
August 31, 2024 18:18 book-9x6 Baydur-Preve-Tay index page 307

Chapter 8

Matrix Algebra

In applications, we often find ourselves dealing with very large numbers of
equations of the form

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 = 𝑐

where 𝑎1, 𝑎2,… , 𝑎𝑛 and 𝑐 are constants and 𝑥1, 𝑥2,… , 𝑥𝑛 are (random or
non-random) variables. Matrix algebra is indispensable in such situations.
In this chapter we cover the basics: definitions, notation, and elementary
operations, and its applications in solving systems of linear equations, and
connections with vector spaces. A later chapter deals with more advanced
topics like eigenvalues and matrix decompositions. The ideas in this chapter
are closely connected to the concepts covered in Section 2.1.5 and Chapter 4
so you may wish to review that material prior to starting on this chapter.
In the programming section we discuss working with matrices and arrays
in Python.

8.1 Definitions and Notation
A matrix is a rectangular collection of numbers. The following is a matrix
with 𝑚 rows and 𝑛 columns:

⎡
⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥⎥
⎦
.

Such a matrix is said to have “dimension” or “order” 𝑚× 𝑛. The number
that appears in the (𝑖, 𝑗)th position, i.e., in the 𝑖th row and 𝑗th column, is
called the (𝑖, 𝑗)th element/entry/component of the matrix. We count rows
from top to bottom, and columns from left to right. If 𝑚 = 𝑛, the matrix
is a square matrix. If 𝑚 = 1 and 𝑛 > 1, we have a row vector. If 𝑚 > 1
and 𝑛 = 1, we have a column vector. If 𝑚 = 𝑛 = 1, we have a scalar.

The term “vector” is used in many ways in mathematics. Sometimes a
vector refers to an ordered list of numbers (𝑥1, 𝑥2,… , 𝑥𝑛). Such an object
has no “shape”. It is merely an ordered sequence of 𝑛 elements. Column and
row vectors, on the other hand, are “two-dimensional” objects, in the sense
of having a “height” (number of rows) and “width” (number of columns).
In the context of matrix algebra, the word “vector” alone usually means a
column vector, but not always.

307



August 31, 2024 18:18 book-9x6 Baydur-Preve-Tay index page 308

308 Mathematics and Programming for the Quantitative Economist

Example 8.1 The matrix 𝐴 below is a square matrix, 𝑏 is a column vector
and 𝑐 is a row vector.

𝐴 = [𝑎11 𝑎12
𝑎21 𝑎22

] , 𝑏 =
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥⎥
⎦
, 𝑐 = [𝑐1 𝑐2 ⋯ 𝑐𝑛] .

Matrices and vectors are often written in bold lettering, or with some
sort of mark to distinguish them from scalars and other objects. We will not
do so in this book. The reader will have to rely on context to distinguish
scalars from vectors and matrices. Where context is unclear, we will be
more explicit.

Some additional notation:
• It is often convenient to indicate an 𝑚× 𝑛 matrix 𝐴 by (𝑎𝑖𝑗)𝑚×𝑛.
• We can refer to the (𝑖, 𝑗)th element of a matrix 𝐴 by (𝐴)𝑖𝑗 or (𝐴)𝑖,𝑗.

The utility of these two notational conventions should become clearer as
the chapter progresses.

Two matrices of the same dimension are said to be equal if each of their
corresponding elements are equal, i.e.,

𝐴 = 𝐵 ⇔ (𝐴)𝑖𝑗 = (𝐵)𝑖𝑗 for all 𝑖 = 1, 2,… ,𝑚 and 𝑗 = 1, 2,… , 𝑛.
Two matrices of different dimensions cannot be equal.

A zero matrix is one whose elements are all zero. It is simply written
as 0 although sometimes subscripts are added to indicate its dimension.

The diagonal of a 𝑛×𝑛 square matrix refers to the (𝑖, 𝑖)th elements of
the matrix, i.e., to the elements (𝐴)𝑖𝑖, 𝑖 = 1, 2,… , 𝑛. A diagonal matrix
is a square matrix with all off-diagonal elements equal to zero, i.e., a square
matrix 𝐴 is diagonal if (𝐴)𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, 2, ..., 𝑛. Diagonal
matrices are sometimes written diag(𝑎11, 𝑎22, ..., 𝑎𝑛𝑛).
Example 8.2 The matrix

𝐴 = ⎡⎢
⎣

1 0 0
0 4 0
0 0 0

⎤⎥
⎦

= diag(1, 4, 0)

is a diagonal matrix. Note that there is nothing in the definition of a
diagonal matrix that says its diagonal elements cannot be zero.1

An identity matrix is a square matrix with all diagonal elements equal
to one and all off-diagonal elements equal to zero, i.e.,

𝐼𝑛 =
⎡
⎢⎢
⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤
⎥⎥
⎦

= diag(1, 1,… , 1⏟
𝑛 terms

) .

1A square zero matrix is therefore technically also a diagonal matrix.



August 31, 2024 18:18 book-9x6 Baydur-Preve-Tay index page 309

Matrix Algebra 309

We will denote an identity matrix by 𝐼 . A subscript is sometimes added to
indicate its dimension, as we did above, although this is often left out. We
will see shortly that the identity matrix plays a role in matrix algebra akin
to the role played by the number “1” in the real number system.

A symmetric matrix is a square matrix 𝐴 such that (𝐴)𝑖𝑗 = (𝐴)𝑗𝑖 for
all 𝑖, 𝑗 = 1, 2, ..., 𝑛.

Example 8.3 The matrix ⎡⎢
⎣

1 3 2
3 4 6
2 6 3

⎤⎥
⎦

is symmetric, ⎡⎢
⎣

1 3 2
7 4 6
2 6 3

⎤⎥
⎦

is not.

8.1.1 Addition, Scalar Multiplication and Transpose
Addition: Matrix addition is defined as element-by-element addition, i.e..,
for two matrices 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 and 𝐵 = (𝑏𝑖𝑗)𝑚×𝑛, we define

(𝐴 + 𝐵)𝑖𝑗 = (𝐴)𝑖𝑗 + (𝐵)𝑖𝑗 for all 𝑖 = 1,… ,𝑚 ; 𝑗 = 1,… , 𝑛 .
Matrix addition is defined only for matrices of the same dimensions.

Example 8.4 ⎡⎢
⎣

1 4
3 2
6 5

⎤⎥
⎦
+ ⎡⎢

⎣

6 9
1 2
1 10

⎤⎥
⎦

= ⎡⎢
⎣

1 + 6 4 + 9
3 + 1 2 + 2
6 + 1 5 + 10

⎤⎥
⎦

= ⎡⎢
⎣

7 13
4 4
7 15

⎤⎥
⎦

.

It should also be obvious that
𝐴+𝐵 = 𝐵 +𝐴 ,

(𝐴 + 𝐵) + 𝐶 = 𝐴+ (𝐵 + 𝐶) .
This means that as far as addition is concerned, we can manipulate matrices
in the same way we manipulate ordinary numbers (as long as the matrices
being added have the same dimensions).

Scalar Multiplication: For a scalar 𝛼 and matrix 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛, we define

(𝛼𝐴)𝑖𝑗 = (𝐴𝛼)𝑖𝑗 = 𝛼(𝐴)𝑖𝑗 for all 𝑖 = 1,… ,𝑚 ; 𝑗 = 1,… , 𝑛 .
i.e., the product of a scalar and a matrix is defined to be the multiplication
of each element of the matrix by the scalar.

Example 8.5 𝑏 ⎡⎢
⎣

𝑎11 𝑎12
𝑎21 𝑎22
𝑎31 𝑎32

⎤⎥
⎦

= ⎡⎢
⎣

𝑏𝑎11 𝑏𝑎12
𝑏𝑎21 𝑏𝑎22
𝑏𝑎31 𝑏𝑎32

⎤⎥
⎦

.

We can use scalar multiplication to define matrix subtraction:

𝐴−𝐵 = 𝐴+ (−1)𝐵.
Transpose: When we transpose a matrix, we write its rows as its columns,
and its columns as its rows. That is, the transpose of an (𝑚×𝑛) matrix 𝐴,
denoted either by 𝐴T or 𝐴′, is defined by

(𝐴T)𝑖𝑗 = (𝐴)𝑗𝑖 for all 𝑖 = 1, 2, ...,𝑚 and 𝑗 = 1, 2, ..., 𝑛.
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Example 8.6 ⎡⎢
⎣

1 4
3 2
6 5

⎤⎥
⎦

T

= [1 3 6
4 2 5] .

In order to use space more efficiently, we will often write a column vector

𝑥 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑚

⎤
⎥⎥
⎦

as 𝑥 = [𝑥1 𝑥2 … 𝑥𝑚]T or 𝑥T = [𝑥1 𝑥2 … 𝑥𝑚].
We can use the transpose operator to define symmetric matrices: a

symmetric matrix is simply a square matrix where 𝐴T = 𝐴.

8.1.2 Exercises

Ex. 8.1 What is the dimension of 𝐴 = ⎡⎢
⎣

7 13
4 4
7 15

⎤⎥
⎦
? What is (𝐴)1,2 and (𝐴)3,1?

Ex. 8.2 Suppose 𝐴 = (𝑎𝑖𝑗)2×4 where 𝑎𝑖𝑗 = 𝑖 + 𝑗. Write out the matrix in full.

Ex. 8.3 Express the the following matrices in full:
(a) (𝑎𝑖𝑗)4×4 where 𝑎𝑖𝑗 = 1 when 𝑖 = 𝑗, 0 otherwise.
(b) (𝑎𝑖𝑗)4×4 where 𝑎𝑖𝑗 = 0 if 𝑖 ≠ 𝑗 (fill the rest of the entries with “∗”).
(c) (𝑎𝑖𝑗)4×4 where 𝑎𝑖𝑗 = 0 if 𝑖 < 𝑗 (fill the rest of the entries with “∗”).
(d) (𝑎𝑖𝑗)4×4 where 𝑎𝑖𝑗 = 0 if 𝑖 > 𝑗 (fill the rest of the entries with “∗”).

These are all square matrices. Matrix (c) is a “lower triangular matrix” and (d) is
an “upper triangular matrix” (so we have in (c) and (d) matrices that are square
and triangular!). Matrix (b) is diagonal, which is both upper and lower triangular.

Ex. 8.4 What is 𝑢 and 𝑣 if

⎡⎢
⎣

𝑢 + 2𝑣 1 3
9 0 4
3 4 7

⎤⎥
⎦

= ⎡⎢
⎣

1 1 3
9 0 𝑢 + 𝑣
3 4 7

⎤⎥
⎦
?

Ex. 8.5 Let 𝑣1, 𝑣2, 𝑣3, 𝑣4 represent cities and suppose there are one-way flights
from 𝑣1 to 𝑣2 and 𝑣3, from 𝑣2 to 𝑣3 and 𝑣4, and two-way flights between 𝑣1 and
𝑣4. Write out a matrix 𝐴 such that (𝐴)𝑖𝑗 = 1 if there is a flight from 𝑣𝑖 to 𝑣𝑗, and
zero otherwise.

Ex. 8.6 Let 𝐴 = [0 0 0
0 0 0] and 𝐵 = ⎡⎢

⎣

0 0
0 0
0 0

⎤⎥
⎦
. Is 𝐴 = 𝐵?

Ex. 8.7 If 2𝐴 = ⎡⎢
⎣

3 4
2 8
1 5

⎤⎥
⎦
, what is 𝐴? If 𝐵 − 1

2
⎡⎢
⎣

3 4
1 8
1 4

⎤⎥
⎦

= ⎡⎢
⎣

6 4
2 5
3 1

⎤⎥
⎦
, what is 𝐵?
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Ex. 8.8 Which of the following matrices are symmetric?

(a)
⎡
⎢⎢
⎣

1 2 3 5
2 5 4 𝑏
3 4 3 3
5 𝑏 3 1

⎤
⎥⎥
⎦

(b)
⎡
⎢⎢
⎣

1 1 3 5
2 5 4 𝑏
3 4 3 3
5 𝑏 3 1

⎤
⎥⎥
⎦

(c)
⎡
⎢⎢
⎣

1 0 0 0
0 5 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥
⎦

(d)
⎡
⎢⎢
⎣

1 1
1 1
1 1
1 1

⎤
⎥⎥
⎦

Ex. 8.9 True or False?

i. Symmetric matrices must be square.
ii. A scalar is symmetric.
iii. If 𝐴 is symmetric, then 𝛼𝐴 is symmetric.
iv. The sum of symmetric matrices is symmetric.
v. All diagonal matrices are symmetric.
vi. If (𝐴T)T = 𝐴, then 𝐴 is symmetric.

Ex. 8.10 (a) Find 𝐴 and 𝐵 if they simultaneously satisfy

2𝐴 + 𝐵 = [1 2 1
4 3 0] and 𝐴+ 2𝐵 = [4 2 3

5 1 1] .

(b) If 𝐴+𝐵 = 𝐶 and 3𝐴 − 2𝐵 = 0 simultaneously, find 𝐴 and 𝐵 in terms of 𝐶.

8.2 Matrix Multiplication
Let 𝐴 be 𝑚×𝑛 and 𝐵 be 𝑛× 𝑝 — here we require the number of columns
in 𝐴 and the number of rows in 𝐵 to be the same. Then the product 𝐴𝐵
is defined as the 𝑚× 𝑝 matrix whose (𝑖, 𝑗)th element is

(𝐴𝐵)𝑖𝑗 =
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗 .

That is, the (𝑖, 𝑗)th element of the product 𝐴𝐵 is defined as the sum of
the product of the elements of the 𝑖th row of 𝐴 with the corresponding
elements in the 𝑗th column of 𝐵. Put another way, the (𝑖, 𝑗)𝑡ℎ element
of the product 𝐴𝐵 is the inner product of the 𝑖th row of 𝐴 with the 𝑗th
column of 𝐵. For example, the (1, 1)th element of 𝐴𝐵 is

(𝐴𝐵)11 =
𝑛

∑
𝑘=1

𝑎1𝑘𝑏𝑘1 = 𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 +⋯+ 𝑎1𝑛𝑏𝑛1 .

The (2, 3)th element of 𝐴𝐵 is

(𝐴𝐵)23 =
𝑛

∑
𝑘=1

𝑎2𝑘𝑏𝑘3 = 𝑎21𝑏13 + 𝑎22𝑏23 + 𝑎23𝑏33 +⋯+ 𝑎2𝑛𝑏𝑛3 ,

Visually, for a product of a 3 × 3 matrix and a 3 × 2 matrix, we have
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⎡⎢⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑏11
𝑏21
𝑏31

𝑏12
𝑏22
𝑏32

⎤⎥⎥
⎦

= ⎡
⎢
⎣

𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 •
• •
• •

⎤
⎥
⎦

⎡⎢⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑏11
𝑏21
𝑏31

𝑏12
𝑏22
𝑏32

⎤⎥⎥
⎦

= ⎡
⎢
⎣

∑3
𝑘=1 𝑎1𝑘𝑏𝑘1 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32

• •
• •

⎤
⎥
⎦

⎡⎢⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑏11
𝑏21
𝑏31

𝑏12
𝑏22
𝑏32

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

∑3
𝑘=1 𝑎1𝑘𝑏𝑘1 ∑3

𝑘=1 𝑎1𝑘𝑏𝑘2
𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 •

• •

⎤⎥⎥
⎦

and so on.

Example 8.7 Let 𝐴 = ⎡⎢
⎣

2 8
3 0
5 1

⎤⎥
⎦

and 𝐵 = [4 7
6 9]. Then

𝐴𝐵 = ⎡⎢
⎣

2 8
3 0
5 1

⎤⎥
⎦
[4 7
6 9] = ⎡⎢

⎣

2 ⋅ 4 + 8 ⋅ 6 2 ⋅ 7 + 8 ⋅ 9
3 ⋅ 4 + 0 ⋅ 6 3 ⋅ 7 + 0 ⋅ 9
5 ⋅ 4 + 1 ⋅ 6 5 ⋅ 7 + 1 ⋅ 9

⎤⎥
⎦

= ⎡⎢
⎣

56 86
12 21
26 44

⎤⎥
⎦
.

Example 8.8 The system of equations

2𝑥1 − 𝑥2 = 4
𝑥1 + 2𝑥2 = 2

can be written in matrix form as

[2 −1
1 2 ] [𝑥1

𝑥2
] = [42] , or 𝐴𝑥 = 𝑏

where 𝐴 = [2 −1
1 2 ], 𝑥 = [𝑥1

𝑥2
], and 𝑏 = [42].

8.2.1 Exercises
These exercises illustrate crucial aspects of matrix multiplication. You should
work through each exercise and be sure to understand the point being made.

