]}
1/2

.

• Formula Eq. 5.22 gives the RMSPE for predictions of “new” observations not in the estima-
tion sample, and takes into account (i) the sampling error when estimating the conditional
mean, and (ii) the fact that our new prediction will include an unpredictable noise term
with variance 𝜎2.

• If we wish to measure the 0.95 confidence interval around the estimated conditional mean,
we would use Eq. 5.22 but without the “+1”, i.e., the 0.95 confidence interval is

prediction ± 1.96{𝜎2 [ 1
𝑁 + (𝑋0 −𝑋)2

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

]}
1/2

.

• Of course, we have to replace 𝜎2 with an estimate of it.

Example 5.4. Fig. 5.3 shows a scatter-plot of 540 observations of log hourly earnings
log(earnings)against years of schooling s, taken from the dataset earnings.csv. Years of
schooling ranges from 7 years to 20 years. We estimate the simple linear regression model

𝑙𝑜𝑔(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) = 𝛽0 + 𝛽1𝑠𝑖 + 𝜖𝑖

and use it to predict the log(earnings) of new observations at various levels of schooling s.
The scatterplot includes the estimated regression line (i.e., the predictions), as well as the ±1.96
RMSPE (or “prediction standard error”) band, with RMSPE calculated as in Eq. 5.22. We use
the predict.lm function’s built-in capability to calculate the predictions and RMSPE instead
of calculating it from scratch, although you are encouraged to try to replicate the result. The
predictions and prediction bands can be obtained from mdl_pred. We also plot the 0.95 confi-
dence intervals in red. Because we have a fairly large sample, the sampling error in estimating
the conditional expectation is quite small, resulting in the very tight confidence interval band.
However, years of schooling only explains fairly little on the variation in log(earnings), so the
prediction interval is quite large.
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df_earn <- read_csv("data\\earnings.csv", show_col_types = FALSE) %>%
select(c(earnings, s))

mdl_earn <- lm(data=df_earn, log(earnings)~s)
# We will predict log(earnings) at s = 5, 6, ..., 22, compiled in "new_data" below
new_data <- data.frame(s=seq(5,22,1))
mdl_pred <- predict(mdl_earn, new_data, interval = "prediction", level = 0.95)
mdl_pred <- cbind(new_data, mdl_pred)
mdl_ci <- predict(mdl_earn, new_data, interval = "confidence", level = 0.95)
mdl_ci <- cbind(new_data, mdl_ci)

ggplot() +
geom_point(data=df_earn,aes(x=s, y=log(earnings)), size=1) +
geom_line(data=mdl_pred, aes(x=s, y=fit), col="blue") +
geom_line(data=mdl_pred, aes(x=s, y=upr), linetype="dotted", col="blue") +
geom_line(data=mdl_pred, aes(x=s, y=lwr), linetype="dotted", col="blue") +
geom_line(data=mdl_ci, aes(x=s, y=upr), linetype="dotted", col="red") +
geom_line(data=mdl_ci, aes(x=s, y=lwr), linetype="dotted", col="red") +

theme_minimal()
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Figure 5.3: log(earnings) vs s

Fig. 5.3 presents several interesting questions. Suppose we were interested in predicting
a new observation at 𝑠 = 16. In our data set we have several (in fact 88) observations at
𝑠 = 16. Would it make sense to simply use the sample mean of those 88 observations as our
prediction? You would still get unbiased estimators, although your prediction would be based
on only 88 observations, and in situations where you have very few observations at a certain s,
your prediction and estimates of the MSPE can be unreliable. On the other hand, if indeed the
conditional expectation of log(earnings) is a linear function of s, then we can use the entire
data set to estimate just two parameters which would reduce sampling errors considerably.

Nonetheless, using just the observations at s=16 might actually be a sensible thing to do if we
were very unsure about the form of the conditional expectation. If the conditional expectation
is non-linear, then the linear regression line would only be an approximation (possibly a very
poor one) and would give biased predictions. The sample mean at s=16 would be unbiased,
though it would have greater variance.
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What we have is a bias-variance trade-off. If the conditional expectation is non-linear, but
only slightly, then imposing the assumption would result in slightly biased predictions, but we
would be able to draw on the whole data set to reduce sampling error. It may be the case that
allowing for a slight bias might reduce variance sufficiently to reduce mean squared error, which
is variance plus squared bias.

Another question: Why are we predicting log(earnings) and not earnings? Probably it
is the latter that we want, but the relationship between earnings and s is definitely not linear,
see Fig. 5.4

ggplot() +
geom_point(data=df_earn,aes(x=s, y=earnings), size=1)
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Figure 5.4: log(earnings) vs s

We may be able to effectively model such non-linearity using a multiple linear regression
framework, but often a simple transformation of one or more of the variables works well to lin-
earize a relationship. As we see in Fig. 5.3, a linear relationship between log(earnings) and s
is not entirely unreasonable, and using log(earnings) also alleviates some of the heteroskedas-
ticity issues that we see in Fig. 5.4.

But then, how do we convert a prediction of log𝑌 to a prediction of 𝑌 ? One way would be
to simply reverse the log() transformation, and use

exp(l̂og𝑌 )

as the prediction. However, l̂og 𝑦 is an estimate of 𝐸[log𝑌 |𝑋], and because exp() is a convex
function,

exp𝐸[log𝑌 |𝑋] ≤ 𝐸[exp log𝑌 |𝑋]

In other words we would be systematically under-estimating 𝐸[log𝑌 |𝑋].
We know that if log𝑌 ∼ Normal(𝜇, 𝜎2), then 𝑌 has the log-normal distribution with mean

𝐸[𝑌 ] = exp(𝜇) exp(𝜎2/2) .

If we assume normality of the error terms in the log-regression, i.e.,

log𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 , 𝜖 ∼ Normal(0, 𝜎2) ,
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then
(log𝑌 )|𝑋 ∼ Normal(𝛽0 + 𝛽1𝑋,𝜎2)

which means
𝐸[𝑌 |𝑋] = exp(𝛽0 + 𝛽1𝑋) exp(𝜎2/2) .

This suggests using the transformation

exp(l̂og𝑌 ) exp(𝜎2

2 )

to convert predictions of log𝑌 to predictions of 𝑌 .

5.4 Hypothesis Testing

We often want to test if 𝛽1 is equal to some value in population. For instance, is the price
elasticity of a product equal to 1? This would be the hypothesis 𝐻0 ∶ 𝛽1 = 1 vs 𝐻𝐴 ∶ 𝛽1 ≠ 1 in
the regression

ln𝑌𝑖 = 𝛽0 + 𝛽1 ln𝑋𝑖 + 𝜖𝑖
where 𝑋 is the price and 𝑌 is quantity sold. We call 𝐻0 the “null hypothesis” and 𝐻𝐴 the
“alternative hypothesis”. Is a job training program effective? This would be the hypothesis
𝐻0 ∶ 𝛽1 = 0 vs 𝐻𝐴 ∶ 𝛽1 ≠ 0 in the regression

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖𝑖 .

where 𝑋 is an indicator of participation in a job training program and 𝑌 is some outcome
variable.

The basic strategy for checking if 𝛽1 is equal to some value 𝛽∗
1 in population is to check if ̂𝛽1

is “improbably far” from 𝛽∗
1, given what we know about the distribution of ̂𝛽1 “under the null”,

i.e., when 𝛽1 = 𝛽∗
1. In order to derive this distribution, at least in finite samples, we have to

make an addition assumption regarding the conditional distribution of 𝜖. If we assume that

(A6) 𝜖|𝑋 ∼ Normal(0, 𝜎2)

then under random sampling, we will have

𝜖𝑖|𝑋1, 𝑋2,… ,𝑋𝑁 ∼ Normal(0, 𝜎2).

Under the null hypothesis we have

̂𝛽1 = 𝛽∗
1 +

𝑁
∑
𝑖=1

𝑤𝑖𝜖𝑖.

Since ̂𝛽1 is a constant plus a linear combination of normally distributed terms, it is normally
distributed (conditional on {𝑋1, 𝑋2,… ,𝑋𝑁}). We have already shown that 𝐸[ ̂𝛽1|𝑋1, ..., 𝑋𝑁 ]
is unbiased and 𝑣𝑎𝑟[ ̂𝛽1|𝑋1, ..., 𝑋𝑁 ] = 𝜎2/∑𝑁

𝑖=1(𝑋𝑖 − 𝑋)2. Therefore under the null hypothesis
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that 𝛽1 = 𝛽∗
1 we have

̂𝛽1|𝑋1, ..., 𝑋𝑁 ∼ Normal(𝛽∗
1,

𝜎2

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

).

That is,

̂𝛽1 − 𝛽∗
1

√ 𝜎2

∑𝑁
𝑖=1(𝑋𝑖−𝑋)2

∣
∣
∣
∣

𝑋1, ..., 𝑋𝑁 ∼ Normal(0, 1).

The remaining problem is that 𝜎2 is unknown. It turns out that replacing 𝜎2 with 𝜎2 as
calculated in Eq. 5.17, we have

𝑡 =
̂𝛽1 − 𝛽∗

1

√ 𝜎2

∑𝑁
𝑖=1(𝑋𝑖−𝑋)2

∼ 𝑡(𝑁−2). (5.23)

We can drop the conditioning information, since the t-distribution does not depend on
𝑋1, ..., 𝑋𝑁 . In other words, the result holds unconditionally.

We can then use Eq. 5.23 to test 𝐻0 ∶ 𝛽1 = 𝛽∗
1 in the usual way. For instance, for a 0.05 test,

we can use the rule “reject 𝐻0 ∶ 𝛽1 = 𝛽∗
1 if the absolute value of 𝑡 in Eq. 5.23 exceeds 𝑡0.025,𝑁−2

where 𝑡0.025,𝑁−2 is the 0.975 percentile of the 𝑡𝑁−2 distribution. The denominator is just the
square root of the usual estimator of 𝑣𝑎𝑟[ ̂𝛽1]. If we are testing if 𝛽1 = 0, then Eq. 5.23 is just
the parameter estimate divided by its standard error.

Example 5.5. We continue with Example 5.2, where we fit the regression 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖
on a simulated dataset with 𝑁 = 10 observations, and obtained the estimates

cat("beta1hat = ", round(b1hat,3), "\n")
cat("s.e.(beta1hat) = ", round(sqrt(estvarb1hat),3), "\n")

beta1hat = 0.908
s.e.(beta1hat) = 0.42

Suppose we are interested in testing the hypothesis 𝐻0 ∶ 𝛽1 = 0 vs the usual two-sided alterna-
tive, then the appropriate t-statistic is

t1 = b1hat / sqrt(estvarb1hat)
cat("t-stat(beta1=0) = ", round(t1,3))

t-stat(beta1=0) = 2.162

The critical value for the test at 0.01, 0.05 and 0.10 levels of significance is

round(c("0.10" = qt(0.95, 8), "0.05" = qt(0.975, 8), "0.01" = qt(0.995, 8)), 3)

0.10 0.05 0.01
1.860 2.306 3.355

We reject the hypothesis at 0.10 significance level, but not at 0.01 and 0.05 significance levels.
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Alternatively, we can compute the p-value for this test.

cat("p-val (b1=0) is: ", round((1-pt(abs(t1), 8))*2,4), "\n")

p-val (b1=0) is: 0.0626

To test 𝐻0 ∶ 𝛽1 = 1 vs 𝐻𝐴 ∶ 𝛽1 ≠ 1, the t-statistic is

t2 = (b1hat-1) / sqrt(estvarb1hat)
cat("t-stat(beta1=1) = ", round(t2,3), "with p-value: ", round((1-pt(abs(t2), 8))*2,4), "\n")

t-stat(beta1=1) = -0.22 with p-value: 0.8317

We do not reject this test at any of the usual significance levels.

Most of the calculations here can be obtained via R’s lm() function:

mdl <- lm(Y~X, data=df)
mdl_sum <- summary(mdl)
print(mdl_sum)

Call:
lm(formula = Y ~ X, data = df)

Residuals:
Min 1Q Median 3Q Max

-5.2180 -2.3236 0.8198 1.5689 4.3465

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.3473 1.9658 2.211 0.0580 .
X 0.9078 0.4200 2.162 0.0626 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.138 on 8 degrees of freedom
Multiple R-squared: 0.3687, Adjusted R-squared: 0.2898
F-statistic: 4.673 on 1 and 8 DF, p-value: 0.06262

The t-values reported are just the estimate divided by the standard error, and can be used
to test (separately) the hypotheses 𝛽0 = 0 and 𝛽1 = 0. The p-values indicate that we reject
these hypotheses at 10%, but not at 5%. Since this is simulated data with both parameters set
at 𝛽0 = 4 and 𝛽1 = 1.5, we know that we make the wrong inference (we do not reject a false
hypothesis) with the 0.05 and 0.01 tests. There is always the possibility of non-rejection of a false
hypothesis, but in this case, this is due to the small sample size and relatively noisy data, leading
to relatively large standard errors, and small t-values. For the test 𝐻0 ∶ 𝛽1 = 1 vs 𝐻𝐴 ∶ 𝛽1 ≠ 1
you can use the linearHypothesis() function from the car package. The test reported is an
“F-test” and not a t-test, although for tests of a single restriction they are equivalent (notice
that the p-value is identical to the t-test reported previously for this hypothesis). We will discuss
the F-test in a later chapter.
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car::linearHypothesis(mdl, "X=1")

Linear hypothesis test

Hypothesis:
X = 1

Model 1: restricted model
Model 2: Y ~ X

Res.Df RSS Df Sum of Sq F Pr(>F)
1 9 79.269
2 8 78.794 1 0.4746 0.0482 0.8317

5.5 Asymptotic Results

The results obtained so far are “finite sample” results, i.e., are valid for any given sample size
𝑁 (when Assumption Set A holds). The OLS estimators also have good properties in the limit
as 𝑁 → ∞, or “asymptotically”. We continue to focus of ̂𝛽1.

Consistency  ̂𝛽1 →𝑝 𝛽1.
The starting point for showing this result is Eq. 5.11 which we restate here, expanding 𝑤𝑖

and dividing the numerator and denominator of the last term by 1/𝑁 :

̂𝛽1 = 𝛽1 +
𝑁
∑
𝑖=1

𝑤𝑖𝜖𝑖

= 𝛽1 +
(1/𝑁)∑𝑁

𝑖=1(𝑋𝑖 −𝑋)𝜖𝑖
(1/𝑁)∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2
.

(5.24)

The last term is the ratio of sample covariance of 𝑋𝑖 and 𝜖𝑖 to the sample variance of 𝑋𝑖. If
we assume that the conditions are such that the sample covariance of 𝑋𝑖 and 𝜖𝑖 converges in
probability to the population covariance of 𝑋 and 𝜖, and likewise that the sample variance of
𝑋𝑖 converges in probability to the population variance of 𝑋, and that the population variance
of 𝑋 is not zero, then

̂𝛽1 = 𝛽1 +

→𝑝 cov[𝑋,𝜖]=0
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(1/𝑁)∑𝑁

𝑖=1(𝑋𝑖 −𝑋)𝜖𝑖
(1/𝑁)∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2⏟⏟⏟⏟⏟⏟⏟⏟⏟
→𝑝 𝑣𝑎𝑟[𝑋]≠0

→𝑝 𝛽1 (5.25)

The assumption that cov[𝑋, 𝜖] = 0 comes directly from the assumption that 𝐸[𝜖|𝑋] = 0. Earlier
we assumed that ∑𝑁

𝑖=1(𝑋𝑖 − 𝑋)2 ≠ 0. We modify this assumption slightly to 𝑣𝑎𝑟[𝑋] ≠ 0
(as noted earlier, the former is implied by the latter and random sampling). Convergence in
probability comes about from the laws of large numbers. Earlier we stated the LLN as the
convergence in probability of a sample mean to the population mean. The covariance of 𝑋 and
𝜖 is a population expectation (of the random variable (𝑋 − 𝐸[𝑋])(𝜖 − 𝐸[𝜖])) and the sample
covariance of 𝑋𝑖 and 𝜖𝑖 is a sample average of observations of this random variable. Likewise,
for the sample variance in the denominator. As long as the conditions for the LLN hold for
these sample means, convergence in probability will follow.
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It can be shown that under a mild extension of Assumption Set A, we have

√
𝑁( ̂𝛽1 − 𝛽1) →𝑑 Normal(0, 𝜎2

𝑣𝑎𝑟[𝑋]) (5.26)

or √
𝑁( ̂𝛽1 − 𝛽1)

√𝜎2/𝑣𝑎𝑟[𝑋]
→𝑑 Normal(0, 1) .

We can replace 𝜎2 and 𝐸[𝑋] with consistent estimates of the two. Replacing 𝜎2 with 𝜎2 and
using (1/𝑁)∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2 as a consistent estimator for 𝑣𝑎𝑟[𝑋], we have

̂𝛽1 − 𝛽1

√ 𝜎2

∑𝑁
𝑖=1(𝑋𝑖−𝑋)2

→𝑑 Normal(0, 1).

The left hand side is just the t-statistic in Eq. 5.23. In other words, we can continue to use the
t-statistic, but we choose the rejection region from the standard normal distribution rather than
the t-distribution. This test would only be approximate, but if the sample size is large enough
it should be sufficiently accurate.

We omit details of the proof of Eq. 5.26, but the intuition is as follows: write

̂𝛽1 = 𝛽1 +
𝑁
∑
𝑖=1

𝑤𝑖𝜖𝑖

= 𝛽1 + [ 1
𝑁 ∑

𝑖=1
(𝑋𝑖 −𝑋)2]

−1
1
𝑁 ∑

𝑖=1
(𝑋𝑖 −𝑋)𝜖𝑖

or
√
𝑁( ̂𝛽1 − 𝛽1) = [ 1

𝑁
𝑁
∑
𝑖=1

(𝑋𝑖 −𝑋)2]
−1

1√
𝑁

𝑁
∑
𝑖=1

(𝑋𝑖 −𝑋)𝜖𝑖

= [ 1
𝑁

𝑁
∑
𝑖=1

(𝑋𝑖 −𝑋)2]
−1

1√
𝑁

𝑁
∑
𝑖=1

𝑏𝑖𝜖𝑖

where 𝑏𝑖 = 𝑋𝑖 −𝑋. The random variables {𝑏𝑖𝜖𝑖}𝑁𝑖=1 have mean

𝐸[𝑏𝑖𝜖𝑖] = 𝐸[𝐸[𝑏𝑖𝜖𝑖|𝑋1, ..., 𝑋𝑁 ]] = 𝐸[𝑏𝑖𝐸[𝜖𝑖|𝑋1, ..., 𝑋𝑁 ]] = 0

and variance
𝐸[(𝑏𝑖𝜖𝑖)2] = 𝐸[𝑏2𝑖𝐸[𝜖2𝑖 |𝑋1, ..., 𝑋𝑁 ]] = 𝜎2𝐸[𝑏2𝑖 ].

If the required conditions for a relevant CLT hold, we have

1√
𝑁

𝑁
∑
𝑖=1

𝑏𝑖𝜖𝑖 →𝑑 𝑁(0, 𝜎2𝐸[𝑏2𝑖 ]) .
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Since (1/𝑁)∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2 →𝑝 𝑣𝑎𝑟[𝑋], evidently 𝐸[𝑏2𝑖 ] is 𝑣𝑎𝑟[𝑋]. Therefore

√
𝑁( ̂𝛽1 − 𝛽1) =

→𝑝 𝑣𝑎𝑟[𝑋]−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞
[ 1
𝑁

𝑁
∑
𝑖=1

(𝑋𝑖 −𝑋)2]
−1

→𝑑 Normal(0,𝜎2𝑣𝑎𝑟[𝑋])
⏞⏞⏞⏞⏞⏞⏞1√

𝑁
𝑁
∑
𝑖=1

𝑏𝑖𝜖𝑖

→𝑑 Normal(0, 𝜎2𝑣𝑎𝑟[𝑋]−1)

5.6 When Baseline Assumptions are Violated
In summary, OLS estimation behaves well when Assumption Set A holds. What happens if one
or more of the assumptions fail to hold?

5.6.1 Heteroskedasticity

The assumption of conditional homoskedasticity is that the variance of the noise terms do not
depend on the regressors. The proof of unbiasedness (and consistency) of OLS estimators did
not use this assumption in any way, which implies that violation of conditional homoskedasticity
(such as in Example 5.1) does not affect unbiasedness. However, the derivation of the formu-
las for 𝑣𝑎𝑟[ ̂𝛽1] and 𝑣𝑎𝑟[ ̂𝛽0] do use this assumption, so the derived formulas for the estimator
variances and t-tests are incorrect when conditional homoskedasticity fails to hold. Estimator
variances computed using the formulas derived under homoskedasticity when the noise terms
are heteroskedastic are unreliable. Furthermore, it turns out that OLS is no longer minimum
variance among unbiased linear estimators, i.e., OLS is no longer “efficient”. Discussions about
how OLS should be amended in response to conditional heteroskedasticity will have to wait until
a later chapter, when we discuss heteroskedasticity in more detail.

5.6.2 Endogeneity

Recall that one of the key assumptions for unbiasedness of OLS estimators is that
𝐸[𝜖𝑖|𝑋1,… ,𝑋𝑁 ] = 0. This assumption may fail to hold if 𝐸[𝜖|𝑋] = 0 does not hold in
population, or if there are sampling issues. “Endogeneity” is the word used to describe such
situations.

Example 5.6 (Truncated Sampling). Suppose 𝛽1 is positive so you have a positively sloped
PRF. Suppose you have a “truncated sample” where you cannot observe any observation where
𝑌𝑖 > 𝑐. This means that the only observations with larger values of 𝑋𝑖 that are included in
your sample will be the ones with lower or negative values of 𝜖𝑖, since a large 𝑋𝑖 together with
large positive 𝜖𝑖 makes 𝑌𝑖 > 𝑐 more likely. This implies a negative correlation between 𝑋 and 𝜖,
and invalidates the assumption 𝐸[𝜖𝑖|𝑋1,… ,𝑋𝑁 ] = 0. The following is an empirical illustration
where the PRF has a positive slope, and observations with 𝑌𝑖 > 1500 are unavailable. The plot
in Fig. 5.5 shows the full (black circles) and truncated (red x’s) samples. The estimated OLS
sample regression line for the full data set (black) and the truncated data set (red) are shown,
illustrating the downward bias in ̂𝛽1.

set.seed(13)
X <- rnorm(100, mean=50, sd=20)
Y <- 1220 + 4*X + rnorm(100, mean=0, sd=50)
df_notrunc <- data.frame(X, Y)
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df_trunc <- filter(df_notrunc, Y<=1500)
ggplot() +

geom_point(data=df_notrunc,aes(x=X,y=Y), pch=1, size=2) +
geom_smooth(data=df_notrunc,aes(x=X,y=Y), method="lm", se=FALSE, col="black") +
geom_point(data=df_trunc, aes(x=X,y=Y), pch=4, size=2,col='red') +
geom_smooth(data=df_trunc,aes(x=X,y=Y), method="lm", se=FALSE, col="red") +
theme_minimal()

1300

1400

1500

1600

25 50 75
X

Y

Figure 5.5: A truncated data set.

Example 5.7 (Measurement Error). Another kind of sampling issue is measurement error.
Suppose 𝑌 = 𝛽0 +𝛽1𝑋+𝜖 describes the relationship between 𝑌 and 𝑋, but 𝑋 is only observed
with error, i.e., you observe 𝑋∗ = 𝑋 +𝑢. Assume that the measurement error 𝑢 is independent
of 𝑋. Then

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖
= 𝛽0 + 𝛽1(𝑋∗ − 𝑢) + 𝜖
= 𝛽0 + 𝛽1𝑋∗ + (𝜖 − 𝛽1𝑢)
= 𝛽0 + 𝛽1𝑋∗ + 𝑣

where 𝑣 = 𝜖−𝛽1𝑢. You proceed with what appears to be the only feasible option to you, which
is to run the regression

𝑌 = 𝛽0 + 𝛽1𝑋∗ + 𝑣 ,

but since 𝑢 is correlated with 𝑋∗, the assumption 𝐸[𝑣|𝑋∗] = 0 does not hold. In the simulated
example below, we have a positively sloped PRF, shown in red, and measurement error in the
regressor. Since 𝛽1 is positive, 𝑋∗ and 𝑣 are negatively correlated, meaning that the error term
𝑣 will tend to be positive for smaller 𝑋∗ and negative for larger 𝑋∗. This tendency is visible in
Fig. 5.6 below. The red circles are the sample you would have observed with no measurement
error. The black circles are the same sample points, but with measurement error in the 𝑋𝑖’s.

set.seed(13)
X <- rnorm(100, mean=50, sd=20)
Y <- 1220 + 4*X + rnorm(100, mean=0, sd=10)



5.6. WHEN BASELINE ASSUMPTIONS ARE VIOLATED 131

Xstar <- X + rnorm(100, mean=0, sd=10)
df_measerr <- data.frame(X, Y, Xstar)
ggplot() +

geom_point(data=df_measerr,aes(x=Xstar,y=Y), pch=1, size=2) +
geom_point(data=df_measerr,aes(x=X,y=Y), pch=1, size=2, col="red") +
geom_abline(intercept=1220, slope=4, col='red') +
geom_smooth(data=df_measerr, aes(x=Xstar, y=Y), method="lm", col='black',

se=FALSE, linewidth=0.8) + xlab("X, Xstar") +
theme_minimal()
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Figure 5.6: A data set with measurement error in the regressor.

Example 5.8 (Simultaneity Bias). Suppose the market for a good is governed by the following
demand and supply equations

𝑄𝑑
𝑡 = 𝛿0 + 𝛿1𝑃𝑡 + 𝜖𝑑𝑡 (Demand Eq 𝛿1 < 0)

𝑄𝑠
𝑡 = 𝛼0 + 𝛼1𝑃𝑡 + 𝜖𝑠𝑡 (Supply Eq 𝛼1 > 0)

𝑄𝑠
𝑡 = 𝑄𝑑

𝑡 (Market Clearing)

where 𝑄 and 𝑃 represent log quantities and log prices respectively, so 𝛿1 and 𝛼1 represent price
elasticities of demand and supply respectively. Suppose the demand shock 𝜖𝑑𝑡 and supply shock
𝜖𝑠𝑦 are iid noise terms with zero means and variances 𝜎2

𝑑 and 𝜎2
𝑠 respectively, and are mutually

uncorrelated. Market clearing means that observed quantity and prices occur at the intersection
of the demand and supply equations, i.e., observed quantity and prices are such that

𝛿0 + 𝛿1𝑃𝑡 + 𝜖𝑑𝑡 = 𝛼0 + 𝛼1𝑃𝑡 + 𝜖𝑠𝑡 .

which we can solve to get

𝑃𝑡 =
𝛼0 − 𝛿0
𝛿1 − 𝛼1

+ 𝜖𝑠𝑡 − 𝜖𝑑𝑡
𝛿1 − 𝛼1

. (5.27)

Substituting this expression for prices into either the demand or supply equation gives

𝑄𝑡 = (𝛿0 + 𝛿1
𝛼0 − 𝛿0
𝛿1 − 𝛼1

)+ 𝛿1𝜖𝑠𝑡 − 𝛼1𝜖𝑑𝑡
𝛿1 − 𝛼1

. (5.28)
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Equations Eq. 5.27 and Eq. 5.28 imply

𝑣𝑎𝑟[𝑃𝑡] =
𝜎2
𝑠 + 𝜎2

𝑑
(𝛿1 − 𝛼1)2

and cov[𝑃𝑡, 𝑄𝑡] =
𝛿1𝜎2

𝑠 + 𝛼1𝜎2
𝑑

(𝛿1 − 𝛼1)2
.

This means that in a regression of 𝑄𝑡 = 𝛽0 + 𝛽1𝑃𝑡 + 𝜖𝑡, we will get

̂𝛽1 →𝑝
cov[𝑄𝑡, 𝑃𝑡]
𝑣𝑎𝑟[𝑃𝑡]

= 𝛿1𝜎2
𝑠 + 𝛼1𝜎2

𝑑
𝜎2𝑠 + 𝜎2

𝑑

which is neither the price elasticity of demand nor the price elasticity of supply.

The problem in this example is that prices and quantities are simultaneously determined by
the intersection of the demand and supply functions; both prices and quantities are “endogenous”
variables. The consequence of this is that regardless of whether you view the regression of 𝑄𝑡
on 𝑃𝑡 as estimating the demand or supply equation, the noise term in the regression will be
correlated with 𝑃𝑡. A supply shock shifts the supply function and changes both 𝑄𝑡 and 𝑃𝑡.
Likewise, a demand shock shifts the demand function and again changes both 𝑄𝑡 and 𝑃𝑡. The
use of the term “endogeneity” comes from applications like these, but it is now used for all
situations where the noise term is correlated with one or more of the regressors.

Example 5.9 (Omitted Variables). Suppose 𝑋 and 𝑍 are “causal” variables for 𝑌 , and we wish
to measure the effect 𝑋 has on 𝑌 . Suppose

𝑌 = 𝛼0 + 𝛼1𝑋 + 𝛼2𝑍 + 𝑤 (5.29)

where 𝛼2 ≠ 0 and 𝐸[𝑤|𝑋,𝑍] = 0. That is,

𝐸[𝑌 |𝑋,𝑍] = 𝛼0 + 𝛼1𝑋 + 𝛼2𝑍.

If we omit 𝑍 from Eq. 5.29 and write it as

𝑌 = 𝛼0 + 𝛼1𝑋 + 𝜖

we would be subsuming the variable 𝑍 into the noise term 𝜖

𝜖 = 𝛼2𝑍 + 𝑤.

If 𝑋 and 𝑍 are correlated, then cov[𝑋, 𝜖] ≠ 0. In a regression of 𝑌 on 𝑋, the OLS estimator
̂𝛼1 will be biased and inconsistent for 𝛼1. We have not specified enough detail to derive an

expression for the bias, but it is easy to show inconsistency. The OLS estimator for ̂𝛼1 is

̂𝛼1 = 𝛼1 +
∑𝑁

𝑖=1(𝑋𝑖 −𝑋)𝜖𝑖
∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2

which will converge in probability to

𝛼1 +
cov[𝑋, 𝜖]
𝑣𝑎𝑟[𝑋] ≠ 𝛼1.



5.6. WHEN BASELINE ASSUMPTIONS ARE VIOLATED 133

That is, the OLS estimator ̂𝛼1 will be inconsistent for 𝛼1 and will misrepresent the degree of
causality from 𝑋 to 𝑌 .

The following is a more detailed example of a situation described in Example 5.9

Example 5.10. Suppose the true relationship of the variables 𝑋, 𝑌 and 𝑍 is given by

𝑌 = 𝛼0 + 𝛼1𝑍 + 𝑢
𝑋 = 𝑍 + 𝑣

(5.30)

That is, both 𝑌 and 𝑋 are driven by a third variable 𝑍 but are otherwise not connected. Assume
the noise terms 𝑢 and 𝑣 are independent of each other, with 𝑢 ∼ 𝑁(0, 𝜎2

𝑢) and 𝑣 ∼ 𝑁(0, 𝜎2
𝑣).

Suppose also that 𝑍 ∼ 𝑁(0, 𝜎2
𝑍). In this example, there are in fact values 𝛽0 and 𝛽1 such that

assumptions A1 to A3 in assumption set A hold. It can be shown (see exercises) that

𝐸[𝑍|𝑋] = 𝜎2
𝑍

𝜎2
𝑍 + 𝜎2𝑣

𝑋. (5.31)

(Intuition for Eq. 5.31 : 𝑍 obviously has information about 𝑋, but given 𝑋 one also gets
information about 𝑍. If 𝜎2

𝑣 = 0 obviously 𝑍 = 𝑋. On the other hand, if 𝜎2
𝑣 is very large, then

the information content in 𝑋 about 𝑍 is small, and the expected value should be close to the
unconditional mean of 𝑍 which is zero.) From Eq. 5.31, we get

𝐸[𝑌 |𝑋] = 𝛼0 + 𝛼1𝐸[𝑍|𝑋] + 𝐸[𝑢|𝑋] = 𝛼0 +
𝛼1𝜎2

𝑍
𝜎2
𝑍 + 𝜎2𝑣

𝑋. (5.32)

It follows that 𝐸[𝜖|𝑋] = 0 where 𝜖 = 𝑌 − 𝛽0 − 𝛽1𝑋 with 𝛽0 = 𝛼0 and 𝛽1 = 𝛼1𝜎2
𝑍

𝜎2
𝑍+𝜎2𝑣

. It is also
straightforward to show that the conditional variance is a constant.

Since Assumption Set A holds, OLS estimation of a regression of 𝑌𝑖 on 𝑋𝑖 will produce an
unbiased and consistent estimator for 𝛽1, but this non-zero 𝛽1 does not indicate causality of 𝑋
on 𝑌 . In this example, it is 𝑍 that drives both 𝑌 and 𝑋. Any movements in 𝑋 resulting from
𝑣 but not 𝑍 will not result in any response in 𝑌 . But because 𝑍 drives both 𝑋 and 𝑌 , one will
observe a correlation between 𝑋 and 𝑌 .

The next example is an illustration of the previous two examples.

Example 5.11. We use the data in earnings.xlsx for this example. This data set contains a
sample of 540 individuals with information including earnings, height, sex, years of schooling,
among other variables. We run a regression of ln(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠) on ℎ𝑒𝑖𝑔ℎ𝑡.

df_cause <- read_csv("data\\earnings.csv")
mdl_cause <- lm(log(earnings)~height, data=df_cause)
summary(mdl_cause)

Call:
lm(formula = log(earnings) ~ height, data = df_cause)

Residuals:
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Min 1Q Median 3Q Max
-2.21599 -0.37662 -0.01233 0.33506 2.06550

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.026104 0.387961 0.067 0.946
height 0.040871 0.005722 7.143 2.98e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.563 on 538 degrees of freedom
Multiple R-squared: 0.08663, Adjusted R-squared: 0.08493
F-statistic: 51.03 on 1 and 538 DF, p-value: 2.976e-12

We find that the effect of ℎ𝑒𝑖𝑔ℎ𝑡 on ln(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠) is statistically significant (and economically
significant at 4% per inch), and “explains” over 8.6% of the variation in 𝑙𝑛(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠). However,
all this seems unlikely to be a true indication of “causality” in the sense of height causing
earnings, ceteris paribus. In particular, the sample includes observations on both males and
females. The result most likely reflects the wage gap between males and females. This is picked
up by ℎ𝑒𝑖𝑔ℎ𝑡 since there is also a systematic difference in the heights of males and females.

One of the main applications of regression analysis is to empirically explore if one variable
causes another, or at least the extent to which one variable causes another. However, what
simple linear regression captures is correlation between two variables, and correlation does not
necessarily reflect causality.

The ideal scenario for measuring causation of 𝑋 to 𝑌 would be to literally hold everything
else fixed, change 𝑋, and see how 𝑌 changes, but this is obviously impossible to do here. In some
applications we may be able to sample in such a way so that the noise 𝜖 is uncorrelated with 𝑋
by construction (this is the approach of randomized controlled trials). With observational data,
we have to find some other way to ‘control’ for confounding factors.

The solution to the omitted variable problem is (wherever possible) to include all relevant
explanatory variables into the regression. This takes us to the multiple linear regression frame-
work, which we cover in the next chapter. The solution to the other endogeneity problems
require more advanced techniques.

5.7 Exercises

Exercise 5.1. What is the OLS estimator for 𝛽0 in the linear regression model with no regressor,
i.e., in the regression 𝑌𝑖 = 𝛽0 + 𝜖𝑖? What is the 𝑅2 for this regression?

Remark: All of our regressions will include the intercept term, unless explicitly stated otherwise.

Exercise 5.2. You should have found the ̂𝛽0 in Exercise 5.1 to be the sample mean 𝑌 . Suppose
you choose to estimate 𝛽0 using some other measure of location (perhaps the median of 𝑌𝑖).
What can you say about the 𝑅2 in this case?

Exercise 5.3. Show for the simple linear regression model (with intercept term included) that
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the 𝑅2 is the square of the correlation coefficient of 𝑌𝑖 and ̂𝑌𝑖, i.e.,

𝑅2 = ⎡
⎢
⎣

∑𝑁
𝑖=1(𝑌𝑖 − 𝑌 )( ̂𝑌𝑖 − ̂𝑌 )

√∑𝑁
𝑖=1(𝑌𝑖 − 𝑌 )2√∑𝑁

𝑖=1( ̂𝑌𝑖 − ̂𝑌 )2
⎤
⎥
⎦

2

This is where the name “𝑅2” comes from. Show also that

𝑅2 = ⎡⎢
⎣

∑𝑁
𝑖=1(𝑌𝑖 − 𝑌 )(𝑋𝑖 −𝑋)

√∑𝑁
𝑖=1(𝑌𝑖 − 𝑌 )2√∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2
. ⎤⎥
⎦

2

The first of these two expressions will hold for OLS estimation of the multiple linear regression
model. The second is specific to the simple linear regression model.

Exercise 5.4. Explain why ∑𝑁
𝑖=1 𝑤𝑖𝑣𝑖 = 0 in Eq. 5.20.

Exercise 5.5. Show that 𝐸[𝑍|𝑋] = 𝜎2
𝑍

𝜎2
𝑍+𝜎2𝑣

𝑋 in Example 5.9). (Hint: Look up the notes on the
Bivariate Normal Distribution.)

Exercise 5.6. Show for the simple linear regression (with intercept) that any observation
(𝑋𝑖, 𝑌𝑖) such that 𝑋𝑖 = 𝑋 does not numerically affect the value of the OLS estimator ̂𝛽1.

Exercise 5.7. Suppose we wish to estimate a simple linear regression on a data set {𝑋𝑖, 𝑌𝑖}80𝑖=1,
but because of a clerical error, twenty additional rows of zeros were added to the excel file
containing the data. That is, instead of estimating the regression on {𝑋𝑖, 𝑌𝑖}80𝑖=1, the regression
was estimated on {𝑋𝑖, 𝑌𝑖}100𝑖=1 where (𝑋𝑖, 𝑌𝑖) = (0, 0) for 𝑖 = 81, ..., 100. Explain why this error
does not affect the numerical value of ̂𝛽1. Will it affect the numerical value of ̂𝛽0? What about
their variances?

Exercise 5.8. Suppose you have a data set {𝑋𝑖, 𝑌𝑖}𝑁𝑖=1 where 𝑋𝑖 is binary, with 𝑁0 observations
where 𝑋𝑖 = 0 and 𝑁1 observations where 𝑋𝑖 = 1, 𝑁0 +𝑁1 = 𝑁 . You estimate a simple linear
regression model on this data set using OLS. Show that ̂𝛽0 is equal to the sample mean of 𝑌𝑖
over all observations where 𝑋𝑖 = 0, i.e., ̂𝛽0 = (1/𝑁0)∑𝑖∶𝑋𝑖=0 𝑌𝑖 and ̂𝛽1 is equal to the sample
mean of 𝑌𝑖 over all observations where 𝑋𝑖 = 1 minus the sample mean of 𝑌𝑖 over all observations
where 𝑋𝑖 = 0, i.e.,

̂𝛽1 = 1
𝑁1

∑
𝑖∶𝑋𝑖=1

𝑌𝑖 −
1
𝑁0

∑
𝑖∶𝑋𝑖=0

𝑌𝑖.

Exercise 5.9. We have shown that measurement error in the regressor leads to inconsistent
estimators. Does measurement error in the regressand 𝑌 also result in inconsistent estimators?

Exercise 5.10. The data set Anscombe.xlsx contains for four pairs of variables: (𝑋1, 𝑌 1),
(𝑋2, 𝑌 2), (𝑋3, 𝑌 3) and (𝑋4, 𝑌 4).

a. Regress 𝑌 1 on 𝑋1, 𝑌 2 on 𝑋2, 𝑌 3 on 𝑋3 and 𝑌 4 on 𝑋4 in four separate regressions (all
with intercept term). Report the results as given in coef(summary()), and the 𝑅2 for
all four regressions. What do you observe? For each regression, plot the data and the
fitted SRF in one diagram (one figure per regression) and plot the residuals against the
regressors in a separate diagram (also one each per regression), and comment on the plots.
This exercise shows you the important of visually inspecting your regressions.
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b. For each of the four regressions in part (a), verify that the residuals sum to zero and are
orthogonal to the regressor.

Exercise 5.11. Derive Eq. 5.22.

Exercise 5.12. Refer to the earnings.csv data set which contains observations of a sample of
adult workers. The variable earnings is hourly earnings and age is the age of workers. Consider
the regression

𝑙𝑜𝑔(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠) = 𝛽0 + 𝛽1𝑎𝑔𝑒 + 𝜖 .

a. What is the interpretation of 𝛽1? b. Does 𝛽0 have an economic interpretation? c. What
would be the interpretation of 𝛽0 be in the regression

𝑙𝑜𝑔(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠) = 𝛽0 + 𝛽1(𝑎𝑔𝑒 − 21) + 𝜖 ?



Chapter 6
Multiple Linear Regression

Multiple linear regression extends the simple linear regression framework to multiple regressors:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝐾−1𝑋𝐾−1 + 𝜖 . (6.1)

Here 𝑋1, 𝑋2, ..., 𝑋𝐾−1 represent different variables, although one may be some transformation
of another. That is, it may be that 𝑋1 and 𝑋2 represent completely different random variables,
such as age and work experience wexp, or it may be that 𝑋2 is a function of 𝑋1, e.g., 𝑋2 = 𝑋2

1 .
In either case, when speaking of the multiple linear regression model generically, we will denote
the regressors as 𝑋1, 𝑋2, ..., 𝑋𝐾−1.1 The variable 𝜖 is again a catch-all noise term. The parameter
𝛽0 is the intercept, and 𝛽1,… , 𝛽𝐾−1 are the “slope coefficients”. The term “coefficients” will refer
to both the intercept and the slope coefficients.

The following examples illustrate the usefulness of extending the simple linear regression to
multiple linear regression.

Example 6.1. Suppose 𝑋 and 𝑍 are correlated variables, but only 𝑍 is a true causal variable
of 𝑌 . To fix ideas, suppose 𝑋 is height, 𝑍 is gender and 𝑌 is wage. Estimating the regression

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖

on data from a population where there is a gender wage gap will generally result in a significant
estimate of 𝛽1. This reflects only the common correlation between both 𝑌 and 𝑋 with 𝑍. As
we will see, the multiple linear regression model

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝜖

can help separate the effects of 𝑋 and 𝑍 on 𝑌 . If both 𝑋 and 𝑍 are bona fide causal variables,
the multiple linear regression model will be helpful in measuring the extent of causality between
the two variables on the dependent variable.

Example 6.2. The simple linear regression model assumes a linear conditional expectation,
but it may be that the conditional expectation is non-linear in the variables. In some cases,
transformations to the regressor or the regressand (or both) suffices. For instance, the “log-
linear” model

ln𝑌 = 𝛽0 + 𝛽1 ln𝑋 + 𝜖

may fit the data well. In other cases, however, we might need greater flexibility in specifying the
form of the conditional expectation. The multiple linear regression framework gives us a good

1If we use 𝑋1, 𝑋2, etc. to denote different variables, then the 𝑖th observation of regressor 𝑋𝑗 will be denoted
𝑋𝑗,𝑖. If we use 𝑋, 𝑌 , 𝑍, to denote different variables, then the 𝑖th observation of these variables will be denoted
𝑋𝑖, 𝑌𝑖, 𝑍𝑖.

137
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deal of flexibility. For example, we can have specifications such as

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝜖 , (6.2)

or
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐷.𝑋 + 𝜖 , (6.3)

where 𝐷 is a binary variable that is equal to one if 𝑋 is greater or equal to some threshold 𝜉,
and zero otherwise.

Example 6.3. It may be that there are several variables that are good predictor for the depen-
dent variable. Multiple linear regression models allow us a flexible way to use multiple predictors
using specifications such as

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝜖

or even
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑍 + 𝛽4𝑍2 + 𝛽5𝑍.𝑋 + 𝜖 (6.4)

The regressors 𝐷.𝑋 in Eq. 6.3 and 𝑍.𝑋 in Eq. 6.4 are called interaction terms.

Example 6.4. The ability to specify flexible non-linear relationships in the multiple linear
regression framework is also helpful in causal applications. It may well be that the relationship
between dependent variable and a causal variable is non-linear. For instance, e.g., the rate of
increase in earnings as a worker gets older may decline with age, in which case the specification

ln 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 = 𝛽0 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑎𝑔𝑒2 + 𝛽3𝑤𝑒𝑥𝑝 + 𝜖 (6.5)

may be appropriate. In Eq. 6.5, we have

𝛿 ln 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠
𝛿 𝑎𝑔𝑒 = 𝛽1 + 𝛽2 𝑎𝑔𝑒 .

which allows the percentage annual increase in earnings to depend on age. We can also allow
the rate of increase to depend also on other variables which specifications such as

ln 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 = 𝛽0 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑎𝑔𝑒2 + 𝛽3𝑤𝑒𝑥𝑝 + 𝛽4𝑤𝑒𝑥𝑝.𝑎𝑔𝑒 + 𝜖 (6.6)

where
𝛿 ln 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝛿 𝑎𝑔𝑒 = 𝛽1 + 𝛽2 𝑎𝑔𝑒 + 𝛽4𝑤𝑒𝑥𝑝 .

Multiple regression models are usually estimated using ordinary least squares. In this chapter,
we focus on the multiple linear regression with two regressors

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝜖.

The general multi-regressor case is best dealt with using matrix algebra, which we leave for a later
chapter. We use the two regressor case to build intuition regarding issues such as bias-variance
tradeoffs, how the inclusion of an additional variable helps to “control” for the confounding effect
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of that variable, and basic ideas about joint hypotheses testing. We continue to assume that
you are working with cross-sectional data. Be reminded that the variables 𝑌 , 𝑋 and 𝑍 may be
transformations of the variables of interest. Furthermore, 𝑋 and 𝑍 may be transformations of
the same variable, e.g., we may have 𝑍 = 𝑋2.

We use the following packages in this chapter.

library(tidyverse)
library(patchwork)
library(readxl)
library(car)

6.1 OLS Estimation of the Multiple Linear Regression Model

Let {𝑌𝑖, 𝑋𝑖, 𝑍𝑖}𝑁𝑖=1 be your sample. For any estimators ̂𝛽0, ̂𝛽1 and ̂𝛽2 (whether or not obtained
by OLS), define the fitted values to be

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖 + ̂𝛽2𝑍𝑖 (6.7)

and the residuals to be
̂𝜖𝑖 = 𝑌𝑖 − ̂𝑌𝑖 = 𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖 − ̂𝛽2𝑍𝑖 (6.8)

for 𝑖 = 1, 2, ..., 𝑁 . The OLS method chooses ( ̂𝛽0, ̂𝛽1, ̂𝛽2) to be those values of (𝛽0, 𝛽1, 𝛽2) that
minimize the sum of squared residuals 𝑆𝑆𝑅 = ∑𝑁

𝑖=1(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖 − ̂𝛽2𝑍𝑖)2, i.e.,

̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1 , ̂𝛽𝑜𝑙𝑠
2 = argmin ̂𝛽0, ̂𝛽1, ̂𝛽2

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖 − ̂𝛽2𝑍𝑖)2. (6.9)

The phrase “argmin ̂𝛽0, ̂𝛽1, ̂𝛽2
” means “the values of ̂𝛽0, ̂𝛽1, ̂𝛽2 that minimize …”). The OLS esti-

mators can be found by solving the first order conditions:

𝜕𝑆𝑆𝑅
𝜕 ̂𝛽0

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1 , ̂𝛽𝑜𝑙𝑠
2

= −2
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖 − ̂𝛽𝑜𝑙𝑠
2 𝑍𝑖) = 0 ,

𝜕𝑆𝑆𝑅
𝜕 ̂𝛽1

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1 , ̂𝛽𝑜𝑙𝑠
2

= −2
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖 − ̂𝛽𝑜𝑙𝑠
2 𝑍𝑖)𝑋𝑖 = 0 ,

𝜕𝑆𝑆𝑅
𝜕 ̂𝛽2

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1 , ̂𝛽𝑜𝑙𝑠
2

= −2
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖 − ̂𝛽𝑜𝑙𝑠
2 𝑍𝑖)𝑍𝑖 = 0 .

(6.10)

We can also write the first order conditions as

𝑁
∑
𝑖=1

̂𝜖𝑜𝑙𝑠𝑖 = 0 ,
𝑁
∑
𝑖=1

̂𝜖𝑜𝑙𝑠𝑖 𝑋𝑖 = 0 , and
𝑁
∑
𝑖=1

̂𝜖𝑜𝑙𝑠𝑖 𝑍𝑖 = 0 . (6.11)

Instead of solving the three-equation three-unknown system Eq. 6.10 directly, we are going to
take an alternative but entirely equivalent approach. This alternative approach is indirect, but
more illustrative. We focus on the estimation of ̂𝛽𝑜𝑙𝑠

1 . You can get the solution for ̂𝛽𝑜𝑙𝑠
2 by

switching 𝑋𝑖 with 𝑍𝑖 in the steps shown. After obtaining ̂𝛽𝑜𝑙𝑠
1 and ̂𝛽𝑜𝑙𝑠

2 , you can use the first
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equation in Eq. 6.10 to compute

̂𝛽𝑜𝑙𝑠
0 = 𝑌 − ̂𝛽𝑜𝑙𝑠

1 𝑋 − ̂𝛽𝑜𝑙𝑠
2 𝑍 .

We begin with the following “auxiliary” regressions:
1. Regress 𝑋𝑖 on 𝑍𝑖, and collect the residuals 𝑟𝑖,𝑥|𝑧 from this regression, i.e., compute

𝑟𝑖,𝑥|𝑧 = 𝑋𝑖 − ̂𝛿0 − ̂𝛿1𝑍𝑖 , 𝑖 = 1, 2, ..., 𝑁

where ̂𝛿0 and ̂𝛿1 are the OLS estimators for the intercept and slope coefficients from a
regression of 𝑋𝑖 on a constant and 𝑍𝑖.

2. Regress 𝑌𝑖 on 𝑍𝑖, and collect the residuals 𝑟𝑖,𝑦|𝑧 from this regression, i.e., compute

𝑟𝑖,𝑦|𝑧 = 𝑌𝑖 − ̂𝛼0 − ̂𝛼1𝑍𝑖 , 𝑖 = 1, 2, ..., 𝑁

where ̂𝛼0 and ̂𝛼1 are the OLS estimators for the intercept and slope coefficients from a
regression of 𝑌𝑖 on a constant and 𝑍𝑖.

The OLS estimator ̂𝛽𝑜𝑙𝑠
1 obtained from solving the first order conditions Eq. 6.10 turns out to

be equal to the OLS estimator of the coefficient on 𝑟𝑖,𝑥|𝑧 in a regression of 𝑟𝑖,𝑦|𝑧 on 𝑟𝑖,𝑥|𝑧 (you can
exclude the intercept term here; the sample means of both residuals are zero by construction,
so the estimator for the intercept term if included will also be zero). In other words,

̂𝛽𝑜𝑙𝑠
1 =

∑𝑁
𝑖=1 𝑟𝑖,𝑥|𝑧𝑟𝑖,𝑦|𝑧
∑𝑁

𝑖=1 𝑟2𝑖,𝑥|𝑧
. (6.12)

To see this, note that since {𝑟𝑖,𝑥|𝑧}𝑁𝑖=1 are OLS residuals from a regression of 𝑋𝑖 on an intercept
term and 𝑍𝑖, we have ∑𝑁

𝑖=1 𝑟𝑖,𝑥|𝑧 = 0 and ∑𝑁
𝑖=1 𝑟𝑖,𝑥|𝑧𝑍𝑖 = 0. This implies

𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧�̂�𝑖 =
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧( ̂𝛿0 + ̂𝛿1𝑍𝑖) = 0

and furthermore,
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧𝑋𝑖 =
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧(�̂�𝑖 + 𝑟𝑖,𝑥|𝑧) =
𝑁
∑
𝑖=1

𝑟2𝑖,𝑥|𝑧.

