
Simple Linear Regression Notes
Session 2 Supplement

The Simple Linear Regression Model (SLRM) is used to estimate a population conditional
expectation 𝐸(𝑌 ∣ 𝑋) using a sample {𝑋𝑖, 𝑌𝑖}𝑛

𝑖=1 from that population. Reasons for doing
so include prediction, hypothesis testing, and quantifying causal effects. The SLRM will in
many ways be inadequate for these purposes, but it is a good place to start.

The R code in these notes use the following libraries:

library(tidyverse) # For data manipulation
library(patchwork) # For composing graphics
library(latex2exp) # For annotating graphs with mathematics

The Simple Linear Regression Model

The SLRM assumes that the conditional expectation takes the form:

𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋 .

If we define 𝜖 = 𝑌 − 𝛽0 − 𝛽1𝑋, then we can write

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 .

Furthermore, we have

𝐸(𝜖 ∣ 𝑋) = 𝐸(𝑌 − 𝛽0 − 𝛽1𝑋) = 𝐸(𝑌 ∣ 𝑋) − 𝛽0 − 𝛽1𝑋 = 0 .

That is,
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 , 𝐸(𝜖 ∣ 𝑋) = 0 .

If your sample is a representative i.i.d. sample from the population (we assume this is the
case), then it satisfies

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖 , 𝐸(𝜖𝑖 ∣ 𝑋𝑖) = 0 .
The “independent part” of the iid assumptions allows us extend this further to

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖 , 𝐸(𝜖𝑖 ∣ 𝑋1, 𝑋2, … , 𝑋𝑛) = 0 .

The objective is to use the sample to estimate 𝛽0 and 𝛽1, which gives us the estimated
conditional expectation

̂𝐸(𝑌 ∣ 𝑋) = ̂𝛽0 + ̂𝛽1𝑋 .
This is often written as ̂𝑌 = ̂𝛽0 + ̂𝛽1𝑋.
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Terminology:

• 𝑌𝑖 ~ “Regressand”, “Dependent Variable”, “Outcome Variable”.

• 𝑋𝑖 ~ “Regressor”, “Independent Variable”, “Predictor”, “Feature”.

• 𝜖𝑖 ~ “Noise” or “Error” term.

• 𝛽1 is the slope coefficient or simply “coefficient” on 𝑋𝑖.

• 𝛽0 is the (y-) intercept term or “constant” term.

In Machine Learning, 𝛽0 is called the “bias”. We will not use that terminology here.

For any potential estimator ̂𝛽0 and ̂𝛽1, define

• Fitted values: ̂𝑌𝑖 = ̂𝛽0 + ̂𝛽0𝑋𝑖, 𝑖 = 1, 2, … , 𝑛.

• Residuals: ̂𝜖𝑖 = 𝑌𝑖 − ̂𝑌𝑖 = 𝑌𝑖 − ̂𝛽0 − ̂𝛽0𝑋𝑖, 𝑖 = 1, 2, … , 𝑛.

The population conditional expectation 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋 is also called the population
regression function. The estimated conditional expectation

̂𝑌 = ̂𝛽0 + ̂𝛽1𝑋

is also called the sample regression function.

Example Suppose our data is as follows

df <- read_csv("data\\ols01.csv", show_col_types=F) # from tidyverse
glimpse(round(df,2)) # glimpse the data, rounded to 2 dec. places.

Rows: 10
Columns: 2
$ X <dbl> 2.51, 5.17, 1.73, 3.42, 4.03, 4.58, 8.19, 6.59, 8.72, 6.06
$ Y <dbl> 7.64, 10.67, 3.11, 1.85, 11.78, 10.58, 15.45, 9.63, 13.74, 11.80

This data is displayed as a scatterplot in Figure 1, with a potential fitted line, which would
be our estimate of 𝐸(𝑌 ∣ 𝑋). The residuals are marked out as dashed lines, with the
(negative) residual for the fourth observation labelled. The hollow circles on the line are the
points (𝑋𝑖, ̂𝑌𝑖).
How do we determine the fitted line, i.e., how do we choose ̂𝛽0 and ̂𝛽1?
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Estimating the Simple Linear Regression Model

The usual approach for estimating 𝛽0 and 𝛽1 is a method called Ordinary Least Squares,
which proceeds by minimizing the sum of squared residuals. We begin our discussion,
however, with an alternative approach (one that does not use calculus!).

