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Chapter 7

Probability and Statistics

Probability Theory is the mathematics for dealing with randomness. For-
mal probability theory first developed from a desire to analyze games of
chance, then quickly spread to applications in insurance, and from there
to all disciplines needing to deal with randomness, uncertainty, and even
subjectivity. One application of probability theory is in statistics, which is
concerned with methods for learning about a population using information
contained in a sample from that population.

7.1 Probability Theory
7.1.1 Probability Functions
A random phenomenon is some activity (human or otherwise) with a range
of possible outcomes, where which outcome occurs can be thought of, at
some level, as due to chance. An analysis of random phenomena using
probabilities begins by identifying the set of all possible outcomes (the
sample space or outcome space), and then assigning probabilities to all
events of interest (an event is any subset of the sample space). Probabilities
assigned should make sense from a subject-matter point of view, and must
satisfy the probability axioms: if Ω is the sample space, then we must
have

(a) Pr(𝐴) ≥ 0 for all events 𝐴 ⊂ Ω,
(b) Pr(𝐴 ∪ 𝐵) = Pr(𝐴) + Pr(𝐵) if 𝐴 and 𝐵 are disjoint events, i.e., if

𝐴 ∩ 𝐵 = ∅, and
(c) Pr(Ω) = 1

where “Pr(𝐴)” stands for “the probability of event 𝐴 occurring”.

Example 7.1 Suppose a box contains 20 red balls, 5 green balls and 75
blue balls. The activity is to randomly draw one ball from the box, and
the outcome of interest is the color of the ball. The sample space is Ω =
{𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}. To model this activity, we assign probabilities to events
such as “a blue ball is drawn” 𝐴 = {𝑏𝑙𝑢𝑒}, or “either a red ball or a green
ball is drawn” 𝐵 = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}, or “either a green ball or a blue ball is
drawn” 𝐶 = {𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒} , and so on. The probabilities must satisfy the
probability axioms.

For simple examples like this where there are a finite number of possi-
ble outcomes, the easiest way to make probability assignments that satisfy
the probability axioms is to assign probabilities between zero and one to
each of the elementary outcomes {𝑟𝑒𝑑}, {𝑔𝑟𝑒𝑒𝑛} and {𝑏𝑙𝑢𝑒} such that all
the probabilities sum to one, and then define the probability of events
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to be the sum of the probabilities of the outcomes that make up the
event. For example, after assigning Pr({𝑔𝑟𝑒𝑒𝑛}) and Pr({𝑏𝑙𝑢𝑒}), define
Pr({𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}) = Pr({𝑔𝑟𝑒𝑒𝑛}) + Pr({𝑏𝑙𝑢𝑒}).

Since the draw is random (you mix the balls up well, and draw a
ball without looking into the box), it seems reasonable to assume that
Pr({𝑟𝑒𝑑}) = 0.20, Pr({𝑔𝑟𝑒𝑒𝑛}) = 0.05 and Pr({𝑏𝑙𝑢𝑒}) = 0.75. This results
in the probability assignments in Table 7.1.

Table 7.1. Probability assignments for a draw from a box with 20 red, 5
green and 75 blue balls.

Event Probability of Event

∅ 0
{𝑟𝑒𝑑} 0.20

{𝑔𝑟𝑒𝑒𝑛} 0.05
{𝑏𝑙𝑢𝑒} 0.75

{𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛} 0.25
{𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒} 0.95

{𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒} 0.80
{𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒} 1

The mapping from events to probabilities in Table 7.1 is called a prob-
ability function. It is an example of a set function, i.e., a function whose
domain is a set of sets. For completeness, we include the empty set in our
list of events, though this “empty event” will be given probability zero.

The following theorem regarding probability functions reflects behaviour
that we expect of probabilities:

Theorem 7.1 For any probability function, and for any events 𝐴 and 𝐵,
we have

(a) Pr(𝐴) ≤ 1,
(b) Pr(𝐵 ∩ 𝐴𝑐) = Pr(𝐵) − Pr(𝐴 ∩ 𝐵),
(c) Pr(𝐴𝑐) = 1 − Pr(𝐴) where 𝐴𝑐 = Ω−𝐴 and Ω is the sample space,
(d) Pr(𝐴 ∪ 𝐵) = Pr(𝐴) + Pr(𝐵) − Pr(𝐴 ∩ 𝐵),
(e) 𝐴 ⊂ 𝐵 ⇒ Pr(𝐴) ≤ Pr(𝐵).

These are straightforward to prove, and easy to see by appealing to
Venn diagrams such as Fig. 7.1 where the entire rectangle represents the
sample space Ω and the sets represent events. In such a diagram, the area of
a set represents the probability with which the corresponding event occurs.
The area of the whole rectangle is Pr(Ω) = 1. Two events with the same
probability of occurring are represented by sets of the same area, such as
the sets representing events 𝐴 and 𝐵 in Fig. 7.1.
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Fig. 7.1. Representing events and event probabilities with a Venn diagram.

7.1.2 Conditional Probabilities
Sometimes we want to update the probability of an event given new infor-
mation. Suppose a ball is drawn from the box in Example 7.1. Without
any information regarding the color of the ball, you would say that there
is a 1/5 probability that a ball is red. If you are told that the drawn ball is
either red or green, you would update the probability of a red ball to 4/5,
since out of the 25 red and green balls in the box, 20 are red. In terms of
the Venn diagram in Fig. 7.1, if we know that event 𝐵 has occurred, then
the sample space is “reset” to the set 𝐵, and the probability of 𝐴 occurring
is the ratio of the area of the set 𝐴 ∩ 𝐵 to the area of the set 𝐵. That is,
the conditional probability of 𝐴 given 𝐵, is

Pr(𝐴 ∣ 𝐵) = Pr(𝐴 ∩ 𝐵)
Pr(𝐵) (7.1)

for all sets 𝐴 and 𝐵 such that Pr(𝐵) ≠ 0. Likewise, we have

Pr(𝐵 ∣ 𝐴) = Pr(𝐴 ∩ 𝐵)
Pr(𝐴) . (7.2)

Example 7.2 A deck of playing cards has 52 cards divided equally into
four suites: clubs, diamonds, hearts and spades. Each suite of 13 cards
comprises an ace, nine cards labeled 2 to 10, and three picture cards Jack,
Queen and King. If the deck is well-shuffled, we can assume that each card
has a 1/52 chance of getting drawn. What is the probability that two cards
randomly drawn from the deck are both aces?

Let 𝐴 be the event that an ace is drawn on the first draw and 𝐵 be the
event that an ace is drawn on the second draw. What is the probability of
drawing two aces? The probability of drawing an ace on the first draw is
Pr(𝐴) = 4/52. If an ace was drawn on the first draw, then there are 3 aces
out of the 51 cards remaining, so the conditional probability of drawing an
ace on the second draw given that an ace was drawn in the first draw is
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Pr(𝐵 ∣ 𝐴) = 3/51. From (7.1), we can calculate the probability of 𝐴 and 𝐵
both occurring (the probability that we get aces on both draws) to be

Pr(𝐴 ∩ 𝐵) = Pr(𝐵 ∣ 𝐴)Pr(𝐴) = 3
51

4
52 = 1

221 .

The events 𝐴 and 𝐵 in Example 7.2 are dependent. The probability of
drawing an ace in the second draw depends on whether or not an ace was
drawn in the first draw. Two events 𝐴 and 𝐵 are independent events if

Pr(𝐴 ∩ 𝐵) = Pr(𝐵)Pr(𝐴) . (7.3)

If (7.3) holds, then

Pr(𝐵 ∣ 𝐴) = Pr(𝐵) and Pr(𝐴 ∣ 𝐵) = Pr(𝐴) .

Whether or not one event occurs has no bearing on the probability of the
other event occurring.

Example 7.3 Consider two random tosses of a coin. Let 𝐴 be the event
that the first toss is heads (the event that the first toss is tails is 𝐴𝑐), and
let 𝐵 be the event that the second toss is heads. The fact that heads
is obtained on the first toss should not affect the probability of getting
heads on the second toss, i.e., 𝐴 and 𝐵 should be independent events, so
Pr(𝐵 ∣ 𝐴) = Pr(𝐴), and Pr(𝐴 ∩ 𝐵) = Pr(𝐴)Pr(𝐵). If the probability of
getting heads is 𝑝, then the probability of getting two heads from two tosses
of the coin is 𝑝2.

It is straightforward to show that if 𝐴 and 𝐵 are independent events,
then 𝐴 and 𝐵𝑐, 𝐴𝑐 and 𝐵, and 𝐴𝑐 and 𝐵𝑐 are also pairwise independent,
meaning that

Pr(𝐴 ∩ 𝐵𝑐) = Pr(𝐴)Pr(𝐵𝑐) , Pr(𝐴𝑐 ∩ 𝐵) = Pr(𝐴𝑐)Pr(𝐵)
and Pr(𝐴𝑐 ∩ 𝐵𝑐) = Pr(𝐴𝑐)Pr(𝐵𝑐)

all hold. For instance, we have

Pr(𝐴 ∩ 𝐵𝑐) = Pr(𝐴) − Pr(𝐴 ∩ 𝐵)
= Pr(𝐴) − Pr(𝐴)Pr(𝐵)
= Pr(𝐴)(1 − Pr(𝐵)) = Pr(𝐴)Pr(𝐵𝑐) .

Referring back to Example 7.3, the probability of heads followed by tails,
and tails followed by heads, are both 𝑝(1 − 𝑝), and the probability of two
tails is (1 − 𝑝)2.

Do not confuse independent events with mutually exclusive events. If 𝐴
and 𝐵 are mutually exclusive events, i.e., if 𝐴 and 𝐵 are disjoint, then the
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occurrence of one of them means that the other did not occur. Mutually
exclusive events are very much dependent events!

A set of three or more events are independent if the probability of the
intersection of any selection of the events is equal to the product of the
unconditional probabilities of the selected events. Pairwise independence is
not enough. For example, three events 𝐴1, 𝐴2 and 𝐴3 are independent if

Pr(𝐴1 ∩ 𝐴2) = Pr(𝐴1)Pr(𝐴2) , Pr(𝐴1 ∩ 𝐴3) = Pr(𝐴1)Pr(𝐴3) ,
Pr(𝐴2 ∩ 𝐴3) = Pr(𝐴2)Pr(𝐴3)
and Pr(𝐴1 ∩ 𝐴2 ∩ 𝐴3) = Pr(𝐴1)Pr(𝐴2)Pr(𝐴3) .

Example 7.4 Suppose a coin is tossed three times. The sample space is

Ω = {𝐻𝐻𝐻,𝐻𝐻𝑇 ,𝐻𝑇𝐻,𝐻𝑇𝑇 , 𝑇𝐻𝐻, 𝑇𝐻𝑇 , 𝑇𝑇𝐻, 𝑇𝑇𝑇} .

Suppose each of the eight outcomes in Ω occur with equal probability. Let

𝐴 = {𝐻𝐻𝐻,𝐻𝐻𝑇 ,𝐻𝑇𝐻,𝐻𝑇𝑇} (heads on the first toss)
𝐵 = {𝐻𝐻𝐻,𝐻𝐻𝑇 , 𝑇𝐻𝐻, 𝑇𝐻𝑇} (heads on the second toss)
𝐶 = {𝐻𝑇𝐻,𝐻𝑇𝑇 , 𝑇𝐻𝐻, 𝑇𝐻𝑇} (different outcomes on first two tosses)

Each of these has probability

Pr(𝐴) = Pr(𝐵) = Pr(𝐶) = 1/2 .

It is easy to verify that these three events are pairwise independent:

Pr(𝐴 ∩ 𝐵) = 1/4 = Pr(𝐴)Pr(𝐵) ,
Pr(𝐴 ∩ 𝐶) = 1/4 = Pr(𝐴)Pr(𝐶) and Pr(𝐵 ∩ 𝐶) = 1/4 = Pr(𝐵)Pr(𝐶) .
However, we have

Pr(𝐴 ∩ 𝐵 ∩ 𝐶) = 0 ≠ Pr(𝐴)Pr(𝐵)Pr(𝐶) .

Although 𝐴, 𝐵 and 𝐶 are pairwise independent, the events 𝐶 and 𝐴 ∩ 𝐵
are mutually exclusive.

On the other hand, if we replace the event 𝐶 with

𝐷 = {𝐻𝐻𝐻,𝐻𝑇𝐻, 𝑇𝐻𝐻, 𝑇𝑇𝐻} (heads on the third toss)

then the events 𝐴, 𝐵 and 𝐷 are independent. We have already shown
Pr(𝐴 ∩ 𝐵) = Pr(𝐴)Pr(𝐵). We have

Pr(𝐴 ∩ 𝐷) = {𝐻𝐻𝐻,𝐻𝑇𝐻} = 1/4 = Pr(𝐴)Pr(𝐷) ,
Pr(𝐵 ∩ 𝐷) = {𝐻𝐻𝐻,𝑇𝐻𝐻} = 1/4 = Pr(𝐵)Pr(𝐷)

and Pr(𝐴 ∩ 𝐵 ∩𝐷) = {𝐻𝐻𝐻} = 1/8 = Pr(𝐴)Pr(𝐵)Pr(𝐷) .
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7.1.3 Bayes’ Theorm
The identities

Pr(𝐴 ∣ 𝐵)Pr(𝐵) = Pr(𝐴 ∩ 𝐵) = Pr(𝐵 ∣ 𝐴)Pr(𝐴)
imply Bayes’ Theorem:1

Pr(𝐴 ∣ 𝐵) = Pr(𝐵 ∣ 𝐴)Pr(𝐴)
Pr(𝐵) and Pr(𝐵 ∣ 𝐴) = Pr(𝐴 ∣ 𝐵)Pr(𝐵)

Pr(𝐴) . (7.4)

Bayes’ Theorem is useful because it shows us how to “turn conditional
probabilities around”.
Example 7.5 Imagine that an infectious disease enters a population of
101000 people but that a large percentage — 100000 out of 101000 members
of the population have vaccinated themselves against this disease. Of the
1000 not vaccinated, 50 percent (500 people) caught the disease. Only one
percent of these 100000 vaccinated people (1000 people) eventually caught
the disease, so the vaccine is effective.

Of those that caught the disease, many more were vaccinated than un-
vaccinated (1000 out of 1500, or about 67 percent). But this is simply
because a large proportion of the population received the vaccine, and 1
percent of 100000 is more than 50 percent of 1000. The proportion of
those that caught the disease who had previously received the vaccine is
analogous to the probability of having been vaccinated conditional on having
caught the disease, Pr(vaccinated ∣ infected). But this proportion doesn’t
say much about the effectiveness of the vaccine, if that is what we are
interested in. What we want instead is the probability of getting infected
conditional on having been vaccinated, i.e., Pr(infected ∣ vaccinated), which
is 1000/100000.

How do we get from

Pr(vaccinated ∣ infected) = 1000
1500 to Pr(infected ∣ vaccinated) = 1000

100000 ?

Bayes’ Theorem tells us that

Pr(infected ∣ vaccinated) = Pr(vaccinated ∣ infected)Pr(infected)
Pr(vaccinated)

=
1000
1500 ⋅ 1500

101000
100000
101000

= 1000
100000 = 0.01 .

1Thomas Bayes (1701-1761), an English Presbytarian minister, philosopher and prob-
ability theorist. The theorem appears in a work published only after his death. The
theorem is the starting point of an approach to statistics called Bayesian Statistics
which treats parameters as random variables, and probability as a measure of uncer-
tainty regarding these variables. The approach to statistics that we present later in this
chapter is known as classical statistics, or frequentist statistics, which views probability
as the frequency of events over large number of trials.
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Another way to state Bayes’ Theorem is to use the fact that if a set of
events {𝐴1, 𝐴2, ..., 𝐴𝑚} partitions the sample space, then

Pr(𝐵) = Pr(𝐵 ∣ 𝐴1)Pr(𝐴1)+Pr(𝐵 ∣ 𝐴2)Pr(𝐴2)+⋯+Pr(𝐵 ∣ 𝐴𝑚)Pr(𝐴𝑚) .
This is the Law of Total Probabilities, illustrated in Fig. 7.2 for a
partitioning set of events {𝐴1, 𝐴2,… ,𝐴6}. Since this set of events par-
titions the entire sample space, it also partitions 𝐵. The total probabil-
ity of event 𝐵 is then the sum ∑6

𝑗=1 Pr(𝐵 ∩ 𝐴𝑗), which is the same as
∑6

𝑗=1 Pr(𝐵 ∣ 𝐴𝑗)Pr(𝐴𝑗).
Bayes’ Theorem can therefore be written, for any 𝐴𝑖 in a partitioning

set of events {𝐴𝑗}𝑚𝑖=1, as

Pr(𝐴𝑖 ∣ 𝐵) = Pr(𝐵 ∣ 𝐴𝑖)Pr(𝐴𝑖)
Pr(𝐵) = Pr(𝐵 ∣ 𝐴𝑖)Pr(𝐴𝑖)

∑𝑚
𝑗=1 Pr(𝐵 ∣ 𝐴𝑗)Pr(𝐴𝑗)

. (7.5)

A1 A2 A3

A4 A5 A6

B ∩ A1 B ∩ A2 B ∩ A3

B ∩ A4 B ∩ A5 B ∩ A6

B

Fig. 7.2. Law of Total Probabilities.

Example 7.6 Suppose 0.05 of males (𝑚) in a certain population are col-
orblind (𝑐𝑏), whereas only 0.005 of females (𝑓) are colorblind. Moreover,
suppose there are equal numbers of males and females in the population.
Suppose a randomly drawn person from this population is colorblind. What
are the chances that this person is male?

We seek Pr(𝑚 ∣ 𝑐𝑏) given Pr(𝑐𝑏 ∣ 𝑚) = 0.05, Pr(𝑐𝑏 ∣ 𝑓) = 0.005 and
Pr(𝑚) = Pr(𝑓) = 0.5. From Bayes’ Theorem we have

Pr(𝑚 ∣ 𝑐𝑏) = Pr(𝑐𝑏 ∣ 𝑚)Pr(𝑚)
Pr(𝑐𝑏 ∣ 𝑚)Pr(𝑚) + Pr(𝑐𝑏 ∣ 𝑓)Pr(𝑓)

= 0.05 ⋅ 0.5
0.05 ⋅ 0.5 + 0.005 ⋅ 0.5 ≈ 0.909 .

There is an approximately 91% chance that a randomly drawn person from
this population is male, given that the person drawn is colorblind.



August 20, 2024 16:34 book-9x6 Baydur-Preve-Tay index page 234

234 Mathematics and Programming for the Quantitative Economist

7.1.4 Random Variables
If we map the possible outcomes {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒} in Example 7.1 to nu-
merical values, we get a random variable.

Example 7.7 You play a game where you ante up $100 to draw a ball
from the box of red, green and blue balls in Example 7.1. If a blue ball is
drawn, the $100 is returned to you. If a red ball is drawn, you lose the $100.
If a green ball is drawn, you win $1000, a sum which includes the initial
$100 that you put up. Let 𝑋 be your winnings (or losses) from playing this
game. Then 𝑋 is a random variable with possible outcomes {−100, 0, 1000}
dollars, with probability distribution function (pdf) 𝑓𝑋(𝑥) given by

𝑓𝑋(𝑥) = Pr(𝑋 = 𝑥) =
⎧{
⎨{⎩

0.20 for 𝑥 = −100
0.75 for 𝑥 = 0
0.05 for 𝑥 = 1000 .

The subscript 𝑋 in 𝑓𝑋(𝑥) indicates the name of the random variable, al-
though it is sometimes omitted.2

The probability of events can be obtained from the pdf, e.g.,

Pr(𝑋 ≥ 0) = Pr(𝑋 = 0 or 𝑋 = 1000)
= Pr(𝑋 = 0) + Pr(𝑋 = 1000) = 0.80.

The set of all possible values of a random variable is called its range.
The following are some examples of random variables and their probability
distribution functions.

Example 7.8 Suppose you have a coin which may or may not be properly
balanced. If it is not balanced, then it may be more likely to obtain “heads”
than “tails”, or vice versa. Let 𝑝 be the probability of obtaining heads. If
we let 𝑋 be the outcome of a single toss of the coin, where we code heads
as 1 and tails as 0, then 𝑋 is a random variable with range {0, 1} and its
pdf is

𝑓𝑋(𝑥) = {1 − 𝑝 for 𝑥 = 0
𝑝 for 𝑥 = 1 .

2In formal mathematical terms, the random variable and its pdf are two separate
things. A random variable is a function that assigns numerical values to the possible
outcomes of an activity, which might not be numerical. In our example, the possible
outcomes are red, green and blue, and the random variable is the function that assigns
−100 to red, 1000 to green, and 0 to blue. The pdf is the function that gives the
probabilities of numerical outcomes (and sets of numerical outcomes). Since there is
nothing random about the function that maps outcomes to numerical values, you will
sometimes hear the exclamation “Random variables are not random!” Really, nothing in
mathematics is random, but we can nonetheless use mathematics to model randomness.
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Such a random variable is called a Bernoulli random variable3 with
parameter 𝑝, and its pdf is called a Bernoulli distribution. We write
𝑋 ∼ Bernoulli(𝑝). The Bernoulli pdf is usually written more concisely as

𝑓𝑋(𝑥) = 𝑝𝑥(1 − 𝑝)1−𝑥 , 𝑥 = 0, 1 . (7.6)

The Bernoulli pdf is used to model any activity with a random binary
outcome, such as tossing a coin, or sampling an individual from a population
and asking if they are a smoker.
Example 7.9 A die is a small cube with dots on each side corresponding
to integers 1 to 6. If 𝑋 is the number of dots on the upper face after a
random roll of the die (and if the die is evenly weighted) then 𝑋 is a random
variable with pdf

𝑓𝑋(𝑥) = 1
6 , 𝑥 = 1, 2, 3, 4, 5, 6 .

It is an example of a uniformly distributed random variable.
Random variables with a finite or countably infinite number of possible

outcomes are called discrete random variables. The random variables
in the previous examples are discrete, with finite range. The following is a
discrete random variable with countably infinite range.
Example 7.10 A production line produces stem bolts one at a time. Faulty
stem bolts occur with probability 𝑝, independently of whether previously
produced stem bolts were good or faulty. Let 𝑋 be the number of good stem
bolts produced before a faulty one appears. The probability that 𝑋 = 0
(a faulty stem bolt occurs immediately) is 𝑝. The probability that 𝑋 = 1
(one good stem bolt is obtained before a faulty one appears) is 𝑝(1 − 𝑝).
The probability that 𝑋 = 2 (two good stem bolts before a faulty one) is
𝑝(1 − 𝑝)2, and so on. Its pdf is

𝑓𝑋(𝑥) = Pr(𝑋 = 𝑥) = 𝑝(1 − 𝑝)𝑥 , 𝑥 = 0, 1, 2, 3, ... (7.7)

This is the Geometric distribution. We say that 𝑋 is a Geometric
random variable and write 𝑋 ∼ Geometric(𝑝). The Geometric pdf with
𝑝 = 0.25 is shown in Fig. 7.3(a), for 𝑥 from 0 to 10.

Sometimes we work with the cumulative distribution function (cdf)
of a random variable, defined as

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) , 𝑥 ∈ ℝ ,
3Jacob (Jacques) Bernoulli (1655-1705) made numerous fundamental contributions to

probability theory and calculus. He is one of several members of the Bernoulli family to
make important contributions to science, including Johann (a.k.a. Jean, John, 667-1748,
brother), Nicolaus I (1687-1759, son of Nicolaus, another brother), Nicolaus II (1695-
1726, son of Johann), Daniel (1700-1782, son of Johann, to whom we owe the concept
of expected utility), Johann II (1720-1790, son of Johann), Johann III (1744-1807, son of
Johann II), and Jacob II (1759-1789, son of Johann II).
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Fig. 7.3. Geometric pdf and cdf.

instead of its pdf. The cdf of a Geometric random variable is

𝐹𝑋(𝑥) = {0 when 𝑥 < 0
1 − (1 − 𝑝)𝑘+1 when 𝑘 ≤ 𝑥 < 𝑘 + 1 , 𝑘 = 0, 1, 2, ... (7.8)

which follows from the formula for the sum of a finite number of terms in
a geometric progression:

Pr(𝑋 ≤ 𝑘) =
𝑘

∑
𝑖=0

𝑝(1 − 𝑝)𝑖

= 𝑝 − 𝑝(1 − 𝑝)𝑘+1

1 − (1 − 𝑝)

= 1 − (1 − 𝑝)𝑘+1 , 𝑘 = 0, 1, 2, ....