Ex. 8.11 Let 𝐴 = ⎡⎢
⎣

2 8
3 0
5 1

⎤⎥
⎦
, 𝐵 = [2 0

3 8] and 𝐶 = [7 2
6 3].

(a)  Compute the matrices 𝐵𝐶, 𝐶𝐵, and 𝐴𝐵.
(b)  Can 𝐵𝐴 even be computed?

Remark: This exercise shows that for any two matrices 𝐴 and 𝐵, 𝐴𝐵 ≠ 𝐵𝐴
in general. That is, we have to distinguish between pre-multiplication and post-
multiplication. In the product 𝐴𝐵, we say that 𝐵 is pre-multiplied by 𝐴, or that
𝐴 is post-multiplied by 𝐵.
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Ex. 8.12 Show that 𝑥T𝑥 ≥ 0 for any vector 𝑥 = [𝑥1 𝑥2 … 𝑥𝑛]
T. When will

𝑥T𝑥 = 0?
Remark: For any column vector 𝑥, the product 𝑥T𝑥 is the sum of the squares of
its elements. For obvious reasons, we call this the “inner product” of the column
vector 𝑥 with itself. Sometimes the term “scalar product” or “dot product” used
also used for this operation.

Ex. 8.13

(a) Compute [2 4
1 2] [

−2 4
1 −2].

(b) Let 𝐴 = [ 1 𝑏
− 1

𝑏 −1] where 𝑏 ≠ 0. Compute the product 𝐴2 = 𝐴𝐴.

Remark: This exercise shows that you can multiply two non-zero matrices and
end up with a zero matrix. Therefore 𝐴𝐵 = 0 does not imply 𝐴 = 0 or 𝐵 = 0.
It is even possible for the square of a non-zero matrix to be a zero matrix. Of
course, if 𝐴 = 0 or 𝐵 = 0, then 𝐴𝐵 = 0.

As you can see, in some ways matrix multiplication does not behave like
the usual multiplication of numbers. For instance, the order of multiplication
matters, and 𝐴𝐵 = 0 does not imply 𝐴 = 0 or 𝐵 = 0. But in other ways matrix
multiplication does behave like regular multiplication of numbers, as the next
exercise shows.

Ex. 8.14 Prove that
(a) (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) where 𝐴, 𝐵, and 𝐶 are 𝑚×𝑛, 𝑛×𝑝 and 𝑝×𝑞 respectively.
(b) 𝐴(𝐵 + 𝐶) = 𝐴𝐵 +𝐴𝐶 where 𝐴 is 𝑚× 𝑛, and 𝐵 and 𝐶 are 𝑛 × 𝑝.
(c) (𝐴 + 𝐵)𝐶 = (𝐴𝐶 +𝐵𝐶) where 𝐴 and 𝐵 are 𝑚× 𝑛 and 𝐶 is 𝑛 × 𝑝.

Remark: Although (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶), one approach may be more computationally
efficient than the other. Suppose 𝐴 and 𝐵 are both 𝑛 × 𝑛, and 𝐶 is 𝑛 × 1.
Computing 𝐴𝐵 requires calculating 𝑛2 inner products of vectors with 𝑛 elements.
Each of these inner products require 𝑛 multiplications and 𝑛−1 additions. These
means the product 𝐴𝐵 requires 𝑛2(2𝑛−1) operations. Then multiplying the 𝑛×𝑛
matrix 𝐴𝐵 with 𝐶 involves 𝑛 inner products. The total number of operations
required to compute (𝐴𝐵)𝐶 is therefore 𝑛(𝑛 + 1)(2𝑛 − 1). The product 𝐴(𝐵𝑐)
however requires only 2𝑛 inner products, or 2𝑛(2𝑛 − 1) operations. The ratio of
the number of operations required to compute (𝐴𝐵)𝐶 to that required to compute
𝐴(𝐵𝐶) is of order 𝑂(𝑛). As an exercise, you should calculate the number of
operations required for both when 𝑛 = 100.

Ex. 8.15 Let 𝐴 be an 𝑚× 𝑛 matrix, and let 𝐼𝑛 and 𝐼𝑚 be identity matrices of
dimensions 𝑛 × 𝑛 and 𝑚×𝑚 respectively. Show that 𝐼𝑚𝐴 = 𝐴𝐼𝑛 = 𝐴.

Ex. 8.16 Show that

⎡
⎢⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33
𝑎41 𝑎42 𝑎43

⎤
⎥⎥
⎦

⎡⎢
⎣

𝑏1
𝑏2
𝑏3
⎤⎥
⎦

= 𝑏1
⎡
⎢⎢
⎣

𝑎11
𝑎21
𝑎31
𝑎41

⎤
⎥⎥
⎦
+ 𝑏2

⎡
⎢⎢
⎣

𝑎12
𝑎22
𝑎32
𝑎42

⎤
⎥⎥
⎦
+ 𝑏3

⎡
⎢⎢
⎣

𝑎13
𝑎23
𝑎33
𝑎43

⎤
⎥⎥
⎦

i.e., 𝐴𝑏 is a linear combination of the columns of 𝐴, with weights given in 𝑏.
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Ex. 8.17 (a) Show that (𝐴𝐵)T = 𝐵T𝐴T for any 𝑚×𝑛 matrix 𝐴 and any 𝑛 × 𝑝
matrix 𝐵. Verify this equality for the matrices

𝐴 = [𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6

] and 𝐵 = ⎡⎢
⎣

𝑏1 𝑏2 𝑏3
𝑏4 𝑏5 𝑏6
𝑏7 𝑏8 𝑏9

⎤⎥
⎦
.

(b) Prove that (𝐴𝐵𝐶)T = 𝐶T𝐵T𝐴T.

Ex. 8.18 Explain why 𝑋T𝑋 is square and symmetric for any general 𝑛 × 𝑘
matrix 𝑋.

Remark: The matrix 𝑋T𝑋 is encountered frequently in all statistical disciplines.

Ex. 8.19 The trace of an 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is defined to be

tr(𝐴) =
𝑛

∑
𝑖=1

𝑎𝑖𝑖.

That is, the trace of a square matrix is simply the sum of its diagonal elements.
The trace of a scalar is the scalar itself.

(a) If 𝐴 and 𝐵 are square matrices of the same dimensions, show that

tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵).

(b) If 𝐴 is a square matrix, show that tr(𝐴T) = tr(𝐴).
(c) If 𝐴 is 𝑚× 𝑛 and 𝐵 is 𝑛 ×𝑚, show that tr(𝐴𝐵) = tr(𝐵𝐴).
(d) If 𝑥 is an 𝑛 × 1 column vector, show that 𝑥T𝑥 = tr(𝑥𝑥T) by

i. direct multiplication,
ii. using (c) and the fact that the trace of a scalar is the scalar itself.

This odd little matrix operation is surprisingly useful in proofs and for deriving
and simplifying matrix equations.

Ex. 8.20 Let 𝑖𝑛 be an 𝑛 × 1 vector of ones, i.e., 𝑖𝑛 = [1 1 ⋯ 1]T.

(a) Show that the formula for the sample mean of the elements of the column
vector 𝑦 = [𝑦1 𝑦2 ⋯ 𝑦𝑛]

T can be written as 𝑦 = (𝑖T𝑛 𝑖𝑛)−1𝑖T𝑛 𝑦.
(b) Show that 𝑀0 = 𝐼𝑛 − 𝑖𝑛(𝑖T𝑛 𝑖𝑛)−1𝑖T𝑛 is symmetric, and that 𝑀0𝑀0 = 𝑀0.

(c) Show that the sample variance of the data in 𝑦 can be written as

1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)2 = 𝑦T𝑀0𝑦
𝑛 − 1 .

Ex. 8.21 Prove that 𝐴(𝛼𝐵) = (𝛼𝐴)𝐵 = 𝛼(𝐴𝐵).
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8.3 Partitioned Matrices
We can partition the contents of an 𝑚×𝑛 matrix into blocks of submatrices.
For instance, we can write

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

= [𝐴11 𝐴12
𝐴21 𝐴22

]

where

𝐴11 = [12] , 𝐴21 = ⎡⎢
⎣

3
4
3
⎤⎥
⎦
, 𝐴12 = [3 2 6

8 2 1] and 𝐴22 = ⎡⎢
⎣

1 2 4
2 1 3
1 1 7

⎤⎥
⎦
.

Partitioned matrices are often called block matrices. Of course, there
are many ways of partitioning any given matrix. The following is another
partition of the matrix 𝐴:

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

.

It can be shown that addition and multiplication of partitioned matrices
can be carried out as though the blocks are elements, as long as the matrices
are partitioned conformably.

Addition of Partitioned Matrices. Consider two 𝑚 × 𝑛 matrices 𝐴 and 𝐵
partitioned in the following manner:

𝐴 =
⎡
⎢⎢
⎣

𝐴11⏟
𝑚1×𝑛1

𝐴12⏟
𝑚1×𝑛2

𝐴21⏟
𝑚2×𝑛1

𝐴22⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦

and 𝐵 =
⎡
⎢⎢
⎣

𝐵11⏟
𝑚1×𝑛1

𝐵12⏟
𝑚1×𝑛2

𝐵21⏟
𝑚2×𝑛1

𝐵22⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦

where 𝑛1 + 𝑛2 = 𝑛 and 𝑚1 +𝑚2 = 𝑚. We emphasize that 𝐴 and 𝐵 must
be of the same size and partitioned identically. Then

𝐴+𝐵 =
⎡
⎢⎢
⎣

𝐴11 +𝐵11⏟⏟⏟⏟⏟
𝑚1×𝑛1

𝐴12 +𝐵12⏟⏟⏟⏟⏟
𝑚1×𝑛2

𝐴21 +𝐵21⏟⏟⏟⏟⏟
𝑚2×𝑛1

𝐴22 +𝐵22⏟⏟⏟⏟⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦
. (8.1)
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Multiplication of Partitioned Matrices. Now consider two matrices 𝐴 and
𝐵 with dimensions 𝑚×𝑝 and 𝑝 ×𝑛 respectively, are partitioned as follows:

𝐴 =
⎡
⎢⎢
⎣

𝐴11⏟
𝑚1×𝑝1

𝐴12⏟
𝑚1×𝑝2

𝐴21⏟
𝑚2×𝑝1

𝐴22⏟
𝑚2×𝑝2

⎤
⎥⎥
⎦

and 𝐵 =
⎡
⎢⎢
⎣

𝐵11⏟
𝑝1×𝑛1

𝐵12⏟
𝑝1×𝑛2

𝐵21⏟
𝑝2×𝑛1

𝐵22⏟
𝑝2×𝑛2

⎤
⎥⎥
⎦

.

In particular, the partition is such that the column-wise partition of 𝐴
matches the row-wise partition of 𝐵. Then

𝐴𝐵 =
⎡
⎢⎢
⎣

𝐴11⏟
𝑚1×𝑝1

𝐴12⏟
𝑚1×𝑝2

𝐴21⏟
𝑚2×𝑝1

𝐴22⏟
𝑚2×𝑝2

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝐵11⏟
𝑝1×𝑛1

𝐵12⏟
𝑝1×𝑛2

𝐵21⏟
𝑝2×𝑛1

𝐵22⏟
𝑝2×𝑛2

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝐴11𝐵11 +𝐴12𝐵21⏟⏟⏟⏟⏟⏟⏟
𝑚1×𝑛1

𝐴11𝐵12 +𝐴12𝐵22⏟⏟⏟⏟⏟⏟⏟
𝑚1×𝑛2

𝐴21𝐵11 +𝐴22𝐵21⏟⏟⏟⏟⏟⏟⏟
𝑚2×𝑛1

𝐴21𝐵12 +𝐴22𝐵22⏟⏟⏟⏟⏟⏟⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦

.

(8.2)

Transposition of Partitioned Matrices. It is straightforward to show that

𝐴 =
⎡
⎢⎢
⎣

𝐴11⏟
𝑚1×𝑛1

𝐴12⏟
𝑚1×𝑛2

𝐴21⏟
𝑚2×𝑛1

𝐴22⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦

⇒ 𝐴T =
⎡
⎢⎢
⎣

𝐴T
11⏟

𝑛1×𝑚1

𝐴T
21⏟

𝑛1×𝑚2
𝐴T

12⏟
𝑛2×𝑚1

𝐴T
22⏟

𝑛2×𝑚2

⎤
⎥⎥
⎦
. (8.3)

Remark on Matrix Multiplication: So far we have spoken of inner products
of vectors, scalar multiplication (multiplication of of matrices and vectors
with a scalar), and regular matrix multiplication. There are yet other kinds
of matrix multiplication concepts. For instance, the Hadamard2 product,
denoted ∘ or ⊙, refers to element-wise multiplication, e.g.,

⎡⎢
⎣

1 2
3 4
5 6

⎤⎥
⎦
⊙ ⎡⎢

⎣

2 3
4 5
6 7

⎤⎥
⎦

= ⎡⎢
⎣

1 ⋅ 2 2 ⋅ 3
3 ⋅ 4 4 ⋅ 5
5 ⋅ 6 6 ⋅ 7

⎤⎥
⎦

= ⎡⎢
⎣

2 6
12 20
30 42

⎤⎥
⎦
.

The Kronecker3 product, denoted ⊗, of an 𝑚×𝑛 matrix 𝐴 with a 𝑝× 𝑞
matrix 𝐵 is the 𝑚𝑝×𝑛𝑞 block matrix formed by multiplying each element
of 𝐴 by the entire 𝐵 matrix. For example

[𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

] ⊗ [1 0
0 1] =

⎡
⎢⎢
⎣

𝑎11 0 𝑎12 0 𝑎13 0
0 𝑎11 0 𝑎12 0 𝑎13
𝑎11 0 𝑎12 0 𝑎13 0
0 𝑎11 0 𝑎12 0 𝑎13

⎤
⎥⎥
⎦

.

2Named after the French mathematician Jacques Hadamard (1865-1963).
3Named after the German mathematician Leopold Kronecker (1823-1891)
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8.3.1 Exercises
Ex. 8.22 Let

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

and 𝐵 =
⎡
⎢⎢
⎣

2 0 1
3 1 3
1 5 4
4 1 1

⎤
⎥⎥
⎦
.

Verify the partitioned matrix multiplication formulas by computing 𝐴𝐵 in the
usual way, then compute 𝐴𝐵 using (8.2). Verify the transposition formula (8.3)
for matrix 𝐴.

Ex. 8.23 Let 𝐴 be a 𝑚 × 𝑛 matrix and 𝑏 be a 𝑛 × 1 vector. We have shown
earlier that 𝐴𝑏 is a linear combination of the columns of 𝐴. In terms of partitioned
matrices, we have

𝐴𝑏 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮
𝑏𝑛

⎤
⎥⎥
⎦

= [𝐴∗1 𝐴∗2 ⋯ 𝐴∗𝑛]
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮
𝑏𝑛

⎤
⎥⎥
⎦

= 𝐴∗1𝑏1 +𝐴∗2𝑏2 +⋯+𝐴∗𝑛𝑏𝑛

Let 𝑐 = [𝑐1 𝑐2 … 𝑐𝑚]T. Show that 𝑐T𝐴 is a linear combination of the rows
of 𝐴.

Ex. 8.24 Let 𝑋 be a 𝑛 × 3 data matrix containing 𝑛 observations of three
variables:

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
𝑥31 𝑥32 𝑥33
⋮ ⋮ ⋮

𝑥𝑛1 𝑥𝑛2 𝑥𝑛3

⎤
⎥
⎥
⎥
⎦

where 𝑥𝑖𝑗 represents the 𝑖th observation of variable 𝑗. We can partition this matrix
to emphasize the variables by writing 𝑋 as 𝑋 = [𝑋∗1 𝑋∗2 𝑋∗3] where

𝑋∗1 =
⎡
⎢
⎢
⎢
⎣

𝑥11
𝑥21
𝑥31
⋮

𝑥𝑛1

⎤
⎥
⎥
⎥
⎦

, 𝑋∗2 =
⎡
⎢
⎢
⎢
⎣

𝑥12
𝑥22
𝑥32
⋮

𝑥𝑛2

⎤
⎥
⎥
⎥
⎦

and 𝑋∗3 =
⎡
⎢
⎢
⎢
⎣

𝑥13
𝑥23
𝑥33
⋮

𝑥𝑛3

⎤
⎥
⎥
⎥
⎦

.