The Law of Iterated Expectations tells us that the condition 𝐸(𝜖 ∣ 𝑋) = 0 implies

𝐸(𝜖) = 0 and Cov(𝜖, 𝑋) = 0 . (1)

Furthermore, since Cov(𝜖, 𝑋) = 𝐸(𝜖𝑋) − 𝐸(𝜖)𝐸(𝑋), we can write (1) as

𝐸(𝜖) = 0 and 𝐸(𝜖𝑋) = 0 . (2)

The “Method of Moments” approach chooses ̂𝛽0 and ̂𝛽1 to mimic these two population
conditions in sample, i.e., we choose ̂𝛽0 and ̂𝛽1 to satisfy the sample moment conditions:

̂𝜖𝑚𝑚 = 1
𝑛

𝑛
∑
𝑖=1

̂𝜖𝑚𝑚
𝑖 = 0

̂𝜖𝑚𝑚𝑋 = 1
𝑛

𝑛
∑
𝑖=1

̂𝜖𝑚𝑚
𝑖 𝑋𝑖 = 0

(3)

where
̂𝜖𝑚𝑚
𝑖 = 𝑌𝑖 − ̂𝛽𝑚𝑚

0 − ̂𝛽𝑚𝑚
1 𝑋𝑖 . (4)

We use the 𝑚𝑚 superscript to highlight the fact that the estimates of 𝛽0 and 𝛽1 are obtained
using the Method of Moments approach. Using a different approach may (or may not) result
in different estimators and different residuals.
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Substituting (4) into the equations in (3), and dropping the 1/𝑛, we have
𝑛

∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑚𝑚
0 − ̂𝛽𝑚𝑚

1 𝑋𝑖) = 0

𝑛
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑚𝑚
0 − ̂𝛽𝑚𝑚

1 𝑋𝑖)𝑋𝑖 = 0
(5)

Distributing the summation in the first equation of (5) and dividing by 𝑛 gives

̂𝛽𝑚𝑚
0 = 𝑌 − ̂𝛽𝑚𝑚

1 𝑋 . (6)

Substituting (6) into the second equation gives
𝑛

∑
𝑖=1

(𝑌𝑖 − (𝑌 − ̂𝛽𝑚𝑚
1 𝑋) − ̂𝛽𝑚𝑚

1 𝑋𝑖)𝑋𝑖 = 0

⟹
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )𝑋𝑖 − ̂𝛽𝑚𝑚
1

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋)𝑋𝑖 = 0 .

Solving for ̂𝛽𝑚𝑚
1 gives

̂𝛽𝑚𝑚
1 = ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )𝑋𝑖
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖
= ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )(𝑋𝑖 − 𝑋)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2 = sample cov(𝑌𝑖, 𝑋𝑖)
sample var(𝑋𝑖)

. (7)

The estimated regression function is then

̂𝑌 = ̂𝛽𝑚𝑚
0 + ̂𝛽𝑚𝑚

1 𝑋

where ̂𝛽𝑚𝑚
0 and ̂𝛽𝑚𝑚

1 given by (6) and (7) respectively. For our data set, we have

beta1mm <- cov(df$Y, df$X)/var(df$X)
beta0mm <- mean(df$Y) - beta1mm * mean(df$X)
cat(paste0("Estimated Model is Yhat = ", round(beta0mm,3), " + ", round(beta1mm,3), "X"))

Estimated Model is Yhat = 1.943 + 1.506X

It can be shown that if 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋, which implies 𝐸(𝜖 ∣ 𝑋) = 0, then1

𝛽0 = 𝐸(𝑌 ) − 𝛽1𝐸(𝑋) and 𝛽1 = Cov(𝑋, 𝑌 )
𝑉 𝑎𝑟(𝑋) . (8)

Since our estimators are obtained from sample equations (3) that mimic the population
moments (2), also implied by 𝐸(𝜖 ∣ 𝑋), it is not surprising that the MM estimators also
mimic the equations in (8).

1We have 𝐸(𝑌 ) = 𝐸(𝐸(𝑌 |𝑋)) = 𝐸(𝛽0 +𝛽1𝑋) = 𝛽0 +𝛽1𝐸(𝑋) which gives the first equality. We also have

𝐸(𝑌 𝑋) = 𝐸(𝐸(𝑌 𝑋 ∣ 𝑋)) = 𝐸(𝑋𝐸(𝑌 ∣ 𝑋)) = 𝐸(𝑋(𝛽0 + 𝛽1𝑋)) = 𝛽0𝐸(𝑋) + 𝛽1𝐸(𝑋2)

Substituting in 𝛽0 = 𝐸(𝑌 ) − 𝛽1𝐸(𝑋) into this equation and solving gives the second equality.
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Another approach, called “Ordinary Least Squares” (OLS) is to choose ̂𝛽0 and ̂𝛽1 to minimize
the sum of squared residuals

𝑆𝑆𝑅 =
𝑛

∑
𝑖=1

̂𝜖2
𝑖 =

𝑛
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖)2

That is,

OLS : ̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1 = arg min
̂𝛽0, ̂𝛽1

𝑛
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖)2 . (9)