The Geometric cdf with 𝑝 = 0.25 is shown in Fig. 7.3(b). Notice that
the pdf is defined over the range of the random variable whereas the cdf
is defined over the entire real line. Notice also that the cdf of a discrete
random variable has jumps.

A continuous random variable is one whose range is a continuum,
such as an interval [𝑎, 𝑏], or the entire real line.4

Example 7.11 A random variable 𝑋 has a Uniform(𝑎,𝑏) distribution
if its pdf is

𝑓𝑋(𝑥) = 1
𝑏 − 𝑎 , 𝑥 ∈ [𝑎, 𝑏]

4We have omitted a few “measure theoretic” details regarding the assignment of prob-
abilities to events contained in sample spaces that are uncountable. We will not need to
worry about these details in this book.
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and zero for all other values of 𝑥. We write 𝑋 ∼ Uniform(𝑎, 𝑏) or 𝑋 ∼
𝑈(𝑎, 𝑏). The Uniform(0, 1) distribution is called the Standard Uniform
distribution, and is particularly important.

Whereas the pdf of a discrete random variable has the interpretation as
𝑓𝑋(𝑥) = Pr(𝑋 = 𝑥), this interpretation must be modified for continuous
random variables. For continuous random variables, the probability of ob-
taining an outcome between 𝑐 and 𝑑 is the area between the pdf and the
𝑥-axis from 𝑥 = 𝑐 to 𝑥 = 𝑑. That is,

Pr(𝑐 ≤ 𝑋 ≤ 𝑑) = ∫
𝑑

𝑐
𝑓𝑋(𝑢) 𝑑𝑢.

It doesn’t matter whether the inequalities are strict or non-strict. For any
particular value of 𝑥, we have Pr(𝑋 = 𝑥) = 0. Just as the probabilities in a
discrete pdf must sum to one, the pdf of a continuous random variable must
integrate over the entire range to one. By its definition, the cdf of a ran-
dom variable is never decreasing (it is monotone increasing). Furthermore,
wherever 𝑓𝑋(𝑥) is continuous, we have

𝑓𝑋(𝑥) = 𝑑
𝑑𝑥𝐹𝑋(𝑥) .

Pr(𝑐 ≤ 𝑋 ≤ 𝑑) is trivial to compute for Standard Uniform random
variables. If 𝑋 ∼ Uniform(0, 1), then for 0 ≤ 𝑐 ≤ 𝑑 ≤ 1, we have

Pr(𝑐 < 𝑋 < 𝑑) = ∫
𝑑

𝑐
1 𝑑𝑢 = 𝑑 − 𝑐 .

The Uniform(0, 1) cdf is

𝐹𝑋(𝑥) = ∫
𝑥

−∞
𝑓(𝑢) 𝑑𝑢 = ∫

𝑥

0
1 𝑑𝑢 = 𝑥 for all 𝑥 ∈ [0, 1] ,

with 𝐹𝑋(𝑥) = 0 for 𝑥 < 0 and 𝐹𝑋(𝑥) = 1 for 𝑥 > 1. The pdf and cdf of 𝑋
are shown in Fig. 7.4.

Digression: Random Number Generators. People have been flipping coins and
rolling dice for thousands of years, sometimes for fun and sometimes to make life-
altering decisions. We now use random number generators in a wide range of appli-
cations. Physical random number generators use naturally occurring randomness
such as radioactive decay and even quantum systems to generate true random
numbers.5 These are used in cryptography to generate encryption/decryption

5See Stipčević and Koç (2014) and Herrero-Collantes and Garcia-Escartin (2017).
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Fig. 7.4. Uniform(0,1) pdf and cdf.

keys, and also in lotteries. Algorithms called Pseudo-Random Number Gen-
erators (PRNGs) produce a deterministic sequence of values that can be repli-
cated if the seed is known, but appears random otherwise. PRNGs have the
advantage of being replicable, and are used in simulation experiments of complex
dynamic systems, in obtaining a random sample from a population (see Sec-
tion 7.2.1) and in computer-based statistical inference (see Section 7.6), among
other applications. Programming languages like R and Python include PRNGs,
and we will use a few of them in this chapter. For more information on random
number generation, see, e.g., Johnson (2018). Most physical and algorithmic ran-
dom number generators are designed to produce uniformly distributed random
numbers, typically over a range of integers, or a continuum such as the interval
[0, 1]. If required, it is possible to convert uniform random numbers into random
numbers from other distributions (see Ex. 7.9).

The pdfs of random variables with countable outcomes are often called
probability mass functions, while the pdfs of random variables with a contin-
uum of outcomes are often called probability density functions. Sometimes
probability mass functions are called discrete probability density functions.
In this book, we will just use the term probability distribution function for
both.

There is a long list of important probability distribution functions, each
with its own characteristics and applications. We will study several of them
later in Section 7.1.6 and Section 7.4.

7.1.5 Expectations
The expected value of a random variable measures the “location” of its
probability distribution. Realizations of the random variable will tend to
be “around” this value. The variance of a random variable measures the
spread of the probability distribution around its expected value, and is an
indicator of how close (or far) realizations of the random variable are likely



August 20, 2024 16:34 book-9x6 Baydur-Preve-Tay index page 239

Probability and Statistics 239

to be from its expected value.

Example 7.12 Suppose there are two boxes, Box A and Box B, each
containing 100 balls. Each ball is labelled with a number from 1 to 8. Call
a ball labelled 𝑖 an “𝑖-ball” (so we have 1-balls, 2-balls, and so on). Suppose
that the numbers of each 𝑖-ball in the boxes are as shown in Table 7.2.

Table 7.2. Number of 𝑖-balls in Box A and Box B, 𝑖 = 1, 2, ..., 8.

1-ball 2-ball 3-ball 4-ball 5-ball 6-ball 7-ball 8-ball

Box A 5 10 15 20 20 15 10 5
Box B 25 45 25 1 1 1 1 1

Let 𝑋 be the value of a ball randomly drawn from Box A and 𝑌 be the
value of a ball randomly selected from Box B. It seems reasonable to model
𝑋 and 𝑌 as random variables with pdfs as in Table 7.3 and visualized in
Fig. 7.5.

Table 7.3. Probability distribution functions of 𝑋 and 𝑌 .

𝑖 1 2 3 4 5 6 7 8

𝑓𝑋(𝑖) = Pr(𝑋 = 𝑖) 0.05 0.10 0.15 0.20 0.20 0.15 0.10 0.05
𝑓𝑌 (𝑖) = Pr(𝑌 = 𝑖) 0.25 0.45 0.25 0.01 0.01 0.01 0.01 0.01
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Fig. 7.5. Probability distribution functions of 𝑋 and 𝑌 .

Drawing a ball from Box A will result in a value of 𝑋 “around” 4 or 5,
but there is a good chance of getting one of the extreme numbers. On the
other hand, drawing from Box B will very likely result in 𝑌 = 2 ± 1, since
most of the probabilities are clustered around the values 1,2 and 3. The
mean and variance of a random variable captures the idea of the “central
location” and “spread” of the probabilities in a distribution.
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The mean or expected value of a random variable 𝑋 is defined as

𝐸(𝑋) =
⎧{
⎨{⎩

∑𝑥 𝑥𝑓𝑋(𝑥) = ∑𝑥 𝑥Pr(𝑋 = 𝑥) if 𝑋 is discrete, and

∫∞
−∞ 𝑥𝑓𝑋(𝑥) 𝑑𝑥 if 𝑋 is continuous.

(7.9)

The symbol ∑𝑥 means “sum over the possible values of 𝑋”.
The expected value of a random variable is essentially an average of its

possible values, with the possible values weighted by their corresponding
probabilities. For the random variable 𝑋 and 𝑌 in Example 7.12, we have

𝐸(𝑋) = 1 ⋅ Pr(𝑋 = 1) + 2 ⋅ Pr(𝑋 = 2) + … + 7 ⋅ Pr(𝑋 = 7) + 8 ⋅ Pr(𝑋 = 8)
= 1(0.05) + 2(0.10) + 3(0.15) + ⋯ + 6(0.15) + 7(0.10) + 8(0.05)
= 4.5

𝐸(𝑌 ) = 1 ⋅ Pr(𝑌 = 1) + 2 ⋅ Pr(𝑌 = 2) + … + 7 ⋅ Pr(𝑌 = 7) + 8 ⋅ Pr(𝑌 = 8)
= 1(0.25) + 2(0.45) + 3(0.25) + ⋯ + 6(0.01) + 7(0.01) + 8(0.01)
= 2.2

If you imagine that the probabilities are weights on a lever resting on
a pivot, the mean is the location of the pivot such that the lever is in
balance. The mean is sometimes called the first moment of a probability
distribution.

If 𝑋 ∼ Bernoulli(𝑝), then

𝐸(𝑋) = 0 ⋅ (1 − 𝑝) + 1 ⋅ 𝑝 = 𝑝 .

If 𝑋 ∼ Uniform(0, 1), then

𝐸(𝑋) = ∫
1

0
𝑥 ⋅ 1 𝑑𝑥 = [𝑥

2

2 ]
1

0
= 1

2 .

If 𝑋 ∼ Geometric(𝑝), then using the fact that ∑∞
𝑗=0 𝑗𝑟𝑗 = 𝑟

(1 − 𝑟)2 for

|𝑟| < 1, we have

𝐸(𝑋) =
∞
∑
𝑥=0

𝑥𝑝(1 − 𝑝)𝑥 = 𝑝(1 − 𝑝)
(1 − (1 − 𝑝))2 = 1 − 𝑝

𝑝 .

If 𝑋 ∼ Geometric(𝑝) is the number of non-defective products in a pro-
duction line before a defective one occurs, and 𝑝 = 0.01 is the probability
of obtaining a faulty product, then the expected number of non-defective
products before a faulty one is produced is 𝐸(𝑋) = 0.99/0.01 = 99, which
makes a lot of sense, since one in a hundred products made is defective.
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If 𝑋 is a random variable, then 𝑔(𝑋) is also a random variable, with
expectation:

𝐸(𝑔(𝑋)) =
⎧{
⎨{⎩

∑𝑥 𝑔(𝑥)𝑓𝑋(𝑥) = ∑𝑥 𝑔(𝑥)Pr(𝑋 = 𝑥) if 𝑋 is discrete, and

∫∞
−∞ 𝑔(𝑥)𝑓𝑋(𝑥) 𝑑𝑥 if 𝑋 is continuous.

For instance, if 𝑋 is the random variable representing the value of a
draw from Box A in Example 7.12, then 𝑔(𝑋) = 𝑋2 is a random variable
with possible values 1, 4, 9, 16, 25, 36, 49, 64 occurring with probabilities
0.05, 0.10, 0.15, 0.20, 0.20, 0.15, 0.10, 0.05 respectively. The expectations of
𝑋2 and 𝑌 2 are:

𝐸(𝑋2) = 12(0.05) + 22(0.10) + 32(0.15) + 42(0.20)
+ 52(0.20) + 62(0.15) + 72(0.10) + 82(0.05) = 23.5

𝐸(𝑌 2) = 12(0.25) + 22(0.45) + 32(0.25) + 42(0.01)
+ 52(0.01) + 62(0.01) + 72(0.01) + 82(0.01) = 6.2 .

If 𝑋 ∼ Bernoulli(𝑝), we have
𝐸(𝑋2) = 02(1 − 𝑝) + 12𝑝 = 𝑝 .

If 𝑋 ∼ Uniform(0, 1), then

𝐸(𝑋2) = ∫
1

0
𝑥2 ⋅ 1 𝑑𝑥 = [𝑥

3

3 ]
1

0
= 1

3 .

If 𝑋 ∼ Geometric(𝑝), then using the fact that
∞
∑
𝑗=0

𝑗2𝑟𝑗 = 𝑟2 + 𝑟
(1 − 𝑟)3 for

|𝑟| < 1, we have

𝐸(𝑋2) =
∞
∑
𝑥=0

𝑥2𝑝(1 − 𝑝)𝑥 = 𝑝[(1 − 𝑝)2 + (1 − 𝑝)
(1 − (1 − 𝑝))3 = (1 − 𝑝)(2 − 𝑝)

𝑝2 .

It should also be clear from the definition of expectations and the prop-
erties of summation and integration that

𝐸(𝑎𝑔(𝑋) + 𝑏ℎ(𝑋)) = 𝑎𝐸(𝑔(𝑋)) + 𝑏𝐸(ℎ(𝑥))
where 𝑎 and 𝑏 are constants. Furthermore, the expectation of a constant is
just the constant itself.

The variance of a random variable 𝑋 is defined as its expected squared
deviation from mean, i.e.,

Var(𝑋) = 𝐸 ((𝑋 − 𝐸(𝑋))2)

=
⎧{
⎨{⎩

∑𝑥(𝑥 − 𝐸(𝑋))2𝑓𝑋(𝑥) if 𝑋 is discrete, and

∫∞
−∞(𝑥 − 𝐸(𝑋))2𝑓𝑋(𝑥) 𝑑𝑥 if 𝑋 is continuous.

(7.10)
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The variance is thus a measure of the spread of the probabilities about the
mean. It is sometimes referred to as the second central moment. The
square root of the variance of 𝑋 is the standard deviation of 𝑋, and
can be viewed as a measure of how far any given draw might be from the
mean. Note that the unit of measurement of the standard deviation follows
that of the variable itself. For instance, if 𝑋 is measured in dollars, then
the standard deviation is also measured in dollars, whereas the variance is
measured in “squared dollars”.

There is another expression for the variance that is often easier to use:

Var(𝑋) = 𝐸 ((𝑋 − 𝐸(𝑋))2)
= 𝐸(𝑋2 − 2𝑋𝐸(𝑋) + 𝐸(𝑋)2) = 𝐸(𝑋2) − 𝐸(𝑋)2 .

(7.11)

For example, for the random variables 𝑋 and 𝑌 in Example 7.12, we have

Var(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2 = 23.5 − 4.52 = 3.25
Var(𝑌 ) = 𝐸(𝑌 2) − 𝐸(𝑌 )2 = 6.2 − 2.22 = 1.36 .

The standard deviations are

𝑠𝑑(𝑋) =
√
3.25 = 1.803 and 𝑠𝑑(𝑌 ) =

√
1.36 = 1.166 .

If 𝑋 ∼ Bernoulli(𝑝), we have

Var(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝) .

If 𝑋 ∼ Uniform(0, 1), then

Var(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2 = 1
3 − (1

2)
2
= 1

12 .

If 𝑋 ∼ Geometric(𝑝), then

Var(𝑋) = 1 − 𝑝
𝑝2 .

Digression: Quantile-based measures of location and spread. An alternative to
the mean and variance are quantile-based measures of location and spread. The
𝛼-quantile of the distribution of a random variable 𝑋 is any value 𝑞𝛼 such that

𝐹𝑋(𝑞𝛼) = Pr(𝑋 ≤ 𝑞𝛼) = 𝛼 , 𝛼 ∈ (0, 1) .

It is any value such that there is an 𝛼 probability that a realization of 𝑋 will
fall on or below it. For instance, the 0.5-quantile (also known as the median)
of the distribution of 𝑋 is that value such that there is a 50-50 chance that a
realization of 𝑋 will fall above or below it. The 0.25-quantile (also known as the
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first quartile) of the distribution of 𝑋 is that value such that 𝑋 is three times
more likely to fall above it than below it. The 𝛼-quantile of a distribution is also
known as the 100𝛼-percentile of the distribution.

The median is often used as a measure of the location of a distribution. The
interquartile range

𝐼𝑄𝑅 = 𝑞0.75 − 𝑞0.25
is a popular quantile-measure of the spread of a distribution. If 𝑋 ∼
Uniform(−1, 1), we have

median(𝑋) = 0 and 𝐼𝑄𝑅(𝑋) = 1
2 − (−1

2) = 1 .

If 𝑋 ∼ Uniform(1, 3), then

median(𝑋) = 2 and 𝐼𝑄𝑅(𝑋) = 5
2 − 3

2 = 1 .

The quantile-based measures work well for continuous random variables with
strictly increasing cdfs but can sometimes be awkward for discrete random vari-
ables, where the cdfs are not continuous nor strictly increasing. What are the
medians and IQRs of the distributions displayed in Fig. 7.5? For the median of
𝑋 in Fig. 7.5 we see that all values 𝑚𝑥 ∈ [4, 5) satisfy Pr(𝑋 ≤ 𝑚𝑥) = 0.5. For 𝑌
in Fig. 7.5, the cdf jumps from 𝐹𝑌 (𝑚𝑦) = 0.25 for all 𝑚𝑦 ∈ [1, 2) to 𝐹𝑌 (𝑚𝑦) = 0.7
when 𝑚𝑦 = 2, so there is no value 𝑚𝑌 such that 𝐹𝑌 (𝑚𝑦) = Pr(𝑌 ≤ 𝑚𝑦) = 0.5.

In such cases, one convention is to take the median 𝑚𝑦 to be the smallest
value such that 𝐹𝑌 (𝑚𝑦) ≥ 0.5. Likewise for the other quantiles. Following this
convention for the distributions of 𝑋 and 𝑌 in Fig. 7.5, the median of 𝑋 is 4 and
the median of 𝑌 is 2. We also have 𝐼𝑄𝑅(𝑋) = 6−3 = 3 and 𝐼𝑄𝑅(𝑌 ) = 3−1 = 2.
One can show from (7.8) that if 𝑋 ∼ Geometric(𝑝), then median(𝑋) is the smallest
integer larger than

ln 0.5
ln(1 − 𝑝) − 1 .

The next theorem regarding the mean and variance follows from defini-
tions (7.9) and (7.10).
Theorem 7.2 If 𝑋 is a random variable and 𝑎 and 𝑏 are constants, then

(a) 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏,
(b) Var(𝑎𝑋 + 𝑏) = 𝑎2Var(𝑋).

Proof : We show (a) for continuous random variables. We have

𝐸(𝑎𝑋 + 𝑏) = ∫
∞

−∞
(𝑎𝑥 + 𝑏)𝑓𝑋(𝑥) 𝑑𝑥

= ∫
∞

−∞
𝑎𝑥𝑓𝑋(𝑥) 𝑑𝑥 +∫

∞

−∞
𝑏𝑓𝑋(𝑥) 𝑑𝑥

= 𝑎∫
∞

−∞
𝑥𝑓𝑋(𝑥) 𝑑𝑥 + 𝑏∫

∞

−∞
𝑓𝑋(𝑥) 𝑑𝑥 = 𝑎𝐸(𝑋) + 𝑏 .
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For (b) we note that 𝐸((𝑎𝑋)2) = 𝑎2𝐸(𝑋2). Therefore

Var(𝑎𝑋 + 𝑏) = 𝐸 ((𝑎𝑋 + 𝑏 − 𝐸(𝑎𝑋 + 𝑏))2)
= 𝐸 (𝑎2(𝑋 − 𝐸(𝑋))2)
= 𝑎2𝐸 (𝑋 − 𝐸(𝑋))2)
= 𝑎2Var(𝑋) .

Since Var(𝑋) ≥ 0, the identity Var(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2 implies that

𝐸(𝑋2) ≥ 𝐸(𝑋)2 .

This is a special case of Jensen’s Inequality, which we state below. The
proof is left as an exercise.

Theorem 7.3 For any random variable 𝑋, we have

𝐸(𝑔(𝑋)) ≥ 𝑔(𝐸(𝑋)) for any convex function 𝑔 . (7.12)

The inequality is reversed if 𝑔 is concave.

Proof : See Ex. 7.10.

Part (a) of Theorem 7.2 says that (7.12) holds with equality if the
transformation is linear, i.e., if 𝑔(𝑋) = 𝑎𝑋 + 𝑏.

Besides the mean and variance, the skewness 𝑆 and kurtosis 𝐾 are two
other frequently used expectations-based measures of specific characteris-
tics of a probability distribution. They are defined as

𝑆 = 𝐸((𝑋 − 𝜇)3)/𝜎3 and 𝐾 = 𝐸((𝑋 − 𝜇)4)/𝜎4

where 𝜇 is the mean and 𝜎 is the standard deviation of 𝑋. The skewness
is a measure of asymmetry: if a distribution is symmetric about its mean,
then the skewness coefficient 𝑆 is zero. Since deviations from the mean,
𝑋 − 𝜇, retain their sign after taking cubes, the skewness coefficient is zero
if corresponding negative and positive deviations from the mean have the
same probability weight when taking expectations. This would be the case
if the pdf is symmetric about the mean. The kurtosis emphasizes larger
deviations from the mean over small deviations from the mean (deviations
from the mean less than one become very small when raised to the fourth
power). It is therefore a measure of the “fatness” of the tails of the distri-
bution. The skewness and kurtosis measures are used heavily in finance.

Sometimes we want to find the distribution of a function of a random
variable, e.g., if 𝑋 has a certain distribution, what is the distribution of
𝑌 = 𝑔(𝑋)? This is straightforward to do for discrete random variables, with
Pr(𝑌 = 𝑦) being the sum of all probabilities Pr(𝑋 = 𝑥) where 𝑦 = 𝑔(𝑥).
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For instance, if 𝑋 is uniformly distributed over 𝑥 ∈ {−1, 0, 1}, then the
range of 𝑌 = 𝑋2 is {0, 1} with probabilities Pr(𝑌 = 0) = Pr(𝑋 = 0) = 1/3
and Pr(𝑌 = 1) = Pr(𝑋 = −1 or 𝑋 = 1) = 2/3. For continuous variables,
we can often use the cdf technique, i.e., use the fact that

𝐹𝑌 (𝑦) = Pr(𝑌 ≤ 𝑦) = Pr(𝑔(𝑋) ≤ 𝑦) = ∫
𝑥∶𝑔(𝑥)≤𝑦

𝑓𝑋(𝑥) 𝑑𝑥 ,

where “∫𝑥∶𝑔(𝑥)≤𝑦” means integrate over the region of 𝑥 where 𝑔(𝑥) ≤ 𝑦. The
pdf of 𝑌 = 𝑔(𝑋) can then be obtained by differentiating 𝐹𝑌 (𝑦).
Example 7.13 If 𝑋 ∼ Uniform(−1, 1), what is the distribution of 𝑌 = 𝑋2?
The pdf of 𝑋 is 𝑓𝑋(𝑥) = 1/2 for −1 ≤ 𝑥 ≤ 1. We have

𝐹𝑌 (𝑦) = Pr(𝑌 ≤ 𝑦) = Pr(𝑋2 ≤ 𝑦)

= Pr(−√𝑦 ≤ 𝑋 ≤ √𝑦)

= ∫
√𝑦

−√𝑦

1
2 𝑑𝑥 = √𝑦 .

Therefore 𝑓𝑌 (𝑦) =
𝑑
𝑑𝑦

√𝑦 = 1
2√𝑦 , 0 < 𝑦 ≤ 1.

7.1.6 The Normal and Log-Normal Distributions
A random variable 𝑋 has a Normal distribution, denoted 𝑋 ∼
Normal(𝜇, 𝜎2) or 𝑋 ∼ 𝑁(𝜇, 𝜎2), if its pdf is

𝑓𝑋(𝑥) = 1
𝜎
√
2𝜋 exp{−(𝑥 − 𝜇)2

2𝜎2 } , 𝑥 ∈ ℝ , (7.13)

where 𝜇 is the mean of 𝑋 and 𝜎2 is its variance. The range of a Normal
random variable is the entire real line. The graph of the pdf of a Normal
random variable has the familiar symmetric bell-shape, centered at 𝜇. The
Normal distribution with mean 0 and variance 1 is called the Standard
Normal distribution, which has no parameters. The Normal distribution
has a special place in probability theory for reasons that will soon become
clear. The Normal distribution is also called the Gaussian distribution.

Fig. 7.6 shows five Normal pdfs. The three centered at zero have mean
zero. The thinner of these has variance 1/4, and the flatter, broader one
has variance 4. The one in bold is the Standard Normal pdf. On either side
are pdfs of Normal random variables with variance 1 and means −5 (left)
and 5 (right).

Substituting 𝜇 = 0 and 𝜎2 = 1 into (7.13) gives the pdf of the Standard
Normal distribution, which is given the special notation 𝜙(⋅):

𝜙(𝑥) = 1√
2𝜋 exp{−𝑥2

2 } , 𝑥 ∈ ℝ. (7.14)
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Fig. 7.6. Normal pdf, various means and variances.

The Normal distribution has the property that if 𝑋 ∼ Normal(𝜇, 𝜎2), then

𝑎𝑋 + 𝑏 ∼ Normal(𝑎𝜇 + 𝑏, 𝑎2𝜎2) . (7.15)

The formulas for the mean and variance of 𝑎𝑋+𝑏 in (7.15) hold for all ran-
dom variables with mean 𝜇 and variance 𝜎2; the important part in (7.15)
is that the distribution itself doesn’t change under the variable transforma-
tion if the distribution is Normal. An important application of this result
is the fact that

𝑋 − 𝜇
𝜎 ∼ Normal(0, 1) .