Now consider the sum ∑𝑁
𝑖=1 𝑟𝑖,𝑥|𝑧𝑟𝑖,𝑦|𝑧. We have

𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧𝑟𝑖,𝑦|𝑧 =
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧(𝑌𝑖 − ̂𝛼0 − ̂𝛼1𝑍𝑖)

=
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧𝑌𝑖

=
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧( ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖 + ̂𝛽𝑜𝑙𝑠
2 𝑍𝑖 + ̂𝜖𝑖)

= ̂𝛽𝑜𝑙𝑠
1

𝑁
∑
𝑖=1

𝑟2𝑖,𝑥|𝑧 +
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧 ̂𝜖𝑖.

(6.13)
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Finally, we note that the first order conditions Eq. 6.10 imply that

𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧 ̂𝜖𝑖 =
𝑁
∑
𝑖=1

̂𝜖𝑖(𝑋𝑖 − ̂𝛿0 − ̂𝛿1𝑍𝑖)

=
𝑁
∑
𝑖=1

̂𝜖𝑖𝑋𝑖 − ̂𝛿0
𝑁
∑
𝑖=1

̂𝜖𝑖 − ̂𝛿1
𝑁
∑
𝑖=1

̂𝜖𝑖𝑍𝑖 = 0.

Therefore
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧𝑟𝑖,𝑦|𝑧 = ̂𝛽𝑜𝑙𝑠
1

𝑁
∑
𝑖=1

𝑟2𝑖,𝑥|𝑧

which gives Eq. 6.12.
Note that in order for Eq. 6.12 to be feasible, we require ∑𝑁

𝑖=1 𝑟2𝑖,𝑥|𝑧 ≠ 0. This means that
𝑋𝑖 and 𝑍𝑖 cannot be perfectly correlated (positively or negatively). They can be correlated, just
not perfectly so. Furthermore, in the auxiliary regression of 𝑋𝑖 on 𝑍𝑖, we require some variation
in 𝑍𝑖, i.e., it cannot be that all the 𝑍𝑖, 𝑖 = 1, 2, ..., 𝑁 have the same value 𝑐. Similarly, to derive
̂𝛽𝑜𝑙𝑠
2 , we require variation in 𝑋𝑖. All this is perfectly intuitive. If there is no variation in 𝑋𝑖

in the sample, we cannot measure how 𝑌𝑖 changes with 𝑋𝑖. Similarly for 𝑍𝑖. If 𝑋𝑖 and 𝑍𝑖 are
perfectly correlated, we will not be able to tell whether a change in 𝑌𝑖 is due to a change in 𝑋𝑖
or in 𝑍𝑖, since they move in perfect lockstep. We can summarize all of these requirements by
saying that there is no (𝑐1, 𝑐2, 𝑐3) ≠ (0, 0, 0) such that 𝑐1 +𝑐2𝑋𝑖 +𝑐3𝑍𝑖 = 0 for all 𝑖 = 1, 2, ..., 𝑁 .

The argument presented shows the essence of how confounding factors are ‘controlled’ in
multiple regression analysis. Suppose we want to measure how 𝑌𝑖 is affected by 𝑋𝑖. If 𝑍𝑖 is
an important determinant of 𝑌𝑖 that is correlated with 𝑋𝑖, but omitted from the regression,
then the measurement of the influence of 𝑋𝑖 on 𝑌𝑖 will be distorted. In an experiment, we
would control for 𝑍𝑖 by literally holding it fixed. In applications in economics, this is impossible.
What multiple regression analysis does instead is to strip out all variation in 𝑌𝑖 and 𝑋𝑖 that are
correlated with 𝑍𝑖, and then measure the correlation in the remaining variation in 𝑌𝑖 and 𝑋𝑖.

6.2 Algebraic Properties of OLS Estimators

We drop the ‘OLS’ superscript in our notation of the OLS estimators, residuals, and fitted values
from this point, and write ̂𝛽0, ̂𝛽1, ̂𝛽2, ̂𝜖𝑖 and ̂𝑌𝑖 for ̂𝛽𝑜𝑙𝑠

0 , ̂𝛽𝑜𝑙𝑠
1 , ̂𝛽𝑜𝑙𝑠

2 , ̂𝜖𝑜𝑙𝑠𝑖 and ̂𝑌 𝑜𝑙𝑠
𝑖 respectively. We

will reinstate the ‘ols’ superscript whenever we need to emphasize that OLS was used, or when
comparing OLS estimators to estimators derived in another way.

Many of the algebraic properties carry over from the simple linear regression model.
1. We have already noted that the first order conditions can be written as

𝑁
∑
𝑖=1

̂𝜖𝑖 = 0,
𝑁
∑
𝑖=1

𝑋𝑖 ̂𝜖𝑖 = 0 and
𝑁
∑
𝑖=1

𝑍𝑖 ̂𝜖𝑖 = 0.

2. This implies that the fitted values ̂𝑌𝑖 and the residuals are also uncorrelated.
3. The first equation in the first order conditions Eq. 6.10 implies that the point (𝑋, 𝑌 , 𝑍)

lies on the sample regression function.
4. 𝑌 = ̂𝑌 continues to hold.
5. The above properties imply that the 𝑆𝑆𝑇 = 𝑆𝑆𝐸+𝑆𝑆𝑅 equality continues to hold in the
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multiple regression case

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 =
𝑁
∑
𝑖=1

( ̂𝑌𝑖 − ̂𝑌 )2 +
𝑁
∑
𝑖=1

̂𝜖2𝑖 . (6.14)

As in the simple linear regression case, we can use Eq. 6.14 to define the goodness-of-fit
measure:

𝑅2 = 1 − 𝑆𝑆𝑅
𝑆𝑆𝑇 . (6.15)

It should be noted that the 𝑅2 will never decrease as we add more variables to the regres-
sion. This is because OLS minimizes 𝑆𝑆𝑅, and therefore maximizes 𝑅2. For example,
the 𝑅2 from the regression 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝑢 will never be less than the 𝑅2 from
the regression 𝑌 = 𝛼0 + 𝛼1𝑋 + 𝜖, and will generally be greater, unless it so happens that
̂𝛽0 = ̂𝛼0, ̂𝛽1 = ̂𝛼1 and ̂𝛽2 = 0. For this reason, the “Adjusted 𝑅2”

Adj.-𝑅2 = 1 −
1

𝑁−𝐾𝑆𝑆𝑅
1

𝑁−1𝑆𝑆𝑇

is sometimes used, where 𝐾 is the number of regressors (including the intercept term;
for the 2-regressor case that we are focussing on, 𝐾 = 3). The idea is to use unbiased
estimates of the variances of 𝜖 and 𝑌 . Since both 𝑆𝑆𝑅 and 𝑁−𝐾 decrease when additional
variables (and parameters) are added into the model, the adjusted 𝑅2 will increase only
if 𝑆𝑆𝑅 falls enough to lower the value of 𝑆𝑆𝑅/(𝑁 − 𝑘). The adjusted 𝑅2 may be used
as an alternate measure of goodness-of-fit, but it should not be used as a model selection
tool, for reasons we shall come to later later in the chapter.

6. In the derivation Eq. 6.13 of the OLS estimator ̂𝛽1, we noted that

𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧𝑟𝑖,𝑦|𝑧 =
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧(𝑌𝑖 − ̂𝛼0 − ̂𝛼1𝑍𝑖)

=
𝑁
∑
𝑖=1

𝑟𝑖,𝑥|𝑧𝑌𝑖.

This implies that the estimator can also be written as

̂𝛽1 =
∑𝑁

𝑖=1 𝑟𝑖,𝑥|𝑧𝑟𝑖,𝑦|𝑧
∑𝑁

𝑖=1 𝑟2𝑖,𝑥|𝑧
=

∑𝑁
𝑖=1 𝑟𝑖,𝑥|𝑧𝑌𝑖

∑𝑁
𝑖=1 𝑟2𝑖,𝑥|𝑧

(6.16)

which is the formula for the simple linear regression of 𝑌𝑖 on 𝑟𝑖,𝑥|𝑧. In other words, you
can also get the OLS estimator ̂𝛽1 by regressing 𝑌𝑖 on 𝑟𝑖,𝑥|𝑧 without first stripping out the
covariance between 𝑌𝑖 and 𝑍𝑖.

7. The expression Eq. 6.16 shows that ̂𝛽1 is a linear estimator, i.e.,

̂𝛽1 =
𝑁
∑
𝑖=1

𝑤𝑖𝑌𝑖

where here the weights are 𝑤𝑖 = 𝑟𝑖,𝑥|𝑧/∑
𝑁
𝑖=1 𝑟2𝑖,𝑥|𝑧. Note that the weights 𝑤𝑖 are made up
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solely of observations {𝑋𝑖}𝑁𝑖=1 and {𝑍𝑖}𝑁𝑖=1, since they are the residuals from a regression
of 𝑋𝑖 on 𝑍𝑖. Furthermore, the weights have the following properties:

𝑁
∑
𝑖=1

𝑤𝑖 = 0 ,

𝑁
∑
𝑖=1

𝑤𝑖𝑍𝑖 =
∑𝑁

𝑖=1 𝑟𝑖,𝑥|𝑧𝑍𝑖

∑𝑁
𝑖=1 𝑟2𝑖,𝑥|𝑧

= 0 ,

𝑁
∑
𝑖=1

𝑤𝑖𝑋𝑖 =
∑𝑁

𝑖=1 𝑟𝑖,𝑥|𝑧𝑋𝑖

∑𝑁
𝑖=1 𝑟2𝑖,𝑥|𝑧

= 1 ,

𝑁
∑
𝑖=1

𝑤2
𝑖 =

∑𝑁
𝑖=1 𝑟2𝑖,𝑥|𝑧

(∑𝑁
𝑖=1 𝑟2𝑖,𝑥|𝑧)2

= 1
∑𝑁

𝑖=1 𝑟2𝑖,𝑥|𝑧
.

8. If the sample correlation between 𝑋𝑖 and 𝑍𝑖 is zero, then the coefficient estimate ̂𝛿1 in the
auxiliary regression where we regressed 𝑋 on 𝑍 would be zero, and ̂𝛿0 would be equal to
the sample mean of 𝑋. In other words, we would have 𝑟𝑖,𝑥|𝑧 = 𝑋𝑖 −𝑋, so

̂𝛽1 =
∑𝑁

𝑖=1 𝑟𝑖,𝑥|𝑧𝑌𝑖

∑𝑁
𝑖=1 𝑟2𝑖,𝑥|𝑧

= ∑𝑁
𝑖=1(𝑋𝑖 −𝑋)𝑌𝑖

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

This is, of course, just the OLS estimator for the coefficient on 𝑋𝑖 in the simple linear
regression of 𝑌 on 𝑋. In other words, if the sample correlation between 𝑋𝑖 and 𝑍𝑖 is
zero, then including 𝑍𝑖 in the regression would not change the value of the simple linear
regression estimator for the coefficient on 𝑋𝑖. We will see shortly that including the
additional variable may nonetheless reduce the estimator variance.

6.3 Statistical Properties of OLS Estimators

We list Assumption Set B below, which is an adaptation of Assumption Set A to the two-regressor
case. With these assumptions, the OLS estimators will again be unbiased and efficient. We will
leave the proof of many of these results to a later chapter, when we deal with the general case. In
this section, we focus on the OLS estimator variance, and in particular on the trade-off between
the benefits of including more variables and the cost of doing so in terms of higher estimator
variance.

Assumption Set B:  Suppose that (B1) there are values 𝛽0, 𝛽1 and 𝛽2 such that the random
variable 𝜖, defined as

𝜖 = 𝑌 − 𝛽0 − 𝛽1𝑋 − 𝛽2𝑍

satisfies
(B2)  𝐸[𝜖|𝑋,𝑍] = 0,
(B3)  𝑣𝑎𝑟[𝜖|𝑋,𝑍] = 𝜎2.
Suppose also that your data
(B4)  {𝑋𝑖, 𝑌𝑖, 𝑍𝑖}𝑁𝑖=1 is a random sample from the population, and
(B5)  𝑐1 + 𝑐2𝑋𝑖 + 𝑐3𝑍𝑖 = 0 for all 𝑖 = 1, 2, ..., 𝑁 only if (𝑐1, 𝑐2, 𝑐3) = (0, 0, 0).
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Assumption B2 implies that

𝐸[𝑌 |𝑋] = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 . (6.17)

As in the simple linear regression case, the assumptions imply
• 𝐸[𝜖𝑖|x, z] = 0 for all 𝑖 = 1, ..., 𝑁 ,
• 𝐸[𝜖2𝑖 |x, z] = 𝜎2 for all 𝑖 = 1, ..., 𝑁 ,
• 𝐸[𝜖𝑖𝜖𝑗|x, z] = 0 for all 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, ..., 𝑁 where we use the notation x to denote

𝑋1, 𝑋2, ..., 𝑋𝑁 , and z to denote 𝑍1, 𝑍2, ..., 𝑍𝑁 .
OLS is unbiased, since

̂𝛽1 =
𝑁
∑
𝑖=1

𝑤𝑖𝑌𝑖

=
𝑁
∑
𝑖=1

𝑤𝑖(𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝜖𝑖)

= 𝛽1 +
𝑁
∑
𝑖=1

𝑤𝑖𝜖𝑖 .

Taking conditional expectations gives

𝐸[ ̂𝛽1|x, z] = 𝛽1 +
𝑁
∑
𝑖=1

𝑤𝑖𝐸[𝜖𝑖|x, z] = 𝛽1 .

It follows that the unconditional mean is 𝐸[ ̂𝛽1] = 𝛽1.
The conditional variance of ̂𝛽1 under Assumption Set B is

𝑣𝑎𝑟[ ̂𝛽1|x, z] = 𝑣𝑎𝑟 [𝛽1 +
𝑁
∑
𝑖=1

𝑤𝑖𝜖𝑖∣ x, z]

=
𝑁
∑
𝑖=1

𝑤2
𝑖 𝑣𝑎𝑟[𝜖𝑖|x, z]

= 𝜎2

∑𝑁
𝑖=1 𝑟2𝑖,𝑥|𝑧

.

(6.18)

Since the 𝑅2 from the regression of 𝑋𝑖 on 𝑍𝑖 is

𝑅2
𝑥|𝑧 = 1 −

∑𝑁
𝑖=1 𝑟2𝑖,𝑥|𝑧

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

,

we can also write 𝑣𝑎𝑟[ ̂𝛽1|x, z] as

𝑣𝑎𝑟[ ̂𝛽1|x, z] =
𝜎2

(1 − 𝑅2
𝑥|𝑧)∑

𝑁
𝑖=1(𝑋𝑖 −𝑋)2

. (6.19)



6.3. STATISTICAL PROPERTIES OF OLS ESTIMATORS 145

Expression Eq. 6.19 clearly shows the trade-offs involved in adding a second regressor. Sup-
pose the true data generating process is

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝜖 , 𝐸[𝜖|𝑋,𝑍] = 0 , 𝑣𝑎𝑟[𝜖|𝑋,𝑍] = 𝜎2

but you ran the regression
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝑢.

If 𝑋 and 𝑍 are correlated, then 𝑋 and 𝑢 are correlated, and you will get biased estimates of 𝛽1.
By estimating the multiple linear regression, you are able to get an unbiased estimate of 𝛽1 by
controlling for 𝑍. However, the variance of the OLS estimator for 𝛽1 changes from

𝑣𝑎𝑟[ ̂𝛽1|x] =
𝜎2
𝑢

∑𝑁
𝑖=1(𝑋𝑖 −𝑋)2

in the simple linear regression to the expression in Eq. 6.19 for the multiple linear regression.
Since 𝜎2 is the variance of 𝜖, and 𝜎2

𝑢 is the variance of a combination of the uncorrelated variables
𝑍 and 𝜖, we have 𝜎2 < 𝜎2

𝑢. This has the effect of reducing the estimator variance (which is good!).
However, since 0 < 1 − 𝑅2

𝑥|𝑧 < 1, the denominator in the variance expression is smaller in the
multiple linear regression case than in the simple linear regression case. This is because in the
multiple regression, we have stripped out all variation in 𝑋 that is correlated with 𝑍, resulting
in reduced effective variation in 𝑋, which in turn increases the estimator variance. In general
(and especially in causal applications), one would usually consider the trade-off to be in favor
of the multiple regression. However, if 𝑋 and 𝑍 are highly correlated (𝑅2

𝑥|𝑧 close to 1), then the
reduction in effective variation in 𝑋 may be so severe that the estimator variance becomes very
large. This tends to reduce the size of the t-statistic, leading to rejection of statistical significance
even in cases where the size of the estimate itself may suggest strong economic significance.

To compute a numerical estimate for the conditional variance of ̂𝛽1, we have to estimate 𝜎2.
An unbiased estimator for 𝜎2 in the two-regressor case is

𝜎2 = 1
𝑁 − 3

𝑁
∑
𝑖=1

̂𝜖2𝑖 . (6.20)

The 𝑆𝑆𝑅 is divided by 𝑁 − 3 because three ‘degrees-of-freedom’ were used in computing ̂𝛽0,
̂𝛽1 and ̂𝛽2 and these were used in the computation of ̂𝜖𝑖. We shall again leave the proof of

unbiasedness of 𝜎2 for when we deal with the general case. We estimate the conditional variance
of ̂𝛽1 using

𝑣𝑎𝑟[ ̂𝛽1|x, z] =
𝜎2

(1 − 𝑅2
𝑥|𝑧)∑

𝑁
𝑖=1(𝑋𝑖 −𝑋)2

(6.21)

The standard error of ̂𝛽1 is the square root of Eq. 6.21.

Example 6.5. The dataset multireg_eg.csv contains three variables 𝑋, 𝑌 and 𝑍. The variable
𝑍 takes integer values from 1 to 5. Fig. 6.1 shows two versions of a scatterplot of 𝑌 on 𝑋, the
one in panel b uses shapes to reflect observations associate with different values of 𝑍.



146 CHAPTER 6. MULTIPLE LINEAR REGRESSION

df <- read_csv("data\\multireg_eg.csv",col_types = c("n","n","n"))
p1 <- ggplot(data=df) + geom_point(aes(x=X, y=Y)) + theme_minimal()
p2 <- ggplot(data=df) + geom_point(aes(x=X, y=Y, shape=as.factor(Z))) +

theme_minimal() + theme(legend.position = "bottom") + labs(shape='Z')
p1|p2
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Figure 6.1: The effects of a confounding variable.

There is a clear negative relationships between 𝑌 and 𝑋. However, in panel (b) we see that
𝑌 and 𝑋 are in fact positively correlated when 𝑍 is fixed at some specific value. However, there
is a positive relationship between 𝑌 and 𝑍, and a negative one between 𝑍 and 𝑋, the net effect
of which is to sweep the scatter in the northwest direction as 𝑍 increases, turning a positive
correlation between 𝑌 and 𝑋 for fixed values of 𝑍 to a negative one overall.

We run two regressions below. The first is a simple linear regression of 𝑌 on 𝑋. The second
is a multiple linear regression of 𝑌 on 𝑋 and 𝑍.

mdl1 <- lm(Y~X, data=df)
coef(summary(mdl1))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 82.892162 3.2234151 25.715634 3.394337e-50
X -4.237024 0.4480503 -9.456581 3.882573e-16

cat("R-squared:", summary(mdl1)$r.squared,"\n\n")

R-squared: 0.431125

mdl2 <- lm(Y~X+Z, data=df)
coef(summary(mdl2))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.133354 2.0745669 0.5463086 5.858941e-01
X 3.122025 0.2048571 15.2400162 1.473978e-29
Z 10.110311 0.2369353 42.6711993 3.639969e-73

cat("R-squared:", summary(mdl2)$r.squared,"\n\n")

R-squared: 0.9656532
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The simple linear regression shows the negative relationship between 𝑌 and 𝑋 when viewed
over all outcomes of 𝑍. The multiple regression disentangles the effect of 𝑋 and 𝑍 on 𝑌 . In this
case, inclusion of 𝑍 has also reduced the standard error on the estimate of the coefficient on 𝑋
despite the reduced variation in 𝑋. This is because 𝑍 accounts for a very substantial proportion
of the variation in 𝑌 , as can be seen from the substantial increase in 𝑅2 when it is included (i.e.,
including 𝑊 reduces the variance of the noise term by a lot).

We replicate below the multi-step approach to obtaining the coefficient estimate on 𝑋:

mdl1a <- lm(Y~Z, data=df)
r_yz <- residuals(mdl1a)
mdl1b <- lm(X~Z, data=df)
r_xz <- residuals(mdl1b)
df$r_yz <- r_yz
df$r_xz <- r_xz
coef(summary(lm(r_yz~r_xz-1, data=df))) # "-1" in the formula means exclude the intercept

Estimate Std. Error t value Pr(>|t|)
r_xz 3.122025 0.2031283 15.36972 4.896607e-30

The numerical estimate of the coefficient on r_xz is identical to that on X in the previous
regression. The standard errors are similar, but not the same. We emphasize that the auxiliary
regression approach is for illustrative purposes only. The standard errors, t-statistic, etc. should
all be taken from the previous (multiple) regression.

The plots in Fig. 6.2 illustrate the effect of ‘controlling’ for Z.

plot_theme <- theme_minimal() + theme(legend.position = "none")
p1 <- ggplot(data=df) + geom_point(aes(x=X,y=Y, shape=as.factor(Z))) +

xlim(c(2.5,12.5)) + ylim(c(30,80)) + plot_theme
p2 <- ggplot(data=df) + geom_point(aes(x=r_xz,y=Y, shape=as.factor(Z))) +

xlim(c(-5,5)) + ylim(c(30,80)) + plot_theme
p3 <- ggplot(data=df) + geom_point(aes(x=r_xz,y=r_yz, shape=as.factor(Z))) +

xlim(c(-5,5)) + ylim(c(-25,25)) + plot_theme
p1|p2|p3
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Figure 6.2: Controlling for a confounding variable
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The range of the y-axis in the three plots are the same (30 to 80 in the first two, -25 to 25
in the third). Likewise the range of the x-axis is the same across all three plots (2.5 to 12.5 in
the first, -5 to 5 in the second and third). This allows you to see the reduced variation in the
variables. When we regress 𝑋 on 𝑍 and take the residuals, we remove the effect of 𝑍 on 𝑋 and
also center the residuals around zero (OLS residuals always have sample mean zero). You can
see from the second diagram that the variation in 𝑋 is reduced, which tends to increase the
estimator variance. You can also see that the negative slope has been turned into a positive
one, albeit with a lot of noise. By removing the effect of 𝑍 on 𝑌 (which we do when we include
𝑍 in the regression), we reduce the variation on 𝑌 . This reduces the estimator variance. The
slope coefficient in the simple regression of the data in the last panel gives the effect of 𝑋 on 𝑌 ,
controlling for 𝑍.

6.4 Hypothesis Testing
To test if 𝛽𝑘 is equal to some value 𝑟𝑘 in population, we can again use the t-statistic as in the
simple linear regression case:

𝑡 =
̂𝛽𝑘 − 𝑟𝑘

√𝑣𝑎𝑟[ ̂𝛽𝑘]
.

If the noise terms are conditionally normally distributed, then the 𝑡-statistic has the 𝑡-
distribution, with degrees-of-freedom 𝑁 − 𝐾 where 𝐾 = 3 in the two-regressor case with
intercept. If we do not assume normality of the noise terms, then (as long as the necessary
CLTs apply) we use instead the approximate test, using the 𝑡-statistic as defined above, but
using the rejection region derived from the standard normal distribution. You can also test
whether a linear combination of the parameters are equal to some value. For example, in the
regression

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝜖

you can test, say, 𝐻0 ∶ 𝛽1 + 𝛽2 = 1 vs 𝐻𝐴 ∶ 𝛽1 + 𝛽2 ≠ 1. The 𝑡-statistic in this case is

𝑡 =
̂𝛽1 + ̂𝛽2 − 1

√𝑣𝑎𝑟[ ̂𝛽1 + ̂𝛽2]
.

To compute this you will need the covariance of ̂𝛽1 and ̂𝛽2, the derivation of which we leave for
a later chapter.

Example 6.6. Suppose the production technology of a firm can be characterized by the “Cobb-
Douglas Production Function”:

𝑄(𝐿,𝐾) = 𝐴𝐿𝛼𝐾𝛽

where 𝑄(𝐿,𝐾) is the quantity produced using 𝐿 units of labor and 𝐾 units of capital. The
constants 𝐴, 𝛼 and 𝛽 are the parameters of the model. If we multiply the amount of labor and
capital by 𝑐, we get

𝑄(𝑐𝐿, 𝑐𝐾) = 𝐴(𝑐𝐿)𝛼(𝑐𝐾)𝛽 = 𝑐𝛼+𝛽𝐴𝐿𝛼𝐾𝛽.

The sum 𝛼 + 𝛽 therefore represents the ‘returns to scale’. If 𝛼 + 𝛽 = 1, then there is constant
returns to scale, e.g., doubling the amount of labor and capital (𝑐 = 2) results in the doubling
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of total production. If 𝛼 + 𝛽 > 1 then there is increasing returns to scale, and if 𝛼 + 𝛽 < 1, we
have decreasing returns to scale. A logarithmic transformation of the production function gives

ln𝑄 = ln𝐴+ 𝛼 ln𝐿 + 𝛽 ln𝐾.

If we have observations {𝑄𝑖, 𝐿𝑖,𝐾𝑖}𝑁𝑖=1 of the quantities produced and amount of labor and
capital employed by a set of similar firms in an industry, we could estimate the production
function for that industry using the regression

ln𝑄𝑖 = ln𝐴+ 𝛼 ln𝐿𝑖 + 𝛽 ln𝐾𝑖 + 𝜖𝑖.

A test for constant returns to scale would be the test

𝐻0 ∶ 𝛼 + 𝛽 = 1 vs 𝐻𝐴 ∶ 𝛼 + 𝛽 ≠ 1.

Example 6.7. In the previous chapter, we estimated ln(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠) on ℎ𝑒𝑖𝑔ℎ𝑡 using data in
earnings.xlsx and obtained a statistically significant effect of height on earnings. We conjec-
tured that the regression may be measuring a ‘gender gap’ in wages rather than a ‘height gap’,
with ℎ𝑒𝑖𝑔ℎ𝑡 acting as a proxy for the sex of the subjects. We now attempt to control for the
sex of the subjects by including a dummy variable 𝑚𝑎𝑙𝑒 which is one when an observation is of
a male subject, zero otherwise.

df_earnings <- read_excel("data\\earnings.xlsx")
mdl_earnings <- lm(log(earnings) ~ height + male, data=df_earnings)
summary(mdl_earnings)

Call:
lm(formula = log(earnings) ~ height + male, data = df_earnings)

Residuals:
Min 1Q Median 3Q Max

-2.17607 -0.35889 -0.01983 0.33112 2.13062

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.003213 0.539157 1.861 0.06333 .
height 0.025079 0.008332 3.010 0.00273 **
male 0.183117 0.070562 2.595 0.00971 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.56 on 537 degrees of freedom
Multiple R-squared: 0.09794, Adjusted R-squared: 0.09458
F-statistic: 29.15 on 2 and 537 DF, p-value: 9.564e-13

Inclusion of the 𝑚𝑎𝑙𝑒 dummy variable has reduced the size of the estimate of the ℎ𝑒𝑖𝑔ℎ𝑡
coefficient to 2.5 percent per inch in height (previously it was estimated at four percent). The
estimate is still quite economically significant, and also still statistically significant. Perhaps
ℎ𝑒𝑖𝑔ℎ𝑡 does have a direct effect on ln(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠), but it is more likely that there are yet more
factors that need to be controlled for.
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In some cases, we may wish to test multiple hypotheses, e.g., in the two-variable regression,
we may wish to test

𝐻0 ∶ 𝛽1 = 0 and 𝛽2 = 0 vs 𝐻𝐴 ∶ 𝛽1 ≠ 0 or 𝛽2 ≠ 0.

One possibility would be to do individual 𝑡-tests for each of the two hypotheses, but we should
be aware that two individual 5% tests is not equivalent to a joint 5% test. The following example
illustrates this problem.

Example 6.8. We generate 100 observations of three uncorrelated variables 𝑋, 𝑌 and 𝑍. We
regress 𝑌 on 𝑋 and 𝑍, and collect the t-statistics on 𝑋 and 𝑍. We repeat the experiment 1000
times (with different draws each time, of course, but the same parameters).

set.seed(3)
nreps <- 1000
tx <- tz <- rep(NA,nreps)
N <- 100
for (i in 1:nreps){

X <- rnorm(N, mean=0, sd=2)
Z <- rnorm(N, mean=0, sd=2)
Y <- rnorm(N, mean=0, sd=2)
df_test <- data.frame(X,Y,Z)
mdlsim <- lm(Y~X+Z, data=df_test)
tx[i] <- coef(summary(mdlsim))[2,'t value']
tz[i] <- coef(summary(mdlsim))[3,'t value']

}
rjt_x <- sum(tx<qt(0.025,N-3) | tx>qt(0.975,N-3))/nreps
cat("Freq. of rejection of Beta_X = 0:", rjt_x, "\n")

Freq. of rejection of Beta_X = 0: 0.058

rjt_z <- sum(tz<qt(0.025,N-3) | tz>qt(0.975,N-3))/nreps
cat("Freq. of rejection of Beta_Z = 0:", rjt_z, "\n")

Freq. of rejection of Beta_Z = 0: 0.054

rjt_x_or_z <- sum(tz<qt(0.025,197) | tz>qt(0.975,197) |
tx<qt(0.025,197) | tx>qt(0.975,197))/nreps

cat("Freq. of rejection of Beta_X = 0 and Beta_Z = 0 using two t-tests:", rjt_x_or_z, "\n")

Freq. of rejection of Beta_X = 0 and Beta_Z = 0 using two t-tests: 0.112

When using a 5% t-test, we reject the (true) hypothesis that 𝛽𝑥 = 0 in about 6% of the
experiments, close to 5%. These rejections are regardless of whether the t-test for 𝛽𝑧 = 0 rejects
or does not reject. Likewise, the 5% t-test for 𝛽𝑧 = 0 rejects the hypothesis 5.5% of the time,
roughly five percent. However, if we say we reject 𝛽𝑥 = 0 and 𝛽𝑧 = 0 if either t-tests rejects the
corresponding hypothesis, then the frequency of rejection is much larger, roughly double.
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We plot the t-stats below, indicating the critical values for the individual tests. The propor-
tion of points above the upper horizontal line or below the lower one is about 0.05. Similarly,
the proportion of points to the left of the left vertical line or to the right of the right one is
roughly 0.05. The number of point that meet either of the two sets of criteria is much larger,
roughly the sum of the two proportions.

df_t <- data.frame(tx,tz)
ggplot(data=df_t) + geom_point(aes(x=tx,y=tz)) +

geom_hline(yintercept = qt(0.025,N-3), lty='dashed', col='blue') +
geom_hline(yintercept = qt(0.975,N-3), lty='dashed', col='blue') +
geom_vline(xintercept = qt(0.025,N-3), lty='dashed', col='blue') +
geom_vline(xintercept = qt(0.975,N-3), lty='dashed', col='blue') +
theme_minimal()
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Figure 6.3: Rejection rate when compounding two t-tests

To jointly test multiple hypotheses, we can use the 𝐹 -test. Suppose in the regression

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝜖

we wish to jointly test the hypotheses

𝐻0 ∶ 𝛽1 = 1 and 𝛽2 = 0 vs 𝐻𝐴 ∶ 𝛽1 ≠ 1 or 𝛽2 ≠ 0 (or both) .

Suppose we run the regression twice, once unrestricted, and another time with the restrictions
in 𝐻0 imposed. The regression with the restrictions imposed is

𝑌 = 𝛽0 +𝑋 + 𝜖

so the restricted OLS estimator for 𝛽0 is the sample mean of 𝑌𝑖 −𝑋𝑖, i.e.,

̂𝛽0,𝑟 = (1/𝑁)
𝑁
∑
𝑖=1

(𝑌𝑖 −𝑋𝑖).
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Calculate the 𝑆𝑆𝑅 from both equations. The “unrestricted 𝑆𝑆𝑅” is

𝑆𝑆𝑅𝑢𝑟 =
𝑁
∑
𝑖=1

̂𝜖2𝑖

where ̂𝜖𝑖 = 𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖 − ̂𝛽2𝑍𝑖. The restricted 𝑆𝑆𝑅 is

𝑆𝑆𝑅𝑟 =
𝑁
∑
𝑖=1

̂𝜖2𝑖,𝑟

where ̂𝜖𝑖,𝑟 = 𝑌𝑖 − ̂𝛽0,𝑟 − 𝑋𝑖. Since OLS minimizes 𝑆𝑆𝑅, imposing restrictions will generally
increase the 𝑆𝑆𝑅, and never decrease it, i.e.,

𝑆𝑆𝑅𝑟 ≥ 𝑆𝑆𝑅𝑢𝑟 .

It can be shown that if the hypotheses in 𝐻0 are true (and the noise terms are normally dis-
tributed), then

𝐹 = (𝑆𝑆𝑅𝑟 − 𝑆𝑆𝑅𝑢𝑟)/𝐽
𝑆𝑆𝑅𝑢𝑟/(𝑁 −𝐾) ∼ 𝐹(𝐽,𝑁−𝐾) (6.22)

where 𝐽 is the number of restrictions being tested (in our example, 𝐽 = 2) and 𝐾 is the number
of coefficients to be estimated (including intercept; in our example, 𝐾 = 3). The F-statistic
is always non-negative. The idea is that if the hypotheses in 𝐻0 are true, then imposing the
restrictions on the regression would not increase the 𝑆𝑆𝑅 by much, and 𝐹 will be close to zero.
On the other hand, if one or more of the hypotheses in 𝐻0 are false, then imposing them into
the regression will cause the 𝑆𝑆𝑅 to increase substantially, and the 𝐹 statistic will be large. We
take a very large 𝐹 -statistic, meaning

𝐹 > 𝐹𝛼,𝐽,𝑁−𝐾 ,

as statistical evidence that one or more of the hypothesis is false, where 𝐹𝛼,𝐽,𝑁−𝐾 is the (1−𝛼)-
percentile of the 𝐹𝐽,𝑁−𝐾 distribution and where 𝛼 is typically 0.10, 0.05 or 0.01,

Since 𝑅2 = 1−𝑆𝑆𝑅/𝑆𝑆𝑇 , we can write the 𝐹 -statistic in terms of 𝑅2 instead of 𝑆𝑆𝑅. You
are asked in an exercise to show that the 𝐹 -statistic can be written as

𝐹 = (𝑅2
𝑢𝑟 −𝑅2

𝑟)/𝐽
(1 − 𝑅2𝑢𝑟)/(𝑁 −𝐾).

Imposing restrictions cannot increase 𝑅2, and in general will decrease it. The 𝐹 -test essentially
tests if the 𝑅2 drops significantly when the restrictions are imposed. If the hypotheses being
tested are true, then the drop should be slight. If one or more are false, the drop should be
substantial, resulting in a large 𝐹 -statistic.
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If you cannot assume that the noise terms are conditionally normally distributed, then you
will have to use an asymptotic approximation. It can be shown that

𝐽𝐹 →𝑑 𝜒2
(𝐽)

as 𝑁 → ∞, where 𝐽 is the number of hypotheses being jointly tested, and 𝐹 is the 𝐹 -statistic
Eq. 6.22. We refer to this as the “Chi-square Test”.

Example 6.9. We continue with Example Example 6.5. We estimate the model using lm()
and store the results in mdl. We use the summary() function to display the results.

df <- read_csv("data\\multireg_eg.csv",col_types = c("n","n","n"))
mdl <- lm(Y~X+Z, data=df)
summary(mdl)

Call:
lm(formula = Y ~ X + Z, data = df)

Residuals:
Min 1Q Median 3Q Max

-4.369 -1.396 -0.077 1.246 6.068

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.1334 2.0746 0.546 0.586
X 3.1220 0.2049 15.240 <2e-16 ***
Z 10.1103 0.2369 42.671 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.07 on 117 degrees of freedom
Multiple R-squared: 0.9657, Adjusted R-squared: 0.9651
F-statistic: 1645 on 2 and 117 DF, p-value: < 2.2e-16

The t-statistics are for testing (separately) 𝛽𝑥 = 0 and 𝛽𝑧 = 0. The F-statistic that is
reported is for testing both of these hypotheses jointly, i.e., 𝐻0 ∶ 𝛽𝑥 = 0 and 𝛽𝑧 = 0 versus the
alternative that one or both do not hold, and the p-value listed next to the F-statistic is the
probability that an 𝐹(2,117) random variable exceeds the computed F-statistic. In this example,
we resounding reject the null that both coefficients are zero. The residual standard error is the
square root of 𝜎2, the multiple R-squared is the 𝑅2 discussed earlier. The “Adjusted R-Squared”
is the modified 𝑅2 as previously discussed.

As an illustration of the general F test, suppose instead we wish to test that 𝛽0 = 1 and
𝛽𝑧 = 3𝛽𝑥. The restricted regression is

𝑌 = 1 + 𝛽𝑥𝑋 + 3𝛽𝑥𝑍 + 𝜖 = 1 + 𝛽𝑥(𝑋 + 3𝑍) + 𝜖 .

The OLS estimator for the only parameter in the restricted regression, 𝛽𝑥, can be obtained from
a regression of 𝑌𝑖 − 1 on (𝑋𝑖 + 3𝑍𝑖) with no intercept term. We have
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mdlr <- lm((Y-1)~I(X+3*Z)-1, data=df)
coef(mdlr)

I(X + 3 * Z)
3.276943

The restricted residuals can be computed as

̂𝜖𝑖,𝑟 = 𝑌𝑖 − 1 − ̂𝛽𝑥,𝑟(𝑋𝑖 + 3𝑍𝑖)

The F-statistic and associate p-value is

ehat_r <- df$Y - 1 - coef(mdlr)[1] * (df$X + 3*df$Z)
SSR_r <- sum(ehat_r^2)
ehat_ur <- residuals(mdl)
SSR_ur <- sum(ehat_ur^2)
df1 <- 2
df2 <- nobs(mdl) -length(coef(mdl))
F <- ((SSR_r-SSR_ur)/2)/(SSR_ur/(nobs(mdl)-length(coef(mdl))))
Fpval <- 1-pf(F, df1, df2)
X2 <- df1*F
X2pval <- 1-pchisq(X2, df1)
cat("Unrestricted SSR:", round(SSR_ur,6), "\n")
cat("Restricted SSR:", round(SSR_r,6), "\n")
cat("F-stat:",round(F,6))
cat(" p-val:",round(Fpval,6), "\n")
cat("Chi-sq:",round(X2,6))
cat(" p-val:",round(X2pval,6), "\n")

Unrestricted SSR: 501.2613
Restricted SSR: 553.7018
F-stat: 6.12009 p-val: 0.002966
Chi-sq: 12.24018 p-val: 0.002198

The function linearHypothesis() in the car package can also be used to carry out the F-
and Chi-sq tests.

linearHypothesis(mdl,c('(Intercept)=1','Z-3*X = 0'), test="F")

Linear hypothesis test

Hypothesis:
(Intercept) = 1
- 3 X + Z = 0

Model 1: restricted model
Model 2: Y ~ X + Z

Res.Df RSS Df Sum of Sq F Pr(>F)
1 119 553.70
2 117 501.26 2 52.44 6.1201 0.002966 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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linearHypothesis(mdl,c('(Intercept)=1','Z-3*X = 0'), test="Chisq")

Linear hypothesis test

Hypothesis:
(Intercept) = 1
- 3 X + Z = 0

Model 1: restricted model
Model 2: Y ~ X + Z

Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)
1 119 553.70
2 117 501.26 2 52.44 12.24 0.002198 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.5 Exercises
Exercise 6.1. Each of the following regressions produces a sample regression function whose
slope is ̂𝛽1 when 𝑋𝑖 < 𝜉 and ̂𝛽1+ ̂𝛼1 when 𝑋𝑖 ≥ 𝜉. Which of them produces a sample regression
function that is continuous at 𝜉?

a. 𝑌𝑖 = 𝛽0+𝛽1𝑋𝑖+𝛼1𝐷𝑖𝑋𝑖+𝜖 where 𝐷𝑖 is a dummy variable with 𝐷𝑖 = 1 if 𝑋𝑖 > 𝜉, 𝐷𝑖 = 0
otherwise;

b. 𝑌𝑖 = 𝛽0 + 𝛼0𝐷𝑖 + 𝛽1𝑋𝑖 + 𝛼1𝐷𝑋𝑖 + 𝜖;
c. 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛼1(𝑋𝑖 − 𝜉)+ + 𝜖𝑖where

(𝑋𝑖 − 𝜉)+ =
⎧{
⎨{⎩

𝑋𝑖 − 𝜉 if 𝑋𝑖 > 𝜉 ,
0 if 𝑋𝑖 ≤ 𝜉 .

Exercise 6.2. The following is a “piecewise quadratic regression” model

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3(𝑋 − 𝜉)2+ + 𝜖 , 𝐸[𝜖|𝑋] = 0.

where

(𝑋𝑖 − 𝜉)2+ =
⎧{
⎨{⎩

(𝑋𝑖 − 𝜉)2 if 𝑋𝑖 > 𝜉 ,
0 if 𝑋𝑖 ≤ 𝜉 .

Show that the PRF 𝐸[𝑌 |𝑋] is “piecewise quadratic”, following one quadratic equation when
𝑋 ≤ 𝜉, and another when 𝑥 > 𝜉. Show that the PRF is continuous, with continuous first
derivative.

Exercise 6.3. Suppose your estimated sample regression function is

𝑤𝑎𝑔𝑒 = −68.28 + 4.163 𝑎𝑔𝑒 − 0.052 𝑎𝑔𝑒2

where ̂𝛼0 and ̂𝛼1 are positive and ̂𝛼2 is negative. At what age are wages predicted to start
declining with age? Does the intercept have any reasonable economic interpretation?
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Exercise 6.4. Prove Eq. 6.14.

Exercise 6.5. Show that the 𝐹 -statistic in Eq. 6.22 can be written as

𝐹 = (𝑅2
𝑢𝑟 −𝑅2

𝑟)/𝐽
(1 − 𝑅2𝑢𝑟)/(𝑁 −𝐾)

where 𝑅𝑢𝑟 and 𝑅𝑟 are the 𝑅2 from the unrestricted and restricted regressions respectively, 𝐽 is
the number of restrictions being tested, 𝑁 is the number of observations used in the regression,
and 𝐾 is the number of coefficient parameters in the unrestricted regression model (including
intercept). What does this expression simplify to when testing that all the slope coefficients
(excluding the intercept) are equal to zero?

Exercise 6.6. Modify the code in Example 6.8 to collect the F-statistic for jointly testing 𝛽𝑥 = 0
and 𝛽𝑧 = 0. Show that the 5% F-test is empirically correctly sized, meaning that the frequency
of rejection in the simulation is in fact around 5%.

Exercise 6.7. Suppose
𝑌 = 𝛼0 + 𝛼1𝑋 + 𝛼2𝑍 + 𝑢
𝑍 = 𝛿1𝑋 + 𝑣

where 𝑢 and 𝑣 are independent zero-mean noise terms. Suppose you have a random sample
{𝑌𝑖, 𝑋𝑖, 𝑍𝑖}𝑁𝑖=1 and you ran the regression

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖.

Show that the OLS estimator ̂𝛽1 will be biased for 𝛼1. What is its expectation? Show that the
prediction rule

̂𝑌 = ̂𝛽0 + ̂𝛽1𝑋

still provides unbiased predictions, but that the prediction error variance is greater than the
prediction error variance from using the prediction rule

𝑌 = ̂𝛼0 + ̂𝛼1𝑋 + ̂𝛼2𝑍

where ̂𝛼0, ̂𝛼1, and ̂𝛼2 are the OLS estimators for 𝛼0, 𝛼1 and 𝛼2 in the regression

𝑌𝑖 = 𝛼0 + 𝛼1𝑋𝑖 + 𝛼2𝑍𝑖 + 𝑢𝑖

Exercise 6.8. Verify all of the results reported in Example 6.9 by calculating them directly
using the formulas developed in the notes (in particular, verify the coefficient estimates, standard
errors, t-statistics and associated p-values, the residual standard error, the multiple R-squared
and Adjusted R-squared, the F-statistic and the corresponding p-value).



Chapter 7

Heteroskedasticity and Specification Tests

We now deal with situations where the conditional variance of the noise term depends on the
regressors, i.e., where we have conditional heteroskedasticity. We have already seen that this will
not cause bias or inconsistency; we know this because the proofs of unbiasedness and consistency
do not make use of the constant conditional variance assumption. However, the derivations of
the formulas for the OLS estimator variances and the proof of efficiency of OLS estimators do
make use of the constant conditional variance assumption, and so these results no longer apply
if there is conditional heteroskedasticity. In this chapter, we present an alternative estimation
approach that aims to provide more efficient estimators under this situation. We also present
a way of estimating the variance of the OLS coefficient estimators that allows for conditional
heteroskedasticity. Finally, we discuss tests for heteroskedasticity, specification form, and nor-
mality of noise terms.

We use the following packages in this chapter.

library(tidyverse)
library(patchwork)
library(readxl)
library(sandwich)

7.1 An Example

We begin with a simple illustrative example where we can directly show all of the consequences
of heteroskedasticity.

Example 7.1. Suppose
𝑌𝑖 = 𝛽1𝑋𝑖 + 𝜖𝑖 , 𝑖 = 1, 2, ..., 𝑁 (7.1)

such that
E[𝜖𝑖|x] = 0 , E[𝜖2𝑖 |x] = 𝜎2𝑋2

𝑖 , and E[𝜖𝑖𝜖𝑗|x] = 0

for all 𝑖 ≠ 𝑗, 𝑖 = 1, 2, ..., 𝑁 . We also assume that ∑𝑁
𝑖=1 𝑋2

𝑖 ≠ 0. (Here 𝑋𝑖 represents the 𝑖th
observation of variable 𝑋, and x represents all of the observations of 𝑋𝑖.) The OLS estimator
for 𝛽1 in this example is

̂𝛽𝑜𝑙𝑠
1 = ∑𝑁

𝑖=1 𝑋𝑖𝑌𝑖

∑𝑁
𝑖=1 𝑋2

𝑖
(7.2)

which is unbiased for 𝛽1: writing Eq. 7.2 as

̂𝛽𝑜𝑙𝑠
1 = ∑𝑁

𝑖=1 𝑋𝑖𝑌𝑖

∑𝑁
𝑖=1 𝑋2

𝑖
= ∑𝑁

𝑖=1 𝑋𝑖(𝛽1𝑋𝑖 + 𝜖𝑖)
∑𝑁

𝑖=1 𝑋2
𝑖

= 𝛽1 +
∑𝑁

𝑖=1 𝑋𝑖𝜖𝑖
∑𝑁

𝑖=1 𝑋2
𝑖

157
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and taking conditional expectations gives

E[ ̂𝛽𝑜𝑙𝑠
1 |x] = 𝛽1 +

∑𝑁
𝑖=1 𝑋𝑖E[𝜖𝑖|x]
∑𝑁

𝑖=1 𝑋2
𝑖

= 𝛽1.

Under our assumptions, the variance of the OLS estimator is

var[ ̂𝛽𝑜𝑙𝑠
1 |x] = ∑𝑁

𝑖=1 𝑋2
𝑖 var[𝜖𝑖|x]

(∑𝑁
𝑖=1 𝑋2

𝑖 )
2

= ∑𝑁
𝑖=1 𝑋2

𝑖 (𝜎2𝑋2
𝑖 )

(∑𝑁
𝑖=1 𝑋2

𝑖 )
2 = 𝜎2 ∑𝑁

𝑖=1 𝑋4
𝑖

(∑𝑁
𝑖=1 𝑋2

𝑖 )
2 .

(7.3)

Had you not realized that there is heteroskedasticity, you would have estimated var[ ̂𝛽1|x] using
the usual OLS formula for the variance when an intercept is excluded, which is

v̂ar[ ̂𝛽𝑜𝑙𝑠
1 |x] = 𝑠2

∑𝑁
𝑖=1 𝑋2

𝑖
, 𝑠2 = 1

𝑁 − 1
𝑁
∑
𝑖=1

̂𝜖𝑖
2 , ̂𝜖𝑖 = 𝑌𝑖 − ̂𝛽1𝑋𝑖 .

This variance estimator is based on the assumption of conditional homoskedasticity, and is
therefore inappropriate for this example. The form is wrong, and it is not immediately clear
what 𝑠2 is estimating.

Furthermore, it turns out that the OLS estimator is inefficient. We show this by presenting a
more efficient linear unbiased estimator. Weight each observation by 1/𝑋𝑖 and run the regression

𝑌𝑖
𝑋𝑖

= 𝛽1 +
𝜖𝑖
𝑋𝑖

= 𝛽1 + 𝜖∗𝑖 . (7.4)

That is, simply regress 𝑌𝑖/𝑋𝑖 on a constant. The modified noise terms in this regression will
continue to have zero conditional expectation

E[𝜖𝑖/𝑋𝑖|x] = (1/𝑋𝑖)E[𝜖𝑖|x] = 0

and remain uncorrelated (exercise). Furthermore, its conditional variance is now constant:

var[𝜖𝑖/𝑋𝑖|x] = (1/𝑋2
𝑖 )var[𝜖𝑖|x] = 𝜎2 .

OLS estimation applied to this modified regression model Eq. 7.4 gives the estimator

̂𝛽𝑤𝑙𝑠
1 = 1

𝑁
𝑁
∑
𝑖=1

𝑌𝑖
𝑋𝑖

. (7.5)

The ‘wls’ superscript stands for “weighted least squares”. Since Eq. 7.5 can be written as

̂𝛽𝑤𝑙𝑠
1 =

𝑁
∑
𝑖=1

( 1
𝑁𝑋𝑖

)𝑌𝑖 ,
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it is a linear estimator. Since this estimator arises out a linear regression with homoskedastic and
uncorrelated noise terms that have zero conditional expectation, it is unbiased and minimum
variance among all linear unbiased estimators.

The fact that ̂𝛽𝑤𝑙𝑠
1 is BLU suggests that ̂𝛽𝑜𝑙𝑠

1 is not. In our simple example, it is straightfor-
ward to demonstrate this fact directly. Since ̂𝛽𝑤𝑙𝑠

1 is a sample mean of observations of a random
variable with variance 𝜎2, its variance is

var[ ̂𝛽𝑤𝑙𝑠
1 ] = 𝜎2

𝑁 . (7.6)

It can be shown (see exercises) that

∑𝑁
𝑖=1 𝑋4

𝑖

(∑𝑁
𝑖=1 𝑋2

𝑖 )
2 ≥ 1

𝑁 , (7.7)

therefore
var[ ̂𝛽𝑤𝑙𝑠

1 ] ≤ var[ ̂𝛽𝑜𝑙𝑠
1 ] .

The reason OLS estimators are inefficient when there is conditional heteroskedasticity is that
some observations are less informative about the population regression line than others, but
OLS makes no use of this fact. Information ignored leads to inefficiency. The weighted least
squares approach, on the other hand, uses this information directly, by assigning less weight to
noisier observations, and more weight to observations whose noise terms have lower variance.

We have shown, in the context of a simple example, that the WLS estimator dominates the
OLS estimator under conditional heteroskedasticity in the sense that the WLS estimator is (like
OLS) linear and unbiased, but more precise. However, to get the WLS estimator we had to
assume that the form of heteroskedasticity is known (in our example, we assumed 𝜎2

𝑖 = 𝜎2𝑋2
𝑖 ).