It can be shown that SSR is a convex function in ̂𝛽0 and ̂𝛽1 (we omit details of the argument
here). Basic optimization theory then tells us that we can minimize SSR by choosing ̂𝛽𝑜𝑙𝑠

0
and ̂𝛽𝑜𝑙𝑠

1 that solves the first-order conditions2

(1) 𝜕𝑆𝑆𝑅
𝜕 ̂𝛽0

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

= −2
𝑛

∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖) = 0

(2) 𝜕𝑆𝑆𝑅
𝜕 ̂𝛽1

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

= −2
𝑛

∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖)𝑋𝑖 = 0
(10)

Dropping the inconsequential −2 from the equations in (10), we find that the OLS first-
order conditions are exactly the same equations as the sample moment conditions (3) that
we solved using the Method of Moments approach. That is, the OLS estimators are exactly
the same as the MM estimators.

̂𝛽𝑜𝑙𝑠
0 = 𝑌 − ̂𝛽𝑜𝑙𝑠

1 𝑋

̂𝛽𝑜𝑙𝑠
1 = ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )𝑋𝑖
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖
= ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌 )
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2

Moving forward, we will refer to these estimators as OLS estimators rather than Method-
of-Moments estimators. Likewise, the residuals and fitted values will be called the OLS
residuals and OLS fitted values:

• OLS fitted values: ̂𝑌 𝑜𝑙𝑠
𝑖 = ̂𝛽𝑜𝑙𝑠

0 + ̂𝛽𝑜𝑙𝑠
1 𝑋𝑖, 𝑖 = 1, … , 𝑛

• OLS residuals: ̂𝜖𝑜𝑙𝑠
𝑖 = 𝑌𝑖 − ̂𝑌 𝑜𝑙𝑠

𝑖 = 𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖, 𝑖 = 1, … , 𝑛

We will discuss OLS estimator standard errors and other associated statistics in the next
class. The Method-of-Moments approach will be extended when we discuss estimation using
instrumental variables (Session 8).

2If you are having trouble seeing how the differentiation was done, you may find it helpful to write the SSR
out in full before differentiating, i.e.,

𝑆𝑆𝑅 = (𝑌1 − ̂𝛽0 − ̂𝛽1𝑋1)2 + ⋯ + (𝑌𝑛 − ̂𝛽0 − ̂𝛽1𝑋𝑛)2 .

You may find this expression easier to work with. After partially differentiating with respect to 𝛽0 and
𝛽1, collapse the expression back using the summation notation.
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Unbiasedness and Consistency of OLS estimators

The OLS estimators turn out to be unbiased estimators. We focus on ̂𝛽𝑜𝑙𝑠
1 and show unbi-

asedness of ̂𝛽𝑜𝑙𝑠
0 later when we treat the general case. First rewrite ̂𝛽𝑜𝑙𝑠

1 as

̂𝛽𝑜𝑙𝑠
1 = ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )𝑋𝑖
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖
= ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑌𝑖
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖
= ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)(𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖

= 𝛽0 ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋) + 𝛽1 ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖 + ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)𝜖𝑖)

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖

= 𝛽1 + ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)𝜖𝑖

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖

Then

𝐸( ̂𝛽𝑜𝑙𝑠
1 ∣ 𝑋1, … , 𝑋𝑛) = 𝛽1 + ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝐸(𝜖𝑖 ∣ 𝑋1, … , 𝑋𝑛)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖
= 𝛽1

since 𝐸(𝜖𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 0. Furthermore, 𝐸( ̂𝛽𝑜𝑙𝑠
1 ∣ 𝑋1, … , 𝑋𝑛) = 𝛽1 implies 𝐸( ̂𝛽𝑜𝑙𝑠

1 ) = 𝛽1
so ̂𝛽𝑜𝑙𝑠

1 is unbiased.

Note that the key condition that gives us unbiasedness is 𝐸(𝜖𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 0. If this
condition does not hold, then we will not have unbiasedness.

The OLS estimators are also consistent. Focusing again on 𝛽1, we have

̂𝛽𝑜𝑙𝑠
1 = 𝛽1 + ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝜖𝑖
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑋𝑖
= 𝛽1 +

1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝜖𝑖
1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2 .

The denominator of the second term converges in probability to the population variance of
𝑋𝑖. The numerator is the sample covariance of 𝑋𝑖 and 𝜖𝑖 (the latter is not observed, but
that doesn’t matter). Since 𝑋𝑖𝜖𝑖 is iid and 𝐸(𝑋𝜖) = 0 under our assumptions, the Law of
Large Numbers guarantees that it converges in probability to zero. i.e.,

plim
𝑛→∞

̂𝛽𝑜𝑙𝑠
1 = plim

𝑛→∞
𝛽1 +

plim
𝑛→∞

1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝜖𝑖

plim
𝑛→∞

1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2 = 𝛽1 + 0
𝑣𝑎𝑟(𝑋) = 𝛽1 .