Since the Normal distribution is symmetric, it should be no surprise
that its skewness is zero. We will show in a later chapter that the kurtosis
of the Normal distribution is equal to 3.
Example 7.14 The data set earnings2019.csv contains data on on al-
most 5000 U.S. individuals surveyed in 2019 (these individuals are part
of the 2019 wave of the University of Michigan Panel Survey of Income
Dynamics). The survey collected a wide variable of information from the
surveyed individuals, including average hourly earnings (𝑒𝑎𝑟𝑛) in the previ-
ous year. Fig. 7.7 shows a histogram estimate of the distribution of ln 𝑒𝑎𝑟𝑛.
The horizontal axis is divided into bins, and the frequency with which ob-
servations of ln 𝑒𝑎𝑟𝑛 falls into each bin is noted. The rectangles are then
scaled so that their areas sum to one. The pdf of a Normal distribution,
with mean and variance estimated from the data (see next section on how
to do this) is drawn over the histogram estimate.
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Fig. 7.7. Histogram of ln 𝑒𝑎𝑟𝑛 with Normal pdf superimposed.

It seems reasonable to model the observations of ln 𝑒𝑎𝑟𝑛 as realizations
of a Normal random variable, since the distribution of the data matches
the Normal pdf quite closely. We will take a closer look at this assertion in
Ex. 7.15 and Ex. 7.32.

The cdf of the Normal distribution is

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) = ∫
𝑥

−∞

1
𝜎
√
2𝜋 exp{−(𝑠 − 𝜇)2

2𝜎2 } 𝑑𝑠 , 𝑥 ∈ ℝ . (7.16)

The Normal cdf does not have a “closed form”, meaning that it cannot
be expressed using a finite set of basic functions connected by arithmetic
operators or powers. Nonetheless, it can be computed with high precision
using numerical methods. The cdf of a Standard Normal random variable
is denoted Φ(𝑥) and is shown in Fig. 7.8.

0.0

0.3

0.6

0.9

−4 −2 0 2 4
x

Fig. 7.8. Standard Normal cdf.

It is sometimes useful to express the pdf and cdf of a (non-Standard)
Normal distribution in terms of the pdf and cdf of a Standard Normal distri-
bution. This is easily done given that linear transformations do not change
the distributional form of a Normal random variable. If 𝑋 ∼ 𝑁(𝜇, 𝜎2), then
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its cdf can be written as

𝐹𝑋(𝑥) = Φ(𝑥 − 𝜇
𝜎 ) ,

since

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) = Pr(𝑋 − 𝜇
𝜎 ≤ 𝑥 − 𝜇

𝜎 ) = Φ(𝑥 − 𝜇
𝜎 ) .

Since the pdf is the derivative of the cdf, we have

𝑓𝑋(𝑥) = 𝑑
𝑑𝑥Φ(𝑥 − 𝜇

𝜎 ) = 1
𝜎𝜙(𝑥 − 𝜇

𝜎 ) .

The R function for the value of the cdf of a Normal variate with mean 𝜇
and standard deviation 𝜎 is pnorm().

cat("pnorm(1,1,2) =", pnorm(1, mean=1, sd=2))
cat("\npnorm(2,1,2) =", pnorm(2, 1, 2))
cat("\npnorm(0,0,1) =", pnorm(0, 0, 1))
cat("\npnorm(-1.96,0,1) =", pnorm(-1.96, 0, 1))
cat("\npnorm(1.96,0,1) =", pnorm(1.96, 0, 1))

pnorm(1,1,2) = 0.5
pnorm(2,1,2) = 0.6914625
pnorm(0,0,1) = 0.5
pnorm(-1.96,0,1) = 0.0249979
pnorm(1.96,0,1) = 0.9750021

To get the value of 𝑞 such that Pr(𝑋 ≤ 𝑞) = 0.025, use qnorm():

cat("qnorm(0.025,0,1) =", qnorm(0.025, mean=0, sd=1))

qnorm(0.025,0,1) = -1.959964

A random variable 𝑋 has the Log-Normal distribution with param-
eters 𝜇 and 𝜎2 if ln𝑋 ∼ Normal(𝜇, 𝜎2). We show in Ex. 7.8 that the
Log-normal pdf with parameters 𝜇 and 𝜎2 is

𝑓𝑋(𝑥) = 1
𝑥𝜎

√
2𝜋 exp{−(ln𝑥 − 𝜇)2

2𝜎2 } , 𝑥 ∈ (0,∞) . (7.17)

It can be shown that if 𝑋 ∼ Log-Normal(𝜇, 𝜎2), then

𝐸(𝑋) = exp{𝜇 + 𝜎2

2 } and Var(𝑋) = (exp{𝜎2} − 1) exp{2𝜇 + 𝜎2} .

The Log-normal cdf does not have a closed form expression, but as with the
Normal distribution, it can be computed with high precision using numeri-
cal methods. Fig. 7.9 shows the pdf and cdf of the Log-Normal distribution
with 𝜇 = 1 and 𝜎2 = 1/4.
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Fig. 7.9. The Log-Normal pdf and cdf with 𝜇 = 1, 𝜎2 = 1/4.

7.1.7 Exercises
Ex. 7.1 Prove Theorem 7.1.

Ex. 7.2 Suppose you are told only that there are 100 balls in a container, and
that 95 of the balls are either green or blue, and 90 of the balls are either red
or green. There may be balls of other colors as well. Give a lower bound on the
number of green balls in the container. Find the exact number of green balls if you
are also told that there are only red, green and blue balls in the container? Hint:
Use part (d) of Theorem 7.1 and let 𝐴 = {𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒} and 𝐵 = {𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑}.
Ex. 7.3 We proved in the text that if 𝐴 and 𝐵 are independent events, then
𝐴 and 𝐵𝑐 are also independent events. Show that if 𝐴 and 𝐵 are independent
events, then 𝐴𝑐 and 𝐵 are independent, and 𝐴𝑐 and 𝐵𝑐 are independent.

Ex. 7.4 We can model subjective beliefs using probability distributions, and
use Bayes’ Theorem to update beliefs on arrival of new information. Suppose an
instructor gives a student a multiple choice question with four answer options. If
the student knows the answer, he chooses the correct option, otherwise he guesses
from the answer options randomly.

We model the instructor’s prior belief as a probability distribution over the
space {𝑘𝑛𝑜𝑤𝑠, 𝑔𝑢𝑒𝑠𝑠𝑒𝑠}. In particular, suppose that the instructor’s prior belief
that the student knows the answer is Pr(𝑘𝑛𝑜𝑤𝑠) = 𝑝, and her prior belief that
the student doesn’t know the answer and guesses is Pr(𝑔𝑢𝑒𝑠𝑠𝑒𝑠) = 1 − 𝑝. If
the student answers the question correctly, how should the instructor update her
beliefs regarding whether or not the student knows the answer? That is, find the
probability Pr(𝑘𝑛𝑜𝑤𝑠 ∣ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡) using Bayes’ Theorem in terms of 𝑝. Calculate
this probability when (a) 𝑝 = 0, (b) 𝑝 = 0.5, and (c) 𝑝 = 1.

Ex. 7.5 Prove that if 𝑋 ∼ Geometric(𝑝), then Var(𝑋) = 1 − 𝑝
𝑝2 .

Ex. 7.6 Prove, without invoking Jensen’s Inequality, that 𝐸(
√
𝑋) ≤ √𝐸(𝑋) for

any random variable with range 𝑋 ≥ 0.
Ex. 7.7 Use the cdf technique to find the pdf of 𝑌 = 𝑋2 if 𝑋 ∼ Uniform(0, 1).
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Ex. 7.8 If 𝑌 = 𝑔(𝑋) is increasing, then

𝐹𝑌 (𝑦) = Pr(𝑌 ≤ 𝑦) = Pr(𝑔(𝑋) ≤ 𝑦) = Pr(𝑋 ≤ 𝑔−1(𝑦)) = 𝐹(𝑔−1(𝑦)) .

If 𝑌 = 𝑔(𝑋) is decreasing, then

𝐹𝑌 (𝑦) = Pr(𝑌 ≤ 𝑦) = Pr(𝑔(𝑋) ≤ 𝑦) = Pr(𝑋 ≥ 𝑔−1(𝑦)) = 1 − 𝐹(𝑔−1(𝑦)) .

Use these results to show that for monotonic 𝑔, we have

𝑓𝑌 (𝑦) = 𝑓𝑋(𝑔−1(𝑦)) ∣ 𝑑𝑑𝑦 𝑔
−1(𝑦)∣ .

Use this result to show that if 𝑌 = ln𝑋 ∼ Normal(𝜇, 𝜎2), then 𝑋 has the log-
normal pdf (7.17).

Ex. 7.9 Show that if 𝑋 ∼ Uniform(0, 1) and 𝐹 is some cdf, then 𝑌 = 𝐹−1(𝑋) has
pdf 𝑓(𝑦), where 𝑓 is the derivative of 𝐹 . Use this result to simulate 400 random
numbers with distribution Normal(1, 2) using the Uniform random number gener-
ator runif() and Normal quantile function qnorm(). Plot a histogram estimate
of the distribution of your random numbers to verify that you have successfully
simulated Normal(1, 2) random numbers.

Ex. 7.10 Follow the steps below to prove Jensen’s Inequality, which says
that

𝐸(𝑔(𝑋)) ≥ 𝑔(𝐸(𝑋) for any 𝑔(⋅) convex.
Step 1: Let 𝑙(𝑥) = 𝑎𝑥 + 𝑏 be the tangent line of the convex function 𝑔(𝑥) at the
point (𝐸(𝑋), 𝑔(𝐸(𝑋))), i.e., 𝑙(𝑥) = 𝑎𝑥 + 𝑏 satisfies

𝑙(𝑥) = 𝑎𝑥 + 𝑏 ≤ 𝑔(𝑥) and 𝑙(𝐸(𝑋)) = 𝑎𝐸(𝑋) + 𝑏 = 𝑔(𝐸(𝑋)) .

Step 2: Prove Jensen’s Inequality by using the fact that if 𝑓1(𝑥) ≥ 𝑓2(𝑥), then
𝐸(𝑓1(𝑋)) ≥ 𝐸(𝑓2(𝑋)).

7.2 Statistics
7.2.1 Sampling
Statistics is about learning about a population using information contained
in a sample. First we elaborate on the concepts of population and sample,
and on sampling, i.e., the process of obtaining a sample from a population.

A population is a set of entities about which we wish to make an
inference. The population might be the residents of a country, and perhaps
you want to estimate the proportion of those residents who are smokers.
The population could be the set of all households in a country, and perhaps
you wish to estimate their total food expenditure in the previous year. The
population might be the set of all “non-institutional civilians aged 16 or
over” in a country, meaning all individuals in the country aged 16 and over
who are not in the military, and who are not in “institutions” (jail, nursing
homes and long-term care facilities). The inference of interest might be
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regarding how hourly earnings are related with characteristics such as years
of schooling, work experience and age.

A population might be tangible or conceptual. A tangible population
refers to one that actually exists at some point in time. The examples
described in the previous paragraph are tangible populations. Conceptual
populations refer to the hypothetical outcomes of some activity or process.
It might be the set of outcomes of an infinite number of potential tosses
of a coin, the inference of interest being to test whether or not the coin is
fair. The population of interest might be the set of quality measurements
of all of the goods a machine can (potentially) produce, the inference of
interest being whether or not the machine can meet certain quality stan-
dards. Another example of a conceptual population is all of the possible
outcomes of a certain process or system that develops over time (like the
aggregate levels of output, prices, interest rates, employment and other as-
pects of an economy). The inference might be regarding the inter-temporal
relationships between these measurements.

Broadly speaking, the population of interest, tangible or conceptual,
is described using a probability model where some aspect of the model is
unknown, reflecting the inference to be made regarding the population. The
probability model might be as simple as a pdf, or something more elaborate.
The objective is to learn about these unknowns in the model/population,
given a sample from the population.

The best way to sample from the population depends on the population.
Even if the sampling has already been done for us, as in Example 7.14, it is
still useful to understand and appreciate the principles. The aim ultimately
is to get a sample that is representative of the population, in a form that
allows you to make the inferences you want to make, as accurately and as
precisely as possible, in the most cost-effective manner.

Consider first the tangible population case. The basic sampling design
is the simple random sample, where each member of the population
has an equal probability of being selected. How to do this depends on the
particular population. For balls in a container, this can be done by mixing
the balls well, and not looking when drawing out a ball. For a population of
households or individuals, this is considerably harder to do. The rough idea
is to assign a number to each of the 𝑁 members making up the population,
then using a discrete uniform random number generator to give you a set of
𝑛 random integers between 1 and 𝑁 , and finally surveying the households
or individuals corresponding to the 𝑛 random integers. From this process
you obtain a random sample of the population

{𝑌1, 𝑌2,… , 𝑌𝑛}

where each 𝑌𝑖 is a vector of measurements (income, expenditures, …) asso-
ciated with entity 𝑖. We call this a cross-sectional sample.
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Randomness in the sampling process is key because it ensures that your
sample is representative of your population. Perhaps your objective is to
estimate the ratio of smokers in the population, and suppose that young
males from families with lower socio-economic status are more likely to
smoke. If your sampling process over- or under-samples from this category,
your sample may over- or understate the percentage of smokers. Random
sampling ensures that all factors that affect an individual’s decision to take
up smoking are balanced in the right proportions in your sample, including
factors that you may not be aware of!

Getting a random sample by surveying a population is often much easier
said than done, and often costly. There are issues such as how to phrase
the questions and other matters of questionnaire design, how to deal with
non-respondents, how to do the sampling with minimum cost, training in-
terviewers, and so on.

There are also other sampling designs that may be useful in certain
situations, including stratified sampling, clustered sampling, and systematic
sampling. For an introduction to survey sampling methods, see Scheaffer,
Mendenhall, and Ott (2006).

Populations can change over time, and it might be of interest to track
these changes. If the population is revisited in a subsequent period and
re-sampled, then we have a pooled cross sectional sample. If the pop-
ulation is revisited but not re-sampled, with the same individuals observed
in time 𝑡 + 1 as at time 𝑡, then we get a panel data set.

A random sample is often, additionally, also taken to mean one that
is independently and identically distributed. Consider drawing a
sample of two balls from a box with 30 balls labelled “0” and 70 balls
labelled “1”. Suppose the two balls are drawn with replacement, meaning
that you draw one ball, note its value, and return it to the box before
randomly drawing a second ball. Let 𝑋1 be the value of the first ball
drawn, and 𝑋2 be the value of the second ball drawn. Both are, of course,
random variables. In this case, 𝑋1 and 𝑋2 will have the same distribution,
i.e., they are identically distributed. Furthermore, the probability of
drawing any particular value of 𝑋2 is the same regardless of what value
of 𝑋1 was drawn. We say that 𝑋1 and 𝑋2 are independent random
variables. We use the abbreviation iid for independently and identically
distributed. We will explore the concept of independent random variables
more closely later in the chapter.

Now consider drawing two balls from the box without replacement. In
this case, 𝑋1 and 𝑋2 will no longer be identically distributed nor indepen-
dent. The first draw 𝑋1 will still be Bernoulli with parameter 𝑝:

𝑓𝑋1
(𝑥) = Pr(𝑋1 = 𝑥) = {0.7 for 𝑥 = 0

0.3 for 𝑥 = 1 .
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However, the distribution of 𝑋2 will be different from that of 𝑋1, and
will depend on which ball was drawn in the first draw. For example, if
you drew a “1-ball” in the first draw, then there are only 99 balls left
in the box, with 29 1-balls, and the conditional distribution of 𝑋2 will be

𝑓𝑋2∣𝑋1=1(𝑥) = Pr(𝑋2 = 𝑥 ∣ 𝑋1 = 1) = {70/99 for 𝑥 = 0
29/99 for 𝑥 = 1 .

If a 0-ball was drawn in the first draw, then the conditional distribution of
𝑋2 will be

𝑓𝑋2∣𝑋1=0(𝑥) = Pr(𝑋2 = 𝑥 ∣ 𝑋1 = 0) = {69/99 for 𝑥 = 0
30/99 for 𝑥 = 1 .

Of course, if the population is very large, then 𝑋1 and 𝑋2 will be approx-
imately iid. We can reasonably talk about an iid sample of size 𝑛 from a
population of size 𝑁 if 𝑁 is very large relative to 𝑛, even if sampling is
done without replacement.

The notation 𝑓𝑋2∣𝑋1=0 indicates that the pdf is a conditional pdf. It is
the pdf of 𝑋2 under the condition that 𝑋1 = 0. We will look at conditional
pdfs more closely in the next section.

Obtaining an iid sample from a conceptual population depends on the
population. For tosses of a coin, a random sample can be obtained by
simply carrying out the coin tosses, but doing so properly. Lazily flipping
the coin back and forth results in a dependent series of observations, since
there is a strong tendency to alternate between heads and tails. Damaging
the coin while tossing (don’t ask us how) might result in the probability
of heads to change across the sampling process. Willfully controlling the
toss (some people can do this) will result in a non-iid non-representative
sample of the population. Basically the idea is to ensure that each instance
of the “experiment” is carried out under identical conditions, with previous
experiments not affecting subsequent ones, and in a way that doesn’t bias
toward one result or another.

What about time series data such as the price of a stock, or the infla-
tion, output and interest rate series for an economy? This is data of the
form

𝑌1, 𝑌2,… , 𝑌𝑡, ...
where again each 𝑌𝑡 might be a vector of different measurements, such as

𝑌𝑡 = (𝑐𝑝𝑖𝑡 , 𝑔𝑑𝑝𝑡 , 𝑢𝑛𝑒𝑚𝑝𝑡 ,… ) .

For such data, there isn’t really any sampling to be done on the part of
the researcher, apart from deciding on the frequency of the data (5-minute,
daily, monthly, quarterly, …), or the sample period. For time series like
inflation and interest rates, there may be the question of which price series
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or interest rate series to use, since there are typically so many in any given
economy. Furthermore, each 𝑌𝑡 is a result of decisions made by many
economic entities and their interactions. For such data sets, each 𝑌𝑡 should
be expected to depend in some way on previous outcomes, i.e., we should
expect dependencies across time. In this case, the issue is not how to get
iid observations, but how to deal with the dependencies in the data. Often
the dependencies are themselves the object of inference.

7.2.2 Estimation
We present an example to illustrate statistical estimation, and demonstrate
how a small sample can give you results that are accurate and precise. We
make use of the following two important properties of expectations and
variances. Their proofs and generalizations will be given later. If 𝑋1 and
𝑋2 are random variables, then

𝐸(𝑎1𝑋1 + 𝑎2𝑋2) = 𝑎1𝐸(𝑋1) + 𝑎2𝐸(𝑋2) . (7.18)

In addition, if 𝑋1 and 𝑋2 are independent, then

Var(𝑎1𝑋1 + 𝑎2𝑋2) = 𝑎21Var(𝑋1) + 𝑎22Var(𝑋2) . (7.19)

Property (7.18) holds for all pairs of random variables, regardless of whether
they are independent or identically distributed. Property (7.19) holds if 𝑋1
and 𝑋2 are independent, and may or may not hold if they are dependent.
We will generalize Property (7.19) later. Both properties extend in the
obvious way to sums of 𝑛 random variables.
Example 7.15 Suppose a box contains 𝑁 = 1000 balls each labeled with
a number from 1 to 8, with 50 1- and 8-balls, 100 2- and 7 -balls, 150 3- and
6-balls, and 200 4- and 5-balls. Suppose you know that there are 𝑁 = 1000
balls in the box, but you do not know the proportions of each numbered ball.
In fact, we go further and assume that you don’t even know what numbers
are on the balls. Your job is to estimate the sum total of the numbers on
the 𝑁 = 1000 balls, which is 𝑆 = 50 ⋅ 1+100 ⋅ 2+⋯+100 ⋅ 7+50 ⋅ 8 = 4500.
You are allowed to sample just 𝑛 = 10 balls, with replacement, from the
container. Can you estimate the total?

Let {𝑏1, 𝑏2, 𝑏3,… , 𝑏𝑁} be the set of values of each of the 𝑁 balls in the
container and let your sample be {𝑋𝑖}𝑛𝑖=1. Since the total value 𝑆 is the
average value of the 𝑁 balls times 𝑁 , let’s try estimating 𝑆 by multiplying
the sample average by 𝑁 , i.e., using the estimator

̂𝑆 = 𝑁
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = 𝑁𝑋 , where 𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 . (7.20)

Of course, if you wanted to estimate the population average instead of the
population total, you could have used the sample mean 𝑋.
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We use the following code to simulate the act of drawing from the con-
tainer. It uses exactly the method you would use to get a random sample
from a population, with replacement. Your sample is

set.seed(207)
n = 10
box <- c(rep(1,50), rep(2,100), rep(3,150), rep(4, 200),

rep(5,200), rep(6,150), rep(7,100), rep(8,50))
sample1 <- sample(box, size=n, replace=TRUE)
sample1

[1] 2 4 5 4 6 7 8 4 4 6

Using the estimator (7.20), your estimate of the total sum would be

(1000/n)*sum(sample1)

[1] 5000

which isn’t too bad, given that your sample size was so small, and you did
not even know what values were on the balls! Why does the estimator ̂𝑆
work?

Let 𝑋 be the value of a randomly selected ball from the container. We
note first that the population mean of 𝑋 is

𝐸(𝑋) =
8

∑
𝑖=1

𝑖Pr(𝑋 = 𝑖) = 1
𝑁

𝑁
∑
𝑗=1

𝑏𝑖 =
𝑆
𝑁

Since your sample {𝑋𝑖}𝑛𝑖=1 is a random draw from the population, we know
that 𝐸(𝑋𝑖) = 𝑆/𝑁 for each 𝑋𝑖, 𝑖 = 1, 2,… , 𝑛. Using the fact that the
expectation of a sum is the sum of the expectations, we have

𝐸( ̂𝑆) = 𝐸(𝑁
𝑛

𝑛
∑
𝑖=1

𝑋𝑖) = 𝑁
𝑛

𝑛
∑
𝑖=1

𝐸(𝑋𝑖) =
𝑁
𝑛

𝑛
∑
𝑖=1

( 𝑆
𝑁 ) = 1

𝑛
𝑛

∑
𝑖=1

𝑆 = 𝑆 .

We say that ̂𝑆 is an unbiased estimator for 𝑆. This means that if you
use this estimator, you will not systematically over- or under-estimate the
total — “on average” you will get it right. To continue with this example,
suppose 11 other people carried out the same exercise as you, each sampling
10 balls without replacement from the container and estimating the total
in the same way as you. Suppose your collective samples are

set.seed(207)
R = 12
samples <- data.frame(matrix(ncol=R, nrow = n))
colnames(samples) <- paste0("S",1:R)
for (i in 1:R){samples[,i] <- sample(box, size=n, replace=TRUE)}
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samples

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
1 2 4 2 5 5 7 5 4 6 1 6 1
2 4 7 3 3 5 5 2 7 3 5 8 3
3 5 3 5 1 5 4 1 1 8 3 3 1
4 4 4 6 6 4 3 5 2 3 6 5 5
5 6 4 5 6 4 5 3 4 3 2 5 4
6 7 5 6 5 6 1 7 3 5 3 1 7
7 8 4 4 1 4 6 3 4 3 2 3 2
8 4 4 2 5 4 5 8 8 2 7 7 4
9 4 5 3 5 6 7 4 5 5 7 1 7
10 6 4 7 7 2 7 5 6 4 6 4 4

Your respective estimates of the total are then

hat_S <- (1000/n)*colSums(samples,dim=1)
hat_S

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
5000 4400 4300 4400 4500 5000 4300 4400 4200 4200 4300 3800

Some underestimate and some overestimate, but the distribution of the
estimates is centered around the true total.

The following is an application of the ideas in Example 7.15 to a “real-
world” situation.

Example 7.16 How much did Singaporean households spend on food on
average each month over 2017/18? How much did US households spend
in total on their pets in 2021? How would you find out? It would be
quite costly to ask every household, even in a small country like Singapore.
Imagine trying to do the same for a larger country like the US. Surveying a
small sample of households, if done properly, can nonetheless allow you to
estimate total expenditure on pets quite accurately. The problem is entirely
analogous to estimating the population total or population average of the
value on the balls in Example 7.15. By randomly sampling the population
of households in the US, the US Bureau of Labor Statistics estimated via its
Consumer Expenditure Survey that in 2021 pet expenditure was US$102.8
billion in the US.6 The Singapore Department of Statistics used a similar
method in its Household Expenditure Survey to estimate that Singapore
households spent an average of approximately S$1200 per month on food
in 2017/18.7 These surveys also estimate expenditures on various other
categories of goods and services. Among other things, this information
is used in the construction of the Consumer Price Index, and in policy
deliberations.