There will be situations where we are not quite so sure about the form of heteroskedasticity,
and may prefer to stay with OLS despite its inefficiency. The problem with doing so is that
the usual formulas for the variance of the estimators is incorrect. Is there a way to correctly
estimate var[ ̂𝛽𝑜𝑙𝑠

1 ] under heteroskedasticity? Under quite general conditions, the answer is yes.
Suppose, for our example, that we assume

E[𝜖2𝑖 |x] = 𝜎2
𝑖

but without further specifying the form of the heteroskedasticity. The variance of the OLS
estimator is

var[ ̂𝛽𝑜𝑙𝑠
1 |x] = ∑𝑁

𝑖=1 𝑋2
𝑖 var[𝜖𝑖|x]

(∑𝑁
𝑖=1 𝑋2

𝑖 )
2 = ∑𝑁

𝑖=1 𝑋2
𝑖 𝜎2

𝑖

(∑𝑁
𝑖=1 𝑋2

𝑖 )
2 .

It turns out for this example that the variance estimator

v̂ar𝐻𝐶[ ̂𝛽𝑜𝑙𝑠
1 |x] = ∑𝑁

𝑖=1 𝑋2
𝑖 ̂𝜖2𝑖

(∑𝑁
𝑖=1 𝑋2

𝑖 )
2 where ̂𝜖𝑖 = 𝑌𝑖 − 𝛽𝑜𝑙𝑠

1 𝑋𝑖
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is consistent for the variance of ̂𝛽𝑜𝑙𝑠
1 . We call this the heteroskedasticity-consistent, or

heteroskedasticity-robust variance estimator. We discuss heteroskedasticity-robust variance
estimators in more detail in a later chapter.

7.2 Weighted Least Squares
The idea of weighting observations to account for heteroskedasticity extends to the multiple
linear regression model, but for the moment, we stay with the simple linear regression model
(with intercept reinstated).

Assumption Set C:  Suppose you have
(C1)  𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖, such that
(C2)  E[𝜖𝑖|𝑥] = 0 for all 𝑖 = 1, 2, ..., 𝑁 ,
(C3)  E[𝜖2𝑖 |𝑥] = 𝜎2

𝑖 = 𝜎2𝜂𝑖(x) for all 𝑖 = 1, 2, ..., 𝑁 ,
(C4)  E[𝜖𝑖𝜖𝑗|𝑥] = 0 for all 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, 2, ..., 𝑁 ,
(C5)  𝑐1 + 𝑐2𝑋𝑖 = 0 for all 𝑖 = 1, 2, ..., 𝑁 only if (𝑐1, 𝑐2) = (0, 0).

We assume conditional heteroskedasticity whose form is known up to some constant factor.
The idea of weighted least squares is to weight each observation so that the weighted noise terms
are no longer heteroskedastic. That is, we modify the regression equation to

𝑌𝑖
√𝜂𝑖(x)

= 𝛽0
1

√𝜂𝑖(x)
+ 𝛽1

𝑋𝑖
√𝜂𝑖(x)

+ 𝜖𝑖
√𝜂𝑖(x)

which we can write as
𝑌 ∗
𝑖 = 𝛽0𝑋∗

0,𝑖 + 𝛽1𝑋∗
𝑖 + 𝜖∗𝑖 (7.8)

where
𝑌 ∗
𝑖 = 𝑌𝑖/√𝜂𝑖(x) , 𝑋∗

0,𝑖 = 1/√𝜂𝑖(x) , and 𝑋∗
𝑖 = 𝑋𝑖/√𝜂𝑖(x) .

Since 𝜂𝑖(x) is fixed conditional on the regressors, it is straightforward to see that Assumptions
C2 and C4 will continue to hold for 𝜖∗𝑖 . Furthermore the transformed noise term is conditionally
homoskedastic:

E[𝜖∗𝑖 2|x] = E⎡⎢
⎣
( 𝜖𝑖

√𝜂𝑖(x)
)

2

∣ x⎤⎥
⎦

= 𝜎2𝜂𝑖(x)
𝜂𝑖(x) = 𝜎2 for all 𝑖 = 1, 2, ..., 𝑁 .

Therefore OLS on Eq. 7.8 will produce BLU estimators of the coefficients. The OLS estimators
on the transformed regression equation in Eq. 7.8 are called the Weighted Least Squares (WLS)
estimators of the coefficients. It is equivalent to choosing ̂𝛽0 and ̂𝛽1 to minimize a sum of
weighted squared residuals

WLS: Choose ̂𝛽0, ̂𝛽1 to minimize
𝑁
∑
𝑖=1

𝜔𝑖 ̂𝜖𝑖
2 =

𝑁
∑
𝑖=1

𝜔𝑖(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖)2 (7.9)

where the weights are
𝜔𝑖 = 1/𝜂𝑖(x) .

The actual form of the transformed equation depends on 𝜂𝑖(x).
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Example 7.2. If in Assumption Set C we have 𝜂𝑖(x) = 𝑋2
𝑖 , then the appropriate transformed

regression equation is
𝑌𝑖
|𝑋𝑖|

= 𝛽0
1

|𝑋𝑖|
+ 𝛽1

𝑋𝑖
|𝑋𝑖|

+ 𝜖𝑖
|𝑋𝑖|

. (7.10)

If 𝑋𝑖 is always positive, then we can write this equation as

𝑌𝑖
𝑋𝑖

= 𝛽0
1
𝑋𝑖

+ 𝛽1 +
𝜖𝑖
𝑋𝑖

. (7.11)

In this case, the transformed equation is a simple linear regression of 𝑌𝑖/𝑋𝑖 on a constant
and 1/𝑋𝑖. It should be emphasized that although 𝛽1 is the intercept term in the transformed
equation, it retains its interpretation as the slope coefficient in the original equation. Likewise,
the coefficient 𝛽0 retains its interpretation as the intercept term in the original equation.

Regardless of the transformation applied to the regression, the coefficients always retain
their interpretations from the original un-transformed equation, and it is the un-transformed
regression that is the one of interest. The transformed equation is merely used to obtain efficient
estimators of the coefficients. After obtaining ̂𝛽𝑤𝑙𝑠

0 and ̂𝛽𝑤𝑙𝑠
1 , you should report your results as

̂𝑌 = ̂𝛽𝑤𝑙𝑠
0 + ̂𝛽𝑤𝑙𝑠

1 𝑋 .

Likewise, the WLS fitted values are

̂𝑌 𝑤𝑙𝑠
𝑖 = ̂𝛽𝑤𝑙𝑠

0 + ̂𝛽𝑤𝑙𝑠
1 𝑋𝑖

and the residuals are
̂𝜖𝑖,𝑤𝑙𝑠 = 𝑌𝑖 − ̂𝑌 𝑤𝑙𝑠

𝑖 = 𝑌𝑖 − ̂𝛽𝑤𝑙𝑠
0 − ̂𝛽𝑤𝑙𝑠

1 𝑋𝑖.

For the purposes of assessing goodness-of-fit, we should use the WLS residuals:

𝑅2
𝑤𝑙𝑠 = 1 −

∑𝑁
𝑖=1 ̂𝜖2𝑖,𝑤𝑙𝑠

∑𝑁
𝑖=1(𝑌𝑖 − 𝑌 )2

.

This R-squared will generally be less than the R-squared from OLS estimation (why?) and may
even be negative. However, it is the un-transformed equation that we are ultimately interested
in. On the other hand, the standard errors and test statistics should be based on the estimated
transformed equation, since it is the noise term of the transformed equation that meets the
required assumptions.

One difficulty with weighted least squares is that we generally do not know the form of the
heteroskedasticity. Should 𝜂(x) be |𝑋𝑖| or 𝑋2

𝑖 or some other function of the regressors? One
informal way of investigating this question is to first estimate the equation by OLS (which still
gives consistent estimators of the coefficients) then visually exploring the relationship of the
squared OLS residuals (serving as a proxy for the noise variance) against 𝑋𝑖. After estimating
the transformed equation, we can confirm the choice of 𝜂(x) by testing for heteroskedasticity
in the residuals of the transformed equation (not rejecting homoskedasticity would indicate our
choice was adequate). We will discuss tests for heteroskedasticity shortly.
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Example 7.3. We estimate a simple linear regression on the values 𝑦 and 𝑥 (with intercept) in
the data set heterosk.csv. Fig. 7.1 displays a plot of 𝑦 on 𝑥 that shows heteroskedasticity, with
the conditional variance is increasing with 𝑥.

df_het <- read_csv("data\\heterosk.csv",col_types = c("n","n","n"))
plt_het1 <- ggplot(data=df_het) + geom_point(aes(x=x,y=y), size=1) + theme_classic()
plt_het1

20

30

40

50

60

8 12 16 20
x

y

Figure 7.1: A data set with heteroskedasticity.

OLS estimation of this regression gives the following output.

ols <- lm(y~x, data=df_het)
sum_ols <- summary(ols)
coef(sum_ols)
cat("R-squared: ",sum_ols$r.squared,"\n")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.285792 1.7817576 3.52786 5.207066e-04
x 2.430744 0.1177712 20.63955 3.034896e-51
R-squared: 0.6826877

Because there is obvious heteroskedasticity in this example, we should not trust the standard
errors, t-statistics and p-values presented above. If we wish to stick with OLS, then we have to
calculate the heteroskedasticity-robust standard errors (which we have not yet discussed how to
do, except in the simple linear regression without intercept). For the time being, we will use
the function vcovHC() from the sandwich package to obtain heteroskedasticity-robust standard
errors (explanations in a later chapter!). The heteroskedasticity-robust standard errors are the
square root of the diagonal elements of the matrix rbst_V in the example below.

rbst_V <- vcovHC(ols, type="HC0")
rbst_se <- sqrt(diag(rbst_V))
rbst_output <- coef(sum_ols)
colnames(rbst_output) <- c("Estimate", "rbst-se", "rbst-t", "p-val")
rbst_output[,'rbst-se'] <- rbst_se
rbst_output[,'rbst-t'] <- rbst_output[,'Estimate']/rbst_se
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rbst_output[,'p-val'] <- 2*(1-pt(abs(rbst_output[,'rbst-t']),sum_ols$df[2]))
round(rbst_output,6)

Estimate rbst-se rbst-t p-val
(Intercept) 6.285792 1.863926 3.372339 0.000896
x 2.430744 0.136242 17.841435 0.000000

Now we assume that var[ ̂𝜖𝑖] = 𝜎2𝑋2
𝑖 and run WLS. The appropriate transformed regression

is as given in Eq. 7.11.

df_het$ystar <- df_het$y/df_het$x # Transformed y
df_het$x0star <- 1/df_het$x # Transformed intercept term
wls1 <- lm(ystar~x0star, data=df_het)
sum_wls1 <- summary(wls1)
coef(sum_wls1) # Print Coefficients
cat("R-squared: ",sum_wls1$r.squared,"\n") # Print R-squared of Transformed Eq

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.53166 0.1023702 24.730430 1.839271e-62
x0star 4.82571 1.4065451 3.430896 7.321779e-04
R-squared: 0.05611379

Our estimated equation is

̂𝑌 = 4.8257 + 2.5317 𝑋 , 𝑁 = 200
(1.4065) (0.1024)

The standard errors are lower than in the OLS regression, which is not unexpected. The R-
squared in the output above refers to the fit of the transformed equation which is not very useful.
We calculate the R-squared for the un-transformed regression below

ehat <- df_het$y - coef(wls1)[2] - coef(wls1)[1]*df_het$x
ssr <- sum(ehat^2)
sst <- sum((df_het$y - mean(df_het$y))^2)
R2 <- 1 - ssr/sst
cat("R-squared: ", R2,"\n")

R-squared: 0.6814966

The R-squared from the WLS regression is lower than in the OLS regression, as expected,
but only slightly so. Finally, we plot the residuals from the transformed regression against 𝑥.
There does not appear to be any correlation between the variance of the residuals of the weighted
regression and 𝑥, which suggests that our assumption regarding the form of heteroskedasticity
in 𝜖𝑖 is reasonable.

plot(df_het$x, residuals(wls1))
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Figure 7.2: Homoskedastic errors.

We can also use the function lm() to carry out weighted least squares. Note that the option
weights refer to weights on the squared residuals, as in the 𝜔𝑖 in Eq. 7.9.

df_het$wt <- 1/df_het$x^2
wls2 <- lm(y~x,data=df_het, weights=wt)
sum_wls2 <- summary(wls2)
coef(sum_wls2)
cat("R-squared: ", sum_wls2$r.squared,"\n")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.82571 1.4065451 3.430896 7.321779e-04
x 2.53166 0.1023702 24.730430 1.839271e-62
R-squared: 0.755433

Notice that the R-squared provided when using lm() for WLS is different from what we
previously obtained. The R-squared provided here is a “weighted R-squared”, obtained in the
following way: let 𝑌 𝑤𝑙𝑠 be the WLS estimator (with the same weights as previously) of 𝛽0 from
the regression 𝑌𝑖 = 𝛽0 + 𝜖𝑖. In other words, 𝑌 𝑤𝑙𝑠 is the weighted mean of {𝑌𝑖}𝑁𝑖=1. Then

weighted-𝑅2 = ∑𝑁
𝑖=1 𝑤𝑖( ̂𝑌 𝑤𝑙𝑠

𝑖 − 𝑌 𝑤𝑙𝑠)2

∑𝑁
𝑖=1 𝑤𝑖(𝑌 𝑤𝑙𝑠

𝑖 − 𝑌 𝑤𝑙𝑠)2
.

In other words, it is the weighted ESS divided by the weighted TSS, centered on the weighted
mean of {𝑌𝑖}𝑁𝑖=1. We replicate the lm() weighted R-squared below:

wls0 <- lm(y~1, data=df_het, weights=wt) # Regression on intercept only
sstw <- sum(df_het$wt * (df_het$y - coef(wls0))^2)
ssew <- sum(df_het$wt*(wls2$fitted.values - coef(wls0))^2)
WeightedR2 <- ssew/sstw
WeightedR2

[1] 0.755433

The problem of specifying a form of the heteroskedasticity becomes more challenging in the
multivariate regression case. Suppose

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 +⋯+ 𝛽𝐾−1,𝑖𝑋𝐾−1,𝑖 + 𝜖𝑖
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such that
E[𝜖2𝑖 |x1,… , x𝐾−1] = 𝜎2

𝑖 = 𝜎2𝜂𝑖(x1,… , x𝐾−1)

for all 𝑖 = 1, 2, ..., 𝑁 . Any heteroskedasticity is likely to depend on more than one regressor, to
different degrees, so there will be parameters to estimate. E.g., we might have something like

𝜂𝑖 = exp(𝛼1𝑋1,𝑖 +⋯+ 𝛼𝐾−1𝑋𝐾−1,𝑖)

(the exponentiation is to ensure the variance is positive). Then to implement weighted least
squares, we first have to estimate the parameters in the variance equation. One way to do this
is to first estimate the main equation using OLS, and obtain the OLS residuals. Then regress
the log of the squared residuals on a constant and the regressors to estimate 𝜎2 and the 𝛼
parameters, and then finally compute the “fitted variances” 𝜎2

𝑖 and weight the squared residuals
by 1/𝜎2

𝑖 .

7.3 Testing for Heteroskedasticity

It may be of interest to test whether heteroskedasticity is an issue in the first place. The following
are some possible tests. All involve first estimating the main regression by OLS and obtaining
the OLS residuals ̂𝜖𝑖.

1. Run the regression
̂𝜖2𝑖 = 𝛼0 + 𝛼1𝑋1,𝑖 +…𝛼𝐾−1𝑋𝐾−1,𝑖 + 𝑢𝑖

and test 𝐻0 ∶ 𝛼1 = ⋯ = 𝛼𝐾−1 = 0 using an F-test.
2. An alternative is to use an “LM” test after running the regression above: under the null

hypothesis, we have
𝑁𝑅2

𝜖
𝑎∼ 𝜒2

(𝐾).

3. To allow for possible non-linear forms we can include powers of regressors and interaction
terms between them in the variance regression:

̂𝜖2𝑖 = 𝛼0 + 𝛼1𝑋1,𝑖 +⋯+ 𝛼𝐾−1𝑋𝐾−1,𝑖

+ 𝛿1𝑋2
1,𝑖 +⋯+ 𝛿𝐾−1𝑋2

𝐾−1,𝑖

+ 𝛾12𝑋1,𝑖𝑋2,𝑖 +⋯+ 𝑢𝑖

then testing if all of the coefficients (not including the intercept) are zero. Obviously you
lose degrees of freedom quickly as the number of regressors grow.

4. One way around this problem is to run the regression

̂𝜖2𝑖 = 𝛼0 + 𝛼1 ̂𝑌𝑖,𝑜𝑙𝑠 + 𝛼2 ̂𝑌 2
𝑖,𝑜𝑙𝑠 + 𝑢𝑖

where ̂𝑌𝑖,𝑜𝑙𝑠 refers to the OLS fitted values from the main equation. The hypothesis that
there is no heteroskedasticity is 𝐻0 ∶ 𝛼1 = 𝛼2 = 0 using an F-tests or an LM test.

The first two is often referred to as Breusch-Pagan tests for heteroskedasticity. The last is
referred to as the White test for heteroskedasticity.
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Example 7.4. We apply the Breusch-Pagan test for heteroskedasticity to the regression

𝑙𝑛(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) = 𝛽0 + 𝛽1𝑤𝑒𝑥𝑝𝑖 + 𝛽2𝑡𝑒𝑛𝑢𝑟𝑒𝑖 + 𝜖𝑖.

df_earn <- read_excel("data\\earnings.xlsx") #--Read Data
mdl <- lm(log(earnings)~wexp+tenure, data=df_earn) #--Main Equation
cat("Main Regression\n") #--Main Regr Output Title
round(summary(mdl)$coefficients,4) #--Main Regr Output

Main Regression
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.4734 0.0980 25.2385 0.0000
wexp 0.0127 0.0060 2.1294 0.0337
tenure 0.0147 0.0041 3.5596 0.0004

df_earn$ehat <- residuals(mdl) #--Get OLS Residuals
heteq <- lm((ehat^2)~wexp+tenure, data=df_earn) #--BP-Test Regression
cat("Heteroskedasticity Test Regression\n") #--Test Regr Output Title
round(summary(heteq)$coefficients,4) #--Test Regr Output

Heteroskedasticity Test Regression
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5596 0.0927 6.0375 0.0000
wexp -0.0121 0.0057 -2.1471 0.0322
tenure -0.0035 0.0039 -0.8877 0.3751

## BP, F-version
f_het <- summary(heteq)$fstatistic #--Retrieve F-Stat (stat, df1, df2)
cat("BP-F Stat: ", f_het[1], " p-val: ", 1-pf(f_het[1], f_het[2], f_het[3]), "\n")

BP-F Stat: 3.855297 p-val: 0.02175567

## BP, LM-version
lm_het <- nobs(heteq)*summary(heteq)$r.squared # Calc. LM Stat.
lm_pval <- 1 - pchisq(lm_het, 2) # 2 restrictions
cat("BP-LM Stat: ", lm_het, " p-val: ", lm_pval, "\n", sep="")

BP-LM Stat: 7.643914 p-val: 0.02188493

There is some evidence of heteroskedasticity, and the individual t-tests suggest that the noise
variance decreases with work experience.

7.4 Some Additional Regression Tests

We mention a few other tests associated with regressions.

7.4.1 RESET test for functional form misspecification

Given a regression specification

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 +⋯+ 𝛽𝐾−1𝑋𝐾−1,𝑖 + 𝜖𝑖 ,



7.4. SOME ADDITIONAL REGRESSION TESTS 167

the Regression Equation Specification Error Test (or “RESET Test”) checks if adding powers
(𝑋2

1,𝑖, 𝑋2
2,𝑖,…) and interaction terms (𝑋1,𝑖𝑋2,𝑖, 𝑋1,𝑖𝑋3,𝑖, etc.) of the regressors can significantly

improve the fit. It is interpreted as a test of adequacy of the functional form specification of
the original regression, and not as saying anything about the whether or not certain variables
should or should not be included. Similar to the White test for heteroskedasticity, the RESET
test does this by adding the squares, cubes, and possibly higher powers of the OLS fitted values
̂𝑌𝑖,𝑜𝑙𝑠 into the regression specification and tests if these additions have significant explanatory

power, i.e., the test equation is

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 +⋯+ 𝛽𝐾−1𝑋𝐾−1,𝑖 + 𝛼2 ̂𝑌 2
𝑖,𝑜𝑙𝑠 +⋯+ 𝛼𝑝 ̂𝑌 𝑝

𝑖,𝑜𝑙𝑠 + 𝜖𝑖 , (7.12)

and the hypothesis of adequacy of the functional form specification is

𝐻0 ∶ 𝛼2 = ⋯ = 𝛼𝑝 = 0.

The test equation cannot include ̂𝑌𝑖,𝑜𝑙𝑠 (see exercises), and often only the second or second and
third powers are included. An F-test (or t-test, if only the second power is included) can be
used to test the hypothesis. We illustrate the RESET test in the next example.

Example 7.5. We apply the RESET test to the regression

ln(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) = 𝛽0 + 𝛽1𝑤𝑒𝑥𝑝𝑖 + 𝛽2𝑡𝑒𝑛𝑢𝑟𝑒𝑖 + 𝜖𝑖.

using data in earnings.xlsx.

df_earn <- read_excel("data\\earnings.xlsx")
mdl_base <- lm(log(earnings)~wexp+tenure, data=df_earn)
df_earn$yhat <- fitted(mdl_base)
mdl_test <- lm(log(earnings)~wexp+tenure+I(yhat^2), data=df_earn)
cat("Base Regression:\n")
round(summary(mdl_base)$coefficients, 4)
cat("\nTest Regression:\n")
round(summary(mdl_test)$coefficients, 4)

Base Regression:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.4734 0.0980 25.2385 0.0000
wexp 0.0127 0.0060 2.1294 0.0337
tenure 0.0147 0.0041 3.5596 0.0004

Test Regression:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.4033 8.3837 2.7915 0.0054
wexp 0.2544 0.0970 2.6233 0.0090
tenure 0.3069 0.1171 2.6206 0.0090
I(yhat^2) -3.4656 1.3881 -2.4967 0.0128

The hypothesis of adequacy of the functional form in the base regression is rejected.
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7.4.2 Testing Nonnested Alternatives

Regression specifications such as

[A] 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + 𝜖𝑖
and [B] 𝑌𝑖 = 𝛽0 + 𝛽1 ln𝑋1,𝑖 + 𝛽2 ln𝑋2,𝑖 + 𝜖𝑖

are “non-nested alternatives”, i.e., one is not a special case of the other. One way of testing
which specification fits better is to construct a “super-model” that includes both [A] and [B] as
restricted cases, i.e.,

[A] 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + 𝛽3 ln𝑋1,𝑖 + 𝛽4 ln𝑋2𝑖
+ 𝜖𝑖

and to test for coefficient significance. This approach is often plagued by multicollinearity
problems. An alternative is to fit both models separately, collect their fitted values, and include
each fitted value series as a regressor in the other specification, i.e., regress

[A’] 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + 𝛿1 ̂𝑌 𝐵
𝑖 + 𝜖𝑖

and [B’] 𝑌𝑖 = 𝛽0 + 𝛽1 ln𝑋1,𝑖 + 𝛽2 ln𝑋2,𝑖 + 𝛿2 ̂𝑌 𝐴
𝑖 + 𝜖𝑖

and test (separately) if the coefficients on the fitted values are statistically significant. The idea
is to see if each specification has anything to add to the other. If 𝛿1 = 0 is rejected and 𝛿2 = 0
is not, then this suggests that [B] is a better specification (the result does not suggest [B] is
the best specification, just better than [A].) Likewise, [A] is preferred to [B] if 𝛿2 = 0 is rejected
and 𝛿1 = 0 is not. It may be that both are rejected, which suggests that neither specification is
adequate. If neither are rejected, then it appears that there is little in the data to distinguish
between the two specifications. Note that the dependent variable in both alternatives must be
the same.

We compare the specifications

[A] ln(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) = 𝛽0 + 𝛽1𝑤𝑒𝑥𝑝𝑖 + 𝛽2𝑡𝑒𝑛𝑢𝑟𝑒𝑖 + 𝜖𝑖
and [B] ln(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) = 𝛽0 + 𝛽1 ln(𝑤𝑒𝑥𝑝𝑖) + 𝛽2 ln(𝑡𝑒𝑛𝑢𝑟𝑒𝑖) + 𝜖𝑖 .

mdlA <- lm(log(earnings)~wexp+tenure, data=df_earn)
mdlB <- lm(log(earnings)~log(wexp)+log(tenure), data=df_earn)
df_earn$yhatA <- fitted(mdlA)
df_earn$yhatB <- fitted(mdlB)
cat("Model A plus yhatB:\n")
mdlAplusB <- lm(log(earnings)~wexp+tenure+yhatB, data=df_earn)
round(summary(mdlAplusB)$coefficients,4)
cat("\nModel B plus yhatA:\n")
mdlBplusA <- lm(log(earnings)~log(wexp)+log(tenure)+yhatA, data=df_earn)
round(summary(mdlBplusA)$coefficients,4)

Model A plus yhatB:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.1193 0.8700 -0.1371 0.8910
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wexp -0.0030 0.0079 -0.3747 0.7080
tenure 0.0000 0.0064 -0.0024 0.9981
yhatB 1.0607 0.3537 2.9990 0.0028

Model B plus yhatA:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3694 0.9658 2.4534 0.0145
log(wexp) 0.1671 0.0962 1.7375 0.0829
log(tenure) 0.0925 0.0326 2.8386 0.0047
yhatA -0.0606 0.4121 -0.1471 0.8831

It appears that the specification [B] is preferred over specification [A].

7.4.3 Testing for Normality of Noise Terms

The finite sample justification for the t- and F-tests depend on the normality of the noise terms.
One way to test this is to use the fact that if a random variable has the normal distribution, then
its skewness coefficient is zero (because it is symmetric), and its kurtosis coefficient is three: if
𝑋 ∼ Normal(𝜇, 𝜎2), then

𝑆 = E[(𝑋 − 𝜇)3]/𝜎3 = 0
𝐾𝑢𝑟 = E[(𝑋 − 𝜇)4]/𝜎4 = 3 .

The kurtosis coefficient, being the expectation of a fourth moment, emphasizes larger deviations
from mean over small deviations from mean (deviations from mean less than one become very
small when raised to the fourth power). A kurtosis coefficient greater than 3 suggests higher
probability of large deviations from mean, relative to a comparable normally distributed random
variable. The skewness and kurtosis coefficients can be estimated using

𝑆 =
1
𝑁 ∑𝑁

𝑖=1(𝑋𝑖 −𝑋)3

[ 1
𝑁 ∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2]
3/2

𝐾𝑢𝑟 =
1
𝑁 ∑𝑁

𝑖=1(𝑋𝑖 −𝑋)4

[ 1
𝑁 ∑𝑁

𝑖=1(𝑋𝑖 −𝑋)2]
2 .

The Jarque-Bera statistic applies this idea to regression residuals, using the statistic

𝐽𝐵 = 𝑁 −𝐾
6 ( ̂𝑆2 + 1

4(𝐾𝑢𝑟 − 3)2)

which is approximately 𝜒2
(2) in large samples under the null. Some implementations ignore the

degree-of-freedom correction and use 𝑁 in the numerator instead of 𝑁 −𝐾.
We test for normality of the residuals in the regression

ln(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠) = 𝛽0 + 𝛽1 ln(𝑤𝑒𝑥𝑝𝑖) + 𝛽2 ln(𝑡𝑒𝑛𝑢𝑟𝑒𝑖) + 𝜖𝑖

Skew <- function(x){
# Returns Skewness Coefficient
return(mean((x-mean(x))^3)/(mean((x-mean(x))^2)^(3/2)))

}
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Kurt <- function(x){
# Returns Kurtosis Coefficient
return(mean((x-mean(x))^4)/(mean((x-mean(x))^2)^2))

}
JB <- function(mdl){

# requires lm object, returns JB Stat, p-val, Skewness and Kurtosis Coef.
N <- nobs(mdl)
K <- summary(mdl)$df[1]
ehat <- residuals(mdl)
JBSkew <- Skew(ehat)
JBKurt <- Kurt(ehat)
JBstat <- ((N-K)/6*(JBSkew^2 + (1/4)*(JBKurt-3)^2))
JBpval <- 1-pchisq(JBstat,2)
return(list("JBstat"=JBstat,

"JBpval"=JBpval,
"Skewness"=JBSkew,
"Kurtosis"=JBKurt))

}
df_earn <- read_excel("data\\earnings.xlsx")
mdl <- lm(log(earnings)~log(wexp)+log(tenure), data=df_earn)
JBtest <- JB(mdl)
fmt <- function(x){format(round(x,4),nsmall=4)}
cat("JB:", fmt(JBtest$JBstat),

" p-val:", fmt(JBtest$JBpval),
" Skewness:", fmt(JBtest$Skewness),
" Kurtosis:", fmt(JBtest$Kurtosis),"\n")

JB: 40.8122 p-val: 0.0000 Skewness: 0.4470 Kurtosis: 4.0123

The null of normality is rejected. There appears to be a slight skewness to the right, and
‘excess kurtosis’ (kurtosis in excess of 3). A histogram of the OLS residuals is shown below.

hist(residuals(mdl), 20)

Histogram of residuals(mdl)
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Figure 7.3: Residual histogram.
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7.5 Exercises
Exercise 7.1. Show in Example 7.1 that the modified noise terms are uncorrelated, i.e.,

E[𝜖∗𝑖𝜖∗𝑗|x] = 0

for all 𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1, 2, ..., 𝑁 .

Exercise 7.2. In the notes we claimed that

∑𝑁
𝑖=1 𝑋4

𝑖

(∑𝑁
𝑖=1 𝑋2

𝑖 )
2 ≥ 1

𝑁 .

Prove this by showing that for any set of values {𝑧𝑖}𝑁𝑖=1, we have

𝑁
𝑁
∑
𝑖=1

𝑧2𝑖 −(
𝑁
∑
𝑖=1

𝑧𝑖)
2

≥ 0.

(Hint: start with the fact that ∑𝑁
𝑖=1(𝑧𝑖− ̄𝑧)2 ≥ 0.) Then substitute 𝑋2

𝑖 for 𝑧𝑖. When will equality
hold?

Exercise 7.3.
a. Calculate the heteroskedasticity-robust standard errors for the regression in Example 7.4.

Compare the robust standard errors with the OLS standard errors.
b. Estimate (using lm()) the main equation in Example 7.4 using WLS, assuming

var[𝜖𝑖|wexp, tenure] = 𝜎2𝑤𝑒𝑥𝑝𝑖 .

Compare the WLS estimation results with the OLS estimation results (with heteroskedas-
ticity robust standard errors).

Exercise 7.4.
a. Why is it that we cannot include ̂𝑌𝑖,𝑜𝑙𝑠 in the RESET test equation?
b. Add the third power of the OLS fitted value in the RESET test equation in Example 7.5.

What happens to the statistical significance of the original regressors? Can you explain
the likely cause? Hint: what is the correlation between yhat^2 and yhat^3?
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Chapter 8
More Matrix Algebra

We cover four topics in matrix algebra: matrix rank, diagonalization of matrices, differentiation
of matrix forms, and vectors and matrices of random variables.

8.1 Rank

8.1.1 A Geometric Viewpoint

We consider vectors and matrices from a geometric perspective, leading up to the concept of the
rank of a matrix. We view a 2-dimensional vector

𝑣1 = [𝑥1
𝑦1

]

as an arrow from the origin to the point (𝑥1, 𝑦1). For the moment, we focus on column vectors.
Fig. 8.1 shows three vectors, where 𝑣2 and 𝑣3 are scalar multiples of 𝑣1.

𝑣1 = [23] , 𝑣2 = −1.5[23] , 𝑣3 = 2[23] .

par(mar=c(4,4,0,0))
v1 <- c(2,3)
v2 <- -1.5*v1
v3 <- 2*v1
plot(NA,xlim=c(-8,8), ylim=c(-7,7), xlab="X", ylab="Y", cex.lab=0.9, cex.axis=0.9)
grid()
arrows(0,0,v1[1],v1[2], lwd=3, length=0.1)
text(v1[1], v1[2]-2, "v1")
arrows(0,0,v2[1],v2[2], lwd=1, length=0.1, col='red')
text(v2[1], v2[2]-1, "-1.5v1", col='red')
arrows(0,0,v3[1],v3[2], lwd=1, length=0.1, col='blue')
text(v3[1]+1.5, v3[2], "2v1", col='blue')
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Figure 8.1: Scalar multiple of a vector.
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Multiplying a non-zero vector by a scalar changes its length (stretch or shrink). If the scalar
is negative, the vector direction is reversed. Other than possibly reversing direction, there is
no rotation. If we take the set of all vectors of the form 𝑐𝑣1, 𝑐 ∈ ℝ, we get a straight line,
which we can think of as a “one-dimensional space” in the two dimensional space made up of
all two-dimensional vectors.

Now view a (2 × 2) matrix as a collection of two column vectors

𝐴 = [𝑣11 𝑣12
𝑣21 𝑣22

] = [[𝑣11𝑣21
] [𝑣12𝑣22

]] = [𝑣1 𝑣2] .

Consider linear combinations of the two vectors 𝑣1 and 𝑣2:

𝑐1𝑣1 + 𝑐2𝑣2 = [𝑣1 𝑣2][
𝑐1
𝑐2
] = 𝐴𝑐 .

The result is a third vector that is a diagonal of the parallelogram formed by 𝑐1𝑣1 and 𝑐2𝑣2.
This is illustrated in Fig. 8.2 for 𝑐1 = 2 and 𝑐2 = 1.5.

𝑣1 = [13] , 𝑣2 = [41] , 𝑣3 = 2𝑣1 + 1.5𝑣2 = [ 8
7.5] .

par(mar=c(4,4,0,0))
plot(c(-1,9), c(-1,9), type="n", xlab="X", ylab="Y", asp=1, cex.lab=0.9, cex.axis=0.9)
grid()
v1 <- c(1,3); v2 <- c(4,1); v3 <- 2*v1+1.5*v2
arrows(0,0,v1[1],v1[2], lwd=3, length=0.1); text(v1[1]-0.5, v1[2]+0.5, "v1")
arrows(0,0,v2[1],v2[2], lwd=3, length=0.1); text(v2[1], v2[2]-0.55, "v2")
arrows(0,0,2*v1[1],2*v1[2], lwd=1, length=0.1, col='red');
text(2*v1[1]-0.5, 2*v1[2]+0.5, "2v1", col='red')
arrows(0,0,1.5*v2[1],1.5*v2[2], lwd=1, length=0.1, col='red')
text(1.5*v2[1], 1.5*v2[2]-0.55, "1.5v2", col='red')
arrows(0,0,v3[1],v3[2], lwd=3, length=0.1); text(v3[1]-0.5, v3[2]+0.5, "v3")
segments(2*v1[1],2*v1[2],v3[1],v3[2], lwd=1, lty=2, col='red')
segments(1.5*v2[1],1.5*v2[2],v3[1],v3[2], lwd=1, lty=2, col='red')

−5 0 5 10

0
2

4
6
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Y

v1

v2

2v1

1.5v2

v3

Figure 8.2: Scalar multiple of a vector.
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Now we consider, given two vectors 𝑣1 and 𝑣2, the set of all linear combinations of the form
𝑐1𝑣1 + 𝑐2𝑣2, where 𝑐1 ∈ ℝ and 𝑐2 ∈ ℝ. We consider in particular the following cases:

• Case 1: 𝑣1 and 𝑣2 are non-zero vectors, and it is not the case that 𝑣1 = 𝑏𝑣2. The example in
Fig. 8.2 illustrates this case. In such situations, the set of all linear combinations 𝑐1𝑣1+𝑐2𝑣2
fills the entire 2-d space. Put differently, given any vector in the 𝑥-𝑦 plane, you can find
𝑐1 and 𝑐2 such that that vector is equal to 𝑐1𝑣1 +𝑐2𝑣2. We say 𝑣1 and 𝑣2 spans the entire
2-d space, and that the matrix 𝐴 = [𝑣1 𝑣2] has column rank two. Since the column
rank of 𝐴 is equal to the number of columns in 𝐴, we also say 𝐴 has full column rank.

• Case 2: 𝑣1 = 𝑏𝑣2 (i.e., 𝑣1 and 𝑣2 lie on the same line) or if one of the vectors is a zero
vector and the other is not. In this case, then the set of all possible linear combinations
𝑐1𝑣1 + 𝑐2𝑣2 will be the line coincident with 𝑣1 and 𝑣2, or the line coincident with the
non-zero vector. The vectors 𝑣1 and 𝑣2 do not span the entire (two-dimensional) space,
but span only a (one-dimensional) line. The matrix 𝐴 = [𝑣1 𝑣2] will take the form

𝐴 = [𝑣11 𝑏𝑣11
𝑣21 𝑏𝑣21

] ,[𝑣11 0
𝑣21 0] or [0 𝑣12

0 𝑣22
]

We say the matrix 𝐴 has column rank one.
• Case 3: 𝑣1 = 𝑣2 = 0. In this case, all linear combinations 𝑐1𝑣1 + 𝑐2𝑣2 result in the zero

vector. We say that the matrix

𝐴 = [𝑣1 𝑣2] = [0 0
0 0]

has column rank 0.
Notice that in cases 2 and 3, we have

𝑐1𝑣1 + 𝑐2𝑣2 = 0 for some (𝑐1, 𝑐2) ≠ (0, 0), or 𝐴𝑐 = 0 for some 𝑐 ≠ 0 (8.1)

whereas in case 1

𝑐1𝑣1 + 𝑐2𝑣2 ≠ 0 for all (𝑐1, 𝑐2) ≠ (0, 0), i.e., 𝐴𝑐 ≠ 0 for all 𝑐 ≠ 0 . (8.2)

We say the vectors are linearly dependent if (8.1) holds, and linearly independent if (8.2)
holds.

We can view a (2 × 𝑚) matrix, 𝑚 > 2, as a collection of 𝑚 2-d vectors. These are vectors
‘living’ in 2-d space. Again, we consider the set of all linear combinations of the form

𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑚𝑣𝑚 .

Depending on the values of the vectors, the vectors might span the entire 2-d space, or only
a single (1-d) line, or just the origin if the vectors are all zero-vectors. However, 2-d vectors
cannot span a three (or more) dimensional space, no matter how many of them there are. In
other words, a (2 × 𝑚) matrix 𝐴, with 𝑚 > 2, may have column rank 2, 1, or 0, but cannot
have column rank greater than 2. Put yet another way, a set of three or more 2-d vectors must
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be linearly dependent. We will be able to write each one as some combination of the others.

We view a 3-dimensional vector

𝑣1 = ⎡⎢⎢
⎣

𝑥1
𝑦1
𝑧1

⎤⎥⎥
⎦

as an arrow in a three-dimensional cartesian space from the origin to the point (𝑥1, 𝑦1, 𝑧1). The
diagram below illustrates1 the vector

𝑣1 = ⎡⎢⎢
⎣

3
2
2

⎤⎥⎥
⎦
.

x

−1 0 1 2 3 4 5

y

−1
0

1
2
3
4

z

0

1

2

3

4

v1v1v1

Figure 8.3: A 3-d vector.

Multiplying a vector by a scalar changes its length, but not the direction, except if the scalar
is negative, in which case the vector direction is flipped. All vectors 𝑐𝑣1 for any scalar 𝑐 will lie
on a single line.

View a (3 × 2) matrix as a collection of two 3-d column vectors

𝐴 = ⎡⎢⎢
⎣

𝑣11 𝑣12
𝑣21 𝑣22
𝑣31 𝑣32

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

⎡⎢⎢
⎣

𝑣11
𝑣21
𝑣31

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑣12
𝑣22
𝑣32

⎤⎥⎥
⎦

⎤⎥⎥
⎦

= [𝑣1 𝑣2]

Consider linear combinations of the two 3-d vectors 𝑣1 and 𝑣2:

𝑐1𝑣1 + 𝑐2𝑣2.

The result is a third vector that is a diagonal of the parallelogram formed by 𝑐1𝑣1 and 𝑐2𝑣2.

1The code uses the package plot3D. The code for the figures are not shown, to avoid distracting from the main
discussion.
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This is illustrated in Fig. 8.4, which shows two vectors

𝑣1 = ⎡⎢⎢
⎣

3
2
2

⎤⎥⎥
⎦

, 𝑣2 = ⎡⎢⎢
⎣

0
4
3

⎤⎥⎥
⎦

and their sum.

x
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y
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2
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6

z
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5
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v1v1v1v1
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v2

v1

v2

v1

v2

v1

v1+v2

v2

v1

v1+v2

v2

v1

v1+v2

v2

v1

v1+v2

v2

v1

v1+v2

v2

v1

Figure 8.4: Linear combination of two 3-d vectors.

The three vectors 𝑣1, 𝑣2 and 𝑣1 + 𝑣2 all lie on the same plane. In fact, if we consider the set of
all linear combinations of 𝑣1 and 𝑣2

𝑐1𝑣1 + 𝑐2𝑣2
we will find the this set makes up the entire plane containing 𝑣1 and 𝑣2. We say that these two
3-d vectors span the (2-dimensional) plane just described.

If the two vectors 𝑣1 and 𝑣2 are such that 𝑣2 = 𝑐𝑣1, then the two vectors lie on a line, and
their linear combinations would also lie on the same line:

if 𝑣1 = ⎡⎢⎢
⎣

1
2
2

⎤⎥⎥
⎦
, 𝑣2 = ⎡⎢⎢

⎣

2
4
4

⎤⎥⎥
⎦
, then 𝑣3 = 𝑐1𝑣1 + 𝑐2𝑣2 = (𝑐1 + 2𝑐1)

⎡⎢⎢
⎣

1
2
2

⎤⎥⎥
⎦
.

Fig. 8.5 shows the vectors 𝑣1, 𝑣2 and 𝑣1 + 𝑣2. The set of linear combinations of 𝑣1 and 𝑣2 spans
a (one-dimensional) line, not a two-dimensional plane. The same is true if one of the vectors is
the zero vector, and the other is non-zero. If both are zero vectors, then the linear combinations
are always just the zero vector. We say that the (3 × 2) matrix

𝐴 = ⎡⎢⎢
⎣

𝑣11 𝑣12
𝑣21 𝑣22
𝑣31 𝑣32

⎤⎥⎥
⎦

has column rank two if its columns span a plane. It has column rank one if its columns span
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Figure 8.5: A one-dimensional line spanned by two vectors.

a line, and it has column rank zero if both columns are zero vectors.
Linear combinations of two 3-dimensional vectors, of course, cannot span the entire space –

the highest dimensional space it can span is a two-dimensional plane. To span the entire three
dimensional space, we need three vectors, and these three vectors cannot all lie on a plane or a
line, and none of the vectors can be the zero vector. We say that the (3 × 3) matrix

𝐴 = ⎡⎢⎢
⎣

𝑣11 𝑣12 𝑣13
𝑣21 𝑣22 𝑣23
𝑣31 𝑣32 𝑣33

⎤⎥⎥
⎦

= [𝑣1 𝑣2 𝑣3]

has column rank three, or full column rank, if the three column vectors that make up the matrix
span the entire three dimensional space.

If the three column vectors span only 2-dimensions or less, then the three vectors all lie on
the same plane or on a line, or are all zero. A compact way to describe these situations as a
whole is that there is some (𝑐1, 𝑐2, 𝑐3) ≠ (0, 0, 0) such that

𝑐1𝑣1 + 𝑐2𝑣2 + 𝑐3𝑣3 = 0 ,

that is, there is some 𝑐 ≠ 0 such that 𝐴𝑐 = 0. If the vectors are non-zero and all lie on a plane
or a line, then one can be written as a linear combination of the other, thus

𝑣𝑖 = 𝑐𝑗𝑣𝑗 + 𝑐𝑘𝑣𝑘 where 𝑖, 𝑗, 𝑘 = 1, 2, 3, with 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖 , (8.3)

or 𝑣𝑖 − 𝑐𝑗𝑣𝑗 − 𝑐𝑘𝑣𝑘 = 0. If one is a zero vector, say, 𝑣1, then we can write 𝑣1 = 0𝑣2 + 0𝑣3, or
𝑣𝑖 −0𝑣𝑗 −0𝑣𝑘 = 0. In all of these cases we have found 𝑐 ≠ 0 such that 𝐴𝑐 = 0. In these cases we
say that the vectors 𝑣1, 𝑣2 and 𝑣3 are linearly dependent. On the other hand, if the three vectors
span the entire 3-d space, then we cannot write one as a linear combination of the others. An
expression like (8.3) will hold only when 𝑐 = 0, i.e., 𝐴𝑐 ≠ 0 for all 𝑐 ≠ 0. In this case we say
that the vectors are linearly independent.
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What if we have a (3× 𝑛) matrix where 𝑛 > 3? These vectors that make up the matrix may
span the entire 3-d space (the matrix has rank 3), a 2-d plane (the matrix has column rank 2),
or a 1-d line (the matrix has column rank 1). If all of the vectors are zero vectors, the matrix
has column rank zero. Three-dimensional vectors, of course, cannot span a space of dimension
greater than three. The column rank of an (3 × 𝑛) matrix cannot exceed 3.

We lose the literal geometric viewpoint once we enter the realm of higher-dimensional vectors,
but the geometric intuition carries over. For instance, the two vectors

𝑣1 =
⎡
⎢
⎢
⎢
⎣

1
2
2
3

⎤
⎥
⎥
⎥
⎦

, 𝑣2 =
⎡
⎢
⎢
⎢
⎣

2
4
4
6

⎤
⎥
⎥
⎥
⎦

,

span only a 1-d “line” (in 4-d space). Since 𝑣2 = 2𝑣1, every linear combination is also just a
multiple of 𝑣1:

𝑐1𝑣1 + 𝑐2𝑣2 = 𝑐1𝑣1 + 2𝑐2𝑣1 = (𝑐1 + 2𝑐2)𝑣1 .

The matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 2
2 4
2 4
3 6

⎤
⎥
⎥
⎥
⎦

therefore only has column rank one. On the other hand, the columns of the matrix

𝐵 =
⎡
⎢
⎢
⎢
⎣

1 2
2 4
2 4
3 5

⎤
⎥
⎥
⎥
⎦

span a 2-d “plane” in 4-d space; its column rank is two. A (4×3) matrix can have column ranks
0, 1, 2, or 3. The following matrices have column ranks 2 and 3 respectively:

𝐶 =
⎡
⎢
⎢
⎢
⎣

1 3 6
2 2 8
3 1 10
4 1 13

⎤
⎥
⎥
⎥
⎦

, 𝐷 =
⎡
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
3 5 6

⎤
⎥
⎥
⎥
⎦

.

A (4 × 4) matrix can have column rank 0 to 4. A (4 × 𝑛) matrix, where 𝑛 > 4 can have column
ranks 0 up to 4. In general, the rank of an (𝑚 × 𝑛) matrix cannot exceed the minimum of 𝑚
and 𝑛:

col.rank(𝐴) ≤ min(𝑚, 𝑛).

If col.rank(𝐴) = 𝑛, then 𝐴𝑐 ≠ 0 for all 𝑐 ≠ 0. If col.rank(𝐴) < 𝑛, then there is a 𝑐 ≠ 0 such that
𝐴𝑐 = 0.
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8.1.2 The Rank of a Matrix

We could have done all this by treating a matrix as a collection of row vectors. For example,

𝐴 = ⎡⎢⎢
⎣

𝑣11 𝑣12
𝑣21 𝑣22
𝑣31 𝑣32

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

[𝑣11 𝑣12]
[𝑣21 𝑣22]
[𝑣31 𝑣32]

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

vT
1

vT
2

vT
3

⎤⎥⎥
⎦

Linear combinations of the component row vectors can be written 𝑐T𝐴. We can talk about the
linear dependence or linear independence of the row vectors, and the dimension of the space
spanned by the vectors. All this leads to the concept of row rank. In general, the rank of an
(𝑚 × 𝑛) matrix cannot exceed the minimum of 𝑚 and 𝑛:

row.rank(𝐴) ≤ min(𝑚, 𝑛).

If row.rank(𝐴) = 𝑚, then 𝑐T𝐴 ≠ 0 for all 𝑐 ≠ 0.
Finally, we note that the row and column ranks of a matrix are always equal. Suppose the

column rank of a matrix 𝐴 is 𝑟 ≤ min(𝑚, 𝑛). This means you can find 𝑟 linearly independent
columns in 𝐴. Collect these columns into the (𝑚 × 𝑟) matrix 𝐶. Since every column in 𝐴 can
be written as a linear combination of the columns of 𝐶, we can write 𝐴 = 𝐶𝑅 for some (𝑟 × 𝑛)
matrix 𝑅. This in turn says that every row in 𝐴 can be written as a linear combination of the
rows of 𝑅. Since there are only 𝑟 rows in 𝑅, it must be that the row rank of 𝐴 is less than or
equal to 𝑟. That is,

row.rank(𝐴) ≤ col.rank(𝐴). (8.4)

Applying the same argument to 𝐴T, we get

row.rank(𝐴T) ≤ col.rank(𝐴T).

Since the row rank of a transpose is the column rank of the original matrix, we have

col.rank(𝐴) ≤ row.rank(𝐴). (8.5)

Inequalities (8.4) and (8.5) imply

row.rank(𝐴) = col.rank(𝐴).

We can therefore speak unambiguously of the rank of a matrix 𝐴.

We state without proof a few results regarding the rank of a matrix:

• For any matrices 𝐴 and 𝐵 for which 𝐴𝐵 exists, we have

rank(𝐴𝐵) ≤ min(rank(𝐴), rank(𝐵)).

• A square matrix 𝐴 has an inverse if and only if it is full rank.

• If 𝐴 is a full rank (𝑚×𝑚) matrix, and 𝐵 is an (𝑚×𝑛) matrix of rank 𝑟, then rank(𝐴𝐵) = 𝑟.
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• For any (𝑛 × 𝑘) matrix 𝐴, we have

rank(𝐴T𝐴) = rank(𝐴).

This means that 𝐴T𝐴 will have an inverse if and only if 𝐴 has full column rank.

8.1.3 Finding the Rank of a Matrix in R

To find the rank of a matrix in R, we can feed the matrix into the qr() function, which returns
a number of things, including the matrix’s rank.

Example 8.1. Use R to find the rank of the matrix

𝐸 = ⎡⎢⎢
⎣

2 2 4
2 1 3
2 5 7

⎤⎥⎥
⎦
.

E <- matrix(c(2,2,2,2,1,5,4,3,7),3,3)
E_qr <- qr(E)
E_qr$rank

[1] 2

8.1.4 Exercises

Exercise 8.1. The following matrices have rank one:

𝐴 = [𝑎11 𝛼𝑎11
𝑎21 𝛼𝑎21

] ,𝐵 = [𝑎11 0
𝑎21 0] ,𝐶 = [0 𝑎12

0 𝑎22
] .

In each case find a non-zero (2 × 1) vector 𝑐 such that 𝐴𝑐 = 0. Show that in each case the
determinant of the matrix is zero (so that the inverse does not exist).

Exercise 8.2. Suppose the matrix

𝐴 = [𝑎11 𝑎12
𝑎21 𝑎22

]

is such that 𝑎11𝑎22 − 𝑎12𝑎21 ≠ 0. Show that it cannot be that
i. one or more of the rows or columns have all zero entries;
ii. one of the rows / columns is a multiple of the other row / column.
iii. Show that the only 𝑐 such that 𝐴𝑐 = 0 is 𝑐 = 0.