Alternatively, we can note that

̂𝛽𝑜𝑙𝑠
1 =

1
𝑛 ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )(𝑋𝑖 − 𝑋)
1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2 = sample cov(𝑋𝑖, 𝑌𝑖)
sample var(𝑋𝑖)

𝑝
⟶ Cov(𝑌 , 𝑋)

Var(𝑋) = 𝛽1

where the last equality holds if

𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋 . (11)

6



The fact that OLS estimators satisfy equations (10) means that the sample covariance of
the OLS residuals and the regressors will always be zero, i.e.,

sample cov.( ̂𝜖𝑜𝑙𝑠
𝑖 , 𝑋𝑖) = 1

𝑛
𝑛

∑
𝑖=1

( ̂𝜖𝑜𝑙𝑠
𝑖 − ̂𝜖)(𝑋𝑖 − 𝑋) = 1

𝑛
𝑛

∑
𝑖=1

̂𝜖𝑜𝑙𝑠
𝑖 𝑋𝑖 = 0

(why does the second equality hold?) This has some important implications. First note
that

𝑌𝑖 = ̂𝑌 𝑜𝑙𝑠
𝑖 + ̂𝜖𝑜𝑙𝑠

𝑖 , 𝑖 = 1, … , 𝑛 .
Since ̂𝑌 𝑜𝑙𝑠

𝑖 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖, it is perfectly correlated with 𝑋𝑖. Since 𝑋𝑖 is uncorrelated with
̂𝜖𝑜𝑙𝑠
𝑖 , ̂𝑌 𝑜𝑙𝑠

𝑖 is uncorrelated with ̂𝜖𝑜𝑙𝑠
𝑖 . Here “uncorrelated” means that the sample covariance

(and hence the sample correlation) is zero. In other words, we have “decomposed” 𝑌𝑖 into two
perfectly uncorrelated parts ̂𝑌 𝑜𝑙𝑠

𝑖 and ̂𝜖𝑜𝑙𝑠
𝑖 . One of these parts ( ̂𝑌 𝑜𝑙𝑠

𝑖 ) is perfectly correlated
with the regressor 𝑋𝑖, the other part ( ̂𝜖𝑜𝑙𝑠

𝑖 ) perfectly uncorrelated with 𝑋𝑖.

Since ̂𝑌 𝑜𝑙𝑠
𝑖 and ̂𝜖𝑜𝑙𝑠

𝑖 are uncorrelated, the sample variance of the sum of the two is the sum
of their sample variances. That is,

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 =
𝑛

∑
𝑖=1

( ̂𝑌 𝑜𝑙𝑠
𝑖 − ̂𝑌 )2 +

𝑛
∑
𝑖=1

̂𝜖2
𝑖,𝑜𝑙𝑠 . (12)

We can skip the division by 𝑛 since that cancels out. Equation (12) is usually stated as
“Sum of Squared Total = Sum of Squared Explained + Sum of Squared Residuals”, or

𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅 .

Furthermore, we can use this to define a measure of goodness-of-fit:

𝑅2 = 1 − 𝑆𝑆𝑅
𝑆𝑆𝑇 (13)

which of course lies between zero and one. If 𝑅2 = 1, then it must be that 𝑆𝑆𝑅 = 0, which
means that the data points all lie on a straight line, and you have a perfect fit. If 𝑅2 = 0,
then it must be that 𝑆𝑆𝑅 = 𝑆𝑆𝑇 , i.e.,

∑𝑛
𝑖=1 ̂𝜖2

𝑖,𝑜𝑙𝑠
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2 = ∑𝑛
𝑖=1(𝑌𝑖 − ̂𝑌 𝑜𝑙𝑠

𝑖 )2

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 = 1 .

This will be the case when ̂𝑌 𝑜𝑙𝑠
𝑖 = 𝑌 for all 𝑖, which happens when ̂𝛽𝑜𝑙𝑠

1 = 0. All other
intermediate levels of fit result in 0 < 𝑅2 < 1.

Of course, we can also write 𝑅2 = 𝑆𝑆𝐸/𝑆𝑆𝑇 , which shows that the 𝑅2 shows the proportion
of the variation in 𝑌𝑖 that is accounted for (some say “explained”) by the regressor 𝑋𝑖. It is
conventional, however, to define the 𝑅2 as in (13). It can also be shown that the 𝑅2 is the
square of the sample correlation between 𝑌𝑖 and ̂𝑌 𝑜𝑙𝑠

𝑖 , which is where it gets its name.