Alternatively, we can partition the data matrix to emphasize the observations:

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑋1∗
𝑋2∗
𝑋3∗
⋮

𝑋𝑛∗

⎤
⎥
⎥
⎥
⎦
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where 𝑋𝑖∗ = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3] is the row vector containing the 𝑖th observations of
all three variables, 𝑖 = 1, 2, ..., 𝑛. Show that the matrix 𝑋T𝑋 can be written as

𝑋T𝑋 = ⎡⎢⎢
⎣

𝑋T
∗1𝑋∗1 𝑋T

∗1𝑋∗2 𝑋T
∗1𝑋∗3

𝑋T
∗2𝑋∗1 𝑋T

∗2𝑋∗2 𝑋T
∗2𝑋∗3

𝑋T
∗3𝑋∗1 𝑋T

∗3𝑋∗2 𝑋T
∗3𝑋∗3

⎤⎥⎥
⎦

=
𝑛

∑
𝑖=1

𝑋T
𝑖∗𝑋𝑖∗

= ⎡
⎢
⎣

∑𝑛
𝑖=1 𝑥2

𝑖1 ∑𝑛
𝑖=1 𝑥𝑖1𝑥𝑖2 ∑𝑛

𝑖=1 𝑥𝑖1𝑥𝑖3
∑𝑛

𝑖=1 𝑥𝑖1𝑥𝑖2 ∑𝑛
𝑖=1 𝑥2

𝑖2 ∑𝑛
𝑖=1 𝑥𝑖2𝑥𝑖3

∑𝑛
𝑖=1 𝑥𝑖1𝑥𝑖3 ∑𝑛

𝑖=1 𝑥𝑖2𝑥𝑖3 ∑𝑛
𝑖=1 𝑥2

𝑖3

⎤
⎥
⎦

8.4 Introduction to Inverses and Determinants
8.4.1 The Inverse Matrix
The 𝑛 × 𝑚 matrix 𝐵 is said to be a left-inverse of a 𝑚 × 𝑛 matrix 𝐴 if
𝐵𝐴 = 𝐼𝑛. The 𝑛 ×𝑚 matrix 𝐶 is a right-inverse of 𝐴 if 𝐴𝐶 = 𝐼𝑚. If 𝐴
is 𝑛 × 𝑛, and 𝐵𝐴 = 𝐴𝐶 = 𝐼𝑛, then it must be the case that 𝐵 = 𝐶 since

𝐵𝐴 = 𝐼𝑛 ⇒ 𝐵𝐴𝐶 = 𝐼𝑛𝐶 ⇒ 𝐵𝐼𝑛 = 𝐶 ⇒ 𝐵 = 𝐶.

In this case, we call 𝐵 = 𝐶 the two-sided inverse, or simply the inverse
of 𝐴, and give it the special notation 𝐴−1. That is, the inverse of a 𝑛 × 𝑛
matrix 𝐴, if it exists, is the unique matrix 𝐴−1 such that

𝐴−1𝐴 = 𝐼𝑛 = 𝐴𝐴−1 .

We could leave out the second equality from the definition, since as we have
already shown, 𝐴−1𝐴 = 𝐼 ⇒ 𝐴𝐴−1 = 𝐼 .
Example 8.9 The inverse of the matrix

𝐴 = [1 3
2 4] is 𝐴−1 = −1

2 [ 4 −3
−2 1 ] .

This can be verified by direct multiplication:

𝐴−1𝐴 = −1
2 [ 4 −3

−2 1 ] [1 3
2 4] = [1 0

0 1] .

We do not have to show 𝐴𝐴−1 = 𝐼2, since it is implied. You may wish to
do so nonetheless, as an exercise.

Example 8.10 Let 𝐴 and 𝐵 be the matrices

𝐴 = ⎡⎢
⎣

1 1
2 1
4 2

⎤⎥
⎦

and 𝐵 = [−1 0.2 0.4
2 −0.2 −0.4] .
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You can easily verify (by direct multiplication) that

𝐵𝐴 = [1 0
0 1] but 𝐴𝐵 = ⎡⎢

⎣

1 0 0
0 0.2 0.4
0 0.4 0.8

⎤⎥
⎦
.

The matrix 𝐵 is a left-inverse of 𝐴. We give left-inverses the special notation
𝐴−1

𝑙𝑒𝑓𝑡. Likewise, right-inverses are given the special notation 𝐴−1
𝑟𝑖𝑔ℎ𝑡. We will

say more about left- and right-inverses in a later chapter. For this chapter
we will focus on (two-sided) inverses. The term “inverse” will always mean
a two-sided inverse.

We emphasize that 𝐴 has a (two-sided) inverse only if it is square. Fur-
thermore, not all square matrices have an inverse. The inverse of an arbi-
trary 2 × 2 matrix 𝐴 = [𝑎11 𝑎12

𝑎21 𝑎22
], if it exists, is

𝐴−1 = 1
det(𝐴) [

𝑎22 −𝑎12
−𝑎21 𝑎11

] where det(𝐴) = 𝑎11𝑎22 − 𝑎12𝑎21. (8.4)

You can easily verify this by direct multiplication. It is worth your while
to commit formula (8.4) to memory.

The expression det(𝐴) in (8.4) is called the determinant of the 2 × 2
matrix 𝐴. Notice that the inverse exists only if det(A) ≠ 0. If the inverse
of 𝐴 does not exist, we say that 𝐴 is singular. If the inverse exists, we
say that 𝐴 is non-singular. An alternative notation for det(𝐴) is |𝐴|. We
will use both notations in this book. In particular, we use the latter when
indicating the determinant of a matrix written out in full. For instance,
the determinant of the matrix (𝑎𝑖𝑗)2×2 is

det(𝐴) = ∣𝑎11 𝑎12
𝑎21 𝑎22

∣ = 𝑎11𝑎22 − 𝑎12𝑎21 .

Example 8.11 The inverse of the matrix 𝐴 = [1 4
5 6] is

𝐴−1 = 1
det(𝐴) [

6 −4
−5 1 ] = − 1

14 [ 6 −4
−5 1 ] = [−

3
7

2
7

5
14 − 1

14
] .

Example 8.12 The determinant of the matrix 𝐴 = [1 3
2 6] is det(𝐴) =

1 ⋅ 6 − 2 ⋅ 3 = 0, so 𝐴 does not have an inverse.

When will det(𝐴) = 0? Examining the expression for det(𝐴) in (8.4),
we see that the determinant will be zero if one or both rows or columns
are all zero, or if one row is a multiple of the other, or if one column is a
multiple of the other.
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The inverse of a scalar is obviously just its reciprocal. The following
example shows the inverse of a particular 3 × 3 matrix.

Example 8.13 The inverse of 𝐴 = ⎡⎢
⎣

0 2 4
3 1 2
6 2 1

⎤⎥
⎦

is 𝐴−1 = ⎡
⎢
⎣

− 1
6

1
3 0

1
2 − 4

3
2
3

0 2
3 − 1

3

⎤
⎥
⎦

.

This can be seen by direct multiplication:

⎡
⎢
⎣

− 1
6

1
3 0

1
2 − 4

3
2
3

0 2
3 − 1

3

⎤
⎥
⎦
⎡⎢
⎣

0 2 4
3 1 2
6 2 1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦
.

How do we find the inverse of a general 3×3 and larger square matrices?
There is a formula for the inverse of a general 𝑛 × 𝑛 matrix which we will
present in the appendix to this chapter. There is also a computationally
efficient algorithmic approach based on Gaussian elimination, which we will
discuss shortly. Nonetheless, even before seeing the formula or algorithm
for calculating the inverse of a matrix, we are able to make the following
general statements regarding inverses. Suppose the 𝑛 × 𝑛 matrices 𝐴 and
𝐵 are non-singular, i.e., their inverses exist. Then

i. (𝐴−1)T = (𝐴T)−1,

ii. (𝐴𝐵)−1 = 𝐵−1𝐴−1.

Proof : For i., start with 𝐴𝐴−1 = 𝐼 . Transpose both sides to get
(𝐴−1)T𝐴T = 𝐼 . Finally post-multiply both sides by (𝐴T)−1 to get

(𝐴−1)T𝐴T(𝐴T)−1 = 𝐼(𝐴T)−1 ⇒ (𝐴−1)T = (𝐴T)−1 .
For ii., pre-multiply 𝐴𝐵 first by 𝐴−1 and then by 𝐵−1. This gives

𝐴−1𝐴𝐵 = 𝐵
𝐵−1𝐴−1𝐴𝐵 = 𝐵−1𝐵 = 𝐼.

This says that 𝐵−1𝐴−1 is the inverse of 𝐴𝐵 since multiplying the two gives
the identity matrix.

One implication of the first result is that the inverse of a symmetric
matrix is symmetric: if 𝐴 is symmetric, then 𝐴T = 𝐴, so we have

(𝐴−1)T = (𝐴T)−1 = 𝐴−1

which says that 𝐴−1 is symmetric. For the second result, it is important
to keep in mind that this result holds only if 𝐴 and 𝐵 are both square.
It is possible for 𝐴 to be 𝑛 × 𝑘 and 𝐵 to be 𝑘 × 𝑛 such that the square
matrix 𝐴𝐵 is non-singular. But since 𝐴 and 𝐵 are not square, they do not
have inverses. In that case the statement (𝐴𝐵)−1 = 𝐵−1𝐴−1 is obviously
meaningless.
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8.4.2 Systems of Linear Equations
One application of matrix inverses is to find solutions to systems of linear
equations. Consider a system of 𝑛 equations in 𝑛 unknowns 𝑥1, 𝑥2, …, 𝑥𝑛,

𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + … + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

(8.5)

which can be written as

⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮
𝑏𝑛

⎤
⎥⎥
⎦

or 𝐴𝑥 = 𝑏 .

To be clear, we are speaking here of systems where there are as many
equations as there are unknowns. If the inverse of 𝐴 exists, then the system
has a unique solution, namely 𝑥 = 𝐴−1𝑏, since

𝐴𝑥 = 𝑏 ⇒ 𝐴−1𝐴𝑥 = 𝐴−1𝑏 ⇒ 𝑥 = 𝐴−1𝑏 .
Example 8.14 Consider the following systems of equations

(i)
2𝑥1 − 𝑥2 = 4
𝑥1 + 2𝑥2 = 2 (ii)

2𝑥1 + 𝑥2 = 4
6𝑥1 + 3𝑥2 = 12 (iii)

2𝑥1 + 𝑥2 = 4
6𝑥1 + 3𝑥2 = 10 (8.6)

You can see that system (i) has a unique solution. Systems (ii) has
infinitely many solutions (the graphs of the two equations coincide). System
(iii) has no solution; the graphs of the two equations are parallel. The three
systems can be written in the matrix form 𝐴𝑥 = 𝑏:

(i) [2 −1
1 2 ] [𝑥1

𝑥2
] = [42] (ii) [2 1

6 3] [
𝑥1
𝑥2

] = [ 4
12] (iii) [2 1

6 3] [
𝑥1
𝑥2

] = [ 4
10]

Since

[2 −1
1 2 ]

−1
= 1

5 [ 2 1
−1 2]

the unique solution for system (i) is

𝑥 = 𝐴−1𝑏 = 1
5 [ 2 1

−1 2] [
4
2] = [20] .

For systems (ii) and (iii), we find that the coefficient matrix 𝐴 does not
have an inverse, since

det [2 1
6 3] = 2 ⋅ 3 − 1 ⋅ 6 = 0 .

Notice that non-existence of the coefficient matrix inverse does not imply
that there are no solutions. It could be that there are multiple solutions.
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8.4.3 The Determinant and Cramer’s Rule4

Consider now the general 2 × 2 system

𝑎11𝑥1 + 𝑎12𝑥2 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 = 𝑏2

or 𝐴𝑥 = 𝑏 (8.7)

Solving this system (say, by using Gaussian elimination) gives

𝑥1 = 𝑎22 𝑏1 − 𝑎12 𝑏2
𝑎11𝑎22 − 𝑎12𝑎21

and 𝑥2 = 𝑎11 𝑏2 − 𝑎21 𝑏1
𝑎11𝑎22 − 𝑎12𝑎21

.

Of course, this is the solution only if the (common) denominator in both
expressions is not zero. The denominator is just the determinant of the
matrix 𝐴. Notice also that the numerators of the solutions for 𝑥1 and 𝑥2
are, respectively, the determinants of the matrices

𝐴1(𝑏) = [𝑏1 𝑎12
𝑏2 𝑎22

] and 𝐴2(𝑏) = [𝑎11 𝑏1
𝑎21 𝑏2

] .

These are just the matrix 𝐴 with one column replaced by 𝑏. This is
Cramer’s Rule for systems of two equations in two unknowns: for sys-
tem (8.7), the solutions are

𝑥1 = det(𝐴1(𝑏))
det(𝐴) =

∣𝑏1 𝑎12
𝑏2 𝑎22

∣

∣𝑎11 𝑎12
𝑎21 𝑎22

∣
and 𝑥2 = det(𝐴2(𝑏))

det(𝐴) =
∣𝑎11 𝑏1
𝑎21 𝑏2

∣

∣𝑎11 𝑎12
𝑎21 𝑎22

∣
.

The idea extends to larger systems of equations with as many equations as
unknowns. If you work out the solutions for the general three-equations
three-unknowns system

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

you will find the solutions to be

𝑥1 = 𝑏1𝑎22𝑎33 + 𝑎12𝑎23𝑏3 + 𝑎13𝑏2𝑎32 − 𝑎13𝑎22𝑏3 − 𝑏1𝑎23𝑎32 − 𝑎12𝑏2𝑎33
𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33

𝑥2 = 𝑎11𝑏2𝑎33 + 𝑏1𝑎23𝑎31 + 𝑎13𝑎21𝑏3 − 𝑎13𝑏2𝑎31 − 𝑎11𝑎23𝑏3 − 𝑏1𝑎21𝑎33
𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33

𝑥3 = 𝑎11𝑎22𝑏3 + 𝑎12𝑏2𝑎31 + 𝑏1𝑎21𝑎32 − 𝑏1𝑎22𝑎31 − 𝑎11𝑏2𝑎32 − 𝑎12𝑎21𝑏3
𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33

4Gabriel Cramer (1704-1752).
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You do not want to memorize this solution, at least not in this form. But
notice two things: first, the denominator is the same for all three expres-
sions. We define the expression in the denominator to be the determinant
of the 3 × 3 coefficient matrix

𝐴 = ⎡⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥
⎦
.

We must have det(𝐴) ≠ 0 in order for there to be a unique solution. Second,
using this definition for the determinant, the numerators in the solutions
for 𝑥1, 𝑥2 and 𝑥3 are, respectively, the determinants of the matrices

𝐴1(𝑏) = ⎡⎢
⎣

𝑏1 𝑎12 𝑎13
𝑏2 𝑎22 𝑎23
𝑏3 𝑎32 𝑎33

⎤⎥
⎦
, 𝐴2(𝑏) = ⎡⎢

⎣

𝑎11 𝑏1 𝑎13
𝑎21 𝑏2 𝑎23
𝑎31 𝑏3 𝑎33

⎤⎥
⎦

and 𝐴3(𝑏) = ⎡⎢
⎣

𝑎11 𝑎12 𝑏1
𝑎21 𝑎22 𝑏2
𝑎31 𝑎32 𝑏3

⎤⎥
⎦
.

That is,

𝑥1 = det(𝐴1(𝑏))
det(𝐴) , 𝑥2 = det(𝐴2(𝑏))

det(𝐴) and 𝑥3 = det(𝐴3(𝑏))
det(𝐴) .

This is Cramer’s Rule for systems of three equations in three unknowns.
The determinant for larger square matrices can be thought of in a sim-

ilar way, as the (common) denominator in the solutions to the general
𝑛-equations in 𝑛-unknowns system 𝐴𝑥 = 𝑏. Furthermore, the solution to
such a system is

𝑥𝑖 =
det(𝐴𝑖(𝑏))

det(𝐴) , 𝑖 = 1, 2,… , 𝑛

where 𝐴𝑖(𝑏) is the determinant of the matrix 𝐴 with the 𝑖th column replaced
by 𝑏. But what is the formula for the determinant of a general 𝑛×𝑛 matrix?
The following (set of) formulas are called the Laplace expansions5, or the
cofactor expansions, can be used to calculate determinants for general
square matrices. First, define the determinant of a scalar to be the scalar
itself. Then given an 𝑛 × 𝑛 matrix

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

⎤
⎥⎥
⎦

define the (𝑖, 𝑗)th cofactor of 𝐴, denoted 𝐶𝑖𝑗(𝐴), to be the determinant of
the matrix with the 𝑖th row and 𝑗th column removed, multiplied by (−1)𝑖+𝑗.

5Pierre-Simon Laplace (1749-1827) made important contributions in physics and as-
tronomy, and several areas of mathematics, including differential equations and proba-
bility theory.
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Take for example the matrix

⎡⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥
⎦

. (8.8)

We have
𝐶21(𝐴) = (−1)2+1 ∣𝑎12 𝑎13

𝑎32 𝑎33
∣ = 𝑎13𝑎32 − 𝑎12𝑎33

𝐶33(𝐴) = (−1)3+3 ∣𝑎11 𝑎12
𝑎21 𝑎22

∣ = 𝑎11𝑎22 − 𝑎12𝑎21

and so on. Then we have

det(𝐴) =
𝑛

∑
𝑖=1

𝑎𝑖𝑗𝐶𝑖𝑗(𝐴) for any column 𝑗

=
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝐶𝑖𝑗(𝐴) for any row 𝑖 .