Exercise 8.3. What is the rank of the following matrices? (Try without using R.)

i. 𝐴 = ⎡⎢⎢
⎣

1 2
2 1
0 0

⎤⎥⎥
⎦

ii. 𝐵 = ⎡⎢⎢
⎣

1 2 4
3 1 7
1 0 2

⎤⎥⎥
⎦
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Exercise 8.4. Let {𝑋𝑖}𝑁𝑖=1 be a set of numbers, and consider the matrix

𝐴 = [ 𝑁 ∑𝑁
𝑖=1 𝑋𝑖

∑𝑁
𝑖=1 𝑋𝑖 ∑𝑁

𝑖=1 𝑋2
𝑖
]

Show that 𝐴 is rank one if and only if 𝑋𝑖 is constant over all 𝑖, i.e., 𝑋𝑖 = 𝑏, 𝑖 = 1, 2, ..., 𝑁 .

Exercise 8.5. Suppose 𝐴 is a (𝑛 × 𝑛) diagonal matrix with 𝑟 non-zero terms and 𝑛 − 𝑟 zero
terms in its diagonal. What is its rank?

8.2 Diagonalization of Symmetric Matrices

A square matrix 𝐴 is diagonalizable if it can be written in the form

𝐴 = 𝐶Λ𝐶−1 where Λ is diagonal . (8.6)

For such matrices, we have 𝐶−1𝐴𝐶 = Λ. We will not prove this statement, except to note that
the diagonal elements of Λ are the eigenvalues of 𝐴, and the columns of 𝐶 are the corresponding
eigenvectors of 𝐴. The decomposition (8.6) is called the eigen-decomposition of the matrix 𝐴.

If the matrix 𝐴 is symmetric, then we have in addition that 𝐶−1 = 𝐶T, i.e., a symmetric
matrix 𝐴 can be written as

𝐴 = 𝐶Λ𝐶T where 𝐶T𝐶 = 𝐶𝐶T = 𝐼 and Λ is diagonal . (8.7)

We say that 𝐴 is orthogonally diagonalizable. Symmetric matrices are the only such matri-
ces, i.e., a square matrix is orthogonally diagonalizable if and only if it is symmetric. Further-
more, the values of 𝐶 and Λ will be real; if 𝐴 is not symmetric, the eigenvalues and eigenvectors
may be complex-valued.

If (8.7) holds for the (𝑛 × 𝑛) symmetric matrix 𝐴, we can write

𝐴 = 𝐶Λ𝐶T = [𝑐1 𝑐2 … 𝑐𝑛]
⎡
⎢
⎢
⎢
⎣

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑐T
1
𝑐T
2
…
𝑐T
𝑛

⎤
⎥
⎥
⎥
⎦

=
𝑛

∑
𝑖=1

𝜆𝑖𝑐𝑖𝑐T
𝑖 .

where 𝑐1, 𝑐2,… , 𝑐𝑛 are the (𝑛 × 1) columns of 𝐶, and 𝜆1, 𝜆2,… , 𝜆𝑛 are the diagonal elements of
Λ.

A matrix 𝐶 such that 𝐶T𝐶 = 𝐼 is called orthogonal (sometimes orthonormal) because

𝐶T𝐶 =
⎡
⎢
⎢
⎢
⎣

𝑐T
1
𝑐T
2
…
𝑐T
𝑛

⎤
⎥
⎥
⎥
⎦

[𝑐1 𝑐2 … 𝑐𝑛] =
⎡
⎢
⎢
⎢
⎣

𝑐T
1 𝑐1 𝑐T

1 𝑐2 … 𝑐T
1 𝑐𝑛

𝑐T
2 𝑐1 𝑐T

2 𝑐2 … 𝑐T
2 𝑐𝑛

⋮ ⋮ ⋱ ⋮
𝑐T
𝑛𝑐1 𝑐T

𝑛𝑐2 … 𝑐T
𝑛𝑐𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

⎤
⎥
⎥
⎥
⎦

.

In other words, the columns of 𝐶 are unit length vectors, and orthogonal to each other.
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Example 8.2. For the matrix

𝐴 = ⎡⎢⎢
⎣

1 0 1
0 2 4
1 4 1

⎤⎥⎥
⎦
.

the matrices 𝐶 and Λ are

𝐶 ≈ ⎡⎢⎢
⎣

−0.1437 0.9688 0.2021
−0.7331 −0.2414 0.6359
−0.6648 0.0568 −0.7449

⎤⎥⎥
⎦
,Λ ≈ ⎡⎢⎢

⎣

5.6272 0 0
0 1.0586 0
0 0 −2.6858

⎤⎥⎥
⎦

which we can find from the following code

A=matrix(c(1,0,1,0,2,4,1,4,1), nrow=3)
E=eigen(A)
C <- E$vectors # E$vectors is C
Lambda <- diag(E$values) # E$values is diag values of \Lambda

cat("C = \n"); round(C,4)

C =
[,1] [,2] [,3]

[1,] -0.1437 0.9688 0.2021
[2,] -0.7331 -0.2414 0.6359
[3,] -0.6648 0.0568 -0.7449

cat("\nLambda = \n"); round(Lambda,4)

Lambda =
[,1] [,2] [,3]

[1,] 5.6272 0.0000 0.0000
[2,] 0.0000 1.0586 0.0000
[3,] 0.0000 0.0000 -2.6858

cat("\nVerifying A = C Lambda t(C): \n"); round(C %*% Lambda %*% t(C), 4)

Verifying A = C Lambda t(C):
[,1] [,2] [,3]

[1,] 1 0 1
[2,] 0 2 4
[3,] 1 4 1

cat("\nVerifying C %*% t(C) = I: \n"); round(C %*% t(C), 4)

Verifying C %*% t(C) = I:
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

The columns of 𝐶 are the eigenvectors, and the diagonal elements of Λ are the eigenvalues
of 𝐴.



184 CHAPTER 8. MORE MATRIX ALGEBRA

The diagonalization result (8.6) has many applications:

• Suppose you want to find the 100th power of 𝐴. Since 𝐴 = 𝐶Λ𝐶−1, we have

𝐴 = 𝐶Λ𝐶−1𝐶Λ𝐶−1 …𝐶Λ𝐶−1 = 𝐶Λ100𝐶−1.

This is a much more efficient (and accurate) way of computing large powers of matrices
than brute force multiplication.

• Since 𝐴𝐶 = 𝐶Λ and 𝐶 is full rank, 𝐴 and Λ have the same rank. Since Λ is diagonal, its
rank is just the number of non-zero elements in its diagonal. Therefore the rank of 𝐴 is
the number of non-zero elements in the diagonal of Λ.

• The determinant of the product of square matrices is the product of their determinants.
Since 𝐴𝐶 = 𝐶Λ, we have |𝐴||𝐶| = |𝐶||Λ|, from which it follows that |𝐴| = |Λ|. Further-
more, the determinant of a diagonal matrix is just the product of the diagonal elements.

• Recall that a (𝑛 × 𝑛) matrix 𝐴 is positive definite if 𝑐T𝐴𝑐 > 0 for all vectors 𝑐 ≠ 0. If 𝐴
is symmetric, so that (8.7) holds, then we have

𝑐T𝐴𝑐 = 𝑐T𝐶𝐶T𝐴𝐶𝐶T𝑐 = 𝑏TΛ𝑏 =
𝑛

∑
𝑖=1

𝑏2𝑖 𝜆𝑖

where 𝑏 = 𝐶T𝑐. Since 𝐶T is invertible, it has full rank, which means that 𝑏 = 𝐶T𝑐 ≠ 0 for
all 𝑐 ≠ 0, and it follows that ∑𝑛

𝑖=1 𝑏2𝑖 𝜆𝑖 > 0 if 𝜆𝑖 > 0 for all 𝑖. If 𝜆𝑖 ≤ 0 for one or more 𝑖,
then we can find 𝑏 ≠ 0 (and therefore a 𝑐 ≠ 0) such that ∑𝑛

𝑖=1 𝑏2𝑖 𝜆𝑖 ≤ 0. In other words,
𝐴 is positive definite if and only if the diagonal elements of Λ are positive.

• Since the diagonal elements of Λ are positive if 𝐴 is symmetric and positive definite, we
can write Λ = Λ1/2Λ1/2. The matrix Λ1/2 is the diagonal matrix whose diagonal elements
are the square root of the diagonal elements of Λ. Then we have

𝐴 = 𝐶Λ1/2Λ1/2𝐶T or Λ−1/2𝐶T𝐴𝐶Λ−1/2 = 𝐼.

If we let 𝑃 = Λ−1/2𝐶−1, then we can write

𝑃𝐴𝑃T = 𝐼 or 𝐴 = 𝑃−1(𝑃T)−1 = 𝑃−1(𝑃−1)T or 𝐴−1 = 𝑃T𝑃 .

What are these eigenvalues and eigenvectors? Think of a square matrix 𝐴 as something that
transforms one vector into another, i.e., 𝐴𝑥1 = 𝑥2. In general, the new vector 𝑥2 will have
a different length and a different direction from 𝑥1, i.e., in general there will be scaling and
rotation. However, for any given matrix 𝐴, there will be certain vectors 𝑥 such that

𝐴𝑥 = 𝜆𝑥 (8.8)

where 𝜆 is a scalar. Recall that a scalar multiple of a vector only scales the vector, and reverses
its direction if the scalar is negative. What (8.8) says is that 𝐴𝑥 only stretches or shrinks the
vector 𝑥, without rotation (apart from possibly reversing the direction). Vectors 𝑥 for which
(8.8) holds are called the eigenvectors of 𝐴, and the corresponding 𝜆s are the eigenvalues.
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8.2.1 Exercises

Exercise 8.6. A (𝑛 × 𝑛) matrix 𝐴 is positive semidefinite if 𝑐T𝐴𝑐 ≥ 0 for all vectors 𝑐 ≠ 0.
Explain why a symmetric matrix 𝐴 is positive semidefinite if and only if 𝜆𝑖 is non-negative for
all 𝑖.

Exercise 8.7. A square matrix 𝐴 is said to be idempotent if 𝐴𝐴 = 𝐴. For example, suppose
𝑋 is (𝑁 ×𝐾) such that the (𝐾 ×𝐾) matrix 𝑋T𝑋 has an inverse (i.e., 𝑋 has full column rank).
Then the matrix 𝐴 = 𝑋(𝑋T𝑋)−1𝑋T is idempotent, since

𝐴𝐴 = 𝑋(𝑋T𝑋)−1𝑋T𝑋(𝑋T𝑋)−1𝑋T = 𝑋(𝑋T𝑋)−1𝑋T = 𝐴.

Now suppose that 𝐴 is idempotent and symmetric, and consider the diagonalization of this
matrix:

𝐶T𝐴𝐶 = Λ.

a. Explain why the diagonal elements of Λ can only take values 1 and 0. (Hint: We have
𝐴𝐶 = 𝐶Λ, therefore 𝐴𝐴𝐶 = 𝐴𝐶Λ = 𝐶Λ2. Since 𝐴𝐴 = 𝐴, we have 𝐴𝐶 = 𝐶Λ2. Since
𝐶Λ = 𝐶Λ2 and 𝐶 is full rank, therefore Λ = Λ2.)

b. Show that the rank of a symmetric idempotent matrix 𝐴 is equal to its trace. (Hint:
tr(𝐴) = tr(𝐶Λ𝐶T) = tr(𝐶T𝐶Λ) = tr(Λ).)

8.3 Differentiation of Matrix Forms

8.3.1 Definitions

This topic is easier that it sounds. What we mean by differentiation of matrix forms is merely a
set of formulas that organize partial derivatives of functions written with matrices. For instance,
for the function 𝑦 = 𝑓(𝑥1, 𝑥2,…𝑥𝑛), which we write as 𝑓(𝑥) where 𝑥T = [𝑥1 𝑥2 … 𝑥𝑛], we
define the derivative of 𝑦 with respect to the vector 𝑥 to be

𝑑𝑦
𝑑𝑥 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑦
𝜕𝑥1𝜕𝑦
𝜕𝑥2
⋮
𝜕𝑦
𝜕𝑥𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and 𝑑𝑦
𝑑𝑥T = [ 𝜕𝑦

𝜕𝑥1

𝜕𝑦
𝜕𝑥2

… 𝜕𝑦
𝜕𝑥𝑛

] .

If 𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) and if

𝑋 = [𝑥1 𝑥2
𝑥3 𝑥4

] ,

then we define

𝑑𝑦
𝑑𝑋 =

⎡⎢⎢
⎣

𝜕𝑦
𝜕𝑥1

𝜕𝑦
𝜕𝑥2𝜕𝑦

𝜕𝑥3

𝜕𝑦
𝜕𝑥4

⎤⎥⎥
⎦
.

Likewise if 𝑋 is an (𝑚 × 𝑛) matrix.
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If 𝑦 is an 𝑚 vector of multivariable functions

𝑦 =
⎡
⎢
⎢
⎢
⎣

𝑓1(𝑥)
𝑓2(𝑥)

⋮
𝑓𝑚(𝑥)

⎤
⎥
⎥
⎥
⎦

where 𝑥T = [𝑥1 𝑥2 … 𝑥𝑛], then we define

𝑑𝑦
𝑑𝑥T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

… 𝜕𝑓1
𝜕𝑥𝑛𝜕𝑓2

𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

… 𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

𝜕𝑓𝑚
𝜕𝑥2

… 𝜕𝑓𝑚
𝜕𝑥𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Example 8.3. Let

𝑋 = [𝑥1 𝑥2
𝑥3 𝑥4

]

and 𝑦 = |𝑋| = 𝑥1𝑥4 − 𝑥2𝑥3. Then

𝑑𝑦
𝑑𝑋 =

⎡⎢⎢
⎣

𝜕𝑦
𝜕𝑥1

𝜕𝑦
𝜕𝑥2𝜕𝑦

𝜕𝑥3

𝜕𝑦
𝜕𝑥4

⎤⎥⎥
⎦

= [ 𝑥4 −𝑥3
−𝑥2 𝑥1

] .

Since

𝑋−1 = 1
|𝑋| [

𝑥4 −𝑥2
−𝑥3 𝑥1

]

we have the formula
𝑑
𝑑𝑋 |𝑋| = |𝑋|(𝑋−1)T.

This result holds for general non-singular square matrices (proof omitted).

8.3.2 Basic Differentiation Formulas

If 𝑦 = 𝑓(𝑥) = 𝐴𝑥 where 𝐴 = (𝑎𝑖𝑗)𝑚𝑛 is a (𝑚×𝑛) matrix of constants and 𝑥 = [𝑥1 𝑥2 … 𝑥𝑛]
T

is an (𝑛 × 1) vector of variables, then
𝑑𝑦
𝑑𝑥T = 𝐴 . (8.9)

Proof: The 𝑖𝑡ℎ element of 𝐴𝑥 is ∑𝑛
𝑘=1 𝑎𝑖𝑘𝑥𝑘. Therefore the (𝑖, 𝑗)𝑡ℎ element of 𝑑𝑦

𝑑𝑥T is

𝜕
𝜕𝑥𝑗

𝑛
∑
𝑘=1

𝑎𝑖𝑘𝑥𝑘 = 𝑎𝑖𝑗

which says that 𝑑𝑦
𝑑𝑥T = 𝐴. Result (8.9) is the matrix analogue of the univariate differentiation

rule 𝑑
𝑑𝑥𝑎𝑥 = 𝑎.
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If 𝑦 = 𝑓(𝑥) = 𝑥T𝐴𝑥 where 𝐴 = (𝑎𝑗𝑘)𝑛𝑛 is a (𝑛 × 𝑛) matrix of constants, then

𝑑𝑦
𝑑𝑥 = 𝑑

𝑑𝑥𝑥
T𝐴𝑥 = (𝐴 + 𝐴T)𝑥. (8.10)

Proof: 𝑦 = 𝑥T𝐴𝑥 = ∑𝑛
𝑗=1 ∑

𝑛
𝑘=1 𝑎𝑗𝑘𝑥𝑗𝑥𝑘. The derivative 𝑑𝑦

𝑑𝑥 is the (𝑛 × 1) vector whose 𝑖𝑡ℎ
element is

𝑑
𝑑𝑥𝑖

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝑎𝑗𝑘𝑥𝑗𝑥𝑘 =
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑥𝑘 +
𝑛

∑
𝑗=1

𝑎𝑗𝑖𝑥𝑗.

The first sum after the equality is the product of the 𝑖𝑡ℎ row of 𝐴 into 𝑥. The second sum after
the inequality is the product of the 𝑖𝑡ℎ row of 𝐴T into 𝑥. In other words, 𝑑𝑦

𝑑𝑥 = (𝐴 + 𝐴T)𝑥.

It may be helpful to derive this formula by direct differentiation in a special case, say, where
𝐴 is (3 × 3). You are asked to do this in an exercise. Note that if 𝐴 is symmetric, then (8.10)
becomes

𝑑𝑦
𝑑𝑥 = 𝑑

𝑑𝑥𝑥
T𝐴𝑥 = (𝐴 + 𝐴T)𝑥 = 2𝐴𝑥. (8.11)

The result then becomes directly comparable to the univariate differentiation rule 𝑑
𝑑𝑥𝑎𝑥2 = 2𝑎𝑥.

If 𝑦 = 𝑓(𝑥) is a scalar valued function of an (𝑛 × 1) vector of variables, then

𝑑
𝑑𝑥T (𝑑𝑦

𝑑𝑥) = 𝑑
𝑑𝑥T

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑𝑦
𝑑𝑥1𝑑𝑦
𝑑𝑥2
⋮
𝑑𝑦
𝑑𝑥𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑2𝑦
𝑑𝑥2

1

𝑑2𝑦
𝑑𝑥1𝑑𝑥2

… 𝑑2𝑦
𝑑𝑥1𝑑𝑥𝑛

𝑑2𝑦
𝑑𝑥2𝑑𝑥1

𝑑2𝑦
𝑑𝑥2

2
… 𝑑2𝑦

𝑑𝑥2𝑑𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝑑2𝑦
𝑑𝑥𝑛𝑑𝑥1

𝑑2𝑦
𝑑𝑥𝑛𝑑𝑥2

… 𝑑2𝑦
𝑑𝑥2𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.12)

In other words, we get the Hessian matrix of 𝑦. We write 𝑑
𝑑𝑥T (𝑑𝑦

𝑑𝑥) as

𝑑
𝑑𝑥T (𝑑𝑦

𝑑𝑥) = 𝑑2𝑦
𝑑𝑥𝑑𝑥T .

8.3.3 Exercises

Exercise 8.8. Show that if 𝑦 = 𝑓(𝑥) = 𝑥T𝐴 where 𝐴 = (𝑎𝑖𝑗)𝑚𝑛 is a (𝑚×𝑛) matrix of constants

and 𝑥 = [𝑥1 𝑥2 … 𝑥𝑚]
T

is an (𝑚 × 1) vector of variables, then

𝑑𝑦
𝑑𝑥 = 𝐴 .

Exercise 8.9. If 𝑐 is an 𝑛-dimensional vector of constants and 𝑥 is an 𝑛-dimensional vector of
variables, show that

𝑑
𝑑𝑥𝑐

T𝑥 = 𝑐 .

Exercise 8.10. Let 𝐴 = (𝑎𝑖𝑗)33 be a (3 × 3) matrix of constants, and 𝑥 be a (3 × 1) vector of
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variables. Multiply out 𝑥T𝐴𝑥 in full, and show by direct differentiation that

𝑑𝑦
𝑑𝑥 = (𝐴 + 𝐴T)𝑥 .

Exercise 8.11. Use the fact that 𝑑
𝑑𝑋 |𝑋| = |𝑋|(𝑋−1)T for a general square matrix 𝑋 to show

that if |𝑋| > 0, then
𝑑
𝑑𝑋 ln |𝑋| = (𝑋−1)T .

Exercise 8.12. Show that if 𝐴 = (𝑎𝑖𝑗)𝑛𝑛 is an (𝑛 × 𝑛) matrix of constants and 𝑥 is an 𝑛-
dimensional vector of variables, then

𝑑2(𝑥T𝐴𝑥)
𝑑𝑥𝑑𝑥T = 𝐴+𝐴T .

Exercise 8.13. Show that for any (𝑛 × 𝑛) square matrix 𝐴, we have

𝑑tr(𝐴)
𝑑𝐴 = 𝐼𝑛 .

8.4 Vectors and Matrices of Random Variables

Organizing large numbers of random variables using matrix algebra provides convenient formulas
for manipulating their expectations, variances and covariances, and for expressing their joint pdf.

8.4.1 Expectations and Variance-Covariance Matrices

The expectation of a vector 𝑥 of 𝑀 random variables

𝑥 = [𝑋1 𝑋2 … 𝑋𝑀]
T

is defined as the vector of their expectations, i.e.,

𝐸[𝑥] = [𝐸[𝑋1] 𝐸[𝑋2] … 𝐸[𝑋𝑀 ]]
T
.

Likewise, if 𝑋 is a matrix of random variables

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑋11 𝑋12 … 𝑋1𝑁
𝑋21 𝑋22 … 𝑋2𝑁
⋮ ⋮ ⋱ ⋮

𝑋𝑀1 𝑋𝑀2 … 𝑋𝑀𝑁

⎤
⎥
⎥
⎥
⎦

then

𝐸[𝑋] =
⎡
⎢
⎢
⎢
⎣

𝐸[𝑋11] 𝐸[𝑋12] … 𝐸[𝑋1𝑁 ]
𝐸[𝑋21] 𝐸[𝑋22] … 𝐸[𝑋2𝑁 ]

⋮ ⋮ ⋱ ⋮
𝐸[𝑋𝑀1] 𝐸[𝑋𝑀2] … 𝐸[𝑋𝑀𝑁 ]

⎤
⎥
⎥
⎥
⎦

.

With these definitions, we can define the variance-covariance matrix of a vector 𝑥 of random
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variables. Let

̃𝑥 = 𝑥 − 𝐸[𝑥] =
⎡
⎢
⎢
⎢
⎣

𝑋1 −𝐸[𝑋1]
𝑋2 −𝐸[𝑋2]

⋮
𝑋𝑀 −𝐸[𝑋𝑀 ]

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

�̃�1
�̃�2
⋮

�̃�𝑀

⎤
⎥
⎥
⎥
⎦

Then

𝐸[ ̃𝑥 ̃𝑥T] = 𝐸[(𝑥 − 𝐸[𝑥])(𝑥 − 𝐸[𝑥])T] = 𝐸
⎡
⎢
⎢
⎢
⎣

�̃�2
1 �̃�1�̃�2 … �̃�1�̃�𝑀

�̃�2�̃�1 �̃�2
2 … �̃�2�̃�𝑀

⋮ ⋮ ⋱ ⋮
�̃�𝑀�̃�1 �̃�𝑀 ̃𝑥2 … �̃�𝑀�̃�𝑀

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝐸[�̃�2
1 ] 𝐸[�̃�1�̃�2] … 𝐸[�̃�1�̃�𝑀 ]

𝐸[�̃�2�̃�1] 𝐸[�̃�2
2 ] … 𝐸[�̃�2�̃�𝑀 ]

⋮ ⋮ ⋱ ⋮
𝐸[�̃�𝑀�̃�1] 𝐸[�̃�𝑀�̃�2] … 𝐸[�̃�𝑀�̃�𝑀 ]

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑣𝑎𝑟[𝑋1] 𝑐𝑜𝑣[𝑋1, 𝑋2] … 𝑐𝑜𝑣[𝑋1, 𝑋𝑀 ]
𝑐𝑜𝑣[𝑋1, 𝑋2] 𝑣𝑎𝑟[𝑋2] … 𝑐𝑜𝑣[𝑋2, 𝑋𝑀 ]

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣[𝑋1, 𝑋𝑀 ] 𝑐𝑜𝑣[𝑋2, 𝑋𝑀 ] … 𝑣𝑎𝑟[𝑋𝑀 ]

⎤
⎥
⎥
⎥
⎦

.

(8.13)
In other words, 𝐸[(𝑥 − 𝐸[𝑥])(𝑥 − 𝐸[𝑥])T] is a symmetric matrix containing the variances of all
of the variables in 𝑥, and their covariances. We denote this matrix by 𝑣𝑎𝑟[𝑋].

If 𝑋 is a random variable (singular), then 𝐸[𝑎𝑋+𝑏] = 𝑎𝐸[𝑋]+𝑏 and 𝑣𝑎𝑟[𝑎𝑋+𝑏] = 𝑎2𝑣𝑎𝑟[𝑋].
The following are the matrix analogues: let 𝑥 be an (𝑀 × 1) vector of random variables, and 𝑋
be a (𝐾×𝑀) matrix of random variables. Let 𝐴 = (𝑎𝑘𝑚)𝐾𝑀 be a (𝐾×𝑀) matrix of constants,
and 𝑏 be a (𝐾 × 1) vector of constants. Then

• 𝐸[𝐴𝑥 + 𝑏] = 𝐴𝐸[𝑥] + 𝑏
Proof: 𝐴𝑥+𝑏 is a (𝐾×1) vector whose 𝑘th element is ∑𝑀

𝑚=1(𝑎𝑘𝑚𝑥𝑚+𝑏𝑘), and the expectation
of this term is

𝐸 [
𝑀
∑
𝑚=1

(𝑎𝑘𝑚𝑥𝑚 + 𝑏𝑘)] =
𝑀
∑
𝑚=1

𝑎𝑘𝑚𝐸[𝑥𝑚] + 𝑏𝑘

which in turn is the 𝑘th element of the vector 𝐴𝐸[𝑥] + 𝑏.
• 𝑣𝑎𝑟[𝐴𝑥 + 𝑏] = 𝐴𝑣𝑎𝑟[𝑥]𝐴T

Proof: Since (𝐴𝑥 + 𝑏) − 𝐸[(𝐴𝑥 + 𝑏) = 𝐴(𝑥 − 𝐸[𝑥]) = 𝐴 ̃𝑥, we have

𝑣𝑎𝑟[𝐴𝑥 + 𝑏] = 𝐸[(𝐴 ̃𝑥)(𝐴 ̃𝑥)T] = 𝐸[𝐴 ̃𝑥 ̃𝑥T𝐴T] = 𝐴𝐸[ ̃𝑥 ̃𝑥T]𝐴T = 𝐴𝑣𝑎𝑟[𝑥]𝐴T .

If 𝑋 is a random variable (singular), we have 𝑣𝑎𝑟[𝑋] = 𝐸[𝑋2] −𝐸[𝑋]2. The matrix analogue of
this result is

𝑣𝑎𝑟[𝑥] = 𝐸[𝑥𝑥T] − 𝐸[𝑥]𝐸[𝑥]T (8.14)

(see exercises).
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Given a vector of random variables 𝑥, the linear combination 𝑐T𝑥 has variance-covariance
matrix 𝑐T𝑣𝑎𝑟[𝑥]𝑐. Since variances cannot be negative, we have 𝑐T𝑣𝑎𝑟[𝑥]𝑐 ≥ 0 for all 𝑐. This
means that 𝑣𝑎𝑟[𝑥] is a positive semidefinite matrix. If there is a linear combination with zero
variance, then at least one or more of the variables is actually a constant, or at least one or more
of the variables is a linear combination of the others. Otherwise we have 𝑐T𝑣𝑎𝑟[𝑥]𝑐 > 0 for all
𝑐 ≠ 0, i.e., 𝑣𝑎𝑟[𝑥] is positive definite.

Since 𝑣𝑎𝑟[𝑥] is symmetric and positive definite, we can find a 𝐶 such that 𝐶T𝑣𝑎𝑟[𝑥]𝐶 = Λ
where Λ is diagonal. But 𝐶T𝑣𝑎𝑟[𝑥]𝐶 is the variance of 𝐶T𝑥. In other words, 𝐶T𝑥 is a vector of
uncorrelated random variables, obtained from the (possibly) correlated random variables in 𝑥.
Furthermore, we have 𝑣𝑎𝑟[𝑃𝑥] = 𝐼 where 𝑃 = Λ−1/2𝐶T.

8.4.2 The Multivariate Normal Distribution

We presented the pdf of a bivariate normal distribution in an earlier chapter. We present here
the pdf of a general multivariate normal distribution and some associated results. A (𝐾 × 1)
vector of random variables 𝑥 is said to have a multivariate normal distribution with mean 𝜇 and
variance-covariance matrix Σ, denoted Normal𝐾(𝜇,Σ), if its pdf has the form

𝑓(𝑥) = (2𝜋)−𝐾/2|Σ|−1/2 exp{−1
2(𝑥 − 𝜇)TΣ−1(𝑥 − 𝜇)}

We list a few results below, omitting proofs:
• If Σ is diagonal, then the variables are independent.
• If 𝑥 ∼ Normal𝐾(𝜇,Σ), then 𝐴𝑥 + 𝑏 ∼ Normal𝐾(𝐴𝜇 + 𝑏,𝐴Σ𝐴T).
• If we partition 𝑥 as

[𝑥1
𝑥2

] ∼ Normal𝐾 ([𝜇1
𝜇2

] ,[Σ11 Σ12
Σ21 Σ22

])

where 𝑥1 is (𝐾1×1) and 𝑥2 is (𝐾2×1), with 𝐾1+𝐾2 = 𝐾, then the marginal distribution
of 𝑥1 is Normal𝐾1

(𝜇1, Σ11), and the conditional distribution of 𝑥2 given 𝑥1 is

𝑥2|𝑥1 ∼ Normal𝐾2
(𝜇2|1, Σ22|1)

where
𝜇2|1 = 𝜇2 +Σ21Σ−1

11 (𝑥1 − 𝜇1) and Σ22|1 = Σ22 −Σ21Σ−1
11Σ12.

• If 𝑥 ∼ Normal𝐾(0, 𝐼) and 𝐴 is symmetric and idempotent with rank 𝐽 , then the scalar
𝑥T𝐴𝑥 is distributed 𝜒2

(𝐽).
• If 𝑥 ∼ Normal𝐾(𝜇,Σ), then

(𝑥 − 𝜇)TΣ−1(𝑥 − 𝜇) ∼ 𝜒2
(𝐾).

8.4.3 Exercises

Exercise 8.14. Show that 𝑣𝑎𝑟[𝑥] = 𝐸[𝑥𝑥T] − 𝐸[𝑥]𝐸[𝑥]T.

Exercise 8.15. Show that 𝐸[trace[𝑋]] = trace[𝐸[𝑋]].
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8.5 An Application of the Eigendecomposition of a Symmetric Matrix

Suppose 𝑋 is a data matrix containing 𝑁 observations of 𝐾 variables

⎡
⎢
⎢
⎢
⎣

𝑋1,1 𝑋2,1 … 𝑋𝐾,1
𝑋1,2 𝑋2,2 … 𝑋𝐾,2
⋮ ⋮ ⋱ ⋮

𝑋1,𝑁 𝑋2,𝑁 … 𝑋𝐾,𝑁

⎤
⎥
⎥
⎥
⎦

= [x1 x2 … x𝐾] where x𝑘 =
⎡
⎢
⎢
⎢
⎣

𝑋𝑘,1
𝑋𝑘,2
⋮

𝑋𝑘,𝑁

⎤
⎥
⎥
⎥
⎦

.

Suppose that these variables have had their sample means removed, i.e., that 𝑋𝑘,𝑖 is actually
𝑋𝑘,𝑖 −𝑋𝑘 where 𝑋𝑘 = (1/𝑁)∑𝑁

𝑖=1 𝑋𝑘,𝑖. Furthermore, we assume that the variables have been
standardized so that their individual sample variables are equal to 1.

Recall also that if you post-multiply 𝑋 by a (𝐾 × 1) vector 𝑐, you get a linear combination
of the vectors of 𝑋:

𝑋𝑐 = [x1 x2 … x𝐾]
⎡
⎢
⎢
⎢
⎣

𝑐1
𝑐2
⋮

𝑐𝐾

⎤
⎥
⎥
⎥
⎦

=
𝐾
∑
𝑘=1

𝑐𝑘x𝑘 .

You can think of this as a sample of observations of a new random variable 𝑍 = 𝑐1𝑋1 + 𝑐2𝑋2 +
…𝑐𝐾𝑋𝐾.

If you have a collection of 𝐽 number of such 𝑐 vectors, say

𝐶 = [𝑐1 𝑐2 … 𝑐𝐽]

where each of the 𝑐1, 𝑐2, …, 𝑐𝐽 are now (𝐾 × 1) vectors, then 𝑋𝐶 contains the observations of
𝐽 new variables, each of which is a linear combination of the 𝑋 variables:

𝑋𝐶 = 𝑋 [𝑐1 𝑐2 … 𝑐𝐽] = [𝑋𝑐1 𝑋𝑐2 … 𝑋𝑐𝐽]

Now consider the matrix

𝑋T𝑋 =
⎡
⎢
⎢
⎢
⎣

xT
1

xT
2
⋮

xT
𝐾

⎤
⎥
⎥
⎥
⎦

[x1 x2 … x𝐾] =
⎡
⎢
⎢
⎢
⎣

xT
1 x1 xT

1 x2 … xT
1 x𝐾

xT
2 x1 xT

2 x2 … xT
2 x𝐾

⋮ ⋮ ⋱ ⋮
xT
𝐾x1 xT

𝐾x2 … xT
𝐾x𝐾

⎤
⎥
⎥
⎥
⎦

.

Since the observations have been de-meaned, the terms xT
𝑘x𝑗 = ∑𝑁

𝑖=1 𝑋𝑘,𝑖𝑋𝑗,𝑖 are just 𝑁 times
the sample covariance of 𝑋𝑘 and 𝑋𝑗, and xT

𝑘x𝑘 = ∑𝑁
𝑖=1 𝑋2

𝑘,𝑖 is just 𝑁 times the sample variance
of 𝑋𝑘. In other words, (1/𝑁)𝑋T𝑋 is the sample variance-covariance matrix of the variables. To
simplify notation, I will just drop the (1/𝑁) and refer to 𝑋T𝑋 as the sample variance-covariance
matrix which summarizes the correlations between the variables in your data matrix 𝑋.

Since 𝑋T𝑋 is symmetric, we can write

𝑋T𝑋 = 𝐶Λ𝐶T where 𝐶𝐶T = 𝐼 (8.15)
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and where Λ is a diagonal matrix containing the eigenvalues of 𝑋T𝑋, and the columns of 𝐶 are
the corresponding eigenvectors. Since

𝐶Λ𝐶T = [𝑐1 𝑐2 … 𝑐𝑛]
⎡
⎢
⎢
⎢
⎣

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑐T
1
𝑐T
2
…
𝑐T
𝑛

⎤
⎥
⎥
⎥
⎦

=
𝑛

∑
𝑖=1

𝜆𝑖𝑐𝑖𝑐T
𝑖

and since the terms of a summation can be added in any order, we can rearrange the columns of
𝐶 in any order, as long as we also re-arrange the diagonals of Λ accordingly. We usually arrange
it such that the eigenvalues are in descending order 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐾.

The decomposition (8.15) can be re-written as

𝐶T𝑋T𝑋𝐶 = Λ

or
(𝑋𝐶)T(𝑋𝐶) = Λ

This is just the sample covariance matrix of the variables whose observations appear in the
columns of 𝑋𝐶. Each of the columns in 𝑋𝐶 are just linear combinations of the columns of 𝑋.
Since Λ is diagonal, this says that the 𝐾 columns of 𝑋𝐶 are orthogonal. In other words, we
have created 𝐾 uncorrelated new variables, each of which is a linear combination of the (possibly
correlated) 𝑋 variables. Furthermore, writing the new variables as

𝑋𝐶 = [𝑋𝑐1 𝑋𝑐2 … 𝑋𝑐𝐾]

we see that 𝜆1 is the sample variance of 𝑋𝑐1, 𝜆2 is the sample variance of 𝑋𝑐2, and so on.
The new variables in 𝑋𝐶 are called the principal components of 𝑋. These are often

used as a dimension reduction technique. Suppose 𝑋 contains 𝑁 observations of many many
variables, so 𝐾 is large. Quite often we find that only a few of the 𝜆𝑖’s associated with 𝑋 are
large, and the rest very small. In other words, only a few of the principal components of 𝑋
have substantial variation, the rest have very little variation. Sometimes just two or three of the
principal components associated with the largest eigenvalues account for the bulk of variation in
the data. If that is the case, then we have effectively reduced the number of variables from 𝐾 to
just two or three. The difficulty is that these principal components are often hard to interpret.



Chapter 9
Least Squares with Matrix Algebra

The mathematics of least squares is best expressed in matrix form. Proofs of results are much
more concise and more general, and we can draw on the insights of linear algebra to understand
least squares at a deeper level. Furthermore, the same mathematics applies to a vast number
of advanced linear models including multiple equation models, and is useful even for non-linear
ones, so it is well worth the time and effort to master the mathematics of least squares estimation
expressed using matrix algebra. The objective of this chapter is to help you become familiarized
with the mathematics of least squares estimation of linear models, and to provide proofs of
results previously omitted or only proven partially.

We use the following packages in this chapter.

library(readxl)
library(car)
library(sandwich)

9.1 The Setup

Suppose that you have a sample {𝑌𝑖, 𝑋1,𝑖, 𝑋2,𝑖,… ,𝑋𝐾−1,𝑖}𝑁𝑖=1 such that

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + ... + 𝛽𝐾−1𝑋𝐾−1,𝑖 + 𝜖𝑖 , 𝑖 = 1, 2, ..., 𝑁. (9.1)

We use 𝑋𝑘,𝑖 to denote the 𝑖th observation of variables 𝑋𝑘. We can write the regression in matrix
form as

⎡
⎢
⎢
⎢
⎣

𝑌1
𝑌2
⋮

𝑌𝑁

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 𝑋1,1 𝑋2,1 … 𝑋𝐾−1,1
1 𝑋1,2 𝑋2,2 … 𝑋𝐾−1,2
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑋1,𝑁 𝑋2,𝑁 … 𝑋𝐾−1,𝑁

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛽0
𝛽1
𝛽2
⋮

𝛽𝐾−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝜖1
𝜖2
⋮
𝜖𝑁

⎤
⎥
⎥
⎥
⎦

(9.2)

or simply
𝑦 = 𝑋𝛽 + 𝜀 (9.3)

where 𝑦 is the (𝑁 × 1) vector [𝑌1 𝑌2 … 𝑌𝑁]
T
, 𝑋 is the (𝑁 × 𝐾) matrix of regressors, 𝛽 is

the (𝐾 × 1) coefficient vector, and 𝜀 is the (𝑁 × 1) vector of noise terms. We will use {𝜖𝑖}𝑁𝑖=1
to denote a sample of the noise variable 𝜖. We organize the {𝜖𝑖}𝑁𝑖=1 into the vector 𝜀, as in (9.2)
and (9.3). We assume throughout that 𝑁 > 𝐾.

We can partition the regressor matrix by observation:

𝑋 =
⎡
⎢
⎢
⎢
⎣

1 𝑋1,1 𝑋2,1 … 𝑋𝐾−1,1
1 𝑋1,2 𝑋2,2 … 𝑋𝐾−1,2
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑋1,𝑁 𝑋2,𝑁 … 𝑋𝐾−1,𝑁

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑥T
1

𝑥T
2
⋮

𝑥T
𝑁

⎤
⎥
⎥
⎥
⎦

(9.4)

193
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and write the model as

⎡
⎢
⎢
⎢
⎣

𝑌1
𝑌2
⋮

𝑌𝑁

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑥T
1

𝑥T
2
⋮

𝑥T
𝑁

⎤
⎥
⎥
⎥
⎦

𝛽 +
⎡
⎢
⎢
⎢
⎣

𝜖1
𝜖2
⋮
𝜖𝑁

⎤
⎥
⎥
⎥
⎦

or
𝑌𝑖 = 𝑥T

𝑖 𝛽 + 𝜖𝑖 , 𝑖 = 1, 2, ..., 𝑁.

It is sometimes helpful to partition the regressor matrix by variable:

𝑋 =
⎡
⎢
⎢
⎢
⎣

1 𝑋1,1 𝑋2,1 … 𝑋𝐾−1,1
1 𝑋1,2 𝑋2,2 … 𝑋𝐾−1,2
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑋1,𝑁 𝑋2,𝑁 … 𝑋𝐾−1,𝑁

⎤
⎥
⎥
⎥
⎦

= [𝑖𝑁 x1 x2 … x𝐾−1] (9.5)

where 𝑖𝑁 is the (𝑁 × 1) vector of ones, and x𝑘 is the vector of observations of variable 𝑋𝑘.
Feasibility of OLS estimation will require 𝑋 to have full column rank, i.e., that there is no
non-zero (𝐾 × 1) vector 𝑐 such that

𝑋𝑐 = 𝑐0 + 𝑐1x1 + 𝑐2x2 +⋯+ 𝑐𝐾−1x𝐾−1 = 0 .

In other words, we must assume that there is variation in each of the variables (apart from
the constant vector), and that no one variable can be written as a linear combination of the
other variables. The full column rank assumption implies that 𝑋T𝑋 is non-singular (i.e., has
an inverse).

We continue to assume that the noise terms 𝜖𝑖 have zero mean conditional on all observations
of all regressors:

𝐸[𝜖𝑖|x1, x2,… , x𝐾−1] = 0 .

In matrix form, we can write this even more simply as

𝐸[𝜀|𝑋] = 0𝑁×1 .

In the basic model, the noise terms were assumed to be conditionally homoskedasticity and
uncorrelated:

𝑣𝑎𝑟[𝜖𝑖|x1, x2,… , x𝐾−1] = 𝜎2 for all 𝑖 = 1, 2, ..., 𝑁,
𝑐𝑜𝑣[𝜖𝑖𝜖𝑗|x1, x2,… , x𝐾−1] = 0 for all 𝑖 ≠ 𝑗 , 𝑖, 𝑗 = 1, 2, ..., 𝑁.

The (conditional) variance-covariance matrix of 𝜀 contains the conditional variances and covari-
ances of the noise terms:

𝑣𝑎𝑟[𝜀] = 𝐸[𝜀𝜀T|𝑋] =
⎡
⎢
⎢
⎢
⎣

𝑣𝑎𝑟[𝜀1|𝑋] 𝑐𝑜𝑣[𝜀1, 𝜀2|𝑋] … 𝑐𝑜𝑣[𝜀1, 𝜀𝑁 |𝑋]
𝑐𝑜𝑣[𝜀2, 𝜀1|𝑋] 𝑣𝑎𝑟[𝜀2|𝑋] … 𝑐𝑜𝑣[𝜀2, 𝜀𝑁 |𝑋]

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣[𝜀𝑁 , 𝜀1|𝑋] 𝑐𝑜𝑣[𝜀𝑁 , 𝜀2|𝑋] … 𝑣𝑎𝑟[𝜀𝑁 |𝑋]

⎤
⎥
⎥
⎥
⎦

.
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In the case of homoskedastic uncorrelated noise terms, the variance-covariance matrix of 𝜀 is
simply

𝐸[𝜀𝜀T|𝑋] =
⎡
⎢
⎢
⎢
⎣

𝜎2 0 … 0
0 𝜎2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2

⎤
⎥
⎥
⎥
⎦

= 𝜎2𝐼

where 𝐼 is the (𝑁 ×𝑁) identity matrix (we will generally not indicate the dimensions of identity
matrices, and leave the reader to deduce dimensions from context). If the errors are conditionally
heteroskedastic with 𝑣𝑎𝑟[𝜖𝑖|𝑋] = 𝜎2

𝑖 but uncorrelated, then the conditional variance-covariance
matrix of 𝜀 becomes

𝐸[𝜀𝜀T|𝑋] =
⎡
⎢
⎢
⎢
⎣

𝜎2
1 0 … 0
0 𝜎2

2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2

𝑁

⎤
⎥
⎥
⎥
⎦

= diag(𝜎2
1, 𝜎2

2,… , 𝜎2
𝑁).

If there is correlation between the errors, then the var-cov matrix of 𝜀 will no longer be diagonal.
We write the general variance matrix of 𝜀 as

𝐸[𝜀𝜀T|𝑋] = Ω,

although we will have to impose some structure on Ω for the analysis to be feasible. We list the
assumptions of the basic model below:

Assumption Set D  The sample {𝑌𝑖, 𝑋1,𝑖, 𝑋2,𝑖,… ,𝑋𝐾−1,𝑖}𝑁𝑖=1 satisfies

(D1) 𝑦 = 𝑋𝛽 + 𝜀,
(D2) 𝐸[𝜀|𝑋] = 0,
(D3) 𝐸[𝜀𝜀T|𝑋] = 𝜎2𝐼 ,
(D4) 𝑋𝑐 ≠ 0 for all 𝑐 ≠ 0,
where 𝑦, 𝑋 and 𝜖 are as defined in this section.

9.2 Ordinary Least Squares

Let ̂𝛽 denote some estimator for 𝛽. Then the fitted values associated with these estimators are

̂𝑦 = 𝑋 ̂𝛽

and the residuals are
̂𝜀 = 𝑦 − ̂𝑦 = 𝑦 −𝑋 ̂𝛽.

The sum of squared residuals is then

𝑆𝑆𝑅 = ̂𝜀T ̂𝜀 = (𝑦 − 𝑋 ̂𝛽)T(𝑦 − 𝑋 ̂𝛽)
= 𝑦T𝑦 − ̂𝛽T𝑋T𝑦 − 𝑦T𝑋 ̂𝛽 + ̂𝛽T𝑋T𝑋 ̂𝛽
= 𝑦T𝑦 − 2 ̂𝛽T𝑋T𝑦 + ̂𝛽T𝑋T𝑋 ̂𝛽
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where we have used the fact that ̂𝛽T𝑋T𝑦 is the transpose of 𝑦T𝑋 ̂𝛽, and the transpose of a scalar
is the scalar itself. OLS estimators are those that minimize SSR:

̂𝛽𝑜𝑙𝑠 = argmin ̂𝛽𝑆𝑆𝑅 .

The first-order conditions are

𝜕𝑆𝑆𝑅
𝜕 ̂𝛽

∣
̂𝛽𝑜𝑙𝑠

= −2𝑋T𝑦 + 2𝑋T𝑋 ̂𝛽𝑜𝑙𝑠 = 0.

This implies
𝑋T𝑋 ̂𝛽𝑜𝑙𝑠 = 𝑋T𝑦

which, given our assumption that 𝑋 is full column rank, can be solved for ̂𝛽𝑜𝑙𝑠:

̂𝛽𝑜𝑙𝑠 = (𝑋T𝑋)−1𝑋T𝑦.

The second partial derivatives of the SSR

𝜕2𝑆𝑆𝑅
𝜕 ̂𝛽𝜕 ̂𝛽T

= 2𝑋T𝑋

is positive definite, since the assumption of full column rank of 𝑋 means that 𝑋𝑐 ≠ 0 for all
𝑐 ≠ 0, from which it follows that

𝑐T𝑋T𝑋𝑐 = (𝑋𝑐)T𝑋𝑐 > 0.

The FOC can also be written as

𝑋T(𝑦 − 𝑋 ̂𝛽𝑜𝑙𝑠) = 𝑋T ̂𝜀𝑜𝑙𝑠 = 0. (9.6)

Partitioning 𝑋T “by variable” as in (9.5), we can see that (9.6) says that OLS residuals sum to
zero, and are orthogonal to each of the regressors:

𝑋T ̂𝜀𝑜𝑙𝑠 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑖T𝑁
xT
1

xT
2
⋮

xT
𝐾−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

̂𝜀𝑜𝑙𝑠 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑖T𝑁 ̂𝜀𝑜𝑙𝑠
xT
1 ̂𝜀𝑜𝑙𝑠

xT
2 ̂𝜀𝑜𝑙𝑠
⋮

xT
𝐾−1 ̂𝜀𝑜𝑙𝑠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0 .
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Partitioning 𝑋 by observation, as in (9.4), we can also write the OLS estimator as

̂𝛽𝑜𝑙𝑠 = (𝑋T𝑋)−1𝑋T𝑦

=

⎧{{
⎨{{⎩

[𝑥1 𝑥2 … 𝑥𝑁]
⎡
⎢
⎢
⎢
⎣

𝑥T
1

𝑥T
2
⋮

𝑥T
𝑁

⎤
⎥
⎥
⎥
⎦

⎫}}
⎬}}⎭

−1

[𝑥1 𝑥2 … 𝑥𝑁]
⎡
⎢
⎢
⎢
⎣

𝑌1
𝑌2
⋮

𝑌𝑁

⎤
⎥
⎥
⎥
⎦

= (
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1 𝑁
∑
𝑖=1

𝑥𝑖𝑌𝑖.

This form emphasizes the role that sample averages play in the estimation of 𝛽:

̂𝛽𝑜𝑙𝑠 = ( 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

( 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑌𝑖).

9.3 Algebraic Properties of OLS Estimators

We list here some algebraic properties of OLS estimators. These hold as long as Assumption
D4 holds. From this point onwards, we drop the ‘OLS’ superscript from the OLS estimators,
fitted values and residuals, and write ̂𝛽, ̂𝑌 and ̂𝜀 for ̂𝛽𝑜𝑙𝑠, ̂𝑌 𝑜𝑙𝑠 and ̂𝜀𝑜𝑙𝑠. We will reinstate the
superscript whenever context demands it so.

1. OLS estimators are linear estimators: ̂𝛽 = (𝑋T𝑋)−1𝑋T𝑦 = 𝐴𝑦 means that each OLS
estimator ̂𝛽𝑘, 𝑘 = 0, 1, ...,𝐾 − 1 can be written as

̂𝛽𝑘 =
𝑁
∑
𝑖=1

𝑎𝑘,𝑖𝑌𝑖

where 𝑎𝑘,𝑖, 𝑖 = 1, 2, ..., 𝑁 are the elements of the 𝑘th row of 𝐴 = (𝑋T𝑋)−1𝑋T.

2. The OLS estimators can also be written as

̂𝛽 = (𝑋T𝑋)−1𝑋T𝑦
= (𝑋T𝑋)−1𝑋T(𝑋𝛽 + 𝜀)
= 𝛽 + (𝑋T𝑋)−1𝑋T𝜀.

3. The OLS fitted values can be written as

̂𝑦 = 𝑋 ̂𝛽 = 𝑋(𝑋T𝑋)−1𝑋T𝑦.

The matrix 𝑋(𝑋T𝑋)−1𝑋T is sometimes called the ‘hat’ matrix (because it puts a ‘hat’ on
𝑦). It is also called the “Projection” matrix (since it projects 𝑦 onto the space spanned by
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the columns of 𝑋) and denoted 𝑃 . It has the convenient property that it is symmetric:

𝑃T = (𝑋(𝑋T𝑋)−1𝑋T)T

= (𝑋TT[(𝑋T𝑋)−1]T𝑋T)
= 𝑋(𝑋T𝑋)−1𝑋T = 𝑃

where we have used the fact that (𝑋T𝑋)−1 is symmetric (why is (𝑋T𝑋)−1 symmetric?).
The matrix 𝑃 is also idempotent, meaning that 𝑃𝑃 = 𝑃 :

𝑃𝑃 = 𝑋(𝑋T𝑋)−1𝑋T𝑋(𝑋T𝑋)−1𝑋T = 𝑋(𝑋T𝑋)−1𝑋T = 𝑃.

Symmetric and idempotent matrices have the convenient property that their rank is equal
to their trace, which is easy to compute. Since

tr(𝑃 ) = tr(𝑋(𝑋T𝑋)−1𝑋T) = tr(𝑋T𝑋(𝑋T𝑋)−1) = tr(𝐼𝐾) = 𝐾,

the rank of 𝑃 is 𝐾.
4. The OLS residuals can be written as

̂𝜀 = 𝑦 − ̂𝑦 = (𝐼 − 𝑋(𝑋T𝑋)−1𝑋T)𝑦.

The matrix 𝐼 − 𝑋(𝑋T𝑋)−1𝑋T is also symmetric and idempotent, and its trace, and
therefore its rank, is 𝑁−𝐾 (see exercises). It is often denoted by 𝑀 , and has the property
that it “eliminates 𝑋” in the sense that

𝑀𝑋 = (𝐼 − 𝑋(𝑋T𝑋)−1𝑋T)𝑋 = 𝑋 −𝑋 = 0.