We have assumed regression with an intercept term throughout. In regressions without an
intercept term, (12) doesn’t hold necessarily, and the 𝑅2, as defined in (13), can fall below
zero.
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Alternative Specifications

Although the SLRM assumes (11), there is actually considerable flexibility. The SLRM only
assumes linearity-in-parameters, not linearity-in-variables. Possible specifications include:

• 𝐸(ln 𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1 ln 𝑋
• 𝐸(ln 𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋
• 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1 ln 𝑋
• 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋
• 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋2

and many more. Which specification is appropriate depends on a number of factors, includ-
ing which fit the data best, and which conform best with prior economic considerations. For
instance, if 𝑌 is earnings and 𝑋 is educ, then

𝑒𝑎𝑟𝑛 = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐 + 𝜖 (14)

says that, holding all factors in 𝜖 fixed, an additional 1 year of education is associated with
a increase in earnings of 𝛽 dollars, and that this is true at all levels of 𝑒𝑑𝑢𝑐, which seems
unlikely to be true. On the other hand, if you assume that

ln 𝑒𝑎𝑟𝑛 = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐 + 𝜖 , (15)

then a plus one year difference in 𝑒𝑑𝑢𝑐 is associated with a 100𝛽1 percent increase in wages,
that that this percentage difference is the same regardless of education levels. This seems
more plausible (or is it?)

Example Consider the data in earnings2019.csv

dat <- read_csv("data\\earnings2019.csv", show_col_types=FALSE) # read_csv from tidyverse
head(dat, 3) # show first three rows

# A tibble: 3 x 11
age height educ feduc meduc tenure wexp race male earn totalwork

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
1 59 67 12 3 3 5 30 White 0 36.3 1652
2 43 63 10 4 3 7 13 White 1 6.46 1548
3 28 74 12 2 3 6 9 White 1 13.1 2460

The table was imported as a tidyverse tibble object (a kind of dataframe). The base R
function head() is used to show the first three rows. Another way to view the data is to
use the tidyverse library’s glimpse() function.

8



glimpse(dat)

Rows: 4,946
Columns: 11
$ age <dbl> 59, 43, 28, 66, 63, 42, 64, 38, 37, 44, 38, 27, 26, 24, 55, ~
$ height <dbl> 67, 63, 74, 66, 61, 70, 75, 73, 75, 64, 65, 73, 75, 67, 65, ~
$ educ <dbl> 12, 10, 12, 16, 10, 12, 17, 17, 17, 11, 12, 10, 12, 12, 14, ~
$ feduc <dbl> 3, 4, 2, 4, 2, 4, 2, 8, 8, 4, 3, 3, 4, 4, 7, 4, 4, 3, 4, 3, ~
$ meduc <dbl> 3, 3, 3, 4, 2, 5, 4, 7, 7, 3, 3, 3, 2, 4, 6, 6, 4, 6, 2, 3, ~
$ tenure <dbl> 5, 7, 6, 3, 24, 11, 28, 1, 2, 5, 2, 4, 6, 4, 1, 2, 2, 6, 13,~
$ wexp <dbl> 30, 13, 9, 46, 38, 19, 4, 6, 14, 15, 2, 2, 1, 2, 9, 4, 19, 6~
$ race <chr> "White", "White", "White", "White", "White", "White", "White~
$ male <dbl> 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, ~
$ earn <dbl> 36.319613, 6.459948, 13.100000, 45.098039, 12.890625, 19.230~
$ totalwork <dbl> 1652, 1548, 2460, 2040, 3328, 2600, 3750, 2340, 3084, 2080, ~

There are altogether 4946 obs. You can also use summary(dat) to get a summary of each
variable in the data set. This is left for you to explore.

We fit both specifications (14) and (15) and plot the fitted lines over the scatterplots. In
the code below, we estimate the regressions using the lm() function from base R:

mdl1 <- lm(earn ~ educ, data=dat) # earn ~ educ - 1 for regression without intercept term
dat1 <- tibble(earn = dat$earn,

educ = dat$educ,
yhat = fitted(mdl1),
ehat = residuals(mdl1))

mdl2 <- lm(log(earn) ~ educ, data=dat)
dat2 <- tibble(ln_earn = log(dat$earn),

educ = dat$educ,
yhat = fitted(mdl2),
ehat = residuals(mdl2))

p1 <- ggplot(data=dat1) + geom_point(aes(x=educ, y=earn), size=0.5) +
geom_line(aes(x=educ, y=yhat), color="blue") + theme_bw() + theme(aspect.ratio=1)

p2 <- ggplot(data=dat2) + geom_point(aes(x=educ, y=ln_earn), size=0.5) +
geom_line(aes(x=educ, y=yhat), color="blue") + theme_bw() + theme(aspect.ratio=1)
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Specification (15) seems to work better than specification (14). The fitted model under
specification (15) is

cat("ln_earn_hat = ", round(coef(mdl2)[1],3), " + ", round(coef(mdl2)[2], 3), "educ")

ln_earn_hat = 1.32 + 0.128 educ

Each one-year increase in 𝑒𝑑𝑢𝑐 is associated with a 12.8 percent increase in hourly earnings.
This estimate seems plausible, and appears to fit the data well, except perhaps for lower
levels of 𝑒𝑑𝑢𝑐.
You can get a fuller report on the regression by using the summary() function:

summary(mdl2)