This formula is somewhat unusual compared with most other formulas that
we have been working with. First, it is recursive: to calculate the deter-
minant of a 𝑛 × 𝑛 matrix, we need to calculate its cofactors which involve
determinants of 𝑛− 1×𝑛− 1 matrices, and so on. Second, you can choose
to expand along any row or any column. They all give you the same re-
sult. The first expression is called the Laplace expansion by column 𝑗. The
second expression is called the Laplace expansion by row 𝑖.

For the general 3×3 matrix shown in (8.8), using the Laplace expansion
along the 1st column, we have

det(𝐴) = 𝑎11𝐶11(𝐴) + 𝑎21𝐶21(𝐴) + 𝑎31𝐶31(𝐴)

= 𝑎11(−1)1+1 ∣𝑎22 𝑎23
𝑎32 𝑎33

∣ + 𝑎21(−1)1+2 ∣𝑎12 𝑎13
𝑎32 𝑎33

∣ + 𝑎31(−1)1+3 ∣𝑎12 𝑎13
𝑎22 𝑎23

∣

= 𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎21(𝑎12𝑎33 − 𝑎13𝑎32) + 𝑎31(𝑎12𝑎23 − 𝑎13𝑎22)

which you can verify to be the same as what was found earlier by solving
the general 3-equations in 3-unknowns system explicitly. As an exercise
you should verify that you get the same expressions by expanding along
the other columns or along any of the three rows.

Computationally speaking, the Laplace expansion is inefficient in terms
of the number of arithmetic operations required. We will show a much
more computationally efficient method shortly. Nonetheless, the Laplace
expansion is useful for deriving a number of properties of determinants,
which we state below:
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i. if 𝐴 has a row of zeros or a column of zeros, then det(𝐴) = 0. You can
see this by taking the Laplace expansion along this zero row/column.

ii. if a single row or column of 𝐴 is multiplied by some constant 𝛼, then
its determinant also gets multiplied by 𝛼. This is also easy to see
from the Laplace expansion along the affected row or column. If row
𝑖 is multiplied by 𝛼, then

𝑛
∑
𝑗=1

𝛼𝑎𝑖𝑗𝐶𝑖𝑗(𝐴) = 𝛼
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝐶𝑖𝑗(𝐴) = 𝛼 det(𝐴) .

Of course, if a row and a column are both multiplied by 𝛼, then the
the determinant gets multiplied by 𝛼2.

iii. The determinant of a triangular matrix is the product of its diagonal
elements. For example, expanding along the top row throughout, we
have

∣
𝑎11 0 0
𝑎21 𝑎22 0
𝑎31 𝑎32 𝑎33

∣ = 𝑎11 ((−1)1+1 ∣𝑎22 0
𝑎32 𝑎33

∣) + 0 + 0

= 𝑎11 (𝑎22 ((−1)1+1det(𝑎33)) + 0)

= 𝑎11𝑎22𝑎33 .

The following properties also follow from the Laplace expansion, though
their proofs are less immediate, and are omitted here:

iv. det(𝐴T) = det(𝐴).
v. Every time we swap the rows of a matrix, its determinant changes

sign. Similarly for columns.
vi. Adding a multiple of one row to another row does not change the

determinant. Similarly for columns.
vii. If 𝐴 and 𝐵 are two square matrices, then det(𝐴𝐵) = det(𝐴)det(𝐵).

You will recognize the actions in ii., v., and vi. to be operations used in
Gaussian elimination.

8.4.4 Gaussian Elimination Revisited
The Gaussian elimination method for solving systems of equations involves
three actions: swapping the order of equations, multiplying an equation by
some constant, and adding (or subtracting) a multiple of one equation to
another. Here we apply these “elementary row operations” to the rows of
𝑛 × 𝑛 matrices by pre-multiplying the matrix with certain other matrices.
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We illustrate with the 3 × 3 matrix

𝐴 = ⎡⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥
⎦
.

Suppose we wish to swap the second and third rows. What matrix can we
pre-multiply 𝐴 by in order to achieve this? Denote such a matrix by 𝐸[2]↔[3].
Suppose we apply this matrix to the identity matrix 𝐼3. Since multiplying
by the identity matrix does not change anything, we have

𝐸[2]↔[3]𝐼3 = 𝐸[2]↔[3] .

But this says that the matrix for swapping the second and third rows of
a matrix is the matrix obtained by swapping the second and third rows of
the identity matrix.6 That is, the 3 × 3 “row swap” matrix for swapping
rows 2 and 3 is

𝐸[2]↔[3] = ⎡⎢
⎣

1 0 0
0 0 1
0 1 0

⎤⎥
⎦
.

This extends to the general case: the “row swap” matrix for swapping the
𝑖-th and 𝑗-th rows of 𝐴 is the identity matrix with the 𝑖-th and 𝑗-th rows
swapped.

Notice that 𝐸[𝑖]↔[𝑗] is its own inverse. If you swap the 𝑖-th and 𝑗-th
rows of a matrix twice, you get back the same matrix. Since the “row
swap” matrix is symmetric, we also have

𝐸−1
[𝑖]↔[𝑗] = 𝐸T

[𝑖]↔[𝑗] = 𝐸[𝑖]↔[𝑗] .

The “row swap” matrix is an example of a permutation matrix. The
following permutation matrix

𝑃3,1,2 = ⎡⎢
⎣

0 0 1
1 0 0
0 1 0

⎤⎥
⎦

= 𝐸[2]↔[3]𝐸[1]↔[3]

re-arranges the rows of a matrix with three rows so that the third row be-
comes the first, the first is the second, and the second is the third. Permu-
tation matrices can be obtained by applying multiple row swap operations.
In general, a permutation matrix is not its own inverse. However, we still
have 𝑃−1 = 𝑃T for all permutation matrices.

We can apply the same logic as before to find the matrix that, when
pre-multiplied to a matrix, multiplies the 𝑗-th row of that matrix by some

6This trick works because the desired transformation matrix actually exists.
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constant. This transformation matrix is simply the identity matrix with
its 𝑗-𝑡ℎ row multiplied by the constant. For example, to multiply the third
row of 𝐴 by 𝛼, pre-multiply 𝐴 with the matrix

𝐸[3]←𝛼[3] = ⎡⎢
⎣

1 0 0
0 1 0
0 0 𝛼

⎤⎥
⎦
.

The matrix 𝐸[3]←𝛼[3] is obviously symmetric, and its inverse (when 𝛼 ≠ 0)
is easily seen to be

𝐸−1
[3]←𝛼[3] = ⎡⎢

⎣

1 0 0
0 1 0
0 0 1/𝛼

⎤⎥
⎦
.

To find the matrix that, when pre-multiplied to another matrix, has
the effect of adding a multiple of one row to another, carry out that same
operation on the identity matrix. So, to add 𝛼 times the first row of 𝐴 to
its third row, pre-multiply 𝐴 by

𝐸[3]←[3]+𝛼[1] = ⎡⎢
⎣

1 0 0
0 1 0
𝛼 0 1

⎤⎥
⎦
.

You can easily verify that

𝐸[3]←[3]+𝛼[1]𝐴 = ⎡⎢
⎣

1 0 0
0 1 0
𝛼 0 1

⎤⎥
⎦
⎡⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥
⎦

= ⎡⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

𝛼𝑎11 + 𝑎31 𝛼𝑎12 + 𝑎32 𝛼𝑎13 + 𝑎33
⎤⎥
⎦

The inverse of 𝐸[3]←[3]+𝛼[1] is just the same matrix with the sign of the
constant reversed, i.e.,

𝐸−1
[3]←[3]+𝛼[1] = ⎡⎢

⎣

1 0 0
0 1 0
−𝛼 0 1

⎤⎥
⎦
.

This is easy to verify by direct multiplication, but the intuition is also
straightforward: if you wish to reverse the action of adding a multiple of
row 𝑖 to row 𝑗, just subtract the same multiple of row 𝑖 from the transformed
row 𝑗.
8.4.4.1 Gaussian Elimination and the Inverse If the square matrix 𝐴 has
an inverse, you will be able to find a sequence of elementary row operations
that reduces 𝐴 down to the identity matrix. Since each row operation can
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be done by pre-multiplying 𝐴 by some elementary row operation matrix,
𝐴 will have an inverse if there is a sequence of “row-operation matrices”
𝐸1, 𝐸2,… ,𝐸𝑚 such that

𝐸𝑚𝐸𝑚−1 ×⋯×𝐸2𝐸1𝐴 = 𝐼.
It follows that 𝐴−1 = 𝐸𝑚𝐸𝑚−1 × ⋯ × 𝐸2𝐸1. Practically, this implies the
following procedure for finding the inverse of a matrix 𝐴. First place 𝐴
next to the identity matrix

𝐴 𝐼 .
Then apply elementary row operations to both sides until the left-hand side
reduces to the identity matrix

𝐴 𝐼
𝐸1𝐴 𝐸1𝐼

𝐸2𝐸1𝐴 𝐸2𝐸1𝐼
⋮ ⋮

𝐸𝑚𝐸𝑚−1 ×⋯×𝐸2𝐸1𝐴⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼

𝐸𝑚𝐸𝑚−1 ×⋯×𝐸2𝐸1⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴−1

𝐼.

Example 8.15 We find the inverse of the matrix in Example 8.13 using
Gaussian Elimination. The row echelon form of the matrix is indicated,
and the pivots are boxed.

⎡⎢
⎣

0 2 4 1 0 0
3 1 2 0 1 0
6 2 1 0 0 1

⎤⎥
⎦

−−−−→
[1]↔[2]

⎡
⎢
⎣

3 1 2 0 1 0
0 2 4 1 0 0
6 2 1 0 0 1

⎤
⎥
⎦

−−−−−−−→
[3]←[3]−2[1]

⎡⎢⎢
⎣

3 1 2 0 1 0
0 2 4 1 0 0
0 0 –3 0 −2 1

⎤⎥⎥
⎦

row
echelon

form

−−−−−−−→
[2]←[2]+ 4

3 [3]
[1]←[1]+ 2

3 [3]

⎡⎢⎢
⎣

3 1 0 0 − 1
3

2
3

0 2 0 1 − 8
3

4
3

0 0 –3 0 −2 1

⎤⎥⎥
⎦

−−−−−−−→
[1]←[1]− 1

2 [2]

⎡⎢⎢
⎣

3 0 0 − 1
2 1 0

0 2 0 1 − 8
3

4
3

0 0 –3 0 −2 1

⎤⎥⎥
⎦

−−−−−−→
[1]← 1

3 [1]
[2]← 1

2 [2]
[3]←− 1

3 [3]

⎡⎢
⎣

1 0 0 − 1
6

1
3 0

0 1 0 1
2 − 4

3
2
3

0 0 1 0 2
3 − 1

3

⎤⎥
⎦
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To be able to reduce an 𝑛 × 𝑛 matrix into the identity matrix using
Gaussian Elimination, we need 𝑛 pivots. If we find fewer than 𝑛 pivots,
then the matrix does not have an inverse, i.e., is singular.

Example 8.16 The matrix ⎡⎢
⎣

0 2 4
3 1 2
3 3 6

⎤⎥
⎦

has no inverse. If we try to reduce

this matrix to an identity matrix using Gaussian Elimination, we get:

⎡⎢
⎣

0 2 4 1 0 0
3 1 2 0 1 0
3 3 6 0 0 1

⎤⎥
⎦

−−−−→
[1]↔[2]

⎡
⎢
⎣

3 1 2 0 1 0
0 2 4 1 0 0
3 3 6 0 0 1

⎤
⎥
⎦

−−−−−−→
[3]←[3]−[1]

⎡
⎢
⎣

3 1 2 0 1 0
0 2 4 1 0 0
0 2 4 0 −1 1

⎤
⎥
⎦

−−−−−−→
[3]←[3]−[2]

⎡
⎢
⎣

3 1 2 0 1 0
0 2 4 1 0 0
0 0 0 −1 −1 1

⎤
⎥
⎦

row
echelon

form

We cannot proceed any further.

8.4.4.2 Gaussian Elimination and the Determinant The row echelon
form of a matrix was obtained using elementary row operations. We know
adding a multiple of one row to another does not change the determinant
of the matrix. Every row swap changes the sign of the determinant, and
multiplying one row by a constant multiplies the determinant by the same
constant. Finally, the determinant of a triangular matrix (and the row
echelon form of a matrix is triangular) is just the product of its diagonal
elements. Therefore, we can compute the determinant of a square matrix
as the product of the diagonal of its row echelon form, multiplied by −1
for every row swap made in obtaining the row echelon form. If a row was
multiplied by a certain value at any stage prior to obtaining the row echelon
form, that value must also be divided out.

For example, the product of the diagonal elements of the row echelon
form of 𝐴 in Example 8.15 is 3 × 2 × −3 = −18. Since one row switch
was made, we multiply this value by −1. Since no row was multiplied by a
factor in obtaining the row echelon form, we do not need to divide anything
out. The determinant of 𝐴 is therefore det(𝐴) = −18 × −1 = 18.

A square matrix has no inverse if (and only if) its row echelon form
includes some zeros in the diagonal, i.e., if there aren’t enough pivots, as
illustrated in Example 8.16. It follows that the determinant of such a matrix
is zero.
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8.4.5 Exercises

Ex. 8.25 Find the inverse of the transpose of the matrix 𝐴 = ⎡⎢
⎣

0 2 4
3 1 2
6 2 1

⎤⎥
⎦
. (Hint:

see Example 8.13.)

Ex. 8.26 Show that the inverse of a diagonal matrix 𝐴 = diag(𝑎11, 𝑎22,… , 𝑎𝑛𝑛)
is the diagonal matrix

𝐴−1 = diag( 1
𝑎11

, 1
𝑎22

,… , 1
𝑎𝑛𝑛

) .

Ex. 8.27 Suppose one row of a (square) matrix is a multiple of another row.
Explain why this matrix has no inverse.

Ex. 8.28 Consider the following system of equations

4𝑥1 + + 𝑥3 = 4
8𝑥1 + 𝑥2 + −3𝑥3 = 3
12𝑥1 + 𝑥2 + = 1

a. Express this system in the form 𝐴𝑥 = 𝑏 and solve it by finding the inverse
of 𝐴 and then computing 𝐴−1𝑏.

b. Verify your solution in a. by solving the system using Cramer’s Rule.

Ex. 8.29 Suppose 𝐴 is an 𝑚 × 𝑚 matrix and 𝑏 and 𝑐 are 𝑚 × 1 vectors. Does
𝐴𝑏 = 𝐴𝑐 imply that 𝑏 = 𝑐? If no, give a counterexample.

8.5 Matrix Definiteness
A 𝑛 × 𝑛 symmetric matrix 𝐴 is said to be positive definite if

𝑥T𝐴𝑥 > 0 for all 𝑛-vectors 𝑥 ≠ 0𝑛 . (8.9)

If the inequality in (8.9) is non-strict, then 𝐴 is positive semidefinite.
If the inequality in (8.9) is reversed, 𝐴 is negative definite. If it is re-
versed and made non-strict, then 𝐴 is called negative semidefinite. We
emphasize that the conditions must hold for all non-zero vectors 𝑥.7

Example 8.17 The matrix [2 1
1 2] is positive definite since

[𝑥1 𝑥2] [
2 1
1 2] [

𝑥1
𝑥2

] = 2(𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2) = 2[(𝑥1 + 0.5𝑥2)2 + 0.75𝑥2
2] > 0

as long as 𝑥1 and 𝑥2 are not both zero.
7Expressions of the form 𝑥T𝐴𝑥 where 𝑥 is 𝑛 × 1 and 𝐴 is 𝑛 × 𝑛 and symmetric are

called quadratic forms.
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Example 8.18 The matrix [1 2
2 1] is indefinite (not definite) since

𝑄 = [𝑥1 𝑥2] [
1 2
2 1] [

𝑥1
𝑥2

] = 𝑥2
1 + 4𝑥1𝑥2 + 𝑥2

2 .