6See Bureau of Labor Statistics (2023).
7See Department of Statistics (2019).
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We focus now on the problem of estimating a population mean using the
sample mean. The theory will apply to a wide range of problems, including
the population mean of both tangible and conceptual populations. If the
population is finite and tangible, and interest is in the population total, then
the sample can be multiplied by the population size 𝑁 to get an estimate
of the population total.

We begin by modelling the population as represented by the random
variable 𝑋 with probability distribution function 𝑓𝑋(𝑥), and with “pop-
ulation mean” 𝐸(𝑋) = 𝜇 and “population variance” Var(𝑋) = 𝜎2. For
example,

• if 𝑋 ∼ Bernoulli(𝑝), then 𝜇 = 𝑝 and 𝜎2 = 𝑝(1 − 𝑝).

• if 𝑋 ∼ Geometric(𝑝), then 𝜇 = 1 − 𝑝
𝑝 and 𝜎2 = 1 − 𝑝

𝑝2 .

• if 𝑋 ∼ Uniform(𝑎, 𝑏), then 𝜇 = 𝑎 + 𝑏
2 and 𝜎2 = (𝑏 − 𝑎)2

12 .

The theory we present applies to all of the above, the Normal and Log-
Normal distributions, as well as the many distributions that we will discuss
later in the chapter. In fact, most of the theory does not even require us to
specify what 𝑓𝑋(𝑥) is, and only requires that 𝑋 has a mean and variance.

We assume that you have a representative random sample {𝑋𝑖}𝑛𝑖=1.
This means that the sample is iid with 𝐸(𝑋𝑖) = 𝜇 and Var(𝑋𝑖) = 𝜎2 for
all 𝑖. Then the sample mean

̂𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = 𝑋 (7.21)

is an unbiased estimator of the population mean:

𝐸( ̂𝜇) = 𝐸(1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖) = 1
𝑛

𝑛
∑
𝑖=1

𝐸(𝑋𝑖) =
1
𝑛𝑛𝜇 = 𝜇 . (7.22)

That is, the distribution of your estimator is centered about the population
mean. You can interpret this to mean that by following the estimation rule
̂𝜇 = 𝑋 you will not be systematically over- or under-estimating your target

parameter.
How big of an error can you expect to make? We can answer this

question by looking at the variance of the estimator. Remember that the
estimator is a random variable, with a mean and variance. If its mean is
centered at the true value of the parameter you are estimating, it is said to
be unbiased. The variance measures the spread of the estimator distribu-
tion around the mean, so it is a measure of how “precise” the estimator is.
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Assuming we have an iid sample, we have

Var(𝑋) = Var(1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖) = 1
𝑛2

𝑛
∑
𝑖=1

Var(𝑋𝑖) =
1
𝑛2𝑛𝜎2 = 𝜎2

𝑛 . (7.23)

The square root of the estimator variance (7.23) is called the standard
error. It can be viewed as a measure of the potential size of the estimation
error.

The variance of the sample mean is in most applications unknown, be-
cause 𝜎2 is unknown. Nonetheless, (7.23) tells us that we can estimate the
population mean more precisely if we have larger sample sizes. If we want a
numerical estimate of the standard error, we need to estimate Var(𝑋) = 𝜎2.
How do we do that? Since

Var(𝑋) = 𝐸 ((𝑋 − 𝐸(𝑋))2) ,

one obvious suggestion is to use the estimator

𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)2 = 1
𝑛

𝑛
∑
𝑖=1

𝑋2
𝑖 −𝑋2 . (7.24)

Then the variance of the estimator can be estimated as

Ṽar( ̂𝜇) = 𝜎2

𝑛 . (7.25)

However, (7.24) turns out to be a biased estimator for 𝜎2. We can show
this using the fact that

𝐸(𝑋2
𝑖 ) = Var(𝑋𝑖) + 𝐸(𝑋𝑖)2 = 𝜎2 + 𝜇2

and 𝐸(𝑋2) = Var(𝑋) + 𝐸(𝑋)2 = 𝜎2/𝑛 + 𝜇2 .

We have

𝐸(𝜎2) = 1
𝑛

𝑛
∑
𝑖=1

𝐸(𝑋2
𝑖 ) − 𝐸(𝑋2) = 𝜎2 + 𝜇2 − 𝜎2

𝑛 − 𝜇2 = 𝑛 − 1
𝑛 𝜎2.

The estimator (7.24) therefore systematically under-estimates 𝜎2. It follows
that (7.25) systematically underestimates the variance of the sample mean.
If your sample size 𝑛 is large, the bias may be negligible for all intents
and purposes in which case there shouldn’t be any problem using (7.24).
Nonetheless, it is easy to derive an unbiased estimator for 𝜎2, namely

𝜎2 = 𝑛
𝑛 − 1𝜎

2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)2. (7.26)
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The expressions in (7.24) and (7.26) are both called the sample variance
of the observations. To distinguish between the two, the former can be
referred to as the “uncorrected” sample variance, whereas the latter can
be called the “corrected” or “unbiased” sample variance. The intuition for
why the divisor in (7.26) has to be 𝑛−1 instead of 𝑛 is that the deviations
from the sample mean always sum to zero. This means that there are
only 𝑛 − 1 “free” deviations from the sample mean. For example, given
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋) and the first 𝑛 − 1 deviations (𝑋𝑖 − 𝑋), 𝑖 = 1, 2, ..., 𝑛 − 1,
you can determine the 𝑛th deviation as (𝑋𝑖 −𝑋) = −∑𝑛−1

𝑖=1 (𝑋𝑖 −𝑋). One
“degree of freedom” was lost because we had to use the observations to
compute the sample mean in order to compute the deviations from the
sample mean.

In summary, if 𝑋 has mean 𝐸(𝑋) = 𝜇 and variance Var(𝑋) = 𝜎2 and
you have a representative iid sample {𝑋𝑖}𝑛𝑖=1 from the population repre-
sented by 𝑋, then the sample mean ̂𝜇 = 𝑋 is an unbiased estimator for 𝜇.
The variance of this estimator is Var( ̂𝜇) = 𝜎2/𝑛, where 𝜎2 can be estimated
using (7.26). If the sample size is large, often (7.24) is also used.

Example 7.17 Coins can be weighted so that one side shows more fre-
quently than the other in tosses of the coin. Let 𝑋 = 1 if heads shows,
and 𝑋 = 0 if tails shows and let 𝑝 be the probability of obtaining heads.
Then 𝑋 ∼ Bernoulli(𝑝). Suppose you toss the coin 𝑛 times and record
the outcomes, giving you an iid sample {𝑋𝑖}𝑛𝑖=1 such that 𝐸(𝑋𝑖) = 𝑝 and
Var(𝑋𝑖) = 𝑝(1 − 𝑝) for all 𝑖. Then 𝑝 can be estimated using the sample
mean ̂𝑝 = 𝑋 which is equal to the proportion of 1s in the sample. The
variance of the estimator is

Var( ̂𝑝) = 𝑝(1 − 𝑝)
𝑛

which can be estimated by

V̂ar( ̂𝑝) = 𝜎2

𝑛 where 𝜎2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)2 .

Take the square root of V̂ar( ̂𝑝) to get the sample standard error of the
estimator.

Example 7.17 is an example of estimating the population mean of an
infinite conceptual population. It is nonetheless mathematically identical
to the next example, where we are estimating the population mean of a
finite tangible population.
Example 7.18 Suppose you are interested in estimating the proportion
𝑝 of smokers in a large population of size 𝑁 . If 𝑋 is a random draw
from this population (with “smoker” = 1, “non-smoker”=0), then 𝑋 is
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Bernoulli(𝑝). Suppose you randomly sample 𝑛 people and ask if they are
smokers. Your sample is small relative to the population, and you did
the appropriate randomization in selecting your sample, so that you can
consider your sample {𝑋𝑖}𝑛𝑖=1 to be a representative iid draw from the
population.

As in the coin toss example, 𝐸(𝑋) = 𝑝 so an unbiased estimator for
𝑝 is the sample mean, which is the proportion of smokers in your sample.
For example, if you sample 𝑛 = 20 people, and 14 are smokers, then your
estimate of 𝑝 is ̂𝑝 = 0.7, i.e., you estimate that 70% of the population are
smokers. Of course, this is just an estimate. If you did the same exercise
again, you might get a sample in which there are 12 smokers out of 20, in
which case your estimate of 𝑝 would be ̂𝑝 = 0.6, i.e., you would say that an
estimated 60% of the population are smokers. If you drew a third sample,
you might get 15 smokers out of 20 to get ̂𝑝 = 0.75. You do not know the
true proportion of smokers (otherwise you would not need to be estimating
it) but the unbiasedness of your estimator tells you that on average you
will not over- or under-estimate the proportion 𝑝. You can also estimate
the standard error of the estimator as in the previous example.

Observe that the maximum value of the variance Var( ̂𝑝) = 𝑝(1 − 𝑝)/𝑛
occurs at 𝑝 = 0.5. That is, for fixed 𝑛, the largest value of the standard
error is

√0.5(1 − 0.5)
𝑛 = √0.25

𝑛 .

How many samples observations would you need to ensure that the standard
error is less than 0.01? We have

√0.25
𝑛 < 0.01 ⇒ 0.25

𝑛 < 0.0001 ⇒ 𝑛 > 2500 .

7.2.3 Hypothesis Testing
To test if the population mean is equal to some specific value 𝜇0, we check
if the sample mean is “improbably far” from 𝜇0 when 𝜇 = 𝜇0 is assumed to
be true. If it is, we construe this as evidence that the “null hypothesis” 𝐻0 ∶
𝐸(𝑋) = 𝜇0 is false, and reject it in favor of the alternative 𝐻1 ∶ 𝐸(𝑋) ≠ 𝜇0.
But how far is “improbably far”? To provide an answer to this question,
we need to derive the distribution of the sample mean when 𝜇 = 𝜇0, and
to do so we need to know the distribution of 𝑋. If all you know is that
𝐸(𝑋) = 𝜇 and Var(𝑋) = 𝜎2, then you do not have enough information to
derive the distribution of the sample mean. We will explain how to find an
approximation to the finite sample distribution of 𝑋 in this situation later
in the chapter.

In the case of the coin toss example, the structure of the problem does
provide us with enough information to derive the finite sample distribution
of the sample mean. Let 𝑌 be the number of heads out of 𝑛 independent
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tosses {𝑋𝑖}𝑛𝑖=1 of a coin with probability of heads 𝑝, i.e., 𝑌 = ∑𝑛
𝑖=1 𝑋𝑖,

where 𝑋𝑖 ∼ Bernoulli(𝑝). Then the probability of obtaining 𝑘 heads is

Pr (𝑌 = 𝑘) = (𝑛
𝑘)𝑝𝑖(1 − 𝑝)𝑛−𝑘 , 𝑘 = 0, 1, 2, ..., 𝑛 (7.27)

since there are (𝑛𝑘) ways that 𝑘 heads can appear in a sequence of 𝑛 coin
tosses. We say that 𝑌 has a Binomial distribution with parameters 𝑛 and
𝑝 and call 𝑌 a Binomial random variable. We write 𝑌 ∼ Binomial(𝑛, 𝑝).
Then the sample mean has possible values 𝑘/𝑛, 𝑘 = 0, 1, ..., 𝑛, with corre-
sponding probability

Pr(𝑋 = 𝑘
𝑛) = (𝑛

𝑘)𝑝𝑖(1 − 𝑝)𝑛−𝑘 , 𝑘 = 0, 1, 2, ..., 𝑛. (7.28)

We can use (7.28) to help us decide whether or not to reject the hypothesis
that the coin is fair.8

Example 7.19 Suppose we have a sample of 20 coin tosses, and suppose
that the coin is in fact fair, i.e., that 𝑝 is indeed equal to 0.5. The following is
the pdf of the sample mean 𝑓(𝑖/𝑛) = Pr(𝑋 = 𝑖/𝑛), 𝑖 = 0, 1, ..., 𝑛 calculated
using (7.28) with 𝑝 = 0.5 and displayed in Fig. 7.10.

p <- 0.5
n <- 20
i <- 0:n # i integers from 0 to 20
phat <- 0:n/n # possible values of sample means
Pr_phat <- choose(n,i)*p^i*(1-p)^(n-i)
dim(Pr_phat) <- c(1,n+1) # make into row vector for presentation
colnames(Pr_phat) = paste0("p_hat=",i/n)
rownames(Pr_phat) = "Prob"
noquote(format(Pr_phat, scientific=T,digits=6)) # another way to print

p_hat=0 p_hat=0.05 p_hat=0.1 p_hat=0.15 p_hat=0.2 p_hat=0.25
Prob 9.53674e-07 1.90735e-05 1.81198e-04 1.08719e-03 4.62055e-03 1.47858e-02

p_hat=0.3 p_hat=0.35 p_hat=0.4 p_hat=0.45 p_hat=0.5 p_hat=0.55
Prob 3.69644e-02 7.39288e-02 1.20134e-01 1.60179e-01 1.76197e-01 1.60179e-01

p_hat=0.6 p_hat=0.65 p_hat=0.7 p_hat=0.75 p_hat=0.8 p_hat=0.85
Prob 1.20134e-01 7.39288e-02 3.69644e-02 1.47858e-02 4.62055e-03 1.08719e-03

p_hat=0.9 p_hat=0.95 p_hat=1
Prob 1.81198e-04 1.90735e-05 9.53674e-07

Notice that there are non-zero probabilities on every possible outcome
of the sample mean. This means that any reasonable decision rule that
we use to reject, or not reject, the null hypothesis will have a non-zero
probability of rejecting 𝐻0 even when 𝐻0 is true (we call this a “Type I

8Since 𝐸(𝑋𝑛) = 𝑝 and Var(𝑋𝑛) = 𝑝(1 − 𝑝)/𝑛 and 𝑌 = 𝑛𝑋, it follows that if 𝑌 ∼
Binomial(𝑛, 𝑝), then 𝐸(𝑌 ) = 𝑛𝑝 and Var(𝑌 ) = 𝑛2𝑝(1 − 𝑝)/𝑛 = 𝑛𝑝(1 − 𝑝). Incidentally,
the Bernoulli(𝑝) distribution is a special case of the Binomial(𝑛,𝑝) distribution with
𝑛 = 1.
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Fig. 7.10. Distribution of sample mean, n=20, p=0.5.

error”). For example, suppose we use the rule “Reject 𝐻0 ∶ 𝑝 = 0.5 in favor
of the alternative 𝐻1 ∶ 𝑝 ≠ 0.5 if the frequency of heads ̂𝑝 is less than 0.3 or
greater than 0.7”, which seems not unreasonable. We can calculate from the
table above that by using this rule, there is a probability of approximately

round(sum(Pr_phat[i/n<0.3])+sum(Pr_phat[i/n>0.7]),4)

[1] 0.0414

that we reject the null even though 𝑝 is in fact equal to 0.5. We can reduce
the probability of Type I error by allowing for a larger range for ̂𝑝 (perhaps
reject if ̂𝑝 < 0.05 or ̂𝑝 > 0.95), but then the test loses power to reject a
false hypothesis (i.e., the probability of failing to reject a wrong hypothesis
— a “Type II error” — increases). In practice, researchers usually opt for
decision rules such that the probability of an incorrect rejection of a true
null hypothesis (a value also known as the level of significance of the
test, is around 0.01, or 0.05, or 0.10.

7.2.4 Exercises
Ex. 7.11 Suppose you wish to estimate the population mean, and you use the
following “silly” estimator ̃𝜇 = 𝑋1 regardless of sample size. That is, you pick the
first sampled observation as your estimator of the population mean, and discard
the rest. Show that this is an unbiased estimator.

Ex. 7.12 We showed in (7.23) that the variance of the sample mean is Var(𝑋) =
𝜎2/𝑛. What happens to Var(𝑋) when 𝑛 → ∞, i.e., as you use larger and larger
sample sizes? How would you interpret this result?

Ex. 7.13 The variance of ̂𝑝 in Example 7.17 is

Var( ̂𝑝) = 𝑝(1 − 𝑝)
𝑛
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which can be estimated by

V̂ar( ̂𝑝) = 𝜎2

𝑛 where 𝜎2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)2 .

Another possibility is to use

̃Var(𝑋) = ̂𝑝(1 − ̂𝑝)
𝑛 .

Show that this is equivalent to using

Ṽar( ̂𝑝) = 𝜎2

𝑛 where 𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)2 .

Show that ̂Var(𝑋) = ̂𝑝(1 − ̂𝑝)
𝑛 − 1 .

Ex. 7.14 The sample mean

𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 =
1
𝑛𝑋1 +

1
𝑛𝑋2 +⋯+ 1

𝑛𝑋𝑛

is an unweighted average of the sample observations. Consider now a weighted
average

𝑋 =
𝑛

∑
𝑖=1

𝑤𝑖𝑋𝑖 = 𝑤1𝑋1 +𝑤2𝑋2 +⋯+𝑤𝑛𝑋𝑛 .

Show that 𝑋 is an unbiased estimator for the population mean if ∑𝑛
𝑖=1 𝑤𝑖 = 1.

Continuing with the assumption that ∑𝑛
𝑖=1 𝑤𝑖 = 1, show that

Var(𝑋) ≥ Var(𝑋) .

Ex. 7.15 Use the data in earnings2019.csv to answer the following questions.
(a) Estimate 𝐸(ln 𝑒𝑎𝑟𝑛) = 𝜇 and 𝐸(𝑒𝑎𝑟𝑛) by taking the sample means of ln 𝑒𝑎𝑟𝑛𝑖
and 𝑒𝑎𝑟𝑛𝑖 respectively. Estimate also the variances of the two sample means.
(b) Find the natural exponent of the sample mean of ln 𝑒𝑎𝑟𝑛𝑖, and compare this
value with the sample mean of 𝑒𝑎𝑟𝑛𝑖. What might explain the discrepancy?
(c) If we assume that ln 𝑒𝑎𝑟𝑛 ∼ Normal(𝜇, 𝜎2), then 𝑒𝑎𝑟𝑛 ∼ Log-Normal(𝜇, 𝜎2),
with expected value 𝐸(𝑒𝑎𝑟𝑛) = exp{𝜇 + 𝜎2

2 }. Use this to suggest an alternative
way to estimate 𝐸(𝑒𝑎𝑟𝑛) from the sample mean and sample variance of ln 𝑒𝑎𝑟𝑛𝑖.
(d) Given an iid sample {𝑋𝑖}𝑛𝑖=1 of a random variable 𝑋, we can use the sample
skewness and sample kurtosis, defined as

𝑆 =
1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)3

[ 1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2]3/2
and 𝐾 =

1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)4

[ 1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2]2

to estimate the population skewness and kurtosis of 𝑋. Compute the sample
skewness and kurtosis of ln(𝑒𝑎𝑟𝑛𝑖). Is it appropriate to assume that ln(𝑒𝑎𝑟𝑛) ∼
Normal(𝜇, 𝜎2)?
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Ex. 7.16 A measure of the quality of an estimator ̂𝜃 for a parameter 𝜃 is the
mean squared estimation error

𝑀𝑆𝐸( ̂𝜃) = 𝐸((𝜃 − ̂𝜃)2) .

Show that 𝑀𝑆𝐸( ̂𝜃) = Bias( ̂𝜃)2 + Var( ̂𝜃) where Bias( ̂𝜃) = 𝐸( ̂𝜃) − 𝜃.

Ex. 7.17 It can be shown that if 𝑌𝑖, 𝑖 = 1, 2, ..., 𝑛 are iid draws from a Normal
distribution with mean 𝜇 and variance 𝜎2, then the variance of the unbiased
variance estimator 𝜎2 defined in (7.26) is

Var(𝜎2) = 2𝜎4

𝑛 − 1 .

Because 𝜎2 is an unbiased estimator, its MSE is also 2𝜎4

𝑛 − 1 .

(a) Show that the biased estimator 𝜎2 defined in (7.24) has a smaller variance
than 𝜎2.

(b) Show that

𝑀𝑆𝐸(𝜎2) = 2𝑛 − 1
𝑛2 𝜎4 .

(c) Show that 𝑀𝑆𝐸(𝜎2) < 𝑀𝑆𝐸(𝜎2).

This is an example where the MSE of an estimator can be improved by trading
off some bias for a reduced variance. Note that the arguments here have assumed
that 𝑌 is normally distributed.

7.3 Joint and Conditional Probabilities
We model the joint behavior of two random variable using a joint prob-
ability distribution function. We will use a simple example with two
discrete random variables to illustrate the main ideas.

7.3.1 Joint and Marginal Distributions
Suppose 𝑋 and 𝑌 are discrete random variables with ranges 𝑥 = 1, 2, 3, 4, 5
and 𝑦 = 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0. Their joint pdf 𝑓𝑋,𝑌 (𝑥, 𝑦) gives you
the probability of events of the form 𝑋 = 𝑥 and 𝑌 = 𝑦, i.e.,

𝑓𝑋,𝑌 (𝑥, 𝑦) = Pr(𝑋 = 𝑥, 𝑌 = 𝑦) .
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Suppose the joint pdf of 𝑋 and 𝑌 is as given below.

6 0 0 0 0 1
20

5.5 0 0 0 1
20

2
20

5 0 0 1
20

2
20

1
20

𝑦 4.5 0 1
20

2
20

1
20 0

4 1
20

2
20

1
20 0 0

3.5 2
20

1
20 0 0 0

3 1
20 0 0 0 0
1 2 3 4 5

𝑥

(7.29)

So we have

Pr(𝑋 = 1, 𝑌 = 3) = 𝑓𝑋,𝑌 (1, 3) =
1
20 ,

Pr(𝑋 = 3, 𝑌 = 3) = 0,

Pr(𝑋 ≥ 4, 𝑌 ≥ 5) = 7
20

and so on.
What is the probability of observing 𝑋 = 1 (regardless of the value of

the accompanying 𝑌 value)? To find Pr(𝑋 = 1), add up all the probabilities
of events where 𝑋 = 1, i.e.,

Pr(𝑋 = 1) = Pr(𝑌 = 3,𝑋 = 1) + Pr(𝑌 = 3.5,𝑋 = 1) + ⋯+ Pr(𝑌 = 6,𝑋 = 1)

= 1
20 + 2

20 + 1
20

= 0.2

This is just an application of the law of total probabilities. You can repeat
this calculation for Pr(𝑋 = 2), Pr(𝑋 = 3), Pr(𝑋 = 4), Pr(𝑋 = 5). You
should find that:

𝑥 1 2 3 4 5
Pr(𝑋 = 𝑥) 4

20
4
20

4
20

4
20

4
20

This is the “marginal” (or “unconditional”) pdf of 𝑋. It turns out, in
this example, that 𝑋 is uniformly distributed over the values 𝑋 = 1, 2, ..., 5.
Similar calculations will give you the marginal distribution of 𝑌 .
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6 0 0 0 0 1
20

5.5 0 0 0 1
20

2
20

5 0 0 1
20

2
20

1
20

𝑦 4.5 0 1
20

2
20

1
20 0

4 1
20

2
20

1
20 0 0

3.5 2
20

1
20 0 0 0

3 1
20 0 0 0 0
1 2 3 4 5

𝑥

→

6 1
20

5.5 3
20

5 4
20

4.5 4
20

4 4
20

3.5 3
20

3 1
20

𝑦 Pr(𝑌 = 𝑦)

𝐸(𝑌 ) = 4.5
Var(𝑌 ) = 0.625

↓
𝑥 1 2 3 4 5

Pr(𝑋 = 𝑥) 4
20

4
20

4
20

4
20

4
20

→ 𝐸(𝑋) = 3,Var(𝑋) = 2

The marginal distribution of 𝑌 in our example is somewhat “bell-
shaped”. You can calculate the (unconditional) means and variances of 𝑋
and 𝑌 from their marginal pdfs using the usual formulas.

For discrete random variables, the marginal pdf of 𝑋 is computed as
𝑓𝑋(𝑥) = ∑𝑦 𝑓𝑋,𝑌 (𝑥, 𝑦) where ∑𝑦 indicates summation over the possible
values of 𝑌 . Likewise, the marginal pdf of 𝑌 is computed as 𝑓𝑌 (𝑦) =
∑𝑥 𝑓𝑋,𝑌 (𝑥, 𝑦). For continuous random variables, the marginals are com-
puted as integrals: 𝑓𝑋(𝑥) = ∫𝑦 𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦 and 𝑓𝑌 (𝑦) = ∫𝑥 𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥.
We can extend the joint pdf concept to more than two variables, e.g.,
𝑓𝑋,𝑌 ,𝑍(𝑥, 𝑦, 𝑧), and so on.