Call:
lm(formula = log(earn) ~ educ, data = dat)

Residuals:
Min 1Q Median 3Q Max

-3.6653 -0.3722 0.0037 0.3695 3.0761

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.319989 0.057541 22.94 <2e-16 ***
educ 0.127996 0.003979 32.17 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5936 on 4944 degrees of freedom
Multiple R-squared: 0.1731, Adjusted R-squared: 0.1729
F-statistic: 1035 on 1 and 4944 DF, p-value: < 2.2e-16

The output contains quite a few statistics that we will discuss later. If you want to skip
the details on the residuals and report only the main estimates and 𝑅2, you can do the
following:

summary(mdl2)$call
cat("\n")
summary(mdl2)$coefficients %>% round(4)
cat("\n")
cat("R-squared:", round(summary(mdl2)$r.squared, 4))

lm(formula = log(earn) ~ educ, data = dat)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.320 0.0575 22.9399 0
educ 0.128 0.0040 32.1700 0

R-squared: 0.1731
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Causal Interpretations and Extensions

The fact that

𝛽1 = Cov(𝑋, 𝑌 )
Var(𝑋)) and ̂𝛽𝑜𝑙𝑠

1 = sample cov(𝑋𝑖, 𝑌𝑖)
sample var(𝑋𝑖)

shows you that what you have estimated is correlation, and of course, correlation does not
imply causality. We have merely estimated a predictive relationship. We will discuss in
class several situations where correlation is a misleading indicator of causality, but as a
quick example, suppose there are two variables 𝑋 and 𝑍 that have direct causal effects on
𝑌 , and that all other variation in 𝑌 not due to 𝑋 and 𝑍 is pure “noise”. In particular,
suppose

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝑢 .
Since 𝑢 is pure random noise, we have 𝐸(𝑢 ∣ 𝑋) = 0. If we subsume 𝛽2𝑍 and 𝑢 into a
composite term 𝜖, then we have

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 where 𝜖 = 𝛽2𝑍 + 𝑢 .

If 𝑍 and 𝑋 happen to be perfectly uncorrelated, then 𝐸(𝑍 ∣ 𝑋) = 0, and we have

𝐸(𝜖 ∣ 𝑋) = 𝐸(𝛽2𝑍 + 𝑢 ∣ 𝑋) = 𝛽2𝐸(𝑍 ∣ 𝑋) + 𝐸(𝑢 ∣ 𝑋) = 0 .

In this case, we still able to obtain an unbiased estimate of 𝛽1 from a regression of 𝑌 on 𝑋.
However, if 𝑍 and 𝑋 are correlated, then 𝐸(𝑍 ∣ 𝑋) ≠ 0, and 𝐸(𝜖 ∣ 𝑋) ≠ 0, and we would
not get unbiased estimates of 𝛽1.

Note that in this example, it is still possible for the conditional expectation 𝐸(𝑌 ∣ 𝑋) to be
linear even if 𝑍 and 𝑋 are correlated. That is, we could still have

𝐸(𝑌 ∣ 𝑋) = 𝛼0 + 𝛼1𝑋 ,

but in this case 𝛼1 will not be equal to 𝛽1, and a simple linear regression of 𝑌𝑖 on 𝑋𝑖 will
give you unbiased estimates of 𝛼1, not 𝛽1.

In order for our estimates to reflect a causal effect of 𝑋 on 𝑌 , we will either have to sample
our data in such a way such that the error term in the regression 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖
is uncorrelated with the regressor (such as in randomized controlled trials), or we have to
control for all other factors affecting 𝑌 that are correlated with 𝑋. The latter can be done
by estimating multiple linear regression models such as

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝜖𝑖 .

Coming sessions will discuss the details of this approach. Note that even if 𝑋 and 𝑍 were
not correlated, so that a simple linear regression of 𝑌 on 𝑋 gives you an unbiased estimate
of the causal effect of 𝑋 on 𝑌 , it is often still useful to include 𝑍 into the regression, because
doing so will often reduce the standard error on your estimates.

There are some situations where multiple linear regression is not feasible, or cannot solve
the underlying problem causing biased estimation of causal relationships. In these cases we
have to turn to other techniques. We will discuss some of these situations in class.
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Even if we are interested only in estimating predictive relationships, it is often still necessary
to use the multiple linear regression framework. For instance, in the earnings example we
may want to model the conditional expectation 𝐸(ln 𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐) as

𝐸(ln 𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐) = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐 + 𝛽2𝑒𝑑𝑢𝑐2 .