If 𝑥1 = 1 and 𝑥2 = 1, then 𝑄 > 0. If 𝑥1 = 1 and 𝑥2 = −1, then 𝑄 < 0.
We will consider methods for checking the definiteness of general 𝑛× 𝑛

symmetric matrices later in the book. For the moment we consider the
definiteness of the general 2 × 2 symmetric matrix 𝐴 = (𝑎𝑖𝑗)2×2. We have

𝑄 = 𝑥T𝐴𝑥 = [𝑥1 𝑥2] [
𝑎11 𝑎12
𝑎12 𝑎22

] [𝑥1
𝑥2

]

= 𝑎11𝑥2
1 + 2𝑎12𝑥1𝑥2 + 𝑎22𝑥2

2

= 𝑎11 (𝑥2
1 +

2𝑎12
𝑎11

𝑥1𝑥2 +
𝑎22
𝑎11

𝑥2
2) if 𝑎11 ≠ 0

= 𝑎11 [(𝑥1 +
𝑎12
𝑎11

𝑥2)
2
+(𝑎11𝑎22 − 𝑎212

𝑎211
)𝑥2

2] if 𝑎11 ≠ 0 .

The third and fourth lines assume 𝑎11 ≠ 0. If 𝑎11 = 0, we can factor out
𝑎22 instead. We have the following results:

• 𝑎11 ≥ 0 , 𝑎22 ≥ 0 and 𝑎11𝑎22 − 𝑎212 ≥ 0 ⇔ 𝐴 is positive semidefinite.
(⇒) should be obvious. To show (⇐), suppose 𝑄 ≥ 0 for all 𝑥 ≠ 02. Setting

𝑥1 = 1 and 𝑥2 = 0 shows that 𝑎11 = 𝑄 ≥ 0. Setting 𝑥1 = 0 and 𝑥2 = 1 shows
that 𝑎22 = 𝑄 ≥ 0. Setting 𝑥1 and 𝑥2 such that 𝑥1/𝑥2 = −𝑎12/𝑎11, we have
𝑄 = [(𝑎11𝑎22 − 𝑎2

12)/𝑎11]𝑥2
2, so 𝑄 ≥ 0 implies 𝑎11𝑎22 − 𝑎2

12 ≥ 0.
• 𝑎11 ≤ 0 , 𝑎22 ≤ 0 and 𝑎11𝑎22 − 𝑎212 ≥ 0 ⇔ 𝐴 is negative semidefinite.
The argument for this is similar to the condition for positive semidefiniteness.

• 𝑎11 > 0 and 𝑎11𝑎22 − 𝑎212 > 0 ⇔ 𝐴 is positive definite.
We do not need to include 𝑎22 > 0 as a condition since this is implied by the

two given conditions. The implication (⇒) should be obvious. To see (⇐), note
that if 𝑄 > 0 for all 𝑥 ≠ 02, then choosing (𝑥1, 𝑥2) = (1, 0) or (0, 1) implies 𝑎11 > 0
and 𝑎22 > 0. Furthermore, if 𝑎11𝑎22 − 𝑎2

12 ≤ 0, then choosing 𝑥1 and 𝑥2 such that
𝑥1/𝑥2 = −𝑎12/𝑎11 results in 𝑄 ≤ 0. So it must be that 𝑎11𝑎22 − 𝑎2

12 > 0.
• 𝑎11 < 0 and 𝑎11𝑎22 − 𝑎212 > 0 ⇔ 𝐴 is negative definite.
The argument for this is similar to the condition for positive definiteness.

Of course, 𝑎11𝑎22−𝑎212 is just det𝐴. The determinant of a definite 2×2
symmetric matrix cannot be negative.
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For larger symmetric matrices, the conditions for definiteness in terms of
determinants are more complicated. Suppose we omit 𝑛− 𝑘 corresponding
rows and columns from 𝐴 (the same rows and columns are omitted), with
𝑘 = 1,… , 𝑛. Then the determinant of the remaining 𝑘 × 𝑘 matrix is called
an order-𝑘 principal minor (PM) of 𝐴. Let 𝑃𝑀(𝐴, 𝑘) denote an arbitrary
order-𝑘 principal minor of 𝐴. If the last 𝑛−𝑘 rows and columns are omitted,
then the determinant of the remaining 𝑘 × 𝑘 matrix is called the order-𝑘
leading principal minor (LPM) of 𝐴. Let 𝐿𝑃𝑀(𝐴, 𝑘) denote the order-𝑘
leading principal minor of 𝐴. (The 𝑛 LPMs are a strict subset of the PMs;
there are many more PMs than LPMs.) Then 𝐴 is

• positive definite ⇔ 𝐿𝑃𝑀(𝐴, 𝑘) > 0 for all 𝑘 = 1,… , 𝑛,
• positive semidefinite ⇔ 𝑃𝑀(𝐴, 𝑘) ≥ 0 for all 𝑘 = 1,… , 𝑛,
• negative definite ⇔ (−1)𝑘𝐿𝑃𝑀(𝐴, 𝑘) > 0 for all 𝑘 = 1,… , 𝑛, and
• negative semidefinite ⇔ (−1)𝑘𝑃𝑀(𝐴, 𝑘) ≥ 0 for all 𝑘 = 1,… , 𝑛.

We omit the proofs of these result. In Chapter 10, we discuss how to
determine the definiteness of 𝐴 using its “eigenvalues”.

8.5.1 Exercises
Ex. 8.30 Suppose 𝑋 is 𝑛 × 𝑘. Explain why the matrix 𝑋T𝑋 is positive
semidefinite. Explain why it is positive definite if 𝑋𝑐 ≠ 0 for all 𝑘-vectors
𝑐 ≠ 0𝑛. (The next section explains the significance of the condition 𝑋𝑐 ≠ 0
for all 𝑘-vectors 𝑐 ≠ 0𝑛.)

8.6 The Rank of a Matrix
We recollect a few ideas from Chapter 4. A point 𝑥 in ℝ𝑚 can be thought
of as a 𝑚-dimensional vector, or “𝑚-vector”. If 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} is a
set of 𝑛 𝑚-vectors, and if at least one of these vectors can be written as a
linear combination of the others, i.e., if

𝑥𝑖 = 𝑐1𝑥1 +⋯+ 𝑐𝑖−1𝑥𝑖−1 + 𝑐𝑖+1𝑥𝑖+1 +⋯+ 𝑐𝑛𝑥𝑛 ,
then we say that the vectors are linearly dependent. Another way of saying
this is that we can find 𝑐1, 𝑐2,… , 𝑐𝑛, not all equal to zero, such that

𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 = 0 .
If we cannot express any vector in 𝑋 as a linear combination of the other
vectors, then the vectors in 𝑋 are linearly independent. In that case, the
vectors in 𝑋 will satisfy the condition

𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 = 0 ⇒ 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0 .
A vector space or subspace is a set of vectors such that linear combinations
of vectors in the space always result in a vector in the space.8 Every vector

8When we think in terms of spaces, we move from “matrix algebra” to “linear algebra”.
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space or subspace must contain the zero vector. The set of all linear com-
binations of the vectors in 𝑋 is a vector subspace of ℝ𝑚. The dimension
of this subspace cannot exceed min{𝑚, 𝑛}. Finally, recall that two vectors
are orthogonal if their inner product is zero.

Consider an 𝑚× 𝑛 matrix 𝐴, where possibly 𝑚 ≠ 𝑛. We can view the
columns of 𝐴 as a collection of 𝑛 𝑚-vectors:

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥⎥
⎦
.

Linear combinations of the column vectors of 𝐴 can be written as 𝐴𝑥 where
𝑥 is some 𝑛-vector. If we consider the function

𝑦 = 𝑓(𝑥) = 𝐴𝑥 , 𝑥 ∈ ℝ𝑛 (8.10)

mapping 𝑛-vectors into 𝑚-vectors, then the range of this function is the set
of all linear combinations of the columns of 𝐴, spanning a vector subspace
of ℝ𝑚 of dimension 𝑟 ≤ min{𝑚, 𝑛}. We call this subspace the column
space of 𝐴 and refer to 𝑟 as the column rank of 𝐴.

Likewise, we can view the rows of 𝐴 as a collection of 𝑚 𝑛-vectors, i.e.,

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥⎥⎥
⎦

.

Linear combinations of the 𝑚 row vectors can be written as 𝑦𝑇𝐴 or 𝐴T𝑦
where 𝑦 is an 𝑚-vector. The range of the function

𝑥 = 𝑔(𝑦) = 𝐴T𝑦 , 𝑦 ∈ ℝ𝑚 (8.11)

is the column space of 𝐴T, which is also the row space of 𝐴, since the
columns of 𝐴T are the rows of 𝐴. The dimension of the row space is called
the row rank of 𝐴.

It turns out that for any matrix 𝐴, the row and column ranks of 𝐴 are
the same. Suppose the column rank of 𝐴 is 𝑟. This means we can find
𝑟 linearly independent columns in 𝐴. Gather these columns into a 𝑚 × 𝑟
matrix 𝐶. Since every column of 𝐴 can be written as a linear combination
of the 𝑟 columns in 𝐶, we can write 𝐴 = 𝐶𝑅 where 𝑅 is 𝑟×𝑛, each column
containing the necessary weights to generate the corresponding columns
of 𝐴 as a linear combination of the vectors in 𝐶. However, the fact that
𝐴 = 𝐶𝑅 also means that every row of 𝐴 is a linear combination of the
rows of 𝑅, the necessary weights appearing in the corresponding rows of 𝐶.
Since 𝑅 has 𝑟 rows, the row rank of 𝐴 also cannot exceed 𝑟, i.e.,

row rank(𝐴) ≤ 𝑟 = column rank(𝐴) .
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Applying a similar argument to 𝐴T shows that the row rank of 𝐴T must
be less than or equal to the column rank of 𝐴T. But since the rows of 𝐴T

are the columns of 𝐴, we have

column rank(𝐴) ≤ row rank(𝐴) .

It follows that
column rank(𝐴) = row rank(𝐴). (8.12)

We can therefore speak unambiguously of the “rank” of a matrix 𝐴,
and simply write rank(𝐴), where 0 ≤ rank(𝐴) ≤ min{𝑚, 𝑛}. If rank(𝐴) =
min{𝑚, 𝑛}, then we say that 𝐴 has full rank. If this coincides with the
number of columns 𝑛, 𝑟 = 𝑛 ≤ 𝑚, we can also say that the matrix has full
column rank. If the rank coincides with the number of rows, 𝑟 = 𝑚 ≤ 𝑛,
we say that it has full row rank.

The most straightforward way to determine the rank of a matrix 𝐴 is by
counting the number of pivots in its row echelon form, which we denote by
𝑅𝐸𝐹(𝐴). Every row in 𝑅𝐸𝐹(𝐴) was formed by elementary row operations
on the rows of 𝐴, which means that every row in 𝑅𝐸𝐹(𝐴) is a linear
combination of the rows of 𝐴. It must be, therefore, that rank(𝑅𝐸𝐹(𝐴)) ≤
rank(𝐴). But it is equally true that every row of 𝐴 is a linear combination
of the rows of 𝑅𝐸𝐹(𝐴), so rank(𝐴) ≤ rank(𝑅𝐸𝐹(𝐴)). It follows that

rank(𝑅𝐸𝐹(𝐴)) = rank(𝐴) .

Since the rank of a row echelon form matrix is just the number of pivots
therein, the rank of 𝐴 is the number of pivots in 𝑅𝐸𝐹(𝐴).

A square 𝑛 × 𝑛 matrix has an inverse if (and only if) its row echelon
form has 𝑛 pivots, i.e., if 𝐴 has full rank. The following are three further
results regarding matrix rank:

i. For any matrices 𝐴 and 𝐵 such that 𝐴𝐵 exists, we have

rank(𝐴𝐵) ≤ min{rank(𝐴), rank(𝐵)}.

This result holds because the columns of 𝐴𝐵 are linear combinations of the
columns of 𝐴, therefore rank(𝐴𝐵) ≤ rank(𝐴). Likewise, the rows of 𝐴𝐵
are linear combinations of the rows of 𝐵, therefore rank(𝐴𝐵) ≤ rank(𝐵).
It follows that rank(𝐴𝐵) ≤ min{rank(𝐴), rank(𝐵)}.

ii. If 𝐴 is a full rank 𝑚 × 𝑚 matrix and 𝐵 is 𝑚 × 𝑝 of rank 𝑟, then
rank(𝐴𝐵) = 𝑟.

To see this, let 𝐸1, 𝐸2,… ,𝐸𝑚 represent the row operations that reduce 𝐴
to the identity matrix. Applying these same operations to 𝐴𝐵 reduces it to
𝐵 (since 𝐴 is reduced to 𝐼). But elementary row operations do not change
the rank of matrices, so the rank of 𝐴𝐵 is the same as the rank of 𝐵.
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iii. For any matrix 𝐴, we have

rank(𝐴T𝐴) = rank(𝐴𝐴T) = rank(𝐴) .

We will prove this result shortly.

8.6.1 The Fundamental Theorem of Linear Algebra
Let 𝐴 be an 𝑚× 𝑛 matrix and consider the function

𝑦 = 𝑓(𝑥) = 𝐴𝑥 , 𝑥 ∈ ℝ𝑛 (8.13)

mapping 𝑛-vectors into 𝑚-vectors. The range of this function is the set of
all linear combinations of the columns of 𝐴, i.e., the column space of 𝐴.
The dimension of this subspace of ℝ𝑚 is equal to rank(𝐴) = 𝑟 ≤ min{𝑚, 𝑛}.
We will denote the column space of 𝐴 by 𝐶(𝐴, 𝑟) indicating both the matrix
and the dimension of the space. Likewise, the range of the function

𝑥 = 𝑔(𝑦) = 𝐴T𝑦 , 𝑦 ∈ ℝ𝑚 (8.14)

is 𝐶(𝐴T, 𝑟), the column space of 𝐴T, or the row space of 𝐴. The dimension
of the row space of 𝐴 is also 𝑟, since rank(𝐴) = rank(𝐴T).

The problem of solving a system of linear equations can be described as
finding the vector or vectors 𝑥 such that

𝐴𝑥 = 𝑏 for some 𝑏 ∈ ℝ𝑚 .

If 𝑏 ∉ 𝐶(𝐴, 𝑟), then there are no solutions. If 𝑏 ∈ 𝐶(𝐴, 𝑟), then there is at
least one solution. There are infinitely many solutions if 𝑏 ∈ 𝐶(𝐴, 𝑟) and
𝐴 does not have full column rank, and exactly one solution if 𝑏 ∈ 𝐶(𝐴, 𝑟)
and 𝐴 has full column rank, i.e., if 𝑟 = 𝑛 ≤ 𝑚.

In general, the set of all solutions to the system 𝐴𝑥 = 𝑏, i.e., the set
{𝑥 ∈ ℝ𝑛 ∣ 𝐴𝑥 = 𝑏}, will not be a vector subspace, which requires inclusion
of the zero vector. In contrast, the set of all solutions to the homogeneous
system of equations

𝐴𝑥 = 0𝑚
where 0𝑚 is the zero 𝑚-vector, will be a vector subspace of ℝ𝑛: If 𝑥1 and
𝑥2 are solutions, i.e., if they satisfy 𝐴𝑥1 = 0 and 𝐴𝑥2 = 0, then 𝛼𝑥1 + 𝛽𝑥2
is also a solution, since

𝐴(𝛼𝑥1 + 𝛽𝑥2) = 𝛼𝐴𝑥1 + 𝛽𝐴𝑥2 = 0.

We call the set of all solutions to 𝐴𝑥 = 0 the null space of 𝐴. The dimen-
sion of the null space will be the same as the number of free parameters in
the solutions, which is 𝑛 − 𝑟, where 𝑟 is the rank of 𝐴. We denote the null
space of 𝐴 by 𝑁(𝐴, 𝑛 − 𝑟) ⊂ ℝ𝑛.
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Notice also that 𝐴𝑥 = 0𝑚 means that every row of 𝐴 is orthogonal to
every 𝑥 satisfying this equation. It follows that every vector 𝑥 in 𝐶(𝐴T, 𝑟),
the row space of 𝐴, is orthogonal to every vector in 𝑁(𝐴, 𝑛 − 𝑟). We
say that the subspaces 𝐶(𝐴T, 𝑟) and 𝑁(𝐴, 𝑛− 𝑟) are orthogonal subspaces.
The zero vector 0𝑛 is the only vector in both 𝐶(𝐴T, 𝑟) and 𝑁(𝐴, 𝑛 − 𝑟).
Since the dimensions of the two orthogonal subspaces 𝐶(𝐴T, 𝑟) ⊂ ℝ𝑛 and
𝑁(𝐴, 𝑛 − 𝑟) ⊂ ℝ𝑛 add to 𝑛, it follows that every vector 𝑥 ∈ ℝ𝑛 can be
written as

𝑥 = 𝑥𝑟 + 𝑥𝑛 where 𝑥𝑟 ∈ 𝐶(𝐴T, 𝑟) and 𝑥𝑛 ∈ 𝑁(𝐴, 𝑛 − 𝑟) .