7.3.2 Covariance and Correlation
It seems clear that in (7.29) there is a positive relationship between 𝑋 and
𝑌 . One way to describe the relationship between the random variables is
to calculate the covariance between 𝑋 and 𝑌 , defined as

𝜎𝑋𝑌 = Cov(𝑋, 𝑌 ) = 𝐸 ((𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌 ))) .
In our example, we have

Cov(𝑋, 𝑌 ) = (5 − 3)(6.0 − 4.5) 1
20+

(4 − 3)(5.5 − 4.5) 1
20 + (5 − 3)(5.5 − 4.5) 2

20+
(3 − 3)(5.0 − 4.5) 1

20 + (4 − 3)(5.0 − 4.5) 2
20 + (5 − 3)(5.0 − 4.5) 1

20+
(2 − 3)(4.5 − 4.5) 1

20 + (3 − 3)(4.5 − 4.5) 2
20 + (4 − 3)(4.5 − 4.5) 1

20+
(1 − 3)(4.0 − 4.5) 1

20 + (2 − 3)(4.0 − 4.5) 2
20 + (3 − 3)(4.0 − 4.5) 1

20+
(1 − 3)(3.5 − 4.5) 2

20 + (2 − 3)(3.5 − 4.5) 1
20+

(1 − 3)(3.0 − 4.5) 1
20

= 1
One problem with the covariance measure is that it is not invariant to

scale. For instance, suppose 𝑋 is currently measured in thousands of dollars.
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If we re-scale to dollars by multiplying 𝑋 by 1000, then the covariance
becomes

Cov(1000𝑋, 𝑌 ) = 𝐸((1000𝑋 − 𝐸(1000𝑋))(𝑌 − 𝐸(𝑌 )))
= 1000𝐸((𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌 )))
= 1000Cov(𝑋, 𝑌 ).

For this reason, the correlation

𝜌𝑋𝑌 = 𝐶𝑜𝑟𝑟(𝑋, 𝑌 ) = Cov(𝑋, 𝑌 )
√Var(𝑋)√Var(𝑌 )

,

which is invariant to scale and always lies between −1 and 1, is more infor-
mative. If 𝜌𝑋𝑌 = 0, then 𝑋 and 𝑌 are said to be uncorrelated.

Given a sample {𝑋𝑖, 𝑌𝑖}𝑛𝑖=1 from a joint pdf 𝑓𝑋,𝑌 (𝑥, 𝑦), we can estimate
the covariance using the sample covariance

�̂�𝑋𝑌 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )

where 𝑋 and 𝑌 are the sample means of 𝑋𝑖 and 𝑌𝑖 respectively. To estimate
the correlation, we can divide the sample covariance by the sample standard
deviations to get the sample correlation

̂𝜌𝑋𝑌 = ∑𝑛
𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )

√∑𝑛
𝑖=1(𝑋𝑖 −𝑋)2√∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2
.

The following properties of means, variances and covariances are easy to
show: if 𝑎 and 𝑏 are constants, we have

(a) 𝐸(𝑎𝑋 + 𝑏𝑌 ) = 𝑎𝐸(𝑋) + 𝑏𝐸(𝑌 ),
(b) Var(𝑎𝑋 + 𝑏𝑌 ) = 𝑎2Var(𝑋) + 𝑏2Var(𝑌 ) + 2𝑎𝑏Cov(𝑋, 𝑌 ),
(c) Cov(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ),
(d) Cov(𝑋,𝑋) = Var(𝑋).

From (b), we see that the variance of a sum is the sum of the variances only
if the variables are uncorrelated. From (c) we see that Cov(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 )
if either 𝑋 or 𝑌 has mean zero.

7.3.3 Conditional Distributions
Another way of describing the relationship between two random variables
is via conditional distributions. These describe the behavior of one variable
when the other takes various values. For instance, if we observe 𝑋 =
1 but do not observe the 𝑌 realization, what can we predict about the
behavior of 𝑌 ? For the joint pdf in (7.29), we know that only three values



August 20, 2024 16:34 book-9x6 Baydur-Preve-Tay index page 268

268 Mathematics and Programming for the Quantitative Economist

of 𝑌 are possible when 𝑋 = 1, with 𝑌 = 3 and 𝑌 = 4 equally likely,
and 𝑌 = 3.5 twice as likely as either of these. Other values of 𝑌 have
probability zero. Total probabilities must sum to one, so we divide each
of these probabilities by their total sum, i.e., by Pr(𝑋 = 1), to obtain the
conditional probabilities:

Pr(𝑌 = 3 ∣ 𝑋 = 1) = 1/20
4/20 = 1

4 ,

Pr(𝑌 = 3.5 ∣ 𝑋 = 1) = 2/20
4/20 = 1

2 , Pr(𝑌 = 4 ∣ 𝑋 = 1) = 1/20
4/20 = 1

4 ,

Pr(𝑌 = 𝑦 ∣ 𝑋 = 1) = 0 for 𝑦 = 4.5, 5, 5.5 and 6.

This collection of probabilities make up the conditional pdf of 𝑌 given
𝑋 = 1. Making these calculations for each value of 𝑋 gives

Pr(𝑌 ∣ 𝑋)
6 0 0 0 0 1/4
5.5 0 0 0 1/4 1/2
5 0 0 1/4 1/2 1/4

𝑌 4.5 0 1/4 1/2 1/4 0
4 1/4 1/2 1/4 0 0
3.5 1/2 1/4 0 0 0
3 1/4 0 0 0 0

1 2 3 4 5
𝑋

(7.30)

Each column of (7.30) represents a complete pdf, so we have a collection of
five pdfs, one for each possible value of 𝑋.

For any given value of 𝑋 = 𝑥, we can use the corresponding conditional
pdf to compute the conditional mean of 𝑌 given 𝑋 = 𝑥, and the conditional
variance of 𝑌 given 𝑋 = 𝑥. For 𝑋 = 1, we have:

𝐸(𝑌 ∣ 𝑋 = 1) = 3( 1
4 ) + 3.5( 1

2 ) + 4( 1
4 ) + 4.5(0) + 5(0) + 5.5(0) + 6(0)

= 3.5
Var(𝑌 ∣ 𝑋 = 1) = (3 − 3.5)2( 1

4 ) + (3.5 − 3.5)2( 1
2 ) + (4 − 3.5)2( 1

4 ) + 0 + 0 + 0 + 0
= 0.125

Repeating these calculations for each value of 𝑋 we get:

𝑋 1 2 3 4 5
𝐸(𝑌 ∣ 𝑋) 3.5 4 4.5 5 5.5

Var(𝑌 ∣ 𝑋) 0.125 0.125 0.125 0.125 0.125
(7.31)
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Notice that 𝐸(𝑌 ∣ 𝑋) is a function of 𝑋. In our example, the conditional
mean of 𝑌 given 𝑋 increases with 𝑋. In fact we have

𝐸(𝑌 ∣ 𝑋) = 3 + 0.5𝑋 , 𝑋 = 1, 2, 3, 4, 5 .
The conditional variance in this example turns out to be constant: Var(𝑌 ∣
𝑋) = 0.125 for all 𝑋. In general it will also be a function of 𝑋.

In this example, knowledge of the value of 𝑋 gives us information that
we can use to refine our view of the behavior of 𝑌 or to predict 𝑌 using
information in 𝑋. For instance, if we know that 𝑋 is small (relative to its
mean), then we know that the mean of 𝑌 will also tend to be small (relative
to its unconditional mean). If we know that the 𝑋 is large, then we also
know that the 𝑌 outcome will be large. If we do not observe 𝑋, then our
view regarding the mean value of 𝑌 will have to cover all possible values of
𝑋, which is what the unconditional mean of 𝑌 does. The fact that 𝑋 gives
us information about 𝑌 is also reflected in the reduction in variance from
Var(𝑌 ) = 0.625 to Var(𝑌 ∣ 𝑋) = 0.125. This last result does not hold in
general, but it does hold when Var(𝑌 ∣ 𝑋) is constant.

For two continuous random variables 𝑋 and 𝑌 , the conditional distri-
butions are defined as

𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥) = 𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑋(𝑥) and 𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦) = 𝑓𝑋,𝑌 (𝑥, 𝑦)

𝑓𝑌 (𝑦)
when 𝑓𝑋(𝑥) ≠ 0 and 𝑓𝑌 (𝑦) ≠ 0. Another way of writing this is

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥)𝑓𝑋(𝑥) = 𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦)𝑓𝑌 (𝑦).
This decomposition of joint pdfs can be extended to more than two variables,
e.g., we have

𝑓𝑋,𝑌 ,𝑍(𝑥, 𝑦, 𝑧) = 𝑓𝑍∣𝑋,𝑌 (𝑧 ∣ 𝑥, 𝑦)𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥)𝑓𝑋(𝑥) .
7.3.4 Manipulating Conditional Moments
Manipulation of conditional expectations and variances follows one simple
principle: whatever is being conditioned on can be treated as “fixed” (i.e.,
like a constant) as far as that expectation or variance is concerned.
Example 7.20

(a) 𝐸(𝑎𝑋𝑌 ∣ 𝑋) = 𝑎𝑋𝐸(𝑌 ∣ 𝑋) , Var(𝑎𝑋𝑌 ∣ 𝑋) = 𝑎2𝑋2Var(𝑌 ∣ 𝑋),
(b) 𝐸(𝑎𝑋 ∣ 𝑋) = 𝑎𝑋 (contrast with 𝐸(𝑎𝑋) = 𝑎𝐸(𝑋), a constant),
(c) Var(𝑎𝑋 ∣ 𝑋) = 0 (contrast with Var(𝑎𝑋) = 𝑎2Var(𝑋)),
(d) If 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 with 𝐸(𝜖 ∣ 𝑋) = 0 and Var(𝜖 ∣ 𝑋) = 𝜎2, then

𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋 and Var(𝑌 ∣ 𝑋) = 𝜎2. (7.32)
In linear regression analysis, we often begin with an assumption that the
conditional expectation takes some form, such as (7.32), the objective being
to estimate the parameters 𝛽0 and 𝛽1.
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7.3.5 The Law of Iterated Expectations
Recall that for the joint pdf in (7.29), we have 𝐸(𝑌 ) = 4.5, and

𝑋 1 2 3 4 5
𝐸(𝑌 ∣ 𝑋) 3.5 4 4.5 5 5.5

Pr(𝑋) 0.2 0.2 0.2 0.2 0.2
While 𝐸(𝑌 ) is a single number, 𝐸(𝑌 ∣ 𝑋) is a random variable when consid-
ered over all possible values of 𝑋. In our example, 𝐸(𝑌 ∣ 𝑋) is a (uniformly
distributed) random variable with possible values 3.5, 4.0, 4.5, 5.0, and 5.5.
If we calculate the mean of this random variable, we get

𝐸(𝐸(𝑌 ∣ 𝑋)) = 3.5(0.2) + 4(0.2) + 4.5(0.2) + 5(0.2) + 5.5(0.2) = 4.5 .
This value turns out to be exactly the same as the value of 𝐸(𝑌 ), which we
calculated earlier in Section 7.3.1. The equality of 𝐸(𝐸(𝑌 ∣ 𝑋)) and 𝐸(𝑌 ) is
not a coincidence, but an example of the Law of Iterated Expectations:

𝐸𝑋(𝐸𝑌 ∣𝑋(𝑌 ∣ 𝑋)) = 𝐸𝑌 (𝑌 ). (7.33)

We add the subscript to the expectation notation in (7.33) to be clear as to
the probabilities over which the expectations are taken, e.g., 𝐸𝑌 ∣𝑋 indicates
that the expectation is taken over the conditional probabilities of 𝑌 given
𝑋, whereas 𝐸𝑌 and 𝐸𝑋 indicate that the expectations are taken under
the marginal distributions of 𝑌 and 𝑋 respectively. We often drop the
subscripts for cleaner exposition. The Law of Iterated Expectations is also
known as the Law of Total Expectations.

The Law of Iterated Expectations says (roughly speaking) that we can
get the ‘overall’ average of 𝑌 by taking the 𝑌 average for each possible
value of 𝑋, and then taking the average of those averages.

More generally, we have

𝐸𝑋,𝑌 (𝑔(𝑋, 𝑌 )) = 𝐸𝑋(𝐸𝑌 ∣𝑋(𝑔(𝑋, 𝑌 )))
Proof:

𝐸𝑋,𝑌 (𝑔(𝑋, 𝑌 )) = ∫
𝑋
∫
𝑌
𝑔(𝑥, 𝑦)𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

= ∫
𝑋
∫
𝑌
𝑔(𝑥, 𝑦)𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥)𝑓𝑋(𝑥) 𝑑𝑦 𝑑𝑥

= ∫
𝑋
(∫

𝑌
𝑔(𝑥, 𝑦)𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥) 𝑑𝑦) 𝑓𝑋(𝑥) 𝑑𝑥

= 𝐸𝑋 (𝐸𝑌 ∣𝑋(𝑔(𝑋, 𝑌 ) ∣ 𝑋))

If 𝑔(𝑋, 𝑌 ) = 𝑌 , we get the law of iterated expectations as stated in (7.33).
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The Law of Iterated Expectations implies the following:
(a) If 𝐸(𝑌 ∣ 𝑋) = 𝑐, then 𝐸(𝑌 ) = 𝑐,
(b) If 𝐸(𝑌 ∣ 𝑋) = 𝑐, then Cov(𝑋, 𝑌 ) = 0.

Result (a) says that if the expected value of 𝑌 is 𝑐 for every possible value of
𝑋, then the “overall” mean must be that same constant, and (b) says that
𝐸(𝑌 ∣ 𝑋) = 𝑐 is a sufficient condition for Cov(𝑋, 𝑌 ) = 0. The derivation
of these results is straightforward: if 𝐸(𝑌 ∣ 𝑋) = 𝑐, then

𝐸(𝑌 ) = 𝐸(𝐸(𝑌 ∣ 𝑋)) = 𝐸(𝑐) = 𝑐

which proves (a). For (b), we note that

𝐸(𝑌𝑋) = 𝐸(𝐸(𝑌 𝑋 ∣ 𝑋)) = 𝐸(𝑋𝐸(𝑌 ∣ 𝑋)) = 𝐸(𝑐𝑋) = 𝑐𝐸(𝑋) ,

therefore

Cov(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ) = 𝑐𝐸(𝑋) − 𝑐𝐸(𝑋) = 0 .

Although constant conditional mean implies zero covariance, the con-
verse does not necessarily hold. For instance, suppose 𝑋 is zero mean and
has a symmetric distribution (which together implies that 𝐸(𝑋3) = 0).
Suppose 𝑌 = 𝑋2. Then 𝐸(𝑌 ∣ 𝑋) = 𝑋2 but

Cov(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 )
= 𝐸(𝑋𝐸(𝑌 ∣ 𝑋)) − 0𝐸(𝑌 ) = 𝐸(𝑋3) = 0.

The Law of Iterated Expectations can be extended to more than two vari-
ables. For example, for random variables 𝑊 , 𝑋 and 𝑌 , we have

𝐸(𝑋 ∣ 𝑌 ) = 𝐸(𝐸(𝑋 ∣ 𝑌 ,𝑊) ∣ 𝑌 ).

You are asked in Ex. 7.26 to show the Law of Iterated Variance or Law
of Total Variance:

Var(𝑌 ) = 𝐸(Var(𝑌 ∣ 𝑋)) + Var(𝐸(𝑌 ∣ 𝑋)). (7.34)

7.3.6 Independent Random Variables
Two random variables are said to be independent if

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌 (𝑦). (7.35)

For discrete random variables, this means that

Pr(𝑋 = 𝑖, 𝑌 = 𝑗) = Pr(𝑋 = 𝑖)Pr(𝑌 = 𝑗)
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for all possible values of 𝑋 and 𝑌 . Independence of 𝑋 and 𝑌 implies

𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥) = 𝑓𝑌 (𝑦) and 𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦) = 𝑓𝑋(𝑥).

Knowledge of the realized value of one variable does not add any informa-
tion regarding the probabilistic behavior of the other.

Independence implies 𝐸(𝑌 ∣ 𝑋) = 𝐸(𝑌 ), Var(𝑌 ∣ 𝑋) = Var(𝑌 ), and
so on. Independence of 𝑋 and 𝑌 implies zero covariance between the two
random variables: if 𝑋 and 𝑌 are independent, then

𝐸(𝑋𝑌 ) = 𝐸(𝑋𝐸(𝑌 ∣ 𝑋)) = 𝐸(𝑋)𝐸(𝑌 ) ,

therefore

Cov(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ) = 𝐸(𝑋)𝐸(𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ) = 0 .

However, zero covariance does not imply independence. Ex. 7.24 at the end
of this section presents an example where 𝑋 and 𝑌 have zero covariance,
but where the variance of 𝑌 increases in 𝑋.

Bivariate Normal random variables (see next section) are an exception:
if two random variables have a Bivariate Normal distribution and are un-
correlated, then they are also independent.

7.3.7 Exercises
Ex. 7.18 Starting from the definition Cov(𝑋, 𝑌 ) = 𝐸((𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌 )))
and using the properties of expectations, show that

Cov(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ) .

Ex. 7.19 For random variables 𝑋1, 𝑋2 and 𝑋3 and constants 𝑎1, 𝑎2 and 𝑎3,
show that

Var(
3

∑
𝑖=1

𝑎𝑖𝑋𝑖) =
3

∑
𝑖=1

3
∑
𝑗=1

𝑎𝑖𝑎𝑗Cov(𝑋𝑖, 𝑋𝑗).

Remark: Since Cov(𝑋𝑖, 𝑋𝑖) = Var(𝑋𝑖), we can also write the equality as

Var(
3

∑
𝑖=1

𝑎𝑖𝑋𝑖) = 𝑎2
1Var(𝑋1) + 𝑎2

2Var(𝑋2) + 𝑎2
3Var(𝑋3)

+ 2𝑎1𝑎2Cov(𝑋1, 𝑋2) + 2𝑎1𝑎3Cov(𝑋1, 𝑋3) + 2𝑎2𝑎3Cov(𝑋2, 𝑋3) .
Ex. 7.20 Show that

Cov(𝑎1𝑋1 + 𝑎2𝑋2, 𝑏1𝑌1 + 𝑏2𝑌2 + 𝑏3𝑌3) =
2

∑
𝑖=1

3
∑
𝑗=1

𝑎𝑖𝑏𝑗Cov(𝑋𝑖, 𝑌𝑗).

Ex. 7.21 Show for the joint pdf (7.29) that the correlation of 𝑋 and 𝑌 is 0.8944.
Ex. 7.22 Explain why the correlation always lies between −1 and 1, inclusive.
Hint: For arbitrary 𝛼, we have Var(𝑋 − 𝛼𝑌 ) ≥ 0. Expand Var(𝑋 − 𝛼𝑌 ) and let
𝛼 = Cov(𝑋, 𝑌 )/Var(𝑌 )
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Ex. 7.23 For the joint pdf (7.29), find the conditional distribution of 𝑌 given
𝑋 ≥ 3, and the corresponding conditional mean and variance.

Ex. 7.24 Suppose 𝑌 and 𝑋 have the following joint distribution function:

10 0 0 0 0 0.1
9 0 0 0 0.1 0
8 0 0 0.1 0 0
7 0 0.1 0 0 0
6 0.1 0 0 0 0

𝑌 5 0.1 0 0 0 0
4 0 0.1 0 0 0
3 0 0 0.1 0 0
2 0 0 0 0.1 0
1 0 0 0 0 0.1

1 2 3 4 5
𝑋

(a) Find the marginal distributions of 𝑋 and 𝑌 .

(b) Find the conditional distribution, conditional mean, and conditional vari-
ance of 𝑌 given 𝑋, and of 𝑋 given 𝑌 .

(c) Find Cov(𝑋, 𝑌 ).

Ex. 7.25 Show that if 𝐸(𝑌 ∣ 𝑋) = 𝑎 + 𝑏𝑋, then

𝑏 = Cov(𝑋, 𝑌 )
Var(𝑋) and 𝑎 = 𝐸(𝑌 ) − 𝑏𝐸(𝑋) .

If you know that 𝐸(𝑌 ∣ 𝑋) = 3 + 0.5𝑋 and Var(𝑋) = 2, what is Cov(𝑋, 𝑌 )?

Ex. 7.26 Prove (7.34). Use this relationship to show that

(a) Var(𝑌 ) = 𝐸(Var(𝑌 ∣ 𝑋)) if 𝐸(𝑌 ∣ 𝑋) is constant.

(b) Var(𝑌 ∣ 𝑋) ≤ Var(𝑌 ) if Var(𝑌 ∣ 𝑋) is constant.

Ex. 7.27 Suppose 𝑌 and 𝑋 have the following joint pdf:

5 0.01 0.04 0.03 0.01 0.01
4 0.02 0.08 0.06 0.02 0.02

𝑌 3 0.04 0.16 0.12 0.04 0.04
2 0.02 0.08 0.06 0.02 0.02
1 0.01 0.04 0.03 0.01 0.01

1 2 3 4 5
𝑋

Are the variables independent? Are they identically distributed (i.e., do they have
the same marginal distributions?) Change the probabilities in the joint pdf of
𝑋 and 𝑌 so that the two variables are independently and identically distributed
(but not uniformly distributed).
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7.4 Distributions Related to the Normal Distribution
We briefly discuss three univariate distributions, all are related to the Nor-
mal distribution. We will not require the pdf or cdf of these distributions
in this book, but the properties of these distributions should be noted. We
also discuss the Bivariate Normal distribution.

7.4.1 Chi-Square distribution
If 𝑋 ∼ Normal(0, 1), then 𝑋2 has the Chi-Square distribution with
one degree of freedom. If 𝑋1, 𝑋2,… ,𝑋𝑘 are independent Standard Normal
variates, then ∑𝑘

𝑖=1 𝑋2
𝑖 has a Chi-Square distribution with 𝑘 degrees of

freedom, denoted 𝜒2(𝑘). If 𝑋 ∼ 𝜒2(𝑘), then 𝐸(𝑋) = 𝑘 and 𝑣𝑎𝑟(𝑋) = 2𝑘.
The pdfs of several Chi-square distributions are shown in Fig. 7.11.

χ2(1)

χ2(5)

χ2(10)

χ2(20)

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30
x

Fig. 7.11. The 𝜒2 pdf, various degrees of freedom.

7.4.2 Student’s t distribution
If 𝑋 and 𝑊 are independent variables with 𝑋 ∼ Normal(0, 1) and 𝑊 ∼
𝜒2(𝑣), then

𝑋
√𝑊/𝑣

∼ 𝑡(𝑣)

where 𝑡(𝑣) denotes the Student’s 𝑡-distribution9 (or simply 𝑡-
distribution) with 𝑣 degrees of freedom. A 𝑡-distributed random variable
has zero mean and variance 𝑣

𝑣−2 (the mean does not exist unless 𝑣 > 1 and
variance does not exist unless 𝑣 > 2).

9Due to William Sealy Gosset (1876-1937), an English chemist working for Guinness
Brewery. He published the t-statistic under the pen name “Student” as Guinness did not
allow their scientists to publish under their own name (or to mention “beer” or “Guinness”
in their papers). He later became head brewer of Guinness, but died a month after his
promotion.
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The 𝑡-pdf is similar to that of the Standard Normal pdf in that it is sym-
metrically bell-shaped and centered about zero. However, it has fatter tails
than a Normal distribution (its kurtosis, when it exists, is always greater
than 3). This means that a 𝑡-distributed random variable has greater prob-
ability of extreme realizations than a comparable normal variate. The 𝑡-pdf
has the property that it converges to the standard normal pdf as 𝑣 → ∞.
Fig. 7.12 shows the 𝑡-pdf with degrees-of-freedom parameter 𝑣 = 1, 5, 10,
and 20, and also the Standard Normal pdf. The 𝑡(1) and 𝑡(5) distributions
are indicated, with the 𝑡(10) and 𝑡(20) distributions “between” the 𝑡(5) and
the Normal(0,1) pdf.

t(1)

t(5)
N(0,1)

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0
x

Fig. 7.12. The 𝑡 distribution.

The following is a comparison of the tail probabilities of the Standard
Normal and the 𝑡-distribution.