In this case we would estimate the multiple linear regression model

ln 𝑒𝑎𝑟𝑛𝑖 = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑖 + 𝛽2𝑒𝑑𝑢𝑐2
𝑖 + 𝜖𝑖

which requires using the multiple linear regression framework. This gives us the following
fit:

mdl3 <- lm(log(earn) ~ educ + I(educ^2), data=dat)
dat3 <- tibble(ln_earn = log(dat$earn),

educ = dat$educ,
yhat = fitted(mdl3),
ehat = residuals(mdl3))

p3 <- ggplot(data=dat3) + geom_point(aes(x=educ, y=ln_earn), size=0.5) +
geom_line(aes(x=educ, y=yhat), color="blue") + theme_bw() + theme(aspect.ratio=1)
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This should give better predictions at lower levels of educ. In this example, we would expect
that the prediction errors will be quite large, since educ only explains a small proportion
of the variation in ln earn. You can try yet more flexible functional forms, though in this
case it seems unlikely you will be able to improve on the fit by doing so. Gains are more
likely to come from including yet other predictors, perhaps

ln 𝑒𝑎𝑟𝑛𝑖 = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑖 + 𝛽2𝑒𝑑𝑢𝑐2
𝑖 + 𝛽3𝑚𝑎𝑙𝑒𝑖 + 𝛽4𝑎𝑔𝑒𝑖 + 𝜖𝑖 .

More details on predictive regressions in Session 7.
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Appendix: A Bit of Optimization Theory

We will only need to deal with the simplest cases. Suppose we have a function 𝑓(𝑥), and want to
find 𝑥∗ such that 𝑓(𝑥∗) is maximized or minimized. We can use the following results:

• If 𝑓″(𝑥) > 0 for all 𝑥 (function is convex), then 𝑓 ′(𝑥∗) = 0 ⇒ 𝑥∗ minimizes 𝑓(𝑥)
• If 𝑓″(𝑥) < 0 for all 𝑥 (function is concave), then 𝑓 ′(𝑥∗) = 0 ⇒ 𝑥∗ maximizes 𝑓(𝑥)

See Figure 2(a) and (b). These conditions are usually stated as “first order conditions” and “second
order conditions”.

E.g., Find the minimum of 𝑓(𝑥) = 𝑒2(𝑥−1) − 1. Since 𝑓 ′(𝑥) = 2𝑒2(𝑥−1) and 𝑓″(𝑥) = 4𝑒2(𝑥−1):

FOC: 𝑓 ′(𝑥∗) = 2𝑒2(𝑥∗−1) = 0, so 𝑥∗ = 1 is a candidate minimum point.

SOC: Since 𝑓″(𝑥) = 4𝑒2(𝑥−1) > 0 for all 𝑥, 𝑥∗ = 1 is a global minimum point.

Note that the conditions stated above are sufficient, not necessary. See Figure 2(c) for an example
where the function is neither fully concave or fully convex, yet it has a global maximum, a global
minimum, and a local maximum.
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Figure 2: Three optimization examples.

The same ideas applies to functions of two variables 𝑓(𝑥, 𝑦). Stationary points of such functions are
points (𝑥∗, 𝑦∗) such that 𝑓 ′

𝑥(𝑥∗, 𝑦∗) = 0 and 𝑓 ′
𝑦(𝑥∗, 𝑦∗) = 0. If 𝑓 concave, then the stationary point is

the maximum point. If 𝑓 is convex, then the stationary point is the minimum point. The following
conditions can be used to check for concavity / convexity of functions of two variables:

• If 𝑣2
1

𝜕2𝑓(𝑥, 𝑦)
𝜕𝑥2 + 2𝑣1𝑣2

𝜕2𝑓(𝑥, 𝑦)
𝜕𝑥𝜕𝑦 + 𝑣2

2
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2 < 0 for all 𝑣1, 𝑣2 not both zero

then 𝑓(𝑥, 𝑦) is concave

• If 𝑣2
1

𝜕2𝑓(𝑥, 𝑦)
𝜕𝑥2 + 2𝑣1𝑣2

𝜕2𝑓(𝑥, 𝑦)
𝜕𝑥𝜕𝑦 + 𝑣2

2
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2 > 0 for all 𝑣1, 𝑣2 not both zero
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then 𝑓(𝑥, 𝑦) is convex.