We say that 𝐶(𝐴T, 𝑟) and 𝑁(𝐴, 𝑛 − 𝑟) are orthogonal complements.
Likewise, the set of all 𝑦 such that

𝐴T𝑦 = 0𝑛

is a dimension 𝑚− 𝑟 subspace of ℝ𝑚 called the null space of 𝐴T, denoted
𝑁(𝐴T,𝑚 − 𝑟). It is orthogonal to 𝐶(𝐴, 𝑟). The zero vector 0𝑚 is the only
vector in both 𝐶(𝐴, 𝑟) and 𝑁(𝐴T,𝑚 − 𝑟). Every vector 𝑦 ∈ ℝ𝑚 can be
decomposed as

𝑦 = 𝑦𝑐 + 𝑦𝑛 where 𝑦𝑐 ∈ 𝐶(𝐴, 𝑟) and 𝑦𝑛 ∈ 𝑁(𝐴T,𝑚 − 𝑟) .

i.e., 𝐶(𝐴, 𝑟) and 𝑁(𝐴T,𝑚 − 𝑟) are orthogonal complements.
The subspaces 𝐶(𝐴, 𝑟), 𝑁(𝐴T,𝑚 − 𝑟), 𝐶(𝐴T, 𝑟) and 𝑁(𝐴, 𝑛 − 𝑟) are

called the four fundamental subspaces of a matrix 𝐴. Their relation-
ships, as discussed above, are summarized in the Fundamental Theorem
of Linear Algebra (FTLA).9

Theorem 8.1 (Fundamental Theorem of Linear Algebra) For any 𝑚× 𝑛
matrix 𝐴 of rank 𝑟, the spaces

(i) 𝐶(𝐴, 𝑟) and 𝑁(𝐴T,𝑚 − 𝑟) are orthogonal complements in ℝ𝑚,

(ii) 𝐶(𝐴T, 𝑟) and 𝑁(𝐴, 𝑛 − 𝑟) are orthogonal complements in ℝ𝑛.

Note that if 𝐴 has full column rank 𝑟 = 𝑛 ≤ 𝑚, then 𝐶(𝐴T, 𝑟 = 𝑛) and
𝑁(𝐴, 𝑛−𝑟 = 0). In particular, the dimension of the null space of 𝐴 is zero;
it comprises only the zero vector 0𝑛. This also means that 𝐶(𝐴T, 𝑟 = 𝑛)
is the entirety of ℝ𝑛. Likewise, if 𝐴 has full row rank, 𝑟 = 𝑚 ≤ 𝑛, then
𝑁(𝐴T,𝑚−𝑟 = 0) = {0𝑚} and 𝐶(𝐴, 𝑟 = 𝑚) = ℝ𝑚. If 𝐴 is a full rank 𝑛×𝑛
matrix, then both 𝐶(𝐴, 𝑟 = 𝑛) and 𝐶(𝐴T, 𝑟 = 𝑛) are the whole ℝ𝑛 space,
and 𝑁(𝐴, 𝑛 − 𝑟 = 0) = 𝑁(𝐴T, 𝑛 − 𝑟 = 0) = {0𝑛}.

9Not to be confused with the Fundamental Theorem of Algebra.
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Example 8.19 The column space 𝐶(𝐴, 1) of the following rank 1 matrix

𝐴 = ⎡⎢
⎣

1 −2
2 −4
3 −6

⎤⎥
⎦

comprises all vectors of the form

𝑦 = [𝑦1 𝑦2 𝑦3]
T = [𝑠 2𝑠 3𝑠]T (8.15)

which is a 1-dimensional subspace of ℝ3. The null space of 𝐴 comprises all
vectors 𝑥 = [𝑥1 𝑥2]

T that satisfy 𝐴𝑥 = 03. These are vectors of the form

𝑥 = [𝑥1 𝑥2]
T = [𝑠 𝑠/2]T . (8.16)

The row space of 𝐴 is a 1-dimensional subspace 𝐶(𝐴T, 1) of ℝ2 comprising
vectors of the form

𝑥 = [𝑥1 𝑥2]
T = [𝑟 −2𝑟]T . (8.17)

The null space of 𝐴T is the 2-dimensional subspace 𝑁(𝐴T, 2) ⊂ ℝ3 com-
prising all vectors 𝑦 that satisfy 𝐴T𝑦 = 0. These are vectors of the form

𝑦 = [𝑦1 𝑦2 𝑦3]
T = [𝑡 𝑢 − 𝑡

3 − 2𝑢
3 ]T . (8.18)

The vectors in 𝐶(𝐴, 1) are orthogonal to the vectors in 𝑁(𝐴T, 2), since for
all 𝑥 ∈ 𝑁(𝐴T, 2) and all 𝑦 ∈ 𝐶(𝐴, 1), we have

𝑥 ⋅ 𝑦 = 𝑥T𝑦 = 𝑠 𝑡 + 2𝑠 𝑢 + 3𝑠 (− 𝑡
3 − 2𝑢

3 ) = 0.

Visually, 𝑁(𝐴T, 2) is a plane in ℝ3, and 𝐶(𝐴, 1) is a line in ℝ3 that is
perpendicular to the plane, cutting through the origin. Any vector in
[𝑎 𝑏 𝑐]T ∈ ℝ3 can be written as a sum of a vector of the form (8.15)
and a vector of the form (8.18). You can easily find 𝑠, 𝑡 and 𝑢 such that

⎡⎢
⎣

𝑠
2𝑠
3𝑠

⎤⎥
⎦
+ ⎡⎢

⎣

𝑡
𝑢

− 𝑡
3 − 2𝑢

3

⎤⎥
⎦

= ⎡⎢
⎣

𝑎
𝑏
𝑐
⎤⎥
⎦

. (8.19)

Likewise, the vectors in 𝐶(𝐴T, 1) are orthogonal to the vectors in 𝑁(𝐴, 1).
Every vector in ℝ2 can be written as a sum of a vector of the form (8.16)
and a vector of the form (8.17).

As a quick application of the FTLA, we show that for any 𝑛×𝑘 matrix
𝐴 we have

rank(𝐴T𝐴) = rank(𝐴) = rank(𝐴𝐴T) .
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The row spaces of 𝐴 and 𝐴T𝐴 are both subspaces of ℝ𝑘. Furthermore, they
have the same null space: if 𝑥 satisfies 𝐴𝑥 = 0, then 𝑥 satisfies 𝐴T𝐴𝑥 = 0;
if 𝐴T𝐴𝑥 = 0, then 𝑥T𝐴T𝐴𝑥 = (𝐴𝑥)T𝐴𝑥 = 0, which says that 𝐴𝑥 = 0
since (𝐴𝑥)T𝐴𝑥 is the sum of the squared terms of the vector 𝐴𝑥. Since
𝐴 and 𝐴T𝐴 have the same null space, their ranks are the same. Likewise,
rank(𝐴𝐴T) = rank(𝐴T). Since rank(𝐴) = rank(𝐴T), the result follows.

If we consider only the vectors 𝑥 ∈ 𝐶(𝐴T, 𝑟), i.e., if we restrict the
domain of 𝑦 = 𝐴𝑥 to 𝐶(𝐴T, 𝑟), then 𝐴 defines a one-to-one relationship
from 𝐶(𝐴T, 𝑟) onto 𝐶(𝐴, 𝑟). Suppose 𝑥1, 𝑥2 ∈ 𝐶(𝐴T, 𝑟). Obviously, 𝑥1 =
𝑥2 implies 𝐴𝑥1 = 𝐴𝑥2, which implies 𝐴(𝑥1 − 𝑥2) = 0𝑚. This says that
𝑥1 − 𝑥2 is in the null space 𝑁(𝐴, 𝑛 − 𝑟). But 𝑥1 − 𝑥2 must also be in
𝐶(𝐴T, 𝑟), since both 𝑥1 and 𝑥2 are in 𝐶(𝐴T, 𝑟). Since 0𝑛 is the only vector
in both 𝑁(𝐴, 𝑛−𝑟) and 𝐶(𝐴T, 𝑟), it must be that 𝑥1−𝑥2 = 0𝑚, or 𝑥1 = 𝑥2.

We can therefore characterize the mapping 𝑦 = 𝐴𝑥 for any arbitrary
vectors 𝑥 ∈ ℝ𝑛 as

𝐴𝑥 = 𝐴(𝑥𝑟 + 𝑥𝑛) for some 𝑥𝑟 ∈ 𝐶(𝐴T, 𝑟) and 𝑥𝑛 ∈ 𝑁(𝐴, 𝑛 − 𝑟)
= 𝐴𝑥𝑟 +𝐴𝑥𝑛
= 𝐴𝑥𝑟 since 𝑥𝑛 ∈ 𝑁(𝐴, 𝑛 − 𝑟) implies 𝐴𝑥𝑛 = 0𝑚 .

8.6.2 Exercises
Ex. 8.31 Consider the following matrix

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 55.12
1 1 0 12.02
1 1 0 3.54
1 0 1 10.89
1 0 1 20.8
1 0 1 19.12
1 1 0 19.23
1 1 0 9.62

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Show that rank(𝑋) = 3. What is the rank of 𝑋T𝑋? Does 𝑋T𝑋 have an inverse?

8.7 Vectors and Matrices of Random Variables
Organizing large numbers of random variables using matrix algebra pro-
vides convenient formulas for manipulating their expectations, variances
and covariances, and for expressing their joint pdf.

8.7.1 Expectations and Variance-Covariance Matrices

The expectation of a vector 𝑥 of 𝑚 random variables 𝑥 = [𝑋1 𝑋2 … 𝑋𝑚]T
is defined as the vector of their expectations, i.e.,

𝐸(𝑥) = [𝐸(𝑋1) 𝐸(𝑋2) … 𝐸(𝑋𝑚)]T .
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Likewise, if 𝑋 is a matrix of random variables, then

𝑋 =
⎡
⎢⎢
⎣

𝑋11 𝑋12 … 𝑋1𝑛
𝑋21 𝑋22 … 𝑋2𝑛
⋮ ⋮ ⋱ ⋮

𝑋𝑚1 𝑋𝑚2 … 𝑋𝑚𝑛

⎤
⎥⎥
⎦

⇔ 𝐸(𝑋) =
⎡
⎢⎢⎢
⎣

𝐸(𝑋11) 𝐸(𝑋12) … 𝐸(𝑋1𝑛)
𝐸(𝑋21) 𝐸(𝑋22) … 𝐸(𝑋2𝑛)

⋮ ⋮ ⋱ ⋮
𝐸(𝑋𝑚1) 𝐸(𝑋𝑚2) … 𝐸(𝑋𝑚𝑛)

⎤
⎥⎥⎥
⎦

.

With these definitions, we can define the variance-covariance matrix
of a vector 𝑥 of random variables. Let

̃𝑥 = 𝑥 − 𝐸(𝑥) =
⎡
⎢⎢⎢
⎣

𝑋1 −𝐸(𝑋1)
𝑋2 −𝐸(𝑋2)

⋮
𝑋𝑚 −𝐸(𝑋𝑚)

⎤
⎥⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

𝑋̃1
𝑋̃2
⋮

𝑋̃𝑚

⎤
⎥⎥⎥
⎦

.

Then
𝐸( ̃𝑥 ̃𝑥T) = 𝐸((𝑥 − 𝐸(𝑥))(𝑥 − 𝐸(𝑥))T)

= 𝐸
⎡
⎢
⎢
⎣

𝑋̃2
1 𝑋̃1𝑋̃2 … 𝑋̃1𝑋̃𝑚

𝑋̃2𝑋̃1 𝑋̃2
2 … 𝑋̃2𝑋̃𝑚

⋮ ⋮ ⋱ ⋮
𝑋̃𝑚𝑋̃1 𝑋̃𝑚𝑋̃2 … 𝑋̃𝑚𝑋̃𝑚

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝐸(𝑋̃2
1) 𝐸(𝑋̃1𝑋̃2) … 𝐸(𝑋̃1𝑋̃𝑚)

𝐸(𝑋̃2𝑋̃1) 𝐸(𝑋̃2
2) … 𝐸(𝑋̃2𝑋̃𝑚)

⋮ ⋮ ⋱ ⋮
𝐸(𝑋̃𝑚𝑋̃1) 𝐸(𝑋̃𝑚𝑋̃2) … 𝐸(𝑋̃𝑚𝑋̃𝑚)

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

Var(𝑋1) Cov(𝑋1, 𝑋2) … Cov(𝑋1, 𝑋𝑚)
Cov(𝑋1, 𝑋2) Var(𝑋2) … Cov(𝑋2, 𝑋𝑚)

⋮ ⋮ ⋱ ⋮
Cov(𝑋1, 𝑋𝑚) Cov(𝑋2, 𝑋𝑚) … Var(𝑋𝑚)

⎤
⎥⎥
⎦

.

(8.20)

In other words, 𝐸((𝑥−𝐸(𝑥))(𝑥−𝐸(𝑥))T) is a symmetric matrix containing
the variances of all of the variables in 𝑥, and their covariances. We denote
the variance-covariance matrix of a vector of random variables 𝑥 by Var(𝑥):

Var(𝑥) = 𝐸((𝑥 − 𝐸(𝑥))(𝑥 − 𝐸(𝑥))T) .
Example 8.20 Let 𝑋1, 𝑋2 and 𝑋3 be random variables with

𝐸(𝑋1) = 1,𝐸(𝑋2) = 3,𝐸(𝑋3) = 5,
Var(𝑋1) = 2,Var(𝑋2) = 3,Var(𝑋3) = 2, and

Cov(𝑋1, 𝑋2) = 1,Cov(𝑋1, 𝑋3) = 0,Cov(𝑋2, 𝑋3) = 2
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and let 𝑥 be the 3 × 1 vector [𝑋1 𝑋2 𝑋3]
T. Then

𝐸(𝑋) = ⎡⎢
⎣

1
3
5
⎤⎥
⎦

and Var(𝑋) = ⎡⎢
⎣

2 1 0
1 3 2
0 2 2

⎤⎥
⎦
.

Recall that if 𝑋 is a (univariate) random variable, then

• 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏,
• Var(𝑎𝑋 + 𝑏) = 𝑎2Var(𝑋), and

• Var(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2.
The following are the matrix analogues of these results. Suppose 𝑥 is

an 𝑚 × 1 vector of random variables, 𝐴 = (𝑎𝑖𝑗)𝑘𝑚 is a 𝑘 × 𝑚 matrix of
constants, and 𝑏 is a 𝑘 × 1 vector of constants. Then

(i) 𝐸(𝐴𝑥 + 𝑏) = 𝐴𝐸(𝑥) + 𝑏,
(ii) Var(𝐴𝑥 + 𝑏) = 𝐴Var(𝑥)𝐴T,

(iii) Var(𝑥) = 𝐸(𝑥𝑥T) − 𝐸(𝑥)𝐸(𝑥)T.

To show (i), we note that the 𝑖th element of the 𝑘 × 1 vector 𝐴𝑥 + 𝑏 is
∑𝑚

𝑗=1(𝑎𝑖𝑗𝑋𝑗 + 𝑏𝑖), and the expectation of this term is

𝐸(
𝑚
∑
𝑗=1

(𝑎𝑖𝑗𝑋𝑗 + 𝑏𝑖)) =
𝑚
∑
𝑗=1

𝑎𝑖𝑗𝐸(𝑋𝑗) + 𝑏𝑖 ,

which in turn is the 𝑖th element of the vector 𝐴𝐸(𝑥) + 𝑏. For (ii), since
𝐴𝑥 + 𝑏 − 𝐸(𝐴𝑥 + 𝑏) = 𝐴(𝑥 − 𝐸(𝑥)) = 𝐴 ̃𝑥, we have

Var(𝐴𝑥 + 𝑏) = 𝐸((𝐴 ̃𝑥)(𝐴 ̃𝑥)T) = 𝐸(𝐴 ̃𝑥 ̃𝑥T𝐴T) = 𝐴𝐸( ̃𝑥 ̃𝑥T)𝐴T

= 𝐴Var(𝑥)𝐴T .

You are asked to prove (iii) in Ex. 8.32.
Example 8.21 Given a vector of random variables 𝑥, the linear combina-
tion 𝑐T𝑥 of the random variables in 𝑥 has variance-covariance matrix

Var(𝑐T𝑥) = 𝑐TVar(𝑥)𝑐 .