As a consequence of this, we have

𝑀𝑃 = 𝑀𝑋(𝑋T𝑋)−1𝑋T = 0.

Of course, you can also see this from 𝑀𝑃 = (𝐼 − 𝑃)𝑃 = 𝑃 − 𝑃𝑃 = 𝑃 − 𝑃 = 0.
5. We have already noted from the FOC that the OLS residuals sum to zero, and are or-

thogonal to each of the regressors. Since 𝑦 = ̂𝑦 + ̂𝜀, it follows that 𝑌 = ̂𝑌 . Furthermore,
̂𝑦T ̂𝜀 = 0. That is, the fitted values and the residuals are orthogonal. We can also use the

fact that 𝑀𝑃 = 𝑃𝑀 = 0:
̂𝑦T ̂𝜀 = 𝑦T𝑃𝑀𝑦 = 0.

For those who are not uncomfortable thinking about 𝑁 -dimensional vectors in geometric
terms, this means the fitted values and residuals are at “right-angles” in 𝑁 -dimensional
space. The length of a vector 𝑦 is √𝑦T𝑦. Using orthogonality of the fitted values and
residuals, we get

𝑦T𝑦 = ̂𝑦T ̂𝑦 + 2 ̂𝑦T ̂𝜀 + ̂𝜀T ̂𝜀
= ̂𝑦T ̂𝑦 + ̂𝜀T ̂𝜀.

(9.7)

This is just Pythagoras’s Theorem (in 𝑁 -dimensional space).
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6. One useful application of the fact that 𝑀 eliminates 𝑋 is to derive a formula linking the
residuals to the noise terms. We have

̂𝜀 = 𝑀𝑦 = 𝑀(𝑋𝛽 + 𝜀) = 𝑀𝜀

This result, and the fact that 𝑀 is symmetric and idempotent, means that the sum of
squared residuals can be written as

̂𝜀T ̂𝜀 = (𝑀𝜀)T𝑀𝜀 = 𝜀T𝑀T𝑀𝜀 = 𝜀T𝑀𝜀.

9.4 Statistical Properties of OLS Estimators.

Under Assumption Set D, ̂𝛽 is unbiased. Using ̂𝛽 = 𝛽 + (𝑋T𝑋)−1𝑋T𝜀, we have

𝐸[ ̂𝛽|𝑋] = 𝛽 + (𝑋T𝑋)−1𝑋T𝐸[𝜀|𝑋] = 𝛽

which implies 𝐸[ ̂𝛽] = 𝛽.

The proof of unbiasedness uses Assumption D2 directly, and Assumptions D1 and D4 indi-
rectly, but it does not make any use of Assumption D3. Unbiasedness of OLS estimators does
not depend on the the structure of the variance-covariance matrix of the noise terms.

The variances and covariances of all of the OLS coefficient estimators can be obtained by
computing the (conditional) variance-covariance matrix of ̂𝛽:

𝑣𝑎𝑟[ ̂𝛽|𝑋] = 𝐸[( ̂𝛽 − 𝐸[ ̂𝛽])( ̂𝛽 − 𝐸[ ̂𝛽])T|𝑋]
= 𝐸[( ̂𝛽 − 𝛽)( ̂𝛽 − 𝛽)T|𝑋]
= 𝐸[(𝑋T𝑋)−1𝑋T𝜀𝜀T𝑋(𝑋T𝑋)−1|𝑋]
= (𝑋T𝑋)−1𝑋T𝐸[𝜀𝜀T|𝑋]𝑋(𝑋T𝑋)−1.

In the general case 𝐸[𝜀𝜀T|𝑋] = Ω, this becomes

𝑣𝑎𝑟[ ̂𝛽|𝑋] = (𝑋T𝑋)−1𝑋TΩ𝑋(𝑋T𝑋)−1.

To get any further we would have to put more structure on Ω. If we have uncorrelated but
possibly heteroskedastic noise terms, then

𝑣𝑎𝑟[ ̂𝛽|𝑋]
= (𝑋T𝑋)−1𝑋Tdiag(𝜎2

1, 𝜎2
2,… , 𝜎2

𝑁)𝑋(𝑋T𝑋)−1

= (
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

[𝑥1 𝑥2 … 𝑥𝑁]
⎡
⎢
⎢
⎢
⎣

𝜎2
1 0 … 0
0 𝜎2

2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2

𝑁

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥T
1

𝑥T
2
⋮

𝑥T
𝑁

⎤
⎥
⎥
⎥
⎦

(
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

= (
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

(
𝑁
∑
𝑖=1

𝜎2
𝑖 𝑥𝑖𝑥T

𝑖 )(
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

. (9.8)
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If we further assume conditional homoskedasticity as in Assumption D3, then 𝑣𝑎𝑟[ ̂𝛽|𝑋] further
simplifies to

𝑣𝑎𝑟[ ̂𝛽|𝑋] = (
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

(
𝑁
∑
𝑖=1

𝜎2𝑥𝑖𝑥T
𝑖 )(

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

= 𝜎2 (
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

= 𝜎2(𝑋T𝑋)−1.

(9.9)

Under conditional homoskedasticity, an unbiased estimator for 𝜎2 is

𝜎2 = ̂𝜀T ̂𝜀
𝑁 −𝐾 = ∑𝑁

𝑖=1 ̂𝜖2𝑖
𝑁 −𝐾 .

To prove unbiasedness of this estimator, we note that

𝐸[ ̂𝜀T ̂𝜀|𝑋] = 𝐸[𝜀T𝑀𝜀|𝑋] = 𝐸[tr(𝜀T𝑀𝜀)|𝑋]
= 𝐸[tr(𝜀𝜀T𝑀)|𝑋] = tr(𝐸[𝜀𝜀T𝑀|𝑋])
= tr(𝐸[𝜀𝜀T|𝑋]𝑀) = tr(𝜎2𝑀)
= 𝜎2(𝑁 −𝐾).

This implies that 𝐸[ ̂𝜀T ̂𝜀] = 𝜎2(𝑁 − 𝐾) and unbiasedness of 𝜎2 follows. We therefore estimate
𝑣𝑎𝑟[ ̂𝛽] using

𝑣𝑎𝑟[ ̂𝛽|𝑋] = 𝜎2(𝑋T𝑋)−1.

Example 9.1. In the simple linear regression 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝜖𝑖, 𝑖 = 1, 2, ..., 𝑁 , we have

𝑋 =
⎡
⎢
⎢
⎢
⎣

1 𝑋1,1
1 𝑋1,2
⋮ ⋮
1 𝑋1,𝑁

⎤
⎥
⎥
⎥
⎦

and 𝑋T𝑋 = [ 𝑁 ∑𝑁
𝑖=1 𝑋1,𝑖

∑𝑁
𝑖=1 𝑋1,𝑖 ∑𝑁

𝑖=1 𝑋2
1,𝑖

] .

The OLS estimators ̂𝛽0 and ̂𝛽1 can be found from

̂𝛽 = [
̂𝛽0
̂𝛽1
] = (𝑋T𝑋)−1𝑋T𝑦 .

If Assumption Set D holds, their variances and covariances can be found from

𝑣𝑎𝑟[ ̂𝛽|𝑋] = [ 𝑣𝑎𝑟[ ̂𝛽0|𝑋] 𝑐𝑜𝑣[ ̂𝛽0, ̂𝛽1|𝑋]
𝑐𝑜𝑣[ ̂𝛽0, ̂𝛽1|𝑋] 𝑣𝑎𝑟[ ̂𝛽1|𝑋] ] = 𝜎2(𝑋T𝑋)−1.

We will discuss estimation of the variance-covariance matrix under conditional heteroskedas-
ticity when we discuss asymptotic properties of OLS estimators. In the meantime, we continue
our discussion under the assumption of conditional homoskedasticity.

Under Assumption Set D (with conditional homoskedasticity), the OLS estimators are the
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most efficient estimators among all linear unbiased estimators, i.e.,

𝑣𝑎𝑟[𝑐T ̂𝛽|𝑋] ≤ 𝑣𝑎𝑟[𝑐T ̃𝛽|𝑋] (9.10)

for all unbiased estimators of the form ̃𝛽 = 𝐵𝑦. In other words, each individual ̂𝛽𝑘 has the
smallest variance among all linear unbiased estimators of 𝛽𝑘, and all linear combinations of
̂𝛽 will have a smaller variance than the same linear combination of any other linear unbiased

estimator of 𝛽.

Example 9.2. Suppose 𝑌𝑖 = 𝑥T
𝑖 𝛽 + 𝜖𝑖, with Assumption Set D holding. The prediction of 𝑌𝑖

at 𝑥𝑖 = 𝑥0 is ̂𝑌 (𝑥0) = 𝑥T
0 ̂𝛽. This is a linear combination of the estimators in ̂𝛽. Since the OLS

estimators ̂𝛽 are most efficient among all linear unbiased estimators, this prediction rule gives
us the most precise linear unbiased prediction of 𝑌 at 𝑥 = 𝑥0.

To prove (9.10), let ̃𝛽 = 𝐵𝑦 where 𝐵 comprises constants and elements of 𝑋, and such that
̃𝛽 is unbiased. Write 𝐵 = 𝐷+ (𝑋T𝑋)−1𝑋T, so

̃𝛽 = 𝐷𝑋𝛽 +𝐷𝜀 + 𝛽 + (𝑋T𝑋)−1𝑋T𝜀.

We have already assumed 𝐸[𝜀|𝑋] = 0. To ensure unbiasedness of ̃𝛽, we have also to assume that
𝐷𝑋 = 0. We make this assumption. Then

𝑣𝑎𝑟[ ̃𝛽|𝑋] = 𝐸[( ̃𝛽 − 𝛽)( ̃𝛽 − 𝛽)T|𝑋]
= 𝐸[(𝐷 + (𝑋T𝑋)−1𝑋T)𝜀𝜀T(𝐷 + (𝑋T𝑋)−1𝑋T)T|𝑋]
= 𝜎2[(𝑋T𝑋)−1 +𝐷𝐷T]
= 𝑣𝑎𝑟[ ̂𝛽] + 𝜎2𝐷𝐷T .

Result (9.10) follows immediately.

9.5 Hypothesis Testing

Suppose in addition to (D1)-(D4) we also assume that the noise terms are normally distributed.
We can write this as

(D5) 𝜀|𝑋 ∼ Normal𝑁(0, 𝜎2𝐼).

As written, assumption D5 actually subsumes D2 and D3, but we will keep D2, D3, and D5
as separate statements. Obviously if you have conditional heteroskedasticiy or correlation in the
noise terms, then the variance expression in D5 must be modified accordingly.

With assumption D5, we have

̂𝛽|𝑋 ∼ Normal𝐾(𝛽, 𝜎2(𝑋T𝑋)−1) (9.11)

since ̂𝛽 is a constant plus a linear combination of normally distributed noise terms. This can be
used to develop t and F-tests of linear hypotheses concerning elements of 𝛽. A general single
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linear hypothesis can be written as

𝐻0 ∶ 𝑟T𝛽 = 𝑟0 vs 𝑟T𝛽 ≠ 𝑟0.

Example 9.3. To test 𝛽1 + 𝛽2 = 1 in the regression

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + 𝜖𝑖,

set 𝑟T = [0 1 1] and 𝑟0 = 1.

From (9.11), we have

𝑟T ̂𝛽|𝑋 ∼ Normal(𝑟T𝛽, 𝑟T[𝜎2(𝑋T𝑋)−1]𝑟).

If the null hypothesis 𝑟T𝛽 = 𝑟0 holds, then

𝑟T ̂𝛽|𝑋 ∼ Normal(𝑟0, 𝑟T[𝜎2(𝑋T𝑋)−1]𝑟)

and
𝑟T ̂𝛽 − 𝑟0

√𝑟T[𝜎2(𝑋T𝑋)−1]𝑟
∼ Normal(0, 1).

Furthermore, it can be shown that if we replace 𝜎2 with 𝜎2, then

𝑡 = 𝑟T ̂𝛽 − 𝑟0
√𝑟T[𝜎2(𝑋T𝑋)−1]𝑟

= 𝑟T ̂𝛽 − 𝑟0
√𝑟T𝑣𝑎𝑟[ ̂𝛽|𝑋]𝑟

∼ t(𝑁−𝐾).
(9.12)

This can be used to test the hypothesis 𝐻0 ∶ 𝑟T𝛽 = 𝑟0 in the usual way.
To test multiple hypotheses jointly, write the hypotheses as

𝐻0 ∶ 𝑅𝛽 = 𝑟0 vs 𝐻𝐴 ∶ 𝑅𝛽 ≠ 𝑟0

where now 𝑅 is a (𝐽 × 𝐾) matrix, and 𝑟0 is a (𝐽 × 1) vector.

Example 9.4. To test the hypotheses

𝐻0 ∶ 𝛽1 + 𝛽2 = 1 and 𝛽3 = 0 vs 𝐻𝐴 ∶ 𝛽1 + 𝛽2 ≠ 1 or 𝛽3 ≠ 0 (or both),

set the matrices 𝑅 and 𝑟0 to

𝑅 = [0 1 1 0
0 0 0 1] and 𝑟0 = [10] .

To text multiple hypotheses jointly, we can again compare the sum of squared residuals from
the restricted and unrestricted regressions, as explained in a previous chapter.
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Example 9.5. We continue with Example 9.4. The restricted regression is

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + (1 − 𝛽1)𝑋2,𝑖 + 0𝑋3,𝑖 + 𝜖𝑖
= 𝛽0 + 𝛽1(𝑋1,𝑖 −𝑋2,𝑖) + 𝑋2,𝑖 + 𝜖𝑖.

To estimate this, regress 𝑌𝑖 − 𝑋2,𝑖 on a constant as 𝑋1,𝑖 − 𝑋2,𝑖. Then calculate the restricted
OLS residuals

̂𝜖𝑖,𝑟 = 𝑌𝑖 − ̂𝛽0,𝑟 − ̂𝛽1,𝑟(𝑋1,𝑖 −𝑋2,𝑖) − 𝑋2,𝑖

and finally calculate 𝑆𝑆𝑅𝑟 = ∑𝑁
𝑖=1 ̂𝜖2𝑖,𝑟 = ̂𝜀T

𝑟 ̂𝜀𝑟, where ̂𝜀𝑟 is the vector of restricted OLS residuals.

It can be shown that if the null is true, then

𝐹 = ( ̂𝜀T
𝑟 ̂𝜀𝑟 − ̂𝜀T ̂𝜀)/𝐽
̂𝜀T ̂𝜀/(𝑁 −𝐾) ∼ F(𝐽,𝑁−𝐾) (9.13)

where 𝐽 is the number of restrictions being tested and ̂𝜀 is the vector of unrestricted OLS
residuals. You would reject 𝐻0 if the 𝐹 -statistic is “improbably large”, meaning that 𝐹 >
𝐹𝛼,𝐽,𝑁−𝐾 where 𝐹𝛼,𝐽,𝑁−𝐾 is the 1 − 𝛼 percentile of the F𝐽,𝑁−𝐾 distribution. Typically 𝛼 =
0.01, 0.05 or 0.1.

In practice you do not have to compute the restricted regression. It can be shown that

̂𝜀T
𝑟 ̂𝜀𝑟 − ̂𝜀T ̂𝜀 = (𝑅 ̂𝛽 − 𝑟0)T[𝑅(𝑋T𝑋)−1𝑅T]−1(𝑅 ̂𝛽 − 𝑟0) (9.14)

where ̂𝛽 is the unrestricted OLS estimators (we show this in an Appendix). Furthermore, since
the denominator of the 𝐹 -statistic is 𝜎2, we can write the 𝐹 -statistic as

𝐹 = (𝑅 ̂𝛽 − 𝑟0)T[𝑅(𝜎2(𝑋T𝑋)−1)𝑅T]−1(𝑅 ̂𝛽 − 𝑟0)/𝐽
= (𝑅 ̂𝛽 − 𝑟0)T[𝑅 v̂ar[ ̂𝛽|𝑋]𝑅T]−1(𝑅 ̂𝛽 − 𝑟0)/𝐽
∼ F(𝐽,𝑁−𝐾)

(9.15)

Example 9.6. We use data in earnings.xlsx to to estimate the equation

ln(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) = 𝛽0 + 𝛽1ℎ𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽2𝑚𝑎𝑙𝑒𝑖 + 𝛽3𝑤𝑒𝑥𝑝𝑖 + 𝛽4𝑡𝑒𝑛𝑢𝑟𝑒𝑖 + 𝜖𝑖

We compute the OLS estimates and associated statistics from the formulas derived in this
chapter. The first four rows of the 𝑋 matrix are

df_earnings <- read_excel("data\\earnings.xlsx")
y <- as.matrix(log(df_earnings$earnings))
N <- length(y)
X <- as.matrix(cbind("const"=rep(1,length(y)),

df_earnings[,c('height','male','wexp','tenure')]))
K <- dim(X)[2]
head(X,4)

const height male wexp tenure
[1,] 1 67 1 22.384610 2.750000
[2,] 1 67 1 8.903846 2.384615
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[3,] 1 69 1 13.250000 5.750000
[4,] 1 72 1 18.250000 6.134615

The following code implement the formulas derived earlier.

XTX <- t(X)%*%X # t() for transpose
XTXinv <- solve(XTX) # solve() to get inverse
XTy <- t(X)%*%y
bhat <- solve(XTX,XTy) # beta_hat, alt: XTX_1 %*% XTy, given mtd preferred
yhat <- X%*%bhat # fitted values
ehat <- y - yhat # residuals
s2hat <- sum(ehat^2)/(N-K) # or t(ehat)%*%ehat
varbhat <- s2hat*XTXinv # var(bhat)
sebhat <- sqrt(diag(varbhat)) # se(bhat)
tbhat <- bhat/sebhat
pval <- 2*(1-pt(abs(tbhat),N-K))
star <- rep("", K)
star[pval<0.1] <- "."
star[pval<0.05] <- "*"
star[pval<0.01] <- "**"
star[pval<0.001] <- "***"
Results <- data.frame("Estimate"=bhat, "Std. Err."=sebhat, "t-stat"=tbhat, "p-val"=pval, star)
names(Results)[K] <- ""
print(Results, digits=6, right=FALSE)
cat("---\nSignif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n")

Estimate Std..Err. t.stat p.val
const 0.98423994 0.53948678 1.824400 0.068649145 .
height 0.02271202 0.00824686 2.754021 0.006087062 **
male 0.17052245 0.07035690 2.423678 0.015694822 *
wexp 0.00541464 0.00585844 0.924245 0.355775183
tenure 0.01335911 0.00397157 3.363681 0.000824198 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As an illustration, we test the hypothesis that 𝛽3 = 𝛽4, i.e., 𝛽3 − 𝛽4 = 0.

r <- matrix(c(0,0,0,1,-1), ncol=1)
t <- t(r)%*%bhat / sqrt(t(r)%*%varbhat%*%r)
tpval <- 2*(1-pt(abs(t),N-K))
cat("H0 wage = tenure: t-stat ",round(t,4),", pval", round(tpval,6))

H0 wage = tenure: t-stat -0.9779 , pval 0.328545

We do not reject the hypothesis. To jointly test the hypotheses 𝛽3 − 𝛽4 = 0 and 𝛽1 = 0, we
use the F-test, with

𝑅 = [0 1 0 0 0
0 0 0 1 −1] and 𝑟0 = [00]

R <- matrix(c(0,1,0,0,0,0,0,0,1,-1), nrow=2, byrow=TRUE)
r0 <- matrix(c(0,0),2,1)
J = length(r0)
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Rb <- R %*% bhat - r0
F <- t(Rb) %*% solve(R%*%varbhat%*%t(R)) %*% Rb / J
Fpval <- (1-pf(F,J,N-K))
cat("H0 height = 0 and wage = tenure: F-stat ",round(F,4),", pval", round(Fpval,6))

H0 height = 0 and wage = tenure: F-stat 4.3802 , pval 0.012975

The following are the results using the lm() function for the regression, and the
linearHypothesis() function from the car package for the general t- and F-tests.

mdl <- lm(log(earnings)~height+male+wexp+tenure, data=df_earnings)
summary(mdl)

Call:
lm(formula = log(earnings) ~ height + male + wexp + tenure, data = df_earnings)

Residuals:
Min 1Q Median 3Q Max

-2.18146 -0.35799 -0.02521 0.32146 2.13918

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.984240 0.539487 1.824 0.068649 .
height 0.022712 0.008247 2.754 0.006087 **
male 0.170522 0.070357 2.424 0.015695 *
wexp 0.005415 0.005858 0.924 0.355775
tenure 0.013359 0.003972 3.364 0.000824 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5528 on 535 degrees of freedom
Multiple R-squared: 0.1244, Adjusted R-squared: 0.1179
F-statistic: 19.01 on 4 and 535 DF, p-value: 1.255e-14

linearHypothesis(mdl,c('wexp=tenure')) ## Testing one hypothesis

Linear hypothesis test

Hypothesis:
wexp - tenure = 0

Model 1: restricted model
Model 2: log(earnings) ~ height + male + wexp + tenure

Res.Df RSS Df Sum of Sq F Pr(>F)
1 536 163.77
2 535 163.48 1 0.29223 0.9564 0.3285

linearHypothesis(mdl,c('height=0','wexp=tenure')) ## Testing two hypotheses jointly

Linear hypothesis test

Hypothesis:
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height = 0
wexp - tenure = 0

Model 1: restricted model
Model 2: log(earnings) ~ height + male + wexp + tenure

Res.Df RSS Df Sum of Sq F Pr(>F)
1 537 166.15
2 535 163.48 2 2.6769 4.3802 0.01297 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that the linearHypothesis() function returns an F-statistic even when testing a
single hypothesis. It can be shown (see exercises) that the F-statistic for a test of a single
hypothesis is the square of the corresponding t-statistic. The two tests will produce identical
p-values.

9.6 Asymptotic Properties
In addition to showing consistency and asymptotic normality of OLS estimators, the asymptotic
properties discussed in this section deal with two additional issues: how do we do hypothesis
testing if we cannot assume that the noise terms are normally distributed? And how do we
estimate the variance-covariance matrix of ̂𝛽 if there is conditional heteroskedasticity? (We
have up to this point in the chapter only discussed estimation of 𝑣𝑎𝑟[ ̂𝛽] under conditional
homoskedasticity. We briefly mentioned heteroskedasticity-robust standard errors in previous
chapters; we develop the theory in this chapter.)

Recall that a “Law of Large Numbers” gives conditions under which a sample mean converges
in probability to the true mean, e.g., Khinchine’s LLN says that if {𝑍𝑖}𝑁𝑖=1 are iid with mean
𝐸[𝑍𝑖] = 𝜇 < ∞, then 𝑍 →𝑝 𝜇. A “Central Limit Theorem” gives conditions that guarantee
convergence in distribution, e.g., if {𝑍𝑖}𝑁𝑖=1 are iid with 𝐸[𝑍𝑖] = 𝜇 < ∞ and 𝑣𝑎𝑟[𝑍𝑖] = 𝜎2 < ∞,
then √

𝑁(𝑍 − 𝜇) →𝑑 𝑁(0, 𝜎2).

In particular, if 𝜇 = 0, then

√
𝑁 𝑍 = 1√

𝑁
𝑁
∑
𝑖=1

𝑍𝑖 →𝑑 𝑁(0, 𝜎2).

In this section, we will use multivariate versions of these rules. First we extend the definition of
convergence in probability and convergence in distribution to sequences of vectors and matrices
of random variables: convergence in probability of a sequence of (𝑀 × 𝐾)-dimensional matri-
ces of random variables means convergence in probability element-by-element. Convergence in
distribution of a sequence of (𝐾 × 1) vectors of random variables means convergence to some
multivariate distribution. We have the following results:

• If 𝐴𝑁 is (𝑀 ×𝐾) such that 𝐴𝑁 →𝑝 𝐴 and 𝑔(.) is a continuous function, then 𝑔(𝐴𝑁) →𝑝
𝑔(𝐴).

• If 𝐴𝑁 is (𝑀 × 𝐾) such that 𝐴𝑁 →𝑝 𝐴, and 𝑍𝑁 is (𝐾 × 1) such that 𝑍𝑁 →𝑝 𝜇, then
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𝐴𝑁𝑍𝑁 →𝑝 𝐴𝜇.
• If 𝑍𝑁 →𝑑 𝑍 (meaning that the distribution of 𝑍𝑁 converges to the distribution of 𝑍),

then 𝐴𝑁𝑍𝑁 →𝑑 𝐴𝑍. In the special case that 𝑍 ∼ Normal𝐾(0, Σ), we have

𝐴𝑁𝑍𝑁 →𝑑 Normal𝑀(0,𝐴Σ𝐴T).

Now let 𝑍𝑖 be (𝐾 × 1) and let {𝑍𝑖}𝑁𝑖=1 be an iid sample with 𝐸[𝑍𝑖] = 𝜇 for all 𝑖. Let 𝑍𝑁 be
the sample mean computed from a sample of size 𝑁 . Then

𝑍 = 1
𝑁

𝑁
∑
𝑖=1

𝑍𝑖 =
⎡
⎢
⎢
⎢
⎣

(1/𝑁)∑𝑁
𝑖=1 𝑍1,𝑖

(1/𝑁)∑𝑁
𝑖=1 𝑍2,𝑖

⋮
(1/𝑁)∑𝑁

𝑖=1 𝑍𝐾,𝑖

⎤
⎥
⎥
⎥
⎦

→𝑝

⎡
⎢
⎢
⎢
⎣

𝜇1
𝜇2
⋮

𝜇𝐾

⎤
⎥
⎥
⎥
⎦

= 𝜇 .

If {𝑍𝑖}𝑁𝑖=1 is iid with 𝐸[𝑍𝑖] = 0 and 𝑣𝑎𝑟[𝑍𝑖] = Σ for all 𝑖, then

√
𝑁 𝑍 = 1√

𝑁
𝑁
∑
𝑖=1

𝑍𝑖 =
⎡
⎢
⎢
⎢
⎣

(1/
√
𝑁)∑𝑁

𝑖=1 𝑍1,𝑖
(1/

√
𝑁)∑𝑁

𝑖=1 𝑍2,𝑖
⋮

(1/
√
𝑁)∑𝑁

𝑖=1 𝑍𝐾,𝑖

⎤
⎥
⎥
⎥
⎦

→𝑑 Normal𝐾(0, Σ) .

If 𝑍 ∼ Normal𝐾(0, Σ), then we write
√
𝑁 𝑍 →𝑑 𝑍.

We will work with the following form of ̂𝛽:

̂𝛽 = ( 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

( 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑌𝑖)

= 𝛽 +( 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

( 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝜖𝑖),
(9.16)

The asymptotic properties of the OLS estimators depends on the what happens to the sample
means in (9.16) as 𝑁 → ∞. We state a set of assumptions that is a slightly modified version of
the basic assumptions we have been using.

Assumption Set E
(E1) The sample {𝑌𝑖, 𝑋1,𝑖, 𝑋2,𝑖,… ,𝑋𝐾−1,𝑖}𝑁𝑖=1 are iid draws from a 𝐾-dimensional distribu-

tion with the following properties:
(E2) 𝐸[𝑥𝑖𝑥T

𝑖 ] = Σ𝑋𝑋 is finite and non-singular,
(E3) 𝐸[𝜖𝑖|𝑥𝑖] = 0 where 𝜖𝑖 = 𝑌𝑖 − 𝑥T

𝑖 𝛽 for some constants 𝛽, and
(E4) 𝐸[𝜖2𝑖𝑥𝑖𝑥T

𝑖 ] = 𝑆 finite and non-singular.
Remarks:
• Assumption E1 is the random sampling assumption. Since the draws are iid, the random

variables in the (𝐾 ×𝐾) matrix 𝑥𝑖𝑥T
𝑖 and the (𝐾 × 1) vector 𝑥𝑖𝜖𝑖 are also iid over 𝑖.

• Assumption E2 is the assumption that there are no perfect correlations among the re-
gressors in expectation. Together with the random sampling assumption, it guarantees
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that
1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖

converges in probability to something that is finite and has an inverse.
• The assumption E3 says a number of things: first, 𝜖𝑖 is zero mean for all 𝑖. Second, it says

that 𝜖𝑖 is uncorrelated with each of the 𝐾 − 1 regressors in 𝑥𝑖, i.e., 𝐸[𝜖𝑖𝑥𝑖] = 0. This, and
the random sampling assumption, means that

1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝜖𝑖 →𝑝 0.

The implication 𝐸[𝜖𝑖𝑥𝑖] = 0 of Assumption D3 is the key to obtaining consistent OLS
coefficient estimators.

• Since 𝐸[𝜖𝑖𝑥𝑖] = 0, the expectation 𝐸[𝜖2𝑖𝑥𝑖𝑥T
𝑖 ] in Assumption D4 is the variance-covariance

matrix of 𝑥𝑖𝜖𝑖.
• The assumptions impose unconditional homoskedasticity, but allow for conditional het-

eroskedasticity. Since {𝑌𝑖, 𝑋1,𝑖, 𝑋2,𝑖,… ,𝑋𝐾−1,𝑖}𝑁𝑖=1 are iid draws, {𝜖𝑖}𝑁𝑖=1 are also iid.
The “identically distributed” part implies 𝑣𝑎𝑟[𝜖] is constant, so there is unconditional
homoskedasticity. However, we allow for conditional heteroskedasticity, i.e., the condi-
tional variance may depend on the regressors. For example, suppose 𝐸[𝜖2𝑖 |𝑥𝑖] = 𝜎2𝑋2

1,𝑖
so the noise variance depends on 𝑋1,𝑖 (there is conditional heteroskedasticity). However,
𝐸[𝐸[𝜖2𝑖 |𝑥𝑖]] = 𝜎2𝐸[𝑋2

1,𝑖], which is constant if 𝑋1,𝑖 is iid.
• We do not assume that the noise terms are normally distributed.

Given Assumption Set E, ̂𝛽 is consistent:

̂𝛽 = 𝛽 + ( 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟
→𝑝 Σ−1

𝑋𝑋

( 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝜖𝑖)
⏟⏟⏟⏟⏟⏟⏟

→𝑝 0

→𝑝 𝛽

This is basically the general version of the simple linear regression argument that

̂𝛽1 = 𝛽1 +
sample cov(𝑋𝑖, 𝜖𝑖)
sample var(𝑋𝑖)

→𝑝 𝛽1

if 𝑐𝑜𝑣[𝑋𝑖, 𝜖𝑖] = 0 and 𝑣𝑎𝑟[𝑋𝑖] is finite, and if their sample counterparts converge in probability
to them.

Since ̂𝛽1 is consistent, its distribution is essentially degenerate in the limit. To talk about
limiting distributions, we have to scale ̂𝛽1. We use

√
𝑁( ̂𝛽 − 𝛽) = ( 1

𝑁
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

( 1√
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝜖𝑖),
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Our assumptions and the CLT imply

1√
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝜖𝑖 →𝑑 Normal𝐾(0, 𝑆),

therefore

√
𝑁( ̂𝛽 − 𝛽) = ( 1

𝑁
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟
→𝑝 Σ−1

𝑋𝑋

( 1√
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝜖𝑖)
⏟⏟⏟⏟⏟⏟⏟
→𝑑 Normal𝐾(0,𝑆)

→𝑑 Normal𝐾(0, Σ−1
𝑋𝑋𝑆Σ−1

𝑋𝑋)

That is, ̂𝛽 is consistent, with asymptotic variance avar[ ̂𝛽] = Σ−1
𝑋𝑋𝑆Σ−1

𝑋𝑋. This result justifies the
approximation

𝑣𝑎𝑟[ ̂𝛽] ≈ (1/𝑁)Σ−1
𝑋𝑋𝑆Σ−1

𝑋𝑋.

An obvious estimator for Σ𝑋𝑋 is

Σ̂𝑋𝑋 = 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 = (1/𝑁)𝑋T𝑋

Some additional assumptions (see advanced econometrics textbooks) guarantee

̂𝑆 = 1
𝑁

𝑁
∑
𝑖=1

̂𝜖2𝑖𝑥𝑖𝑥T
𝑖 →𝑝 𝑆. (9.17)

This allows us to consistently estimate the asymptotic variance of ̂𝛽 by

âvar[ ̂𝛽] = ( 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

( 1
𝑁

𝑁
∑
𝑖=1

̂𝜖2𝑖𝑥𝑖𝑥T
𝑖 )( 1

𝑁
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

,

and justifies the use of

v̂ar𝐻𝐶0[ ̂𝛽] = 1
𝑁 âvar[ ̂𝛽]

= 1
𝑁 ( 1

𝑁
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

( 1
𝑁

𝑁
∑
𝑖=1

̂𝜖2𝑖𝑥𝑖𝑥T
𝑖 )( 1

𝑁
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

= (
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

(
𝑁
∑
𝑖=1

̂𝜖2𝑖𝑥𝑖𝑥T
𝑖 )(

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

(9.18)

as an estimator for the variance of ̂𝛽. The variance estimator in (9.18) is a “Heteroskedasticity-
Consistent Variance Estimator”. There are several versions. The version presented in (9.18) is
often referred to as “HC0”, which is why we label it as such. Other versions will be discussed
in the exercises. Because of its form, (9.18) is often called a “sandwich” estimator.

If there is conditional heteroskedasticity in the noise terms, the usual OLS variance estimator
𝜎2(𝑋T𝑋)−1 is not appropriate since 𝜎2((1/𝑁)𝑋T𝑋)−1 is not a consistent estimator for the
asymptotic variance. On the other hand, the variance estimator (9.18) remains consistent even
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if in fact the noise terms are conditionally homoskedastic. In this sense it is safer to use (9.18)
for estimating the estimator variance if there is any possibility of conditional heteroskedasticity.

We have already noted that OLS estimators are efficient if there is conditional homoskedas-
ticity. If there is conditional heteroskedasticity, then OLS estimators are no longer efficient.
(The formula (9.18) allows us to estimate the estimator variance consistently, but doesn’t do
anything about the efficiency of ̂𝛽 itself.) We have already addressed how we might try to get
efficient estimators in the previous chapter.

We can use the heteroskedasticity consistent variance estimator to construct heteroskedastic-
ity robust 𝑡 and 𝐹 statistics, by replacing v̂ar[ ̂𝛽|𝑋] in (9.12) and (9.15) with the heteroskedasticity
robust variance estimator in (9.18).
Example 9.7. We compute below the HC0 Heteroskedasticity Robust covariance matrix for
the regression in Example 9.6.

hatS = 0
for (i in 1:N){

xi = as.matrix(X[i,])
hatS = hatS + ehat[i]^2*xi%*%t(xi)

}
varhat_HC0 <- XTXinv %*% hatS %*% XTXinv ## XTXinv computed earlier
round(varhat_HC0,6)

const height male wexp tenure
const 0.281450 -0.004322 0.024655 -0.000212 0.000364
height -0.004322 0.000069 -0.000390 -0.000004 -0.000005
male 0.024655 -0.000390 0.004595 -0.000040 0.000033
wexp -0.000212 -0.000004 -0.000040 0.000033 -0.000006
tenure 0.000364 -0.000005 0.000033 -0.000006 0.000013

The function hccm() from the car package also calculates this, as does the vcovHC() function
from the sandwich package. We use the latter.

varhat_HC0_v2 = vcovHC(mdl,type="HC0")
round(varhat_HC0_v2,6)

(Intercept) height male wexp tenure
(Intercept) 0.281450 -0.004322 0.024655 -0.000212 0.000364
height -0.004322 0.000069 -0.000390 -0.000004 -0.000005
male 0.024655 -0.000390 0.004595 -0.000040 0.000033
wexp -0.000212 -0.000004 -0.000040 0.000033 -0.000006
tenure 0.000364 -0.000005 0.000033 -0.000006 0.000013

The heteroskedasticity-robust standard errors are the square roots of the diagonal of this
matrix. The table below presents the heteroskedasticity robust t-stats and recomputes the
corresponding p-values.

sebhat <- sqrt(diag(varhat_HC0)) # se(bhat)
tbhat <- bhat/sebhat
pval <- 2*(1-pt(abs(tbhat),N-K))
star <- rep("", K)
star[pval<0.1] <- "."
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star[pval<0.05] <- "*"
star[pval<0.01] <- "**"
star[pval<0.001] <- "***"
Results <- data.frame("Estimate"=bhat, "HC0 Std. Err."=sebhat, "t-val"=tbhat, "p-val"=pval, star)
names(Results)[K] <- ""
print(Results, digits=6, right=FALSE)
cat("---\nSignif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n")

Estimate HC0.Std..Err. t.val p.val
const 0.98423994 0.53051905 1.85524 0.064111865 .
height 0.02271202 0.00828080 2.74273 0.006297216 **
male 0.17052245 0.06778799 2.51553 0.012177295 *
wexp 0.00541464 0.00574455 0.94257 0.346326070
tenure 0.01335911 0.00365123 3.65880 0.000278498 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Comparing these results with the previous ones, we find that the heteroskedasticity-robust
standard errors are not very different from those estimated using the usual OLS formulas under
conditional homoskedasticity. This suggests that heteroskedasticity is not a significant issue
in this regression. Nonetheless, for illustration purposes we use the heteroskedasticity-robust
robust t- and F-tests to test the hypotheses in Example 9.6. In the code below, we compute
the robust F-test manually, as well as using the linearHypothesis() function from the car
package.

F <- t(Rb) %*% solve(R%*%varhat_HC0%*%t(R)) %*% Rb / J
Fpval <- (1-pf(F,J,N-K))
cat("H0 height = 0 and wage = tenure: F-stat ",round(F,4),", pval", round(Fpval,6))

H0 height = 0 and wage = tenure: F-stat 4.3413 , pval 0.013481

linearHypothesis(mdl,c('height=0','wexp=tenure'), vcov=varhat_HC0)

Linear hypothesis test

Hypothesis:
height = 0
wexp - tenure = 0

Model 1: restricted model
Model 2: log(earnings) ~ height + male + wexp + tenure

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 537
2 535 2 4.3413 0.01348 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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9.7 Exercises
Exercise 9.1. Find expressions for 𝑣𝑎𝑟[ ̂𝛽0|𝑋] and 𝑐𝑜𝑣[ ̂𝛽0, ̂𝛽1|𝑋] in the simple linear regression

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖 , 𝑖 = 1, 2, ..., 𝑁

where 𝐸[𝜖𝑖|𝑋] = 0 and 𝐸[𝜖2𝑖 |𝑋] = 𝜎2 for all 𝑖 = 1, 2, ..., 𝑁 , and 𝐸[𝜖𝑖𝜖𝑗|𝑋] = 0 for all 𝑖 ≠ 𝑗,
𝑖, 𝑗 = 1, 2, ..., 𝑁 . What is the sign of 𝑐𝑜𝑣[ ̂𝛽0, ̂𝛽1|𝑋]?
Exercise 9.2. Let 𝑋 be a (𝑁 ×𝐾) full column rank matrix. Show that

𝑀 = 𝐼 −𝑋(𝑋T𝑋)−1𝑋T

is symmetric and idempotent, with rank 𝑁 −𝐾.

Exercise 9.3. Show that the residuals from the regression 𝑌𝑖 = 𝛽0 + 𝜖𝑖, 𝑖 = 1, 2, ..., 𝑁 can be
written as

̂𝜀 = 𝑀0𝑦

where
𝑀0 = 𝐼 − 𝑖𝑁(𝑖T𝑁 𝑖𝑁)−1𝑖T𝑁 .

Show by direct computation that 𝑀0𝑦 is the vector of deviations from means, i.e.,

𝑀0𝑦 = (𝐼 − 𝑖𝑁(𝑖T𝑁 𝑖𝑁)−1𝑖T𝑁)𝑦 =
⎡
⎢
⎢
⎢
⎣

𝑌1 − 𝑌
𝑌2 − 𝑌

⋮
𝑌𝑁 − 𝑌

⎤
⎥
⎥
⎥
⎦

.

Show that 𝑦T𝑀0𝑦 = ∑𝑁
𝑖=1(𝑌𝑖 − 𝑌 )2

Exercise 9.4. Show that
𝑦T𝑀0𝑦 = ̂𝑦T𝑀0 ̂𝑦 + ̂𝜀T ̂𝜀.

This is the 𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 equality that forms the basis of the 𝑅2.

Exercise 9.5. Consider the regression 𝐸𝑖 = 𝑋𝛽+𝜀, where 𝐸𝑖 is the (𝑁 ×1) vector comprising
all zeros except for a ‘1’ in the 𝑖th position. Let the matrix 𝑋 be (𝑁 ×𝐾) full column rank.

a. Show that the fitted values 𝐸𝑖 has the expression

𝐸𝑖 = 𝑋(𝑋T𝑋)−1𝑥𝑖

where 𝑥T
𝑖 is the 𝑖th row of the 𝑋 matrix.

b. Define the ‘leverage’ of observation 𝑖 to be

ℎ𝑖 = 𝑥T
𝑖 (𝑋T𝑋)−1𝑥𝑖.

Show that 0 ≤ ℎ𝑖 ≤ 1. Hint: Use part (a) and the “Pythagoras’s Theorem” result in (9.7).
c. Explain why ∑𝑁

𝑖=1 ℎ𝑖 is the trace of the matrix 𝑃 = 𝑋(𝑋T𝑋)−1𝑋T. Show that ∑𝑁
𝑖=1 ℎ𝑖 =

𝐾. (In other words, the “average value” of ℎ𝑖 is 𝐾/𝑁 .)
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Remark: it can be shown that

̂𝛽 − ̂𝛽−𝑖 = ( 1
1 − ℎ𝑖

)(𝑋T𝑋)−1𝑥𝑖 ̂𝜖𝑖

where ̂𝛽−𝑖 is the OLS estimator obtained when observation 𝑖 is left out. An observation with ℎ𝑖
close to 1 therefore has very high leverage, or “influential”.

Exercise 9.6. Consider the linear regression 𝑦 = 𝑋𝛽+𝜀 where 𝐸[𝜀|𝑋] = 0 and 𝐸[𝜀𝜀T|𝑋] = 𝜎2𝐼 .
The fact that 𝜎2 = 1

𝑁 ∑𝑁
𝑖=1 ̂𝜖2𝑖 is biased implies that each individual ̂𝜀2𝑖 must in general be a

biased estimator for 𝜎2. Show that

𝐸[ ̂𝜖2𝑖 ] = (1 − ℎ𝑖)𝜎2.

Hint: use ̂𝜖2𝑖 = (𝐸𝑖)T ̂𝜀 ̂𝜀T𝐸𝑖 and ̂𝜀 = 𝑀𝜀 where 𝑀 = 𝐼 −𝑋(𝑋T𝑋)−1𝑋T.

Exercise 9.7. The “HC0” version of the heteroskedasticity-consistent standard errors given
in (9.18) is sometimes criticized for not taking into consideration the fact that 𝐾 degrees of
freedom are used in the computation of ̂𝜖𝑖. Another version proposes to take this into account
by estimating 𝑆 with

̂𝑆1 = 1
𝑁 −𝐾

𝑁
∑
𝑖=1

̂𝜖2𝑖𝑥𝑖𝑥T
𝑖

which also consistently estimates 𝑆.
a. Show that using ̂𝑆1 instead of ̂𝑆 in Eq. 9.17 results in the Heteroskedasticity-Consistent

variance estimator

v̂ar𝐻𝐶1[ ̂𝛽] = (
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

( 𝑁
𝑁 −𝐾

𝑁
∑
𝑖=1

̂𝜖2𝑖𝑥𝑖𝑥T
𝑖 )(

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

. (9.19)

Amend the code in Example 9.7 to use the HC1 version of the variance estimator, and
verify your results using the vcovHC() function.

b. Another version, based on the result in Exercise 9.6, is

v̂ar𝐻𝐶2[ ̂𝛽] = (
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

(
𝑁
∑
𝑖=1

̂𝜖2𝑖
1 − ℎ𝑖

𝑥𝑖𝑥T
𝑖 )(

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

. (9.20)

Amend the code in Example 9.7 to use the HC2 version of the variance estimator, and
verify your results using the vcovHC() function.

c. The result in Exercise 9.6, of course, assumes conditional homoskedasticity. Yet another
version is

v̂ar𝐻𝐶3[ ̂𝛽] = (
𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

(
𝑁
∑
𝑖=1

̂𝜖2𝑖
(1 − ℎ𝑖)2

𝑥𝑖𝑥T
𝑖 )(

𝑁
∑
𝑖=1

𝑥𝑖𝑥T
𝑖 )

−1

. (9.21)

This version puts more weight on observations that are more influential. Amend the code
in Example 9.7 to use the HC3 version of the variance estimator, and verify your results
using the vcovHC() function.
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Exercise 9.8. Consider the linear regression model under Assumption Set E. Show, by applica-
tion of the Law of Iterated Expectations, that if the noise terms are conditionally homoskedastic,
i.e., if 𝐸[𝜖2𝑖 |𝑥𝑖] = 𝜎2, then

𝑆 = 𝐸[𝜖2𝑖𝑥𝑖𝑥T
𝑖 ] = 𝜎2Σ𝑋𝑋.

and that the asymptotic variance of ̂𝛽 then becomes

avar[ ̂𝛽] = 𝜎2Σ−1
𝑋𝑋.

Remark: this result is in accordance with the fact that under conditional homoskedasticity,
𝑣𝑎𝑟[ ̂𝛽|𝑋] = 𝜎2(𝑋T𝑋)−1.

Exercise 9.9. Suppose we have 𝑦 = 𝑋𝛽 + 𝜀 with 𝐸[𝜀|𝑋] = 0. Suppose 𝑣𝑎𝑟[𝜀|𝑋] is possibly
heteroskedastic and correlated, but known up to some parameter 𝜎2, i.e., 𝑣𝑎𝑟[𝜀|𝑋] = 𝜎2Ω, where
Ω is known (it may involve elements of 𝑋, but with no unknown parameters). Of course, Ω
must be symmetric and positive definite. For example, we may have

𝑣𝑎𝑟[𝜀|𝑋] = 𝜎2Ω1 = 𝜎2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1/𝑋2
𝑘,1 0 0 … 0

0 1/𝑋2
𝑘,2 0 … 0

0 0 1/𝑋2
𝑘,3 … 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1/𝑋2

𝑘,𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where 𝑋𝑘,𝑖 is the 𝑖th observation of variable 𝑋𝑘. Another example is

𝑣𝑎𝑟[𝜀|𝑋] = 𝜎2Ω2 = 𝜎2

1 − 0.92

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0.9 0.92 … 0.9𝑁−1

0.9 1 0.9 … 0.9𝑁−2

0.92 0.9 1 … 0.9𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮
0.9𝑁−1 0.9𝑁−2 0.9𝑁−3 … 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Since Ω is symmetric and positive definite, we can find 𝑃 such that

𝑃Ω𝑃T = 𝐼

a. Find 𝑃 such that 𝑃Ω1𝑃T = 𝐼 .
b. Verify that 𝑃Ω2𝑃T = 𝐼 where

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√
1 − 0.92 0 0 … 0 0
−0.9 1 0 … 0 0
0 −0.9 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … −0.9 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Remark: Transforming the regression 𝑦 = 𝑋𝛽+𝜀, 𝐸[𝜀|𝑋] = 0, 𝑣𝑎𝑟[𝜀|𝑋] = 𝜎2Ω, by premultiply-
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ing by 𝑃 , where 𝑃 is the matrix such that 𝑃Ω𝑃T = 𝐼 , produces the regression

𝑃𝑦 = 𝑃𝑋𝛽 + 𝑃𝜀

or 𝑦∗ = 𝑋∗𝛽 + 𝜀∗

where 𝑦∗ = 𝑃𝑦, 𝑋∗ = 𝑃𝑋 and 𝜀∗ = 𝑃𝜀. Let ̂𝛽𝑔𝑙𝑠 be the estimator of 𝛽 obtained by applying OLS
to the transformed regression. This is called the “Generalized Least Squares”, or GLS, estimator
for 𝛽. In general, Ω will contain parameters that must (somehow) be estimated. Methods where
Ω is replaced by some estimated Ω̂ are called “Feasible Generalized Least Squares” or FGLS.*

Exercise 9.10.
a. Show that the 𝐹 -statistic for testing a single restriction, i.e., when 𝐽 = 1, is equal to the

square of the 𝑡-statistic for testing the same hypothesis. (Hint: compare (9.12) and (9.15)
after setting 𝑅 = 𝑟T in the 𝐹 -statistic.)

b. Suppose you have the regressions

[A] 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 +…𝛽𝐾−1𝑋𝐾−1,𝑖 + 𝜖𝑖 ,
[B] 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 +…𝛽𝐾−1𝑋𝐾−1,𝑖 + 𝛽𝐾𝑋𝐾,𝑖 + 𝜖𝑖 .

Two possible ways of deciding whether or not to include variable 𝑋𝐾,𝑖 in the regression is
to do a t-test (or an F-test) of the hypothesis 𝛽𝐾 = 0. Another way is to see whether or
not the Adjusted-𝑅2 in [B] is greater than the Adjusted-𝑅2 in [A]. Show that the latter
method is equivalent to including 𝑋𝐾,𝑖 if the absolute value of the t-statistic for ̂𝛽𝐾 in [B]
is greater than 1. Hint: use the version of the F-statistic in (9.13).

Exercise 9.11. Suppose 𝑌𝑖 = 𝑥T
𝑖 𝛽 + 𝜖𝑖, 𝑖 = 1, 2, ..., 𝑁 , with 𝐸[𝜀|𝑋] = 0 and 𝐸[𝜀𝜀T|𝑋] = 𝜎2𝐼 .

Let ̂𝛽 be the OLS estimator for 𝛽. Suppose we predict 𝑌 at 𝑥 = 𝑥0 using ̂𝑌 (𝑥0) = 𝑥T
0 ̂𝛽. The

prediction error is

̂𝑒(𝑥0) = 𝑌 (𝑥0) − ̂𝑌 (𝑥0) = 𝑥T
0 𝛽 + 𝜖0 − 𝑥T

0 ̂𝛽 = 𝑥T
0 (𝛽 − ̂𝛽) + 𝜖0.

a. Derive an expression for the prediction error variance.

b. Specialize your answer in (a) to the simple linear regression 𝑌𝑖 = 𝛽0+𝛽1𝑋1,𝑖+𝜖𝑖, predicting
𝑌 at 𝑋1 = 𝑥0

1. Show that the prediction error variance is

̂𝑒(𝑥0
1) = 𝜎2 (1 + 1

𝑁 + (𝑥0
1 −𝑋1)2

∑𝑁
𝑖=1(𝑋1,𝑖 −𝑋1)2

).

9.8 Appendix

In this appendix, we prove the equality (9.14). Let the regression model be 𝑦 = 𝑋𝛽 + 𝜀, and
let ̂𝛽𝑟 be the least squares estimator for 𝛽 subject to the restriction that 𝑅𝛽 = 𝑟. We first show
that

̂𝛽𝑟 = ̂𝛽𝑜𝑙𝑠 + (𝑋T𝑋)−1𝑅T[𝑅(𝑋T𝑋)−1𝑅T]−1(𝑟 − 𝑅 ̂𝛽𝑜𝑙𝑠)
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where ̂𝛽𝑜𝑙𝑠 is the usual unrestricted OLS estimator. The restricted SSR minimization problem
is

̂𝛽𝑟 = argmin ̂𝛽(𝑦 − 𝑋 ̂𝛽)T(𝑦 − 𝑋 ̂𝛽) subject to 𝑅 ̂𝛽 − 𝑟 = 0.

The Lagrangian is
𝐿 = (𝑦 − 𝑋 ̂𝛽)T(𝑦 − 𝑋 ̂𝛽) + 2(𝑟T − ̂𝛽T𝑅T)𝜆 .