N(0,1) t(1) t(5) t(10) t(20) t(30)
P[X<-2.57] 0.0051 0.1181 0.0250 0.0139 0.0091 0.0077
P[X<-1.96] 0.0250 0.1502 0.0536 0.0392 0.0320 0.0297
P[X<-1.64] 0.0505 0.1743 0.0810 0.0660 0.0583 0.0557

7.4.3 F-distribution

If 𝑊1 and 𝑊2 are independent Chi-Square random variables with degrees
of freedom 𝑣1 and 𝑣2 respectively, then

𝑊1/𝑣1
𝑊2/𝑣2

∼ 𝐹(𝑣1, 𝑣2)
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where 𝐹(𝑣1, 𝑣2) denotes the F-distribution with 𝑣1 and 𝑣2 degrees of free-
dom. If 𝑋 ∼ 𝐹(𝑣1, 𝑣2), then

𝐸(𝑋) = 𝑣2
𝑣2 − 2 for 𝑣 > 2 ,

Var(𝑋) = 2( 𝑣2
𝑣2 − 2)

2 𝑣1 + 𝑣2 − 2
𝑣1(𝑣2 − 4) for 𝑣2 > 4 .

The F-distribution is also related to the Student-t and Chi-squared distri-
butions in that

i. If 𝑋 ∼ 𝑡(𝑣), then 𝑋2 ∼ 𝐹(1, 𝑣),
ii. If 𝑋 ∼ 𝐹(𝑣1, 𝑣2), then the pdf of 𝑣1𝑋 tends to the 𝜒2(𝑣1) pdf as

𝑣2 → ∞.
Fig. 7.13 shows the 𝐹(3, 20) pdf.

0.0

0.2

0.4

0.6

0 1 2 3 4 5
x

F(3, 20) pdf

Fig. 7.13. The F distribution.

7.4.4 The Bivariate Normal Distribution
Two random variables 𝑋 and 𝑌 follow the Bivariate Normal distribution if
their joint pdf has the form

𝑓𝑋,𝑌 (𝑥, 𝑦) =
1

2𝜋𝜎𝑋𝜎𝑌√1− 𝜌2𝑋𝑌
exp{−1

2
̃𝑥2 − 2𝜌𝑋𝑌 ̃𝑥 ̃𝑦 + ̃𝑦2

1 − 𝜌2𝑋𝑌
} (7.36)

where ̃𝑥 = 𝑥 − 𝜇𝑋
𝜎𝑋

and ̃𝑦 = 𝑦 − 𝜇𝑌
𝜎𝑌

.

The Bivariate Normal distribution has five parameters 𝜇𝑋, 𝜇𝑌 , 𝜎2
𝑋, 𝜎2

𝑌
and 𝜌𝑋𝑌 being the unconditional means of 𝑋 and 𝑌 , the unconditional
variances of 𝑋 and 𝑌 , and the correlation between 𝑋 and 𝑌 , respectively.
We write (𝑋, 𝑌 ) ∼ Normal2(𝜇𝑋, 𝜇𝑌 , 𝜎2

𝑋, 𝜎2
𝑌 , 𝜌𝑋𝑌 )
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Contour plots are helpful for visualizing Bivariate Normal distributions.
We show the contour plots of a bivariate Normal distribution with

(𝜇𝑋, 𝜇𝑌 , 𝜎2
𝑋, 𝜎2

𝑌 , 𝜌𝑋𝑌 ) = (1, 0, 1, 2, 0.9).

in Fig. 7.14(a). The 3D plot of the Bivariate Normal joint pdf is shown in
Fig. 7.14(b).

(a) Contour plot
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Fig. 7.14. A Bivariate Normal distribution (parameter values given in text).

The marginal and conditional distributions of Bivariate Normal random
variables are also Normal. To see this, we “complete the square” on ̃𝑥2 −
2𝜌𝑋𝑌 ̃𝑥 ̃𝑦 + ̃𝑦2 to get

̃𝑥2 − 2𝜌𝑋𝑌 ̃𝑥 ̃𝑦 + ̃𝑦2 = ( ̃𝑥 − 𝜌𝑋𝑌 ̃𝑦)2 + (1 − 𝜌2
𝑋𝑌 ) ̃𝑦2

= [𝑥 − 𝜇𝑋
𝜎𝑋

− 𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

𝑦 − 𝜇𝑌
𝜎𝑌

]
2
+ (1 − 𝜌2

𝑋𝑌 )(
𝑦 − 𝜇𝑌
𝜎𝑌

)
2

= 1
𝜎2
𝑋

[𝑥 − 𝜇𝑋 − 𝜎𝑋𝑌
𝜎2
𝑌

(𝑦 − 𝜇𝑌 )]
2
+ (1 − 𝜌2

𝑋𝑌 )(
𝑦 − 𝜇𝑌
𝜎𝑌

)
2

= 1
𝜎2
𝑋

[𝑥 − (𝛼𝑋 + 𝛽𝑋𝑦)]2 + (1 − 𝜌2
𝑋𝑌 )(

𝑦 − 𝜇𝑌
𝜎𝑌

)
2

where 𝛼𝑋 = 𝜇𝑋−𝛽𝑋𝜇𝑌 and 𝛽𝑋 = 𝜎𝑋𝑌
𝜎2
𝑌

. Then the joint pdf can be written
as
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𝑓𝑋,𝑌 (𝑥, 𝑦)

= 1
2𝜋𝜎𝑋𝜎𝑌√1− 𝜌2

𝑋𝑌
exp{−1

2
1

1 − 𝜌2
𝑋𝑌

( ̃𝑥2 − 2𝜌𝑋𝑌 ̃𝑥 ̃𝑦 + ̃𝑦2)}

= 1
2𝜋𝜎𝑋𝜎𝑌√1− 𝜌2

𝑋𝑌

× exp{−1
2

1
1 − 𝜌2

𝑋𝑌
[ 1
𝜎2
𝑋

[𝑥 − (𝛼𝑋 + 𝛽𝑋𝑦)]2 + (1 − 𝜌2
𝑋𝑌 )(

𝑦 − 𝜇𝑌
𝜎𝑌

)
2
]}

= 𝐴𝐵

where 𝐴 = 1√
2𝜋√𝜎2

𝑋(1 − 𝜌2
𝑋𝑌 )

exp{−1
2
[𝑥 − (𝛼𝑋 + 𝛽𝑋𝑦)]2

𝜎2
𝑋(1 − 𝜌2

𝑋𝑌 )
}

and 𝐵 = 1√
2𝜋𝜎𝑌

exp{−1
2 (𝑦 − 𝜇𝑌

𝜎𝑌
)

2
} .

If we compare expressions 𝐴 and 𝐵 with the expression for the Normal
pdf, we see that 𝐵 is a Normal pdf 𝑓𝑌 (𝑦) with mean 𝜇𝑌 and variance 𝜎2

𝑌 ,
and if we take 𝑦 as fixed, then 𝐴 is a conditional normal pdf 𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦)
with mean 𝛼 + 𝛽𝑦 and variance 𝜎2

𝑋 − 𝜎2
𝑋𝑌 /𝜎2

𝑌 . That is, if 𝑋 and 𝑌 have
the Bivariate Normal distribution (7.36), then

• the marginal distribution of 𝑌 is Normal(𝜇𝑌 , 𝜎2
𝑌 ),

• the conditional distribution of 𝑋 given 𝑌 is Normal(𝜇𝑋∣𝑌 , 𝜎2
𝑋∣𝑌 )

where

𝜇𝑋∣𝑌 = 𝜇𝑋 + 𝜎𝑋𝑌
𝜎2
𝑌

(𝑦 − 𝜇𝑌 ) and 𝜎2
𝑋∣𝑌 = 𝜎2

𝑋 − 𝜎2
𝑋𝑌
𝜎2
𝑌

.

The conditional mean can be written as 𝜇𝑋∣𝑌 = 𝛼𝑋 + 𝛽𝑋𝑦 where
𝛼𝑋 = 𝜇𝑋 − 𝛽𝑋𝜇𝑋 and 𝛽𝑋 = 𝜎𝑋𝑌

𝜎2
𝑌

.

Similarly,
• the marginal distribution of 𝑋 is Normal(𝜇𝑋 𝜎2

𝑋),
• the conditional distribution of 𝑌 given 𝑋 is Normal(𝜇𝑌 ∣𝑋, 𝜎2

𝑌 ∣𝑋)
where

𝜇𝑌 ∣𝑋 = 𝜇𝑌 + 𝜎𝑋𝑌
𝜎2
𝑋

(𝑥 − 𝜇𝑋) and 𝜎2
𝑌 ∣𝑋 = 𝜎2

𝑌 − 𝜎2
𝑋𝑌
𝜎2
𝑋

.

The conditional mean can be written as 𝜇𝑌 ∣𝑋 = 𝛼𝑌 + 𝛽𝑌 𝑥 where 𝛼𝑌 =
𝜇𝑌 − 𝛽𝑌 𝜇𝑋 and 𝛽𝑌 = 𝜎𝑋𝑌

𝜎2
𝑋

.

It follows immediately from the decomposition of the Bivariate Normal
joint pdf that if 𝑋 and 𝑌 are Bivariate Normal and uncorrelated, then they
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are independent random variables (see Ex. 7.28). It can also be shown that
if 𝑋 and 𝑌 are Bivariate Normal, then

𝑎𝑋 + 𝑏𝑌 ∼ Normal(𝑎𝜇𝑋 + 𝑏𝜇𝑌 , 𝑎2𝜎2
𝑋 + 𝑏2𝜎2

𝑌 + 2𝑎𝑏𝜎𝑋𝑌 ) .

We omit the proof of this last result.

7.4.5 Exercises
Ex. 7.28 Show that 𝑋 and 𝑌 are independent if they are Bivariate Normal and
uncorrelated. Hint: show that 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑌 (𝑦)𝑓𝑋(𝑥) when 𝜌𝑥𝑦 = 0.

Ex. 7.29 The function pnorm(x, mean, sd) returns the Normal(mean, sd2) cdf
evaluated at x, i.e., it returns

Pr(𝑋 ≤ 𝑥) = Φ(𝑥 − mean
sd )

for a Normal(mean, sd2) random variable 𝑋. The quantile function qnorm(p,
mean, sd), when evaluated at probability p, returns the value of 𝑥 for which
Pr(𝑋 ≤ 𝑥) = 𝑝. For example:

pnorm(0, mean=0, sd=1) # Pr[X <= 0] for X~N(0,1)

[1] 0.5

qnorm(0.5, mean=0, sd=1) # c such that Pr[X<=c]=0.5 when X~N(0,1)

[1] 0
The corresponding functions for the t, Chi-Square, and F-distributions are

• pt(x,df) and qt(p, df),

• pchisq(x,df) and qchisq(p,df), and

• pf(x,df1,df2) and qf(p,df1, df2) respectively. Find:

i.  Pr(𝑋 ≤ −2.5) when 𝑋 ∼ 𝑁(0, 1)
ii.  Pr(𝑋 ≤ −2.5) when 𝑋 ∼ 𝑡(5)
iii.  𝑐 such that Pr(𝑋 > 𝑐) = 0.05 when 𝑋 ∼ 𝜒2(5).
iv.  Pr(−1.96 ≤ 𝑋 ≤ 1.96) when 𝑋 ∼ 𝑁(0, 1)
v.  𝑐 such that Pr(−𝑐 ≤ 𝑋 ≤ 𝑐) = 0.95 when 𝑋 ∼ 𝑁(0, 1)
vi.  𝑐 such that Pr(−𝑐 ≤ 𝑋 ≤ 𝑐) = 0.95 when 𝑋 ∼ 𝑡(12)
vii.  𝑐 such that Pr(−𝑐 ≤ 𝑋 ≤ 𝑐) = 0.95 when 𝑋 ∼ 𝑡(100)
viii.  𝑐 such that Pr(𝑋 > 𝑐) = 0.05 when 𝑋 ∼ 𝐹(5, 8).
ix.  𝑐 such that Pr(𝑋 > 𝑐) = 0.05 when 𝑋 ∼ 𝐹(5, 80).
x.  𝑐 such that Pr(𝑋 > 𝑐) = 0.05 when 𝑋 ∼ 𝐹(5, 8000).
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7.5 Asymptotic Theory
Our discussion of estimation and hypothesis testing in Section 7.2 was for
finite samples. Asymptotic analysis refers to results that apply “in the
limit”, i.e., as the sample size goes to infinity. It serves to approximate
the finite sample properties of estimators when the sample size is reason-
ably large, and is especially helpful when the finite sample properties are
unknown. We continue to focus on the sample mean, which we now denote
as 𝑋𝑛 to indicate the sample size used to calculate it.

7.5.1 Consistency and the Law of Large Numbers
We have mentioned that larger sample sizes are desirable as they lead to
smaller estimator variances. For the general problem of estimating the
population mean 𝜇 of a random variable 𝑋 using the sample mean, we
have 𝐸(𝑋𝑛) = 𝜇 for all 𝑛 and Var(𝑋𝑛) = 𝜎2/𝑛 → 0 as 𝑛 → ∞, where
𝜎2 is the variance of 𝑋. Since 𝑋𝑛 is unbiased and its variance collapses to
zero as the sample size tends to infinity, the estimator “converges” to the
population mean as the sample size grows larger and larger.

The convergence of 𝑋𝑛 to 𝜇 is, however, not quite the same as the
convergence of, say, the deterministic sequence 1/𝑛 to zero. In the latter
case, you know that if 𝑛 is large enough, then 1/𝑛 will definitely be within
a certain distance of 0. For instance, if 𝑛 > 1000, then 1/𝑛 < 0.001 for
sure. In the case of 𝑋𝑛, which is a sequence of random variables, we cannot
make such a definite claim.

The convergence concept we use for random variables is “convergence
in probability”. A sequence of random variables 𝑌𝑛 is said to converge in
probability to some value 𝑐 as 𝑛 → ∞ if for any 𝜖 > 0 (no matter how
small), the probability that |𝑌𝑛−𝑐| ≥ 𝜖 tends to zero as 𝑛 → ∞. This allows
for some probability that the distance between 𝑌𝑛 and 𝑐 exceeds 𝜖 at any
sample size 𝑛, but as 𝑛 increases towards infinity, this probability becomes
vanishingly small.10 We write

plim 𝑌𝑛 = 𝑐 or 𝑌𝑛
𝑝
→ 𝑐 .

We can extend this definition to “convergence in probability to a random
variable”: we say that

𝑌𝑛
𝑝
→ 𝑍 if 𝑌𝑛 − 𝑍

𝑝
→ 0 .

In the context of parameter estimation, we say that an estimator is
consistent if it converges in probability to the true value of the parameter
it is estimating as the sample size goes to infinity. The sample mean 𝑋𝑛

10That 𝐸(𝑌𝑛) converges to 𝑐 and Var(𝑌𝑛) converges to zero is sufficient to guarantee
that 𝑌𝑛

𝑝
→ 0.
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is a consistent estimator for 𝜇 under quite general conditions. (We view
𝑋𝑛 as a sequence of random variables in 𝑛. If certain conditions hold, this
sequence converges in probability to 𝐸(𝑋) as 𝑛 → ∞.) This result is known
as the Law of Large Numbers. There are several laws of large numbers,
each describing a set of conditions which, if met, guarantee the consistency
of the sample mean. We state one such law below:
Theorem 7.4 (Khinchine’s Weak Law of Large Numbers11, WLLN) If
{𝑋𝑖}𝑛𝑖=1 are iid with 𝐸(𝑋𝑖) = 𝜇 < ∞ for all 𝑖, then 𝑋𝑛

𝑝
→ 𝜇.

There are other kinds of convergence concepts for sequences of random
variables, but for the moment we consider only convergence in probability.
The theorem above is referred to as a weak law of large numbers because
the convergence concept used is convergence in probability, and there are
“stronger” forms of probabilistic convergence.

The following is a result concerning convergence in probability that is
used frequently:
Proposition 7.1 If 𝑔(⋅) is a continuous function, then

𝑌𝑛
𝑝
→ 𝑐 ⇒ 𝑔(𝑌𝑛)

𝑝
→ 𝑔(𝑐). (7.37)

That is, if plim 𝑌𝑛 exists, and 𝑔(⋅) is continuous, then plim 𝑔(𝑌𝑛) =
𝑔(plim 𝑌𝑛).

For example, if 𝑌𝑛 converges in probability to 𝑐, then 𝑌 2
𝑛

𝑝
→ 𝑐2. Result

(7.37) extends to continuous functions of multiple variables. This implies,
for instance, that if 𝑌𝑛

𝑝
→ 𝑐𝑦 and 𝑍𝑛

𝑝
→ 𝑐𝑧, then

• 𝑌𝑛 + 𝑍𝑛
𝑝
→ 𝑐𝑦 + 𝑐𝑧,

• 𝑌𝑛𝑍𝑛
𝑝
→ 𝑐𝑦𝑐𝑧,

• 𝑌𝑛/𝑍𝑛
𝑝
→ 𝑐𝑦/𝑐𝑧, as long as 𝑐𝑧 is non-zero.

Example 7.21 Suppose {𝑋𝑖}𝑛𝑖=1 is an iid sample, with 𝐸(𝑋𝑖) = 𝜇 and
Var(𝑋𝑖) = 𝜎2 < ∞ for all 𝑖. We show that the biased estimator

𝜎2𝑛 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋𝑛)2 = 1
𝑛

𝑛
∑
𝑖=1

𝑋2
𝑖 −𝑋2

𝑛

is consistent for the population variance 𝜎2. Since {𝑋𝑖}𝑛𝑖=1 are iid, so are
{𝑋2

𝑖 }𝑛𝑖=1. Furthermore, 𝐸(𝑋2
𝑖 ) = 𝜎2 + 𝜇2 < ∞, so (by the WLLN)

1
𝑛

𝑛
∑
𝑖=1

𝑋2
𝑖

𝑝
→ 𝜎2 + 𝜇2 .

11Alexander Iacovlevich Khinchin (1894-1959)
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Since 𝑋𝑛
𝑝
→ 𝜇 and since quadratic functions are continuous functions, we

have 𝑋2
𝑛

𝑝
→ 𝜇2. Therefore

𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

𝑋2
𝑖 −𝑋2

𝑛
𝑝

⟶ 𝜎2 + 𝜇2 − 𝜇2 = 𝜎2 .

This example shows that estimators that are biased in finite samples can
nonetheless be consistent.

Example 7.22 Since 𝜎2𝑛 = 𝑛
𝑛−1𝜎2𝑛, and because 𝑛

𝑛−1 → 1 and 𝜎2 𝑝
→ 𝜎2, we

have 𝜎2𝑛
𝑝
→ 𝜎2.

Example 7.23 Since both 𝜎2𝑛 and 𝜎2𝑛 are consistent estimators for 𝜎2, both
(𝜎2𝑛)1/2 and (𝜎2𝑛)1/2 are consistent estimators for 𝜎.

We have seen earlier that unbiasedness, unlike consistency, generally
does not carry over to non-linear functions of estimators. For instance, we
saw earlier that 𝐸( ̂𝑝2) ≥ 𝑝2 despite 𝐸( ̂𝑝) = 𝑝.

It may seem that unbiasedness is a more relevant way to judge an es-
timator than consistency since we never have infinite sample sizes, but
consistency is still useful as it captures the idea of convergence to the pop-
ulation parameter as sample size increases. Furthermore, in more complex
applications it can be difficult or impossible to find unbiased estimators,
but straightforward to find consistent ones. We have also seen that it is
easy to find consistent estimators of continuous functions of parameters
once we have consistent estimators for the parameters.

In Example 7.19 we derived the distribution of the sample mean in the
coin toss example, and derived its distribution for a fair coin and a sample
size of 20. We repeat this exercise, this time for a coin with 𝑝 = 0.25, for
sample sizes 5, 10, 20, 100, 200 and 400. We present the probability distri-
bution functions graphically in Fig. 7.15. The convergence in probability
of the sample mean to the true value of 𝑝 can be seen in these graphs.

7.5.2 Asymptotic Normality
The distribution of the sample mean in Fig. 7.15, with 𝑝 = 0.25, is unsur-
prisingly skewed in small samples because of the low probability of heads
relative to tails. However, the shape of the distribution appears to quickly
become quite symmetric as the sample size grows, and appears to converge
to a familiar bell-shaped distribution. Of course, in the limit the distribu-
tion collapses to a degenerate one with all of the probability at 𝑝 = 0.25,
since the variance of the sample mean, Var( ̂𝑝) = 𝑝(1 − 𝑝)/𝑛, goes to zero
as 𝑛 → ∞. In what sense, then, can we say that the distribution of ̂𝑝 con-
verges to a normal distribution? Suppose we scale the sample mean (after
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Fig. 7.15. Convergence in probability of ̂𝑝 to 𝑝 = 0.25.

subtracting 𝑝) by
√𝑛, and consider the distribution of

√𝑛( ̂𝑝 − 𝑝). (7.38)

This random variable has mean 0 and a non-collapsing variance 𝑝(1 − 𝑝),
and we can speak about how the shape of the limiting distribution of (7.38)
as 𝑛 → ∞ without the problem of its distribution collapsing to a single
point.

The plots in Fig. 7.16 show the same distributions as in Fig. 7.15, but
after centering and scaling as in (7.38). The distributions appear to take
the shape of a Normal distribution as the sample size increases.

How can the pdf of the sample mean, which in the coin toss example
is a discrete random variable, converge to the pdf of a Normal random
variable, which is a continuous random variable? The notion of a discrete
pdf converging to a continuous one is best thought of in terms of their cdfs.
In Fig. 7.17, we juxtapose the cdfs of the distributions of

√𝑛( ̂𝑝 − 𝑝) at
𝑛 = 20, 100, 400 (these are all step functions) with the cdf of the Normal
distribution with mean 0 and variance 𝑝(1 − 𝑝) where 𝑝 = 0.25. At each
value of

√𝑛( ̂𝑝 − 𝑝), i.e., “pointwise”, the step function gets closer to the
Normal cdf as 𝑛 → ∞. We say that a sequence of random variables 𝑌𝑛
with corresponding cdfs 𝐹𝑛(𝑦𝑛) converges in distribution to a random
variable 𝑌 with cdf 𝐹(𝑦) if, as 𝑛 → ∞, 𝐹𝑛(𝑥𝑛) → 𝐹(𝑥) at all points where
𝐹(⋅) is continuous. We write 𝑌𝑛

𝑑→ 𝑌 . We can also use the name of the
limiting distribution in this notation, e.g., if 𝑌 ∼ Normal(0, 1), we can write
𝑌𝑛

𝑑⟶ Normal(0, 1).
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Fig. 7.16. Convergence in distribution of
√𝑛( ̂𝑝 − 0.25) to Normal.
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Fig. 7.17. Convergence in distribution of
√𝑛( ̂𝑝−0.25) to Normal (cdf view).
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7.5.3 The Central Limit Theorem
The convergence of the cdf of the (centered and scaled) sample mean in
the coin toss example to a Normal cdf is an instance of the Central Limit
Theorem (CLT), a key result in probability theory. As with the LLN, there
are many CLTs, each listing a set of conditions under which convergence to
normality is guaranteed. We state one such CLT:

Theorem 7.5 (Lindeberg-Levy CLT12) If {𝑋𝑖}𝑛𝑖=1 are i.i.d. with 𝐸(𝑋𝑖) =
𝜇 and Var(𝑋𝑖) = 𝜎2 < ∞ for all 𝑖, then

√𝑛(𝑋𝑛 − 𝜇) 𝑑⟶ Normal(0, 𝜎2) .

If the conditions for the CLT hold, we would be justified, in large
samples, to say that the distribution of

√𝑛(𝑋𝑛 − 𝜇) is approximately
Normal(0, 𝜎2), or that 𝑋 is approximately Normal(𝜇, 𝜎2/𝑛). This last state-
ment is sometimes written

𝑋𝑛
𝑎∼ Normal(𝜇, 𝜎2/𝑛) ,

where the “𝑎” stands for “approximately” (some take “𝑎” to stand for
“asymptotically”).

Our plots of the distribution of
√𝑛( ̂𝑝𝑛 − 𝑝) in the coin toss example

suggests convergence in distribution to Normal(0, 𝑝(1− 𝑝)). The sample in
the coin toss example meets the requirements of the Lindeberg-Levy CLT,
so in fact

√𝑛( ̂𝑝𝑛 − 𝑝) converges in distribution to Normal(0, 𝑝(1 − 𝑝))
Proposition 7.2 (Properties of convergence in distribution)

(a) If 𝑔(⋅) is a continuous function and 𝑌𝑛
𝑑→ 𝑌 , then 𝑔(𝑌𝑛)

𝑑→ 𝑔(𝑌 ).

(b) If 𝑌𝑛
𝑝
→ 𝑌 , then 𝑌𝑛

𝑑→ 𝑌 .