Since variances cannot be negative, we have 𝑐TVar(𝑥)𝑐 ≥ 0 for all 𝑐, i.e.,
Var(𝑥) is a positive semidefinite matrix. If there is a linear combination
of the random variables in 𝑥 that has zero variance, then at least one or
more of the variables in 𝑥 is actually a constant (a “degenerate random
variable”), or at least one of the variables in 𝑥 is a linear combination of
the others. Otherwise we have 𝑐TVar(𝑥)𝑐 > 0 for all 𝑐 ≠ 0, i.e., Var(𝑥) is
positive definite.
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8.7.2 The Multivariate Normal Distribution
We presented the pdf of a bivariate normal distribution in Section 7.4.4.
We present here the pdf of a general multivariate normal distribution and
some associated results. A 𝑘 × 1 vector of random variables 𝑥 is said to
have a multivariate normal distribution with mean 𝜇 and positive definite
variance-covariance matrix Σ, denoted Normal𝑘(𝜇,Σ), if its pdf has the
form

𝑓(𝑥) = (2𝜋)− 𝑘
2 det(Σ)− 1

2 exp{−1
2(𝑥 − 𝜇)TΣ−1(𝑥 − 𝜇)} .

We list a few results below, omitting proofs:

(a) If Σ is diagonal, then 𝑋1, 𝑋2,… ,𝑋𝑘 are independent random variables.

(b) If 𝑥 ∼ Normal𝑘(𝜇,Σ), then for 𝐴𝑚×𝑘 and 𝑏𝑚×1,
𝐴𝑥 + 𝑏 ∼ Normal𝑚(𝐴𝜇 + 𝑏,𝐴Σ𝐴T).

(c) If we partition 𝑥 as

[𝑥1
𝑥2

] ∼ Normal𝑘 ([𝜇1
𝜇2

] , [Σ11 Σ12
Σ21 Σ22

])

where 𝑥1 is 𝑘1 × 1 and 𝑥2 is 𝑘2 × 1, with 𝑘1 + 𝑘2 = 𝑘, then the marginal
distribution of 𝑥1 is Normal𝑘1

(𝜇1, Σ11), and the conditional distribution of
𝑥2 given 𝑥1 is

𝑥2 ∣ 𝑥1 ∼ Normal𝑘2
(𝜇2∣1, Σ22∣1)

where 𝜇2∣1 = 𝜇2 +Σ21Σ−1
11 (𝑥1 − 𝜇1) and Σ22∣1 = Σ22 −Σ21Σ−1

11Σ12.

(d) If 𝑥 ∼ Normal𝑘(0, 𝐼) and 𝐴 is a rank 𝑣 symmetric matrix such that
𝐴𝐴 = 𝐴, then the scalar 𝑥T𝐴𝑥 is distributed 𝜒2(𝑣):

𝑥T𝐴𝑥 ∼ 𝜒2(𝑣) .
Matrices 𝐴 such that 𝐴𝐴 = 𝐴 are said to be idempotent.

(e) If 𝑥 ∼ Normal𝑘(𝜇,Σ), then (𝑥 − 𝜇)TΣ−1(𝑥 − 𝜇) ∼ 𝜒2(𝑘).
8.7.3 Exercises
Ex. 8.32 Show that Var(𝑥) = 𝐸(𝑥𝑥T) − 𝐸(𝑥)𝐸(𝑥)T.
Ex. 8.33 Show that 𝐸(trace(𝑋)) = trace(𝐸(𝑋)) where 𝑋 = (𝑋𝑖𝑗)𝑛×𝑛 is a matrix
of random variables.
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8.9 Appendix: A Formula for the Inverse Matrix
Recall that the (𝑖, 𝑗)th cofactor of a square matrix 𝐴 is the determinant of
the same matrix with the 𝑖th row and 𝑗th column removed, times (−1)𝑖+𝑗.
For example, the (2, 3)th cofactor of the 4 × 4 matrix

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

⎤
⎥⎥
⎦

is 𝐶23(𝐴) = (−1)2+3
∣
∣
∣
∣

𝑎11 𝑎12 ⋅ 𝑎14
⋅ ⋅ ⋅ ⋅

𝑎31 𝑎32 ⋅ 𝑎34
𝑎41 𝑎42 ⋅ 𝑎44

∣
∣
∣
∣
= − ∣

𝑎11 𝑎12 𝑎14
𝑎31 𝑎32 𝑎34
𝑎41 𝑎42 𝑎44

∣ .

The determinant of 𝐴 can be computed using the Laplace expansion over
any row or column. For instance, we can take the Laplace expansion along
the second column to get

det(𝐴) = 𝑎12𝐶12(𝐴) + 𝑎22𝐶22(𝐴) + 𝑎32𝐶32(𝐴) + 𝑎42𝐶42(𝐴) .

The matrix 𝐴 and its cofactor matrix 𝐶(𝐴) is shown below, where we
have boxed the second column of both.

𝐴 =
⎡
⎢⎢⎢
⎣

𝑎11
𝑎21
𝑎31
𝑎41

𝑎12
𝑎22
𝑎32
𝑎42

𝑎13
𝑎23
𝑎33
𝑎43

𝑎14
𝑎24
𝑎34
𝑎44

⎤
⎥⎥⎥
⎦

𝐶(𝐴) =
⎡
⎢⎢⎢
⎣

𝐶11(𝐴)
𝐶21(𝐴)
𝐶31(𝐴)
𝐶41(𝐴)

𝐶12(𝐴)
𝐶22(𝐴)
𝐶32(𝐴)
𝐶42(𝐴)

𝐶13(𝐴)
𝐶23(𝐴)
𝐶33(𝐴)
𝐶43(𝐴)

𝐶14(𝐴)
𝐶24(𝐴)
𝐶34(𝐴)
𝐶44(𝐴)

⎤
⎥⎥⎥
⎦

What happens if we were to expand along the second column, but multi-
ply each cofactor by the corresponding elements of a different column? We
can see the effects of this by considering the determinant of a modified 𝐴
matrix, with the second column replaced by the first, as shown below along
with the corresponding modified cofactor matrix:

𝐴 =
⎡
⎢⎢⎢
⎣

𝑎11
𝑎21
𝑎31
𝑎41

𝑎11
𝑎21
𝑎31
𝑎41

𝑎13
𝑎23
𝑎33
𝑎43

𝑎14
𝑎24
𝑎34
𝑎44

⎤
⎥⎥⎥
⎦

𝐶(𝐴) =
⎡
⎢
⎢
⎢
⎣

𝐶11(𝐴)
𝐶21(𝐴)
𝐶31(𝐴)
𝐶41(𝐴)

𝐶12(𝐴)
𝐶22(𝐴)
𝐶32(𝐴)
𝐶42(𝐴)

𝐶13(𝐴)
𝐶23(𝐴)
𝐶33(𝐴)
𝐶43(𝐴)

𝐶14(𝐴)
𝐶24(𝐴)
𝐶34(𝐴)
𝐶44(𝐴)

⎤
⎥
⎥
⎥
⎦



August 31, 2024 18:18 book-9x6 Baydur-Preve-Tay index page 343

Matrix Algebra 343

The determinant of 𝐴 is zero, since there are two identical columns. The
cofactors of 𝐴 along the second columns are the same as the corresponding
cofactors of 𝐴. This means that

det(𝐴) = 𝑎11𝐶12(𝐴) + 𝑎21𝐶22(𝐴) + 𝑎31𝐶32(𝐴) + 𝑎41𝐶42(𝐴) = 0 .

You can see that the same result will hold if we multiplied the cofactors in
the second column with the corresponding elements of columns 3 or 4. In
general, the sum of the products of the cofactors in one column (row) of the
cofactor matrix 𝐶(𝐴) with the corresponding elements of a different column
(row) of the matrix 𝐴 is zero.

Now consider pre-multiplying 𝐴 with the transpose of 𝐶(𝐴). We have

𝐶(𝐴)T𝐴 =
⎡
⎢⎢
⎣

𝐶11(𝐴) 𝐶21(𝐴) 𝐶31(𝐴) 𝐶41(𝐴)
𝐶12(𝐴) 𝐶22(𝐴) 𝐶32(𝐴) 𝐶42(𝐴)
𝐶13(𝐴) 𝐶23(𝐴) 𝐶33(𝐴) 𝐶43(𝐴)
𝐶14(𝐴) 𝐶24(𝐴) 𝐶34(𝐴) 𝐶44(𝐴)

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

det(𝐴) 0 0 0
0 det(𝐴) 0 0
0 0 det(𝐴) 0
0 0 0 det(𝐴)

⎤
⎥⎥
⎦
.

It follows that the inverse of 𝐴 is the transpose of its cofactor matrix divided
by the determinant

𝐴−1 = 1
det(𝐴)𝐶(𝐴)T .

Cramer’s rule pops right out of this formula. Consider the 𝑛-equations
𝑛-unknowns system 𝐴𝑥 = 𝑏 where

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

⎤
⎥⎥
⎦

, 𝑥 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤
⎥⎥
⎦

and 𝑏 =
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮
𝑏𝑛

⎤
⎥⎥
⎦

.

If a unique solution exists, then

⎡
⎢
⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤
⎥
⎥
⎦

= 𝐴−1𝑏 = 1
det(𝐴)𝐶(𝐴)T𝑏 = 1

det(𝐴)
⎡
⎢⎢⎢
⎣

𝐶11(𝐴) 𝐶21(𝐴) … 𝐶𝑛1(𝐴)
𝐶12(𝐴) 𝐶22(𝐴) … 𝐶𝑛2(𝐴)

⋮ ⋮ ⋱ ⋮
𝐶1𝑛(𝐴) 𝐶2𝑛(𝐴) … 𝐶𝑛𝑛(𝐴)

⎤
⎥⎥⎥
⎦

⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮
𝑏𝑛

⎤
⎥⎥
⎦
.

where we have indicated the solution for 𝑥2. You can see that

𝑥2 = 1
det(𝐴) [𝑏1𝐶12(𝐴) + 𝑏2𝐶22(𝐴) + ⋯+ 𝑏𝑛𝐶𝑛2(𝐴)] = det(𝐴2(𝑏))

det(𝐴)
where 𝐴2(𝑏) is the matrix 𝐴 with the second column replaced by 𝑏. Similar
remarks can be made for the other elements of the solution 𝑥.
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8.10 Solutions to Exercises
Ex. 8.1: dim(𝐴) is 3 × 2. (𝐴)1,2 = 13. (𝐴)3,1 = 7.

Ex. 8.2: 𝐴 = [2 3 4 5
3 4 5 6].

Ex. 8.3:

i.
⎡
⎢⎢
⎣

1 ∗ ∗ ∗
∗ 1 ∗ ∗
∗ ∗ 1 ∗
∗ ∗ ∗ 1

⎤
⎥⎥
⎦

ii.
⎡
⎢⎢
⎣

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

⎤
⎥⎥
⎦

iii.
⎡
⎢⎢
⎣

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

⎤
⎥⎥
⎦

iv.
⎡
⎢⎢
⎣

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

⎤
⎥⎥
⎦
.

Ex. 8.4: Solving 𝑢 + 2𝑣 = 1 and 𝑢 + 𝑣 = 4 gives 𝑢 = 7 and 𝑣 = −3.

Ex. 8.5: 𝐴 =
⎡
⎢⎢
⎣

1 1 1 1
0 1 1 1
0 0 1 0
1 0 0 1

⎤
⎥⎥
⎦
.

Question does not define the (𝑖, 𝑖)𝑡ℎ
element; we’ve decided on (𝐴)𝑖𝑖 = 1.

Ex. 8.6: Even though they are both zero matrices, 𝐴 and 𝐵 are not equal because
their dimensions are not the same.

Ex. 8.7: 𝐴 = 1
2
⎡⎢
⎣

3 4
2 8
1 5

⎤⎥
⎦

= ⎡⎢
⎣

3
2 2
1 4
1
2

5
2

⎤⎥
⎦
; 𝐵 = ⎡⎢

⎣

6 4
2 5
3 1

⎤⎥
⎦
+ 1

2
⎡⎢
⎣

3 4
1 8
1 4

⎤⎥
⎦

= ⎡⎢
⎣

7.5 6
2.5 9
3.5 3

⎤⎥
⎦
.

Ex. 8.8: Only (a) and (c) are symmetric.
Ex. 8.9: (a) - (e) are all true. (f) is false: (𝐴T)T = 𝐴 holds for all matrices.

Ex. 8.10: (a) 𝐴 = 2
3𝐶 − 1

3𝐷 and 𝐵 = 2
3𝐷 − 1

3𝐶 where 𝐶 = [1 2 1
4 3 0] and

𝐷 = [4 2 3
5 1 1]. (b) 𝐴 = 2

5𝐶, 𝐵 = 3
5𝐶.

Ex. 8.11: (a) 𝐵𝐶 = [14 4
69 30], 𝐶𝐵 = [20 16

21 24], 𝐴𝐵 = ⎡⎢
⎣

28 64
6 0
13 8

⎤⎥
⎦
.

(b) 𝐵𝐴 cannot be computed, because number of columns in 𝐵 does not equal
number of rows in 𝐴.
Ex. 8.12: We have

𝑥T𝑥 = [𝑥1 𝑥2 … 𝑥𝑛]
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤
⎥⎥
⎦

=
𝑛

∑
𝑖=1

𝑥2
𝑖

which is non-negative because it is a sum of squares. 𝑥T𝑥 = 0 if and only if every
element of 𝑥 is zero.

Ex. 8.13: (a) [2 4
1 2] [

−2 4
1 −2] = [2 ⋅ −2 + 4 ⋅ 1 2 ⋅ 4 + 4 ⋅ −2

1 ⋅ −2 + 2 ⋅ 1 1 ⋅ 4 + 2 ⋅ −2] = [0 0
0 0].

(b) [ 1 𝑏
− 1

𝑏 −1][
1 𝑏
− 1

𝑏 −1] = [ 1 ⋅ 1 + 𝑏(−1/𝑏) 1 ⋅ 𝑏 + 𝑏(−1)
(− 1

𝑏 )1 + (−1)(− 1
𝑏 ) (− 1

𝑏 )𝑏 + (−1)(−1)] = [0 0
0 0].

Ex. 8.14:
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(a) ((𝐴𝐵)𝐶)𝑖𝑗 =
𝑝

∑
𝑘=1

(𝐴𝐵)𝑖𝑘(𝐶)𝑘𝑗 =
𝑝

∑
𝑘=1

(
𝑛

∑
𝑙=1

(𝐴)𝑖𝑙(𝐵)𝑙𝑘)(𝐶)𝑘𝑗

=
𝑛

∑
𝑙=1

(𝐴)𝑖𝑙 (
𝑝

∑
𝑘=1

(𝐵)𝑙𝑘(𝐶)𝑘𝑗) =
𝑛

∑
𝑙=1

(𝐴)𝑖𝑙(𝐵𝐶)𝑙𝑗 = (𝐴(𝐵𝐶))𝑖𝑗

(b) (𝐴(𝐵 + 𝐶))𝑖𝑗 =
𝑛

∑
𝑘=1

(𝐴)𝑖𝑘(𝐵 + 𝐶)𝑘𝑗 =
𝑛

∑
𝑘=1

(𝐴)𝑖𝑘((𝐵)𝑘𝑗 + (𝐶)𝑘𝑗)

=
𝑛

∑
𝑘=1

(𝐴)𝑖𝑘(𝐵)𝑘𝑗 +
𝑛

∑
𝑘=1

(𝐴)𝑖𝑘(𝐶)𝑘𝑗 = (𝐴𝐵 +𝐴𝐶)𝑖𝑗

(c) ((𝐴 + 𝐵)𝐶))𝑖𝑗 =
𝑛

∑
𝑘=1

(𝐴 + 𝐵)𝑖𝑘(𝐶)𝑘𝑗 =
𝑛

∑
𝑘=1

((𝐴)𝑖𝑘 + (𝐵)𝑖𝑘)(𝐶)𝑘𝑗

=
𝑛

∑
𝑘=1

(𝐴)𝑖𝑘(𝐶)𝑘𝑗 +
𝑛

∑
𝑘=1

(𝐵)𝑖𝑘(𝐶)𝑘𝑗 = (𝐴𝐶 +𝐵𝐶)𝑖𝑗

Ex. 8.15 (a) (𝐼𝑚𝐴)𝑖𝑗 = ∑𝑚
𝑘=1(𝐼𝑚)𝑖𝑘(𝐴)𝑘𝑗 = (𝐼𝑚)𝑖𝑖(𝐴)𝑖𝑗 = (𝐴)𝑖𝑗.

(b) (𝐴𝐼𝑛)𝑖𝑗 = ∑𝑛
𝑘=1(𝐴)𝑖𝑘(𝐼𝑛)𝑘𝑗 = (𝐴)𝑖𝑗(𝐼𝑛)𝑗𝑗 = (𝐴)𝑖𝑗.

Ex. 8.16: Both RHS and LHS equal
⎡
⎢⎢
⎣

𝑎11𝑏1 + 𝑎12𝑏2 + 𝑎13𝑏3
𝑎21𝑏1 + 𝑎22𝑏2 + 𝑎23𝑏3
𝑎31𝑏1 + 𝑎32𝑏2 + 𝑎33𝑏3
𝑎41𝑏1 + 𝑎42𝑏2 + 𝑎43𝑏3

⎤
⎥⎥
⎦
.