A rough explanation is as follows. Let 𝑥 = 𝑥0 + 𝑣1𝑠, 𝑦 = 𝑦0 + 𝑣2𝑠, 𝑣2
1 + 𝑣2

2 = 1, and

𝑧(𝑠) = 𝑓(𝑥(𝑠), 𝑦(𝑠))

Note that 𝑧(0) = 𝑓(𝑥0, 𝑦0), 𝑑𝑥/𝑑𝑠 = 𝑣1, 𝑑𝑦/𝑑𝑥 = 𝑣2. The “Directional Derivative” at (𝑥0, 𝑦0) in
direction 𝑣 = (𝑣1, 𝑣2) is then

𝑑𝑧
𝑑𝑠 = 𝑓 ′

𝑥(𝑥, 𝑦)𝑑𝑥
𝑑𝑠 + 𝑓 ′

𝑦(𝑥, 𝑦)𝑑𝑦
𝑑𝑠 = 𝑣1𝑓 ′

𝑥(𝑥, 𝑦) + 𝑣2𝑓 ′
𝑦(𝑥, 𝑦)

This is a “directional derivative” since a one-unit increase in 𝑠 leads to a increase in 𝑥 by 𝑣1 and
an increase in 𝑦 by 𝑣2, so (𝑥, 𝑦) moves in the direction (𝑣1, 𝑣2). We are asking what happens to the
function when we move in that direction. For a point (𝑥0, 𝑦0) to be a minimum or maximum point,
the slope in all directions must be zero. This is guaranteed by

𝑓 ′
𝑥(𝑥0, 𝑦0) = 0, 𝑓 ′

𝑥(𝑥0, 𝑦0) = 0 .

The second directional derivative is

𝑑2𝑧
𝑑𝑠2 = 𝑓 ′

𝑥(𝑥, 𝑦)𝑑𝑥
𝑑𝑠 + 𝑓 ′

𝑦(𝑥, 𝑦)𝑑𝑦
𝑑𝑠

= [𝑓″
𝑥𝑥(𝑥, 𝑦)𝑑𝑥

𝑑𝑠 + 𝑓″
𝑥𝑦(𝑥, 𝑦)𝑑𝑦

𝑑𝑠 ] 𝑑𝑥
𝑑𝑠 + 𝑓 ′

𝑥(𝑥, 𝑦)𝑑2𝑥
𝑑𝑠2 +

[𝑓″
𝑦𝑥(𝑥, 𝑦)𝑑𝑥

𝑑𝑠 + 𝑓″
𝑦𝑦(𝑥, 𝑦)𝑑𝑦

𝑑𝑠 ] 𝑑𝑦
𝑑𝑠 + 𝑓 ′

𝑦(𝑥, 𝑦)𝑑2𝑦
𝑑𝑠2

= 𝑣2
1𝑓″

𝑥𝑥(𝑥, 𝑦) + 2𝑣1𝑣2𝑓″
𝑥𝑦(𝑥, 𝑦) + 𝑣2

2𝑓″
𝑦𝑦(𝑥, 𝑦)

since 𝑑𝑥/𝑑𝑠 = 𝑣1, 𝑑𝑦/𝑑𝑠 = 𝑣2, and 𝑑2𝑥/𝑑𝑠2 = 𝑑2𝑦/𝑑𝑠2 = 0.

The function 𝑓 is convex if its slope is always increasing in all directions, i.e., 𝑧″(0) > 0 for all 𝑣 and
for all (𝑥0, 𝑦0). It is concave if its slope is always decreasing in all directions, i.e., 𝑧″(0) < 0 for all 𝑣
and for all (𝑥0, 𝑦0).
Example: Find minimum point of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2.

We have 𝑓 ′
𝑥(𝑥, 𝑦) = 2𝑥 + 𝑦 and 𝑓 ′

𝑦(𝑥, 𝑦) = 𝑦 + 2𝑦
Therefore

FOC:
𝑓 ′

𝑥(𝑥∗, 𝑦∗) = 2𝑥∗ + 𝑦∗ = 0
𝑓 ′

𝑦(𝑥∗, 𝑦∗) = 2𝑦∗ + 𝑥∗ = 0
⇒ (𝑥∗, 𝑦∗) = (0, 0) stationary point

SOC: We have 𝑓″
𝑥𝑥(𝑥, 𝑦) = 2, 𝑓″

𝑥𝑦(𝑥, 𝑦) = 𝑓″
𝑦𝑥(𝑥, 𝑦) = 1 and 𝑓″

𝑦𝑦(𝑥, 𝑦) = 2, therefore

𝑣2
1𝑓″

𝑥𝑥(𝑥, 𝑦) + 2𝑣1𝑣2𝑓″
𝑥𝑦(𝑥, 𝑦) + 𝑣2

2𝑓″
𝑦𝑦(𝑥, 𝑦)

= 2(𝑣2
1 + 𝑣1𝑣2 + 𝑣2

2)
= 2[(𝑣1 + 0.5𝑣2)2 + 0.75𝑣2

2] > 0

for all 𝑣1, 𝑣2 not both equal to zero, i.e., the function 𝑓(𝑥, 𝑦) is convex.

Therefore (𝑥∗, 𝑦∗) = (0, 0) is a minimum point of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2.
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