(c) If 𝑎𝑛
𝑝
→ 𝑎 and 𝑌𝑛

𝑑→ 𝑌 , then 𝑎𝑛𝑌𝑛
𝑑→ 𝑎𝑌 and 𝑎𝑛 + 𝑌𝑛

𝑑→ 𝑎+ 𝑌 .

Example 7.24 If 𝑌𝑛
𝑑→ 𝑌 ∼ Normal(0, 1), then 𝑌 2

𝑛
𝑑→ 𝑌 2 ∼ 𝜒(1)2, since

the square of a Standard Normal is 𝜒2(1).

Example 7.25 If
√𝑛(𝑋𝑛 − 𝜇) 𝑑→ Normal(0, 𝜎2) and 𝑠2𝑛 is any consistent

estimator of 𝜎2, then 1/𝑠𝑛 = (1/𝑠2𝑛)1/2 converges in probability to 1/𝜎, and
therefore √𝑛(𝑋𝑛 − 𝜇)

𝑠𝑛
= 𝑋𝑛 − 𝜇

√𝑠2𝑛/𝑛
𝑑⟶ Normal(0, 1). (7.39)

Result (7.39) is useful for hypotheses testing when one is unable or
unwilling to make an assumption regarding the distribution of the sample.

12Jarl Waldemer Lindeberg (1876-1932) and Paul Pierre Lévy (1886-1971).
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Suppose {𝑋𝑖}𝑛𝑖=1 is an iid sample with 𝐸(𝑋𝑖) = 𝜇 and Var(𝑋𝑖) = 𝜎2. Then
the sample mean 𝑋𝑛 is a consistent estimator for 𝜇 and

𝜎2𝑛 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)2

is a consistent estimator for 𝜎2. To test the null hypothesis 𝐻0 ∶ 𝜇 = 𝜇0, we
need to find the distribution of the sample mean, but you cannot do this
unless you know the distribution of each 𝑋𝑖. Result (7.39), however, tells
us that if our sample size is large enough, then under the null hypothesis,
we have

𝑡 = 𝑋𝑛 − 𝜇0

√𝜎2𝑛/𝑛
𝑎∼ Normal(0, 1). (7.40)

This suggests that we use the decision rule

”reject the null if | 𝑡 | > 𝑐𝛼, i.e., if 𝑡 < −𝑐𝛼 or 𝑡 > 𝑐𝛼”

where 𝑐𝛼, the value such that Pr(| 𝑡 | > 𝑐𝛼) = 𝛼, the chosen level of
significance, is found from the Standard Normal distribution. For 𝛼 =
0.01, 0.05, 0.10 levels of significance, the appropriate values of 𝑐𝛼 are, re-
spectively, approximately

round(qnorm(c(0.995, 0.975, 0.95)),3)

[1] 2.576 1.960 1.645

The 0.05 level of significance test, in particular, says to reject 𝐻0 ∶ 𝜇 = 𝜇0
if the absolute distance from the sample mean to the hypothesized mean
𝜇0 is more than 1.96 (or approximately 2) sample standard errors.

A test based on the t-statistic in (7.40) with critical values based on the
Normal(0, 1) distribution, would be an approximate test in the sense that
the true significance level may not be exactly 𝛼, as intended. Nonetheless,
it is a way forward in a situation where an exact test is unavailable. Even
where the exact distribution is available, such as in our coin toss example,
the test statistics in (7.40) is a convenient approximation.
Example 7.26 Earlier we showed an example of 20 tosses of three coins,
where the true value of 𝑝 for coins 1, 2, and 3 are 0.5, 0.6, and 0.9 re-
spectively. We replicate the results below, this time also computing the
corresponding 𝑡-statistics for the hypothesis 𝐻0 ∶ 𝑝 = 0.5, i.e., we compute

𝑡 = ̂𝑝 − 0.5

√ ̂𝑝(1 − ̂𝑝)
𝑛 − 1

where ̂𝑝 is the sample mean of the observations, and where the denominator
is the sample standard deviation of the estimator (see Ex. 7.13).
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set.seed(13) # Initialize random number generator for replicability
N <- 20
Coin1 <- rbinom(N,1,0.5) # 20 tosses of a fair coin
Coin2 <- rbinom(N,1,0.6) # 20 tosses of a slightly unfair coin
Coin3 <- rbinom(N,1,0.9) # 20 tosses of a very warped coin!
Tosses <- rbind(Coin1, Coin2, Coin3) # place outcomes into three rows
p_hat <- apply(Tosses,1,mean) # apply mean function to each row of Tosses
var_p_hat <- p_hat*(1-p_hat)/(N-1) # as per formula derived in notes
se_p_hat <- sqrt(var_p_hat)
t_stat <- (p_hat-0.5)/se_p_hat
p_val <- 2*(1-pnorm(t_stat,0,1))
d <- cbind(p_hat,se_p_hat,t_stat,p_val)
round(d,4)

p_hat se_p_hat t_stat p_val
Coin1 0.65 0.1094 1.3708 0.1704
Coin2 0.70 0.1051 1.9024 0.0571
Coin3 0.85 0.0819 4.2726 0.0000

Using the asymptotic tests, we make the following conclusions:
• we (correctly) retain (i.e., do not reject) the hypothesis that Coin 1

is fair at any of the usual levels of significance.
• we (correctly) reject 𝐻0 for Coin 2 at 0.1 level of significance, but

(incorrectly) retain 𝐻0 at the 0.05 level of significance.
• we resoundingly (and correctly) reject fairness of Coin 3 at all con-

ventional levels of significance.
The result for Coin 2 illustrates the fact that it can be hard to reject a

mildly incorrect hypothesis. All tests have poor power in such cases. The
results for Coin 1 and Coin 3 turned out to be correct in this example, but
you should remember that there were non-zero probabilities of rejecting
fairness for Coin 1, and not rejecting fairness for Coin 3.

In addition to the 𝑡-statistic, we also compute the 𝑝-value, defined as
the probability that the 𝑡-statistic, prior to realization, would exceed the
realized 𝑡-statistic in absolute terms if 𝐻0 were true. We reject a null
hypothesis at 𝛼 level of significance if the corresponding 𝑝-value of the test
is smaller than 𝛼.

The test statistic in (7.40) is often called a 𝑡-statistic because its exact
distribution turns out to be the 𝑡-distribution with degrees of freedom 𝑛−1
if the iid sample observations are Normally distributed, i.e., if it is the case
that 𝑋𝑖 ∼ Normal(𝜇, 𝜎2) for all 𝑖, then

𝑡 = 𝑋𝑛 − 𝜇
√𝜎2𝑛/𝑛

∼ 𝑡(𝑛 − 1) .

Since 𝑋𝑖 is not normal in the coin toss example, this result does not apply,
and we rely on the asymptotic result. Of course, the 𝑡-distribution is itself
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approximately Standard Normal when 𝑛 is large, so if 𝑋 ∼ Normal(𝜇, 𝜎2),
the 𝑡-statistic converges in distribution to a Standard Normal for two rea-
sons: because of the CLT, and because the 𝑡-distribution anyway converges
to the Standard Normal as the degrees of freedom parameter goes to infin-
ity. The usefulness of result (7.40) is in its applicability regardless of the
distribution of the sample, when sample sizes are large enough, as long as
the conditions of the CLT hold.

7.5.4 Exercises
Ex. 7.30 Suppose you want to estimate the mean and variance of a Log-Normal
random variable 𝑋. You don’t have the data, but you have the sample mean and
sample variance of ln𝑋𝑖 calculated from a random sample of size 𝑛. Suggest con-
sistent estimators for 𝐸(𝑋) and Var(𝑋). How do you know that these estimators
are consistent?

Ex. 7.31 Use the random number generator in R to produce 400 separate iid
samples each of size 50 observations from a 𝜒(1)2 distribution (you can imagine
there are 400 people carrying out this task, each drawing an iid sample of size 50
from a Chi-Square distribution with 1 degree of freedom). Label the samples

{𝑋𝑖,𝑗}400𝑗=1 for 𝑖 = 1, 2,… , 50 .

Compute

{√𝑛(𝑋𝑖,𝑛 − 1)}400
𝑖=1 where 𝑋𝑖,𝑛 = 1

𝑛
𝑛

∑
𝑗=1

𝑋𝑖,𝑗 for 𝑛 = 5, 10, 20, 50 .

Calculate the sample mean, variance, skewness and kurtosis of {√𝑛(𝑋𝑖,𝑛 −1)}400𝑖=1
for 𝑛 = 25, 50, 75, 100. Do these estimates conform with the prediction of the
Central Limit Theorem?

7.6 The Bootstrap
We mentioned in Chapter 1 that statistical analyses are relying more and
more on computational algorithms. In this section we discuss one such
class of algorithms, called the bootstrap, for computing standard errors
of estimators.

We have shown that the standard error of the sample mean calculated
from an iid sample {𝑌𝑖}𝑛𝑖=1 with population mean 𝐸(𝑌𝑖) = 𝜇 and variance
Var(𝑌𝑖) = 𝜎2 is

s.e.(𝑌 ) = √Var(𝑌 ) = √𝜎2

𝑛 ,

which we can estimate with

̂s.e.(𝑌 ) = √𝜎2

𝑛 , where 𝜎2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2. (7.41)
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Example 7.27 Suppose 𝑌 is Chi-Square with two degrees of freedom, so
𝜇 = 𝐸(𝑌 ) = 2 and 𝜎2 = Var(𝑌 ) = 4. Suppose you do not know this, and
you only have the following sample of 16 observations of 𝑌 :

set.seed(123) # seed is arbitrarily chosen
ysmp <- round(rchisq(16,2),2)
cat(ysmp[1:8],"\n")
cat(ysmp[9:16])

0.36 3.39 3.24 4.9 1.76 5.33 7.77 1.93
1.37 0.07 1.83 0.5 0.58 0.23 3.09 0.8

Your estimate of 𝜇 and the (estimated) standard error is therefore

n <- length(ysmp)
muhat <- sum(ysmp)/n # you can also use mean(ysmp)
sg2 <- sum((ysmp-muhat)^2)/(n-1) # you can also use var(ysmp)
cat("sample mean: ", muhat, ", std. err.: ", sqrt(sg2/n))

sample mean: 2.321875 , std. err.: 0.5459474

Since Var(𝑌 ) = 𝜎2 = 4, the actual standard error of the sample mean is

√𝜎2

𝑛 = √ 4
16 = 0.5

but as 𝜎2 is unknown to us, we can only provide an estimate of it.
The bootstrap provides an alternative way of estimating the standard

error of an estimator, and is based on the following idea. If we could obtain
𝐵 samples, each of size 𝑛, of the variable 𝑌 :

{𝑌 (1)
1 , 𝑌 (1)

2 ,… , 𝑌 (1)
𝑛 }

{𝑌 (2)
1 , 𝑌 (2)

2 ,… , 𝑌 (2)
𝑛 }

⋮
{𝑌 (𝐵)

1 , 𝑌 (𝐵)
2 ,… , 𝑌 (𝐵)

𝑛 }

then we can calculate a sample mean for each these 𝐵 samples, which we
denote

̂𝜇(𝑏) = 𝑌 (𝑏) , 𝑏 = 1, 2, ..., 𝐵 .
This is essentially a sample of size 𝐵 from the distribution of the sample
mean obtained from samples of 𝑌 of size 𝑛. We would then be able to
estimate the variance of ̂𝜇 = 𝑌 using

Ṽar( ̂𝜇) = 1
𝐵 − 1

𝐵
∑
𝑏=1

( ̂𝜇(𝑏) − ̂𝜇)2 where ̂𝜇 = (1/𝐵)
𝐵
∑
𝑏=1

̂𝜇(𝑏) .
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However, you only have the one sample {𝑌1, 𝑌2,… , 𝑌𝑛}. The idea of
the bootstrap is to treat this one sample as the population, and then draw
samples of size 𝑛 with replacement from {𝑌1, 𝑌2,… , 𝑌𝑛}, putting equal prob-
ability on each of the 𝑛 observations. Doing this 𝐵 times gives

{𝑌 ∗(1)
1 , 𝑌 ∗(1)

2 ,… , 𝑌 ∗(1)
𝑛 }

{𝑌 ∗(2)
1 , 𝑌 ∗(2)

2 ,… , 𝑌 ∗(2)
𝑛 }

⋮
{𝑌 ∗(𝐵)

1 , 𝑌 ∗(𝐵)
2 ,… , 𝑌 ∗(𝐵)

𝑛 }

where each of the 𝑌 ∗(𝑏)
𝑖 is a value from {𝑌1, 𝑌2,… , 𝑌𝑛}. (There will be

repeated values and missing 𝑌𝑖 values in each of the 𝐵 “bootstrap” sam-
ples). From these 𝐵 samples we calculate sample mean ̂𝜇∗(𝑏), 𝑏 = 1, 2, ..., 𝐵.
Finally, we estimate

Ṽar( ̂𝜇) = 1
𝐵 − 1

𝐵
∑
𝑏=1

( ̂𝜇∗(𝑏) − ̂𝜇∗)2 where ̂𝜇∗ = (1/𝐵)
𝐵
∑
𝑏=1

̂𝜇∗(𝑏) . (7.42)

Example 7.28 We use the bootstrap approach to estimate the standard
error of the sample mean in Example 7.27. We use the sample() function
in R to draw 𝐵 = 200 samples of size 16 from the original sample. We
show a few of these samples below. We then use the 𝐵 = 200 bootstrapped
sample means to calculate the standard error of the sample mean.

set.seed(456)
B <- 200 ## Bootstrap replication sample
bmeans <- rep(NA, B) ## To store the bootstrapped means
for (b in 1:B){
ysmpb <- sample(ysmp, 16, replace=T)
bmeans[b] <- mean(ysmpb)
if (b %in% c(1,2, 200)){
cat("sample", b, ":", ysmpb[1:8], "\n")
cat(" :", ysmpb[9:16], "\n")

}
}
cat("Std. err. for sample mean using", B,

"bootstrap samples:",sqrt(var(bmeans)))

sample 1 : 0.58 1.76 3.24 5.33 1.76 0.5 1.83 1.37
: 0.23 3.09 0.07 1.37 3.09 0.07 3.24 1.83

sample 2 : 7.77 1.93 0.23 0.23 0.58 1.76 4.9 0.23
: 3.09 1.37 0.36 5.33 1.93 1.76 1.37 3.39

sample 200 : 0.58 0.58 1.76 0.8 1.93 1.93 3.09 0.23
: 1.37 1.37 0.5 7.77 0.5 0.07 7.77 1.76

Std. err. for sample mean using 200 bootstrap samples: 0.5268645
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Why would we ever use the bootstrap method rather than (7.41) to es-
timate standard errors? For the sample mean, we were able to easily derive
an expression for its standard error, and a way to estimate it. However, the
standard error for many other statistics are much harder to derive, in many
cases unknown, or perhaps known only under assumptions which may or
may not hold. In many of these cases, the bootstrap approach will works;
you merely have to replace ̂𝜇∗(𝑏) in (7.42) with the statistic for which you
wish to estimate its standard error.

Example 7.29 The sample median of the sample in Example 7.27 is

medhat <- median(ysmp)
cat("Median:", medhat)

Median: 1.795
What is the standard error of the median? One quick way to estimate it is
to use the bootstrap approach, which we do below:

set.seed(789)
B <- 200 ## Bootstrap replication sample
bmeds <- rep(NA, 200) ## To store the bootstrapped means
for (b in 1:B){
ysmpb <- sample(ysmp, 16, replace=T)
bmeds[b] <- median(ysmpb)

}
cat("Std. err. for sample median using", B,

"bootstrap samples:", sqrt(var(bmeds)))

Std. err. for sample median using 200 bootstrap samples: 0.7163798

Of course, there are details which we have not been able to cover in our
very short introduction to the bootstrap. For a more thorough introduction
to the bootstrap, see Efron and Tibshirani (1993).13

7.6.1 Exercises
Ex. 7.32 In Ex. 7.15, you calculated the sample skewness and kurtosis coeffi-
cients for the observations log(𝑒𝑎𝑟𝑛𝑖) from the data set earnings2019.csv. Use
the bootstrap (with 200 bootstrap samples) to calculate standard errors of your
estimates.

13This name “bootstrap” comes from the phrase “to pull yourself up by your boot-
straps”. In footwear, bootstraps are straps attached to the sides or back of boots that
you can pull on to help you put on the boots. The phrase was intended as a snarky
remark to indicate something you cannot do, which is to haul yourself out of a hole by
pulling on your own bootstraps. In statistics, we use the term “bootstrap” to refer to
resampling from a sample to obtain new samples which are then used to calculate certain
properties of estimators. This might seem impossible at first, since we are “reusing a
sample”, but as illustrated in our example, this method actually works quite well.
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7.7 Solutions to Exercises
Ex. 7.1: We prove (c) first. Since 𝐴 ∩ 𝐴𝐶 = ∅ and 𝐴 ∪ 𝐴𝑐 = Ω, we have

1 = Pr(Ω) = Pr(𝐴 ∪ 𝐴𝑐) = Pr(𝐴) + Pr(𝐴𝑐) ,

which proves that Pr(𝐴𝑐) = 1−Pr(𝐴). Since Pr(𝐴𝑐) ≥ 0, (c) implies (a). Since 𝐵
is the union of the disjoint sets 𝐴∩𝐵 and 𝐵∩𝐴𝑐, (b) holds. Part (d) follows from
part (b) and the fact that 𝐴 ∪ 𝐵 is the union of the disjoint sets 𝐴 and 𝐵 ∩ 𝐴𝑐.
For part (e): If 𝐴 ⊂ 𝐵, then 𝐵 is the union of the disjoint sets 𝐵 − 𝐴 and 𝐴, so
that Pr(𝐵) = Pr(𝐵 − 𝐴) + Pr(𝐴). Since Pr(𝐵 − 𝐴) ≥ 0, part (e) follows.
Ex. 7.2: Consider drawing a ball at random from this container. Let 𝐴 =
{𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}, the event that either a green or blue ball is drawn, and 𝐵 =
{𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑}, the event that either a green or red ball is drawn. The probability
that a green ball is drawn is then Pr(𝐴 ∩ 𝐵). From

1 ≥ Pr(𝐴 ∪ 𝐵) = Pr(𝐴) + Pr(𝐵) − Pr(𝐴 ∩ 𝐵)

we have

Pr({𝑔𝑟𝑒𝑒𝑛}) = Pr(𝐴 ∩ 𝐵) ≥ Pr(𝐴) + Pr(𝐵) − 1 = 0.95 + 0.90 − 1 = 0.85.

There are at least 85 green balls. If there are only red, green and blue balls in
the container, then Pr(𝐴 ∪ 𝐵) = Pr(Ω) = 1. It follows that there are exactly 85
green balls in the container.
Ex. 7.3: If Pr(𝐴 ∩ 𝐵) = Pr(𝐴)Pr(𝐵), then

Pr(𝐴𝑐 ∩ 𝐵) = Pr(𝐵) − Pr(𝐴 ∩ 𝐵)
= Pr(𝐵) − Pr(𝐴)Pr(𝐵) = Pr(𝐵)(1 − Pr(𝐴)) = Pr(𝐵)Pr(𝐴𝑐)

and
Pr(𝐴𝑐 ∩ 𝐵𝑐) = Pr((𝐴 ∪ 𝐵)𝑐) = 1 − Pr(𝐴 ∪ 𝐵)

= 1 − [Pr(𝐴) + Pr(𝐵) − Pr(𝐴)Pr(𝐵)]
= (1 − Pr(𝐴))(1 − Pr(𝐵)) = Pr(𝐴𝑐)Pr(𝐵𝑐) .

Ex. 7.4: We have

Pr(𝑘𝑛𝑜𝑤𝑠 ∣ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)

= Pr(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∣ 𝑘𝑛𝑜𝑤𝑠)Pr(𝑘𝑛𝑜𝑤𝑠)
Pr(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∣ 𝑘𝑛𝑜𝑤𝑠)Pr(𝑘𝑛𝑜𝑤𝑠) + Pr(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∣ 𝑔𝑢𝑒𝑠𝑠𝑒𝑠)Pr(𝑔𝑢𝑒𝑠𝑠𝑒𝑠)

= 1 ⋅ 𝑝
1 ⋅ 𝑝 + (1/4)(1 − 𝑝) = 4𝑝

1 + 3𝑝 .

If 𝑝 = 0, then Pr(𝑘𝑛𝑜𝑤𝑠 ∣ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 0. That is, if the instructor is sure that the
student does not know the answer, then she won’t change her mind even if the
student answers the question correctly. If 𝑝 = 0.5, then Pr(𝑘𝑛𝑜𝑤𝑠 ∣ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 0.8.
If 𝑝 = 1, then Pr(𝑘𝑛𝑜𝑤𝑠 ∣ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 1.
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Ex. 7.5: We showed in the text that if 𝑋 ∼ Geometric(𝑝), then 𝐸(𝑋) = (1− 𝑝)/𝑝
and 𝐸(𝑋2) = (1 − 𝑝)(2 − 𝑝)/𝑝2. Therefore

Var(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2 = (1 − 𝑝)(2 − 𝑝)
𝑝2 − (1 − 𝑝)2

𝑝2 = 1 − 𝑝
𝑝2 .

Ex. 7.6: We can use the fact that Var(
√
𝑋) = 𝐸(𝑋) − 𝐸(

√
𝑋)2 ≥ 0.

Ex. 7.7: We have 𝐹𝑌 (𝑦) = Pr(𝑋2 ≤ 𝑦) = Pr(𝑋 ≤ √𝑦) = √𝑦 for all 𝑦 ∈ (0, 1).
Since 𝑋 ∼ Uniform(0, 1). Differentiating 𝐹𝑌 (𝑦) gives 𝑓𝑌 (𝑦) =

1
2√𝑦 , 𝑦 ∈ (0, 1).

Ex. 7.8: For 𝑌 = 𝑔(𝑋) increasing, differentiating 𝐹𝑌 (𝑦) = 𝐹(𝑔−1(𝑦)) gives 𝑓𝑌 (𝑦) =
𝑓(𝑔−1(𝑦)) 𝑑𝑔−1(𝑦)

𝑑𝑦 = 𝑓(𝑔−1(𝑦)) ∣ 𝑑𝑔−1(𝑦)
𝑑𝑦 ∣. The last equality holds since 𝑑𝑔−1(𝑦)

𝑑𝑦 is pos-
itive. For 𝑌 = 𝑔(𝑋) decreasing, differentiating 𝐹𝑌 (𝑦) = 1 − 𝐹(𝑔−1(𝑦)) gives
𝑓𝑌 (𝑦) = −𝑓(𝑔−1(𝑦)) 𝑑𝑔−1(𝑦)

𝑑𝑦 = 𝑓(𝑔−1(𝑦)) ∣ 𝑑𝑔−1(𝑦)
𝑑𝑦 ∣. The last equality holds since

𝑑𝑔−1(𝑦)
𝑑𝑦 is negative.
Now let 𝑌 = 𝑔−1(𝑋) = ln𝑋, 𝑋 > 0, so that |𝑑𝑔−1(𝑥)/𝑑𝑥| = 1/𝑥. Since

𝑝𝑌 (𝑦) =
1

𝜎
√
2𝜋 exp{−(𝑦 − 𝜇)2

2𝜎2 } ,

the pdf of 𝑋 = 𝑔(𝑌 ) is

𝑝𝑋(𝑥) = ∣𝑑𝑔
−1(𝑥)
𝑑𝑥 ∣ 𝑓𝑌 (𝑔−1(𝑥)) = 1

𝑥𝜎
√
2𝜋 exp{−(ln𝑥 − 𝜇)2

2𝜎2 } .

Ex. 7.9: If 𝑋 ∼ Uniform[0, 1], then 𝑓𝑋(𝑥) = 1 for all 𝑥 ∈ [0, 1]. Let 𝑦 = 𝐹−1(𝑥) =
𝑔(𝑥). Then 𝑥 = 𝑔−1(𝑦) = 𝐹(𝑦), and

∣ 𝑑𝑔
−1(𝑦)
𝑑𝑦 ∣ = 𝑓(𝑦) .