Ex. 8.17: (a) We want to show that the (𝑖, 𝑗)th element of (𝐴𝐵)T is equal to the
(𝑖, 𝑗)th element of 𝐵T𝐴T. By definition of the transpose, the (𝑖, 𝑗)th element of
(𝐴𝐵)T is the (𝑗, 𝑖)th element of 𝐴𝐵, therefore

((𝐴𝐵)T)𝑖𝑗 = (𝐴𝐵)𝑗𝑖 =
𝑛

∑
𝑘=1

𝑎𝑗𝑘𝑏𝑘𝑖

=
𝑛

∑
𝑘=1

𝑏𝑘𝑖𝑎𝑗𝑘 =
𝑛

∑
𝑘=1

(𝐵T)𝑖𝑘(𝐴T)𝑘𝑗 = (𝐵T𝐴T)𝑖𝑗.

For (b), we have (𝐴𝐵𝐶)T = ((𝐴𝐵)𝐶)T = 𝐶T(𝐴𝐵)T = 𝐶T𝐵T𝐴T.
Ex. 8.18: Since 𝑋 is 𝑛 × 𝑘, 𝑋T𝑋 is 𝑘 × 𝑘. 𝑋T𝑋 is symmetric since (𝑋T𝑋)T =
𝑋T(𝑋T)T = 𝑋T𝑋.
Ex. 8.19: (a) tr(𝐴 + 𝐵) = ∑𝑛

𝑖=1(𝐴 + 𝐵)𝑖𝑖 = ∑𝑛
𝑖=1(𝐴)𝑖𝑖 + (𝐵)𝑖𝑖 = tr(𝐴) + tr(𝐵).

(b) (𝐴)𝑖𝑖 = (𝐴T)𝑖𝑖, so the trace of 𝐴 and 𝐴Tare the same.
(c) tr(𝐴𝐵) = ∑𝑛

𝑖=1(𝐴𝐵)𝑖𝑖 = ∑𝑛
𝑘=1 ∑

𝑛
𝑖=1(𝐵)𝑘𝑖(𝐴)𝑖𝑘 = ∑𝑛

𝑘=1(𝐵)𝑘𝑖(𝐴)𝑖𝑘 = tr(𝐵𝐴).
(d.i) Multiplying out 𝑥𝑥T will show that its diagonal elements are 𝑥2

𝑖 , 𝑖 = 1, 2, ..., 𝑛,
so the trace of 𝑥𝑥T is ∑𝑛

𝑖=1 𝑥2
𝑖 = 𝑥T𝑥. For (d.ii), using results from part (c), we

have tr(𝑥T𝑥) = tr(𝑥𝑥T), but since 𝑥T𝑥 is a scalar, we have tr(𝑥T𝑥) = 𝑥T𝑥.
Ex. 8.20: (a) Since (𝑖T𝑛 𝑖𝑛)−1 = 1/𝑛 and 𝑖T𝑛 𝑦 = ∑𝑛

𝑖=1 𝑦𝑖, we have (𝑖T𝑛 𝑖𝑛)−1𝑖T𝑛 𝑦 =
(1/𝑛)∑𝑛

𝑖=1 𝑦𝑖 = 𝑦.
(b) We first note that 𝑀0 = 𝐼𝑛 − 𝑖𝑛(𝑖T𝑛 𝑖𝑛)−1𝑖T𝑛 = 𝐼𝑛 − 1

𝑛 𝑖𝑛𝑖T𝑛 . We have,

Symmetry: 𝑀T
0 = (𝐼𝑛 − 1

𝑛𝑖𝑛𝑖T𝑛)
T
= 𝐼T

𝑛 − 1
𝑛(𝑖T𝑛 )T𝑖T𝑛 = 𝐼T

𝑛 − 1
𝑛𝑖𝑛𝑖T𝑛 = 𝑀0 .
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Idempotence: 𝑀0𝑀0 = (𝐼𝑛 − 1
𝑛𝑖𝑛𝑖T𝑛)(𝐼𝑛 − 1

𝑛𝑖𝑛𝑖T𝑛)

= 𝐼𝑛 − 1
𝑛𝑖𝑛𝑖T𝑛 − 1

𝑛𝑖𝑛𝑖T𝑛 + 1
𝑛2 𝑖𝑛𝑖T𝑛 𝑖𝑛𝑖T𝑛

= 𝐼𝑛 − 2
𝑛𝑖𝑛𝑖T𝑛 + 1

𝑛2 𝑖𝑛(𝑛)𝑖T𝑛 = 𝐼𝑛 − 1
𝑛𝑖𝑛𝑖T𝑛 = 𝑀0 .

(c) First, note that 𝑀0𝑦 = (𝐼𝑛 − 𝑖𝑛(𝑖T𝑛 𝑖𝑛)−1𝑖T𝑛 ) 𝑦 = 𝑦 − 𝑖𝑛𝑦 =
⎡
⎢⎢
⎣

𝑦1 − 𝑦
𝑦2 − 𝑦

⋮
𝑦𝑛 − 𝑦

⎤
⎥⎥
⎦
. Therefore

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)2 = (𝑀0𝑦)T𝑀0𝑦 = 𝑦T𝑀T
0 𝑀0𝑦 = 𝑦T𝑀0𝑀0𝑦 = 𝑦T𝑀0𝑦 .

Ex. 8.21: The result follows from the following equalities:

𝑛
∑
𝑖=1

(𝐴)𝑖𝑘(𝛼𝐵)𝑘𝑗 =
𝑛

∑
𝑖=1

(𝐴)𝑖𝑘𝛼(𝐵)𝑘𝑗 =
𝑛

∑
𝑖=1

(𝛼𝐴)𝑖𝑘(𝐵)𝑘𝑗 = 𝛼
𝑛

∑
𝑖=1

(𝐴)𝑖𝑘(𝐵)𝑘𝑗 .

Ex. 8.22: Multiplying out fully, we have 𝐴𝐵 =
⎡
⎢
⎢
⎢
⎣

37 19 24
34 19 35
27 15 18
27 10 17
38 13 17

⎤
⎥
⎥
⎥
⎦

.

Writing 𝐴 and 𝐵 as

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

= [𝐴11 𝐴12
𝐴21 𝐴22

] and 𝐵 =
⎡
⎢⎢
⎣

2 0 1
3 1 3
1 5 4
4 1 1

⎤
⎥⎥
⎦

= [𝐵11 𝐵12
𝐵21 𝐵22

] ,

it is straightforward to verify that

𝐴11𝐵11 +𝐴12𝐵21 = [24] + [3530] = [3734]

and
𝐴11𝐵12 +𝐴12𝐵22 = [0 1

0 2] + [19 23
19 33] = [19 24

19 35]

and likewise for 𝐴21𝐵11 +𝐴22𝐵21 and 𝐴21𝐵12 +𝐴22𝐵22. Furthermore

𝐴T = [𝐴11 𝐴12
𝐴21 𝐴22

]
T

=
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

T

=
⎡
⎢⎢
⎣

1 2 3 4 3
3 8 1 2 1
2 2 2 1 1
6 1 4 3 7

⎤
⎥⎥
⎦

= [𝐴
T
11 𝐴T

21
𝐴T

12 𝐴T
22
] .
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Ex. 8.23: Write 𝐴 as

𝐴 =
⎡
⎢⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

𝑎1∗
𝑎2∗
⋮

𝑎𝑚∗

⎤
⎥⎥⎥
⎦

where 𝑎𝑖∗ = [𝑎𝑖1 𝑎𝑖2 … 𝑎𝑖𝑛] .

Then 𝑐T𝐴 = [𝑐1 𝑐2 … 𝑐𝑚]
⎡
⎢⎢
⎣

𝑎1∗
𝑎2∗
⋮

𝑎𝑚∗

⎤
⎥⎥
⎦

= 𝑐1𝑎1∗ + 𝑐2𝑎2∗ +⋯+ 𝑐𝑚𝑎𝑚∗.

Ex. 8.24: The first equality can be obtained by multiplying

𝑋T𝑋 = ⎡
⎢
⎣

𝑋T
∗1

𝑋T
∗2

𝑋T
∗3

⎤
⎥
⎦
[𝑋∗1 𝑋∗2 𝑋∗3] =

⎡
⎢
⎣

𝑋T
∗1𝑋∗1 𝑋T

∗1𝑋∗2 𝑋T
∗1𝑋∗3

𝑋T
∗2𝑋∗1 𝑋T

∗2𝑋∗2 𝑋T
∗2𝑋∗3

𝑋T
∗3𝑋∗1 𝑋T

∗3𝑋∗2 𝑋T
∗3𝑋∗3

⎤
⎥
⎦

.

The second equality comes from the partition by observations:

𝑋T𝑋 = [𝑋T
1∗ 𝑋T

2∗ 𝑋T
3∗ … 𝑋T

𝑛∗]
⎡
⎢
⎢
⎢
⎣

𝑋1∗
𝑋2∗
𝑋3∗
⋮

𝑥𝑛∗

⎤
⎥
⎥
⎥
⎦

=
𝑛

∑
𝑖=1

𝑋T
𝑖∗𝑋𝑖∗ .

The last expression comes directly from the second expression.
Ex. 8.25: In Example 8.13 we showed that the inverse of 𝐴 is 𝐴−1 =
⎡
⎢
⎣

− 1
6

1
3 0

1
2 − 4

3
2
3

0 2
3 − 1

3

⎤
⎥
⎦
. Therefore the inverse of 𝐴T is

(𝐴T)−1 = (𝐴−1)T = ⎡
⎢
⎣

− 1
6

1
2 0

1
3 − 4

3
2
3

0 2
3 − 1

3

⎤
⎥
⎦
.

Ex. 8.26: This is easily seen by direct multiplication.
Ex. 8.27: Adding a multiple of one row to another row does not change the
determinant of a matrix. If row 𝑖 of a (square) matrix is a multiple of row 𝑗,
then subtracting that multiple of row 𝑗 from row 𝑖 reduces row 𝑖 into a zero row
without changing the determinant. The determinant of any matrix with a zero
row is zero. Matrices with zero determinant do not have an inverse.
Ex. 8.28: (a) The system can be written as 𝐴𝑥 = 𝑏 as shown below

⎡⎢
⎣

4 0 1
8 1 −3
12 1 0

⎤⎥
⎦
⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

4
3
1
⎤⎥
⎦
.
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To find the inverse of 𝐴:

⎡
⎢
⎣

4 0 1 1 0 0
8 1 −3 0 1 0
12 1 0 0 0 1

⎤
⎥
⎦

−−−−−−−→
[2]←[2]−2[1]
[1]←[3]−3[3]

⎡
⎢
⎣

4 0 1 1 0 0
0 1 −5 −2 1 0
0 1 −3 −3 0 1

⎤
⎥
⎦

−−−−−−→
[3]←[3]−[2]

⎡⎢⎢
⎣

4 0 1 1 0 0
0 1 −5 −2 1 0
0 0 2 −1 −1 1

⎤⎥⎥
⎦

row
echelon

form

−−−−−−−→
[1]←[1]− 1

2 [3]
[2]←[2]+ 5

2 [3]

⎡⎢⎢
⎣

4 0 0 3
2

1
2 − 1

2
0 1 0 − 9

2 − 3
2

5
2

0 0 2 −1 −1 1

⎤⎥⎥
⎦

−−−−−→
[1]← 1

4 [1]
[3]← 1

2 [2]

⎡⎢
⎣

1 0 0 3
8

1
8 − 1

8
0 1 0 − 9

2 − 3
2

5
2

0 0 1 − 1
2 − 1

2
1
2

⎤⎥
⎦

That is,

𝐴−1 = ⎡⎢
⎣

3
8

1
8 − 1

8
− 9

2 − 3
2

5
2

− 1
2 − 1

2
1
2

⎤⎥
⎦

The solution to the system is therefore

𝑥 = 𝐴−1𝑏 = ⎡⎢
⎣

3
8

1
8 − 1

8
− 9

2 − 3
2

5
2

− 1
2 − 1

2
1
2

⎤⎥
⎦
⎡⎢
⎣

4
3
1
⎤⎥
⎦
, i.e., 𝑥1 = 7

4 , 𝑥2 = −20 , 𝑥3 = −3 .

(b) The determinant of 𝐴 is the product of the diagonal of the row echelon form,
i.e., det(𝐴) = 8 (we did not swap rows or multiple any row by a factor in obtaining
the row echelon form). Likewise, you can show that the determinants of 𝐴1(𝑏),
𝐴2(𝑏) and 𝐴3(𝑏) are

det(𝐴1(𝑏)) = ∣
4 0 1
3 1 −3
1 1 0

∣ = 14 , det(𝐴2(𝑏)) = ∣
4 4 1
8 3 −3
12 1 0

∣ = −160

and det(𝐴3(𝑏)) = ∣
4 0 4
8 1 3
12 1 1

∣ = −24

which gives

𝑥1 = 14/8 = 7/4 , 𝑥2 = −160/8 = −20 and 𝑥3 = −24/8 = −3 .

Ex. 8.29: No. 𝐴𝑏 = 𝐴𝑐 implies 𝑏 = 𝑐 only if 𝐴 is non-singular, in which case

𝐴𝑏 = 𝐴𝑐 ⇒ 𝐴−1𝐴𝑏 = 𝐴−1𝐴𝑐 ⇒ 𝑏 = 𝑐.
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But if 𝐴 is singular, then it is possible that 𝐴𝑏 = 𝐴𝑐 but 𝑏 ≠ 𝑐. For example,

[1 2
2 4] [

0
1] = [24] = [1 2

2 4] [
2
0] .

Ex. 8.30: The quadratic form 𝑄 = 𝑐T𝑋T𝑋𝑐 = (𝑋𝑐)T(𝑋𝑐). Since 𝑋𝑐 is 𝑛 × 1 for
all 𝑐, 𝑄 is a sum of squares which cannot be negative. If 𝑋𝑐 ≠ 0 for all 𝑘-vectors
𝑐 ≠ 0𝑛, then 𝑋𝑐 is a non-zero 𝑛 × 1 vector, and the sum of squares (𝑋𝑐)T(𝑋𝑐)
will be strictly positive.
Ex. 8.31: We can find the rank by Gaussian elimination. Swap the first and
second rows of 𝑋. Then (a) subtract first row from all rows below it, (b) subtract
row 2 from rows 4, 5 and 6, (c) use the pivot in column 4 to eliminate everything
below it (the last step is not shown):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 12.02
1 0 1 55.12
1 1 0 3.54
1 0 1 10.89
1 0 1 20.8
1 0 1 19.12
1 1 0 19.23
1 1 0 9.62

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 12.02
0 -1 1 43.1
0 0 0 −8.48
0 −1 1 −1.13
0 −1 1 8.78
0 −1 1 7.1
0 0 0 7.21
0 0 0 −2.4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 12.02
0 -1 1 43.1
0 0 0 -8.48
0 0 0 −44.23
0 0 0 −34.32
0 0 0 −36.0
0 0 0 7.21
0 0 0 −2.4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This shows that rank(𝑋) = 3. An quicker way is to note that the first column of
X is obviously the sum of its second and third column, whereas columns 2 to 4
are clearly independent, so the rank is three. The rank of the 4 × 4 matrix 𝑋T𝑋
is also 3. Since 𝑋T𝑋 is not full rank, it does not have an inverse.
Ex. 8.32: We have

Var(𝑥) = 𝐸((𝑥 − 𝐸(𝑥))(𝑥 − 𝐸(𝑥))T)
= 𝐸(𝑥𝑥T − 𝑥𝐸(𝑥)T −𝐸(𝑥)𝑥T +𝐸(𝑥)𝐸(𝑥)T)
= 𝐸(𝑥𝑥T) − 𝐸(𝑥)𝐸(𝑥)T −𝐸(𝑥)𝐸(𝑥)T +𝐸(𝑥)𝐸(𝑥)T

= 𝐸(𝑥𝑥T) − 𝐸(𝑥)𝐸(𝑥)T

Ex. 8.33: trace(𝑋) = 𝑋11 +𝑋22 +⋯+𝑋𝑛𝑛. Therefore

𝐸(trace(𝑋)) = 𝐸(𝑋11 +𝑋22 +⋯+𝑋𝑛𝑛)
= 𝐸(𝑋11) + 𝐸(𝑋22) + ⋯ + 𝐸(𝑋𝑛𝑛) = trace(𝐸(𝑋)) .



August 31, 2024 18:18 book-9x6 Baydur-Preve-Tay index page 350

350 Mathematics and Programming for the Quantitative Economist