The FOC is
𝜕𝐿
𝜕 ̂𝛽

∣
̂𝛽𝑟,�̂�

= −2𝑋T𝑦 + 2𝑋T𝑋 ̂𝛽𝑟 − 2𝑅T�̂� = 0

𝜕𝐿
𝜕�̂�

∣
̂𝛽𝑟,�̂�

= 2(𝑟 − 𝑅 ̂𝛽𝑟) = 0

The second equation in the FOC merely says that the restriction must hold. The first equation
in the FOC implies

̂𝛽𝑟 = (𝑋T𝑋)−1𝑋T𝑦 + (𝑋T𝑋)−1𝑅T�̂� = ̂𝛽𝑜𝑙𝑠 + (𝑋T𝑋)−1𝑅T�̂� .

Multiplying throughout by 𝑅 gives

𝑅 ̂𝛽𝑟 = 𝑅 ̂𝛽𝑜𝑙𝑠 +𝑅(𝑋T𝑋)−1𝑅T�̂� .

If follows that
�̂� = [𝑅(𝑋T𝑋)−1𝑅T]−1(𝑅 ̂𝛽𝑟 −𝑅 ̂𝛽𝑜𝑙𝑠)
= [𝑅(𝑋T𝑋)−1𝑅T]−1(𝑟 − 𝑅 ̂𝛽𝑜𝑙𝑠) ,

and therefore
̂𝛽𝑟 = ̂𝛽𝑜𝑙𝑠 + (𝑋T𝑋)−1𝑅T[𝑅(𝑋T𝑋)−1𝑅T]−1(𝑟 − 𝑅 ̂𝛽𝑜𝑙𝑠) . (9.22)

Now let
̂𝜀𝑟 = 𝑦 −𝑋 ̂𝛽𝑟

= 𝑦 −𝑋 ̂𝛽𝑜𝑙𝑠 +𝑋 ̂𝛽𝑜𝑙𝑠 −𝑋 ̂𝛽𝑟

= ̂𝜀𝑜𝑙𝑠 +𝑋( ̂𝛽𝑜𝑙𝑠 − ̂𝛽𝑟) .
(9.23)

Since (unrestricted) OLS residuals are orthogonal to the regressors, we have

̂𝜀T
𝑜𝑙𝑠 ̂𝜀𝑟 = ̂𝜀T

𝑜𝑙𝑠 ̂𝜀𝑜𝑙𝑠 + ̂𝜀T
𝑜𝑙𝑠𝑋( ̂𝛽𝑜𝑙𝑠 − ̂𝛽𝑟) = ̂𝜀T

𝑜𝑙𝑠 ̂𝜀𝑜𝑙𝑠.

Therefore
( ̂𝜀𝑟 − ̂𝜀𝑜𝑙𝑠)T( ̂𝜀𝑟 − ̂𝜀𝑜𝑙𝑠) = ̂𝜀T

𝑟 ̂𝜀𝑟 − ̂𝜀T
𝑜𝑙𝑠 ̂𝜀𝑜𝑙𝑠. (9.24)

Finally, use (9.22), (9.23) and (9.24) to show (9.14).



Chapter 10
Instrumental Variables and Generalized Method of Moments

We present the concept of instrumental variables, and an estimation method called Gener-
alized Method of Moments (GMM). This extended framework enables consistent estimation of
economic relationships in situations where there are endogeneity problems, i.e., where (for what-
ever reason) there are correlations between the noise term and one or more regressors. However,
it requires the availability of good instrumental variables, which may not be so easy to find.

The R code in this chapter uses the packages

library(tidyverse)
library(readxl)
library(lmtest)
library(sandwich)
library(car)

We will also use Stata to verify our computations.

10.1 Instrumental Variables and the IV Estimator

Suppose the regression equation of interest is

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖 , 𝑖 = 1, 2, ..., 𝑁.

We continue to assume independent observations, but suppose that 𝑋𝑖 and 𝜖𝑖 are correlated,
with the consequence that the OLS estimator for 𝛽1 is inconsistent (and biased). Suppose,
however, that there are observations of a third variable 𝑍𝑖 that are correlated with 𝑋𝑖 but not
with 𝜖𝑖. We can use this variable to estimate 𝛽1 consistently.

We continue to assume that 𝜖𝑖 is zero mean for all 𝑖 (this is an innocuous assumption since
the regression includes an intercept term). We therefore have the following “moment conditions”
for all 𝑖:

𝐸[𝜖𝑖] = 𝐸[𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖] = 0
𝐸[𝜖𝑖𝑍𝑖] = 𝐸[(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)𝑍𝑖] = 0 .

(10.1)

Define the “IV” estimators of 𝛽0 and 𝛽1 to be those values that solve the sample analogue of
the moment conditions:

(1/𝑁)
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑖𝑣
0 − ̂𝛽𝑖𝑣

1 𝑋𝑖) = 0

(1/𝑁)
𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑖𝑣
0 − ̂𝛽𝑖𝑣

1 𝑋𝑖)𝑍𝑖 = 0 .
(10.2)

This gives the estimators
̂𝛽𝑖𝑣
0 = 𝑌 − ̂𝛽𝑖𝑣

1 𝑋

̂𝛽𝑖𝑣
1 = ∑𝑁

𝑖=1(𝑍𝑖 − 𝑍)(𝑌𝑖 − 𝑌 )
∑𝑁

𝑖=1(𝑍𝑖 − 𝑍)(𝑋𝑖 −𝑋)
(10.3)

217
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which are consistent for 𝛽0 and 𝛽1 respectively. We show consistency of ̂𝛽𝑖𝑣
1 . Write ̂𝛽𝑖𝑣

1 as

̂𝛽𝑖𝑣
1 = 𝛽1 +

∑𝑁
𝑖=1(𝑍𝑖 − 𝑍)𝜖𝑖

∑𝑁
𝑖=1(𝑍𝑖 − 𝑍)(𝑋𝑖 −𝑋)

. (10.4)

Dividing the numerator and denominator of the second term by 𝑁 shows that it is the ratio
of the sample covariance of 𝑍𝑖 and 𝜖𝑖 to the sample covariance of 𝑍𝑖 and 𝑋𝑖. As sample sizes
increase, these sample moments converge in probability to their population counterparts. By
assumption, the population covariance of 𝑍𝑖 and 𝜖𝑖 is zero, whereas the population covariance
of 𝑍𝑖 and 𝑋𝑖 is not zero. Therefore ̂𝛽𝑖𝑣

1 converges in probability to 𝛽1.
Another way to see consistency of ̂𝛽𝑖𝑣

1 is to note that (10.1) uniquely identifies 𝛽0 and 𝛽1.
Write (10.1) as

𝐸[𝑌𝑖] − 𝛽0 − 𝛽1𝐸[𝑋𝑖] = 0
𝐸[𝑍𝑖𝑌𝑖] − 𝛽0𝐸[𝑍𝑖] − 𝛽1𝐸[𝑍𝑖𝑋𝑖] = 0 .

(10.5)

Solving gives
𝛽0 = 𝐸[𝑌𝑖] − 𝛽1𝐸[𝑋𝑖]

𝛽1 = 𝐸[𝑍𝑖𝑌𝑖] − 𝐸[𝑍𝑖]𝐸[𝑌𝑖]
𝐸[𝑍𝑖𝑋𝑖] − 𝐸[𝑍𝑖]𝐸[𝑋𝑖]

= 𝑐𝑜𝑣[𝑍𝑖, 𝑌𝑖]
𝑐𝑜𝑣[𝑍𝑖, 𝑋𝑖]

.
(10.6)

The solution requires 𝑐𝑜𝑣[𝑍𝑖, 𝑋𝑖] ≠ 0, which we assume. Because the sample moments in (10.2)
converge to their population counterparts, ̂𝛽𝑖𝑣

0 and ̂𝛽𝑖𝑣
1 converge to their population values.

Although ̂𝛽𝑖𝑣
1 is consistent, it is biased. This is easily seen from (10.4). Taking conditional

expectations does not remove the second term, since 𝐸[𝜖𝑖|x, z] ≠ 0.
Because 𝑋𝑖 is correlated with 𝜖𝑖, we say it is “endogenous” (no matter what the reason for

the correlation). Because 𝑍𝑖 is uncorrelated with 𝜖𝑖, we say it is “exogenous”. Because we use
𝑍𝑖 to identify our equation, we call it an “instrumental variable”. A valid instrumental variable,
or “instrument”, is one that is exogenous but correlated with the regressor. The IV estimator
is also an example of what we would call a “Method of Moments” estimator.

If 𝑋𝑖 is not endogenous, then we can use it “as its own instrument”, i.e., set 𝑍𝑖 = 𝑋𝑖. The
sample moment conditions in (10.2) then become

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑖𝑣
0 − ̂𝛽𝑖𝑣

1 𝑋𝑖) = 0

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑖𝑣
0 − ̂𝛽𝑖𝑣

1 𝑋𝑖)𝑋𝑖 = 0
(10.7)

which you will recognize as the first-order conditions for OLS estimation.
Instruments can arise from natural experiments, and incidental features of specific applica-

tions. Some examples of instruments include proximity to college, quarter of birth, and parents’
years of schooling as instruments for subject’s years of schooling; variation in state cigarette
taxes for maternal smoking; Vietnam war draft lottery number for veteran status, sibling sex
composition for fertility (see Angrist and Krueger (2001) for a discussion of instruments from
natural experiments). They can also arise from structural characteristics of particular economic
relationships. We consider a supply and demand example below.
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10.2 A Simultaneous Equation Example
Suppose that the intention is to estimate the demand function for a certain good. Suppose that
the market for the good can be represented by the demand and supply system:

𝑄𝑑
𝑡 = 𝛿0 + 𝛿1𝑃𝑡 + 𝜖𝑑𝑡 (Demand Eq 𝛿1 < 0)

𝑄𝑠
𝑡 = 𝛼0 + 𝛼1𝑃𝑡 + 𝜖𝑠𝑡 (Supply Eq 𝛼1 > 0)

𝑄𝑠
𝑡 = 𝑄𝑑

𝑡 , (Market Clearing)
(10.8)

As discussed in Chapter 5, the observed quantities and prices occur at the intersection of the
demand and supply equations. Because of this, observed prices and quantities are not represen-
tative of either the demand or supply functions.

We illustrate this phenomenon with a simulation of the case where 𝛼0 = 10, 𝛼1 = 5, 𝛿0 = 80
and 𝛿1 = −4, and where the mutually independent demand and supply shocks 𝜖𝑑𝑡 and 𝜖𝑑𝑡 are iid
Normal(0, 6) and Normal(0, 8) respectively. The demand and supply shocks lead to shifts in the
demand and supply functions. We draw the demand and supply functions for 20 periods and
indicate their intersection points, which are the data that we observe.

set.seed(9)
nsim <- 20
ed <- rnorm(nsim, 0, 6); es <- rnorm(nsim, 0, 8)
p <- seq(from=3,to=12,by=0.1)
a0 <- 10; a1 <- 5; b0 <- 80; b1 <- -4
plt1 <- ggplot()
for (i in 1:nsim){
qs <- a0 + a1*p + es[i]
qd <- b0 + b1*p + ed[i]
peq <- (a0-b0)/(b1-a1) + (es[i]-ed[i])/(b1-a1)
qeq <- (b0+b1*(a0-b0)/(b1-a1)) + (b1*es[i]-a1*ed[i])/(b1-a1)
dat <- data.frame("qs"=qs, "qd"=qd, "p"=p) %>% arrange(p)
plt1 <- plt1 +

geom_line(data=dat, aes(y=qs,x=p), color="gray", alpha=0.4) +
geom_line(data=dat, aes(y=qd,x=p), color="gray", alpha=0.4) +
annotate("point", y=qeq, x=peq, size=2) + ylab("q") +
theme_classic() + theme(axis.title.y = element_text(angle = 0))

}; plt1
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Figure 10.1: Demand and Supply Example
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You can see that the observed prices and quantities reflect neither the demand nor the supply
functions, and a regression of quantity on price will produce a slope coefficient that will turn
out to be some average of 𝛼1 and 𝛽1. The issue here is that both prices and quantity are
simultaneously determined. Price, in particular, is not an exogenous variable. Variation in the
data comes about because of the demand and supply shocks, both of which affect both quantities
and prices. In a regression of quantity on price, the regressor (price) will be correlated with the
regression noise term.

We have already demonstrated the inconsistency of the OLS estimator mathematically in
chapter 5. We review the argument briefly. Solving for quantity and prices gives

𝑃𝑡 =
𝛼0 − 𝛿0
𝛿1 − 𝛼1

+ 𝜖𝑠𝑡 − 𝜖𝑑𝑡
𝛿1 − 𝛼1

𝑄𝑡 = (𝛿0 + 𝛿1
𝛼0 − 𝛿0
𝛿1 − 𝛼1

)+ 𝛿1𝜖𝑠𝑡 − 𝛼1𝜖𝑑𝑡
𝛿1 − 𝛼1

.
(10.9)

which implies

𝑣𝑎𝑟[𝑃𝑡] =
𝜎2
𝑠 + 𝜎2

𝑑
(𝛿1 − 𝛼1)2

and 𝑐𝑜𝑣[𝑃𝑡, 𝑄𝑡] =
𝛿1𝜎2

𝑠 + 𝛼1𝜎2
𝑑

(𝛿1 − 𝛼1)2
. (10.10)

The OLS estimator of 𝛽1 in the regression 𝑄𝑡 = 𝛽0 + 𝛽1𝑃𝑡 + 𝜖𝑡 will converge to the ratio of
𝑐𝑜𝑣[𝑃𝑡, 𝑄𝑡] and 𝑣𝑎𝑟[𝑃𝑡]:

̂𝛽𝑜𝑙𝑠
1 →𝑝

𝑐𝑜𝑣[𝑄𝑡, 𝑃𝑡]
𝑣𝑎𝑟[𝑃𝑡]

= 𝛿1𝜎2
𝑠 + 𝛼1𝜎2

𝑑
𝜎2𝑠 + 𝜎2

𝑑

which is neither the price elasticity of demand nor the price elasticity of supply.

Suppose, however, that there is some observable variable 𝑟𝑡 that shifts the supply function
but not the demand function. That is, suppose the market for our good is represented by the
equations

𝑄𝑑
𝑡 = 𝛿0 + 𝛿1𝑃𝑡 + 𝜖𝑑𝑡 (Demand Eq 𝛿1 < 0)

𝑄𝑠
𝑡 = 𝛼0 + 𝛼1𝑃𝑡 + 𝛼2𝑟𝑡 + 𝜖𝑠𝑡 (Supply Eq 𝛼1 > 0)

𝑄𝑠
𝑡 = 𝑄𝑑

𝑡 (Market Clearing)
(10.11)

where 𝛼2 ≠ 0 and 𝑟𝑡 is uncorrelated with the demand shocks. Because (by assumption) 𝑟𝑡 is
uncorrelated with the demand shock, and because 𝑟𝑡 is correlated with prices (changes in 𝑟𝑡 shift
the supply function, and this changes price), it is a valid instrument. The IV estimators for 𝛿0
and 𝛿1 are then

̂𝛿𝑖𝑣0 = 𝑄− ̂𝛿𝑖𝑣1 𝑃

̂𝛿𝑖𝑣1 = ∑𝑇
𝑖=1(𝑟𝑡 − 𝑟)(𝑄𝑡 −𝑄)

∑𝑇
𝑖=1(𝑟𝑡 − 𝑟)(𝑃𝑡 − 𝑃)

.
(10.12)

As argued previously, these are consistent (though biased) estimators.

10.2.1 A Two-Stage Least Squares Perspective

We continue with the demand-supply example in (10.11), and view the estimator ̂𝛿𝑖𝑣1 from the
perspective of the following two-step procedure:
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• First regress the endogenous regressor 𝑃𝑡 onto the exogenous regressor 𝑟𝑡:

𝑃𝑡 = 𝜙0 + 𝜙1𝑟𝑡 + 𝑢𝑡

and collect the fitted values
̂𝑃𝑡 = ̂𝜙0 + ̂𝜙1𝑟𝑡 ,

where
̂𝜙1 = ∑𝑇

𝑖=1(𝑃𝑡 − 𝑃)(𝑟𝑡 − 𝑟)
∑𝑇

𝑖=1(𝑟𝑡 − 𝑟)2
. (10.13)

• Next regress 𝑄𝑡 on ̂𝑃𝑡 (with intercept)
Call the estimator of the coefficient on ̂𝑃𝑡 in this regression ̂𝛿2𝑠𝑙𝑠1 where “2sls” stands for

“2-Stage Least Squares”. We have

̂𝛿2𝑠𝑙𝑠1 = ∑𝑇
𝑖=1(𝑄𝑡 −𝑄)( ̂𝑃𝑡 − ̂𝑃 )
∑𝑇

𝑖=1( ̂𝑃𝑡 − ̂𝑃 )2
. (10.14)

This estimator turns out to be identical to ̂𝛿𝑖𝑣1 . Since ̂𝑃𝑡 = ̂𝜙0 + ̂𝜙1𝑟𝑡, we have

̂𝑃𝑡 − ̂𝑃 = ̂𝜙1(𝑟𝑡 − 𝑟) , (10.15)

therefore
̂𝛿2𝑠𝑙𝑠1 =

̂𝜙1 ∑
𝑇
𝑖=1(𝑄𝑡 −𝑄)(𝑟𝑡 − 𝑟)
∑𝑇

𝑖=1( ̂𝑃𝑡 − ̂𝑃 )2
.

Summing (10.15) over all observations gives

𝑇
∑
𝑖=1

( ̂𝑃𝑡 − ̂𝑃 )2 = ̂𝜙2
1

𝑇
∑
𝑡=1

(𝑟𝑡 − 𝑟)2 = ̂𝜙1
𝑇
∑
𝑖=1

(𝑃𝑡 − 𝑃)(𝑟𝑡 − 𝑟)

where we used the expression (10.13) for ̂𝜙1. It follows that

̂𝛿2𝑠𝑙𝑠1 = ∑𝑇
𝑖=1(𝑄𝑡 −𝑄)(𝑟𝑡 − 𝑟)

∑𝑇
𝑖=1(𝑃𝑡 − 𝑃)(𝑟𝑡 − 𝑟)

which is the same expression as ̂𝛿𝑖𝑣1 .
The intuition is as follows. Imagine that we can “shut down” the supply and demand shocks.

Then the demand function does not shift, whereas the supply function shifts as 𝑟𝑡 varies. The
intersection points then map out the demand function, as illustrated below:

r <- rnorm(nsim, 2, 3)
a2 <- 4
plt2 <- ggplot()
for (i in 1:nsim){
qs <- a0 + a1*p + a2*r[i]
qd <- b0 + b1*p
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peq <- (a0-b0)/(b1-a1) + a2*r[i]/(b1-a1)
qeq <- (b0+b1*(a0-b0)/(b1-a1)) + b1*a2*r[i]/(b1-a1)
dat <- data.frame("qs"=qs, "qd"=qd, "p"=p) %>% arrange(p)
plt2 <- plt2 +

geom_line(data=dat, aes(y=qs,x=p), color="gray", alpha=0.4) +
geom_line(data=dat, aes(y=qd,x=p), color="gray", alpha=0.4) +
annotate("point", y=qeq, x=peq, size=2) +
theme_minimal()

}
plt2
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Figure 10.2: Demand and Supply with Variation in Exogenous Variable Only

In other words, movements in 𝑟𝑡 can help to ‘trace out’ the demand function. The problem,
however, is that the “real data” also contains movements due to the demand and supply shocks.
We get around this problem by isolating movements in 𝑃𝑡 that are due to solely to movements
in 𝑟𝑡. This is done in the first stage regression where we regress 𝑃𝑡 on 𝑟𝑡. Since the fitted values
̂𝑃𝑡 is equal to ̂𝜙0 + ̂𝜙1𝑟𝑡, and 𝑟𝑡 is exogenous, so is ̂𝑃𝑡. We get a consistent estimator of 𝛿1 by

regressing 𝑄𝑡 on ̂𝑃𝑡, i.e., by employing only that part of 𝑃𝑡 that is uncorrelated with the demand
and supply shocks.

Although IV estimation gives consistent estimators despite the presence of endogenous re-
gressors, it does so at a cost. Since ̂𝛿𝑖𝑣1 is, in essence, obtained from a regression of 𝑄𝑡 on ̂𝑃𝑡, and
because there is less variation in ̂𝑃𝑡 than in 𝑃𝑡 (why?), there is a reduction in effective variation
in the regressor. This results in an increase in the variance of the estimator as compared to if
we had regressed 𝑄𝑡 on 𝑃𝑡. If 𝑃𝑡 is endogenous, then this would seem to be a good tradeoff,
since the alternative is an inconsistent estimator. However, if the correlation between 𝑃𝑡 and
𝑟𝑡 is weak, the reduction in effective variation will be substantial, and this will result in very
imprecise estimators. This loss of precision has to be weighed against the perceived degree of
endogeneity in the regressor.

IV estimators can behave very poorly if instruments are not valid (in the sense of being poorly
correlated with the endogenous regressors) and if there is some degree of endogeneity. We can
get some intuition for why IV estimators are likely to perform poorly in these circumstances by
referring to Eq. 10.4.
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10.3 Multiple Instruments

We discuss situations where we have multiple endogenous regressor and multiple instruments.
We revert to generic notation for our regressions, and continue to assume a sample of independent
draws of size 𝑁 throughout. We first note that having exogenous and endogenous regressors in
the regression at the same time does not present any particular difficulty.

Suppose the regression equation of interest is:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽1𝑋2,𝑖 + 𝜖𝑖

where 𝑋1,𝑖 is an exogenous regressor (not correlated with the noise term) and 𝑋2,𝑖 is an endoge-
nous regressor (correlated with the noise term). Suppose there is a variable 𝑍1,𝑖 that is correlated
with 𝑋2,𝑖 and uncorrelated with the noise term. Then we have the moment conditions

𝐸[𝜖𝑖] = 𝐸[𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − 𝛽2𝑋2,𝑖] = 0

𝐸[𝜖𝑖𝑋1,𝑖] = 𝐸[(𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − 𝛽2𝑋2,𝑖)𝑋1,𝑖] = 0

𝐸[𝜖𝑖𝑍1,𝑖] = 𝐸[(𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − 𝛽2𝑋2,𝑖)𝑍1,𝑖] = 0 .

(10.16)

The sample analogue of (10.16) is

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑖𝑣
0 − ̂𝛽𝑖𝑣

1 𝑋1,𝑖 − ̂𝛽𝑖𝑣
2 𝑋2,𝑖) = 0

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑖𝑣
0 − ̂𝛽𝑖𝑣

1 𝑋1,𝑖 − ̂𝛽𝑖𝑣
2 𝑋2,𝑖)𝑋1,𝑖 = 0

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑖𝑣
0 − ̂𝛽𝑖𝑣

1 𝑋1,𝑖 − ̂𝛽𝑖𝑣
2 𝑋2,𝑖)𝑍1,𝑖 = 0 .

(10.17)

The IV estimators are those values ̂𝛽𝑖𝑣
0 , ̂𝛽𝑖𝑣

1 and ̂𝛽𝑖𝑣
2 that solve (10.17). Of course, not all three-

equation systems in three unknowns can be solved. The condition that 𝑍1,𝑖 be correlated with
the endogenous regressor is required for the system to be solvable.

What if we have more than one instrument? Suppose we have 𝑍1,𝑖 and 𝑍2,𝑖 that are
not correlated with the regression noise term, but correlated with the endogenous regressor?
(Imagine that there are two exogenous variables that shift the only supply function in our
demand-supply example.) In this case we have more moment equations than parameters:

𝐸[𝜖𝑖] = 𝐸[𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − 𝛽2𝑋2,𝑖] = 0

𝐸[𝜖𝑖𝑋1,𝑖] = 𝐸[(𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − 𝛽2𝑋2,𝑖)𝑋1,𝑖] = 0

𝐸[𝜖𝑖𝑍2,𝑖] = 𝐸[(𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − 𝛽2𝑋2,𝑖)𝑍1,𝑖] = 0

𝐸[𝜖𝑖𝑍3,𝑖] = 𝐸[(𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − 𝛽2𝑋2,𝑖)𝑍2,𝑖] = 0 .

(10.18)
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The sample analogues of the moment conditions are:

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋1,𝑖 − ̂𝛽2𝑋2,𝑖) = 0

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋1,𝑖 − ̂𝛽2𝑋2,𝑖)𝑋1,𝑖 = 0

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋1,𝑖 − ̂𝛽2𝑋2,𝑖)𝑍1,𝑖 = 0

𝑁
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋1,𝑖 − ̂𝛽2𝑋2,𝑖)𝑍2,𝑖 = 0 .

(10.19)

We cannot solve four moment conditions for three parameters, unless the moment conditions
are dependent. However, we can set ̂𝛽0, ̂𝛽1 and ̂𝛽2 so that the values on the left hand side of the
equations in (10.19) are as close to zero as possible, in some sense. For instance, we can set ̂𝛽0,
̂𝛽1 and ̂𝛽2 so that the sum of the square of the four values on the LHS of (10.19) are minimized.

We will label these estimators “MM” (for “Method of Moments”).

At this point, it is easier to switch to matrix algebra. Write

𝑦 =
⎡
⎢
⎢
⎢
⎣

𝑌1
𝑌2
⋮

𝑌𝑁

⎤
⎥
⎥
⎥
⎦

, 𝑋 =
⎡
⎢
⎢
⎢
⎣

1 𝑋1,1 𝑋2,1
1 𝑋1,2 𝑋2,2
⋮ ⋮ ⋮
1 𝑋1,𝑁 𝑋2,𝑁

⎤
⎥
⎥
⎥
⎦

, 𝜀 =
⎡
⎢
⎢
⎢
⎣

𝜖1
𝜖2
⋮
𝜖𝑁

⎤
⎥
⎥
⎥
⎦

, 𝑍 =
⎡
⎢
⎢
⎢
⎣

1 𝑋1,1 𝑍1,1 𝑍2,1
1 𝑋1,2 𝑍1,2 𝑍2,2
⋮ ⋮ ⋮ ⋮
1 𝑋1,𝑁 𝑍1,𝑁 𝑍2,𝑁

⎤
⎥
⎥
⎥
⎦

.

Let 𝑥T
𝑖 = [1 𝑋1,𝑖 𝑋2,𝑖] and 𝑧T

𝑖 = [1 𝑋1,𝑖 𝑍1,𝑖 𝑍2,𝑖]. The regression equation is then

𝑦 = 𝑋𝛽 + 𝜀

or
𝑌𝑖 = 𝑥T

𝑖 𝛽 + 𝜖𝑖 , 𝑖 = 1, 2, ..., 𝑁,

and where

𝛽 = ⎡⎢⎢
⎣

𝛽0
𝛽1
𝛽2

⎤⎥⎥
⎦

.

The population moment conditions in (10.18) can be written as

𝐸[𝑧𝑖(𝑌𝑖 − 𝛽0 − 𝑥T
𝑖 𝛽1)] = 𝐸[𝑧𝑖𝜖𝑖] = 0 .

The sample analogue (10.19) can be written as

𝑍T(𝑦 − 𝑋 ̂𝛽𝑚𝑚) = 𝑍T𝑦 − 𝑍T𝑋 ̂𝛽𝑚𝑚 = 0 .

The “Sum of Squared Moments” is then

(𝑍T𝑦 − 𝑍T𝑋 ̂𝛽𝑚𝑚)T(𝑍T𝑦 − 𝑍T𝑋 ̂𝛽𝑚𝑚) . (10.20)
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Minimizing (10.20), we get
̂𝛽𝑚𝑚 = (𝑋T𝑍𝑍T𝑋)−1𝑋T𝑍𝑍T𝑦 (10.21)

(see exercises) where we assume that 𝑋T𝑍𝑍T𝑋 is invertible. We can also write ̂𝛽𝑚𝑚 as

̂𝛽𝑚𝑚 = (𝑋T𝑍𝑍T𝑋)−1𝑋T𝑍𝑍T(𝑋𝛽 + 𝜀)
= 𝛽 + (𝑋T𝑍𝑍T𝑋)−1𝑋T𝑍𝑍T𝜀
= 𝛽 + [( 1

𝑁𝑋T𝑍)( 1
𝑁𝑍T𝑋)]−1 ( 1

𝑁𝑋T𝑍)( 1
𝑁𝑍T𝜀).

Note that
1
𝑁𝑋T𝑍 = 1

𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑧T
𝑖 , 1

𝑁𝑍T𝜀 = 1
𝑁

𝑁
∑
𝑖=1

𝑧𝑖𝜖𝑖 , etc.

Roughly speaking, ̂𝛽𝑚𝑚 will be consistent if the sample covariances in 1
𝑁 ∑𝑁

𝑖=1 𝑧𝑖𝜖𝑖 converge
in probability to their population counterparts, which are zero if the instruments (the vari-
ables in 𝑍) are exogenous. As with the IV estimator, the MM estimator described here is
biased. Taking conditional expectations (given 𝑋 and 𝑍) of ̂𝛽𝑚𝑚 does not remove the term
(𝑋T𝑍𝑍T𝑋)−1𝑋T𝑍𝑍T𝜀, as we do not have 𝐸[𝜀|𝑋,𝑍] = 0.

If there are as many variables in 𝑍 as there are in 𝑋 (i.e., if we have as many instruments
as endogenous regressors), then 𝑋T𝑍 is square, and assuming that 𝑋T𝑍 is invertible, (10.21)
reduces to

̂𝛽𝑖𝑣 = (𝑍T𝑋)−1𝑍T𝑦 (10.22)

which we refer to as the IV estimator, cf. (10.3).

What if take a two-stage least squares approach? (And how would we do it?) The first stage
regression would be:

1. Regress each endogenous regressor on all of the exogenous variables (exogenous regressors
and instruments). In the context of our specific example (one exogenous regressor 𝑋1,𝑖, one
endogenous regressor 𝑋2,𝑖, and two instruments 𝑍1,𝑖 and 𝑍2,𝑖), this would mean regressing
𝑋2,𝑖 on a constant, 𝑋1,𝑖, 𝑍1,𝑖 and 𝑍2,𝑖, and computing the fitted values

�̂�2,𝑖 = ̂𝜙0 + ̂𝜙1𝑋1,𝑖 + ̂𝜙2𝑍1,𝑖 + ̂𝜙3𝑍2,𝑖.

2. In the second step, replace the endogenous regressors with the fitted endogenous regressors

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽1�̂�2,𝑖 + 𝑢𝑖

and estimate by OLS to get the 2SLS estimators ̂𝛽2𝑠𝑙𝑠
0 , ̂𝛽2𝑠𝑙𝑠

1 and ̂𝛽2𝑠𝑙𝑠
2 .

We can write the two steps above using matrix algebra as follows. In the first step, we
regress 𝑋 on 𝑍 to get the estimator �̂� = (𝑍T𝑍)−1𝑍T𝑋. The fitted values are then �̂� = 𝑍�̂� =
𝑍(𝑍T𝑍)−1𝑍T𝑋. These might seem like odd statements since 𝑋 contains three columns: recall
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that

𝑋 =
⎡
⎢
⎢
⎢
⎣

1 𝑋1,1 𝑋2,1
1 𝑋1,2 𝑋2,2
⋮ ⋮ ⋮
1 𝑋1,𝑁 𝑋2,𝑁

⎤
⎥
⎥
⎥
⎦

and 𝑍 =
⎡
⎢
⎢
⎢
⎣

1 𝑋1,1 𝑍1,1 𝑍2,1
1 𝑋1,2 𝑍1,2 𝑍2,2
⋮ ⋮ ⋮ ⋮
1 𝑋1,𝑁 𝑍1,𝑁 𝑍2,𝑁

⎤
⎥
⎥
⎥
⎦

.

Regressing 𝑋 on 𝑍 means regressing each column of 𝑋 on 𝑍, and the columns of �̂� contain
the estimators from each of these regressions. Likewise, the columns of the fitted matrix �̂�
contain the fitted values from each of the regressions. Regressing a column of ones on 𝑍 simply
returns the column of ones as the fitted values (think about it). Regressing the column of 𝑋1,𝑖
observations on 𝑍 will likewise simply return the column of 𝑋1,𝑖 observations. Regressing the
column of 𝑋2,𝑖 observations on 𝑍 is exactly the first stage regression that we described earlier.

In the second step, we regress 𝑦 on �̂� to get the 2SLS estimator

̂𝛽2𝑠𝑙𝑠 = (�̂�T�̂�)−1�̂�T𝑦
= (𝑋T𝑍(𝑍T𝑍)−1𝑍T𝑍(𝑍T𝑍)−1𝑍T𝑋)−1𝑋T𝑍(𝑍T𝑍)−1𝑍T𝑦
= (𝑋T𝑍(𝑍T𝑍)−1𝑍T𝑋)−1𝑋T𝑍(𝑍T𝑍)−1𝑍T𝑦 .

(10.23)

The 2SLS estimator (10.23) and what we have called the MM estimator are different, but both
are consistent. It is easy to show that if 𝑋 and 𝑍 have the same number of columns (so 𝑋T𝑍
is square) then they both reduce to what we have called the IV estimator.

The formulas derived extend without change to the case where there are 𝐾 exogenous re-
gressors (in addition to the constant), 𝐺 endogenous regressors, and 𝑀 instrumental variables,
where 𝑀 ≥ 𝐺. That is, suppose we are interested in estimating the regression

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑘
1,𝑖 +…𝛽𝐾𝑋𝑘

𝐾,𝑖 + 𝛽𝐾+1𝑋𝑔
𝐾+1,𝑖 +⋯+ 𝛽𝐾+𝐺𝑋𝑔

𝐾+𝐺,𝑖 + 𝜖𝑖
= 𝑥T

𝑖 𝛽 + 𝜖𝑖

where we use the 𝑘 and 𝑔 superscripts to denote the exogenous and endogenous regressors, and
the 𝐾 +𝐺+ 1 vector 𝑥𝑖 is

𝑥T
𝑖 = [1 𝑋𝑘

1,𝑖 … 𝑋𝑘
𝐾,𝑖 𝑋𝑔

𝐾+1,𝑖 … 𝑋𝑔
𝐾+𝐺,𝑖] .

Suppose you are able to find 𝑀 ≥ 𝐺 instruments 𝑍1,𝑖, 𝑍2,𝑖, …, 𝑍𝑀𝑖
. Define the 𝐾 + 𝑀 + 1

vector 𝑧𝑖 as
𝑧T
𝑖 = [1 𝑋𝑘

1,𝑖 … 𝑋𝑘
𝐾,𝑖 𝑍1,𝑖 … 𝑍𝑀,𝑖] .

Let

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑥T
1

𝑥T
2
⋮

𝑥T
𝑁

⎤
⎥
⎥
⎥
⎦

and 𝑍 =
⎡
⎢
⎢
⎢
⎣

𝑧T
1
𝑧T
2
⋮

𝑧T
𝑁

⎤
⎥
⎥
⎥
⎦

.

Then the formulas (10.21), (10.22) and (10.23) for the “Method of Moments”, IV and 2SLS
estimators all continue to apply. The inverses in those formulas must exist, of course. This
requires that the instruments be correlated with the endogenous variables, and also that 𝑀 ≥ 𝐺.
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If 𝑀 = 𝐺, then the formulas all reduce to the IV estimator. If 𝑍 = 𝑋, then the IV estimator is
simply the OLS estimator. If 𝑀 = 𝐺, we say that the regression is just identified. If 𝑀 > 𝐺,
we say that the regression is over-identified.

10.4 Generalized Method of Moments

Finally we define the GMM estimator as those that minimize a weighted sum of squared
moments, i.e.,

̂𝛽𝑔𝑚𝑚
𝑊 = argmin ̂𝛽 𝐽(𝑊𝑁)

where
𝐽(𝑊𝑁) = (𝑍T𝑦 − 𝑍T𝑋 ̂𝛽)T𝑊𝑁(𝑍T𝑦 − 𝑍T𝑋 ̂𝛽)

= 𝑦T𝑍𝑍T𝑦 − 2 ̂𝛽T𝑋T𝑍𝑊𝑁𝑍T𝑦 + ̂𝛽T𝑋T𝑍𝑊𝑁𝑍T𝑋 ̂𝛽
(10.24)

and where 𝑊𝑁 is a symmetric positive-definite matrix of “weights” (the weights may be data
dependent). The resulting estimator depends on the choice of weights, which is the reason for
the subscript 𝑊 in ̂𝛽𝑔𝑚𝑚

𝑊 . Minimizing (10.24), we get

̂𝛽𝑔𝑚𝑚
𝑊 = (𝑋T𝑍𝑊𝑁𝑍T𝑋)−1𝑋T𝑍𝑊𝑁𝑍T𝑦 . (10.25)

To derive the properties of this estimator, we make the following assumptions:

Assumption Set F:

(F1) The equation to be estimated is

𝑌𝑖 = 𝑥T
𝑖 𝛽 + 𝜖𝑖 , 𝑖 = 1, 2, ..., 𝑁

where 𝑥𝑖 is the vector

𝑥T
𝑖 = [1 𝑋𝑘

1,𝑖 … 𝑋𝑘
𝐾,𝑖 𝑋𝑔

𝐾+1,𝑖 … 𝑋𝑔
𝐾+𝐺,𝑖]

and where 𝑋𝑘
1,𝑖,…, 𝑋𝑘

𝐾,𝑖 are 𝐾 variables known to be exogenous, and 𝑋𝑔
𝐾+1,𝑖,…, 𝑋𝑔

𝐾+𝐺,𝑖 are 𝐺
variables thought to be endogenous.

(F2) There are 𝑀 instruments 𝑍1,𝑖, …, 𝑍𝑀,𝑖 such that the vector 𝑧𝑖 defined as

𝑧T
𝑖 = [1 𝑋𝑘

1,𝑖 … 𝑋𝑘
𝐾,𝑖 𝑍1,𝑖 … 𝑍𝑀,𝑖]

has the following properties:

(F3) the ((𝐾 +𝑀 + 1) × (𝐾 +𝐺+ 1)) matrix 𝐸[𝑧𝑖𝑥T
𝑖 ] = Σ𝑧𝑥 has full column rank,

(F4) 𝐸[𝜖𝑖|𝑧𝑖] = 0,
(F5) 𝐸[𝜖2𝑖 𝑧𝑖𝑧T

𝑖 ] = 𝑆 is finite and non-singular.

Furthermore, assume

(F6) the unique random variables in {𝑥𝑖, 𝑧𝑖} are i.i.d., and

(F7) 𝑊𝑁 is chosen such that 𝑊𝑁 →𝑝 𝑊 symmetric and positive-definite.
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Let 𝑋 and 𝑍 be as previously defined. The estimator (10.25) is consistent:

̂𝛽𝑔𝑚𝑚
𝑊 = (𝑋T𝑍𝑊𝑁𝑍T𝑋)−1𝑋T𝑍𝑊𝑁𝑍T𝑦

= 𝛽 + (𝑋T𝑍𝑊𝑁𝑍T𝑋)−1𝑋T𝑍𝑊𝑁𝑍T𝜀
= 𝛽 + [( 1

𝑁𝑋T𝑍)𝑊𝑁( 1
𝑁𝑍T𝑋)]−1( 1

𝑁𝑋T𝑍)𝑊𝑁( 1
𝑁𝑍T𝜀)

→𝑝 𝛽 + (ΣT
𝑧𝑥𝑊Σ𝑧𝑥)−1ΣT

𝑧𝑥𝑊0
= 𝛽

since under our assumptions

1
𝑁 𝑍T𝑋 = 1

𝑁
𝑁
∑
𝑖=1

𝑧𝑖𝑥T
𝑖 →𝑝 Σ𝑧𝑥

and
1
𝑁 𝑍T𝜖 = 1

𝑁
𝑁
∑
𝑖=1

𝑧𝑖𝜖𝑖 →𝑝 0.

Furthermore,
√
𝑁( ̂𝛽𝑔𝑚𝑚

𝑊 − 𝛽) = [( 1
𝑁𝑋T𝑍)𝑊𝑁( 1

𝑁𝑍T𝑋)]−1( 1
𝑁𝑋T𝑍)𝑊𝑁( 1√

𝑁𝑍T𝜀)
→𝑑 Normal(0, (ΣT

𝑧𝑥𝑊Σ𝑧𝑥)−1ΣT
𝑧𝑥𝑊𝑆𝑊Σ𝑧𝑥(ΣT

𝑧𝑥𝑊Σ𝑧𝑥)−1)

since under our assumptions,
1√
𝑁

𝑍T𝜀 →𝑑 Normal(0, 𝑆) .

The asymptotic variance of the GMM estimator is

avar[ ̂𝛽𝑔𝑚𝑚
𝑊 ] = (ΣT

𝑧𝑥𝑊Σ𝑧𝑥)−1ΣT
𝑧𝑥𝑊𝑆𝑊Σ𝑧𝑥(ΣT

𝑧𝑥𝑊Σ𝑧𝑥)−1 . (10.26)

We approximate the finite sample variance of ̂𝛽𝑔𝑚𝑚
𝑊 by

𝑣𝑎𝑟[ ̂𝛽𝑔𝑚𝑚
𝑊 ] ≈ 1

𝑁 (ΣT
𝑧𝑥𝑊Σ𝑧𝑥)−1ΣT

𝑧𝑥𝑊𝑆𝑊Σ𝑧𝑥(ΣT
𝑧𝑥𝑊Σ𝑧𝑥)−1)

To operationalize this estimator, we need to estimate the various elements in the formula for
𝑣𝑎𝑟[ ̂𝛽𝑔𝑚𝑚

𝑊 ]. Assume for the moment that we know 𝑊 . For Σ𝑧𝑥 we can use

Σ̂𝑧𝑥 = 1
𝑁

𝑁
∑
𝑖=1

𝑧𝑖𝑥T
𝑖 = 1

𝑁 𝑍T𝑋.

For 𝑆 we can use
̂𝑆 = 1

𝑁
𝑁
∑
𝑖=1

̂𝜖2𝑖 𝑧𝑖𝑧T
𝑖 .
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In other words, we can estimate the variance of ̂𝛽𝑔𝑚𝑚
𝑊 with

𝑣𝑎𝑟[ ̂𝛽𝑔𝑚𝑚
𝑊 ] = 1

𝑁 (Σ̂T
𝑧𝑥𝑊Σ̂𝑧𝑥)−1Σ̂T

𝑧𝑥𝑊 ̂𝑆𝑊Σ̂𝑧𝑥(Σ̂T
𝑧𝑥𝑊Σ̂𝑧𝑥)−1

= (𝑋T𝑍𝑊𝑍T𝑋)−1𝑋T𝑍𝑊 [
𝑁
∑
𝑖=1

̂𝜖2𝑖 𝑧𝑖𝑧T
𝑖 ]𝑊𝑍T𝑋(𝑋T𝑍𝑊𝑍T𝑋)−1

(10.27)

This variance estimator is heteroskedasticity-robust.
Remarks:
1. In the just-identified case, the GMM estimator reduces to the IV estimator regardless of

𝑊𝑁 :
̂𝛽𝑔𝑚𝑚
𝑊 = (𝑋T𝑍𝑊𝑁𝑍T𝑋)−1𝑋T𝑍𝑊𝑁𝑍T𝑦

= (𝑍T𝑋)−1𝑍T𝑦
= ̂𝛽𝑖𝑣 .

(10.28)

The asymptotic variance (10.26) becomes

avar[ ̂𝛽𝑖𝑣] = Σ−1
𝑧𝑥𝑆(ΣT

𝑧𝑥)−1 .

The variance estimator (10.27) becomes

𝑣𝑎𝑟[ ̂𝛽𝑖𝑣] = (𝑍T𝑋)−1 [
𝑁
∑
𝑖=1

̂𝜖2𝑖 𝑧𝑖𝑧T
𝑖 ] (𝑋T𝑍)−1 .

2. If we choose 𝑊𝑁 = 𝐼 , the identity matrix, then

̂𝛽𝑔𝑚𝑚
𝐼 = (𝑋T𝑍𝑊𝑁𝑍T𝑋)−1𝑋T𝑍𝑊𝑁𝑍T𝑦

= (𝑋T𝑍𝑍T𝑋)−1𝑋T𝑍𝑍T𝑦
= ̂𝛽𝑚𝑚,

the “MM” estimator presented earlier. The variance estimator (10.27) becomes

𝑣𝑎𝑟[ ̂𝛽𝑚𝑚] = (𝑋T𝑍𝑍T𝑋)−1𝑋T𝑍 [
𝑁
∑
𝑖=1

̂𝜖2𝑖 𝑧𝑖𝑧T
𝑖 ]𝑍T𝑋(𝑋T𝑍𝑍T𝑋)−1 . (10.29)

3. If we choose 𝑊𝑁 = ((1/𝑁)𝑍T𝑍)−1, then the GMM estimator becomes the 2SLS estimator:

̂𝛽𝑔𝑚𝑚
(𝑍T𝑍)−1 = (𝑋T𝑍𝑊𝑁𝑍T𝑋)−1𝑋T𝑍𝑊𝑁𝑍T𝑦

= (𝑋T𝑍(𝑍T𝑍)−1𝑍T𝑋)−1𝑋T𝑍(𝑍T𝑍)−1𝑍T𝑦
= ̂𝛽2𝑠𝑙𝑠.

Since [(1/𝑁)𝑍T𝑍]−1 →𝑝 Σ−1
𝑧𝑧 , the asymptotic variance of the GMM estimator becomes

avar[ ̂𝛽2𝑠𝑙𝑠] = (ΣT
𝑧𝑥Σ−1

𝑧𝑧 Σ𝑧𝑥)−1ΣT
𝑧𝑥Σ−1

𝑧𝑧 𝑆Σ−1
𝑧𝑧 Σ𝑧𝑥(ΣT

𝑧𝑥Σ−1
𝑧𝑧 Σ𝑧𝑥)−1 . (10.30)

where Σ𝑧𝑧 = 𝐸[𝑧𝑖𝑧T
𝑖 ].
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Note that expression (10.30) allows for conditional heteroskedasticity, but if there is condi-
tional homoskedasticity, then

𝑆 = 𝐸[𝜖2𝑖 𝑧𝑖𝑧T
𝑖 ] = 𝐸[𝐸[𝜖2𝑖 𝑧𝑖𝑧T

𝑖 |𝑧𝑖]] = 𝐸[𝐸[𝜖2𝑖 |𝑧𝑖]𝑧𝑖𝑧T
𝑖 ] = 𝜎2𝐸[𝑧𝑖𝑧T

𝑖 ]] = 𝜎2Σ𝑧𝑧

and the asymptotic variance reduces to

avar[ ̂𝛽2𝑠𝑙𝑠] = 𝜎2(ΣT
𝑧𝑥Σ−1

𝑧𝑧 Σ𝑧𝑥)−1 . (10.31)

We can estimate the estimator variance by

𝑣𝑎𝑟[ ̂𝛽2𝑠𝑙𝑠] = 𝜎2(𝑋T𝑍(𝑍T𝑍)−1𝑍T𝑋)−1.

where 𝜎2 is some consistent estimator for 𝜎2.

10.4.1 Optimal GMM

It turns out that the (asymptotically) optimal weight is to choose 𝑊𝑁 such that 𝑊𝑁 →𝑝 𝑆−1.
This is because the asymptotic variance of ̂𝛽𝑔𝑚𝑚 then becomes

avar[ ̂𝛽𝑔𝑚𝑚] = (ΣT
𝑧𝑥𝑊Σ𝑧𝑥)−1ΣT

𝑧𝑥𝑊𝑆𝑊Σ𝑧𝑥(ΣT
𝑧𝑥𝑊Σ𝑧𝑥)−1)

= (ΣT
𝑧𝑥𝑆−1Σ𝑧𝑥)−1

and it can be shown that

(ΣT
𝑧𝑥𝑊Σ𝑧𝑥)−1ΣT

𝑧𝑥𝑊𝑆𝑊Σ𝑧𝑥(ΣT
𝑧𝑥𝑊Σ𝑧𝑥)−1) − (ΣT

𝑧𝑥𝑆−1Σ𝑧𝑥)−1 (10.32)

is positive definite for any symmetric positive definite 𝑊 . A natural weight matrix to choose is
therefore

𝑊𝑁 = ̂𝑆−1 = [ 1
𝑁

𝑁
∑
𝑖=1

̂𝜖𝑖
2𝑧𝑖𝑧T

𝑖 ]
−1

.

The problem with this is that we need to have the residuals ̂𝜖𝑖 in order to compute ̂𝑆−1, but
we need an estimator of 𝛽 in order to compute the residuals. One solution is to take a two-step
approach:

• Compute ̂𝛽𝑔𝑚𝑚
𝑊 for some (non-optimal) weighting matrix 𝑊𝑁 . A common choice is to use

𝑊𝑁 = ((1/𝑁)𝑍T𝑍)−1, which gives the (inefficient but consistent) 2SLS estimator ̂𝛽2𝑠𝑙𝑠.
Then calculate ̂𝑆−1 using the residuals

̂𝜖𝑖 = 𝑌𝑖 − 𝑥T
𝑖 ̂𝛽2𝑠𝑙𝑠 .

• Calculate the optimal GMM estimator as

̂𝛽𝑔𝑚𝑚 = (𝑋T𝑍 ̂𝑆−1𝑍T𝑋)−1𝑋T𝑍 ̂𝑆−1𝑍T𝑦.
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The asymptotic variance of the Optimal GMM estimator is

avar[ ̂𝛽𝑔𝑚𝑚] = (ΣT
𝑧𝑥𝑆−1Σ𝑧𝑥)−1 . (10.33)

The variance estimator becomes

𝑣𝑎𝑟[ ̂𝛽𝑔𝑚𝑚] = 1
𝑁

⎧{
⎨{⎩
( 1

𝑁
𝑁
∑
𝑖=1

𝑧𝑖𝑥T
𝑖 )

T

[ 1
𝑁

𝑁
∑
𝑖=1

̂𝜖𝑖
2𝑧𝑖𝑧T

𝑖 ]
−1

( 1
𝑁

𝑁
∑
𝑖=1

𝑧𝑖𝑥T
𝑖 )

⎫}
⎬}⎭

−1

=
⎧{
⎨{⎩
𝑋T𝑍 [

𝑁
∑
𝑖=1

̂𝜖𝑖2𝑧𝑖𝑧T
𝑖 ]

−1

𝑍T𝑋
⎫}
⎬}⎭

−1

.

(10.34)

Notice that the asymptotic variance of the optimal GMM estimator under conditional ho-
moskedasticity becomes

avar[ ̂𝛽𝑔𝑚𝑚] = 𝜎2(ΣT
𝑧𝑥Σ−1

𝑧𝑧 Σ𝑧𝑥)−1

which is the same as the asymptotic variance of the 2SLS estimator under conditional ho-
moskedasticity. This says that 2SLS is efficient under conditional homoskedasticity. The 2SLS
estimator and the two-step implementation of optimal GMM are not numerically identical, but
they are both efficient.