Therefore 𝑓𝑌 (𝑦) = 𝑓(𝑔−1(𝑦)) ∣ 𝑑𝑔
−1(𝑦)
𝑑𝑦 ∣ = 𝑓(𝑦).

library(tidyverse)
library(patchwork)
library(latex2exp)
set.seed(123)
df <- data.frame(x=runif(400,0,1)) %>% # Simulate 400 Uniform[0,1]
mutate(y=qnorm(x, mean=1, sd=sqrt(2))) # Convert to Normal(1,2)

p1 <- ggplot(df, aes(x = x)) +
geom_histogram(aes(y = ..density..), fill = "white", color="black",

breaks=seq(0,1,0.1)) +
scale_x_continuous("X") + theme_bw()

p2 <- ggplot(df, aes(x = y)) +
geom_histogram(aes(y = ..density..), fill = "white", color="black") +
stat_function(fun = dnorm, args = with(df, c(mean=1, sd = sqrt(2)))) +
scale_x_continuous(TeX("$Y=\\Phi^{-1}(1,2)$")) + theme_bw()

p1 | p2
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Fig. 7.18. Histogram density estimate of simulated Normal(1,2).

Ex. 7.10: Following the hints given, Jensen’s Inequality comes from taking expec-
tations on both sides of the inequality 𝑔(𝑋) ≥ 𝑙(𝑋) = 𝑎𝑋 + 𝑏:

𝐸(𝑔(𝑋)) ≥ 𝐸(𝑙(𝑋)) = 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏 = 𝑔(𝐸(𝑋)) .

Ex. 7.11: The “silly” estimator is unbiased, since 𝐸( ̃𝜇) = 𝐸(𝑋1) = 𝜇. Remark:
Of course the reason for not throwing away observations is that averaging several
observations allows positive and negative errors to cancel, resulting in more precise
estimators. This is reflected in the smaller variance of the sample mean 𝜎2/𝑛.
The variance going from one to two observations alone halves the variance.
Ex. 7.12: lim𝑛→∞ Var(𝑋) = lim𝑛→∞ 𝜎2/𝑛 = 0. The sample mean tends to get
closer to the true mean as sample size increases.
Ex. 7.13: In this example, 𝑋𝑖 are ones and zeroes, so 𝑋𝑖 = 𝑋2

𝑖 . Therefore

𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)2 = 1
𝑛

𝑛
∑
𝑖=1

𝑋2
𝑖 −𝑋2

= 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 −𝑋2 = 𝑋(1 −𝑋) = ̂𝑝(1 − ̂𝑝) .

That is,
̃Var(𝑋) = ̂𝑝(1 − ̂𝑝)

𝑛 = 𝜎2

𝑛 where 𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)2 .

Since 𝜎2 = 𝑛
𝑛 − 1𝜎

2, we have

V̂ar( ̂𝑝) = 𝜎2

𝑛 = 𝑛
𝑛 − 1

𝜎2

𝑛 = ̂𝑝(1 − ̂𝑝)
𝑛 − 1 .

Ex. 7.14: The mean of 𝑋 = ∑𝑛
𝑖=1 𝑤𝑖𝑋𝑖 is

𝐸(𝑋) =
𝑛

∑
𝑖=1

𝑤𝑖𝐸(𝑋𝑖) = 𝜇
𝑛

∑
𝑖=1

𝑤𝑖 = 𝜇
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if ∑𝑛
𝑖=1 𝑤𝑖 = 1. Continuing with the assumption that ∑𝑛

𝑖=1 𝑤𝑖 = 1, let

𝑤𝑖 = (1/𝑛) + 𝑎𝑖 where
𝑛

∑
𝑖=1

𝑎𝑖 = 0 .

Then

Var(𝑋) = Var(
𝑛

∑
𝑖=1

𝑤𝑖𝑋𝑖) =
𝑛

∑
𝑖=1

𝑤2
𝑖 Var(𝑋𝑖) = 𝜎2

𝑛
∑
𝑖=1

𝑤2
𝑖

= 𝜎2
𝑛

∑
𝑖=1

(𝑎𝑖 + 1/𝑛)2 = 𝜎2
𝑛

∑
𝑖=1

(𝑎2
𝑖 − 2𝑎𝑖/𝑛 + 1/𝑛2)

= 𝜎2 (
𝑛

∑
𝑖=1

𝑎2
𝑖 − (2/𝑛)

𝑛
∑
𝑖=1

𝑎𝑖 + 1/𝑛) = 𝜎2
𝑛

∑
𝑖=1

𝑎2
𝑖 + 𝜎2/𝑛

= 𝜎2
𝑛

∑
𝑖=1

𝑎2
𝑖 + Var(𝑋) ≥ Var(𝑋) .

Ex. 7.15: (a) Calculate sample mean and variance of 𝑒𝑎𝑟𝑛𝑖 and ln(𝑒𝑎𝑟𝑛𝑖):

library(tidyverse)
df2 <- read_csv("data\\earnings2019.csv", show_col_types=FALSE)
earnstats <- df2 %>%
summarise(earn_mean = mean(earn),

logearn_mean = mean(log(earn)),
earn_var = var(earn), logearn_var = var(log(earn)))

earnstats

# A tibble: 1 x 4
earn_mean logearn_mean earn_var logearn_var

<dbl> <dbl> <dbl> <dbl>
1 29.2 3.15 671. 0.426
(b) Compute exponential of sample mean of ln(𝑒𝑎𝑟𝑛𝑖):

exp(earnstats$logearn_mean)

[1] 23.36102
The natural exponent of the sample mean of ln(𝑒𝑎𝑟𝑛𝑖) is considerably lower than
the sample mean of 𝑒𝑎𝑟𝑛𝑖. This is a consequence of Jensen’s Inequality.

(c) We can estimate the mean of 𝑒𝑎𝑟𝑛 using exp{ ̂𝜇 + 𝜎2
2 } where ̂𝜇 and 𝜎2 are the

sample mean and sample variance of ln(𝑒𝑎𝑟𝑛). We get

exp(earnstats$logearn_mean + earnstats$logearn_var/2)

[1] 28.90756

The adjusted estimate is more in line with the sample mean of 𝑒𝑎𝑟𝑛𝑖.
(d) Calculate sample skewness and kurtosis coefficients to check appropriateness
of the Normal assumption for ln(𝑒𝑎𝑟𝑛𝑖):
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skew_kurt <- function(x){
n <- length(x)
s <- (1/n)*sum((x-mean(x))^3)/(sd(x)^3)
k <- (1/n)*sum((x-mean(x))^4)/(var(x)^2)
return(c(skewness = s, kurtosis=k))

}
print(skew_kurt(log(df2$earn)))

skewness kurtosis
0.05108766 4.12674254

The skewness coefficient is close to zero. The kurtosis coefficient is larger than
three, though only slightly. To form an opinion on whether or not the Normal-
ity assumption is appropriate, it would be better if we can test if the skewness
and kurtosis coefficients are different from 0 and 3 respectively. Nonetheless,
Normality assumption appears to be reasonable.

Ex. 7.16: (a) Since 𝜎2 = 𝑛 − 1
𝑛 𝜎2, we have

Var(𝜎2) = (𝑛 − 1)2
𝑛2 Var(𝜎2) < Var(𝜎2) .

(b) An expression for Var(𝜎2) is

Var(𝜎2) = (𝑛 − 1)2
𝑛2 Var(𝜎2) = 2(𝑛 − 1)

𝑛2 𝜎4.

Furthermore, 𝐸(𝜎2) = 𝑛 − 1
𝑛 𝐸(𝜎2) = 𝑛 − 1

𝑛 𝜎2, therefore the bias of 𝜎2 is

Bias(𝜎2) = 𝜎2 − 𝑛 − 1
𝑛 𝜎2 = 1

𝑛𝜎2 .

Therefore 𝑀𝑆𝐸(𝜎2) = Var(𝜎2) + Bias(𝜎2)2 = 2𝑛 − 1
𝑛2 𝜎4.

(c) We have 𝑀𝑆𝐸(𝜎2) = 2𝜎4

𝑛 − 1 = 2𝑛𝜎4

𝑛2 − 𝑛 > (2𝑛 − 1)𝜎4

𝑛2 = 𝑀𝑆𝐸(𝜎2).

Ex. 7.18: We have

Cov(𝑋, 𝑌 ) = 𝐸((𝑋 − 𝐸(𝑋)(𝑌 − 𝐸(𝑌 ))
= 𝐸((𝑋𝑌 − 𝐸(𝑋)𝑌 − 𝐸(𝑌 )𝑋 + 𝐸(𝑋)𝐸(𝑌 )))
= 𝐸(𝑋𝑌 ) − 𝐸(𝐸(𝑋)𝑌 ) − 𝐸(𝐸(𝑌 )𝑋) + 𝐸(𝐸(𝑋)𝐸(𝑌 ))
= 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ) − 𝐸(𝑌 )𝐸(𝑋) + 𝐸(𝑋)𝐸(𝑌 )
= 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ) .
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Ex. 7.19: We have

Var(Σ3
𝑖=1𝑎𝑖𝑋𝑖) = 𝐸((Σ3

𝑖=1𝑎𝑖𝑋𝑖)2) − (𝐸(Σ3
𝑖=1𝑎𝑖𝑋𝑖)2

= 𝐸(Σ3
𝑖=1Σ3

𝑗=1𝑎𝑖𝑎𝑗𝑋𝑖𝑋𝑗) − (Σ3
𝑖=1𝑎𝑖𝐸(𝑋𝑖))2

= Σ3
𝑖=1Σ3

𝑗=1𝑎𝑖𝑎𝑗𝐸(𝑋𝑖𝑋𝑗) − Σ3
𝑖=1Σ3

𝑗=1𝑎𝑖𝑎𝑗𝐸(𝑋𝑖)𝐸(𝑋𝑗)

= Σ3
𝑖=1Σ3

𝑗=1𝑎𝑖𝑎𝑗(𝐸(𝑋𝑖𝑋𝑗) − 𝐸(𝑋𝑖)𝐸(𝑋𝑗))

= Σ3
𝑖=1Σ3

𝑗=1𝑎𝑖𝑎𝑗Cov(𝑋𝑖, 𝑋𝑗) .

Ex. 7.20: The proof is similar to that of Ex. 7.19.

Cov(𝑎1𝑋1 + 𝑎2𝑋2, 𝑏1𝑌1 + 𝑏2𝑌2 + 𝑏3𝑌3) =
2

∑
𝑖=1

3
∑
𝑗=1

𝑎𝑖𝑏𝑗Cov(𝑋𝑖, 𝑌𝑗).

Ex. 7.21: We showed in the text that Cov(𝑋, 𝑌 ) = 1, Var(𝑋) = 2 and Var(𝑌 ) =
0.625. Therefore

Cov(𝑋, 𝑌 ) = Var(𝑋, 𝑌 )
√Var(𝑋)√Var(𝑌 )

= 1√
2
√
0.625

= 0.8944 .

Ex. 7.22: We have

Var(𝑋 − 𝛼𝑌 ) = Var(𝑋) + 𝛼2Var(𝑌 ) − 2𝛼 Cov(𝑋, 𝑌 ) ≥ 0 for all 𝛼 .

Setting 𝛼 = Cov(𝑋, 𝑌 )/Var(𝑌 ) gives

Var(𝑋) + Cov(𝑋, 𝑌 )2
Var(𝑌 ) − 2Cov(𝑋, 𝑌 )2

Var(𝑌 ) ≥ 0.

Rearranging and taking square roots gives the desired result. Remark: See Ex. 4.8
for the sample correlation coefficient version of this result, which is a consequence
of the Cauchy-Schwarz Inequality for vectors with a finite number of terms. The
result proved in Ex. 7.22 is a consequence of a more general version of the Cauchy-
Schwarz Inequality.
Ex. 7.23: We have

Pr(𝑌𝑖 ∣ 𝑋 ≥ 3) = Pr(𝑌 = 𝑖,𝑋 ≥ 3)
Pr(𝑋 ≥ 3)

= Pr(𝑌 = 𝑖,𝑋3 = 3) + Pr(𝑌 = 𝑖,𝑋 = 4) + Pr(𝑌 − 𝑖,𝑋 = 5)
Pr(𝑋 = 3) + Pr(𝑋 = 4) + Pr(𝑋 = 5) .

Since Pr(𝑋 ≥ 3) = 0.6, we have

𝑦 3 3.5 4 4.5 5 5.5 6
Pr(𝑌 = 𝑦 ∣ 𝑋 ≥ 3) 0 0 1

12
3
12

4
20

3
20

1
20

with 𝐸(𝑌 ∣ 𝑋 ≥ 3) = 5 and Var(𝑌 ∣ 𝑋 ≥ 3) = 7
24 .
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Ex. 7.24: (a) 𝑋 and 𝑌 both have uniform marginal distributions:

𝑦 3 3.5 4 4.5 5 5.5 6
Pr(𝑌 = 𝑦) 1

10
1
10

1
10

1
10

1
10

1
10

1
10

and
𝑥 1 2 3 4 5

Pr(𝑋 = 𝑥) 1
5

1
5

1
5

1
5

1
5

with means and variances 𝐸(𝑌 ) = 4.5, 𝐸(𝑋) = 3, Var(𝑌 ) = 0.7 and Var(𝑋) = 2.
(b) The conditional distribution of 𝑌 given 𝑋 is as shown below

Pr(𝑌 = 𝑦 ∣ 𝑋 = 𝑥)

10 0 0 0 0 0.5
9 0 0 0 0.5 0
8 0 0 0.5 0 0
7 0 0.5 0 0 0

𝑦 6 0.5 0 0 0 0
5 0.5 0 0 0 0
4 0 0.5 0 0 0
3 0 0 0.5 0 0
2 0 0 0 0.5 0
1 0 0 0 0 0.5

1 2 3 4 5
𝑥

with 𝐸(𝑌 ∣ 𝑋 = 𝑥) = 0.55 for all 𝑥, and Var(𝑌 ∣ 𝑋 = 𝑥) = (𝑥 − 0.5)2. As for
the conditional distribution of 𝑋 given 𝑌 , we see that 𝑋 = |𝑦 − 5.5| + 0.5 with
probability 1 when 𝑌 = 𝑦 for 𝑦 = 1, 2, 3,… , 10.
(c) We know Cov(𝑋, 𝑌 ) = 0 since 𝐸(𝑌 ∣ 𝑋) does not vary with 𝑋. Note here
that 𝑋 and 𝑌 are clearly “related” despite Cov(𝑋, 𝑌 ) = 0, e.g., the conditional
variance of 𝑌 is increasing in 𝑋. Furthermore, note that here 𝐸(𝑋 ∣ 𝑌 ) does vary
with 𝑌 , despite Cov(𝑋, 𝑌 ) = 0.
Ex. 7.25: Taking expectation over 𝑋 on both sides of 𝐸(𝑌 ∣ 𝑋) = 𝑎 + 𝑏𝑋 gives

𝐸(𝐸(𝑌 ∣ 𝑋)) = 𝐸(𝑌 ) = 𝑎 + 𝑏𝐸(𝑋) .
We also have

𝐸(𝑌𝑋) = 𝐸(𝐸(𝑌 𝑋 ∣ 𝑋)) = 𝐸(𝑋𝐸(𝑌 ∣ 𝑋)) = 𝐸(𝑎𝑋 + 𝑏𝑋2) = 𝑎𝐸(𝑋) + 𝑏𝐸(𝑋2) .
Therefore

Cov(𝑋, 𝑌 ) = 𝐸(𝑌 𝑋) − 𝐸(𝑋)𝐸(𝑌 ) = 𝑏(𝐸(𝑋2) − 𝐸(𝑋)2) = 𝑏Var(𝑋)
and 𝑏 = Cov(𝑌 ,𝑋)/Var(𝑋) follows. If you know that 𝐸(𝑌 ∣ 𝑋) = 3 + 0.5𝑋 and
Var(𝑋) = 2, then Cov(𝑋, 𝑌 ) = 1 (compare with covariance calculation made for
the joint pdf (7.29)).
Ex. 7.26: The relationship follows from

Var(𝐸(𝑌 ∣ 𝑋)) = 𝐸(𝐸(𝑌 ∣ 𝑋)2) − 𝐸(𝐸(𝑌 ∣ 𝑋))2
= 𝐸(𝐸(𝑌 2 ∣ 𝑋) − Var(𝑌 ∣ 𝑋)) − 𝐸(𝐸(𝑌 ∣ 𝑋))2
= 𝐸(𝑌 2) − 𝐸(Var(𝑌 ∣ 𝑋)) − 𝐸(𝑌 )2
= Var(𝑌 ) − 𝐸(Var(𝑌 ∣ 𝑋)) .
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(a) If 𝐸(𝑌 ∣ 𝑋) is constant, then Var(𝐸(𝑌 ∣ 𝑋)) = 0, so Var(𝑌 ) = 𝐸(Var(𝑌 ∣ 𝑋)).
(b) If Var(𝑌 ∣ 𝑋) is constant, then 𝐸(Var(𝑌 ∣ 𝑋)) = Var(𝑌 ∣ 𝑋), so we have

Var(𝐸(𝑌 ∣ 𝑋)) = Var(𝑌 ) − Var(𝑌 ∣ 𝑋) ≥ 0

since the LHS is cannot be negative.
Ex. 7.27: The variables 𝑋 and 𝑌 in this question are independent (you can verify
that the conditional distribution of 𝑌 does not change with 𝑋, nor does the
conditional distribution of 𝑋 given 𝑌 ). But they are not identical: the marginal
distribution of 𝑋 and 𝑌 are

𝑥 1 2 3 4 5
Pr(𝑋 = 𝑥) 0.1 0.4 0.3 0.1 0.1

and
𝑦 1 2 3 4 5

Pr(𝑌 = 𝑦) 0.1 0.2 0.4 0.2 0.1

They would be independent and identically distributed if, for example, their joint
pdf is

5 0.01 0.04 0.03 0.01 0.01
4 0.01 0.04 0.03 0.01 0.01

𝑌 3 0.03 0.12 0.09 0.03 0.03
2 0.04 0.16 0.12 0.04 0.04
1 0.01 0.04 0.03 0.01 0.01

1 2 3 4 5
𝑋

Ex. 7.28: We showed that the expression for the bivariate Normal pdf is

𝑓𝑋,𝑌 (𝑥, 𝑦)

= 1√
2𝜋√𝜎2

𝑋(1 − 𝜌2
𝑋𝑌 )

exp{−1
2
[𝑥 − (𝛼 + 𝛽𝑦)]2
𝜎2
𝑋(1 − 𝜌2

𝑋𝑌 )
}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴

1√
2𝜋𝜎𝑌

exp{−1
2 (𝑦 − 𝜇𝑌

𝜎𝑌
)

2
}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵

where 𝛼 = 𝜇𝑋 − 𝛽𝜇𝑌 and 𝛽 = 𝜎𝑋𝑌
𝜎2
𝑌

. If 𝜌𝑋𝑌 = 0, expression (𝐴) becomes

1
√2𝜋𝜎2

𝑋
exp{−1

2
(𝑥 − 𝜇𝑋)2

𝜎2
𝑋

} .

This is just the marginal pdf of 𝑋 and (𝐵) is the marginal pdf of 𝑌 . The joint
pdf of 𝑋 and 𝑌 is the product of the marginals, so 𝑋 and 𝑌 are independent.
Ex. 7.29:

i. Pr(𝑋 ≤ −2.5) when 𝑋 ∼ 𝑁(0, 1). Ans: 0.0062097.
ii. Pr(𝑋 ≤ −2.5) when 𝑋 ∼ 𝑡(5). Ans: 0.027245.
iii. 𝑐 such that Pr(𝑋 > 𝑐) = 0.05 when 𝑋 ∼ 𝜒2(5). Ans: 11.0704977.
iv. Pr(−1.96 ≤ 𝑋 ≤ 1.96) when 𝑋 ∼ 𝑁(0, 1). Ans: 0.9500042.
v. 𝑐 such that Pr(−𝑐 ≤ 𝑋 ≤ 𝑐) = 0.95 when 𝑋 ∼ 𝑁(0, 1). -1.959964.
vi. 𝑐 such that Pr(−𝑐 ≤ 𝑋 ≤ 𝑐) = 0.95 when 𝑋 ∼ 𝑡(12). Ans: -2.1788128.
vii. 𝑐 such that Pr(−𝑐 ≤ 𝑋 ≤ 𝑐) = 0.95 when 𝑋 ∼ 𝑡(100). Ans: -1.9839715.
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viii. 𝑐 such that Pr(𝑋 > 𝑐) = 0.05 when 𝑋 ∼ 𝐹(5, 8). Ans: 3.6874987.
ix. 𝑐 such that Pr(𝑋 > 𝑐) = 0.05 when 𝑋 ∼ 𝐹(5, 80). Ans: 2.3287206.
x. 𝑐 such that Pr(𝑋 > 𝑐) = 0.05 when 𝑋 ∼ 𝐹(5, 8000). Ans: 2.2152166

Compare the output for viii, ix and x with iii. The 𝑑𝑓1 ×𝐹(𝑑𝑓1, 𝑑𝑓2) distribution
converges to the 𝜒(𝑑𝑓1)

2 distribution. This is the reason 5 times qf(0.95, df1=5,
df2) converges to qchisq(0.95, df1=5) as 𝑑𝑓2 gets larger.
Ex. 7.30: We have 𝑋 ∼ Log-Normal(𝜇, 𝜎2). We wish to estimate 𝐸(𝑋) = exp{𝜇+
𝜎2/2} from sample mean and variance calculated from a random sample of 𝑌𝑖 =
ln𝑋𝑖, 𝑖 = 1, 2,… , 𝑛. Since 𝑌𝑖 ∼ Normal(𝜇, 𝜎2), we know that 𝑌

𝑝
→ 𝜇 and 𝜎2

𝑝
→ 𝜎2,

where 𝜎2 is 1
𝑛−1Σ𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2. Therefore

exp{𝑌 + 𝜎2

2 }
𝑝

⟶ exp{𝜇 + 𝜎2

2 } .

Ex. 7.31: We calculate the skewness and kurtosis coefficients using the skew_kurt
function from the answer in Ex. 7.15. The following code calculates the bootstrap
standard errors.

set.seed(8)
X <- matrix(rchisq(20000, df=1), ncol = 400) # 400 samples, 50 obs each
mu <- cbind(sqrt(5)*(colMeans(X[1:5,]) - 1),

sqrt(10)*(colMeans(X[1:10,]) - 1),
sqrt(20)*(colMeans(X[1:20,]) - 1),
sqrt(50)*(colMeans(X[1:50,]) - 1))

results <- rbind(
c(mean=mean(mu[,1]), variance=var(mu[,1]), skew_kurt(mu[,1])),
c(mean=mean(mu[,2]), variance=var(mu[,2]), skew_kurt(mu[,2])),
c(mean=mean(mu[,3]), variance=var(mu[,3]), skew_kurt(mu[,3])),
c(mean=mean(mu[,4]), variance=var(mu[,4]), skew_kurt(mu[,4])))

rownames(results) <- c("n:5", "n:10", "n:20", "n:50")
results

mean variance skewness kurtosis
n:5 0.08128763 1.830255 1.1923771 6.605085
n:10 0.01968846 1.774488 0.7683145 4.018212
n:20 0.01203637 1.960076 0.6708130 4.451202
n:50 -0.02505807 1.937929 0.4067155 3.135972

If 𝑋𝑖 is iid with mean 𝜇 and variance 𝜎2, then
√𝑛(𝑋𝑛 − 𝜇) has mean 0 and

variance 𝜎2. Furthermore, the Central Limit Theorem predicts that

√𝑛(𝑋𝑛 − 𝜇) 𝑑⟶ Normal(𝜇, 𝜎2) .

In our simulation, 𝑋𝑖 ∼ 𝜒2(1), so 𝜇 = 1 and 𝜎2 = 2. Furthermore, the 𝜒2(1)
distribution is positively skewed, so the distribution of the mean should also be
positively skewed and non-Normal. However, the CLT says that the distribu-
tion of the sample mean should be approximately Normal for large sample sizes.
This is reflected in our results, where the mean and variances are close to 0 and
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2 respectively. Furthermore, our skewness and kurtosis are closer to 0 and 3
respectively for larger sample sizes.
Ex. 7.32: See the following code. We assume you have the data stored in df2
and have available the function skew_kurt() as in the answer to Ex. 7.15. We
calculate our bootstrap standard errors based on 200 bootstrap samples.

## earnings data in df2$earn
skreps <- data.frame(skewness_se=rep(NA, 200), kurtosis_se=rep(NA, 200))
n <- length(df2$earn)
for (i in 1:200){
x <- sample(log(df2$earn), n, replace=TRUE)
skreps[i,] <- skew_kurt(x)

}
sk <- rbind(skew_kurt(log(df2$earn)), sapply(skreps, sd))
rownames(sk) <- c("Est.", "Std.err.")
print(sk)

skewness kurtosis
Est. 0.05108766 4.1267425
Std.err. 0.06022960 0.1881308

We do not reject skewness = 0 0.05 level of significance but we would reject
kurtosis = 3 at 0.05 level of significance. The distribution is slightly “fat-tailed”.
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