Example 10.1. We estimate the equation

log(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) = 𝛽0 + 𝛽1𝑠𝑖 + 𝛽2𝑤𝑒𝑥𝑝𝑖 + 𝜖𝑖

using data in earnings.xlsx. The variable 𝑠𝑖 is years of schooling and 𝑤𝑒𝑥𝑝𝑖 is work experience.
It is thought that years of schooling may be endogenous because of omitted unobserved factors
(e.g., ability). We will use parents’ years of schooling 𝑠𝑚𝑖 and 𝑠𝑓𝑖 as instruments. We use only
the “females observations” in our data set. First we show the OLS results (with robust standard
errors).

df <- read_excel("data\\earnings.xlsx")
df_f <- df %>% filter(male==0)
mdl_ols <- lm(log(earnings)~s+wexp, data=df_f)
lmtest::coeftest(mdl_ols, vcov.=sandwich::vcovHC(mdl_ols, type='HC2'))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7144138 0.2024091 3.5296 0.00049 ***
s 0.1091864 0.0133491 8.1793 1.168e-14 ***
wexp 0.0264365 0.0052837 5.0034 1.023e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The following code contain functions for computing 2SLS and GMM estimators:

# Function to computes the general GMM estimator (with user defined weight W)
gmm <- function(y,X,Z,W){

N <- length(y)
ZX <- t(Z)%*%X
Zy <- t(Z)%*%y
invXZWZX <- solve(t(ZX)%*%W%*%ZX)
# Calculate Estimator
b_gmm <- invXZWZX%*%t(ZX)%*%W%*%Zy
# Calculate Estimator Variance
ehat <- y - X%*%b_gmm
s2 <- (1/N)*sum(ehat^2)
hatS <- 0
for (i in 1:N){

zi <- as.matrix(Z[i,])
hatS <- hatS + ehat[i]^2 * zi%*%t(zi)

}
b_gmm_var <- invXZWZX%*%t(ZX)%*%W%*%hatS%*%W%*%ZX%*%invXZWZX
b_gmm_se <- sqrt(diag(b_gmm_var))
result <- list("bhat"=t(b_gmm), "bhatse"=b_gmm_se, "bhatvar"=b_gmm_var)

}
# The following function computes the Optimal GMM estimator (two-step approach)
gmm_opt <- function(y,X,Z,initW){

N <- length(y)
ZX <- t(Z)%*%X
Zy <- t(Z)%*%y
# Get an estimator for hatS

invXZWZX <- solve(t(ZX)%*%initW%*%ZX)
b_tsls <- invXZWZX%*%t(ZX)%*%initW%*%Zy
ehat <- y - X%*%b_tsls
hatS <- 0
for (i in 1:N){

zi <- as.matrix(Z[i,])
hatS <- hatS + ehat[i]^2 * zi%*%t(zi)

}
invhatS <- solve(hatS)
# Calculate Optimum GMM
b_gmm_opt <- solve(t(ZX)%*%invhatS%*%ZX)%*%t(ZX)%*%invhatS%*%Zy
# Update hatS and calculate GMM variance
ehatgmm <- y - X%*%b_gmm_opt
hatSgmm <- 0
for (i in 1:N){

zi <- as.matrix(Z[i,])
hatSgmm <- hatSgmm + ehatgmm[i]^2 * zi%*%t(zi)

}
invhatSgmm <- solve(hatSgmm)
b_gmm_var <- solve(t(ZX)%*%invhatSgmm%*%ZX)
b_gmm_se <- sqrt(diag(b_gmm_var))
result <- list("bhat"=t(b_gmm_opt), "bhatse"=b_gmm_se,

"bhatvar"=b_gmm_var, "hatS"= hatS)
}
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The 2SLS estimate of our regression equation is:

## Main body of program
y <- log(df_f$earnings); yname <- "log(earnings)"
N <- length(y)
X <- as.matrix(data.frame("cons"=rep(1,N), "s"=df_f$s, "wexp"=df_f$wexp))
Z <- as.matrix(data.frame("cons"=rep(1,N), "wexp"=df_f$wexp, "sf"=df_f$sf, "sm"=df_f$sm))
W <- solve(t(Z)%*%Z)

#TSLS
mdl_2sls <- gmm(y,X,Z,W)
rslts.tsls <- rbind(mdl_2sls$bhat,mdl_2sls$bhatse)
rownames(rslts.tsls)<-c("Est.","S.E.")
cat("Method: TSLS\nDep Var:", yname, "\nInstruments:", colnames(Z), "\n")
rslts.tsls

Method: TSLS
Dep Var: log(earnings)
Instruments: cons wexp sf sm

cons s wexp
Est. 0.2737045 0.1403965 0.027413246
S.E. 0.4329824 0.0306525 0.005349077

The GMM estimate of our regression equation is:

# GMM
mdl_gmm <- gmm_opt(y,X,Z,W)
rslts.gmm <- rbind(mdl_gmm$bhat,mdl_gmm$bhatse)
rownames(rslts.gmm)<-c("Est.","S.E.")
cat("Method: GMM\nDep Var:", yname, "\nInstruments:", colnames(Z), "\n")
rslts.gmm

Method: GMM
Dep Var: log(earnings)
Instruments: cons wexp sf sm

cons s wexp
Est. 0.2640190 0.14124994 0.027482277
S.E. 0.4336357 0.03068906 0.005353824

The 2SLS and GMM estimates are very similar. Both 2SLS and GMM estimates of the
coefficient on 𝑠𝑖 are larger than the corresponding OLS estimate.

10.4.2 Hypothesis Testing after GMM

Testing Linear Restrictions

We can do the usual t- and F-tests after GMM estimation. Since the F-statistic is the square
of the t-statistic when testing single hypotheses, we focus on the F-statistic. Furthermore, we
will use the asymptotic version (the chi-sq version), usually called the “Wald Test”. To (jointly)
test the 𝐽 hypotheses 𝐻0 ∶ 𝑅𝛽 = 𝑟 where 𝑅 is a 𝐽 × (𝐾 + 1) matrix and 𝑟 is (𝐾 + 1) × 1, the



234CHAPTER 10. INSTRUMENTAL VARIABLES AND GENERALIZED METHOD OF MOMENTS

statistic is
𝑊 = (𝑅 ̂𝛽𝑔𝑚𝑚 − 𝑟)T(𝑅 ̂𝑣𝑎𝑟[ ̂𝛽𝑔𝑚𝑚]𝑅T)−1(𝑅 ̂𝛽𝑔𝑚𝑚 − 𝑟) ∼𝑎 𝜒2

(𝐽)

We continue with Example 10.1. There we estimated the regression

log(𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖) = 𝛽0 + 𝛽1𝑠𝑖 + 𝛽2𝑤𝑒𝑥𝑝𝑖 + 𝜖𝑖 ,

using GMM with 𝑤𝑒𝑥𝑝𝑖, 𝑠𝑚𝑖 and 𝑠𝑓𝑖 as instruments. We test 𝐻0 ∶ 𝛽1 = 𝛽2 = 0 versus the
alternative that one or both of these restrictions do not hold.

R = matrix(c(0,1,0,0,0,1), nrow=2, byrow=TRUE)
r = matrix(c(0,0), ncol=1)
b = matrix(mdl_gmm$bhat, ncol=1)
V = as.matrix(mdl_gmm$bhatvar)
F_stat = t(R%*%b-r)%*%solve(R%*%V%*%t(R))%*%(R%*%b-r)
cat("F:",F_stat,", p-value:", 1-pchisq(F_stat,nrow(R)))

F: 41.75286 , p-value: 8.579873e-10

Now we test 𝐻0 ∶ 𝛽1 = 0.1

R = matrix(c(0,1,0), nrow=1, byrow=TRUE)
r = matrix(c(0.1), ncol=1)
b = matrix(mdl_gmm$bhat, ncol=1)
V = as.matrix(mdl_gmm$bhatvar)
F_stat = t(R%*%b-r)%*%solve(R%*%V%*%t(R))%*%(R%*%b-r)
cat("F:",F_stat,", p-value:", 1-pchisq(F_stat,nrow(R)))

F: 1.806672 , p-value: 0.1789079

Testing for Weak Instruments

We have mentioned that weak instruments (those that are poorly correlated with the endogenous
regressors) will result in estimators with poor finite sample properties (high variance, possibly
large finite sample biases). To check for weak instruments, we run the “first stage regression”
(as though doing 2SLS manually), i.e., we regress the endogenous regressor on all of the ex-
ogenous variables (both those included in regression, as well as all the instruments), and test
for significance of the instruments in the first stage regression. Research has shown that the
F-statistic should be large (on the order of 20 or so) for GMM esitmators to have good finite
sample properties.

Example 10.2. The “First Stage Regression” in Example 10.1 is

𝑠𝑖 = 𝛿0 + 𝛿1𝑤𝑒𝑥𝑝𝑖 + 𝛿2𝑠𝑚𝑖 + 𝛿3𝑠𝑓𝑖

and the hypothesis of invalid instrument is 𝐻0 ∶ 𝛿2 = 𝛿3 = 0.
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## First Stage
mdl_firststage <- lm(s~wexp+sm+sf,data=df_f)
car::linearHypothesis(mdl_firststage, c('sm=0','sf=0'),

vcov=sandwich::vcovHC(mdl_firststage,type="HC1"))

Linear hypothesis test

Hypothesis:
sm = 0
sf = 0

Model 1: restricted model
Model 2: s ~ wexp + sm + sf

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 268
2 266 2 26.325 3.703e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It appears that 𝑠𝑚𝑖 and 𝑠𝑓𝑖 are valid instruments.

Tests of Overidentifying Restrictions

Recall the GMM objective function

𝐽(𝑊𝑁) = (𝑍T𝑦 − 𝑍T𝑋 ̂𝛽)T𝑊𝑁(𝑍T𝑦 − 𝑍T𝑋 ̂𝛽)

and the general GMM estimator

̂𝛽𝑔𝑚𝑚
𝑊 = (𝑋T𝑍𝑊𝑁𝑍T𝑋)−1𝑋T𝑍𝑊𝑁𝑍T𝑦 .

Recall also that the matrix 𝑍T𝑋 is square in the just-identified case, and if it is invertible, then
̂𝛽𝑔𝑚𝑚
𝑊 reduces to ̂𝛽𝑔𝑚𝑚

𝑊 = (𝑍T𝑋)−1𝑍T𝑦. In that case, we have

𝐽(𝑊𝑁) = (𝑍T𝑦 − 𝑍T𝑋 ̂𝛽)T𝑊𝑁(𝑍T𝑦 − 𝑍T𝑋 ̂𝛽) = 0

since
𝑍T𝑦 − 𝑍T𝑋 ̂𝛽 = 𝑍T𝑦 − 𝑍T𝑋(𝑍T𝑋)−1𝑍T𝑦 = 0 .

In the over-identified case, 𝐽(𝑊𝑁) will generally be greater than zero. However, if the moment
conditions hold, then the sample moments should hold approximately, and 𝐽(𝑊𝑁) will be close
to zero. It can be shown that if 𝑊𝑁 is chosen optimally, then under the null that all mo-
ment conditions hold, i.e., that all the presumed exogenous regressors and instruments in fact
exogenous, we have

𝐽 ∼𝑎 𝜒2
(𝑀−𝐺)
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where 𝑀−𝐺 is the number of “overidentifying restriction”, i.e., the number of excess instruments.
This is the “Test of Overidentifying Restrictions”, and significant a 𝐽 statistic indicates that one
or more of the moment conditions do not hold: perhaps one (or more) of the presumed included
exogenous regressors is actually endogenous, or one of the instruments is not exogenous, or some
combination of these situations.

Example 10.3. We continue with Example 10.1. We have an overidentified situation (with one
excess instrument), so we can carry out the Test of Overidentified Restrictions.

# This function calculates the J statistic
gmm_overid <- function(y,X,Z,W,bhat){
ZX <- t(Z)%*%X
Zy <- t(Z)%*%y
J <- t(Zy - ZX%*%bhat)%*%W%*%(Zy - ZX%*%bhat)
Jpval <- 1-pchisq(J,ncol(Z)-ncol(X))
result <- list("J"=J, "J-pval"=Jpval)

}
Jtest <- gmm_overid(y,X,Z,solve(mdl_gmm$hatS), matrix(mdl_gmm$bhat, ncol=1))
cat("J:", Jtest$J, " p-value:", Jtest$`J-pval`)

J: 0.4940986 p-value: 0.4821047

The J-statistic does not indicate any misspecification.

Testing Endogeneity

If all of the endogenous variables can be treated as exogenous, then OLS is the preferred esti-
mation method, since it is more efficient than GMM. If we have valid instruments, we can test
if one or more (or all) of the endogenous regressors can be treated as exogenous. Suppose our
regression 𝑌𝑖 = 𝑥T

𝑖 𝛽 + 𝜖𝑖 contains the following regressors

𝑥T
𝑖 = [1 𝑋𝑘

1,𝑖 … 𝑋𝑘
𝐾,𝑖 𝑋𝑔

𝐾+1,𝑖 … 𝑋𝑔
𝐾+𝐺,𝑖]

and where 𝑋𝑘
1,𝑖,…, 𝑋𝑘

𝐾,𝑖 are 𝐾 variables thought to be exogenous, and 𝑋𝑔
𝐾+1,𝑖,…, 𝑋𝑔

𝐾+𝐺,𝑖 are 𝐺
variables thought to be endogenous. Suppose we have the 𝑀 instruments 𝑍1,𝑖, …, 𝑍𝑀,𝑖. The
vector 𝑧𝑖 is

𝑧T
𝑖 = [1 𝑋𝑘

1,𝑖 … 𝑋𝑘
𝐾,𝑖 𝑍1,𝑖 … 𝑍𝑀,𝑖] .

Suppose that in fact all the variables in 𝑧𝑖 are exogenous, so the population moment conditions
𝐸[𝑧T

𝑖 𝜖𝑖] = 0 hold. Now suppose we wish to ask if some of the presumed endogenous variables
can be treated as exogenous. If, say, the variable 𝑋𝑔

𝐾+1,𝑖 is in fact exogenous, then we can add
it to the vector 𝑧𝑖, i.e., the vector 𝑧𝑖 becomes

̃𝑧T
𝑖 = [1 𝑋𝑘

1,𝑖 … 𝑋𝑘
𝐾,𝑖 𝑋𝑔

𝐾+1,𝑖 𝑍1,𝑖 … 𝑍𝑀,𝑖]

and the population moment conditions become 𝐸[ ̃𝑧T
𝑖 𝜖𝑖] = 0.

Consider estimating the regression equation once using 𝑧𝑖 as instruments, and another time
with ̃𝑧𝑖 as instruments. Let 𝐽𝑧 and 𝐽 ̃𝑧 be the respective 𝐽 -statistics. If in fact 𝑋𝑔

𝐾+1,𝑖 is
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exogenous, both 𝐽 -statistics should be close in value, with 𝐽 ̃𝑧 larger than 𝐽𝑧 (since more moment
conditions are involved when using ̃𝑧𝑖). If 𝑋𝑔

𝐾+1,𝑖 is not exogenous, then we can expect the
difference between 𝐽𝑧 and 𝐽 ̃𝑧 to be significant. Under the null that 𝑋𝑔

𝐾+1,𝑖 is exogenous, the
difference-in-𝐽 statistic (which we denote by “𝐶”) will be approximately 𝜒2

(𝑄) where 𝑄 is the
number of additional moments being tested (in our example, 𝑄 = 1).

𝐶 = 𝐽 ̃𝑧 − 𝐽𝑧 ∼𝑎 𝜒2
𝑄 .

We refer to this test as a test for endogeneity. One minor complication of this is that in order
to ensure that 𝐶 > 0, the ̂𝑆 used in the computation of 𝐽𝑧 has to be the submatrix of the ̂𝑆
used to compute 𝐽 ̃𝑧, with the selected rows/columns corresponding to the variables in 𝑧𝑖.

Example 10.4. We continue with Example 10.1 and test if 𝑠𝑖 can be treated as exogenous.

# C-Statistic, checking if "s" is endogenous

#-- Z when "s" is exogenous
Zr <- as.matrix(data.frame("cons"=rep(1,N), "wexp"=df_f$wexp,

"sf"=df_f$sf, "sm"=df_f$sm, "s"=df_f$s))
Wr <- solve(t(Zr)%*%Zr)
mdla <- gmm_opt(y,X,Zr,Wr)
mdla_Jstat <- gmm_overid(y,X,Zr,solve(mdla$hatS),t(mdla$bhat))
subhatS <- mdla$hatS[1:4,1:4] # Get appropriate submatrix
mdlb <- gmm(y,X,Z,solve(subhatS))
mdlb_Jstat <- gmm_overid(y,X,Z,solve(subhatS),t(mdlb$bhat))

C_stat <- mdla_Jstat$J - mdlb_Jstat$J
cat("C:",C_stat,", p-value:", 1-pchisq(C_stat,ncol(Zr)-ncol(Z)))

C: 1.467645 , p-value: 0.2257176
We do not reject the null that 𝑠𝑖 is exogenous, suggesting that perhaps we could have just

used OLS in the first place. The GMM estimator, although less precise, is nonetheless consistent,
and does increase the coefficient on 𝑠𝑖 substantially, which is in agreement with our view that
there is an omitted variable problem in this application. The regressor 𝑠𝑖 is significant in both
GMM and OLS regressions; the issue is in the magniture of the coefficient on 𝑠𝑖.

10.4.3 GMM Estimation in Stata

Finally, we verify all of the computations above using STATA.

import excel "data\earnings.xlsx", sheet("earnings") firstrow
gen ln_earn = ln(earnings)
regress ln_earn wexp s if male==0, vce(hc2)
ivregress 2sls ln_earn wexp (s = sf sm) if male==0
ivregress gmm ln_earn wexp (s = sf sm) if male==0, wmatrix(robust)
estat firststage
estat overid
estat endog
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. import excel "data\earnings.xlsx", sheet("earnings") first(14 vars, 540 obs)

. gen ln_earn = ln(earnings)

. regress ln_earn wexp s if male==0, vce(hc2)

Linear regression Number of obs = 270
F(2, 267) = 43.63
Prob > F = 0.0000
R-squared = 0.2538
Root MSE = .46837

------------------------------------------------------------------------------
| Robust HC2

ln_earn | Coefficient std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------

wexp | .0264365 .0052837 5.00 0.000 .0160334 .0368397
s | .1091864 .0133491 8.18 0.000 .0829035 .1354692

_cons | .7144138 .2024091 3.53 0.000 .3158928 1.112935
------------------------------------------------------------------------------

. ivregress 2sls ln_earn wexp (s = sf sm) if male==0

Instrumental variables 2SLS regression Number of obs = 270
Wald chi2(2) = 36.94
Prob > chi2 = 0.0000
R-squared = 0.2363
Root MSE = .4712

------------------------------------------------------------------------------
ln_earn | Coefficient Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
s | .1403965 .0292065 4.81 0.000 .0831529 .1976402

wexp | .0274132 .006257 4.38 0.000 .0151497 .0396768
_cons | .2737045 .4250067 0.64 0.520 -.5592932 1.106702

------------------------------------------------------------------------------
Endogenous: s
Exogenous: wexp sf sm

. ivregress gmm ln_earn wexp (s = sf sm) if male==0, wmatrix(robust)

Instrumental variables GMM regression Number of obs = 270
Wald chi2(2) = 41.75
Prob > chi2 = 0.0000
R-squared = 0.2353

GMM weight matrix: Robust Root MSE = .47151
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------------------------------------------------------------------------------
| Robust

ln_earn | Coefficient std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------

s | .1412499 .0306891 4.60 0.000 .0811005 .2013994
wexp | .0274823 .0053538 5.13 0.000 .016989 .0379756
_cons | .2640191 .4336357 0.61 0.543 -.5858913 1.113929

------------------------------------------------------------------------------
Endogenous: s
Exogenous: wexp sf sm

. estat firststage

First-stage regression summary statistics
--------------------------------------------------------------------------

| Adjusted Partial Robust
Variable | R-sq. R-sq. R-sq. F(2,266) Prob > F

-------------+------------------------------------------------------------
s | 0.1874 0.1782 0.1841 26.3249 0.0000

--------------------------------------------------------------------------

. estat overid

Test of overidentifying restriction:

Hansen's J chi2(1) = .494099 (p = 0.4821)

. estat endog

Test of endogeneity (orthogonality conditions)
H0: Variables are exogenous

GMM C statistic chi2(1) = 1.46765 (p = 0.2257)

10.5 Exercises

Exercise 10.1. Let
𝑌𝑖 = 𝛿0 + 𝛿1𝑋𝑖 + 𝜖𝑖

= 𝛿0 + 𝛿1(�̂�𝑖 + ̂𝑣𝑖) + 𝜖𝑖
= 𝛿0 + 𝛿1�̂�𝑖 + 𝑢𝑖

where 𝑢𝑖 = 𝛿1 ̂𝑣𝑖 + 𝜖𝑖, and where �̂�𝑖 are the OLS fitted values from a regression of 𝑋𝑖 on the
(valid) instrument 𝑍𝑖, i.e.,

�̂�𝑖 = ̂𝜙0 + ̂𝜙1𝑍𝑖 , ̂𝜙1 = ∑𝑁
𝑖=1(𝑍𝑖 − 𝑍)(𝑋𝑖 −𝑋)
∑𝑁

𝑖=1(𝑍𝑖 − 𝑍)2
, ̂𝜙0 = 𝑋 − ̂𝜙1𝑍 .
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Assume the data {𝑋𝑖, 𝑌𝑖, 𝑍𝑖}𝑁𝑖=1 are iid. Show that

𝑣𝑎𝑟[ ̂𝛿1|x, z] =
𝜎2
𝑢

𝑅2𝑥𝑧 ∑
𝑁
𝑖=1(𝑋𝑖 −𝑋)2

where 𝑅𝑧
𝑥𝑧 is the 𝑅2 from the regression of 𝑋𝑖 on 𝑍𝑖. Explain why an instrument that is poorly

correlated with 𝑋𝑖 results in an imprecise estimator.

Exercise 10.2. Show that the estimator (10.21) minimizes the sum of squared moments (10.20).
Show that (10.21) reduces to the IV estimator (10.22) if 𝑋 and 𝑍 have the same number of
columns.

Exercise 10.3. Show that the 2SLS estimator (10.23) reduces to the IV estimator (10.22) if 𝑋
and 𝑍 have the same number of columns.

Exercise 10.4. Show that the GMM estimator (10.25) minimizes the “weighted sum of squared
moments” (10.24). Show that (10.25) reduces the IV estimator (10.22) if 𝑋 and 𝑍 have the same
number of columns, regardless of the choice of weighting matrix 𝑊𝑁 .

Exercise 10.5. Show that (10.32) is positive definite by showing that it can be written as
𝐴𝑆𝐴T where

𝐴 = (ΣT
𝑧𝑥𝑊Σ𝑧𝑥)−1ΣT

𝑧𝑥𝑊 − (ΣT
𝑧𝑥𝑆−1Σ𝑧𝑥)−1ΣT

𝑧𝑥𝑆−1 .



Chapter 11
Introduction to Time Series Regressions

Time series data are observations of variables made repeatedly over time, often at regular inter-
vals (annually, quarterly, monthly, daily,…). The main issue with regressions with time series
data is that the observations generally cannot be thought of as independent draws from a pop-
ulation. As you will see as this chapter progresses, the presence of intertemporal correlations,
trends and other features can lead to a wide range of problems in regression analysis, if not
properly addressed.

We use the following packages in this chapter, plus a few others.

library(fpp3);
library(patchwork);
library(ggfortify);

There are a number of time-series object types in R. We will primarily use the tsibble
object type provided by the fpp3 package. The fpp3 package includes a number of the packages
we have been using, plus a few additional ones which help in the analysis of time series. See
Hyndman and Athanasopoulos (2021), Hyndman and Athanasopoulos (2023). The tsibble is
a time-series version of the tibble object type. We will occasionally use the ts object type
provided in base R. The following example creates a vector of random numbers and converts it
into a ts object, then converts it into a tsibble object.

set.seed(13)
x <- rnorm(12,0,1)
x.ts <- ts(x, start=c(1990,1),freq=4) #Define as Quarterly data starting at 1990Q1
x.ts

Qtr1 Qtr2 Qtr3 Qtr4
1990 0.5543269 -0.2802719 1.7751634 0.1873201
1991 1.1425261 0.4155261 1.2295066 0.2366797
1992 -0.3653828 1.1051443 -1.0935940 0.4618709

x.tsbl <- as_tsibble(x.ts)
x.tsbl

# A tsibble: 12 x 2 [1Q]
index value
<qtr> <dbl>

1 1990 Q1 0.554
2 1990 Q2 -0.280
3 1990 Q3 1.78
4 1990 Q4 0.187
5 1991 Q1 1.14
6 1991 Q2 0.416
7 1991 Q3 1.23
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8 1991 Q4 0.237
9 1992 Q1 -0.365

10 1992 Q2 1.11
11 1992 Q3 -1.09
12 1992 Q4 0.462

Data frames can be converted directly to tsibbles. We do this in the upcoming example,
where the Period column in the data frame is first converted to a yearmonth object, and set as
the index of the tsibble.

11.1 Overview
Many economic time series display cyclical behavior, such as in panel (a) of Fig. 11.1, which shows
the time series plot of the quarterly series 𝑌 from the dataset ts_02.xlsx. Cyclical behavior
implies “serial correlation” (a.k.a. “autocorrelation”) meaning that cov[𝑌𝑡, 𝑌𝑡−𝑘] ≠ 0 for some
𝑘 ≠ 0. The scatterplot in panel (b) of 𝑌𝑡 against 𝑌𝑡−1 shows that consecutive observations are
very highly correlated. By definition, i.i.d. observations cannot display serial correlation.

ts02 <- readxl::read_excel("data\\ts_02.xlsx") %>%
mutate(Period=yearquarter(Period), Y_1=lag(Y,1)) %>%
as_tsibble(index=Period)

p1 <- ts02 %>% autoplot(Y) + theme_minimal() + xlab("")
p2 <- ts02 %>% ggplot(aes(x=Y_1, y=Y), size=0.5) + geom_point() + theme_minimal() +

ylab("Y(t)") + xlab("Y(t-1)")
(p1 | p2) + plot_layout(widths=c(1.5,1)) + plot_annotation(tag_levels="a")
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Figure 11.1: Series Y from ts_02.xlsx.

Economic time series often also display features such as trends and seasonality. Panel (a)
of Fig. 11.2 shows a plot of Singapore’s monthly Industrial Production Index from 1983M1 to
2017M12, data in ts_01.xlsx. The upward trend seems the most dominant feature, though
cyclical deviations from trend are also obvious. The size of the fluctuations are also increasing
over time, which is not unusual in upward trending economic time series. Seasonality – repetitive
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patterns that occur with regular periods – is also present. We zoom in on the sub-period 1990M1
to 1995M12 in Fig 2(b) where there seasonality is easier to see. There appears to be an annual
pattern, with a sharp drop near the start of the year (usually in February) followed by a sharp
positive response in the following month.

ts01 <- readxl::read_excel("data\\ts_01.xlsx") %>%
select(DATE, IP_SG) %>%
mutate(DATE=yearmonth(DATE)) %>%
as_tsibble(index=DATE)

p1 <- ts01 %>%
autoplot(IP_SG) + theme_minimal() + xlab("")

p2 <- ts01 %>%
filter(DATE>=yearmonth("1990M1") & DATE<=yearmonth("1995M12")) %>%
autoplot(IP_SG) + theme_minimal() + xlab("")

(p1 | p2) + plot_annotation(tag_levels="a")
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Figure 11.2: SG Industrial Production (IP_SG).

11.2 Some Simple Time Series Models

We first discuss some basic tools for time series analysis, and a few simple time series models
for cycles, trends and seasonality, so that we have a vocabulary for discussing such features and
their consequences.

11.2.1 Transformations

We often apply some sort of transformation to a time series prior to analysis. For instances, we
might work with the log of the time series rather than the series itself. Since the log function is
strictly increasing, this does not affect the sign of the period-to-period changes in the time series.
But as the log function is strictly-concave, applying a log-transformation attenuates fluctuations
in the series, with larger fluctuations receiving greater attenuation. Log transformations there-
fore help to control the tendency of fluctuations in trending time series to increase over time.
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Log transformations also linearize exponential trends, which is common in economic time series.
Fig. 11.3 shows the log transformed IP_SG.

p3 <- ts01 %>% autoplot(log(IP_SG)) + theme_minimal() + xlab("")
p3
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Figure 11.3: log(IP_SG).

Yet another advantage of the log transformation is that period-to-period percentage changes
can be approximated by the first difference of log-transformed data (the “log-difference”):

𝑌𝑡 − 𝑌𝑡−1
𝑌𝑡−1

≈ ln𝑌𝑡 − ln𝑌𝑡−1 .

This arises from the first-order linear approximation of the log function around 𝑌𝑡−1. Alterna-
tively, the log-difference can be interpreted as a continuous growth rate.

11.2.2 Sample Autocorrelation Function

We can summarize the serial correlation (or autocorrelation) in a time series by calculating
its sample autocorrelation function. Given a time series 𝑌𝑡, 𝑡 = 1, 2, ..., 𝑇 , define the sample
autocovariance function to be

̂𝛾𝑘 = 1
𝑇

𝑇
∑

𝑡=𝑘+1
(𝑌𝑡 − 𝑌 )(𝑌𝑡−𝑘 − 𝑌 ) , 𝑘 = 0, 1, 2, ...

where 𝑌 is the sample mean defined in the usual way. This is, of course, just the usual sample
covariance formula, except that here we measure a variable’s covariance with itself at some lag.
Note that the summation index starts at 𝑡 = 𝑘 + 1 instead of 𝑡 = 1, because we need to take 𝑘
lags of the variable. Despite only adding up 𝑇 − 𝑘 terms, we divide by 𝑇 instead of 𝑇 − 𝑘 (we
won’t get into the reasons why here). This is called a sample autocovariance function because
we are computing the sample autocovariances at 𝑘 = 0, 1, 2, ..., (i.e., we have a function of 𝑘).
The sample autocovariance of 𝑌𝑡 at lag 0 is just the sample variance of 𝑌𝑡. Finally, the sample
autocorrelation function is defined as

̂𝜌𝑘 = ̂𝛾𝑘
̂𝛾0
.
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Fig. 11.4 shows the sample acf for the 𝑌𝑡 series shown in Fig. 11.1. The dotted bands are the
±1.96 standard errors of the sample acf, which helps us to determine significance of the auto-
correlations. We see that the autocorrelations of this series decline as we consider observations
further apart.

p1 <- ts02 %>% ACF(Y) %>% autoplot() + ylim(c(-1,1)) + theme_minimal()
p1
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Figure 11.4: ACF: Series Y.

11.2.3 Trend

There are a number of ways to model trend. We can model a trending series as a “deterministic
trend” process such as

𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡 , 𝑡 = 1, 2, ..., 𝑇 , (11.1)

where for the moment we take 𝜖𝑡 to be some zero-mean i.i.d. noise term. Here we indicate dates
as an integer series, although this might represent some regular period like months or quarters.
We can use any deterministic function of 𝑡 for the trend. For example we can have a quadratic
deterministic trend

𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝜖𝑡 , 𝑡 = 1, 2, ..., 𝑇 . (11.2)

We fit using OLS the quadratic deterministic trend model to the log(IP_SG) series. The fitted
line and the residuals are shown in Fig. 11.5.

ts01 <- ts01 %>% mutate(t=1:length(ts01$IP_SG), tsq = t^2)
mdl_dqt <- lm(log(IP_SG) ~ t + tsq, data=ts01)
mdl_dqt %>% summary() %>% coef()
df_plot <- ts01 %>% mutate("Fitted"=fitted(mdl_dqt), "Residuals"=residuals(mdl_dqt))
p1 <- autoplot(df_plot, log(IP_SG), size=0.5) +

autolayer(df_plot, Fitted) + theme_minimal() + xlab("")
p2 <- autoplot(df_plot, Residuals) + theme_minimal() + xlab("")
(p1 | p2) + plot_annotation(tag_levels = 'a')

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.519434e+00 1.529628e-02 164.70896 0.000000e+00
t 7.774090e-03 1.677910e-04 46.33197 1.517867e-166
tsq -5.833467e-06 3.859553e-07 -15.11436 1.812010e-41
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Figure 11.5: SG Quadratic Deterministic Trend, Fit and Residuals.

Of course, no series is likely to be a pure deterministic trend plus iid noise. In Fig. 11.5(b),
the residuals display cycles and seasonality, and can be thought of as a de-trended version of the
Industrial Production series. Sometimes the purpose of estimating a trend is precisely to obtain
a de-trended series, so we can focus on the remaining components.

Instead of specifying a particular functional form for the trend, a more flexible way would be
to use non-parametric methods. See Appendix A for a description of one such method.

Another way to model trend in a series is to say that on average the series changes every
period by some value 𝛼, i.e.,

𝑌𝑡 − 𝑌𝑡−1 = 𝛼+ 𝜖𝑡 ,

where again for the moment we assume 𝜖𝑡 to be some iid zero-mean noise term. We often denote
the first difference 𝑌𝑡 − 𝑌𝑡−1 by Δ𝑌𝑡. The model above is often written as

𝑌𝑡 = 𝛼+ 𝑌𝑡−1 + 𝜖𝑡. (11.3)

If 𝛼 > 0, then 𝑌𝑡 increases by an average of 𝛼 every period, and therefore trends upwards. The
process (11.3) is called a random walk with drift if 𝛼 ≠ 0, or a random walk without
drift (or simply a “random walk”) if 𝛼 = 0.

There is an essential difference between the random walk approach (11.3) and deterministic
trend approaches such as in (11.1) or (11.2). We can better understand (11.3) better by following
the process starting from some fixed 𝑌0. Suppose that the variance of 𝜖𝑡 is 𝜎2. We have

𝑌1 = 𝛼+ 𝑌0 + 𝜖1 var[𝑌1|𝑌0] = 𝜎2

𝑌2 = 𝛼+ 𝑌1 + 𝜖2 = 𝑌0 + 2𝛼 + 𝜖1 + 𝜖2 var[𝑌2|𝑌0] = 2𝜎2

𝑌3 = 𝛼+ 𝑌2 + 𝜖3 = 𝑌0 + 3𝛼 + 𝜖1 + 𝜖2 + 𝜖3 var[𝑌3|𝑌0] = 3𝜎2

⋮ ⋮
𝑌𝑡 = 𝛼+ 𝑌𝑡−1 + 𝜖𝑡 = 𝑌0 + 𝛼𝑡 + 𝜖1 + 𝜖2 + 𝜖3 +⋯+ 𝜖𝑡 var[𝑌𝑡|𝑌0] = 𝑡𝜎2

We see that if 𝑌𝑡 follows (11.3), then it contains a linear deterministic trend (if 𝛼 ≠ 0), but
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unlike the linear deterministic trend process (11.1) there is also an accumulation of noise terms,
resulting in a variance that increases steadily over time.

We simulate and plot in Fig. 11.6 one hundred series each of the “pure” linear deterministic
trend process (11.1) with 𝛽0 = 100 and 𝛽1 = 0.3 (panel (a)), the random walk with drift (11.3)
with 𝛼 = 0.3 (panel (b)), and the “pure” random walk (11.3) with 𝛼 = 0 (panel (c)). In the
latter two cases, we start the process off at 𝑌0 = 100. For all three cases, we set the variance of
the noise term at 1, and simulate series of 200 observations.

set.seed(20);
R <- 100; bigT <- 200; b0 <- 100; b1 <- 0.3; a0 <- 0.3; sigma <- 1; Y0 <- 100
dttrnd <- matrix(rep(0,R*bigT),ncol=R)
rwwd <- rwwod <- dttrnd
timeidx <- 1:bigT
for (r in 1:R){
epsln <- rnorm(bigT,0,1)
epscum <- cumsum(epsln)
dttrnd[,r] <- b0 + b1*timeidx + epsln
rwwd[,r] <- 100 + a0*timeidx + epscum
rwwod[,r] <- 100 + epscum

}
theme1 <- theme_minimal() + theme(legend.position = "none")
p1 <- dttrnd %>% as.ts() %>% autoplot(facets=F, size=0.5) +

ggtitle("Det. Trend") + ylim(c(50,200)) + theme1
p2 <- rwwd %>% as.ts() %>% autoplot(facets=F, size=0.5) +

ggtitle("RW with drift") + ylim(c(50,200)) + theme1
p3 <- rwwod %>% as.ts() %>% autoplot(facets=F, size=0.5) +

ggtitle("RW without drift") + ylim(c(50,200)) + theme1
(p1 | p2 | p3) + plot_annotation(tag_levels = 'a')
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Figure 11.6: Simulated Deterministic Trends and Random Walks.

Because the ‘pure’ deterministic trend process is simply a deterministic function of 𝑡 plus a
non-accumulating noise term, such a process is very predictable. The random walk with drift,
while trending upwards, is much less predictable because of the increasing variance. The random
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walk without drift has no tendency to trend upwards, but also shows increasing variance.
Despite not containing a deterministic trend, the increasing variance in the random walk

without drift means that in any finite sample one can observe a wide range of behaviors, including
outcomes that appear to trend upwards or downwards, despite the fact that the average period-
to-period growth rate is zero. Fig. 11.7 shows a few series drawn from the 200 simulations in
panel (c) of Fig. 11.6. We refer to this behavior, which comes about because of the increasing
variance, as the “stochastic trend”.

rwwod[,c(15, 20, 40, 65, 70, 95)] %>% as.ts() %>% autoplot(facet=F) + theme1

80

90

100

110

120

0 50 100 150 200

Figure 11.7: Selected Simulated Random Walks Without Drift.

In the random walk with drift, we have both the linear deterministic trend (due to the
non-zero 𝛼) and the accumulating errors that lead to increasing variances. We refer to the
linear deterministic trend part as the “drift” (hence the name “random walk with drift”), and
the “increasing variance” part as the “stochastic trend”. The parameter 𝛼 is called the drift
parameter.

• Deterministic Trend: 𝑌𝑡 = 𝑓(𝑡) + 𝜖𝑡.
• Random Walk:

𝑌𝑡 = 𝛼+ 𝑌𝑡−1 + 𝜖𝑡 = 𝑌0 + 𝛼𝑡⏟⏟⏟⏟⏟
linear det. trend

+
𝑇
∑
𝑡=1

𝜖𝑡
⏟

stoc. trend

,

“with drift” if 𝛼 ≠ 0, “without drift” otherwise.
We can estimate 𝛼 in the random walk with drift simply as the sample mean of Δ𝑌𝑡. We

estimate this for the log(IP_SG) model below.

a0 <- mean(diff(log(ts01$IP_SG)))
df_plot2 <- ts01 %>% mutate(Fitted=lag(log(IP_SG))+a0, Residuals=log(IP_SG)-Fitted)
p1 <- autoplot(df_plot2, log(IP_SG), size=0.5) +

autolayer(df_plot2, Fitted) + theme_minimal() + xlab("")
p2 <- autoplot(df_plot2, Residuals) + theme_minimal() + xlab("")
(p1 | p2) + plot_annotation(tag_levels = 'a')
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Figure 11.8: SG_IP Random Walk with Drift, Fit and Residuals.

It is hard to make out the actual log(IP_SG) and the fitted values in Fig. 11.8. We zoom in
on a subsample in Fig. 11.9. The fitted values appear to be simply the lagged actual values. By
construction, the fitted values are the lagged values plus the estimated growth rate ̂𝛼.

df_plot2sub <- df_plot2 %>%
filter(DATE>=yearmonth("1990M1") & DATE<=yearmonth("1995M12"))

autoplot(df_plot2sub,log(IP_SG)) + autolayer(df_plot2sub, Fitted, size=1) +
theme_minimal() + xlab("")
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Figure 11.9: log(IP_SG) Actual and Fitted (bold), Subsample.

To remove the stochastic trend and drift from a random walk process, simply take the first
difference Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1, or take the residuals from the fitted random walk model as in
Fig. 11.8. In the latter the estimated growth rate is also removed.

While we have taken 𝜖𝑡 to be i.i.d., for the moment, this will not be the case in most
applications. We see in the residuals in Fig. 11.8 that there is seasonality, and less prominently,
some cyclical patterns in the monthly growth rates.

Incidentally, trends show up in the sample acf as highly persistent autocorrelation. The
following is the sample acf of the log(IP_SG) series.
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ts01 %>% ACF(log(IP_SG)) %>% autoplot() + ylim(c(-1,1)) + theme_minimal()

−1.0

−0.5

0.0

0.5

1.0

6 12 18 24
lag [1M]

ac
f

Figure 11.10: Sample ACF of IP_SG.

Stochastic trends, even without drift, are also highly persistent processes. The following is
the sample acf of one of the simulated random walks without drift that was shown in Fig. 11.6(c).

rwwod[,20] %>% as.ts() %>% as_tsibble() %>% ACF(value) %>%
autoplot() + ylim(c(-1,1)) + theme_minimal() + xlab("lags")

−1.0

−0.5

0.0

0.5

1.0

5 10 15 20
lags

ac
f

Figure 11.11: Sample ACF, RW without Drift.

We set aside for a later chapter the question of how to detect the presence of stochastic trend
in a data series.

11.2.4 Seasonality

Seasonals are patterns that occur with regular periods, often for ‘mechanical’ reasons, such
as housing starts always being higher in the summer than in the winter, or tourist arrivals
systematically peaking in the summer and at the end of the year.

Fig. 11.12 shows the “seasonal plot” for the IP_SG growth rate, as measured by the first
difference of the log-transformed IP_SG series. We see that there is a very regular annual
down-up-down pattern in industrial production growth over the Feb-Apr period, arising from
the fewer number of calendar days in February, together with the Chinese New Year holidays
which usually happen in February.
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ts01 %>% gg_season(difference(log(IP_SG)), labels = "both") + theme_minimal()
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Figure 11.12: Seasonal Plot: d(log(IP_SG)).

Seasonality can also show up in the sample acf of a series. Fig. 11.13 shows the sample acf
of the IP_SG growth rate series.

ts01 %>% ACF(difference(log(IP_SG)), lag_max=48) %>% autoplot() +
ylim(c(-1,1)) + theme_minimal()
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Figure 11.13: Sample ACF of d(log(IP_SG)).

Seasonality shows up as significant autocorrelations at multiples of the “seasonal lag”, which
for monthly data is 12. These ‘seasonal spikes’ did not show up in the sample acf of trending
log(IP_SG) series in Fig. 11.10 because the seasonality (and all other features of the series) was
overwhelmed by the trend, which is the dominant feature.

One way of modelling seasonal data is by using seasonal indicator variables (a.k.a. “seasonal
dummy variables” or “seasonal dummies”). For monthly data, these are binary variables marking
the month of the observation: the January dummy variable takes ‘1’ for all January observations,
‘0’ for all other observations; the February dummy variable takes ‘1’ for all February observations,
‘0’ for all others, and so on. The following 12 columns show the first 18 observations for each of
the twelve monthly seasonal dummies for the IP_SG data series.
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ts01 <- ts01 %>%
mutate(d01=ifelse(month(DATE)==1,1,0),

d02=ifelse(month(DATE)==2,1,0),
d03=ifelse(month(DATE)==3,1,0),
d04=ifelse(month(DATE)==4,1,0),
d05=ifelse(month(DATE)==5,1,0),
d06=ifelse(month(DATE)==6,1,0),
d07=ifelse(month(DATE)==7,1,0),
d08=ifelse(month(DATE)==8,1,0),
d09=ifelse(month(DATE)==9,1,0),
d10=ifelse(month(DATE)==10,1,0),
d11=ifelse(month(DATE)==11,1,0),
d12=ifelse(month(DATE)==12,1,0))

ts01 %>% select(d01,d02,d03,d04,d05,d06,d07,d08,d09,d10,d11,d12) %>%
filter(DATE>=yearmonth("1985M1") & DATE<=yearmonth("1986M6")) %>%
knitr::kable()

d01 d02 d03 d04 d05 d06 d07 d08 d09 d10 d11 d12 DATE

1 0 0 0 0 0 0 0 0 0 0 0 1985 Jan
0 1 0 0 0 0 0 0 0 0 0 0 1985 Feb
0 0 1 0 0 0 0 0 0 0 0 0 1985 Mar
0 0 0 1 0 0 0 0 0 0 0 0 1985 Apr
0 0 0 0 1 0 0 0 0 0 0 0 1985 May
0 0 0 0 0 1 0 0 0 0 0 0 1985 Jun
0 0 0 0 0 0 1 0 0 0 0 0 1985 Jul
0 0 0 0 0 0 0 1 0 0 0 0 1985 Aug
0 0 0 0 0 0 0 0 1 0 0 0 1985 Sep
0 0 0 0 0 0 0 0 0 1 0 0 1985 Oct
0 0 0 0 0 0 0 0 0 0 1 0 1985 Nov
0 0 0 0 0 0 0 0 0 0 0 1 1985 Dec
1 0 0 0 0 0 0 0 0 0 0 0 1986 Jan
0 1 0 0 0 0 0 0 0 0 0 0 1986 Feb
0 0 1 0 0 0 0 0 0 0 0 0 1986 Mar
0 0 0 1 0 0 0 0 0 0 0 0 1986 Apr
0 0 0 0 1 0 0 0 0 0 0 0 1986 May
0 0 0 0 0 1 0 0 0 0 0 0 1986 Jun

We can model seasonality with seasonal dummies using the specification

𝑌𝑡 = 𝛽1𝑑1,𝑡 + 𝛽2𝑑2,𝑡 +⋯+ 𝛽12𝑑12,𝑡 + 𝜖𝑡 (11.4)

where 𝑑1,𝑡 is the January dummy, 𝑑2,𝑡 is the February dummy, and so on, and where we again
(for the moment) take 𝜖𝑡 to be a zero-mean iid noise term. This specification allows the mean of
𝑌𝑡 to depend on the ‘season’ (in this case, the month). For January observations, only 𝑑1,𝑡 = 1,
the other dummies are zero, therefore E[𝑌𝑡] = 𝛽1 for January observations. For February
observations, only 𝑑2,𝑡 = 1, the other dummies are zero, therefore E[𝑌𝑡] = 𝛽2 for February
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observations, and so on.

Notice there is no intercept term in (11.4). This is because all of the dummies add up to
a vector of ones. Including a constant will result in perfect collinearity (this is known as the
dummy variable trap). If we wish to include the intercept, we will have to drop one of the
dummy variables, as in (11.5) below, where we drop the January dummy.

𝑌𝑡 = 𝛼0 + 𝛼2𝑑2,𝑡 +⋯+ 𝛼12𝑑12,𝑡 + 𝜖𝑡 (11.5)

This changes the interpretation of the coefficients slightly. The parameter 𝛼0 is now the January
mean of 𝑌𝑡 and serves as the reference month. The February mean of 𝑌𝑡 is now 𝛼0 + 𝛼2, so 𝛼2
is the difference between the February mean and the January mean. The other coefficients are
interpreted similarly. We explore yet another equivalent specification in the exercises.

The seasonal dummies can be used in conjunction with other models we have discussed so
far. For instance, we can have a quadratic deterministic trend model with seasonal dummies:

𝑌𝑡 = 𝛼0 + 𝛼2𝑑2,𝑡 +⋯+ 𝛼12𝑑12,𝑡 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝜖𝑡 (11.6)

We fit (11.6) to the log(IP_SG) model using OLS; the fitted values and residuals are shown in
Fig. 11.14.

## recall we have previously added t and the seasonal dummies to ts01
mdl_dqt <- lm(log(IP_SG)~t+tsq+d02+d03+d04+d05+d06+d07+d08+d09+d10+d11+d12, data=ts01)
mdl_dqt %>% summary() %>% coef()
df_plot1 <- ts01 %>% mutate("Fitted"=fitted(mdl_dqt), "Residuals"=residuals(mdl_dqt))
p1 <- autoplot(df_plot1, log(IP_SG), size=0.5) +

autolayer(df_plot1, Fitted) + theme_minimal() + xlab("")
p2 <- autoplot(df_plot1, Residuals) + theme_minimal() + xlab("")
(p1 | p2) + plot_annotation(tag_levels = 'a')

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.490454e+00 1.965402e-02 126.71473330 0.000000e+00
t 7.768060e-03 1.455858e-04 53.35728414 1.456574e-185
tsq -5.832981e-06 3.348699e-07 -17.41864454 3.794588e-51
d02 -1.013478e-01 2.156942e-02 -4.69868204 3.590501e-06
d03 1.131723e-01 2.156951e-02 5.24686286 2.497552e-07
d04 -6.292830e-04 2.156967e-02 -0.02917445 9.767398e-01
d05 -2.884859e-03 2.156988e-02 -0.13374479 8.936707e-01
d06 4.298396e-02 2.157016e-02 1.99275152 4.695768e-02
d07 3.467546e-02 2.157049e-02 1.60754144 1.087130e-01
d08 4.523024e-02 2.157089e-02 2.09681856 3.662779e-02
d09 8.296558e-02 2.157135e-02 3.84610093 1.393025e-04
d10 5.959898e-02 2.157187e-02 2.76281065 5.991151e-03
d11 6.966586e-03 2.157245e-02 0.32293906 7.469076e-01
d12 8.191373e-02 2.157309e-02 3.79703297 1.687982e-04
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Figure 11.14: SG_IP Quad. Det. Trend with Seas. Dummies, Fit and Residuals.

Fig. 11.15 zooms in on a subsample of the fit. The residuals in Fig. 11.14 can be thought of
as de-trended “seasonally-adjusted” log(IP_SG).

df_plot1sub <- df_plot1 %>%
filter(DATE>=yearmonth("1990M1") & DATE<=yearmonth("2000M12"))

autoplot(df_plot1sub,log(IP_SG)) + autolayer(df_plot1sub, Fitted, size=1) +
theme_minimal() + xlab("")

3.0

3.3

3.6

3.9

1990 Jan 1995 Jan 2000 Jan

lo
g(

IP
_S

G
)

Figure 11.15: log(IP_SG) Actual and Fitted (bold), subsample.

We can also fit a random walk with seasonal dummies by fitting the seasonal dummy model
to the first differences:

𝑌𝑡 − 𝑌𝑡−1 = 𝛼0 + 𝛼2𝑑2,𝑡 +⋯+ 𝛼12𝑑12,𝑡 + 𝜖𝑡 . (11.7)

The fitted values can be obtained as

̂𝑌𝑡 = 𝑌𝑡−1 + ̂𝛼0 + ̂𝛼2𝑑2,𝑡 +⋯+ ̂𝛼12𝑑12,𝑡 , 𝑡 = 2, 3, ..., 𝑇 .

We fit this model to the log(IP_SG series), output shown below; fitted values and residuals are
shown in Fig. 11.16. Fig. 11.17 zooms in on a smaller subsample. Presumably after removing
trend and seasonality, only cyclical behavior remains. Notice that what we get after detrending



11.2. SOME SIMPLE TIME SERIES MODELS 255

and seasonal adjustment can look very different, depending on what we assume about the trend
and how we de-seasonalize. Compare Fig. 11.14(b) and Fig. 11.16(b).

ts01a <- ts01 %>% mutate(lIP_SG=lag(IP_SG),
dlIP_SG=log(IP_SG)-log(lIP_SG)) %>% filter(DATE>=yearmonth("1985M2"))

mdl_rwseas <- lm(dlIP_SG~d02+d03+d04+d05+d06+d07+d09+d10+d11+d12, data=ts01a)
df_plot2 <- ts01a %>% mutate(Fitted=log(lIP_SG)+fitted(mdl_rwseas),

Residuals=log(IP_SG)-Fitted)
p1 <- autoplot(df_plot2, log(IP_SG), size=0.5) +

autolayer(df_plot2, Fitted) + theme_minimal() + xlab("")
p2 <- autoplot(df_plot2, Residuals) + theme_minimal() + xlab("")
(p1 | p2)
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Figure 11.16: SG_IP Random Walk with Drift, Fit and Residuals.

df_plot2sub <- df_plot2 %>%
filter(DATE>=yearmonth("1990M1") & DATE<=yearmonth("1995M12"))

autoplot(df_plot2sub,log(IP_SG)) + autolayer(df_plot2sub, Fitted, size=1) +
theme_minimal() + xlab("") +
plot_annotation(subtitle="Fig 17. log(IP_SG) Actual and Fitted (bold), subsample")

3.0

3.2

3.4

3.6

3.8

1990 Jan 1992 Jan 1994 Jan 1996 Jan

lo
g(

IP
_S

G
)

Fig 17. log(IP_SG) Actual and Fitted (bold), subsample

Figure 11.17: log(IP_SG) Actual and Fitted (bold), subsample.
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There are other ways to model seasonality. For instance, we can consider a “seasonal random
walk”, which for monthly data would be

𝑌𝑡 = 𝑌𝑡−12 + 𝜖𝑡.

This sort of seasonality can be dealt with by taking ‘seasonal differences’, i.e., Δ12𝑌𝑡 = 𝑌𝑡−𝑌𝑡−12.
This is in fact a fairly common approach when dealing with seasonal data.

Seasonally-adjusted (s.a.) versions of time series are often provided by official statistics agen-
cies, sometimes together with the Non-Seasonally Adjusted (n.s.a.) versions, sometimes in place
of it. Seasonal adjustment is often done by first estimating a “trend-cycle” (using sophisticated
versions of the moving average method described in Appendix A), then estimating the seasonal
component from the series with trend-cycle removed. This results in a decomposition of the orig-
inal series into a trend-cycle component, a seasonal component, and an ‘irregular’ component.
The seasonally-adjusted version of the data is obtained by removing the seasonal component
from the original.

We apply one such method (called “X-11”) to log(IP_SG), with default settings. Fig. 11.18
shows the decomposition of log(IP_SG) into its various components, and Fig. 11.19 shows the
original and seasonally adjusted series.1 Panel (b) zooms in on a sub-sample to better illustrate
the seasonally adjusted series. It also highlights that care is needed when using default settings.
The early year seasonal pattern in IP_SG is driven by the Chinese New Year holidays, which
typically occurs in February. Occasionally it falls in January, as it did in 1993. This might lead
to what appears to be big ‘shocks’ where there were only moderate ones.

ipsg_dcmp <- ts01 %>% model(x11=X_13ARIMA_SEATS(log(IP_SG) ~ x11())) %>% components()
autoplot(ipsg_dcmp) + theme_minimal()
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X−13ARIMA−SEATS using X−11 adjustment decomposition

Figure 11.18: Decomposition of log(IP_SG) using X-11.

1Decompositions can be “additive” or “multiplicative”. In this case it is additive, and the seasonally-adjusted
series is obtained by substracting the seasonal component from the original.
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p2 <- ipsg_dcmp %>%
ggplot(aes(x = DATE)) +
geom_line(aes(y = `log(IP_SG)`), size=0.5) +
geom_line(aes(y = season_adjust), size=1) + theme_minimal()

p3 <- ipsg_dcmp %>%
filter(DATE>=yearmonth("1990M1") & DATE<=yearmonth("1995M12")) %>%
ggplot(aes(x = DATE)) +
geom_line(aes(y = `log(IP_SG)`), size=0.5) +
geom_line(aes(y = season_adjust), size=1) + theme_minimal()

(p2 | p3) + plot_annotation(tag_levels = "a")
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Figure 11.19: log(IP_SG) sa. (bold) and nsa.

11.2.5 Cycles

Cycles are somewhat harder to define, and we will not attempt a definition here. Instead we
will focus on serial correlation or autocorrelation, which as we pointed out earlier, can manifest
as cyclical behavior in a time series. Returning to the series that was displayed in Fig. 11.1, the
scatterplot in Fig. 11.1(b) suggested that perhaps a model such as

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝜖𝑡 (11.8)

may describe the behavior of the series well. Such a process is called an Autoregression of Order
1, or AR(1). In fact, the series in Fig. 11.1 was simulated from such a model, with 𝜖𝑡 as some
i.i.d. noise term.

One will recognize the Random Walk as an example of such an AR(1), with 𝛽1 = 1, and
we saw that such a process will have a stochastic trend, and also a drift if 𝛽0 ≠ 0. However,
if −1 < 𝛽1 < 1, then the AR(1) in (11.8) behaves quite differently. The following is another
simulation of such a series, with 𝛽1 = 0.7. This time we simulate a lengthy series, to illustrate
a point about such series.

simAR <- function(a0, a1, bigT){
burn = 100
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Z <- rep(0,bigT+burn)
u <- rnorm(bigT+burn,0,1)
for (t in 2:(bigT+burn)){

Z[t] <- a0 + a1*Z[t-1] + u[t]
}
return(Z[(burn+1):(burn+bigT)])

}
set.seed(13)
bigT=1000; a0 = 1; a1 = 0.8
X <- simAR(a0,a1,bigT)
dfplot <- data.frame(t=(1:bigT),X=X)
dfplot %>% ggplot() + geom_line(aes(x=t,y=X)) + theme_minimal()
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Figure 11.20: A Simulated AR(1).

There are cycles in this series of the boom-bust form (because we set 𝛽1 between zero and
one), though the period and amplitude of each ‘cycle’ is not regular. Notice also that the series
fluctuates around some constant value, and the overall size of the fluctuations appear fairly
stable. In Fig. 11.21, we plot the sample acf for the full sample, as well as for three subsamples.
We notice that the sample autocorrelations die off fairly quickly. Also, we see that the sample
acf is very stable over the entire sample. This should be unsurprising, since the time series was
simulated from a single model across the 1000 observations.

X <- as_tsibble(as.ts(X, freq=1))
Xearly <- X %>% filter(index>=1 & index<=300)
Xmiddle <- X %>% filter(index>=351 & index<=650)
Xlate <- X %>% filter(index>=700 & index<=1000)
p1 <- ACF(X,value,lag_max=16) %>% autoplot() + ylim(c(-1,1)) + theme_minimal()
p2 <- ACF(Xearly,value,lag_max=16) %>% autoplot() + ylim(c(-1,1)) + theme_minimal()
p3 <- ACF(Xmiddle,value,lag_max=16) %>% autoplot() + ylim(c(-1,1)) + theme_minimal()
p4 <- ACF(Xlate,value,lag_max=16) %>% autoplot() + ylim(c(-1,1)) + theme_minimal()
(p1 | p2) / (p3 | p4)
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Figure 11.21: ACF of X, various subsamples.

A time series 𝑌𝑡 is said to be covariance-stationary if it has
• a constant and finite mean E[𝑌𝑡] < ∞ for all 𝑡,
• a constant and finite variance var[𝑌𝑡] < ∞ for all 𝑡, and
• an autocorrelation function cov[𝑌𝑡, 𝑌𝑡−𝑘] that is finite and that may depend on 𝑘 but not

on 𝑡.
Covariance-stationary processes are processes that are “stable” in the sense given in its defi-

nition. A process whose autocorrelations dies off reasonably quickly as we consider observations
further apart is said to be “weakly dependent”. 2 Processes like the random walk are not weakly
dependent, but are “persistent”. Trending processes are not covariance-stationary. Seasonal
processes may or may not be stationary, and may or may not be weakly dependent.

11.3 Time Series Regressions

We come now to time series regressions where we have ‘variables’ on the right-hand-side, rather
than (only) functions of the time index or dummy variables. For the most part, we will begin
by assuming that our variables are covariance-stationary and weakly dependent. If dealing with
trending data, we assume that we have made whatever transformations are necessary (e.g.,
taking first differences, using seasonally-adjusted data) to obtain covariance-stationarity. Later
we add deterministic trends and seasonal dummies to the mix.

11.3.1 Dynamic Specifications

We first note that in time series regressions, we have the possibility of including lagged regressors,
and also lagged dependent variables into the specification. Of course, we could simply have the
“static” specification

𝑌𝑡 = 𝛼0 + 𝛼1𝑋𝑡 + 𝜖𝑡 ,

but in general we will want to consider “dynamic” specifications such as the following:

2There are formal ways to define “weakly dependent”, but we will make do with our informal characterization
for now.



260 CHAPTER 11. INTRODUCTION TO TIME SERIES REGRESSIONS

• “Distributed Lag Models”:

𝑌𝑡 = 𝛼0 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + ...𝛽𝑞𝑋𝑡−𝑞 + 𝜖𝑡 . (11.9)

Such models are useful because there is always the possibility that the influence of an
explanatory variable may take several periods to fully work out. For instance, the effect
of a change in interest rates on inflation may take several quarters to fully take effect. In
(11.9), suppose there is a one-period only one-unit shock in 𝑋𝑡. The immediate effect on 𝑌𝑡
is 𝛽0, but the affect on 𝑌𝑡 does not end there. Even though this is one-period only impulse
in 𝑋, there is a lingering effect: the effect on 𝑌𝑡+1 is 𝛽1, and that on 𝑌𝑡+2 is 𝛽2, and so on.
If there is a permanent change in 𝑋𝑡 by one unit, then the effect on 𝑌𝑡 is cumulative: the
total effect (or “long-run cumulative dynamic multiplier”) is 𝛽0 + 𝛽1 +⋯+ 𝛽𝑞.

It should be noted that even when lags of 𝑋𝑡 are included in the specification, it may well
be that the noise term 𝜖𝑡 are still not i.i.d., i.e., there may still be serial correlation in the noise
term.

• We have already seen the stationary autogressive model of order 1:

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝜖𝑡 , |𝛼1| < 1 .

Such models are used primarily to model cyclical dynamics in the data. There may be
more than one lag of the dependent variable.

• “Autoregressive Distributed Lag (ARDL) models”:

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + ... + 𝛽𝑞𝑋𝑡−𝑞 + 𝜖𝑡 . (11.10)

Such specifications imply an ‘infinite distributed lag structure’ for the effect of 𝑋𝑡 or 𝑌𝑡.
Since (11.10) is assumed to hold for all 𝑡, we have

𝑌𝑡−1 = 𝛼0 + 𝛼1𝑌𝑡−2 + 𝛽0𝑋𝑡−1 + 𝛽1𝑋𝑡−2 + ... + 𝛽𝑞𝑋𝑡−𝑞−1 + 𝜖𝑡−1 .

Substituting into ( 11.10) gives

𝑌𝑡 = 𝛼0(1 + 𝛼1) + 𝛼2
1𝑌𝑡−2 + 𝛽0𝑋𝑡 + (𝛽1 + 𝛼1𝛽0)𝑋𝑡−1 + ... + 𝛼1𝛽𝑞𝑋𝑡−𝑞−1 + 𝜖𝑡 + 𝛼1𝜖𝑡−1 .

Continuing this process by substituting 𝑌𝑡−2, then 𝑌𝑡−3 and so on, we get the infinite
distributed lag structure on 𝑋𝑡.

We mentioned for the distributed lag model (11.9) that the noise term may contain cyclical
dynamics. There is a close connection between such models and the autoregressive distributed
lag specification. Suppose

𝑌𝑡 = 𝛼0 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝑢𝑡 , 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜖𝑡 , |𝜌| < 1 (11.11)

where 𝜖𝑡 is iid. This is a model with “covariance-stationary AR(1) errors”. Such models imply
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an ARDL specification. Since

𝜌𝑌𝑡−1 = 𝜌𝛼0 + 𝜌𝛽0𝑋𝑡−1 + 𝜌𝛽1𝑋𝑡−2 + 𝜌𝑢𝑡−1 , (11.12)

subtracting (11.12) from (11.11) gives

𝑌𝑡 − 𝜌𝑌𝑡−1 = 𝛼0(1 − 𝜌) + 𝛽0𝑋𝑡 + (𝛽1 − 𝜌𝛽0)𝑋𝑡−1 + 𝜌𝛽1𝑋𝑡−2 + 𝑢𝑡 − 𝜌𝑢𝑡−1

i.e.,
𝑌𝑡 = 𝛼0(1 − 𝜌) + 𝜌𝑌𝑡−1 + 𝛽0𝑋𝑡 + (𝛽1 − 𝜌𝛽0)𝑋𝑡−1 + 𝜌𝛽1𝑋𝑡−2 + 𝜖𝑡 .

If a dynamic model has i.i.d. errors, we will refer to it as a dynamically correct model. Of
course, the dynamic structure in the error term might be much more complicated than a simple
AR(1) model, and it may well be that even an ARDL specification might not be sufficient for
obtaining a dynamically complete model.

11.3.2 Assumptions

We will write our (potentially dynamic) linear regression as

𝑌𝑡 = 𝑥T
𝑡 𝛽 + 𝜖𝑡

where 𝑥𝑡 is a vector of regressors. Although this looks like a static specification, bear in mind
that the vector 𝑥𝑡 may contain lagged regressors or even lagged dependent variable. E.g., in the
ARDL model (11.10), we have

𝑥T
𝑡 = [1 𝑌𝑡−1 𝑋𝑡 𝑋𝑡−1 … 𝑋𝑡−𝑞]

and
𝛽 = [𝛼0 𝛼1 𝛽0 𝛽1 … 𝛽𝑞]

T
.

We will consider the usual OLS assumptions, and how they must be modified for dynamic
time series regressions.

• First, in cross-sectional regressions we often assume iid draws. As we have already dis-
cussed, this is usually an untenable assumption for time series data. We allow for non-iid
behavior in our time series, but for the moment, we will assume that the variables in our
regression are covariance-stationary and weakly-dependent.

• In cross-sectional regressions, we usually assume E[𝜖𝑖|𝑥1, 𝑥2, ..., 𝑥𝑁 ] = 0. Recall that this
is the key assumption for unbiased OLS estimators. For time series regressions this as-
sumption becomes

E[𝜖𝑡|𝑥1, 𝑥2, ..., 𝑥𝑇 ] = 0 . (11.13)

We will refer to this assumption as “strong exogeneity”.

It turns out that this assumption is often too strong time series data. For example, take the
AR(1) model

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝜖𝑡 , 𝑡 = 2, 3, ..., 𝑇



262 CHAPTER 11. INTRODUCTION TO TIME SERIES REGRESSIONS

and suppose 𝜖𝑡 are i.i.d. noise terms. Assumption (Eq. 11.13) then becomes

E[𝜖𝑡|𝑌1, 𝑌2, ..., 𝑌𝑇−1] = 0 (11.14)

but this is impossible. If 𝜖𝑡 is uncorrelated with 𝑌𝑡−1, then it is definitely correlated with 𝑌𝑡,
whereas (11.14) say that 𝜖𝑡 is uncorrelated with all 𝑌𝑡, 𝑡 = 2, ..., 𝑇 . This argument applies
for all specifications with lagged dependent variables. Strong exogeneity cannot hold in any
specification that includes a lagged dependent variable as a regressor. Even if you do not
have lagged dependent variables, strong exogeneity may still not hold. For instance, you may
be forced to omit variables in your equation that can help forecast future outcomes of your
regressor. Strong exogeneity will also not hold in such cases.

OLS estimators will be biased if strong exogeneity does not hold (since it is a necessary
condition for unbiasedness of OLS estimators). Fortunately, it can be shown that OLS estima-
tors of time series regression with covariance-stationary weakly-dependent variables will remain
consistent as long as our noise terms satisfy contemporaneous exogeneity:

E[𝜖𝑡|𝑥𝑡] = 0 (11.15)

(note that the conditioning information ends with 𝑡, not 𝑇 ). This is a much weaker assumption,
and can hold even if you have lagged dependent variables. We will assume that we have enough
variables, and lags of variables included in the regression to allow this assumption to hold.

We have discussed homoskedasticity vs heteroskedasticity in cross-sectional regressions. For
our discussion of time series regressions, we shall allow for conditional heteroskedasticity, and
simply note that this means our OLS regressions are not necessarily efficient. If we are willing
to assume a form of heteroskedasticity, then we may be able to apply weighted least squares to
obtain more efficient estimates.

For have also assumed uncorrelated errors for our cross-sectional regressions. For time series
regressions this assumption would be that there is no serial correlation or autocorrelation in
the noise terms, and may or may not be appropriate. For models without lagged dependent
variables, such as the distributed lag model (11.9), the assumption of no serial correlation seems
less likely to hold, and the question is how we have to adapt our OLS methods and formulas to
accommodate this. For models with lagged dependent variables, we will argue that we ought to
try to ensure our dynamic specification is rich enough that our errors are uncorrelated, although
this may not always be possible.

11.3.3 Standard Errors for Dynamically Incomplete Models

Suppose our linear regression model is

𝑌𝑡 = 𝑥T
𝑡 𝛽 + 𝜖𝑡

where for the moment we assume that these is no lagged dependent variable in 𝑥𝑡. We assume
that our variables are covariance-stationary and weakly-dependent. We assume contemporane-
ous exogeneity, but allow for conditional heteroskedasticity and serial correlation in the noise
terms. Then our OLS estimator for 𝛽 is consistent and asymptotically normal. We shall omit
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the proof of this statement for this chapter.
Note that the usual standard formula for the variance of ̂𝛽,

v̂ar[ ̂𝛽] = 𝜎2 (
𝑇
∑
𝑡=1

𝑥𝑡𝑥T
𝑡 )

−1

(11.16)

is based on assumptions of homoskedasticity and uncorrelated errors, so if those assumptions do
not hold, this formula is unreliable. If we have heteroskedastic but uncorrelated errors, then we
can use the heteroskedasticity-robust “sandwich” estimator for the variance of ̂𝛽:

v̂ar[ ̂𝛽] = (
𝑇
∑
𝑡=1

𝑥𝑡𝑥T
𝑡 )

−1

(
𝑇
∑
𝑡=1

̂𝜖2𝑡𝑥𝑡𝑥T
𝑡 )(

𝑇
∑
𝑡=1

𝑥𝑡𝑥T
𝑡 )

−1

. (11.17)

If there are concerns about correlation in the errors (actually, the issue arises if there is serial
correlation in 𝑥𝑡𝜖𝑡) then we can use the “heteroskedasticity and autocorrelation robust” (HAC)
variance estimator

v̂ar[ ̂𝛽] = (
𝑇
∑
𝑡=1

𝑥𝑡𝑥T
𝑡 )

−1

(
𝑇
∑
𝑡=1

̂𝜖2𝑡𝑥𝑡𝑥T
𝑡 +

𝑞
∑
𝑣=1

(1 − 𝑣
𝑞+1)(𝑥𝑡𝑥T

𝑡−𝑣 + 𝑥𝑡−𝑣𝑥T
𝑡 )𝜖𝑡𝜖𝑡−𝑣)(

𝑇
∑
𝑡=1

𝑥𝑡𝑥T
𝑡 )

−1

.

(11.18)
or one of its variants. It is the middle portion of (11.17) that is extended to allow for serial
correlation in 𝑥𝑡𝜖𝑡.

We illustrate the HAC variance estimator with a simulated example where {𝑋𝑡, 𝑌𝑡}100𝑡=1 follow

𝑋𝑡 = 0.8 + 0.8𝑋𝑡−1 + 𝜖𝑡 , 𝜖𝑡 ∼𝑖𝑖𝑑 𝑁(0, 1)
𝑌𝑡 = 0.8 + 0𝑋𝑡 + 𝑢𝑡 , 𝑢𝑡 = 0.95𝑢𝑡−1 + 𝑣𝑡 , 𝑣𝑡 ∼𝑖𝑖𝑑 𝑁(0, 1) .

In this example, there is no relation between 𝑌𝑡 and 𝑋𝑡. The 𝑌𝑡 series is a constant plus an
AR(1) noise term. The 𝑋𝑡 regressor is also an AR(1). We run a regression of 𝑌𝑡 on 𝑋𝑡 and
calculate the variance-covariance matrix of ̂𝛽0 and ̂𝛽1 three different ways, using (11.16), the
“HC2” version of (11.17), and a version of (11.18) called “Newey-West”. The standard errors
are the square root of the diagonal of these variance-covariance matrices.

set.seed(1313) # seed chosen randomly
Xsim <- simAR(0.8,0.8,100)
Ysim <- simAR(0.8,0.95,100)
df <- as_tsibble(data.frame(Xsim,Ysim,t=1:100),index=t)
p1 <- df %>% autoplot(Xsim) + theme_minimal()
p2 <- df %>% autoplot(Ysim) + theme_minimal()
p3 <- df %>% ggplot() + geom_point(aes(x=Xsim,y=Ysim)) + theme_minimal()
(p1 | p2 | p3)
mdlsim <- lm(Ysim~Xsim, data=df)
cat("OLS with Usual Standard Errors\n")
mdlsim %>% lmtest::coeftest()
cat("OLS with Heteroskedasticity-Robust S.E.\n")
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lmtest::coeftest(mdlsim, vcov=sandwich::vcovHC(mdlsim, type="HC2"))
cat("OLS with Heteroskedasticity and Autocorrelation (HAC) Robust S.E.\n")
lmtest::coeftest(mdlsim, vcov=sandwich::NeweyWest)

OLS with Usual Standard Errors

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.24286 0.79751 17.8592 < 2.2e-16 ***
Xsim 0.53330 0.17928 2.9748 0.003692 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

OLS with Heteroskedasticity-Robust S.E.

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.24286 0.85027 16.7509 < 2e-16 ***
Xsim 0.53330 0.18137 2.9404 0.00409 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

OLS with Heteroskedasticity and Autocorrelation (HAC) Robust S.E.

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.24286 2.06874 6.8848 5.551e-10 ***
Xsim 0.53330 0.34783 1.5332 0.1284
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 11.22: Xsim, Ysim and Scatterplot.
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We see that the usual standard errors lead to incorrect inferences. The heteroskedasticity-
robust standard errors are similar to the usual standard errors, which is not surprising since
there is in fact no heteroskedasticity in this data set. They also lead to incorrect inference on
the coefficient of Xsim. The HAC standard errors are substantially larger, resulting in smaller
t-statistics, and correct inference. The HAC standard errors are appropriate as 𝑋𝑡𝜖𝑡 is correlated
(see Fig. 11.23)

ACF(df, Xsim*residuals(mdlsim)) %>% autoplot() + theme_minimal()
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Figure 11.23: Correlation of Residuals Times Regressor.

11.3.4 Dynamically Complete Models

Often we try to ensure that our time series models are dynamically complete, i.e., that sufficient
number of lags of the dependent and independent variables are included so that there are no
dynamics left in the noise term. One reason for this is if the model is being built for forecasting
purposes. In that case we want to ensure that the full dynamic properties of the time series
is accounted for by the model. Another reason is that sometimes we want to include lagged
dependent variables in the specification, and the presence of both lagged dependent variables
and serial correlation may lead to inconsistent estimators. For instance, suppose

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝑢𝑡

with |𝛼1| < 0 and where 𝑢𝑡 = 𝜖𝑡 + 𝜃𝜖𝑡−1, 𝜖𝑡 ∼𝑖𝑖𝑑 (0, 𝜎2). Then the error term 𝑢𝑡 is correlated
with 𝑌𝑡−1 (see exercises for details). This means that contemporaneous exogeneity does not
hold, resulting in inconsistent OLS estimators.

11.3.5 Testing for Autocorrelation

To check for autocorrelation in a regression, it is common practice to plot the sample acf of the
residuals, i.e., after running the regression

𝑌𝑡 = 𝑥T
𝑡 𝛽 + 𝜖𝑡

we collect the residuals ̂𝜖𝑡 and compute its sample acf. This often gives us a good indication of
the presence of serial correlation in the errors.
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To more formally test for autocorrelation, one can run a regression of ̂𝜖𝑡 on lags of ̂𝜖𝑡, and on
the regressors, i.e., regress

̂𝜖𝑡 on ̂𝜖𝑡−1,… , ̂𝜖𝑡−𝑝, 𝑥1,𝑡,… , 𝑥𝐾−1,𝑡

where 𝑥1,𝑡,… , 𝑥𝐾−1,𝑡 are the regressors in 𝑥T
𝑡 . Then test for the significance of the coefficients

on the lagged residuals.

11.3.6 Regression with Trending and Persistent Series

If there is trend or seasonality in the time series in the regression, these must be accounted for.
In the following example, we regress log(ELEC_GEN_SG) on log(IP_SG) twice, once without
seasonals or trend, and another time with both. That is, we run the regressions

𝑌𝑡 = 𝛼0 + 𝛽0𝑋𝑡 + 𝜖𝑡 (11.19)

and
𝑌𝑡 = 𝛼0 + 𝛽0𝑋𝑡 + 𝑠𝑒𝑎𝑠. 𝑑𝑢𝑚𝑚𝑖𝑒𝑠 + 𝛿1𝑡 + 𝛿2𝑡2 + 𝜖𝑡 (11.20)

ts03 <- readxl::read_excel("data\\ts_01.xlsx") %>%
select(DATE, IP_SG, ELEC_GEN_SG) %>%
mutate(DATE=yearmonth(DATE)) %>%
as_tsibble(index=DATE)

## We use the TSLM() function in fpp3 which allows us to include seasonal dummies
## and trend simply by including season() and trend() in the regression formula
mdl_elec1 <- ts03 %>% model(TSLM(log(ELEC_GEN_SG)~log(IP_SG)))
report(mdl_elec1)

Series: ELEC_GEN_SG
Model: TSLM
Transformation: log(ELEC_GEN_SG)

Residuals:
Min 1Q Median 3Q Max

-0.23353 -0.06955 -0.01108 0.06348 0.28123

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.510243 0.028988 155.6 <2e-16 ***
log(IP_SG) 0.836081 0.007494 111.6 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.101 on 418 degrees of freedom
Multiple R-squared: 0.9675, Adjusted R-squared: 0.9674
F-statistic: 1.245e+04 on 1 and 418 DF, p-value: < 2.22e-16

mdl_elec2 <- ts03 %>% model(TSLM(log(ELEC_GEN_SG)~log(IP_SG)+season()+trend()+I(trend()^2)))
report(mdl_elec2)
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Series: ELEC_GEN_SG
Model: TSLM
Transformation: log(ELEC_GEN_SG)

Residuals:
Min 1Q Median 3Q Max

-0.095765 -0.019684 -0.003458 0.021550 0.101889

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.235e+00 4.290e-02 145.325 < 2e-16 ***
log(IP_SG) 8.882e-02 1.701e-02 5.221 2.85e-07 ***
season()year2 -8.801e-02 7.592e-03 -11.593 < 2e-16 ***
season()year3 3.301e-02 7.640e-03 4.321 1.96e-05 ***
season()year4 2.397e-02 7.394e-03 3.242 0.00128 **
season()year5 6.398e-02 7.394e-03 8.654 < 2e-16 ***
season()year6 3.126e-02 7.430e-03 4.207 3.19e-05 ***
season()year7 5.519e-02 7.418e-03 7.441 6.04e-13 ***
season()year8 4.575e-02 7.434e-03 6.153 1.82e-09 ***
season()year9 1.455e-02 7.528e-03 1.933 0.05389 .
season()year10 4.584e-02 7.464e-03 6.142 1.95e-09 ***
season()year11 -9.464e-04 7.396e-03 -0.128 0.89824
season()year12 -3.467e-03 7.525e-03 -0.461 0.64524
trend() 7.748e-03 1.413e-04 54.846 < 2e-16 ***
I(trend()^2) -8.901e-06 1.517e-07 -58.661 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03093 on 405 degrees of freedom
Multiple R-squared: 0.997, Adjusted R-squared: 0.9969
F-statistic: 9768 on 14 and 405 DF, p-value: < 2.22e-16

The log(IP_SG) variable is significant in both regressions, but its estimated coefficient in
the regression with trend and seasonal dummies is one-tenth of that in the regression without
trend and seasonality. Notice that the 𝑅2 is very high. This is usually the case in regressions
with trend.

The model is dynamically incomplete. There is autocorrelation in the error terms, as can be
seen from the ACF of the residuals, reported in Fig. 11.24 below.

p1 <- autoplot(residuals(mdl_elec2), .resid) + theme_minimal()
p2 <- ACF(residuals(mdl_elec2), .resid) %>% autoplot() + theme_minimal()
(p1 | p2) + plot_annotation(tag_levels = 'a')
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Figure 11.24: Residual and Residual ACF.

We add three lags of log(ELEC_GEN_SG) in the next model, i.e., we fit the model

𝑌𝑡 = 𝛼0 + 𝛽0𝑋𝑡 + 𝛾1𝑌𝑡−1 + 𝛾2𝑌𝑡−2 + 𝛾3𝑌𝑡−3

+ 𝑠𝑒𝑎𝑠. 𝑑𝑢𝑚𝑚𝑖𝑒𝑠 + 𝛿1𝑡 + 𝛿2𝑡2 + 𝜖𝑡
(11.21)

Fig. 11.25 shows the fit (in terms of ELEC_GEN_SG, not log(ELEC_GEN_SG)), the residuals,
and the ACF of the residuals.

mdl_elec3 <- ts03 %>% model(TSLM(log(ELEC_GEN_SG)~
log(IP_SG) +
lag(log(ELEC_GEN_SG),1)+
lag(log(ELEC_GEN_SG),2)+
lag(log(ELEC_GEN_SG),3)+
season()+trend()+I(trend()^2)))

report(mdl_elec3)

Series: ELEC_GEN_SG
Model: TSLM
Transformation: log(ELEC_GEN_SG)

Residuals:
Min 1Q Median 3Q Max

-0.0600626 -0.0101659 -0.0001068 0.0115216 0.0646623

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.281e-01 2.029e-01 3.588 0.000375 ***
log(IP_SG) 5.900e-02 1.015e-02 5.810 1.28e-08 ***
lag(log(ELEC_GEN_SG), 1) 3.427e-01 4.624e-02 7.411 7.56e-13 ***
lag(log(ELEC_GEN_SG), 2) 2.662e-01 4.697e-02 5.668 2.77e-08 ***
lag(log(ELEC_GEN_SG), 3) 2.553e-01 4.609e-02 5.539 5.53e-08 ***
season()year2 -7.666e-02 5.145e-03 -14.901 < 2e-16 ***
season()year3 8.175e-02 6.241e-03 13.099 < 2e-16 ***
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season()year4 4.937e-02 7.095e-03 6.958 1.42e-11 ***
season()year5 8.335e-02 9.303e-03 8.959 < 2e-16 ***
season()year6 7.674e-03 5.207e-03 1.474 0.141365
season()year7 3.547e-02 5.743e-03 6.175 1.63e-09 ***
season()year8 1.584e-02 4.830e-03 3.280 0.001130 **
season()year9 -1.017e-02 5.507e-03 -1.847 0.065446 .
season()year10 2.630e-02 4.825e-03 5.450 8.83e-08 ***
season()year11 -2.249e-02 4.846e-03 -4.641 4.72e-06 ***
season()year12 -5.814e-03 5.513e-03 -1.055 0.292223
trend() 6.625e-04 2.737e-04 2.421 0.015939 *
I(trend()^2) -9.391e-07 3.067e-07 -3.062 0.002346 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01825 on 399 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.9989
F-statistic: 2.237e+04 on 17 and 399 DF, p-value: < 2.22e-16

p0 <- autoplot(ts03, ELEC_GEN_SG, color="blue") +
autolayer(fitted(mdl_elec3),.fitted, color="green") +
theme_minimal()

p1 <- autoplot(residuals(mdl_elec3), .resid) + theme_minimal()
p2 <- ACF(residuals(mdl_elec3), .resid) %>%
autoplot() + theme_minimal() + ylim(c(-1,1))

p0 / (p1 | p2) + plot_annotation(tag_levels = 'a')
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Figure 11.25: Residuals and Residual ACF.
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11.3.7 Spurious Regressions

We run another experiment as an illustration of what can go wrong if one is not working with
weakly dependent data. We simulate 200 pairs of unrelated series (𝑋(𝑟)

𝑡 , 𝑌 (𝑟)
𝑡 )100𝑡=1, 𝑟 = 1, 2, ..., 𝑅

as random walks:
𝑋(𝑟)

𝑡 = 𝛼𝑋 +𝑋(𝑟)
𝑡−1 + 𝑢(𝑟)

𝑡

𝑌 (𝑟)
𝑡 = 𝛼𝑌 + 𝑌 (𝑟)

𝑡−1 + 𝑣(𝑟)𝑡

where 𝑢(𝑟)
𝑡 and 𝑣(𝑟)𝑡 are independent Normal(0, 1) noise terms. We set 𝛼𝑋 = 0.5 and 𝛼𝑌 = 0.8.

As explained earlier, these are trending series. For each replication 𝑟, we regress 𝑌 (𝑟)
𝑡 on 𝑋(𝑟)

𝑡 ,
with intercept, and collect the t-statistic on the coefficient of 𝑋(𝑟)

𝑡 . We replicate this experiment
200 times. The histogram of the 200 t-statistics is shown in panel (a) below.

simRW <- function(a0, bigT){
Z <- rep(0,bigT)
u <- rnorm(bigT,0,1)
for (t in 2:bigT){

Z[t] <- a0 + Z[t-1] + u[t]
}
return(Z)

}
simExp <- function(R,bigT,aX,aY){
tstats <- rep(NA,R)
for (r in 1:R){
X <- simRW(aX,bigT)
Y <- simRW(aY,bigT)
df <- data.frame(X,Y)
mdl <- lm(Y~X, data=df)
tstats[r] <- summary(mdl)$coefficients[2,'t value']
}

return(tstats)
}
set.seed(13);
tstats1 <- simExp(200,100,0.4,0.8)
df <- data.frame(tstats1)
ggplot(df, aes(x=tstats1)) +
geom_histogram(binwidth=3, color="black",fill="grey") + theme_minimal()
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Figure 11.26: t-statistic Histogram.
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Because 𝑋(𝑟)
𝑡 and 𝑌 (𝑟)

𝑡 are completely unrelated, one might expect the estimate of the 𝑋(𝑟)
𝑡

coefficient to be statistically insignificant. However, the histogram in Fig. 11.26 above shows
that all of the t-statistics over our 200 replications are greater than 2. Given that the two series
are trending, this is not too surprising. Fig. 11.27 shows the time series plots of one such pair
(panels a and b), together with their scatterplot (panel c). It is clear that the linear regression
of 𝑌 (𝑟)

𝑡 on 𝑋(𝑟)
𝑡 is merely capturing the fact that both series are increasing over time.

set.seed(13)
X <- simRW(0.4,100)
Y <- simRW(0.8,100)
dfplot <- data.frame(t=1:100,X,Y)
p1 <- dfplot %>% ggplot() + geom_point(aes(x=t,y=X)) + theme_minimal()
p2 <- dfplot %>% ggplot() + geom_point(aes(x=t,y=Y)) + theme_minimal()
p3 <- dfplot %>% ggplot() + geom_point(aes(x=X,y=Y)) + theme_minimal()
(p1 | p2 | p3) + plot_annotation(tag_levels = "a")
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Figure 11.27: Trending Series are Highly Correlated.

The interesting thing about this result is that it persists even if 𝛼𝑋 and 𝛼𝑌 are both set to
zero, i.e., if

𝑋(𝑟)
𝑡 = 𝑋(𝑟)

𝑡−1 + 𝑢(𝑟)
𝑡

𝑌 (𝑟)
𝑡 = 𝑌 (𝑟)

𝑡−1 + 𝑣(𝑟)𝑡

so that there are no drifts in the series. Repeating the experiment with this change, we obtain
the following t-statistic histogram over 200 replications.

set.seed(13);
tstats2 <- simExp(200,100,0,0)
df <- data.frame(tstats2)
ggplot(df, aes(x=tstats2)) +
geom_histogram(binwidth=2, color="black",fill="grey") + theme_minimal()
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Figure 11.28: Histogram of t-statistics.

We find that in the vast majority (about 80%) of the replications, the t-statistic is greater
than two, well in excess of 5%. This result is known as “spurious regressions”, and we leave a
fuller discussion of this issue for a later chapter.

11.4 Exercises
Exercise 11.1.

a. Show that the first-order Taylor (i.e., linear) approximation to the (natural) log function
leads to the approximation

𝑌𝑡 − 𝑌𝑡−1
𝑌𝑡−1

≈ ln𝑌𝑡 − ln𝑌𝑡−1 .

b. Show that ln𝑌𝑡 − ln𝑌𝑡−1 can also be viewed as the (exact) continuous growth rate over
period 𝑡 (assume that measurements of 𝑌 are taken at the end of each period).

Exercise 11.2. A popular transformation to apply to time series data is the Box-Cox transfor-
mation

𝑦(𝜆) =
⎧{
⎨{⎩

𝑦𝜆 − 1
𝜆 if 𝜆 ≠ 0

ln(𝑦) if 𝜆 = 0

for some given 𝜆. This transformation is only used when 𝑦 > 0. Show that

𝑦𝜆 − 1
𝜆 → ln(𝑦) as 𝜆 → 0 .

Exercise 11.3. The monthly seasonal dummy specification

𝑌𝑡 = 𝛿0 + 𝛿2(𝑑2,𝑡 − 1
12) + 𝛿3(𝑑3,𝑡 − 1

12) + ⋯ + 𝛿12(𝑑12,𝑡 − 1
12) + 𝜖𝑡. (11.22)

produces an equivalent fit to the specifications (11.4) and (11.5). Find interpretations for the
parameters 𝛿0, 𝛿2,… , 𝛿12.

Exercise 11.4. How would you test for the presence of seasonality using the seasonal dummy
models (11.4), (11.5) and (11.22)? State the exact hypotheses to be tested.
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Exercise 11.5. Suppose the price of a certain product is determined by supply and demand as
specified below:

𝑄𝑠
𝑡 = 𝛼0 + 𝛼1𝑃𝑡 + 𝛼2𝑃𝑡−1 + 𝜖𝑠𝑡 (supply equation)

𝑄𝑑
𝑡 = 𝛿0 + 𝛿1𝑃𝑡 + 𝜖𝑑𝑡 (demand equation)

𝑄𝑠
𝑡 = 𝑄𝑑

𝑡 (market clearing)

where the demand and supply shocks 𝜖𝑠𝑡 and 𝜖𝑑𝑡 are zero-mean independent noise term. Show
that price 𝑃𝑡 follows an AR(1) process by equating the supply and demand equations and solving
for 𝑃𝑡 in terms of 𝑃𝑡−1 and the demand and supply shocks.

Exercise 11.6. Re-parameterize the distributed lag model

𝑌𝑡 = 𝛼0 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + 𝜖𝑡

so that the long-run cumulative dynamic multiplier 𝛽0 + 𝛽1 + 𝛽2 appears as a coefficient on
a regressor. Remark: Estimating a version where the long-run cumulative dynamic multiplier
is a coefficient on a regressor makes it much easier to obtain the standard errors on the sum
̂𝛽0 + ̂𝛽1 + ̂𝛽2.

Exercise 11.7. Suppose
𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝑢𝑡

with |𝛼1| < 1 and where 𝑢𝑡 = 𝜖𝑡 + 𝜃𝜖𝑡−1, 𝜖𝑡 ∼𝑖𝑖𝑑 (0, 𝜎2). In this exercise we will show that 𝑌𝑡−1
and 𝑢𝑡 are correlated, so that even contemporaneous exogeneity does not hold.

a. Show that E[𝑢𝑡𝑢𝑡−1] = 𝜃𝜎2.
b. Show that E[𝑢𝑡𝑢𝑡−𝑗] = 0 for all 𝑗 > 1.
c. Show that 𝑌𝑡 can be written as

𝑌𝑡 =
𝛼0

1 − 𝛼1
+ 𝑢𝑡 + 𝛼1𝑢𝑡−1 + 𝛼2

1𝑢𝑡−2 +…

d. Show that E[𝑢𝑡𝑌𝑡−1] = 𝜃𝜎2.

Exercise 11.8. When we fit (11.20) on the log(ELEC_GEN_SG) series we obtained a very high
𝑅2. This is often the case when fitting models with trend to models. Much of the explanatory
power may be coming from the trend component. Run a regression of log(ELEC_GEN_SG)
on the seasonal dummies and the quadratic trend and collect the residuals. Do the same with
log(IP_SG). Now run a regression of the residuals from the log(ELEC_GEN_SG) regression on
to the residuals from the log(IP_SG) regression. Confirm that the coefficient on the log(IP_SG)
residuals are the same as the coefficient on log(IP_SG) in (11.20). What is the 𝑅2 from the
residual regression?

Exercise 11.9. In the regression (11.21), add one additional lags of log(ELEC_GEN_SG) and
two lags of log(IP_SG). How would you amend the specification in (11.21)?
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11.5 Appendix

There are methods that measure trend without requiring a decision on the form of the trend. The
Hodrick-Prescott (HP) filter, popular among macroeconomists, is one such method. Denoting
the trend as 𝜏𝑡, the method chooses ̂𝜏𝑡, 𝑡 = 1, 2, ..., 𝑇 to minimize the sum of squared residuals
∑𝑇

𝑡=1(𝑦𝑡 − ̂𝜏𝑡)2, while controlling for the overall level of “wigglyness” of the estimated trend.
Specifically, the HP method sets:

̂𝜏ℎ𝑝
𝑡 = argmin ̂𝜏𝑡 (

𝑇
∑
𝑡=1

(𝑦𝑡 − ̂𝜏𝑡)2 + 𝜆
𝑇−1
∑
𝑡=2

[( ̂𝜏𝑡+1 − ̂𝜏𝑡) − ( ̂𝜏𝑡 − ̂𝜏𝑡−1)]
2) (11.23)

for some given value of 𝜆 > 0. The first term in the minimization is the sum of squared residuals.
In the second summation, ̂𝜏𝑡 − ̂𝜏𝑡−1 is the change in the estimated trend from 𝑡 − 1 to 𝑡, and
̂𝜏𝑡+1 − ̂𝜏𝑡 is the change from period 𝑡 to 𝑡 + 1. The term

𝑇−1
∑
𝑡=2

[( ̂𝜏𝑡+1 − ̂𝜏𝑡) − ( ̂𝜏𝑡 − ̂𝜏𝑡−1)]
2

is therefore a measure of how quickly ̂𝜏𝑡 is change at 𝑡 = 2, 3, ..., 𝑇 − 1, analogous to a second
derivative. The second derivative measures how quickly a slope is changing – a large absolute
second-derivative at a certain point indicates that the slope is changing very quickly at the point,
i.e., the function is bending very sharply at that point. In the case of a straight time, the second
derivative is zero everywhere.

We can get a sense of the HP filter works by imagining extreme values of 𝜆. Setting 𝜆 = 0,
the second term becomes irrelevant, and we can minimize (11.23) by setting ̂𝜏ℎ𝑝

𝑡 = 𝑦𝑡 for all 𝑡.
In other words, we simply connect the dots. Setting 𝜆 = ∞, the slightest bend in the proposed
trend results in (11.23) becoming infinity, so minimization is achieved by fitting a straight line
through the data.

The following is an application to the log(IP_SG) with 𝜆 = 129600, the value of 𝜆 that has
been recommended for monthly data. There series in Fig. 11.29(b) is the detrended log(IP_SG)
after the HP trend is removed.

ts03.ts <- as.ts(ts03)
lipsg <- mFilter::hpfilter(log(ts03.ts[,'IP_SG']), type="lambda", freq=129600)
hp_dat <- as_tsibble(ts.union("hpcycle"=lipsg$cycle,

"hptrend"=lipsg$trend,
"log(IP_SG)"=log(ts03.ts[,'IP_SG'])),pivot_longer=F)

p1 <- autoplot(hp_dat, `log(IP_SG)`, color="grey") +
autolayer(hp_dat, hptrend, size=0.8) +
theme_minimal() + theme(legend.position = "bottom")

p2 <- autoplot(hp_dat, hpcycle) + theme_minimal()
(p1 | p2) + plot_annotation(tag_levels = 'a')
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Figure 11.29: HP Filter Applied to log(IP_SG), 𝜆 = 129600.

One difficulty with trend fitting and de-trending is that what remains (cycles, seasonalities,
and other features) depends on what is taken out. It is sometimes difficult to tell what is
trend (“long-term” movements) and what is cycle (“medium term” movements?). Repeating
the exercise above with 𝜆 = 1600 (the value usually recommended for quarterly data, even
though we have monthly data) gives:

## uses mFilter package
lipsg <- mFilter::hpfilter(log(ts03.ts[,'IP_SG']), type="lambda", freq=1600)
hp_dat <- as_tsibble(ts.union("hpcycle"=lipsg$cycle,

"hptrend"=lipsg$trend,
"log(IP_SG)"=log(ts03.ts[,'IP_SG'])),pivot_longer=F)

p1 <- autoplot(hp_dat, `log(IP_SG)`, color="grey") +
autolayer(hp_dat, hptrend, size=0.8) +
theme_minimal() + theme(legend.position = "bottom")

p2 <- autoplot(hp_dat, hpcycle) + theme_minimal()
(p1 | p2) + plot_annotation(tag_levels = 'a')
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Figure 11.30: HP Filter Applied to log(IP_SG), 𝜆 = 1600

The fitted trend fluctuates substantially more, and one suspects that it has picked up more
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than just trend. The fitted line here might be better thought of as “trend and cycle”.
The HP filter is an example of a non-parametric technique. Another much more elementary

non-parametric approach is to use a “moving-average”:

̂𝜏𝑚𝑎
𝑡 = 1

2𝑘 + 1
𝑘

∑
𝑗=−𝑘

𝑌𝑡+𝑗, 𝑡 = 𝑘 + 1, ..., 𝑇 − 𝑘

for some chosen bandwidth 𝑘. Note that the specific version of the technique shown here does
not provide estimates on either end of the series (there are versions that do). The “local” nature
of this method means that the results should be considered “trend and cycle” unless a very large
𝑘 is chosen, but then that would only provide estimates for a small portion of the data. The
following smooths the log(IP_SG) series with 𝑘 = 10

ma_dat <- ts03 %>% mutate("MA"=as.numeric(NA))
k <- 10
T <- dim(ma_dat)[1]
ma_dat[(k+1):(T-k),"MA"] <- zoo::rollmean(log(ma_dat[,"IP_SG"]), 2*k+1, align="center")
autoplot(ma_dat, log(IP_SG), color="darkgray") +

autolayer(ma_dat, MA, size=0.8) + theme_minimal() +
theme(legend.position = "bottom")
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Figure 11.31: Moving Average Filter of log(IP_SG).



References

Angrist, Joshua D., and Alan B. Krueger. 2001. “Instrumental Variables and the Search for
Identification: From Supply and Demand to Natural Experiments.” Journal of Economic
Perspectives 15 (4): 69–85. https://doi.org/10.1257/jep.15.4.69.

Auguie, Baptiste. 2015. gridExtra: Miscellaneous Functions for ”Grid” Graphics. http://
CRAN.R-project.org/package=gridExtra.

Fox, John, and Sanford Weisberg. 2019. An R Companion to Applied Regression. Third.
Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

Hyndman, Rob J, and George Athanasopoulos. 2021. Forecasting: Principles and Practice.
Third. Melbourne, Australia: OTexts. https://otexts.com/fpp3/.

———. 2023. Fpp3.
International Monetary Fund, International Labour Organization, Statistical Office of the Eu-

ropean Union (Eurostat), United Nations Economic Commission for Europe, Organisation
for Economic Co-operation and Development (OECD), and The World Bank. 2020. Con-
sumer Price Index Manual: Concepts and Methods 2020. Washington, D.C.: International
Monetary Fund.

Karline, Soetaert. 2015. plot3D. https://cran.r-project.org/web/packages/plot3D/index.html.
Meschiari, Stefano. 2023. Latex2exp: Use LaTeX Expressions in Plots.
Pedersen, Thomas Lin. 2023. Patchwork: The Composer of Plots.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan,

Romain François, Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.” Journal of
Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.

Wickham, Hadley, and Jennifer Bryan. 2023. Readxl: Read Excel Files.
Zeileis, Achim, Susanne Köll, and Nathaniel Graham. 2020. “Various Versatile Variances: An

Object-Oriented Implementation of Clustered Covariances in R.” J. Stat. Softw. 95 (1).
https://doi.org/10.18637/jss.v095.i01.

277

https://doi.org/10.1257/jep.15.4.69
http://CRAN.R-project.org/package=gridExtra
http://CRAN.R-project.org/package=gridExtra
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://otexts.com/fpp3/
https://cran.r-project.org/web/packages/plot3D/index.html
https://doi.org/10.21105/joss.01686
https://doi.org/10.18637/jss.v095.i01


278 References


	Preface
	What is Econometrics?
	Mathematical Prerequisites
	Software

	A Brief Introduction to R
	Getting Set Up
	Data Types
	Arithmetic and Logical Operators

	Data Structures
	Vectors
	Factor Datatype
	Data Frames
	Matrices, Lists
	Time Series

	Importing Data
	Plotting Data
	More on the R Environment
	User-Defined Functions, Conditional Statements, Loops

	Miscellaneous Mathematics Topics
	The Summation Notation
	Rules for Summation Notation
	Some Useful Formulas
	Double Summations
	Exercises

	An Introduction to Matrices
	Definitions and Notation
	Addition, Scalar Multiplication and Transpose
	Exercises
	Matrix Multiplication
	Exercises
	Partitioned Matrices
	Determinants and Inverses
	Exercises
	Matrices in R

	A Brief Review of Optimization Theory
	Functions of One Variable
	Functions of Many Variables
	Exercises

	Application: Fitting a Straight Line by Least Squares
	Algebraic Properties

	Exercises

	Probability and Expectations Review
	Random Variables, Mean and Variance
	Joint and Conditional Distributions
	Bayes' Theorm
	Mean and Variance, Covariance
	Conditional Means and Variances
	Law of Iterated Expectations
	Independent Random Variables
	Exercises

	A Few More Distributions
	Geometric Distribution
	Uniform Distribution
	Mean, Variance and Other Moments
	The Normal Distribution
	The Log-Normal Distribution
	The Chi-squared, Student-t, and F Distributions
	The Bivariate Normal Distribution
	Exercises

	Prediction

	Statistics Review
	Estimation
	Unbiased Estimators
	Efficiency
	Mean Square Error

	A Coin Toss Example
	Hypothesis Testing
	Asymptotic Analysis
	Consistency and the Law of Large Numbers
	Asymptotic Normality
	The Central Limit Theorem

	Exercises
	Prediction
	Exercises


	Simple Linear Regression
	The Simple Linear Regression Framework
	Ordinary Least Squares
	Statistical Properties of OLS Estimators

	Prediction
	Hypothesis Testing
	Asymptotic Results
	When Baseline Assumptions are Violated
	Heteroskedasticity
	Endogeneity

	Exercises

	Multiple Linear Regression
	OLS Estimation of the Multiple Linear Regression Model
	Algebraic Properties of OLS Estimators
	Statistical Properties of OLS Estimators
	Hypothesis Testing
	Exercises

	Heteroskedasticity and Specification Tests
	An Example
	Weighted Least Squares
	Testing for Heteroskedasticity
	Some Additional Regression Tests
	RESET test for functional form misspecification
	Testing Nonnested Alternatives
	Testing for Normality of Noise Terms

	Exercises

	More Matrix Algebra
	Rank
	A Geometric Viewpoint
	The Rank of a Matrix
	Finding the Rank of a Matrix in R
	Exercises

	Diagonalization of Symmetric Matrices
	Exercises

	Differentiation of Matrix Forms
	Definitions
	Basic Differentiation Formulas
	Exercises

	Vectors and Matrices of Random Variables
	Expectations and Variance-Covariance Matrices
	The Multivariate Normal Distribution
	Exercises

	An Application of the Eigendecomposition of a Symmetric Matrix

	Least Squares with Matrix Algebra
	The Setup
	Ordinary Least Squares
	Algebraic Properties of OLS Estimators
	Statistical Properties of OLS Estimators.
	Hypothesis Testing
	Asymptotic Properties
	Exercises
	Appendix

	Instrumental Variables and Generalized Method of Moments
	Instrumental Variables and the IV Estimator
	A Simultaneous Equation Example
	A Two-Stage Least Squares Perspective

	Multiple Instruments
	Generalized Method of Moments
	Optimal GMM
	Hypothesis Testing after GMM
	GMM Estimation in Stata

	Exercises

	Introduction to Time Series Regressions
	Overview
	Some Simple Time Series Models
	Transformations
	Sample Autocorrelation Function
	Trend
	Seasonality
	Cycles

	Time Series Regressions
	Dynamic Specifications
	Assumptions
	Standard Errors for Dynamically Incomplete Models
	Dynamically Complete Models
	Testing for Autocorrelation
	Regression with Trending and Persistent Series
	Spurious Regressions

	Exercises
	Appendix

	References

